wo 2011/063031 A2 1M1 0FY I O OO O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

/25>,) 0 O O 0O O
A ())

Wy

(19) World Intellectual Property Organization
International Bureau

i

(43) International Publication Date '_ (10) International Publication Number

26 May 2011 (26.05.2011) WO 2011/063031 A2

(51) International Patent Classification: (72) Inventors; and
GO6F 9/46 (2006.01) (75) Inventors/Applicants (for US only): HSU, Liangchi
(21) International Application Number: [US/US]; 5775 Morehouse Drive, San Diego, California
PCT/US2010/057089 92121-1714 (US). KADAGALA, Vijay Kumar [IN/US];

5775 Morehouse Drive, San Diego, California
(22) International Filing Date: 92121-1714 (US).
17 November 2010 (17.11.2010) 74y Agent: BRADEN, Stanton C.; ATTN: International TP

(25) Filing Language: English Administration, 5775 Morehouse Drive, San Diego, Cali-
fornia 92121-1714 (US).

(26) Publication Language: English
L. (81) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of national protection available): AE, AG, AL, AM,
61/262,704 19 November 2009 (191 12009) UsS AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(71) Applicant (for all designated States except US): QUAL- DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
COMM Incorporated [US/US]; ATTN: International IP HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
Administration, 5775 Morehouse Drive, San Diego, Cali- KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
fornia 92121-1714 (US). ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

[Continued on next page]

(54) Title: METHODS AND APPARATUS FOR MEASURING PERFORMANCE OF A MULTI-THREAD PROCESSOR

(57) Abstract: Disclosed are methods and apparatus for measuring performance of a

gop multi-thread processor. The method and apparatus determine loading of a multi-

/ thread processor through execution of an idle task in individual threads of the multi-

thread processor during predetermined time periods. The idle task is configured to

: : loop and run when no other task is running on the threads. Loop executions of the
f::?#::;tffatz?r:ﬁlﬁﬁs:s g‘r:;é:‘:ztr idle task on each thread are counted over each of the predetermined time periods.
during at least one predetermined time |_— 602 From these counts, loadlng of each of the threads of the multi-thread processor may
period, the idle task configured to loop and then be determined. The loading may be used to develop a processor profile that may

run when no other task is running on the then be displaved in real-time
at least one thread play .

I

Determine at least one count of loop
executions of the at least one idle task
over the at least one predetermined time
period

l—— 604

Determine loading of at least the at least | — 606
one thread of the multi-thread processor
based on a count of the number of loops

Determine and display a performance | —— 608
profile for the multi-thread processor based
on the determined loading

Fig. 6

WO 2011/063031 A2 IO 0 00 A

NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, Declarations under Rule 4.17:
SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

as to applicant's entitlement to apply for and be granted

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. a patent (Rule 4.17(i))
84 Designateq States (unle.ss othe.rwz'se indicated, for every __ o 1. applicant's entitlement to claim the priority of
kind of regional protection available): ARTPO (BW, GH, the earlier application (Rule 4.17(iii))

GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Published:

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, __ without international search report and to be republished
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, upon receipt of that report (Rule 48.2(g))

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

WO 2011/063031 PCT/US2010/057089

[0001]

[0002]

[0003]

[0004]

METHODS AND APPARATUS FOR MEASURING
PERFORMANCE OF A MULTI-THREAD PROCESSOR

Claim of Priority

The present Application for Patent claims priority to Provisional Application
No. 61/262,704 entitled “METHODS AND APPARATUS FOR PERFORMANCE
PROFILING OF A MULTI-THREAD PROCESSOR?” filed November 19, 2009, and

assigned to the assignee hereof and hereby expressly incorporated by reference herein.

BACKGROUND
Field
The present disclosure relates generally to methods and apparatus for measuring
performance of a multi-thread processor, and more specifically to methods and
apparatus for loading measuring and performance profiling of multi-thread processors in
devices such as wireless devices on a per thread basis and for various uses and data

rates.

Background

In devices such as wireless devices, profiling the performance of a processor that
the wireless communication is running on is important. The profiling and measurement
of processor performance can provide insight for design optimization, as well as provide
a convenient tool for design debugging. The result of such profiling can be used for
resource management in a device utilizing the processor, such as a wireless device in
one example. Such resource management can be dynamic and flexible if the profiling is
performed in a real-time manner. One example is a communication flow control based
processor loading that is measured based on performance profiling.

As the wireless technology evolves, many sophisticated mobile features and
high data rates are required to be implemented in a wireless devices or handheld
devices. The processor technology of the wireless devices, consequently, evolves too.
For example, for 2G cellular technologies such as GSM/GPRS, a typical processor is
based on single thread architecture, while for 3G/4G cellular technologies such as

HSPA+/LTE/EV-DO, processors have evolved to be multi-thread based.

WO 2011/063031 PCT/US2010/057089

[0005]

[0006]

[0007]

[0008]

No scheme or apparatus available in the known art, however, measures multi-
thread processor CPU loading under various use cases and data rates. Furthermore,
there is no known tool or instrument available to probe the multi-thread processor CPU
usage, per cach thread, when a packet data session is ongoing in a device, such as a
wireless device. Moreover, there is no known tool or instrument available to probe the
multi-thread processor “all-wait” (i.e. all processor threads are idle) status when a
packet data session is ongoing in a wireless device. Accordingly, a need exists for
determining loading of a multi-thread processor and profiling performance of the

processor using the determined loading.

SUMMARY

In an aspect, a method for determining loading of a multi-thread processor is
disclosed. The method includes executing at least one idle task in at least one thread of
the multi-thread processor during at least one predetermined time period. The idle task
is configured to loop and run when no other task is running on the at least one thread.
At least one count of loop executions of the at least one idle task over the at least one
predetermined time period is determined. Finally, the method includes determining
loading of at least the at least one thread of the multi-thread processor based on the at
least one count of the number of loop executions.

In another aspect, an apparatus for determining the loading of a multi-thread
processor is disclosed. The apparatus includes at least one processor configured to
execute at least one idle task in at least one thread of the multi-thread processor during
at least one predetermined time period, wherein the idle task is configured to loop and
run when no other task is running on the at least one thread. The processor is also
configured to determine at least one count of loop executions of the at least one idle task
over the at least one predetermined time period. Finally, the processor is configured to
determine loading of at least the at least one thread of the multi-thread processor based
on the at least one count of the number of loop executions.

According to still another aspect, an apparatus for determining loading of a
multi-thread processor is disclosed. The apparatus includes means for executing at least
one idle task in at least one thread of the multi-thread processor during at least one
predetermined time period, wherein the idle task is configured to loop and run when no

other task is running on the at least one thread. Means for determining at least one

WO 2011/063031 PCT/US2010/057089

[0009]

[0010]

[0011]

[0012]

[0013]

[0014]

[0015]

[0016]

[0017]

count of loop executions of the at least one idle task over the at least one predetermined
time period are further included. Also, the apparatus includes means for determining
loading of at least the at least one thread of the multi-thread processor based on the at
least one count of the number of loop executions.

According to still one more aspect, a computer program product comprising
computer-readable medium is disclosed. The medium comprises code for causing a
computer to generate a performance profile of a multi-thread processor wherein the
code includes code for causing a computer to execute at least one idle task in at least
one thread of the multi-thread processor during at least one predetermined time period.
The idle task is configured to loop and run when no other task is running on the at least
one thread. Further included is code for causing a computer to determine at least one
count of loop executions of the at least one idle task over the at least one predetermined
time period, and code for causing a computer to determine loading of at least the at least
one thread of the multi-thread processor based on the at least one count of the number of

loop executions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a multiple access wireless communication
System.

FIG. 2 is a block diagram of an exemplary communication system that may
employ or utilize the presently disclosed methods and apparatus.

FIG. 3 illustrates a block diagram of a multi-thread processor profiling
arrangement.

FIG. 4 is block diagram illustrating an apparatus operation for determining
loading of a multi-thread processor.

FIG. 5 illustrates an array of sleep vectors for accumulating counts for idle tasks
run on multiple threads of a multi-thread processor.

FIG. 6 is a method for effecting multi-thread processor profiling according to an
aspect of the present disclosure.

FIG. 7 is another method for effecting another multi-thread processor profiling
according to an aspect of the present disclosure.

FIG. 8 illustrates a block diagram of another exemplary apparatus for

determining a profile of a multi-thread processor.

WO 2011/063031 PCT/US2010/057089

[0018]

[0019]

[0020]

DETAILED DESCRIPTION

The present disclosure features methods and apparatus that afford measurement
and/or profiling of the performance of a multi-thread processor CPU, such as those used
in devices for 3G/4G technologies, such as High Speed Packet Access (HSPA), evolved
HSPA (HSPA+), Long Term Evolution (LTE), and EV-DO technologies. Additionally,
the presently disclosed method and apparatus afford real-time profiling and/or
measurement that can be displayed in real-time for use in designing or optimizing multi-
thread CPU usage or operation.

The apparatus and methods described herein are applicable to various devices
that utilize multi-thread processors. In a particular aspect, the present apparatus and
methods may be applied to wireless devices utilizing multi-thread processors to help
optimizing the processor operation in the wireless device. It is noted that exemplary
wireless communication technologies that such devices may implement include Code
Division Multiple Access (CDMA), Time Division Multiple Access (TDMA) networks,
Frequency Division Multiple Access (FDMA), Orthogonal FDMA (OFDMA), Single-
Carrier FDMA (SC-FDMA), High Speed Packet Access (HSPA and HSPA+)
technologies, Long Term Evolution (LTE), EV-DO technologies, etc. A CDMA
network may implement a radio technology such as Universal Terrestrial Radio Access
(UTRA), cdma2000, etc. UTRA includes Wideband-CDMA (W-CDMA) and Low
Chip Rate (LCR). cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA
network may implement a radio technology such as Global System for Mobile
Communications (GSM). An OFDMA network may implement a radio technology
such as Ultra Mobile Bandwidth (UMB), Evolved UTRA (E-UTRA), IEEE 802.11,
IEEE 802.16 (WiMax), IEEE 802.20, Flash-OFDM, etc. UTRA, E-UTRA, and GSM
are part of Universal Mobile Telecommunication System (UMTS). Long Term
Evolution (LTE) is an upcoming release of UMTS that uses E-UTRA. UTRA, E-
UTRA, GSM, UMTS and LTE are described in documents from an organization named
“3rd Generation Partnership Project” (3GPP). ¢dma2000 is described in documents
from an organization named “3rd Generation Partnership Project 2” (3GPP2). These
various radio technologies and standards are known in the art.

Also, the term “processor” as used herein may include, but is not limited to, a

CPU, ASIC, digital signal processor (DSP), or any other type of processor capable of

WO 2011/063031 PCT/US2010/057089

[0021]

[0022]

[0023]

executing instructions. Additionally, although the present disclosure relates primarily to
multi-thread processors, it will be evident to one skilled in art that the present apparatus
and methods apply to any processor running processes in parallel, concurrently, etc, or
even potentially to multi-tasking. Furthermore, although the present disclosure is
discussed in the context of processors used in wireless devices, one skilled in the art will
appreciate that the present methods and apparatus may be broadly applied to any multi-
thread processor regardless of the application or use.

Referring to FIG. 1, an example of a multiple access wireless communication
system in which the present methods and apparatus may be employed is shown. An
access point 100 (AP) (or eNodeB or base station) includes multiple antenna groups,
one including 104 and 106, another including 108 and 110, and an additional including
112 and 114. In Fig. 1, only two antennas are shown for each antenna group, however,
more or fewer antennas may be utilized for each antenna group. Access terminal 116
(AT) (or mobile device or user equipment (UE)) is in communication with antennas 112
and 114, where antennas 112 and 114 transmit information to access terminal 116 over a
downlink (DL) or forward link 120 and receive information from access terminal 116
over an uplink (UL) or reverse link 118. Access terminal 122 is in communication with
antennas 106 and 108, where antennas 106 and 108 transmit information to access
terminal 122 over forward link 126 and receive information from access terminal 122
over reverse link 124, In an FDD system, communication links 118, 120, 124 and 126
may use different frequency for communication. For example, DL 120 may use a
different frequency then that used by UL 118. In a TDD system, a single frequency is
used for both UL 118 and DL 120, with time multiplexing of UL and DL signals.

Each group of antennas and/or the area in which they are designed to
communicate is often referred to as a sector of the access point. In an aspect, antenna
groups each are designed to communicate to access terminals in a sector of the areas
covered by access point 100.

An access point may be a fixed station used for communicating with the
terminals and may also be referred to as an access point, a Node B, or some other
terminology. An access terminal may also be called an access terminal, user equipment
(UE), a wireless communication device, terminal, access terminal or some other

terminology.

WO 2011/063031 PCT/US2010/057089

[0024]

[0025]

[0026]

[0027]

[0028]

[0029]

FIG. 2 is a block diagram of an example of a transmitter system 210 (also known
as the access point) and a receiver system 250 (also known as access terminal) in a
MIMO system 200 that provides spatial diversity multiplexing. At the transmitter
system 210, traffic data for a number of data streams is provided from a data source 212
to a transmit (TX) data processor 214.

In an aspect, each data stream is transmitted over a respective transmit antenna.
TX data processor 214 formats, codes, and interleaves the traffic data for each data
stream based on a particular coding scheme sclected for that data stream to provide
coded data.

The coded data for each data stream may be multiplexed with pilot data using
OFDM techniques. The pilot data is typically a known data pattern that is processed in
a known manner and may be used at the receiver system to estimate the channel
response. The multiplexed pilot and coded data for each data stream is then modulated
(i.e., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QSPK, M-
PSK, or M-QAM) selected for that data stream to provide modulation symbols. The
data rate, coding, and modulation for each data stream may be determined by
instructions performed by processor 230.

The modulation symbols for all data streams are then provided to a TX MIMO
processor 220, which may further process the modulation symbols (e.g., for OFDM).
TX MIMO processor 220 then provides NT modulation symbol streams to NT
transmitters (TMTR) 222a through 222t. In certain aspects, TX MIMO processor 220
applies beamforming weights to the symbols of the data streams and to the antenna from
which the symbol is being transmitted.

Each transmitter 222 receives and processes a respective symbol stream to
provide one or more analog signals, and further conditions (e.g., amplifies, filters, and
upconverts) the analog signals to provide a modulated signal suitable for transmission
over the MIMO channel. NT modulated signals from transmitters 222a through 222t
are then transmitted from NT antennas 224a through 224t, respectively.

At receiver system 250, the transmitted modulated signals are received by NR
antennas 252a through 252r and the received signal from each antenna 252 is provided
to a respective receiver (RCVR) 254a through 254r. Each receiver 254 conditions (e.g.,

filters, amplifies, and downconverts) a respective received signal, digitizes the

WO 2011/063031 PCT/US2010/057089

[0030]

[0031]

[0032]

[0033]

[0034]

conditioned signal to provide samples, and further processes the samples to provide a
corresponding “received” symbol stream.

An RX data processor 260 then receives and processes the NR received symbol
streams from NR receivers 254 based on a particular receiver processing technique to
provide NT “detected” symbol streams. The RX data processor 260 then demodulates,
deinterleaves, and decodes each detected symbol stream to recover the traffic data for
the data stream. The processing by RX data processor 260 is complementary to that
performed by TX MIMO processor 220 and TX data processor 214 at transmitter
system 210.

The reverse link or UL message may comprise various types of information
regarding the communication link and/or the received data stream. The reverse link
message is then processed by a TX data processor 238, which also receives traffic data
for a number of data streams from a data source 236, modulated by a modulator 280,
conditioned by transmitters 254a through 254r, and transmitted back to transmitter
system 210.

At transmitter system 210, the modulated signals from receiver system 250 are
received by antennas 224, conditioned by receivers 222, demodulated by a demodulator
240, and processed by a RX data processor 242 to extract the reserve link or UL
message transmitted by the receiver system 250. Processor 230 then determines which
pre-coding matrix to use for determining the beamforming weights then processes the
extracted message.

It is noted that the present disclosure affords apparatus and methods for profiling
a processor such as processors 230 or 270 in wireless devices 210 and 250, but also
could be applied to any multi-thread processor in any number of various apparatus,
whether wireless devices or not.

As one example of an implementation, FIG. 3 illustrates a block diagram of a
multi-thread processor profiling arrangement. As illustrated, a device 300, which could
be configured as cither an integrated or chipset (e.g., a Mobile Station Modem™
(MSM™) or considered more broadly as an entire device, may include a processor 302,
which is a multi-thread processor. Along with processor 302 is a memory 304, which
may be integral to the packaging of processor 302 or separate therefrom (or even
separate from device 300). Additionally, other logic 306 may be included within device

300 (or external thereto) for providing additional profile or performance data such as

WO 2011/063031 PCT/US2010/057089

[0035]

[0036]

[0037]

determining CPU cycles where all threads of the processor 302 are idle, which will be
discussed further below. Alternatively, the functions performed by logic 306, could be
performed by the processor 302. Further, a display interface 308 may be included to
display real-time profiling data.

FIG. 4 is block diagram illustrating an apparatus operation for determining
loading of a multi-thread processor. This illustration shows a system 400, which is a
representation of a multi-thread processing system operable in a device such as a
wireless device, as merely one example. The system 400 executes operations including
multi-threads based on some underlying operating system (OS) 402. The operating
system and attendant software may be configured to execute an idle task on one or more
of the threads in the multi-thread processing system. The idle task that is configured to
be executed when no other task is being executed in a thread and may be an infinite loop
or some other repeating operation. In an aspect, the idle task is simply a loop that
performs nothing but a loop operation whose repetitions may be counted.

In an aspect, the system 400 may include a register 404 or equivalent device (or
function in the case of software or firmware) used to store count of the loops of the idle
task run in respective one or more of the threads. The register 404 includes separate
count storage for each thread as illustrated by reference number 406 pointing out one of
the count storages in register 404. Register 404 stores counts for each idle task run in
cach of an N number of threads (T1 through TN) over a predetermined time period (e.g.,
a T number of milliseconds (ms)). In an aspect, the register 404 includes a loop count
of the executed idle task for each of the N number of independent threads. A vector,
which is shown figuratively by vector 408, with N elements each having a loop count of
idle task executions is then formed for each duration of the predetermined period (T
ms). The vector is output via a communicative coupling 410 to a processing device,
such as a computer and memory 412, to collate and process the count data for display to
a user.

A vector 408 of [T1, T2, T3, ... TN] of the N number of idle task count for each
of N threads vectors is output every T ms such that a vector array of a number of T ms
sampling periods may be formed. Accordingly, every T ms predetermined time period,
the number of vectors is increased by one. The maximum number of the sleep vectors is
a predetermined number M. After M*T ms, all idle task count vectors form an array

with the size of M*N. The array is updated after M*T ms.

WO 2011/063031 PCT/US2010/057089

[0038]

[0039]

[0040]

[0041]

[0042]

FIG. 5 illustrates an exemplary array 500 of idle task count vectors for
accumulating counts for idle tasks run on multiple threads of a multi-thread processor.
For example, if the number of threads N =6, and the predetermined sampling period T =
10 ms, and the number of total sampling periods M =1024, the sleeping array looks like
a 1024 * 6 (i.e. M*N) array 500 as shown. It is noted that the example of FIG. 5 is
merely illustrative, and that the values of M, N, and T may be set to any desired number.

FIG. 6 illustrates a method 600 for multi-thread processor profiling that may be
utilized to profile performance of a multi-thread processor (e.g., processor 302).
Method 600 includes first executing at least one idle task in at least one thread of the
multi-thread processor during at least one predetermined time period, the idle task
configured to loop and run when no other task is running on the at least one thread as
shown in block 602. In a specific aspect, the processes of block 602 may include
implementing a looping idle task in each independent thread of the multi-thread
processor (e.g., 302) whenever the respective thread is idle (i.e. no other function or task
18 being executed on that thread).

Method 600 further includes determining at least one count of loop executions
of the at least one idle task over the at least one predetermined time period as indicated
by block 604. As discussed before, counting may be effected by a register 404 or
similar unit or function. In a further aspect, the processes of executing the idle tasks and
counting in block 602 are executed for an M number of predetermined time periods to
form an M*N vector array as discussed previously. Thus, blocks 602 and 604 may
include idle task execution and counting of the loop executions for multiple N vectors
for N number of threads over M predetermined time periods to obtain the M*N array.

It will be also appreciated by those skilled in the art that the processes of blocks
602 and 604 are illustrated time sequentially in FIG. 6, the processes may be carried out
simultancously or repeatedly where a register is advancing the counts after the
execution of each idle task loop until the end of the predetermined time period. After
the time period expires, the register is reset to zero for counting loops of the idle task in
the next predetermined time period and so forth until a count array of M time periods is
derived.

After the process of block 604 is completed, such as after at least one
predetermined time period, the loop count(s) may be used to determine a loading of the

one or more independent threads of the multi-thread processor based on the count as

WO 2011/063031 PCT/US2010/057089

[0043]

[0044]

10

illustrated by block 606. In an example, the count of the idle task loops provides a
timing of how often a particular thread is idle since the idle task is configured to run
only when no other tasks are being executed in the thread. Accordingly, if a maximum
sleep count is known for a given thread over a given predetermined time period, then
the loading for that time period can be determined based on the ratio of the idle task
loop count during normal processor operation to the baseline maximum sleep count.
This loading over multiple predetermined time periods (e.g., M time periods as
discussed before) may be used to derive at least one aspect of a performance profile to
know how much one or more threads in a multi-thread processor are loaded.

In one particular example of how to determine the loading in block 606
(although not explicitly illustrated in FIG. 6), the one or more threads of the multi-
thread processor may be forced to be in the idle operation. The idle task may then be
run in each thread of the multi-thread processor for at least the predetermined period of
time and the number of loop executions of the idle task counted. In another particular
example, the idle tasks may be run for a total of M predetermined time periods in order
to gain enough counts to fill the M*N array discussed previously. The processor (or
another processor apart from the multi-thread processor) may then find the maximum
idle task count logged in the M*N array during the M periods where only the idle tasks
have been run (termed herein as the maximum sleep scalar value or
“MAX _SLEEP SCALER?”). In effect, this value represents 100% CPU idle condition
or sleep of any given thread.

The count values for each thread in each N vector may then be divided by the
MAX SLEEP SCALER value to derive an idle task or sleep profile, which is a
percentage of idle tasks over a maximum idle task condition that represents loading of
the particular threads. Alternatively, when the M*N array is determined, the total count
of a particular thread over the M periods may be summed and divided by the
MAX SLEEP SCALAR, which has be multiplied by M to obtain a loading for the
particular thread. In any case, the determined loading may then be displayed in units of
percentage, or any other suitable number (e.g., simply the fraction of the idle task or
sleep count divided by the MAX SLEEP SCALAR) as indicated by the process in
block 608. In a multi-thread processor, each idle task or sleep profile may be displayed
per thread.

WO 2011/063031 PCT/US2010/057089

[0045]

[0046]

[0047]

[0048]

[0049]

11

It is noted that the after the execution of all processes in method 600, the method
600 will continuously repeat to continue generation of profiling data over time. In one
example, the predetermined time period may be 10 ms, with a total number of M
periods equal to 25. Thus, the accumulation of data used for determining the sleep
profile is performed each 250 ms (i.e., blocks 602 through 606), displayed (block 608),
and then repeated and displayed every subsequent 250 ms period.

FIG. 7 illustrates another exemplary method 700 of determining another
performance profile for a multi-thread processor. As shown, method 700 includes
determining a number of multi-thread processor cycles of the processor having all
threads idle over a predetermined sampling period (e.g., Y ms) as shown in block 702.
It is noted that the term processor cycle denotes a CPU cycle of a processing unit.
Further, the determination of which cycles have all threads idle may be implemented by
a logic, such as logic 306 shown in FIG. 3, where an indication is output when all
threads are idle. In an aspect, it is noted that this determination may rely upon the
characteristic of multi-thread processor where the thread clock is idle when thread is not
executing a task. Thus, the logic may be configured such that when all thread clocks are
idle, the logic outputs a logic state indicating all threads are idle. In one example, the
process of block 702 includes obtaining the number of multi-thread processor cycles
that “all threads are waiting (idle)”, termed herein as an “All Wait_Cycle,”

Further, method 700 includes determining a total number of multi-thread
processor cycles occurring during the predetermined sampling period (e.g., Y ms) as
shown in block 704. In an aspect, this total number of cycles occurring in the sampling
period may be referred to as the “Total Cycle.”

Also, method 700 includes deriving a performance profile of the multi-thread
processor based on a ratio of the determined number of multi-thread processor cycles of
the processor having all threads idle to the determined total number of multi-thread
processor cycle as shown in block 706. This ratio, termed herein as the “all-wait ratio”
or “all-wait percentage,” is therefore derived with the quotient
All Wait Cycle/Total Cycle.

Similar to method 600, method 700 also includes the further process of causing
display of the all-wait percentage information. It is noted that in an aspect methods 600
and 700 are useful together to obtain a more complete performance profiling record data

set of a multi-thread processor by determining a loading profile of how much each

WO 2011/063031 PCT/US2010/057089

[0050]

12

thread is utilized as well as determining a profile concerning how frequently all threads
are idle or waiting. Additionally, the disclosed apparatus and methods may generate
and submit the profiling record data set every Y ms to a display function (e.g., function
implemented by the processor (302)) to display profile information via a display
interface (e.g., 308). The profiling record data set may consists of the idle count array
(such as shown in FIG. 4) and the MAX SLEEP SCALER discussed above. The
profiling record data set may also include the all-wait percentage during the sampling
period Y ms. It is noted that in an aspect the predetermined sampling period Y ms may
be equal to the total of M predetermined time periods in the count array. As an example
of a profiling record data set that may be generated, Table 1 below gives a particular
example of at least 3 items with Y = 250ms, N = 6 (6 threads) with each predetermined
time period equal to 10 ms, and M = 25 (i.e., a total array time of 25 x 10 ms = 250 ms).

Record item Type Description

MAX 250ms SLEEP SCALER | UINT32 Max idle sleep count for 250ms period.
Default = 20500 max count * 25

250ms Sleep profiling raw data | UINT32 6 Sleep profiling raw data for 250ms
Array[6] period (for 6 threads).

All-Waits percentage (%) during | UINT16 This value is a percentage (between
250ms 0% and 100%) that all six threads are
in the wait state (i.c. “All-Waits”)
during a period of 250ms.

Table 1: Profiling record data set

As shown, the three items included are the MAX SLEEP SCALER for a 205
ms totaling sampling of M = 25 predetermined time periods, the raw count data of the
M*N array for the M = 25 by 10 ms length predetermined time periods (i.e., 250 ms
total period), and the All-waits percentage during the same length period of 250 ms. In
this example, the display function discussed above may derive the idle count in units of
percentage (%), i.e. dividing each individual sleep count with MAX SLEEP SCALER,
and display the sleep profiling per thread. Nonetheless, in an alternative this percentage
calculation may be performed by the multi-thread processor under scrutiny and sent as

another field in the data set.

WO 2011/063031 PCT/US2010/057089

[0051]

[0052]

[0053]

[0054]

13

FIG. 8 illustrates a block diagram of another exemplary apparatus 800 for
determining a profile of a multi-thread processor. Apparatus 800 include various
modules or means for effecting various functions, such as those functions described
above in connection with methods 600 and 700 acting to derive performance profiles of
the multi-thread processor. The means or modules of apparatus 800 may be
implemented with hardware, software, firmware, or any combination thereof.
Furthermore, the multi-thread processor under scrutiny, another processor, a personal
computer, dedicated device, or any combination thereof may implement the various
modules or means of apparatus 800. Additionally, in one aspect the apparatus 800 may
be implemented at least in part within a wireless communication device.

Apparatus 800 includes a means for executing at least one idle task in at least
one thread of the multi-thread processor (e.g., processor 302) during at least one
predetermined time period, the idle task configured to loop and run when no other task
is running on the at least one thread 802. In one example, means 802 may be
implemented by processor 302 and, in particular, the OS running of the processor (e.g.,
OS 402). Apparatus 800 further includes a communication means or communicative
coupling represented in FIG. 8 as coupling 804 to merely indicate communication
between means or passing of information among the various functions.

Apparatus further includes means 806 for determining at least one count of loop
executions of the at least one idle task over the at least one predetermined time period.
In one example, means 806 may also be effected by the multi-thread processor (e.g.,
302) in conjunction with a means to increment and store a count of the loops of the idle
task, such as a register (e.g., register 404 discussed previously). The count information
accumulated by means 806 may then be communicated to a means 808 for determining
loading of at least the at least one thread of the multi-thread processor based on the at
least one count of the number of loop executions. It is noted that means 808 may be
implemented with the multi-thread processor, another processor, a personal computer or
other computer external to the device containing the multi-thread processor. For
example, the raw count data from means 806 may be made part of a data set such as the
data set in Table 1, which is in turn sent to an external device for determining the
loading.

Furthermore, apparatus 800 may include a means for displaying performance

profile(s) 810. Alternatively, means 810 may be configured as a means for sending the

WO 2011/063031 PCT/US2010/057089

[0055]

[0056]

[0057]

14

performance profile data set to a display (not shown) that is external to apparatus 800.
Additionally, the apparatus 800 may alternatively include a processor 812 and a
memory 814 that, among other things, may store code executable by a processor (e.g.,
the multi-thread processor or processor 812) and also store performance profile data.
Finally, apparatus 800 may include additional hardware or logic 816 configured to
determine data such as the number of CPU cycles the multi-thread processor is idle or
waiting, which is the All Wait Cycle discussed previously.

One skilled in the art will appreciate that the above-disclosed apparatus and
methods afford a dynamic and real-time manner of processor performance profiling
without the need for additional equipment or software. Further, the presently disclosed
profiling does not cause performance degradation since the profiling is performed, in
part, with “idle” tasks. The present apparatus and methods may be instrumental for
debugging and system optimization, including power optimization. Moreover, the
methods and apparatus may be utilized for design and development of a system using
the CPU as a testing tool, or also could be implemented with the CPU in use, such as in
a wireless device, to perform profiling that enables ongoing “on-the-fly” optimization of
the CPU and/or attendant system.

In a particular aspect, the presently disclosed methods and apparatus provide a
dynamic and real-time manner to measure and profile processor performance for
wireless devices, although they are not limited only to such devices. The disclosed
methods and apparatus may include design and implementation of the “idle” task,
design of the “all-wait percentage” function, deriving the maximum sleep or idle count
Scalar, collecting and submitting the profiling record data set, and displaying any or all
profiling information in a real-time fashion. In summary, the presently disclosed
apparatus and methods provide an innovative way to measure multi-thread processor
CPU loading under various use cases and data rates, to probe the multi-thread processor
CPU usage, per each thread, and to probe the multi-thread processor “all-wait” (i.e. all
processor threads are idle) status, when particular task are being performed, such as a
packet data session that is ongoing in a wireless device. It is noted that all these
provided features do not require wireless standardization or any additional tools.

It is noted that the word “exemplary” is used herein to mean “serving as an
example, instance, or illustration.” Any embodiment described herein as “exemplary” is

not necessarily to be construed as preferred or advantageous over other embodiments.

WO 2011/063031 PCT/US2010/057089

[0058]

[0059]

[0060]

[0061]

15

It is understood that the specific order or hierarchy of steps in the processes
disclosed is merely an example of exemplary approaches. Based upon design
preferences, it is understood that the specific order or hierarchy of steps in the processes
may be rearranged while remaining within the scope of the present disclosure. The
accompanying method claims present elements of the various steps in a sample order,
and are not meant to be limited to the specific order or hierarchy presented.

Those of skill in the art will understand that information and signals may be
represented using any of a variety of different technologies and techniques. For
example, data, instructions, commands, information, signals, bits, symbols, and chips
that may be referenced throughout the above description may be represented by
voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or
particles, or any combination thereof.

Those of skill will further appreciate that the various illustrative logical blocks,
modules, circuits, and algorithm steps described in connection with the embodiments
disclosed herein may be implemented as electronic hardware, computer software, or
combinations of both. To clearly illustrate this interchangeability of hardware and
software, various illustrative components, blocks, modules, circuits, and steps have been
described above generally in terms of their functionality. Whether such functionality is
implemented as hardware or software depends upon the particular application and
design constraints imposed on the overall system. Skilled artisans may implement the
described functionality in varying ways for each particular application, but such
implementation decisions should not be interpreted as causing a departure from the
scope of the present invention.

The wvarious illustrative logical blocks, modules, and circuits described in
connection with the embodiments disclosed herein may be implemented or performed
with a general purpose processor, a digital signal processor (DSP), an application
specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other
programmable logic device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform the functions described
herein. A general purpose processor may be a microprocessor, but in the alternative, the
processor may be any conventional processor, controller, microcontroller, or state
machine. A processor may also be implemented as a combination of computing

devices, e¢.g., a combination of a DSP and a microprocessor, a plurality of

WO 2011/063031 PCT/US2010/057089

[0062]

[0063]

16

MIiCroprocessors, one or more microprocessors in conjunction with a DSP core, or any
other such configuration.

The steps of a method or algorithm described in connection with the
embodiments disclosed herein may be embodied directly in hardware, in a software
module executed by a processor, or in a combination of the two. A software module
may reside in RAM memory, flash memory, ROM memory, EPROM memory,
EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other
form of storage medium known in the art. An exemplary storage medium is coupled to
the processor such the processor can read information from, and write information to,
the storage medium. In the alternative, the storage medium may be integral to the
processor. The processor and the storage medium may reside in an ASIC. The ASIC
may reside in a user terminal. In the alternative, the processor and the storage medium
may reside as discrete components in a user terminal.

The previous description of the disclosed embodiments is provided to enable any
person skilled in the art to make or use the present invention. Various modifications to
these embodiments will be readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other embodiments without departing from
the spirit or scope of the invention. Thus, the present invention is not intended to be
limited to the embodiments shown herein but is to be accorded the widest scope

consistent with the principles and novel features disclosed herein.

WHAT IS CLAIMED IS:

WO 2011/063031 PCT/US2010/057089

17

CLAIMS

1. A method for determining loading of a multi-thread processor, the method
comprising: executing at least one idle task in at least one thread of the multi-thread
processor during at least one predetermined time period, the idle task configured to loop
and run when no other task is running on the at least one thread;

determining at least one count of loop executions of the at least one idle task
over the at least one predetermined time period; and

determining loading of at least the at least one thread of the multi-thread

processor based on the at least one count of the number of loop executions.

2. The method as defined in claim 1, further comprising:
determining a performance profile for the multi-thread processor based on the

measured loading.

3. The method as defined in claim 2, further comprising:
displaying the performance profile for each of one or more threads of the multi-

thread processor.

4. The method as defined in claim 1, wherein determining the at least one count of
loop executions of the at least one idle task over the at least one predetermined time
period further comprises:

forming an array of idle task counts including entries for each count for each
executed idle task in one or more threads during each predetermined time period over a

plurality of predetermined time periods.

5. The method as defined in claim 1, further comprising:

forcing the multi-thread processor into an idle operation where no tasks are
executed in the one or more threads;

executing the at least one idle task in at least one thread; and

determining a maximum count value for execution of the idle task in the at least
one thread over at least one predetermined time period when the multi-thread processor

is forced into an idle operation.

WO 2011/063031 PCT/US2010/057089

18

6. The method as defined in claim 5, further comprising:
determining a performance profile of the multi-thread processor by calculating a
ratio of the at least one count of loop executions of the at least one idle task over the at

least one predetermined time period to the maximum count value.

7. The method as defined in claim 1, further comprising:

determining a number of multi-thread processor cycles of the processor having
all threads idle over a predetermined sampling period;

determining a total number of multi-thread processor cycles occurring during the
predetermined sampling period; and

deriving a performance profile of the multi-thread processor based on a ratio of
the determined number of multi-thread processor cycles of the processor having all

threads idle to the determined total number of multi-thread processor cycles.

8. The method as defined in claim 7, further comprising:
displaying the performance profile for all of one or more threads of the multi-

thread processor.

9. An apparatus for determining the loading of a multi-thread processor
comprising:
at least one processor configured to:

execute at least one idle task in at least one thread of the multi-thread
processor during at least one predetermined time period, the idle task configured to loop
and run when no other task is running on the at least one thread;

determine at least one count of loop executions of the at least one idle
task over the at least one predetermined time period; and

determine loading of at least the at least one thread of the multi-thread

processor based on the at least one count of the number of loop executions.

10. The apparatus as defined in claim 9, wherein the at least one processor is further

configured to:

WO 2011/063031 PCT/US2010/057089

19

determine a performance profile for the multi-thread processor based on the

measured loading.

11. The apparatus as defined in claim 10, wherein the at least one processor is
further configured to:
display the performance profile for each of one or more threads of the multi-

thread processor.

12. The apparatus as defined in claim 9, wherein the at least one processor is further
configured to determine the at least one count of loop executions of the at least one idle
task over the at least one predetermined time period further by forming an array of idle
task counts including entries for each count for each executed idle task in one or more
threads during each predetermined time period over a plurality of predetermined time

periods.

13. The apparatus as defined in claim 9, wherein the at least one processor is further
configured to:

force the multi-thread processor into an idle operation where no tasks are
executed in the one or more threads;

execute the at least one idle task in at least one thread; and

determine a maximum count value for execution of the idle task in the at least
one thread over at least one predetermined time period when the multi-thread processor

is forced into an idle operation.

14. The apparatus as defined in claim 13, wherein the at least one processor is
further configured to:

determine a performance profile of the multi-thread processor by calculating a
ratio of the at least one count of loop executions of the at least one idle task over the at

least one predetermined time period to the maximum count value.

15. The apparatus as defined in claim 9, wherein the at least one processor is further

configured to:

WO 2011/063031 PCT/US2010/057089

20

determine a number of multi-thread processor cycles of the processor having all
threads idle over a predetermined sampling period;

determine a total number of multi-thread processor cycles occurring during the
predetermined sampling period; and

derive a performance profile of the multi-thread processor based on a ratio of the
determined number of multi-thread processor cycles of the processor having all threads

idle to the determined total number of multi-thread processor cycles.

16. The apparatus as defined in claim 15, wherein the at least one processor is
further configured to:
display the performance profile for all of one or more threads of the multi-thread

Proccssor.

17. An apparatus for determining loading of a multi-thread processor comprising:

means for executing at least one idle task in at least one thread of the multi-
thread processor during at least one predetermined time period, the idle task configured
to loop and run when no other task is running on the at least one thread;

means for determining at least one count of loop executions of the at least one
idle task over the at least one predetermined time period; and

means for determining loading of at least the at least one thread of the multi-

thread processor based on the at least one count of the number of loop executions.

18. The apparatus as defined in claim 17, further comprising:
means for determining a performance profile for the multi-thread processor

based on the measured loading.

19. The apparatus as defined in claim 18, further comprising
means for displaying the performance profile for each of one or more threads of

the multi-thread processor.

20. The apparatus as defined in claim 17, wherein the means for determining the at
least one count of loop executions of the at least one idle task over the at least one

predetermined time period further comprises:

WO 2011/063031 PCT/US2010/057089

21

means for forming an array of idle task counts including entries for each count
for each executed idle task in one or more threads during each predetermined time

period over a plurality of predetermined time periods.

21. The apparatus as defined in claim 17, further comprising:

means for forcing the multi-thread processor into an idle operation where no
tasks are executed in the one or more threads;

means for executing the at least one idle task in at least one thread; and

means for determining a maximum count value for execution of the idle task in
the at least one thread over at least one predetermined time period when the multi-thread

processor is forced into an idle operation.

22. The apparatus as defined in claim 21, further comprising:
means for determining a performance profile of the multi-thread processor by
calculating a ratio of the at least one count of loop executions of the at least one idle

task over the at least one predetermined time period to the maximum count value.

23. The apparatus as defined in claim 17, further comprising:

means for determining a number of multi-thread processor cycles of the
processor having all threads idle over a predetermined sampling period;

means for determining a total number of multi-thread processor cycles occurring
during the predetermined sampling period; and

means for deriving a performance profile of the multi-thread processor based on
a ratio of the determined number of multi-thread processor cycles of the processor

having all threads idle to the determined total number of multi-thread processor cycles.

24. The apparatus as defined in claim 23, further comprising:
means for displaying the performance profile for all of one or more threads of

the multi-thread processor.

25. A computer program product, comprising:

computer-readable medium comprising:

WO 2011/063031 PCT/US2010/057089

22

code for causing a computer to generate a performance profile of

a multi-thread processor including:

code for causing a computer to execute at least one idle
task in at least one thread of the multi-thread processor during at least one
predetermined time period, the idle task configured to loop and run when no other task
is running on the at least one thread;

code for causing a computer to determine at least one
count of loop executions of the at least one idle task over the at least one predetermined
time period; and

code for causing a computer to determine loading of at
least the at least one thread of the multi-thread processor based on the at least one count

of the number of loop executions.

26. The computer program product as defined in claim 25, further comprising;:
code for causing a computer to determine a performance profile for the multi-

thread processor based on the measured loading.

27. The computer program product as defined in claim 26, further comprising
code for causing a computer to display the performance profile for each of one

or more threads of the multi-thread processor.

28. The computer program product as defined in claim 25, wherein the code for
causing a computer to determine the at least one count of loop executions of the at least
one idle task over the at least one predetermined time period further comprises:

code for causing a computer to form an array of idle task counts including
entries for each count for each executed idle task in one or more threads during each

predetermined time period over a plurality of predetermined time periods.

29. The computer program product as defined in claim 25, further comprising;:

code for causing a computer to force the multi-thread processor into an idle
operation where no tasks are executed in the one or more threads;

code for causing a computer to execute the at least one idle task in at least one

thread; and

WO 2011/063031 PCT/US2010/057089

23

code for causing a computer to determine a maximum count value for execution
of the idle task in the at least one thread over at least one predetermined time period

when the multi-thread processor is forced into an idle operation.

30. The computer program product as defined in claim 29, further comprising:

code for causing a computer to determine a performance profile of the multi-
thread processor by calculating a ratio of the at least one count of loop executions of the
at least one idle task over the at least one predetermined time period to the maximum

count value.

31. The computer program product as defined in claim 25, further comprising;:

code for causing a computer to determine a number of multi-thread processor
cycles of the processor having all threads idle over a predetermined sampling period;

code for causing a computer to determine a total number of multi-thread
processor cycles occurring during the predetermined sampling period; and

code for causing a computer to derive a performance profile of the multi-thread
processor based on a ratio of the determined number of multi-thread processor cycles of
the processor having all threads idle to the determined total number of multi-thread

processor cycles.

32. The computer program product as defined in claim 31, further comprising;:
code for causing a computer to display the performance profile for all of one or

more threads of the multi-thread processor.

WO 2011/063031

1/6

PCT/US2010/057089

110

/212
Data | 21
Source
Pilot § 2/ 220
Ly TX Data | [TXMIMO
Processor| | Processor
A

A
230 | 232
2 2

Processore»|Memory
X 2
OS] | 7 i 240
P Y
RX Data Demod
Processor

A

Fig. 1
200
250
¥4a: R ?1523 2
. A we m
N P Z
» TMTR RCVR » RX Data
— RCVR TMTR & | Processor
: : 272 % 270
224t 252r Memory le—>Processor
2, < —-—_ :
222tY %5# 72 — F 38 [CS!
LY 4 M Pl
IMIR RCVR Modulatorje—] TX Data
RCVR TMTR Processor
T 236
7
Data
Source

Fig. 2

WO 2011/063031 PCT/US2010/057089

2/6

300
7

-——- Processor <

Device (e.g., a chipset or wireless device)

302
7

304 306
2 4 2

Memory ——> Other logic

P e T |

Fig. 3

WO 2011/063031 3 / 6 PCT/US2010/057089
400
~
402
/~
Operating System
(0S)
404
406
]
408
T1 T2 T3 T4 ooe TN-1 | TN =
~\\\ ‘\\\ ‘\\ \\ ,I ’,l
S -~ -~ AY / P
~o o \\ AY / y
~a[T1, T2, T3, T4, ... TN-1, TN]
410
7
Computer/
Memory (e.g., |€
a PC)

M rows
(sample
time
periods)

!

Fig. 4

500

/

N columns (threads)
—

(23028, 17711, 21840, 21202, 21124, 21888)
(22504, 20534, 21374, 21097, 21530, 17692) |for next 10ms period
(22600, 13551, 21917, 21381, 18323, 21695)

(22651, 20264, 18028, 20861, 21380, 21380)

()

21144, 20282, 18003, 21337, 22013, 22001

(17016, 20105, 21086, 21067, 22111, 21656)
(21546, 16632, 21366, 21455, 21751, 21508)
(23237, 20843, 20908, 21626, 18202, 21728)

Fig. 5

(ie., (T1, T2, T3, T4, TS, T6) for 10ms period)

for last 10ms period in M sampling periods

WO 2011/063031 PCT/US2010/057089

4/6

600

4

Execute at least one idle task in at least
one thread of the multi-thread processor
during at least one predetermined time | — 602
period, the idle task configured to loop and
run when no other task is running on the
at least one thread

l

Determine at least one count of loop
executions of the at least one idle task
over the at least one predetermined time
period

l

Determine loading of at least the at least |_—— 606
one thread of the multi-thread processor
based on a count of the number of loops

Determine and display a performance |—— 608
profile for the multi-thread processor based
on the determined loading

Fig. 6

WO 2011/063031 PCT/US2010/057089

5/6

700

Determine a number of multi-thread

processor cycles of the processor having |_— 702

all threads idle over a predetermined
sampling period

l

Determine a total number of multi-thread
processor cycles occurring during the |_— 704
predetermined sampling period

l

Derive a performance profile of the multi-
thread processor based on aratioofthe | _ 706
determined number of multi-thread
processor cycles of the processor having
all threads idle to the determined total
number of multi-thread processor cycle

Fig. 7

WO 2011/063031

PCT/US2010/057089
6/6

800
~
[~ 804
Ve 806
/4 802 Means for determining at
least one count of loop
Means for executing at least executions of the at least
one idle task in at least one one idle task over the at
thread of the multi-thread least one predetermined
processor during at least one time period
predetermined time period,
the idle task configured to
loop and run when no other
task is running on the at least 808
one thread L
Means for determining loading of
810 at least the at least one thread of
4 the multi-thread processor based
on the at least one count of the
Means for displaying number of loop executions
performance profile(s)
(or means for sending
profile data set to
display)
Vs 814 Ve 812
Memory Processor
Ve 816
Logic

Fig. 8

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings

