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(57) Abstract: Robust acoustic tone features are achieved first by the introduction of on-line, look-ahead trace back of the funda-
mental frequency (FO) contour with adaptive pruning, this fundamental frequency serves as the signal preprocessing front-end. The
FO contour is subsequently decomposed into lexical tone effect, phrase intonation effect, and random effect by means of time-vari-
ant, weighted moving average (MA) filter in conjunction with weighted (placing more emphasis on vowels) least squares of the FO
contour. The phrase intonation effect is defined as the long-term tendency of the voiced FO contour, which can be approximated by a
weighted-moving average of the FO contour, with weights related to the degree of the periodicity of the signal. Since it is irrelevant
from lexical tone effect, therefore it is removed by subtraction of the FO contour under superposition assumption. The acoustic tone
features are defined as two parts. First is the coefficients of the second order weighted regression of the de-intonation of the FO con-
tour over neighbouring frames, with window size related to the average length of a syllable and weights corresponding to the degree
of the periodicity of the signal. The second part deals with the degree of the periodicity of the signal, which are the coefficients of
the second order regression of the auto-correlation, with lag corresponding to the reciprocal of the pitch estimate from look-ahead
tracing back procedure. These weights of the second order weighted regression of the de-intonation of the FO contour are designed
to emphasize/de-emphasize the voiced/unvoiced segments of the pitch contour in order to preserve the voiced pitch contour for the
semi-voiced consonants. The advantage of this mechanism is, even if the speech segmentation has slightly errors, these weights
with look-ahead adaptive-pruning trace back of the FO contour served as the on-line signal pre-processing front-end, will preserve
the pitch contour of the vowels for the pitch contour of the consonants. This vowel-preserving property of the tone features has the
ability to prevent model parameters from bias estimation due to speech segmentation errors.



10

15

20

25

WO 01/35389 PCT/EP00/11293

Tone features for speech recognition

The invention relates to automatic recognition of tonal languages, such as

Mandarin Chinese.

Speech recognition systems, such as large vocabulary continuous speech
recognition systems, typically use an acoustic/phonetic model and a language model to
recognize a speech input pattern. Before recognizing the speech signal, the signal is spectrally
and/or temporally analyzed to calculate a representative vector of features (observation vector,
OV). Typically, the speech signal is digitized (e.g. sampled at a rate of 6.67 kHz.) and pre-
processed, for instance by applying pre-emphasis. Consecutive samples are grouped (blocked)
into frames, corresponding to, for instance, 20 or 32 msec. of speech signal. Successive frames
partially overlap, for instance, 10 or 16 msec, respectively. Often the Linear Predictive Coding
(LPC) spectral analysis method is used to calculate for each frame a representative vector of
features (observation vector). The feature vector may, for instance, have 24, 32 or 63
components. The acoustic model is then used to estimate the probability of a sequence of
observation vectors for a given word string. For a large vocabulary system, this is usually
performed by matching the observation vectors against an inventory of speech recognition
units. A speech recognition unit is represented by a sequence of acoustic references. As an
example, a whole word or even a group of words may be represented by one speech
recognition unit. Also linguistically based sub-word units are used, such as phones, diphones
or syllables, as well as derivative units, such as fenenes and fenones. For sub-word based
systems, a word model is given by a lexicon, describing the sequence of sub-word units
relating to a word of the vocabulary, and the sub-word models, describing sequences of
acoustic references of the involved speech recognition unit. The (sub-)word models are
typically based on Hidden Markov Models (HMMs), which are widely used to stochastically
model speech signals. The observation vectors are matched against all sequences of speech
recognition units, providing the likelihoods of a match between the vector and a sequence. If
sub-word units are used, the lexicon limits the possible sequence of sub-word units to

sequences in the lexicon. A language model places further constraints on the matching so that
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the paths investigated are those corresponding to word sequences which are proper sequences
as specified by the language model. Combining the results of the acoustic model with those of
the language model produces a recognized sentence.

Most existing speech recognition systems have been primarily developed for
Western languages, like English or German. Since the tone of a word in Western based
languages does not influence the meaning, the acoustic realization of tone reflected in a pitch
contour is considered as noise and disregarded. The feature vector and acoustic model do not
include tone information. For so-called tonal languages, like Chinese, tonal information
influences the meaning of the utterance. Lexical tone pronunciation plays a part in the correct
pronunciation of Chinese characters and is reflected by the acoustic evidence such as a pitch
contour. For example, the language spoken most world-wide, Mandarin Chinese, has five
different tones (prototypic within syllable pitch contours), commonly characterized as “high"
(flat fundamental frequency Fy contour) “rising" (rising Fo contour), “low-rising" (a low
contour, either flat or dip), “falling" (falling contour, possibly from high Fy), and “neutral”
(neutral, possibly characterized by a small, short falling contour from low Fyp). In continuous
speech, the low-rising tone may be considered just a “low" tone. The same syllable
pronounced with different tones usually has entirely different meanings. Mandarin Chinese
tone modeling, intuitively, is based on the fact that people can recognize the lexical tone of a
spoken Mandarin Chinese character directly from the pattern of the voiced fundamental
frequency.

Thus, it is desired to use lexical tone information as one of the knowledge
sources when developing a high-accuracy tonal language speech recognizer. To integrate tone
modeling, it is desired to determine suitable features to be incorporated in the existing acoustic
model or in an additional tone model. It is already known to use the pitch (fundamental
frequency, Fy) or log pitch as a component in a tone feature vector. Tone feature vectors
typically also include first (and optionally second) derivatives of the pitch. In multi-pass
systems, often energy and duration information is also included in the tone feature vector.
Measurement of pitch has been a research topic for decades. A common problem of basic
pitch-detection algorithms (PDAs) is the occurrence of multiple/sub-multiple gross pitch
errors. Such errors distort the pitch contour. In a classical approach to Mandarin tone models
the speech signal is analyzed to determine if it is voiced or unvoiced. A pre-processing front-
end must estimate pitch reliably without introducing multiple/sub-multiple pitch errors. This is
mostly done, either by fine-tuning thresholds between multiple pitch errors and sub-multiple

pitch errors, or by local constraints on possible pitch movements. Typically, the pitch estimate
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is improved by maximizing the similarity inside the speech signal in order to be robust against
multiple/sub-multiple pitch errors via smoothing, €.g. median filter, together with prior
knowledge of the reasonable pitch range and movement. The lexical tone of every recognized
character or syllable, is decoded independently by stochastic HMMs. This approach has many
defects. A lexical tone exists only on the voiced segments of Chinese characters and it is
therefore desired to extract pitch contours for the voiced segments of speech. However, it is
notoriously difficult to take a voiced-unvoiced decision for a segment of speech. A
voiced/unvoiced decision cannot be determined reliably at pre-processing front-end level. A
further drawback is that the smoothing coefficients (thresholds) of the smoothing filter are
quite corpus dependent. In addition, the architecture of this type of tone model is too complex
to be applied on real-time, large vocabulary dictation system which nowadays are mainly
executed a on personal computer. To overcome multiple/sub-multiple pitch errors, the
dynamic programming (DP) technique has also been used in conjunction with the knowledge
of continuity characteristics of pitch contours. However, the utterance-based nature of plain

DP prohibits its use in online systems.

It is an object of the invention to improve the extraction of tone features from a
speech signal. It is a further object to define components, other than pitch, for a speech feature

vector suitable for automatic recognition of speech spoken in a tonal language.

To improve the extraction of tone features, the following algorithmic
improvements are introduced:
- A two step approach to pitch extraction technique:
- Atlow resolution, a pitch contour is determined, preferably in the frequency domain
- At high resolution fine tuning occurs, preferably in the time domain by maximization
of the normalized correlation inside quasi-periodic signal in an analysis window that
contains more than one complete pitch period.
- The low resolution pitch contour determining preferably includes:
- Determining pitch information based on a similarity measure inside the speech signal,
preferably based on subharmonic summation in the frequency domain
- Using dynamic programming (DP) to eliminate multiple and sub-multiple pitch errors.
The dynamic programming preferably includes:
- Adaptive beam-pruning for efficiency,

- Fixed-length partial traceback for guaranteeing a maximum delay, and
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- Bridging unvoiced and silence segments.
These improvements may be used in combination or in isolation, combined with conventional
techniques.

To improve the feature vector, the speech feature vector includes a component
representing an estimated degree of voicing of the speech segment to which the feature vector
relates. In a preferred embodiment, the feature vector also includes a component representing
the first or second derivative of the estimated degree of voicing. In an embodiment, the feature
vector includes a component representing a first or second derivative of an estimated pitch of
the segment. In an embodiment the feature vector includes a component representing the pitch
of the segment. Preferably, the pitch is normalized by subtracting the average neighborhood
pitch to eliminate speaker and phrase effect. Advantageously, the normalization is based on
using the degree of voicing as a weighting factor. It will be appreciated that a vector
component may include the involved parameter itself or any suitable measure, like a log, of
the parameter.

It should be noted that also a simplified Mandarin tone model has been used. In
such a model a pseudo pitch is created by interpolation/extrapolation from voiced to unvoiced
segments since a voiced/unvoiced decision cannot be determined reliably. Knowledge of a
degree of voicing has not been put to practical use. Ignoring the knowledge of the degree of
voicing is undesired, since the degree of voicing is a knowledge source that certainly improves
recognition. For instance, the movement of pitch is quite slow (1 % /1 ms) in voiced segments,
but jumps quickly in voiced-unvoiced or unvoiced-voiced segments. The system according to

the invention explores the knowledge of degree of voicing.

These and other aspects of the invention will be apparent from and elucidated

with reference to the embodiments shown in the drawings.

Fig. 1 illustrates a three-stage extraction of tone features;

Fig. 2 shows a flow diagram of measuring the pitch;

Fig. 3 shows a flow diagram of the dynamic programming with trace-back and
adaptive pruning;

Fig. 4 shows an example pitch contour and degree of voicing;

Fig. 5 shows a flow diagram of the decomposing the Fy contour into a lexical
tone effect, phrase-intonation effect and random-noise effect;

Figs 6A and B illustrate the use of a weighted filtering;
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Fig. 7 shows the treatment of second order regression of the auto-correlation;
Fig. 8 shows a block diagram illustrating the treatment of feature vectors in
unvoiced speech segments;
Fig. 9 shows a block diagram of a robust tone feature extractor according to a
preferred embodiment of the present invention; and

Fig. 10 shows a corresponding flow diagram.

The speech processing system according to the invention may be implemented
using conventional hardware. For instance, a speech recognition system may be implemented
on a computer, such as a PC, where the speech input is received via a microphone and
digitized by a conventional audio interface card. All additional processing takes place in the
form of software procedures executed by the CPU. In particular, the speech may be received
via a telephone connection, e.g. using a conventional modem in the computer. The speech
processing may also be performed using dedicated hardware, e.g. built around a DSP. Since
speech recognition systems are generally known, here only details relevant for the invention
are described in more detail. Details are mainly given for the Mandarin Chinese language. A
person skilled in the art can easily adapt the techniques shown here to other tonal languages.

Figure 1 illustrates three independent processing stages to extract tone features

of an observation vector o (¢) from a speech signal s(n). The invention offers improvements in

all three areas. Preferably, the improvements are used in combination. However, they can also
be used independently where for the other stages conventional technology is used. In the first
stage a periodicity measure (pitch) is determined. To this end, the incoming speech signal s(n)
is divided into overlapping frames with preferably a 10 msec. shift. For every frame at time 7 a
measure p(f, t) for a range of frequencies fis determined expressing how periodic the signal is
for the frequency f. As will be described in more detail below, preferably the subharmonic
summation (SHS) algorithm is used to determine p(f, ¢). The second stage introduces

continuity constraints to increase robustness. Its output is a sequence of raw pitch-feature

vectors, which consist of the actual pitch estimate I:”O (t) and the corresponding degree of

voicing v(ﬁ0 (2),?) (advantageously a normalized short time autocorrelation is used as a

measure of the degree of voicing). Preferably, the continuity constraints are applied using

dynamic programming (DP) as will be described in more detail below. In the third stage,
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labeled FEAT, post-processing and normalization operations are performed and the actual

sequence of tone features of the vector o(z) are derived. Details will be provided below.

Periodicity measure

Fig. 2 shows a flow chart of a preferred method for determining pitch
information. The speech signal may be received in analogue form. If so, an A/D converter may
be used to convert the speech signal into a sampled digital signal. Information of the pitch for
possible fundamental frequencies F in the range of physical vibration of human vocal cord is
extracted from the digitized speech signal. Next, a measure of the periodicity is determined.
Most pitch detection algorithms are based on maximizing a measure like p(f, t) over the
expected Fy range. In the time-domain, typically such measures are based on the signal’s auto-

correlation function 7, (1/ f) or a distance measure (like AMDEF). According to the invention,

the subharmonic summation (SHS) algorithm is used, which operates in the frequency domain
and provides the sub-harmonic sum as a measure. The digital sampled speech signal is sent to
the robust tone feature extraction front-end where the sampled speech signal is, preferably,
first low passed with cut-off frequency less than 1250 Hz. In a simple implementation, a low-
pass filter can be implemented as a moving average FIR filter. Next, the signal is segmented
into a number of analysis gates, equal in width and overlapped in time. Every analysis gate is
multiplied (“windowed”) by a commonly used kernel in speech analysis called hamming
window, or equivalent window. The analysis window must contain at least one complete pitch
period. A reasonable range of pitch period 7 is within

2.86ms = 0.002865 = —— < 7 < = 0.0205 = 20ms
350 50

So, preferably the window length is at least 20ms.

A representation of the sampled speech signal in an analysis gate (also referred
to as segment or frame) is then calculated, preferably using the Fast Fourier transform (FFT),
to generate the spectrum. The spectrum is then squared to yield the power spectrum.
Preferably, the peaks of the amplitude spectrum are enhanced for robustness. The power
spectrum is then preferably smoothed by a triangular kernel (advantageously with of low-pass
filter coefficients : %4, Y2, ¥4) to yield the smoothed amplitude spectrum. Next, it is preferred to

apply cubic spline interpolation of I, ... points (preferably no more than 16 equidistant

points per octave, at low frequency resolution, for fast finding the correct route) on the kemel

smoothed amplitude spectrum. Auditory sensitivity compensation on spline interpolated power
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spectrum is preferably performed by an arc-tangent function on the logarithmic frequency
scale:

tan"'(3.0*log, f)

A(log, f)=0.5+
/4

For the possible fundamental frequencies Fy in the range of physical vibration of human vocal

cord, subharmonic summation is then applied to yield the information of the pitch.

k=15
3w, * P(og, (k) * I(Kf <1250), Yk =12, ., N piamoncs Wi = ()", where

k=1

P(logy(f))=C(loga(f)) * A(log,(f)), where C(log2(f)) is the spline interpolated from S(logx(f)),
the power spectrum from FFT, c is the noise compensation factor. Advantageously, for
microphone input: ¢ = 0.84; for telephone input: ¢ = 0.87. f is the pitch (in Hz), 50 < f <350.
The SHS algorithm is described in detail in D. Hermes, “Measurement of pitch by
subharmonic summation”, J. Acoust. Soc. Am. 83 (1), January 1988, hereby included by
reference. Here only a summary is given of SHS. Let s(n represent the incoming speech signal
windowed at frame 7 and let S,(f) be its Fourier transform. Conceptually, the fundamental
frequency is determined by computing the energy Eyof s,(n) projected onto the sub-space of

functions periodic with f:

oo

Ef=2

n=-—oo

S/(nf )

and maximizing with respect to f. In the actual SHS method described by Hermes, various

refinements are introduced, by using instead the peak-enhanced amplitude spectrum lS ’

k4

weighted by a filter W(f) representing the sensitivity of the auditory system, and emphasizing
the lower harmonics by weighting with weights #;, efficiently realized by means of Fast

Fourier Transform, interpolation, using and superposition on logarithmic scale, arriving at:
> 1

p(f.0= Y (/)W )
n=|

In this equation, N represents the number of harmonics.

Continuity constraints
A straightforward estimate of the pitch is given by: 13“0 (r)=argmax, p(f.r).
However, due to the lack of continuity constraints across frames, it is prone to so-called

multiple and sub-multiple pitch errors, most prevalent in the telephone corpus due to

broadband channel noise. According to the invention, the principle of dynamic programming
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is used to introduce continuity (in the voiced segments of speech). As such, pitch is not
estimated in isolation. Instead, by considering the neighboring frames, pitch is estimated in a
global minimum path error. Based on the continuity characteristic of pitch in voiced segments
of speech, pitch varies within a limited range (around 1%/msec.). This information can be
utilized to avoid multiple/submultiple pitch errors. Using dynamic programming ensures that
the pitch estimation follows the correct route. It should be realized that pitch changes
dramatically on the voiced-unvoiced segments of speech. Moreover, a full search scheme for a
given path boundary is time-consuming (due to its unnecessary long processing delay), which
makes it almost impossible to implemented in real-time system for pitch tracking with
subjective high tone quality. These drawbacks are overcome as will be described in more

detail below.

Dynamic Programming

The continuity constraint can be included by formulating pitch detection as:
E,(1.T)=arg maxi P(Fy (). om0 (1)

F(.T) =l

where a . penalizes or forbids rapid changes of pitch. By quantizing Fy, this criterion can be
solved by dynamic programming (DP).

In many systems, the pitch value is set to 0 in silence and unvoiced regions.
This leads to problems with zero variances and undefined derivatives at the voiced/unvoiced
boundaries. It is known to “bridge” these regions by exponentially decaying pitch towards the
running average. Advantageously, DP provides an effective way for bridging unvoiced and
silence regions. It leads to “extrapolation” of a syllable's pitch contour (located in the syllable's
main vowel), backwards in time into its initial consonant. This was found to provide additional

useful information to the recognizer.

Partial traceback

The fact that equation (1) requires to process the entire T frames of an utterance
before the pitch contour can be decided renders it less suitable for online operation. According
to the invention, a partial traceback is performed, exploiting the path merging property of DP.
In itself the technique of back tracing is well-known from Viterbi decoding during speech
recognition. Therefore, no extensive details are given here. It is preferred to use a fixed-length
partial traceback that guarantees a maximum delay: at every frame t, the local best path is

determined and traced back AT, frames. If AT is large enough, the so-determined pitch
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1:"0 (t — AT,) can be expected to be reliable. Experiments show that the delay can be limited to

around 150 msec., which is short enough to avoid any noticeable delay for the user.

Beam pruning
In the above form, path recombinations constitute the major portion of CPU

effort. For effort reduction, beam pruning is used. In itself beam pruning is also well-known
from speech recognition and will not be described in full detail here. For every frame, only a
subset of paths promising to lead to global optimum is considered. Paths with scores sc(7)
with:

sc(t)—sc,, (t—AT,)
5Cop (1) = 5C,, (1 — AT))

< threshold

are discontinued (scqp(T) = local best score at time T).

Since efficiency is a major concern, as much as possible pruning is preferred
without damaging quality. In the dynamic programming step, dramatic changes exist in
estimating pitch even after applying dynamic programming technique in the voiced-unvoiced
segments of speech. This is because in pure silence region, there is no information of
periodicity: all possible pitch values are equally likely. Theoretically, no pruning is necessary
at this point. On the other hand, in pure speech region, there is a lot of periodicity information,
the distribution of pitch have many peaks on the multiples / sub-multiples of correct pitch. At
this point, pruning some paths which has very low accumulated score is appropriate. The
pruning criteria preferably also consider the effect of silence. If at the beginning of a sentence
there exists a silence region of more than approximately 1.0 sec., pruning should preferably
not take place. Experiments have shown that by pruning some paths which have ‘so far* an
accumulated score of less than 99.9 % of the ‘so far’ highest accumulated score will result in
loosing the correct route of pitch. On the other hand, pruning some paths which have ‘from
0.50s to so far‘ accumulated a score of less than 99.9 % of the ‘from 0.50s so far’ highest
accumulated score will result in keeping the correct route and save up to 96.6 % loop

consumption compared to full search scheme.

Reduction of resolution
The number of path recombinations is proportional to the square of the DP’s
frequency resolution. Significant speed-up can be achieved by reducing the resolution of the

frequency axis in DP. A lower resolution limit is observed at around 50 quantization steps per
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octave. Below that, the DP path becomes inaccurate. It has been found that the limit can be
lowered further by a factor of three, if each frame’s pitch estimate I:"0 (#)is fine-tuned after DP

in the vicinity of the rough path. Preferably this is done by maximizing v(f, ) at higher

resolution within the quantization step Q(z) from the low-resolution path, 1.e.:

ﬁo (1) =argmax ;. , v(f.1).

Fig. 3 shows a flow chart of a preferred method for the maximization of the
look-ahead, local likelihood of the FO with adaptive pruning using the present invention. In
summary, the following steps occur:

- Calculating the transition scores of every possible pitch movement in the voiced segments
of speech.

- Calculating the current value of maximal sub-harmonic summation and the ‘so far’
accumulated path scores.

- Determining adaptive pruning base on a certain history (lookback of length M) of the “so
far’ best path and calculating the adaptive pruning threshold, then do path extension based
on the degree of periodicity and pruning based on the adaptive pruning threshold.

- Tracing back from the certain time-frame (lookahead trace back of length N) to the current
time frame and output only the current time frame as the stable rough pitch estimate.

- High-resolution, fine search in the neighborhood of the stable rough pitch estimate for
estimating the precise pitch and output the precise pitch as the final results of the look-
ahead adaptive pruning tracing back procedure.

In more detail the following occurs. Information of pitch is first processed by calculating

transition probability of every possible pitch-movement where pitch movement is preferably

measured on ERB auditory sensitivity scale, in the voiced segments of speech. The calculation
of transition scores can be done as follows:

PitchMovementScore [k][j] = (1-(PitchMove/MaxMove)*(PitchMove/MaxMove)), where

pitch movement and MaxMove are measured in ERB auditory sensitivity scale.

The movement of pitch will not exceed (1 % /1 ms) in voiced segments [5], for a male

speaker, FO is around 50-120 Hz, for female speaker, FO is around 120-220 Hz, the average of

FO is around 127.5 Hz

From Hz to Erb: Erb(Hz)=21.4%*log,,(1+ 5%:’6) ;

MaxMove (in Hz) is 12.75 Hz within 10 ms. <> 0.5 Erbs within 10 ms
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Next, the concurrent value of maximal sub harmonic summation is calculated
and the ‘so far’ (from the beginning of the speech signal to the concurrent time frame)
accumulated path scores. The ‘so far’ accumulated path scores can be calculated using the
following recursive formula: AccumulatedScores [j]{frame-1] + PitchMovement [k][j] *
CurrentSHS [k][frame];

Path extension only occurs on those possible pitch movements, with transition
probability score greater than (preferably) 0.6. The path extensions with transition probability
score less than or equal to 0.6 are skipped. Preferably, adaptive pruning is based on the
accumulated path scores within history of (advantageously) 0.5 second. This is denoted as the
Reference AccumulatedScore. Preferably, the adaptive path extension uses a decision criterion
where a path extension only occurs for those possible pitch movements with a transition score
greater than 0.6. A path extension with a transition score less than or equal to 0.6 is skipped.
In addition or alternatively, adaptive pruning is based on the degree of voicing. A method
according to claim 6 wherein the adaptive pruning uses a decision criteria based on the degree
of voicing:

- Prune tightly pruning on a path if the accumulated path scores within history of, for
instance, 0.5 second is less than 99.9 % of the maximal accumulated path scores within the
same history and there exists much more information of periodicity at the current time
frame, or expressed in a formula: if (AccumulatedScores [j]{frame-1] —

Reference AccumulatedScore) is less than 99.9 % of the (Max AccumulatedScores [frame-
1] — ReferenceAccumulatedScore) and there 1s much more periodicity information at the
current time frame (e.g., CurrentSHS [j]{frame] 2> 80.0 % of the CurrentMaxSHS [frame]).

- Prune loosely on a path if there is little, vague information of pitch at current time frame,
extend the previous path to the current most possible, maximal and minimal pitch
movements. Loosely pruning occurs if there exists less information of periodicity at the
current time frame. This is because the beginning of a sentence mostly consists of silence
and as such the accumulated path scores is too small to prune tightly, which is different
from the beginning of the sentence to the voiced-unvoiced segments. In that case, there is
little, vague information of pitch at the current time frame. Loosely pruning occurs by
extending the previous path to the current most possible, maximal and minimal pitch
movements.

High-resolution, fine pitch search in the neighborhood of the stable rough pitch estimate for

estimating the precise pitch uses a cubic spline interpolation on correlagram. This can

significantly reduce the active states in the look-ahead adaptive pruning trace back of the Fy
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without a trade-off in accuracy. The high-resolution, fine pitch search at high frequency
resolution (for high pitch quality) uses maximization of the normalized correlation inside
quasi-periodic signal in analysis window that contains more than one complete pitch period.

Default window length is two times the maximal complete pitch period.
fo 250Hz, pitch period < 5—10 =0.020 s, window length =2 * 0.020 s = 40 ms

Using the look-ahead adaptive pruning trace back of the Fo, has the advantage
that it is almost free from suffering multiple or sub-multiple pitch errors which exist in many
pitch detection algorithm based on the peak-picking rules. Experiments have shown that both
tone error rate (TER) and character error rate (CER) reduces significantly when compared to
the heuristic peak-picking rules. Additionally, it improves the probability of accuracy without
trade-off efficiency since it looks ahead 0.20 s and adaptively pruned many unnecessary paths

based on the information of pitch, whatever voiced or unvoiced.

Features for Mandarin speech recognition

Referring to the five Mandarin lexical tones, the first (high) and third (low) tone
mainly differ in pitch level, whereas the pitch derivative is close to zero. On the contrary, the
second (rising) and fourth (falling) tone span a pitch range, but with clear positive or negative
derivative. Thus, both pitch and its derivative are candidate features for tone recognition. The
potential of curvature information (2nd derivative) is less clear.

According to the invention, the degree of voicing v(f; t) and/or its derivative are
represented in the feature vector. Preferably the degree of voicing is represented by a measure
of a (preferably normalized) short-time auto-correlation, as expressed by the regression

coefficients of the second-order regression of the auto-correlation contour. This can be defined

as:
N, (1) f
s(n).s(n— __.m;p:e )
v(f 1) = ——"0 -<1
Ny () Ny f 2
Ystn). Y st (n—ey
n=N, (1) n=N, (1) f

Using the degree of voicing as a feature, assists in syllable segmentation and in
disambiguating voiced and unvoiced consonants. It has been verified that the maximal
correlation of the speech signal can be used as a reliable measure of the pitch estimate (refer to

the next table). This is partially due to the fact that maximal correlation is a measure of



10

15

20

25

WO 01/35389 PCT/EP00/11293
13
periodicity. By including this feature, it can provide information of the degree of periodicity in

the signal, thus improving the recognition accuracy.

Threshold :
Corresponding Correlation of the pitch estimates 0.52 0.80 0.92

Global Error Rate: Conditioning on the correlation
threshold. 16.734% | 4.185% | 1.557%
Estimated prob. of sub (multiples) pitch error
between SHS and PDT

Energy and its derivative(s) may also be taken as a tone features, but since these
components are already represented in the spectral feature vector, these components are not
considered here any further.

The tone features are defined as two parts. First is the regression coefficients of
the second-order weighted regression of the de-intonated FO contour over neighboring frames,
with a window size related to the average length of a syllable and weights corresponding to the
degree of the periodicity of the signal. The second part deals with the degree of the periodicity
of the signal, which are the regression coefficients of the second-order regression of the auto-
correlation contour, with a window size related to the average length of a syllable and the lag
of correlation corresponding to the reciprocal of the pitch estimate from look-ahead tracing

back procedure.

Long-term pitch normalization

In itself using pitch as a tone feature may in fact degrade recognition
performance. This is caused by the fact that a pitch contour is a superposition of:
a) the speaker’s base pitch,
b) the sentence-level prosody,
¢) the actual tone, and
d) statistical variation.
While (c) is the desired information and (d) is handled by the HMM, (a) and (b) are irrelevant
for tone recognition, but their variation exceeds the difference between first and third tone.
This is illustrated in Fig. 4 for an example pitch contour representing a spoken sentence 151 of
the 863 male test set. In this sentence, the pitch level of first and third tone become

indistinguishable, due to sentence prosody. Within the sentence, the phrase component spans
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already a range of 50 Hz, whereas the pitch of an adult speaker may range from 100 to 300 Hz.
Fig. 4 shows on top the pitch contour, where the dotted line denotes the (estimated) phrase
component. The thick lines denote the areas with a voicing degree above 0.6. The lower part
of Fig. 4 shows the corresponding degree of voicing.

It has been proposed to apply “cepstral mean subtraction" to the log pitch to
obtain gender-independent pitch contours. While this effectively removes the speaker bias (a),
the phrase effect (b) is not accounted for.

According to the invention, the lexical tone effect present in the signal is kept
by removing the phrase intonation effect and random effect. For Chinese, the lexical tone
effect refers to the lexical pronunciation of tone specified within a Chinese syllable. The
phrase intonation effect refers to the intonation effect exists in pitch contour which is caused

by the acoustic realization of a muiti-syllable Chinese word. Therefore, according to the
invention, the estimated pitch I:“O (r) is normalized by subtracting speaker and phrase effect.
The phrase intonation effect is defined as the long-term tendency of the voiced Fy contour,
which can be approximated by a moving average of the ﬁo (t) contour in the neighborhood of t.

Preferably a weighted moving average is used, where advantageously the weights relate to the

degree of the periodicity of the signal. The phrase intonation effect is removed from the

I:“O (¢) contour under superposition assumption. Experiments confirm this. This gives:

+AT; R
N Fy(t+ 1) w(Fy (1 +7),0+7)
Fo’(t) = ﬁo (1)- —— +AT, ’ @)
Y w(F(t+7),t+7)
7=—-ATy

In its simplest form, the moving average is estimated with w(f; 1) = 1, giving a straight-forward
moving average. Preferably, a weighted moving average is calculated, where advantageously
the weight represents the degree of voicing (w(f; t) = v(f; t)). This latter average yields a
slightly improved estimate by focussing on clearly voiced regions. Optimal performance of the
weighted moving average filter is achieved for a window of approximately 1.0 second.

Fig. 5 shows a flow chart of a preferred method for decomposing the Fy contour
into a tone effect, phrase effect and random effect. This involves:
- Calculating the normalized-correlation of the speech signal, with time lag corresponding to

the reciprocal of the pitch estimate from look-ahead tracing back procedure,

- Smoothing the normalized-correlation contour by a moving average or median filter over

neighboring frames (with window size relating to the average length of a syllable).
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Preferably, the moving average filter is:
Y-smoothed(t) = (1 * y(t-5)+2 * y(t-4)+3 * y(t-3)+4 * y(t-2)+5 * y(t-1)+5 * y(O)+5 *
Y(t+1)+4 * y(t+2)43 * y(t+3)+2 * y(t+4)+1 * y(t+5)) / 30
Calculating the coefficients of the second order regression of the auto-correlation over
neighboring frames (with window size related to the average length of a syllable).
Preferably, the calculation of the regression coefficients y,,7,,¥, of the smoothed auto-
correlation uses least square criteria over n (n = 11) frames. For run-time efficiency, this

operation can be skipped and ¥, can be replaced by smoothed correlation coefficients. A

constant data matrix is used:

- . n(n +1)(2n + 1)
3
0 n(n+1)3(2n+1) 0 ’
n(n+1)(2n +1) 0 n(n+1)2n+1)(3n*+3n-1)
3 15

Alternatively, the calculation of the regression coefficients of the Fo contour uses weighted

Jeast square criteria over n (n = 11) frames, with a data matrix which is a function of

weights,
iu, z":utl iu,l :
o S L¥,, 204
iu,l E":u,l : ju,l where weights are: u, =| ¥,,
l=;" , l="—-n . l=n—n ) O,J/O'l < 01
Zu,l Zu,l Zu,l
I=-n l=—n I=—n

Calculating the regression weights of the Fy contour based on the constant terms of the
regression coefficients of the second order regression of the auto-correlation over
neighboring frames (with a window size related to the average length of a syllable).
Preferably, the calculation of the regression weights is based on the following criterion:

- If the constant term ¥, of the regression coefficients of the auto-correlation is greater

than 0.40, then the regression weight for this frame t is set at approximately 1.0,

- If the constant term ¥, , of the regression coefficients of the auto-correlation is less than

0.10, then the regression weight for this frame t is set at approximately 0.0,
- Otherwise the regression weight for this frame t is set at the constant term of the

regression coefficients of the auto-correlation. For the weighted regression and
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weighted long term moving average filter preferably the following weights are used:

Ly, 2 0.4
u, =\ %o,
0%, 0.1

- Calculating the phrase intonation component of the Mandarin Chinese speech prosody by
long-term weighted-moving-average or median filter. Preferably, the window size relates
to the average length of a phrase and weights relate to the regression weights of the Fy
contour. Advantageously, the window length of the long-term weighted-moving-average
filter for extracting phrase intonation effect is set in the range of approximately 0.80 to
1.00 seconds.

- Calculating the coefficients of the second order weighted regression of the de-intonated
pitch contour by subtracting from the phrase intonation effect over neighboring frames

(with window size related to the average length of a syllable).

As described above, the Fy contour is decomposed into lexical tone effect, phrase intonation
effect, and random effect by means of a time-variant, weighted moving average (MA) filter in
conjunction with weighted (placing more emphasis on vowels) least squares of the Fy contour.
Since lexical tone effect only exists in the voiced segments of Chinese syllables, the voiced-
unvoiced ambiguity is resolved by the introduction of the weighted regression over
neighboring frames, with window size related to the average length of a syllable and weights
depends on the degree of periodicity.

Fig. 6A shows a least squares of the Fy contour of a sentence. Fig. 6B shows the
same contour after applying the weighted moving average (WMA) filter with weighted-least
squares (WLS). The phrase intonation effect is estimated by the WMA filter. The tone effect
corresponds to the constant terms of the WLS of the Fy contour minus the phrase intonation

effect. The following table illustrates that the phrase intonation effect can be ignored.

(LTNlookahead, TER/TER reduction CER/CER reduction
LTNlookback)

(0, 0) 22.94 % 12.23 %

(40, 40) 20.51 % 12.07 %

(50, 50) 20.19 % 12.12 %

(60, 60) 20.35 % 12.05 %

(traceback delay = 20, correlation smoothing radius = 5, frame width = 0.032)
(Lexical Modelling: Tonal Preme/Core-Final in training)

(phrase trigram LM)
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The optimal performance of WMA filter is experimentally determined as

around 1.0 second (as shown in above table), which can symmetrically cover rising and falling

tones in most of the cases.

The following two tables illustrate that asymmetry negatively effects the TER

(tone error rate). This is also the reason why WMA is not only a normalization factor for Fo,

but also a normalization factor for phrase.

(LTNlookahead, TER/TER reduction CER/CER reduction
LTNlookback)

(50, 50) 20.19 % 12.12 %

(25, 25) 21.29 % 12.08 %
(25,75) 21.57 % 12.07 %

(25, 50) 21.09 % 12.19 %

(traceback delay = 20, correlation smoothing radius = 5, frame width = 0.032)

(Lexical Modelling: Tonal Preme/Core-Final in training)

(phrase trigram LM)

(LTNlookahead, TER/TER reduction CER/CER reduction
LTNIlookback)

(50, 50) 23.54 % (1691) (baseline) 12.60 % (905) (baseline)
(25, 25) 25.27 % (1816) (+7.33 %) 12.57 % (903) (-0.22 %)
(25, 75) 25.12 % (1805) (+6.67 %) 12.75 % (916) (+1.22 %)
(25, 50) 24.41 % (1754) (+3.66 %) 12.72 % (914) (+0.99 %)

(traceback delay = 20,correlation smoothing radius = 5, frame width = 0.032)
(Lexical Modelling: Preme/Core-Final in training)

(phrase trigram LM)

Extracting temporal properties of voiced pitch movements

By the means of second order regression of the auto-correlation, information of
voicing is extracted from the speech signal. If the constant term of the regression coefficients
of the auto-correlation is greater than a given threshold, say 0.4, then the regression weight for
this frame is set at 1.0. If the constant term of the regression coefficients of the auto-
correlation is less than a given threshold, say 0.10, then the regression weight for this frame is
set at 0.0. Otherwise it is set at the constant term of the regression coefficients of the auto-
correlation. These weights are applied to the above second order weighted regression of the
de-intonated Fy contour and long-term weighted-moving-average or median filter of the phrase

intonation component of the Mandarin Chinese speech prosody. These weights of the second
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order weighted regression of the de-intonation of the FO contour are designed to emphasize/de-
emphasize the voiced/unvoiced segments of the pitch contour in order to preserve the voiced
pitch contour for the semi-voiced consonants. The advantage of this mechanism is that, even if
the speech segmentation has slight errors, these weights with look-ahead adaptive-pruning
trace back of the Fy contour served as the on-line signal pre-processing front-end, will preserve
the pitch contour of the vowels for the pitch contour of the consonants. This vowel-preserving
property of the tone features has the ability to prevent model parameters from bias estimation
due to speech segmentation errors.

Fig. 7 shows a flow chart of a preferred method for second order regression of
the auto-correlation using the present invention. By using a second order regression of the
auto-correlation with lags corresponding to the reciprocal of the output of the look-ahead
adaptive pruning trace back of Fy, information of periodicity is extracted from the speech
signal. First the extracted pitch profile is processed using pitch dynamic time-warping (PDT)
technique in order to get a smoothed (nearly no multiple pitch errors) pitch contour, then
second-order weighted least squares are applied in order to extract the profiles of the pitch
contour. Such profiles are represented by the regression coefficients. The constant regression
coefficient is used for calculating weights required in the decomposition of the Fy contour as
shown in Fig. 5. The first and second of the regression coefficients are used for further
reduction of the tone error rate. The best setting for windowing is around 110 ms, which is less

than one syllable’s length in normal speaking rate.

Generation of a pseudo feature vector

Fig. 8 shows a flow chart of a preferred method for pseudo feature vector
generator according to the present invention. According to the criteria of maximization of the
local likelihood scores, pseudo feature vectors are generated for unvoiced segments of speech
in order to prevent model parameters in HMM from bias estimation. This is done first by
calculating the sum of the regression weights within a regression window. For a sum of
weights less than a predefined threshold (e.g. 0.25), the normalized features are replaced by
pseudo features generated according to the criteria of least squares (fall back to the de-generate
case, equally weighted regression).

For clear silence regions, the local minimum path in look-ahead trace back
produces random values for pitch estimates. Such a de-intonated Fy estimate and its
derivatives have mean zero in the assumption of prior equally distributed normalized features

over neighboring frames and symmetrical property of the probability distribution of the
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normalized features. With minimal variance that ensures non-degenerate probability
distribution in each state of HMM-based acoustic modeling. Since it is difficult to draw a clear
line between voiced and unvoiced region in units of milli-seconds, in the voiced-unvoiced
region, equally weighted regression is employed to smooth both traceable pitch in clear voiced

segments and random pitch in clear silence region.

Tone component

As described above, in a preferred embodiment, the tone component is defined
as the locally, weighted regression of the de-intonated pitch contour over, preferably, 110
msec., which is less than one syllable length (in fact, approximately one average vowel
length), in order to prevent from modeling the within-phase pitch contour. These weights in
the local regression, are designed to emphasize/de-emphasize the voiced/unvoiced segments of
the pitch contour in order to preserve the voiced pitch contour for the consonants
(initial/preme). The main advantages of this mechanism are that, even if the speech
segmentation has slight errors (it does not recognize small amount of the unvoiced as voiced),
these weights will preserve the pitch contour of the vowel (final/toneme) and take it for
granted into initial/premes. In this way, statistics of the statistical models are accumulated in
the training process and later in the recognition process. Moreover, it allows simulating scores
for initial/preme to prevent from hurting the tone recognition due to speech segmentation

CITOrS.

Experimental setup

The experiments have been performed using a Philips large-vocabulary
continuous-speech recognition system, which is a HMM-based system using standard MFCC
features with first-order derivétives, sentence-based cepstral mean subtraction (CMS) for
simple channel normalization, and Gaussian mixture densities with density-specific diagonal
covariance matrices. Experiments were conducted on three different Mandarin continuous-
speech corpora, the MAT corpus (telephone, Taiwan Mandarin), a non-public PC dictation
database (microphone, Taiwan Mandarin), and the database of the 1998 Mainland Chinese 863
benchmarking. For the MAT and the PC dictation database, a speaker-independent system is
used. For 863, a separate model is trained for each gender, and the gender is known during
decoding. The standard 863 language-model training corpus (People’s Daily 1993-4) contains
the test set. Thus, the system already “knows" the entirety of the test sentences, not reflecting

the real-life dictation situation. To obtain realistic performance figures, the LM training set has
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been “cleaned” by removing all 480 test sentences. The following table summarizes the corpus

characteristics.

MAT PC Dictation 863

Train Test Train Test Train Test
Type
#Speakers 721 26 241 20 2x83 N/a
#Utterances | 28896 259 27606 200 92948 2x240
#Syl./Utt. 566 14.2 30.1 355 12.1 12.6
TPP -- 3.37 -- 3.54 -- 3.50
Lexicon size | -- 42038 - 42038 - 56064
CPPy; - 121.8 - 63.6 -- 534
CPPy; -~ 106.1 - 51.1 -- 41.3
CPPri jnside -- -- - - - 14.4

PDAs are often assessed with respect to fine and gross pitch errors. Since it is
assumed that the underlying existing algorithm has been extensively tuned, and the focus is on
integration with speech recognition, the system has been optimized with respect to the tone
error rate (TER) instead. All tables except the last one show TER. TER is measured by tonal-
syllable decoding, where the decoder is given the following information for each syllable:

- start and end frame (obtained by forced alignment),
- base-syllable identity (toneless, from the test script), and
- the set of tones allowed for this particular syllable

Not all five lexical tones can be combined with all Chinese syllables. The tone
perplexity (TPP) has been defined as the number of possible tones for a syllable averaged over
the test set.

The first column in the following experiment tables show the experiment Ids
(D1, D2, T1, etc.) which are intended to help to quickly identify identical experiments shown

in more than one table.

Real-time/online DP operation

The first experiments deal with the benefit of using Dynamic Programming at
all. The following table shows a 10-15% TER reduction from DP for MAT and PCD. Only for
the very clean 863 corpus, DP is not required. Since a real-life dictation system also has to

deal with noise, DP is considered useful in any case to assure robustness.
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Id Pitch extractor MAT PC 863 Gain
D1 SHS only 32.0% 21.4% 24.0% b/
D2 SHS + DP 27.0% 19.2% 24.3% 8.4%

The second set of experiments considers the benefits of partial traceback.
Intuitively, the joint information of one syllable should be sufficient, i.e. around 20-25 frames.
The following table shows that 10 frames are already enough to stabilize the pitch contour.

Conservatively, 15 frames may be chosen.

Id Traceback length MAT PC 863 Loss
D2 Whole sentence 27.0% 19.2% 24.3% B/l

Tl 20 frames (200 msec.) | 28.3% 19.7% 24.4% 2.8%
T2 15 frames (150 msec.) | 28.0% 20.0% 24.3% 2.9%
T3 10 frames (100 msec.) | 28.5% 19.6% 24.2% 2.6%

Focussing on reducing the search effort, the following table shows the number
of path recombinations (corpus average) for beam-pruning with different pruning thresholds.
A 93% reduction at minimal increase of tone error rate can be achieved (P3). Conservatively,

setup P2 may be chosen.

Id Threshold Recomb. | MAT PC 863 Loss
T2 0 28.0% 20.0% 24.3% 0%

P1 0.99 681 28.4% 21.0% 23.9% 1.5%
P2 0.999 413 29.0% 20.2% 24.4% 1.7%
P3 0.9999 305 28.6% 20.2% 24.7% 1.4%

Reducing the resolution from 48 quantization steps per octave to only 16 yields
another vast reduction of path recombinations, but leads to some degradation (experiment R1

in the following table). This can be alleviated by fine-tuning the pitch after DP (R2).

Id Quantization | Recomb. | MAT PC 863 Loss
P2 48 413 29.0% 20.2% 24.4% B/

R1 16 99 28.7% 21.8% 25.6% 3.9%
R2 16, tuned 99 29.4% 20.8% 24.5% 1.5%
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Experimental results for the tonal feature vector
Experiments have been performed to verify improvements to the feature vector

according to the invention. The test were started with a conventional feature vector o(7) =
(1‘:“0 ); Aﬁo (t) ). The following table shows that almost the entire performance is due

to Aﬁo (t) . Switching off I:"0 () has only minor effect (F2), while using it as the only feature

leads to dramatic degradation of 52% (F3). Taking the log has no significant effect (F4).

Id Tone features MAT PC 863 Gain
F1 ﬁo ) ;Aﬁo 0 37.1% 28.2% 29.9% B/
F2 Aﬁo (t) only 37.3% 28.8% 30.1% -1.2%
F3 130 (t) only 48.7% 49.8% 44.3% -52%
F4 Log F, (1) log AF,(r) | 36:5% 28.3% 29.8% 0.4%

The following table shows the effect of normalization, being the effectiveness
of eliminating speaker and phrase effect by subtracting the averaged neighborhood pitch (the
weight w(f, t) = 1, equation (2)). Of the three different window widths (a moving average of

0.6 sec., 1.0 sec. and 1.4 sec., respectively), the 1-second window wins by a small margin.

Id Normalization MAT PC 863 Gain
F1 None 37.1% 28.2% 29.9% B/l
N1 Moving av. 0.6 sec. 33.0% 25.7% 29.7% 6.8%

N2 Moving av. 1.0 sec. 32.1% 25.9% 29.1% 8.0%

N3 Moving av. 1.4 sec. 32.2% 26.5% 29.6% 6.8%

The following table compares normalizing log }30 (r) with a moving average

window of 1.0 sec. to normalizing to the sentence mean. Both the MAT and the 863 corpus
consist of short utterances, with little phrase effect. Thus, for MAT, sentence-based
normalization performs equally to the proposed method. For 863 on the other hand, where the
gender bias is already accounted for by the gender-dependent models, no improvements are
obtained over the unnormalized case. For the PC Dictation corpus, with long utterances and

strong phrase effect, an improvement could not be observed as well.
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Id Normalization MAT PC 863 Gain
F4 None 36.5% 28.3% 29.8% B/
N4 Moving av. 1.0 sec. 33.3% 24.8% 28.7% 8.3%
NS5 Sentence mean 33.2% 28.6% 30.1% 2.4%
The following table shows the effect of using the 2nd-order derivative
AAﬁ‘O (¢). A significant improvement of 9% is observed where the microphone setups benefit
most.
Id AA ﬁo () MAT pPC 863 Gain
N2 No 32.1% 25.9% 29.1% B/l
F5 Yes 30.7% 22.9% 25.9% 9.0%

The following table shows that using voicing v(f; t) as a feature results in a gain

of 4.5%, which can be further tuned to 6.4% by simple smoothing to reduce noise.

Id Voicing feature MAT PC 863 Gain
F5 None 30.7% 22.9% 25.9% b/l

Vi v(f; t) raw 29.9% 20.8% 25.5% 4.5%
V2 v(f; t) smoothed 29.1% 20.7% 24.8% 6.4%

Another 6.1% is achieved from the derivative of the smoothed voicing, but no

further reduction from the 2nd derivative as illustrated in the following table.

Id Voicing feature MAT PC 863 Gain

V2 v(f; t) smoothed 29.1% 20.7% 24.8% 6.4%

V3 v(f; t) smoothed, plus | 27.0% 19.5% 23.5% 6.1%
1" derivative

V4 v(f; t) smoothed, plus | 27.7% 19.7% 23.7% 4.5%
I* and 2" derivative

A final small improvement (2.5%) is obtained by using v(f; t) as the weight in

local normalization, as shown in the following table.
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Id Normalization MAT PC 863 Gain
V3 Unweighted 27.0% 19.5% 23.5% 6.1%
N6 Weigthed 26.2% 19.0% 23.0% 2.5%

Taking all above optimization steps with respect to the feature vector together

(from experiment F1 to N6), an average TER improvement of 28.4% has been achieved

compared to the starting vector o(t)= (I:“O(t); AI:“0 ).

Combination with language model

Experiments have also confirmed that an optimal tone error rate also leads to
the best overall system performance. To show this, character error rates (CER) of the
integrated system have been measured for selected setups, using a phrase-based recognition
lexicon and phrase-bigram/trigram language model. For completeness and comparability, the
last two rows of the following table show results obtained with the test set inside (“System

performance test").

Id Tone features MAT PC 863 Gain
Bigram

- No tone model 42.4% 18.9% 11.6% b/l

F1 ﬁo 0 ;Aﬁo ) 38.6% 14.5% 9.5% 17.0%

N2 + ﬁo (t) normalization | 36.4% 13.7% 9.7% 19.5%

F5 +AA ﬁo () 35.0% 13.3% 8.6% 24.3%

V3 +voicing features 34.4% 12.6% 8.3% 26.9%

N6 +weighting 34.2% 12.9% 8.1% 27.3%
Trigram

- no tone model 40.4% 16.4% 10.4% b/l

N6 best tone model 33.1% 12.0% 7.3% 25.0%

863 benchmark: Trigram, test-set inside LM training
- no tone model - - 3.8% b/l
N6 best tone model 3.4% 10.6%
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The outcome confirms the good correspondence between TER and CER.
Secondly, the overall relative CER improvement from tone modeling reaches an extraordinary
27.3% on average (bigram), with the smallest gain on telephone speech (19.3%), and
exceeding 30% for the two microphone corpora. For trigram, gains are slightly smaller
because the trigram can disambiguate more cases from the linguistic context only, for which
the bigram requires the tone model’s assistance. (The extreme case is the 863 benchmarking
LM - test set inside LM training - where most tones are deducted correctly from the context,

and tone modeling helps 10.6%.

Summary

Important for constructing on-line, robust tone feature extraction is to use the
joint, local information of periodicity in the neighborhood of the concurrent voiced time
frame. The present invention eliminates determining tone features directly from marginal
information of periodicity at the concurrent time frame. Instead, the degree of voicing is
treated as the distribution of fhe fundamental frequency.

The different aspect of the on-line, robust feature extraction, which may also be
used in combination with conventional techniques, are shown in combination in the block
diagram of Fig. 8. Fig. 9 shows the same information in the form of a flow diagram. Important
aspects are:

- Extracting pitch-information by determining a measure inside the speech signal, preferably
based on Subharmonic Summation,

- On-line look-ahead adaptive pruning trace back of the fundamental frequency, where the
adaptive pruning is based on the degree of voicing and the joint information for preferably
0.50s ago,

- Removing phrase intonation, which is defined as the long-term tendency of the voiced Fo
contour. This effect is approximated by a weighted-moving average of the Fy contour, with
weights preferably related to the degree of the periodicity of the signal,

- The means of second order weighted regression of the de-intonation of the Fo contour over
certain time frames, where the maximal window length is corresponding to the length of a
syllable, with weights related to the degree of the periodicity of the signal,

- Second order regression of the auto-correlation over certain time frames, where the
maximal window length is corresponding to the length of a syllable, with time lag
corresponding to the reciprocal of the pitch estimate from look-ahead tracing back

procedure, and
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- Generation of a pseudo feature vector in voiced-unvoiced segments of speech signal.
Pseudo feature vectors are generated for unvoiced speech, according to the least squares

criteria (fall back to the de-generate case, equally weighted regression).
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CLAIMS:

1. A speech recognition system for recognizing a time-sequential input signal
representing speech spoken in a tonal language; the system including:

an input for receiving the input signal;

a speech analysis subsystem for representing a segment of the input signal as an
observation feature vector; and

a unit matching subsystem for matching the observation feature vector against
an inventory of trained speech recognition units, each unit being represented by at least one
reference feature vector;

wherein the feature vector includes a component derived from an estimated

degree of voicing of the speech segment represented by the feature vector.

2. A speech recognition system as claimed in claim 1, wherein the derived

component represents the estimated degree of voicing of the speech segment.

3. A speech recognition system as claimed in claim 1, wherein the derived

component represents a derivative of the estimated degree of voicing of the speech segment.

4. A speech recognition system as claimed in claim 1, 2, or 3, wherein the

estimated degree of voicing is smoothed.

5. A speech recognition system as claimed in claim 1, wherein the degree of

voicing is a measure of a short-time auto-correlation of an estimated pitch contour.

6. A speech recognition system as claimed in claim 5, wherein the measure is

formed by the regression coefficients of the auto-correlation contour.

7. A speech recognition system as claimed in claim 1, wherein the feature vector

includes a component representing a derivative of an estimated pitch of the speech segment.
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8. A speech recognition system as claimed in claim 5 or 7, wherein the estimated

pitch is obtained by removing a phrase intonation effect from an estimated pitch contour

- representing the speech segment.

9. A speech recognition system as claimed in claim 8, wherein the phrase

intonation effect is represented by a weighted moving average of the estimated pitch contour.

10. A speech recognition system as claimed in claim 9, wherein a weight of the

weighted moving average represents the degree of voicing in the segment.

11. A speech recognition system as claimed in claim 1, wherein unvoiced segments

of speech are represented by a pseudo feature vector.

12. A speech recognition system as claimed in claim 11, wherein a segment is
considered unvoiced if a sum of regression weights of an estimated pitch contour within a

regression window.

13. A speech recognition system as claimed in claim 11, wherein the pseudo feature

vector includes pseudo features generated according to a least squares criterion.
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