Office de la Propriete Canadian CA 2465255 A1 2004/11/02

Intellectuelle Intellectual Property
du Canada Office (21) 2 465 255
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2004/04/27 (51) CLInt.”/Int.CI.” GOBF 12/02, GOBF 12/10
(41) Mise a la disp. pub./Open to Public Insp.: 2004/11/02 (71) Demandeur/Applicant:
(30) Priorités/Priorities: 2003/05/02 (60/467,343) US: MICROSOFT CORPORATION, US
2003/06/30 (10/610,666) US (72) Inventeurs/Inventors:

PEINADO, MARCUS, US;
ENGLAND, PAUL, US

(74) Agent: SMART & BIGGAR

(54) Titre : MISE EN OEUVRE DE CONTROLE D'ACCES A LA MEMOIRE BASE SUR DES OPTIMISATIONS
54) Title: IMPLEMENTATION OF MEMORY ACCESS CONTROL USING OPTIMIZATIONS

602

Receive access reguest

606

‘ ' ~ 604
Cached

Evaluat: accessl lml““" information
under a policy ahout page map

R

l/"‘ 610
608 —

Execution

of request will Block request, or
maintain compli- No modify request to make
ance with it allowable under polciy

policy
?

iy 612 J 614
Allow requ;st to "Alrc;;v modified req ue:t
proceed to proceed
I I R
N
Update cache

(57) Abréegée/Abstract:

Mechanisms are disclosed that may allow certain memory access control algorithms to be implemented efficiently. VWhen memory
access control Is based on controlling changes to an address translation map (or set of maps), it may be necessary to determine
whether a particular map change would allow memory to be accessed in an impermissible way. Certain data about the map may be
cached in order to allow the determination to be made more efficiently than performing an evaluation of the entire map.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02465255 2004-04-27

ABSTRACT OF THE DISCLOSURE

Mechanisms are disclosed that may allow certain memory access control algorithms to be
implemented efficiently. When memory access control is based on controlling changes to an address
translation map (or set of maps), it may be necessary to determine whether a particular map change
would allow memory to be accessed in an impermissible way. Certain data about the map may be
cached in order to allow the determination to be made more efficiently than performing an

evaluation of the entire map.

CA 02465255 2004-04-27

IMPLEMENTATION OF MEMORY ACCESS CONTROL USING OPTIMIZATIONS

CROSS-REFERENCE TO RELATED CASES
[0001] This application claims the benefit of U.S. Provisional Application No. 60/467,343,

entitled “Techniques for Efficient Implementation of Memory Access Control,” filed on May 2,
2003.

FIELD OF THE INVENTION
[0002] The present invention relates generally to the field of computer security. More
particularly, the invention relates to efficient techniques for implementing an isolated or “curtained™

memory using address translation control.

BACKGROUND OF THE INVENTION

[0003] In some circumstances, it is desirable to have an isolated or “curtained” portion of
memory, to which access is restricted. For example, a computer may run two operating systems
side-by-side, in which one operating system is secure and the other 1s not. In this case, 1t is desirable
for the secure operating system to have a curtained memory in which it can store secret information

that cannot be accessed by the non-secure operating system.

-1-

CA 02465255 2004-04-27

[0004] One way to implement curtained memory 1s through address translation control.
Many modern computers use a virtual memory system, in which software running on the computer
addresses the memory using virtual addresses, and a memory management unit uses a set of address
translation maps to translate the virtual addresses into physical addresses. Typically, each process
has its own address translation map, so that the mapping between virtual and physical addresses
changes from process to process. It is possible to configure a given process’s address translation
map such that a the process’s map does not expose to the process any virtual address for a given
block (e.g., page) of physical memory. Thus, by ensuring that only secure processes have {firtual
addresses for a given block of physical memory, it is possible to implement curtained memory by
controlling the contents of the address translation maps.

[0005] One problem that arises when such a mechanism is used to implement curtained
memory is that, since the address translation maps are stored in memory, every operation that writes
the memory could potentially affect the maps, and thus might cause a virtual address for curtained
memory to be exposed to a process that should not have access to curtained memory. One way to
prevent such a virtual address from being exposed is to check every element of every map each time
a write operation on the memory is performed in order to ensure that no page of curtained memory
has a virtual address in the map of any process that should not have access to the curtained memory.
However, given the frequency of write operations, this technique is inefficient.

[0006] In view of the foregoing, there is a need for a mechanism that overcomes the

drawbacks of the prior art.

SUMMARY OF THE INVENTION

[0007] The present invention provides mechanisms for efficiently controlling changes to
address translation maps. Curtained memory can be implemented by preventing address translation
maps from entering a state in which a virtual address for a block of curtained memory would be
exposed to a process (or other entity) that is not allowed to access the curtained memory. A “policy”
defines what memory access operations are permitted, and a memory access control system can
operate by prohibiting the address translation map from entering any state that violates the policy.

[0008] States in which such virtual addresses would be eiposed can often be defined based

on the intersection (or non-intersection) of two or more sets that satisfy a certain property, or the

-7 .

CA 02465255 2004-04-27

number of pages that satisfy a certain property. The identity of pages that are members of a defined

set can be stored or cached, so that the membership of the set does not have to be computed each
time a write operation 1s performed that could change the state of the address translation maps. The
identity of pages in a set can be stored, for example, as a bit vector, and set operations such as
union, intersection, etc. can be performed efficiently on such bit vectors. In some cases, the exact set
that satisfies a particular property may be difficult to compute, but it may be mathematically
provable that compliance with the policy can be assured by using some well-defined subset or
superset as a proxy for the actual set. If the subset or superset 1s relatively easier to compute than the
actual set, then the subset or superset may be used in place of the actual set.

[0009] Additionally, the permissibility of some write operaﬁons can be defined in terms of
a count of some statistic — e.g., the number of pages that satisfy a certain property, the number of
references to a given page, etc. Such a statistic can be effectively stored or cached as a reference |
counter, which can be updated through increment and decrement operations. The bit vectors or
counters can be updated each time a map changes state, and then used efficiently to evaluate a
memory access operation under the policy.

[0010] Other features of the invention are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The foregoing summary, as well as the following detailed description of preferred
embodiments, is better understood when read in conjunction with the appended drawings. For the
purpose of illustrating the invention, there is shown in the drawings exemplary constructions of the
invention; however, the invention is not limited to the specific methods and instrumentalities
disclosed. In the drawings:

[0012] FIG. 1 is a block diagram of a computing environment in which aspects of the
invention may be implemented,;

[0013] FIG. 2 is a block diagram of a memory system that implements virtual addressing
through an address translation map;

[0014] FIG. 3 is a block diagram of an example page table having attributes;

[0015] FIG. 4 is a block diagram of two example non-intersecting sets representing a

condition that may be used to implement memory access control,

-3 -

CA 02465255 2004-04-27

[0016] FIG. 5 is a block diagram of a directed labeled graph, which is representative of an

address translation map; and

[0017] FIG. 6 is a flow diagram of an exemplary memory access control process.

DETAILED DESCRIPTION OF THE INVENTION
Exemplary Computing Arrangement

[0018] FIG. 1 shows an exemplary computing environment in which aspects of the
invention may be implemented. The computing system environment 100 is only one example of a
suitable computing environment and is not intended to suggest any limitation as to the scope of use
or functionality of the invention. Neither should the computing environment 100 be interpreted as
having any dependency or requirement relating to any one or combination of components illustrated
in the exemplary operating environment 100.

[0019] The invention is operational with numerous other general purpose or special
purpose computing system environments or configurations. Examples of well known computing
systems, environments, and/or configurations that may be suitable for use with the invention
include, but are not limited to, personal computers, server computers, hand-held or laptop devices,
multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer
electronics, network PCs, minicomputers, mainframe computers, embedded systems, distributed
computing environments that include any of the above systems or devices, and the like.

[0020] The invention may be described in the general context of computer-executable
instructions, such as program modules, being executed by a computer. Generally, program modules
include routines, programs, objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types. The invention may also be practiced in distributed
computing environments where tasks are performed by remote processing devices that are linked
through a communications network or other data transmission medium. In a distributed computing
environment, program modules and other data may be located in both local and remote computer
storage media including memory storage devices.

[0021] With reference to FIG. 1, an exemplary system for implementing the invention
includes a general purpose computing device in the form of a computer 110. Components of

computer 110 may include, but are not limited to, a processing unit 120, a system memory 130, and

-4 .

CA 02465255 2004-04-27

a system bus 121 that couples various system components including the system memory to the
processing unit 120. The system bus 121 may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, such architectures include Industry Standard
Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electromcs Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI)
bus (also known as Mezzanine bus).

[0022] Computer 110 typically includes a variety of computer readable media. Computer
readable media can be any available media that can be accessed by computer 110 and includes both
volatile and nohvolatile media, removable and non-removable media; By way of example, and not
limitation, computer readable media may comprise computer storage media and communication
media. Computer storage media includes both volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information such as
computer readable instructions, data structures, program modules or other data. Computer storage
media includes, but 1s not limited to, RAM, ROM, EEPROM, flash memory or other memory
technology, CDROM, digital versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information and which can accessed by computer
110. Commumnication media typically embodies computer readable instructions, data structures,
program modules or other data in a modulated data signal such as a carrier wave or other transport
mechanism and includes any information delivery media. The term “modulated data signal” means
a signal that has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be
included within the scope of computer readable media.

[0023] The system memory 130 includes computer storage media in the form of volatile
and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to

transfer information between elements within computer 110, such as during start-up, is typically
-5

CA 02465255 2004-04-27

stored in ROM 131. RAM 132 typically contains data and/or prografn modules that are immediately
accessible to and/or presently being operated on by processing unit 120. By way of example, and
not limitation, FIG. 1 illustrates operating system 134, application programs 135, other program
modules 136, and program data 137.

[0024] The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard disk
drive 140 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk
drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152, and an optical
- disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156, such as a CD
ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer
storage media that can be used 1n the exemplary operating environment include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state
RAM,, solid state ROM, and the like. The hard disk drive 141 1s typically connected to the system
bus 121 through an non-removable memory interface such as interface 140, and magnetic disk drive
151 and optical disk drive 155 are typically connected to the system bus 121 by a removable
memory interface, such as interface 150.

[0025] The drives and their associated computer storage media discussed above and
1llustrated 1n FIG. 1, provide storage of computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for example, hard disk drive 141 is
1llustrated as storing operating system 144, application programs 145, other program modules 146,
and program data 147. Note that these components can either be the same as or different from
operating system 134, application programs 135, other program modules 136, and program data
137. Operating system 144, application programs 143, other program modules 146, and program
data 147 are given different numbers here to illustrate that, at a minimum, they are different copies.
A user may enter commands and information into the computer 20 through input devices such as a
keyboard 162 and pointing device 161, commonly referred to as a mouse, trackball dr touch pad.
Other mput devices (not shown) may include a microphone, joystick, game pad, satellite dish,
scanner, or the like. These and other input devices are often connected to the processing unit 120
through a user mnput interface 160 that is coupled to the system bus, but may be connected by other

interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). A
-6 -

CA 02465255 2004-04-27

monitor 191 or other type of display device is also connected to the system bus 121 via an interface,
such as a video interface 190. In addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer 196, which may be connected through an
output peripheral interface 190.

[0026] The computer 110 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other
common network node, and typically includes many or all of the elements described above relative
to the computer 110, although only a memory storage device 181 has been illustrated in FIG. 1. The
logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area
network (WAN) 173, but may also include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

[0027] When used in a LAN networking environment, the computer 110 1s connected to
the LAN 171 through a network interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem 172 or other means for establishing
communications over the WAN 173, such as the Internet. The modem 172, which may be internal
or external, may be connected to the system bus 121 via the user input interface 160, or other .
appropriate mechanism. In a networked environment, program modules depicted relative to the
computer 110, or portions thereof, may be stored in the remote memory storage device. By way of
example, and not limitation, FIG. 1 i1llustrates remote application programs 185 as residing on
memory device 181. It will be appreciated that the network connections shown are exemplary and
other means of establishing a communications link between the computers may be used.

Memory Access Using Address Translation ‘

[0028] A memory in a computer system (e.g., RAM 132, shown in FIG. 1) has a physical
address for each byte. Thus, the bytes that make up the memory can be viewed as being numbered,
where each byte can be unambiguously 1dentified by its number. In this case, the number constitutes
a physical address. For example, in a 256-byte memory, the bytes may have physical addresses
ranging from zero through 2°% _ 1. However, in modern computer systems, memory is generally not
accessed by its physical address, but rather by a virtual address. An address translation map is used

to convert physical addresses to virtual addresses.
-7 -

CA 02465255 2004-04-27

[0029] FIG. 2 shows an example of an address translation map, and 1ts use in an actual
computer system. The exemplary address translation map shown in FIG. 2 1s a “paging” scheme, in
which memory is allotted in blocks called “pages.” FI1G. 2 1s representative of the paging scheme
used on the INTEL x86 processor.

[0030] In FIG. 2, page directory 202 contains an array of pointers to (1.e., physical base
addresses of) page tables, such as page tables 204(1), 204(2), and 204(3). Each page table, in turn,
contains an array of pointers to the base addresses of pages (e.g., pages 206(1), 206(2), 206(3), and
206(4)), and may alSo contain information such as the read-only/read-write attnibute, the
present/not-present bit, etc., as described above. Pages are fixed-length portions of RAM 132.
Additionally, the page directory and page tables are also typically storéd in RAM 132. The paging
scheme depicted in FIG. 2 is a two-level paging scheme, since 1t is necessary to go through both a
page directory (level 1) and a page table (level 2) in order to locate a particular page. It will be |
appreciated by those of skill in the art that it is possible to design a paging scheme with an arbitrary
number of levels, and the invention applies to all such paging schemes. It 1s also known 1n the art
that the INTEL x86 processor typically uses the two-level paging scheme shown in FIG. 2, but can
also be configured to use a one-level or three-level paging scheme.

[0031] In the paging scheme of FIG. 2, any byte on a page can be identified by a virtual
address 210, comprising a page directory offset 211, a page table offset 212, and a page offset 213.
Thus, in order to locate a physical address, a memory management unit (MMU) 220 uses page
directory offset 211 to locate a particular entry in page directory 202. This entry 1s a physical base
address of a page table, so MMU 220 dereferences this address in order to locate one of the page
tables (e.g., page table 204(1)). MMU 220 then uses page table offset 212 as an index into the
identified page table, and retrieves the entry found at that offset. The entry 1s the physical base
address of a page (e.g., page 206(1)), so MMU adds page offset 213 to the base address of the
identified page in order to locate a particular byte of physical memory. MMU 202 may also be
configured to take into account information such as whether a page has been marked read-only or
read-write, whether the page is marked present or not-present, etc., as described below in
connection with FIG. 3.

[0032] The paging scheme of FIG. 2 also includes a storage location 201 that contains a

pointer to the page directory. MMU 220 uses this pointer to locate the page directory 202 when 1t
-8 -

CA 02465255 2004-04-27

begins to translate virtual address 210. In the example of an INTEL x86 processor, storage location
201 corresponds to the register named CR3 — that 1s, on an INTEL x86 processor, the register CR3
stores the physical address of the page directory for the current context. Thus, 1t 1s possible to build
alternative sets of translation tables (i.e., two or more sets of page directories and page tables), and
to change which set of translation tables applies simply by writing the base address of a new page
directory into storage location 201. One common use of this technique is for each process running
on a computer to have its own page directory and page tables, where a “context switch” (1.e., an
operation that, among other things, causes the virtual memory system to point to the address space
of a new process) is performed by writing the base address of the new process’s page directory into
storage location 201. In the case where each process has it’s own page directory, the identity of the
process that is currently running determines what value 1s loaded into storage location 201.

[0033] In addition to containing pointers to pages, page tables and page directories ma);
also contain “attributes” for the pages. FIG. 3 shows the detail of an exemplary page table 204(1),
which contains both pointers and attributes. Each entfy in page table 204(1) includes an address 302
of a particular page, a bit 304 indicating Whether the page pointed to by the entry is “read-only,” and
a bit 306 indicating whether the page pointed to by the entry 1s “present.” Thus, if the first entry 301
in page table 204(1) points to page 206(1) (shown in FIG. 2), then bit 304 indicates, depending on
whether it is set to zero or one, whether MMU 220 (shown in FIG. 2) should permt page 206(1) to
be both read and written, or only read. Similarly, bit 306 indicates whether page 206(1) is present in
memory or not. (Bit 306 may be set to zero, indicating not present, 1if, for example, the contents of
page 206(1) has been moved to disk to make room for other pages in memory.) Other attributes may
also be stored in page table 204(1).
Using Address Translation Maps for Memory Access Control

[0034] In a system where memory is accessed by virtual address, it is possible to
implement a system that limits access to memory based on the following observation: if the address
translation map is configured such that no virtual address translates to a given physical address, then
the memory represented by that physical address is inaccessible. For example, in the paging scheme
described above 1n connection with FIG. 2, a given page of memory (e.g., page 206(1)) can be made
inaccessible by ensuring there 1s no path leading through the map to that page. In the absence of

such a path, there would be no virtual address 210 that would translate to that page. In a system
-9.

CA 02465255 2004-04-27

where all memory access is made by virtual address, exerting control over the address translation
map to deny virtual addresses to a given page (or other portion) of memory effectively makes that
portion of memory inaccessible. Even in systems that permit some physical addressing of memory,
memory can be made inaccessible by supplementing control over the address translation map with
control over those access requests that are based on physical address.

[0035] The technique of controlling the contents of an address translation map in order to
control access to memory can be stated formally as follows: Assume that S 1s a set of sources who

can potentially access a memory. Assume further that P is a policy that defines which portions of

memory can be accessed by which sources. Thus, if s € S 1s a source, then MP(s) denotes the
portion of memory that is accessible to source s via the address translation map (e.g., the set of
memory locations that have virtual addresses), and NA(P,s) denotes the portions of memory that
source s is not allowed to access under policy P. (In the case wheré each process has its own address
translation map, each process can be viewed as a different “source,” although 1t will be understood
that the concept of a source generalizes beyond the example of a process.) Thus, enforcement of the
policy can be assured as long as the condition:

NA(P,s) "t MP(s) = ¢,
is satisfied. This condition is depicted in FIG. 4, which shows memory 132 as a set of memory
locations, MP(s) 402 as the set of memory locations that are visible to source s through an address
translation mapping, and NA(P,s) 404 as the set of memory locations that source s 1s not allowed to
access under policy P. Since none of the locations (MP(s)) that source s can address through an
address translation mapping are included in the set of memory locations that source s 1s not allowed
to access under policy P, the condition depicted in FIG. 4 effectively enforces pcjlicy P with respect
to source s.

[0036] Thus, the problem of controlling the access of source s to portions of memory 132
can, in some example situations, be reduced to ensuring that the condition depicted in FIG. 4 is
always true. One solution to this problem is to evaluate any operation (e.g., a memory write, a load
of the CR3 register, etc.) that has the potential to change the address translation mapping, the policy,
or the current source. The present invention provides techniques that allow such an evaluation to be

made efficiently.

-10 -

CA 02465255 2004-04-27

[(0037] It will be understood that the condition shown in FIG. 4 is merely exemplary of a
condition that can be used to implement memory access control. Other variations on the theme of
FIG. 4 are possible, such as those involving the set of memory locations included in the address
translation map, the set of memory locations that source s 1s allowed to access but not to write (or
read), etc. It will be noted, however, that the conditions for memory access control typically include
verifying the non-intersection of two or more sets of memory locations.

[0038] Additionally, while MP(s) can be viewed as being the “mapped pages” visible to
source s, it should be noted that the concept of memory access control is not limited to systems that
employ a paging scheme. In a typical implementation, the decision as to which memory locations a
source is allowed to write under a policy, or which memory locations are mapped to a source, is
made on a per page basis. However, the invention is not limited to the case where memory 1s
allocated on a per-page basis, or where access to memory is allowed or restricted on a per-page |
basis.

Generalized Model for Address Translation

[0039] The address translation map shown in FIG. 2 and described above can be
generalized using the model of a directed labeled graph. The following describes a generalized
model for certain types of address translation maps.

[0040] In this model, B is a base set, and L is an alphabet. GivenBand L, G=(V,E)1sa
directed graph with edge labels, suchthatV.c BandE ¢ {(viw,):ve V,we V,1€ L }. Any

member of E can be interpreted as a directed edge from vertex v to vertex w with label 1. The
vertices may also be labeled.

[0041] FIG. 5 shows a graph according to the model described above. Graph 500 includes
vertices 502, 504, 506, 508, 510, and 512. These vertices are connected by edges 522, 524, 526,
528, 530, 532, and 534 in the manner shown. Each edge is labeled with a symbol from an alphabet.
In this example, the alphabet comprises the symbols A, B, and C. Thus, edges 522 and 524 are
labeled with the symbol A, edges 526, 528, and 532 are labeled with the symbol B, and edges 530
and 534 are labeled with the symbol C. There may also be elements of the base set (e.g., elements
550 and 552) that are not vertices in graph 500.

[0042] It should be appreciated that the components of graph 500 correspond to certain

components of the address translation map shown in FIG. 2. For example, in FIG. 2 page directory
-11 -

CA 02465255 2004-04-27

202, page tables 204(1)-204(3), and pages 206(1)-206(4) can be viewed as vertices in a graph. The
pointers that connect these vertices (e.g., the pointers from entries n page table 204(1) to pages
206(1) and 206(2)) can be viewed as edges of the graph. And, with regard to FIG. 3, the attributes
304 and 306 of an entry (e.g., the read-only and present bits) can be viewed as a label for an edge.
Thus, the “alphabet” is the set of possible permutations of the attributes. (In the example of FIG. 3
where there are two binary attributes, there are four possible combination, so there are four symbols
in the alphabet). In the case where attributes are not used, the alphabet can consist of a “ml” symbol.
' Moreover, unallocated pages of memory correspond to members of the base set that have no
iIncoming edges.

[0043] Within the model of a graph as described above, 1t is possible to define a “state.”
Given B and L, a “state” is a pair (R,G), where G 1s a directed labeled graph as defined above, and

R c V is a set of vertices of G. R represents a set of “root vertices.” Root vertices represent that set

of vertices in the base set that can legitimately serve as roots for the graph. In the example of FIG. 2,
the set of legal page directories (i.e., those values that are allowed to be loaded into a storage
location 201, such as the CR3 register on an INTEL x86 processor) 1s the set of “root vertices.”
Given B and L, S is the set of all states.
[0044] According to the model defined above, an address translation mechanism (ATM)
can be modeled as:
- a base set B of vertices
- an alphabet L (possibly empty)
- an 1nitial state so € S (S being a state)
- a set of state transition rules (possibly empty)
- an address translation function
- global flags
[0045] The state transition rules change the ATM from one state to another. It 1s thus
possible to define a set of state transition rules r;: S = S (where i 1s some index), which change the
current state of the ATM. ATMs may have any of the following types of transition rules.
- Changing (adding, removing, re-labeling) edges of G
- Adding or removing vertices of G

- Changing the root set R.
-12 -

CA 02465255 2004-04-27

For example, in the example of FIGS. 2 and 3, removing a pointer to a page, or changing the
attributes of a page, corresponds to the changing of an edge of the graph. Adding new page
directories, new page tables, or new data pages corresponds to the adding or removing of vertices.
Defining a new page directory whose base address can be loaded into storage location 201 (e.g., into
register CR3) corresponds to a change of the root set. In essence, the current state defines what
memory locations are potentially accessible by means of address translation.

[0046] As described above, access to memory may be controlled by imposing limiting
conditions on an address translation map, such the address translation map does not expose to a
source any virtual address for a portion of memory that the source is not permitted to access under
the policy. Moreover, as previously noted, the continued existence of those conditions can be
evaluated at the time that an operation 1s performed that could potentially affect the truth of the
condition. One way to view this technique for memory access control is that the legal states of an
ATM are restricted to some subset T of S, or that some property (or predicate) P about the current
state must always be true.

[0047] Given some property P (which is distinct from policy P, described above), a request
to perform an action that could change the state (execution of r; for some 1) from s to ri(s) can be
evaluated to determine whether P(ri(s)) is true — 1.e. if the new (proposed) state that will result from
executing r; will have property P. If the truth of P implies that limits on the access of memory will
not be violated, then the truth of P(ri(s)) means that the state change brought about by executing r;
should be allowed to proceed. Otherwise, the operation should not be allowed to proceed.

[0048] It should be 6bserved that every memory write could potentially change the state of
an ATM. Thus, two observations should be made:

- The algonthm has to compute P(s) — possibly frequently.

- Typically, the new state s’ is derived from an old state s. If the old state had
property P, then it may be possible to reduce the complexity of deciding P(s') by assuming P(s) and
analyzing only whether the (limited number of) changes to s that produced s’ could lead to a
violation of P.

[0049] The invention provides techniques that allow the truth of P to be computed
efficiently. As described below, in many cases this efficiency can be achieved by storing (or

caching) certain representative information about the current state of the ATM, which can later be
’ -13 -

CA 02465255 2004-04-27

used to decide what tests needed to be performed to confirm the truth of P under a state transition,
and which tests can be avoided.
Exemplary Property Classes

[0050] One type of property P is a property that can be expressed in terms of sets of
vertices. For example, the condition shown in FIG. 4 and discussed above is essentially a property
in which the sets MP(s) and NA(P,s) do not intersect each other. Many properties that can be
expressed in terms of sets of vertices, and the relationship between these sets, can be implemented
efficiently by storing (or caching) the identity of vertices in a set.

[0051] Examples of sets that may be useful in evaluating whether an ATM is in a state that
satisfies a memory access control condition are: '

[0052] 1. The set of vertices at distance k from the root vertices. More formally, if S is a
set of vertices and w is a vertex, let di(S,w) denote the statement that there exists a (directed) path
of length k from some vertex iIn S to vertex w. Sg= {v € V : d(S,v) }. Then, if S is the root vertex,
S, refers to the set of pages at distance d from the root. For example, if vertex 502 is the root of
graph 500, then the set of vertices that have distance 1 from the root vertex consists of vertices 502
and 510, since either of these vertices can be reached from the root by traversing one edge. With
reference to the page map shown in FIG. 2, page directory 202 is distance 1 from the root, and page
tables 204(1) through 204(3) are distance 2 from the root. Thus, in the example of FIG. 2, the
addresses of the page directory and the page tables could be cached by storing the identity of those
pages that are distance 1 and 2, respectively, from the root.

[0053] 2. Sets that are determined by edge labels. For example, with reference to FIG. 5,
the set of vertices that have an in-edge labeled “A” consists of vertices 504 and 510, and the set of
vertices with an in-edge labeled “B”consists of vertices 504, 506, and 512. In the page map of FIG.
2, wherein attributes correspond to edge labels, a set could be defined as those pages having a given
attribute. For example, 1t may be useful to define (and cache) the set of pages that are marked read-
only, in which case the set of pages whose read only bit is “on” (reference numeral 304, shown in
FIG. 3) can be defined. (It 1s possible for a page to be referenced more than once in a page map, in
which case different references to a page could have their read-only attributes set differently; in this

case, the definition of the set could resolve the conflict — e.g., the page is in the set if at least one

-14 -

CA 02465255 2004-04-27

reference to the page has the read-only attribute, or if every reference to the page has the read-only
attribute, etc.)

[0054] A distinction can be drawn between local and non-local properties. Local properties
can be computed from the edges that are incident on a given vertex. That 1s, 1f it 1s possible to
decide if a vertex v has property P only from the edges that are imncident on v, we say P 1s local.
Otherwise, P is non-local. An example of a local property is “The vertex has an in-edge which is
labeled read-write.” An example of a non-local property is “The page (on an x86 machine) has read-
write mappings.”

[0055] 3. The set of vertices that are the target of k edges with some property. More
formally, if P, Q are predicates and w is a vertex let .

In-degpo(w)=| { ve V:P(v) and (v,w,]) € E and Q(l) } |
A set may be defined as the set of vertices with a given in-degree:

{ve V:Indegpo(v)=k}
Analogously, sets can also be defined based on inequality — e.g., the set of vertices that are the
targets of more than (or fewer than) k edges with some property.

[0056] For example, with reference to FIG. 5, the set of vertices that have at least one “C”-
labeled in-edge consists of vertices 508 and 512. With reference to the page map of FIG. 2, this type
of set definition can be used to cache categories of pages — e.g., the set of pages with two or more
mappings, the set of pages with exactly one read-only mapping, etc.

[0057] 4. A similar set may be defined based on out-degree 1.¢., the set of vertices that
have k out edges (or more than k out edges, or fewer than k out edges) with some property. For
example, with reference to FIG. 35, the set of vertices that have exactly two “A”-labeled out edges
consists of vertex 502. FIG. 2 contains analogous examples — e.g., the set of pages that have at least
3 out-edges (i.e., references to other pages) includes page directory 202.

[0058] These sets may be combined through ordinary set operations (e.g. union,
intersection, complement, set difference). For example, if S; 1s the set of pages at distance 2 from
the root, and the set of pages with read-write mappings in certain configurations of the x86 CPU
can be expressed as follows: '

({ x : x has large page in-edge } intersect { x : x has r/w in-edge } intersect S;) union

({ x : x has small page in-edge } intersect { x : x has r/w mapping } intersect S;)

- 15 -

CA 02465255 2004-04-27

A naive algorithm might recompute these sets upon each state change by going through every vertex
v and testing if it belongs to the set. This may be expensive. If an algorithm computes state
properties that can be expressed 1n terms of sets of the type just described, it can take advantage of
caching schemes, as described below:
- Caching Schemes
[0059] A variety of schemes may be used to cache data for use in the efficient evaluation
of state changes. Example caching schemes are described below.
Scheme 1: Simple set caching
[0060] This scheme explicitly computes the set and stores (caches) it. Upon each
subsequent state change, the algorithm updates the cache. In one example, a cache may be
maintained that exposes the following access operations:
- Imit() -- initializes the cache to some well-defined value, such as the empty set.
- Add(S) — adds S (a single element or a set of elements) to the cache
- Remove(S) — adds S (a single element or a set of elements) to the cache
- ShowCache(S) — returns all elements that are currently cached.
The cache may expose additional access operations (e.g. to improve efficiency).
[0061] One way to represent such a cache is through a bit vector. For example, if a system
has 2'° physical pages of memory, a vector that is 2'° bits long (i.e., 8Kbytes) can represent a
Boolean value for each of the pages. The n™ bit is either on or off, depending on whether the n"
page is in a defined set. Thus, given a defined set of pages, membership in the set can be cached at a
cost of one bit per page. It will be appreciated that set operations such as union and intersection are
very simple to perform with this type of representation, by using the bitwise “or” and “and”
operators.
Scheme 2: Supersetting., Subsetting
[0062] Depending on the details of the underlying algonithm that enforces memory access
control, the cache may not be required to contain the exact target set. For example, it may be
sufficient to cache some superset or some subset of the target set. This may reduce the cost of
maintaining the cache. In the example of FIG. 3, the memory access control condition calls for
MP(s) not to intersect NA(P,s). However, 1f it is inconvenient or impractical to compute the exact

members of NA(P,s), it may be possible to compute and cache some superset of NA(P,s), and to
- 16 -

CA 02465255 2004-04-27

then ensure that MP(s) does not intersect the computed superset of NA(P,s). This technique may
cause the rejection of some state changes that could otherwise be allowed, but will not allow any
state changes that should be disallowed — thereby preserving the conditions for memory access
control. -

Scheme 3: Reversed Edge Representation

[0063] Typically, the edges are stored in or with the source vertex. For example, in FIG. 2,
the page directory and page tables store pointers to other pages, as well as their attributes. Given a
vertex, it is typically easy to find the targets of all outgoing edges. At the same time, 1t 1s typically
expensive to find the sources of all in-edges. As the vertex carries no information about its in-edges,
an exhaustive search of all edges may be required to find all in-edges.‘

[0064] If the algonthm requires fast access to in-edges of vertices — or to information that
can be derived from them — it may be advantageous to explicitly store information about the in-
edges of each vertex in a data structure that 1s somehow associated with the vertex. The term
“somehow associated”” means that, given the vertex, 1t is easy to find the data structure (e.g. array
lookup).

[0065] In the most extreme case, the data structure stores all in-edges. In this case, the data
structure could be a cache such as the one defined above, whose elements are edges. (Also, the
caches may store sets or multisets.) The storage taken up by this structure is proportional to the
number of in-edges of the vertex and, if structures of this type are maintained for all vertices, the
total storage is proportional to the number of edges in the graph.

10066] It is often sufficient to store derived information, which may require less storage.
For example, the algorithm might only store the number of in-edges of each vertex. In this case, the
cache may be implemented as a reference counter. Reference counters typicaily expose the
following access operations

- Init() -- initializes the cache to some well-defined value, such as O.
- Increment()
- Decrement()
- GetValue()
[0067] One common use of reference counters (or similar data structures) is to construct

sets. For example, an exemplary memory access control algorithm may have to compute the set of
o -17-

CA 02465255 2004-04-27

vertices without in-edges, 1.e. the set of vertices, whose reference count 1s 0. The collection of
reference counters can control a cache (Scheme 1) of this set as follows: Whenever the value of a
reference counter 1s changed, the algorithm tests if it has become zero. If so, it adds the vertex to the
cache. Similarly, the algorithm watches for the event that a reference counter that was zero obtains a
different value. In this event, the algorithm removes the vertex from the cache.

[0068] The following are some examples of using caching:

- Caching supersets S4’' of Sq ford = 1,2,3

- For d=2,3: The cache can be (a) stored explicitly, or (b) driven by a reference
counter

- Computing local label properties: “has read-write in-edges” and “has large/small
page in-edges”

- Computing non-local properties: “has read-write mappings”

- Using reference counters for the number of read-write in-edges of vertices in Ss.
This information can be used to épeed up computation of the non-local property “has read-write
mappings’ .
Exemplary Process for Memory Access Control Using Stored Information

[0069]) FIG. 6 shows an exemplary process for performing memory access control, using
techniques described herein.

[0070] Imitially, a request to access memory 1s received (602). When the access request is
received, a memory access control system evaluates the request to determine whether execution of
the request would comply with a policy governing memory access (604). Examples of memory
access policies are discussed above. As one example, the policy may define certain pages as off-
limits to a set of sources, and the policy may prohibit any access request that would result in
creating, for one of the off-limits pages, a mapping that would be visible to one of the sources that is
not allowed to access that page. Evaluation of the request may be aided by stored or cached
 information (606). This stored or cached information may contain information about the page
map(s) — e.g., the set of pages that are known to contain legitimate page directories.

[0071] Ifitis detertnined that carrying out the request will maintain compliance with the
policy (608), then the request 1s allowed to proceed (612). Otherwise, the request 1s blocked, or

modified into a form that would not violate the policy (610). One example of modifying a request to
- 18 -

CA 02465255 2004-04-27

a form that does not violate the policy is as follows: if a request seeks to write an entry to a page
table that would result in mapping to an off-limits page, the request can be modified so that the
entry is written but the page’s “present” bit is turned off. Thus, any future attempt to access the
newly-mapped page will generate an exception, so the exception handler can ultimately thwart
access to the off-limits page. If the request is modified in this manner (or in some other manner),
then the modified request is then allowed to proceed (614). After either the modified or unmodified
request has been carried out, if the carrying out of the request causes a change to the cached
information, then the cache may be updated (616).

[0072] It is noted that the foregoing examples have been provided merely for the purpose
of explanation and are in no way to be construed as limiting of the present invention. While the
invention has been described with reference to various embodiments, 1t 1s understood that the words
which have been used herein are words of description and illustration, rather than words of
limitations. Further, although the invention has been described herein with reference to particular
means, materials and embodiments, the invention is not intended to be limited to the particulars
disclosed herein; rather, the invention extends to all functionally equivalent structures, methods and
uses, such as are within the scope of the appended claims. Those skilled 1n the art, having the
benefit of the teachings of this specification, may effect numerous modifications thereto and

changes may be made without departing from the scope and spirit of the invention in its aspects.

-19-

CA 02465255 2004-04-27

What is Claimed:

1. A computer-readable medium encoded with computer-executable instructions to perform
a method of processing a memory access request, the method comprising:
receiving a request to access a portion of a memory, said request identifying the
portion of memory to be accessed through an identifier that is translatable through an address
translation map;
determining, based on cached information about said address translation map,
whether execution of said request will violate a policy that limits access to said memory;
1f execution of said request will not violate said policy, then allowing access to said
memory 1n accordance with said request; and
if execution of said request will violate said policy, then either:
blocking said request; or
modifying said request such that said request does not violate the policy, and

carrying out the modified request.

2. The computer-readable medium of claim 1, wherein said request comprises a request to

write said portion of said memory.

3. The computer-readable medium of claim 1, wherein said address translation map is stored

in said memory, and wherein said request comprises a request to write a portion of memory in

which said address translation map 1s stored.

4. The computer-readable medium of claim 1, wherein said cached information includes data
identifying a set of pages in said address translation map that are located at a predetermined distance

from a root of said address translation map.

5. The computer-readable medium of claim 1, wherein said cached information includes data

identifying a set of pages of said address translation map that have a predetermined property:.

- 20 -

CA 02465255 2004-04-27

6. The computer-readable medium of claim 1, wherein said cached information includes data

indicative of a number of references to a specified page.

7. The computer-readable medium of claim 1, wherein said cached information includes data
indicative of a number of references to a specified page, wherein said references have a specified

attribute.

8. The computer-readable medium of claim 1, wherein said cached information includes data

indicative of a number of pages to which a specified page in said address translation map refers.

9. The computer-readable medium of claim 1, wherein said cached information includes data
indicative of a number of pages to which a specified page in said address translation map refers, and

to which the specified page assigns a specified attribute.

10. The computer-readable medium of claim 1, wherein compliance with said policy is
determined based on a page’s membership in a set, wherein said cached information includes a
proper superset of said set, and wherein said act of determining whether execution of said request

will violate said policy comprises evaluating whether said page 1s a member of said superset.

11. The computer-readable medium of claim 1, wherein compliance with said policy is
determined based on a page’s membership in a set, wherein said cached information includes a
proper subset of said set, and wherein said act of determining whether execution of said request will

violate said policy comprises evaluating whether said page 1s a member of said subset.

12. A method of managing a computer memory to which access 1s provided through an
address translation map, the method comprising:
storing information about at least one aspect of the state of the address translation
map;
receiving a request to access the computer memory;
determining, based at least in part on the stored information, that carrying out of the

request will not violate a policy that limits access to the computer memory;,
=21 -

CA 02465255 2004-04-27

allowing the request to be carried out; and
updating the stored information to reflect the state of the address translation map

resulting from carrying out the request.

13. The method of claim 12, wherein said request comprises a request to write a portion of

the computer memory.

14. The method of claim 12, wherein the address translation map 1s stored in said computer
memory, and wherein said request comprises a request to write a portion of memory 1n which said

address translation map is stored.

15. The method of claim 12, wherein the stored information includes data 1identifying a set of
pages in the address translation map that are located at a predetermined distance from a root of the

address translation map.

16. The method of claim 12, wherein the stored information includes data 1dentifying a set of

pages of the address translation map that have a predetermined property.

17. The method of claim 12, wherein the stored information includes data indicative of a

number of references to a specified page.

18. The method of claim 12, wherein the stored information includes data indicative of a

number of references to a specified page, wherein said references have a specified attribute.

19. The method of claim 12, wherein the stored information includes data indicative of a

number of pages to which a specified page in the address translation map refers.

20. The method of claim 12, wherein the stored information includes data indicative of a
number of pages to which a specified page in the address translation map refers, and to which the

specified page assigns a specified attribute.

2922 .

CA 02465255 2004-04-27

21. The method of claim 12, wherein compliance with said policy is determined based on a
page’s membership in a set, wherein the stored information includes a proper superset of said set,
and wherein said act of determining that carrying out the request will not violate said policy

comprises evaluating whether said page 1s a member of said superset.

22. The method of claim 12, wherein compliance with said policy is determined based on a
page’s membership in a set, wherein the stored information includes a proper subset of said set, and

wherein said act of determining that carrying out the request will not violate said policy comprises

evaluating whether said page is a member of said subset.

23. A system for controlling access to a memory that 1s addressed by way of an address

translation map, the system comprising:

one or more storage locations that store a policy that limits access to the memory;

a cache that stores information about the address translation map; and

logic that receives a request to access the memory, and that determines, based at least
in part on the information stored in the caéhe, whether the request is allowable under said policy,
said logic allowing the request to proceed if said request is determined to be allowable under the
policy, said logic either (1) blocking said request, or (2) modifying said request into a form that is
allowable under the policy and allowing the modified request to proceed, if said request 1s

determined not to be allowable under the policy.

24. The system of claim 23, wherein said request comprises a request to write a portion of

said memory.

25. The system of claim 23, wherein said address translation map is stored in said memory,
and wherein said request comprises a request to write a portion of memory in which said address

translation map is stored.

.23 -

CA 02465255 2004-04-27

26. The system of claim 23, wherein the information stored in said cache comprises data
identifying a set of pages in said address translation map that are located at a predetermined distance

from a root of said address translation map.

27. The system of claim 23, wherein the information stored 1n said cache comprises data

identifying a set of pages of said address translation map that have a predetermined property.

28. The system of claim 23, wherein the information stored in said cache includes data

indicative of a number of references to a specified page.

29. The system of claim 23, wherein the information stored in said cache includes data
indicative of a number of references to a specified page, wherein said references have a specified

attribute.

30. The system of claim 23, wherein the information stored in said cache includes data

indicative of a number of pages to which a specified page 1n said address translation map refers.

31. The system of claim 23, wherein the information stored in said cache includes data
indicative of a number of pages to which a specified page in said address translation map refers, and

to which the specified page assigns a specified attnbute.

32. The system of claim 23, wherein compliance with said policy 1s determined based on a
page’s membership in a set, wherein the information stored in said cache includes a proper superset
of said set, and wherein said logic determines whether allowing said request will violate said pohcy

by evaluating whether said page is a member of said superset.

33. The system of claim 23, wherein compliance with said policy 1s determined based on a
page’s membership in a set, wherein the information stored in said cache includes a proper subset of
said set, and wherein said logic determines whether allowing said request will violate said policy by

evaluating whether said page is a member of said subset.

-24 .

CA 02465255 2004-04-27

34. The system of claim 23, wherein said logic i1s implemented in at least one of hardware or

software.

35. A computer-readable medium encoded with computer-executable instructions to perform

a method, the method comprising:

storing information regarding a directed labeled graph that comprises a plurality of
vertices and a plurality of labeled edges connecting the vertices, each edge being defined by an
ordered pair of the vertices and a label;

performing a first operation that changes said graph by removing or adding a vertex,
removing or adding an edge, or changing the label of an edge; '

updating said information to reflect the change to said graph; and

determining whether a second operation may be performed based at least in part on

said information.

36. The computer-readable medium of claim 335, wherein said graph is representative of an
address translation map that comprises a plurality of pages, each page 1n said address translation
map corresponding to a vertex of said graph, each reference within one page of said address
translation map to another page of said address translation map corresponding to an edge of said
graph, and an attribute associated with a reference corresponding to a label of the reference’s

corresponding edge.

37. The computer-readable medium of claim 35, wherein said graph is stored in a computer
memory, and wherein said operation comprises a write to a portion of said computer memory that

stores said graph.

38. The computer-readable medium of claim 35, wherein said information comprises data
identifying a set of vertices of said graph map that are located at a predetermined distance from a

root vertex of said graph.

- 25 -

CA 02465255 2004-04-27

39. The computer-readable medium of claim 35, wherein said information comprises data

identifying a set of vertices of said graph that have a predetermined property.

40. The computer-readable medium of claim 35, wherein said information comprises data

indicative of a number of edges leading into a specified vertex.

41. The computer-readable medium of claim 35, wherem said information comprises data
indicative of a number of edges that satisfy a specified predicate and that lead into a specified

vertex.

42. The computer-readable medium of claim 35, wherein said information comrpises data

indicative of a number of edges leading away from a specified vertex in said graph.

43. The computer-readable medium of claim 35, wherein said information comprises data
indicative of a number of edges that satisfy a specified predicate and that lead away from a specified

vertex.

44. The computer-readable medium of claim 35, wherein whether said second operation may
be performed depends upon a given vertex’s membership in a set, wherein said information contains
data indicative of a proper superset of said set, and said act of determining whether said second
operation may be performed comprises determining whether said given vertex i1s a member of said

superset.

45. The computer-readable medium of claim 35, wherein whether said second operation may
be performed depends upon a given vertex’s membership in a set, wherein said information contains
data indicative of a proper subset of said set, and said act of determining whether said second

operation may be performed comprises determining whether said given vertex i1s a member of said

subset.

Smart & Biggar
Ottawa, Canada
.26 - FPatent Agents

CA 02465255 2004-04-27
1/6

581 SWvYO0dd
NOILVOIddV
JIOW3Y

08T 19l
YIINdNOD ¢9l PIEOQADY asnopy
J1O0W3Y

00| |oooooo! o

81 = |

|
|
|
|
Ov1 a5epa] “
e AIOWIRN BOT e
9tl Sanpon .
Baly [B907 -
“ i) i EP_ |
SIEAOUISE-UON
! - _
ViiY w “ N_, A “ ﬁ . | |7t} sweibeig “
L6} sveads T ' . . H Ll sng wials w& . . tonesday _
: _ IR | i f — [
| 6! s3eE] 061 0t |
961 Tayig T : » [Eeydnag uoqw%wc_ w_: "
h e | BUISsa9014 “
161 JOJIUON qvx | “
. . . i _
|
|
|
|

00| JUSWUOIIAUT bunndios

CA 02465255 2004-04-27

2/6

(Z)90z

(v)90Z

(£)902Z

i
'
'
|
!
'
:
i
!
¢
}
!
'
!
'
!
!
§
i
{
{
!
i
'
!
{
|
'
'
i
i
'
'
'
i
!
i
'
i
{
i
{
|
i
!
|
|
¢
1
)
!
'
|
'
i
!
|
|
'
'
i
‘
i

(L)902Z

S e div i e R G R W . -

(eWwoz —

(2hvoz s~ oL 968 |

]
a|qel abed

(L)y0Z

l||| .~

ajqe | abed

FAELER]

-*-“----_--‘-“—“”ﬂ-~-~

-----lrdb-ﬂ-”ﬂﬂﬂtﬂwa-d»-bd—l“ﬂ‘mﬁﬂ-ﬁ-ﬂ--“--mﬂ---wnw--ﬁw-

-

¢0¢

Alojoang
obed

| ¢ SS9IPPY [ENUIA

_ 0cZ NNN ~

10¢C

(€D “6°9)

CA 02465255 2004-04-27

3/6

302 304

Page 1 ;'
=

Page 2 - R/O

301 =i

Address

. .
0
"
o o o .. ’ . B

204(1)

Pres

Pres

CA 02465255 2004-04-27

4/6

CA 02465255 2004-04-27

o/6

500

CA 02465255 2004-04-27

6/6

Begin

— 602
604 606
Evaluate access requst
under a policy

Cached
information
about page map

610

Execution 608
of request will Block request, or
maintain compli- No modify request to make |
ance with it allowable under polciy
policy
o
ves 612 , 614
Allow request to ' Allow modified request
proceed to proceed

616

- Update cache

FIG. 6

Receive access.request

A —

Execution
of request wili
maintain compli-
ance with

policy
?

Allow request to
proceed

YT 3 612

il et T A a—vr

——

. 2
Update cache

602

604

606
Cached
Evaluat: access"!:quest information
_ unGeraposicy about page map

P —

C 610
608 —— \

Block request, or
No modify request to make
it allowable under poiciy

y /:614

Allow modified request
to proceed

————
| /616

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

