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(57) ABSTRACT

Input data having multiple channels may be received and
passed through a convolutional neural network model to
generate output data. Passing the input data through the
convolutional neural network model may include passing
the input data through a depth-wise convolutional layer
configured to perform a convolution on the input data for
each channel of the input data to generate first data. The first
data is passed from the depth-wise convolutional layer
through a butterfly transform layer comprising multiple
sub-layers configured to perform a linear transformation of
the first data to fuse the channels of the first data and
generate second data, wherein the output data is based on the
generated second data. The output data may be provided for
further processing on a computing device.
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BUTTERFLY TRANSFORM LAYER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/857,003, titled “BUTTERFLY TRANS-
FORM: AN EFFICIENT FFT BASED NEURAL ARCHI-
TECTURE DESIGN” and filed on Jun. 4, 2019, which is
hereby incorporated by reference herein for all purposes.

TECHNICAL FIELD

The present description generally relates to neural net-
works and more particularly to the architecture of convolu-
tional neural networks.

BACKGROUND

Convolutional neural networks (CNNs) are being trained
for a wide variety of tasks. However, the computational
complexity of a CNN may challenge resource-constrained
edge devices trying to use the CNN. Efforts to make CNNs
run more efficiently, such as factorizing convolutional lay-
ers, still present a challenging level of computational com-

plexity.
BRIEF DESCRIPTION OF THE DRAWINGS

Certain features of the subject technology are set forth in
the appended claims. However, for purpose of explanation,
several aspects of the subject technology are set forth in the
following figures.

FIG. 1 illustrates an example network environment
according to aspects of the subject technology.

FIG. 2 illustrates an example computing architecture for
a system providing configuration and training of a CNN
model according to aspects of the subject technology.

FIGS. 3A and 3B are diagrams depicting butterfly trans-
form layer structures according to aspects of the subject
technology.

FIG. 4 is a flowchart illustrating a process for utilizing a
butterfly transform layer within a CNN model according to
aspects of the subject technology.

FIG. 5 illustrates an example of a computer system with
which aspects of the subject technology may be imple-
mented.

DETAILED DESCRIPTION

The detailed description set forth below is intended as a
description of various configurations of the subject technol-
ogy and is not intended to represent the only configurations
in which the subject technology can be practiced. The
appended drawings are incorporated herein and constitute a
part of the detailed description. The detailed description
includes specific details for the purpose of providing a
thorough understanding of the subject technology. However,
the subject technology is not limited to the specific details
set forth herein and can be practiced using one or more other
implementations. In one or more implementations, struc-
tures and components are shown in block diagram form in
order to avoid obscuring the concepts of the subject tech-
nology.

The subject technology provides a light-weight channel
fusion layer for use in convolutional neural network (CNN)
models. The computational complexity of a convolutional
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layer may be reduced by factorizing the convolutional layer
using a separable depth-wise convolution, which splits the
convolution into two components. The first component
executes spatial fusion where each spatial channel of input
data is convolved independently using a depth-wise convo-
Iution. The second component executes channel fusion
where the spatial channels are linearly combined using 1x1
convolutions known as point-wise convolutions. However,
the computational complexity of the point-wise convolu-
tions used in this channel fusion is quadratic in the number

of channels in the input data (O (n?), where n is the number
of channels), and therefore still relatively high. The subject
technology proposes to replace the high-complexity point-
wise convolutional layer with a light-weight channel fusion
layer called a butterfly transform (BFT) layer having a lower

computational complexity (¥ (n log(n))).
The BFT layer fuses the channels using log(n) sub-layers,

with O (n) operations performed at each sub-layer. The
network structure of the BFT layer is based on the butterfly
operations used in the Fast Fourier Transform (FFT) algo-
rithm, which have been optimized in a number of hardware/
software platforms. The butterfly operations include opera-
tions that generate two outputs from two inputs which, when
diagrammed, form an hourglass or butterfly shape. The
network structure of the BFT layer may be configured to
have at least one path between every input channel and all
of the output channels, which enables cross talk across
channels during fusion and facilitates input nodes receiving
crucial signals during back propagation while training the
CNN model. The BFT layer also may be configured to
maximize the bottleneck size, which represents the mini-
mum number of nodes in the network that, if removed,
would cut off information flow from the input channels to
the output channels. The BFT layer may reduce the com-
putational complexity by reducing the number of edges in
the network structure relative to that in point-wise convo-
Iutional layer structures. In addition, the nodes in each
sub-layer of the BFT layer may having the same out degree.
The BFT is described in more detail below.

According to aspects of the subject technology, input data
comprising a plurality of channels may be received and
passed through a convolutional neural network model to
generate output data. Passing the input data through the
convolutional neural network model may include passing
the input data through a depth-wise convolutional layer
configured to perform a convolution on the input data for
each channel of the input data to generate first data. The first
data is passed from the depth-wise convolutional layer
through a butterfly transform layer comprising a plurality of
sub-layers configured to perform a linear transformation of
the first data to fuse the channels of the first data and
generate second data, wherein the output data is based on the
generated second data. The output data may be provided for
further processing on a computing device.

The plurality of sub-layers may be configured to recur-
sively calculate the second data. The number of input nodes
and the number of output nodes for each of the sub-layers
may be equal in number and the nodes within each sub-layer
may have the same out degree. The butterfly transform layer
may include a path between each input node of a first
sub-layer of the plurality of sub-layers that receives the first
data and each output node of a second sub-layer of the
plurality of sub-layers that outputs the second data. The
butterfly transform layer may be configured to execute a
non-linearity function on the generated second data. The
butterfly transform layer may be configured to execute a
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batch normalization of the generated second data. The
plurality of sub-layers may include log(n) sub-layers,
wherein n is the number of channels of the input data.

Replacing point-wise convolutional layers with BFT lay-
ers to perform channel fusion reduces the computational
complexity of the channel fusion, thereby reducing comput-
ing resources needed to implement CNN models incorpo-
rating the BFT layers. The reduced computational complex-
ity may result in lower memory requirements for storing the
CNN models. The reduced computational complexity may
reduce the processing power needed to execute the CNN
models thereby enabling lower-power computing devices to
effectively execute CNN models that might not be possible
if point-wise convolutional layers were used. Alternatively,
the reduced computational complexity may facility higher
accuracy in the output of the CNN models using similar
numbers of floating point operations (FLLOPs) as might be
used when point-wise convolution layers are used in the
CNN models.

FIG. 1 illustrates an example network environment 100
according to aspects of the subject technology. Not all of the
depicted components may be used in all implementations,
however, and one or more implementations may include
additional or different components than those shown in the
figure. Variations in the arrangement and type of the com-
ponents may be made without departing from the scope of
the claims as set forth herein. Additional components, dif-
ferent components, or fewer components may be provided.

The network environment 100 includes server 110, com-
puting device 120, and computing device 130. Network 140
may communicatively (directly or indirectly) couple server
110 and computing devices 120 and 130. Network 140 is not
limited to any particular type of network, network topology,
or network media. Network 140 may be a local area network
or a wide area network. Network 140 may be an intercon-
nected network of devices that may include, or may be
communicatively coupled to, the Internet. For explanatory
purposes, the network environment 100 is illustrated in FIG.
1 as including the server 110 and the computing devices 120
and 130. However, the network environment 100 may
include any number of electronic devices and any number of
servers. Computing device 120 is depicted as a laptop
computer and computing device 130 is depicted as a smart-
phone. The subject technology is not limited to these types
of computing devices. Server 110 and computing devices
120 and 130 may include all or part of the components of the
system described below with respect to FIG. 5.

Server 110 may provide a system for configuring and
training convolutional neural networks using BFTs accord-
ing to the techniques described herein. Server 110 may
deploy the trained neural networks to computing devices
120 or 130 for application of the trained neural network on
trained tasks. The deployment may be via network 140 or
through other transfer mechanisms. The configuration and
training of convolutional neural networks using BFTs is not
limited to being performed on server 110 and also may be
performed by computing devices 120 and/or 130.

FIG. 2 is a block diagram illustrating components of
server 110 used in configuring and training convolutional
neural networks according to aspects of the subject technol-
ogy. While the components are being described as being part
of server 110, some or all of the components may be
implemented on other systems such as computing devices
120 and 130. Not all of the depicted components may be
used in all implementations, however, and one or more
implementations may include additional or different com-
ponents than those shown in the figure. Variations in the
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arrangement and type of the components may be made
without departing from the spirit or scope of the claims as set
forth herein. Additional components, different components,
or fewer components may be provided.

As illustrated, server 110 includes processor 210 and
memory 220. Examples of processor 210 and memory 220
are provided below in connection with FIG. 5. Memory 220
may contain training module 230, neural network 240, and
training data 250. Training module 230 represents code
comprising one or more sequences of instructions execut-
able by processor 210 to implement the convolutional neural
network configuration and training processes described
herein. Neural network model 240 represents convolutional
neural network models that may be trained by training
module 230. The subject technology is not limited to any
particular types of convolutional neural networks. Training
data 250 represent labeled data sets are curated for different
types of tasks for which neural network 240 may be trained.
For example, the training data may include images, text,
audio, or video files.

As noted above, point-wise convolutional layers have
relatively high computational complexity and therefore
present computational bottlenecks in CNNs. A point-wise
convolutional layer receives as input a data tensor X having
a size n,,xhxw, where n,, is the number of input channels
and h and w represent the height and width, respectively, of
the data. The point-wise convolutional layer applies a weight
tensor W having a size of n_,,xn, xhxw, where n_,, is the
number of output channels, to generate an output tensor Y
having a size n_,, xhxw. The convolution performed by the
point-wise convolutional layer may be defined as a function
P where Y=P (X; W).

Function P may be written as a matrix product Y=WX
by reshaping the input tensor X into a two-dimensional
matrix X having a size nx(hw), where each column vector
in X corresponds to a spatial vector X[:, 1,j], and reshaping
the weight tensor into a two-dimensional matrix w having
a size nxn (for purposes of this example we are assuming
n,=n,,~n). Y represents the matrix representation of the
output tensor Y. This matrix product can be seen as a linear
transformation of the vectors in the columns of X using W
as a transformation matrix.

out

The linear transformation is a matrix-vector product hav-

ing a computational complexity of O (n?). The computa-
tional complexity of the linear transformation can be
reduced by structuring the transformation matrix to comply
with certain characteristics ideal to a fusion network. These
characteristics include every-to-all connectivity where there
is at least path between every input channel and all of the
output channels. The fusion network should have a maxi-
mum bottleneck size where the bottleneck size represents
the minimum number of nodes in the network that, if
removed, would completely cut off information flow from
the input channels to the output channels. In addition, the
network should have as few edges as possible to reduce
computations and the nodes in each layer should have the
same out degree to enable efficient matrix implementation of
the fusion network.

The BFT of the subject technology implements a fusion
network exhibiting the characteristics outlined above using
a butterfly matrix B®* of order n and base k where B"*&
R The butterfly matrix is defined as:
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where yi:ijlkDijxj. In the simplification,

y, is a smaller matrix-vector product between a butterfly
matrix of order

ST

and a vector of size

Accordingly, the matrix-vector product B®#x can be deter-
mined using a divide-and-conquer algorithm where the
matrix-vector product is recursively broken down into
smaller matrix-vector products. This is illustrated in the
Recursive Butterfly Transform Algorithm presented below
for a butterfly matrix B having a base k=2.

Recursive Butterfly Transform Algorithm

1: Function Butterfly Transform(W, X, n):
Data: W
Weights containing 2nlog(n) numbers
Data: X
Input containing n numbers
2 if n==1 then
3: return [X]
4: Make Dy}, D5, D5y, Dy, using 2n numbers of W;
5: Split rest 2n(log(n) — 1) numbers into two sequences W, W,

with length n(log(n) —1) each;

6: Split X into X, X,
7: yl < D)X, + DX,
8: y2 < Dy X, + D)X,
9: My, < ButterflyTransform(W, y,,n - 1)
0 My, < ButterflyTransform(W,, y,, n — 1)
1 return Concat(My,, My,)

The computational complexity of the matrix-vector prod-
uct between a butterfly matrix B*# and an n-dimensional
vector can be represented as T(n, k). Based on Equation (3)
above, the matrix-vector product can be calculated with k
matrix-vector products of butterfly matrices of order

ST

which results in a computational complexity of k

Calculating y, for all i€{1, . . ., k} is O (kn). Therefore the
computational complexity based on Equation (3) is

T(n, k) = kT(;, k) +O0(kn),



US 12,079,727 B2

7

which can be represented as T(nk)=0 (k(n log, n)). A
smaller value for k, where 2<k=n, lowers the computational
complexity of the matrix-vector product.

One specific case of the BFT described above is the
Discrete Fourier Transform (DFT). Specifically, the DFT is
a butterfly transform with a base of 2 such that the elements
of the transform matrix B®2&C ™. With the DFT, the
elements of the output vector are permuted by radix-2
shuffle and the diagonal elements of the D,; are drawn from
the n™ root of unity z’=1 where z&C . Therefore, the Fast
Fourier Transform (FFT) is a specific case of the BFT have
an order n and a base of 2. The subject technology utilizes
a graph similar to the FFTs graph to define the network
architecture of the BFT layer. For example, FIG. 3A is a
diagram illustrating a BFT layer having a base k=2 through
which an input tensor having a size of nxhxw is passed. FI1G.
3B is a diagram illustrating the BFT layer with the log n
sub-layers expanded out using a graph similar to an FFT
graph. The arrows shown in FIG. 3B represent the edges
connecting nodes within the BFT layer. The weights and
configuration of the edges and nodes are provided by the
butterfly transform matrix B”-?. The elements of the matrix
are learned during the training of the CNN containing the
BFT layer. A CNN model may replace all or a portion of the
instances of point-wise convolutional layers contained in the
CNN model architecture with BFT layers described above.

A BFT layer may be augmented with batch normalization
and/or non-linearity functions such as RelLU and Sigmoid.
Batch normalization and/or non-linearity functions may be
applied to the outputs of each sub-layer within the BFT
layer. However, batch normalization increases the compu-
tational complexity and may be applied only at the end of the
BFT. Non-linearity functions may zero out too many values
in the sub-layers destroying information during forward
propagation. Accordingly, non-linearity functions also may
be applied on at the end of the BFT.

FIG. 4 is a flowchart illustrating a process of using a BFT
layer during the operation of a CNN according to aspects of
the subject technology. For explanatory purposes, the blocks
of the process are described herein as occurring in serial, or
linearly. However, multiple blocks of the process may occur
in parallel. In addition, the blocks of the process need not be
performed in the order shown and/or one or more blocks of
the process need not be performed and/or can be replaced by
other operations.

Input data having multiple channels may be received an
input to a CNN or as input to a layer within the CNN (block
400). The input data is passed through a depth-wise convo-
lutional layer to perform a convolution for each channel of
the input data (block 410). The data generated by the
depth-wise convolutional layer is then passed through a BFT
layer to fuse the channels of the data (block 420). As
discussed above, the BFT layer performs a light-weight
channel fusion using a butterfly matrix to perform a linear
transformation of the data received from the depth-wise
convolutional layer. The data generated by the BFT layer is
provided either to a subsequent layer in the CNN or as
output data from the CNN. This output data may be provided
for storage on a disc or other storage media for further
processing by a computing device (block 430).

The BFT described herein provides an optimal structure
for a channel fusion layer. For example, the network may be
configured to have exactly one path between every input
channel to all of the output channels. The degree of each
node in the graph structure is k, the bottleneck size may be

a maximum n, and the number of edges may be O (n log(n)).
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As the structure of the BFT network layer mimics that of an
FFT graph, hardware and/or software optimized for FFTs
may be used to implement a BFT layer within a CNN.

FIG. 5 illustrates an electronic system 500 with which one
or more implementations of the subject technology may be
implemented. The electronic system 500 can be, and/or can
be a part of, server 110 and/or computing device 120 shown
in FIG. 1. The electronic system 500 may include various
types of computer readable media and interfaces for various
other types of computer readable media. The electronic
system 500 includes a bus 508, one or more processing
unit(s) 512, a system memory 504 (and/or buffer), a ROM
510, a permanent storage device 502, an input device
interface 514, an output device interface 506, and one or
more network interfaces 516, or subsets and variations
thereof.

The bus 508 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
ous internal devices of the electronic system 500. In one or
more implementations, the bus 508 communicatively con-
nects the one or more processing unit(s) 512 with the ROM
510, the system memory 504, and the permanent storage
device 502. From these various memory units, the one or
more processing unit(s) 512 retrieves instructions to execute
and data to process in order to execute the processes of the
subject disclosure. The one or more processing unit(s) 512
can be a single processor or a multi-core processor in
different implementations.

The ROM 510 stores static data and instructions that are
needed by the one or more processing unit(s) 512 and other
modules of the electronic system 500. The permanent stor-
age device 502, on the other hand, may be a read-and-write
memory device. The permanent storage device 502 may be
a non-volatile memory unit that stores instructions and data
even when the electronic system 500 is off. In one or more
implementations, a mass-storage device (such as a magnetic
or optical disk and its corresponding disk drive) may be used
as the permanent storage device 502.

In one or more implementations, a removable storage
device (such as a floppy disk, flash drive, and its corre-
sponding disk drive) may be used as the permanent storage
device 502. Like the permanent storage device 502, the
system memory 504 may be a read-and-write memory
device. However, unlike the permanent storage device 502,
the system memory 504 may be a volatile read-and-write
memory, such as random access memory. The system
memory 504 may store any of the instructions and data that
one or more processing unit(s) 512 may need at runtime. In
one or more implementations, the processes of the subject
disclosure are stored in the system memory 504, the per-
manent storage device 502, and/or the ROM 510. From
these various memory units, the one or more processing
unit(s) 512 retrieves instructions to execute and data to
process in order to execute the processes of one or more
implementations.

The bus 508 also connects to the input and output device
interfaces 514 and 506. The input device interface 514
enables a user to communicate information and select com-
mands to the electronic system 500. Input devices that may
be used with the input device interface 514 may include, for
example, alphanumeric keyboards and pointing devices
(also called “cursor control devices”). The output device
interface 506 may enable, for example, the display of images
generated by electronic system 500. Output devices that may
be used with the output device interface 506 may include,
for example, printers and display devices, such as a liquid
crystal display (LCD), a light emitting diode (LED) display,
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an organic light emitting diode (OLED) display, a flexible
display, a flat panel display, a solid state display, a projector,
or any other device for outputting information. One or more
implementations may include devices that function as both
input and output devices, such as a touchscreen. In these
implementations, feedback provided to the user can be any
form of sensory feedback, such as visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input.

Finally, as shown in FIG. 5, the bus 508 also couples the
electronic system 500 to one or more networks and/or to one
or more network nodes, such as the computing device 120
shown in FIG. 1, through the one or more network
interface(s) 516. In this manner, the electronic system 500
can be a part of a network of computers (such as a LAN, a
wide area network (“WAN™), or an Intranet, or a network of
networks, such as the Internet. Any or all components of the
electronic system 500 can be used in conjunction with the
subject disclosure.

Implementations within the scope of the present disclo-
sure can be partially or entirely realized as computer pro-
gram products comprising code in a tangible computer-
readable storage medium (or multiple tangible computer-
readable storage media of one or more types) encoding one
or more instructions of the code. The tangible computer-
readable storage medium also can be non-transitory in
nature.

The computer-readable storage medium can be any stor-
age medium that can be read, written, or otherwise accessed
by a general purpose or special purpose computing device,
including any processing electronics and/or processing cir-
cuitry capable of executing instructions. For example, with-
out limitation, the computer-readable medium can include
any volatile semiconductor memory, such as RAM, DRAM,
SRAM, T-RAM, Z-RAM, and TTRAM. The computer-
readable medium also can include any non-volatile semi-
conductor memory, such as ROM, PROM, EPROM,
EEPROM, NVRAM, flash, nvSRAM, FeRAM, FeTRAM,
MRAM, PRAM, CBRAM, SONOS, RRAM, NRAM, race-
track memory, FJG, and Millipede memory.

Further, the computer-readable storage medium can
include any non-semiconductor memory, such as optical
disk storage, magnetic disk storage, magnetic tape, other
magnetic storage devices, or any other medium capable of
storing one or more instructions. In one or more implemen-
tations, the tangible computer-readable storage medium can
be directly coupled to a computing device, while in other
implementations, the tangible computer-readable storage
medium can be indirectly coupled to a computing device,
e.g., via one or more wired connections, one or more
wireless connections, or any combination thereof.

Instructions can be directly executable or can be used to
develop executable instructions. For example, instructions
can be realized as executable or non-executable machine
code or as instructions in a high-level language that can be
compiled to produce executable or non-executable machine
code. Further, instructions also can be realized as or can
include data. Computer-executable instructions also can be
organized in any format, including routines, subroutines,
programs, data structures, objects, modules, applications,
applets, functions, etc. As recognized by those of skill in the
art, details including, but not limited to, the number, struc-
ture, sequence, and organization of instructions can vary
significantly without varying the underlying logic, function,
processing, and output.
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While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, one or
more implementations are performed by one or more inte-
grated circuits, such as ASICs or FPGAs. In one or more
implementations, such integrated circuits execute instruc-
tions that are stored on the circuit itself.

Those of skill in the art would appreciate that the various
illustrative blocks, modules, elements, components, meth-
ods, and algorithms described herein may be implemented
as electronic hardware, computer software, or combinations
of'both. To illustrate this interchangeability of hardware and
software, various illustrative blocks, modules, elements,
components, methods, and algorithms have been described
above generally in terms of their functionality. Whether such
functionality is implemented as hardware or software
depends upon the particular application and design con-
straints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for
each particular application. Various components and blocks
may be arranged differently (e.g., arranged in a different
order, or segmented in a different way) all without departing
from the scope of the subject technology.

Aspects of the present technology may include the gath-
ering and use of data available from specific and legitimate
sources to train neural networks and to apply to trained
neural networks deployed in systems. The present disclosure
contemplates that in some instances, this gathered data may
include personal information data that uniquely identifies or
can be used to identify a specific person. Such personal
information data can include meta-data or other data asso-
ciated with images that may include demographic data,
location-based data, online identifiers, telephone numbers,
email addresses, home addresses, data or records relating to
a user’s health or level of fitness (e.g., vital signs measure-
ments, medication information, exercise information), date
of birth, or any other personal information.

The present disclosure recognizes that the use of such
personal information data, in the present technology, can be
used to the benefit of users. For example, the personal
information data can be used to train a neural network for
better image classification performance. Accordingly, use of
such personal information data enables users to have greater
control of the delivered content. Further, other uses for
personal information data that benefit the user are also
contemplated by the present disclosure.

The present disclosure contemplates that those entities
responsible for the collection, analysis, disclosure, transfer,
storage, or other use of such personal information data will
comply with well-established privacy policies and/or pri-
vacy practices. In particular, such entities would be expected
to implement and consistently apply privacy practices that
are generally recognized as meeting or exceeding industry or
governmental requirements for maintaining the privacy of
users. Such information regarding the use of personal data
should be prominently and easily accessible by users, and
should be updated as the collection and/or use of data
changes. Personal information from users should be col-
lected for legitimate uses only. Further, such collection/
sharing should occur only after receiving the consent of the
users or other legitimate basis specified in applicable law.
Additionally, such entities should consider taking any
needed steps for safeguarding and securing access to such
personal information data and ensuring that others with
access to the personal information data adhere to their
privacy policies and procedures. Further, such entities can
subject themselves to evaluation by third parties to certify
their adherence to widely accepted privacy policies and
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practices. In addition, policies and practices should be
adapted for the particular types of personal information data
being collected and/or accessed and adapted to applicable
laws and standards, including jurisdiction-specific consid-
erations which may serve to impose a higher standard. For
instance, in the US, collection of or access to certain health
data may be governed by federal and/or state laws, such as
the Health Insurance Portability and Accountability Act
(HIPAA); whereas health data in other countries may be
subject to other regulations and policies and should be
handled accordingly.

Despite the foregoing, the present disclosure also con-
templates embodiments in which users selectively block the
use of, or access to, personal information data. That is, the
present disclosure contemplates that hardware and/or soft-
ware elements can be provided to prevent or block access to
such personal information data. For example, in the case of
training data collection, the present technology can be
configured to allow users to select to “opt in” or “opt out”
of participation in the collection of personal information
data during registration for services or anytime thereafter. In
another example, users can select not to provide mood-
associated data for use as training data. In yet another
example, users can select to limit the length of time mood-
associated data is maintained or entirely block the develop-
ment of a baseline mood profile. In addition to providing
“opt in” and “opt out” options, the present disclosure con-
templates providing notifications relating to the access or
use of personal information. For instance, a user may be
notified upon downloading an app that their personal infor-
mation data will be accessed and then reminded again just
before personal information data is accessed by the app.

Moreover, it is the intent of the present disclosure that
personal information data should be managed and handled in
a way to minimize risks of unintentional or unauthorized
access or use. Risk can be minimized by limiting the
collection of data and deleting data once it is no longer
needed. In addition, and when applicable, including in
certain health related applications, data de-identification can
be used to protect a user’s privacy. De-identification may be
facilitated, when appropriate, by removing identifiers, con-
trolling the amount or specificity of data stored (e.g., col-
lecting location data at city level rather than at an address
level), controlling how data is stored (e.g., aggregating data
across users), and/or other methods such as differential
privacy.

Therefore, although the present disclosure broadly covers
use of personal information data to implement one or more
various disclosed embodiments, the present disclosure also
contemplates that the various embodiments can also be
implemented without the need for accessing such personal
information data. That is, the various embodiments of the
present technology are not rendered inoperable due to the
lack of all or a portion of such personal information data. For
example, training data can be selected based on aggregated
non-personal information data or a bare minimum amount of
personal information, such as the content being handled only
on the user’s device or other non-personal information
available to as training data.

It is understood that any specific order or hierarchy of
blocks in the processes disclosed is an illustration of
example approaches. Based upon design preferences, it is
understood that the specific order or hierarchy of blocks in
the processes may be rearranged, or that all illustrated blocks
be performed. Any of the blocks may be performed simul-
taneously. In one or more implementations, multitasking and
parallel processing may be advantageous. Moreover, the
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separation of various system components in the implemen-
tations described above should not be understood as requir-
ing such separation in all implementations, and it should be
understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod-
ucts.

As used in this specification and any claims of this
application, the terms “base station”, “receiver”, “com-
puter”, “server”, “processor”, and “memory” all refer to
electronic or other technological devices. These terms
exclude people or groups of people. For the purposes of the
specification, the terms “display” or “displaying” means
displaying on an electronic device.

As used herein, the phrase “at least one of” preceding a
series of items, with the term “and” or “or” to separate any
of the items, modifies the list as a whole, rather than each
member of the list (i.e., each item). The phrase “at least one
of” does not require selection of at least one of each item
listed; rather, the phrase allows a meaning that includes at
least one of any one of the items, and/or at least one of any
combination of the items, and/or at least one of each of the
items. By way of example, the phrases “at least one of A, B,
and C” or “at least one of A, B, or C” each refer to only A,
only B, or only C; any combination of A, B, and C; and/or
at least one of each of A, B, and C.

The predicate words “configured to”, “operable to”, and
“programmed to” do not imply any particular tangible or
intangible modification of a subject, but, rather, are intended
to be used interchangeably. In one or more implementations,
a processor configured to monitor and control an operation
or a component may also mean the processor being pro-
grammed to monitor and control the operation or the pro-
cessor being operable to monitor and control the operation.
Likewise, a processor configured to execute code can be
construed as a processor programmed to execute code or
operable to execute code.

Phrases such as an aspect, the aspect, another aspect,
some aspects, one or more aspects, an implementation, the
implementation, another implementation, some implemen-
tations, one or more implementations, an embodiment, the
embodiment, another embodiment, some implementations,
one or more implementations, a configuration, the configu-
ration, another configuration, some configurations, one or
more configurations, the subject technology, the disclosure,
the present disclosure, other variations thereof and alike are
for convenience and do not imply that a disclosure relating
to such phrase(s) is essential to the subject technology or that
such disclosure applies to all configurations of the subject
technology. A disclosure relating to such phrase(s) may
apply to all configurations, or one or more configurations. A
disclosure relating to such phrase(s) may provide one or
more examples. A phrase such as an aspect or some aspects
may refer to one or more aspects and vice versa, and this
applies similarly to other foregoing phrases.

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration”. Any embodiment
described herein as “exemplary” or as an “example” is not
necessarily to be construed as preferred or advantageous
over other implementations. Furthermore, to the extent that
the term “include”, “have”, or the like is used in the
description or the claims, such term is intended to be
inclusive in a manner similar to the term “comprise” as
“comprise” is interpreted when employed as a transitional
word in a claim.

All structural and functional equivalents to the elements
of the various aspects described throughout this disclosure
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that are known or later come to be known to those of
ordinary skill in the art are expressly incorporated herein by
reference and are intended to be encompassed by the claims.
Moreover, nothing disclosed herein is intended to be dedi-
cated to the public regardless of whether such disclosure is
explicitly recited in the claims. No claim element is to be
construed under the provisions of 35 U.S.C. § 112(f) unless
the element is expressly recited using the phrase “means for”
or, in the case of'a method claim, the element is recited using
the phrase “step for”.

The previous description is provided to enable any person
skilled in the art to practice the various aspects described
herein. Various modifications to these aspects will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other aspects. Thus, the
claims are not intended to be limited to the aspects shown
herein, but are to be accorded the full scope consistent with
the language claims, wherein reference to an element in the
singular is not intended to mean “one and only one” unless
specifically so stated, but rather “one or more”. Unless
specifically stated otherwise, the term “some” refers to one
or more. Pronouns in the masculine (e.g., his) include the
feminine and neuter gender (e.g., her and its) and vice versa.
Headings and subheadings, if any, are used for convenience
only and do not limit the subject disclosure.

What is claimed is:

1. A method, comprising:

receiving an image comprising a plurality of channels;

executing a convolutional neural network model config-

ured to generate a classification of the image, wherein

executing the convolutional neural network model

comprises:

executing convolution on each channel of the image by
a depth-wise convolutional layer to generate first
data comprising a plurality of channels; and

executing a linear transformation of the first data by a
butterfly transform layer comprising a plurality of
sub-layers to combine the plurality of channels of the
first data to generate second data, wherein the clas-
sification is based on the generated second data; and

providing the classification of the image for further pro-

cessing on a computing device.

2. The method of claim 1, wherein the plurality of
sub-layers are configured to recursively calculate the second
data.

3. The method of claim 1, wherein a number of input
nodes and a number of output nodes for each of the plurality
of sub-layers are equal.

4. The method of claim 3, wherein the butterfly transform
layer comprises a path between each input node of a first
sub-layer of the plurality of sub-layers that receives the first
data and each output node of a second sub-layer of the
plurality of sub-layers that outputs the second data.

5. The method of claim 1, wherein the butterfly transform
layer is further configured to execute a non-linearity func-
tion on the generated second data.

6. The method of claim 1, wherein the butterfly transform
layer is further configured to execute a batch normalization
of the generated second data.

7. The method of claim 1, wherein all nodes within each
sub-layer of the plurality of sub-layers have a same out
degree.

8. The method of claim 1 wherein the plurality of sub-
layers comprises log(n) sub-layers, wherein n is a number of
channels of the image.
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9. A system, comprising:

a processor; and

a memory device containing instructions which, when

executed by the processor, cause the processor to:
receive an image comprising a plurality of channels;
execute a convolutional neural network model config-
ured to generate a classification of the image,
wherein executing the convolutional neural network
model comprises:
executing convolution on each channel of the image
by a depth-wise convolutional layer to generate
first data comprising a plurality of channels; and
executing a linear transformation of the first data by
a butterfly transform layer comprising a plurality
of sub-layers to combine the plurality of channels
of the first data to generate second data, wherein
the classification is based on the generated second
data;
execute a non-linearity function on the generated sec-
ond data to generate the classification of the image;
and
provide the a classification of the image for further
processing on a computing device.

10. The system of claim 9, wherein the plurality of
sub-layers are configured to recursively calculate the second
data.

11. The system of claim 9, wherein a number of input
nodes and a number of output nodes for each of the plurality
of sub-layers are equal.

12. The system of claim 9, wherein the butterfly transform
layer comprises a path between each input node of a first
sub-layer of the plurality of sub-layers that receives the first
data and each output node of a second sub-layer of the
plurality of sub-layers that outputs the second data.

13. The system of claim 9, wherein the butterfly transform
layer is further configured to execute a batch normalization
of the generated second data.

14. The system of claim 9, wherein the plurality of
sub-layers comprises log(n) sub-layers, wherein n is a num-
ber of channels of the image.

15. A computer program product comprising code stored
in a non-transitory computer-readable storage medium, the
code comprising:

code for receiving an image comprising a plurality of

channels;

code for executing a convolutional neural network model

configured to generate a classification of the image,

wherein the code for executing the convolutional neural

network model comprises:

code for executing convolution on each channel of the
image by a depth-wise convolutional layer to gen-
erate first data comprising a plurality of channels;
and

code for executing a linear transformation of the first
data by a butterfly transform layer comprising a
plurality of sub-layers to combine the plurality of
channels of the first data to generate second data,
wherein the butterfly transform layer comprises a
path from each input node of the butterfly transform
layer to each output node of the butterfly transform
layer, and wherein the classification is based on the
generated second data; and

code for providing the classification of the image for

further processing on a computing device.

16. The computer program product of claim 15, wherein
a number of input nodes and a number of output nodes for
each of the plurality of sub-layers are equal.
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17. The computer program product of claim 15, wherein
the plurality of sub-layers are configured to recursively
calculate the second data.

18. The computer program product of claim 15, wherein
code for passing the first data through the butterfly transform
layer further comprises code for executing a non-linearity
function on the generated second data.

19. The computer program product of claim 15, wherein
code for passing the first data through the butterfly transform
layer further comprises code for normalizing the generated
second data.

20. The computer program product of claim 16, wherein
the plurality of sub-layers comprises log(n) sub-layers,
wherein n is a number of channels of the image.
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