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(57) ABSTRACT 

Resource-aware dynamic bandwidth control uses informa 
tion about current network State and receiver performance to 
avoid, minimize and/or recover from the effects of network 
spikes and data processing spikes. Linear models may be used 
to estimate a time required to process data packets in a data 
processing queue, and are thus useful to determine whether a 
data processing spike is occurring. When a data processing 
spike occurs, an alarm may be sent from a client to a server 
notifying the server that the client must drop packets. In 
response, the server can encode and transmit an independent 
packet Suitable for replacing the queued data packets which 
can then be dropped by the client and the independent packet 
present to the processor instead. 
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METHOD AND SYSTEM FOR 
RESOURCE-AWARE DYNAMIC BANDWDTH 

CONTROL 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation application of 
U.S. patent application Ser. No. 12/938.249 filed Nov. 2, 
2010, and entitled “METHOD AND SYSTEM FOR 
RESOURCE-AWARE DYNAMIC BANDWIDTH CON 
TROL. 

FIELD OF INVENTION 

0002 The present invention relates to network communi 
cations and more specifically to dynamically adjusting output 
bandwidth, and recovery from data processing spikes in 
response to current network State and receiver processing 
performance. 

DESCRIPTION OF RELATED ART 

0003. On a variety of devices, the available processing 
power can be extremely limited, and can dramatically vary 
over time. For example, an application executing on a por 
table computer such as an iPad, is only provided limited 
processor power as the operating system and other applica 
tions tend to monopolize. The application here has no control 
over prioritizing the efforts of the processor, and thus may run 
into untenable data processing spikes, where the queued up 
data from the application can simply not accomplish the 
requested workload in the necessary timeframe. 
0004. The data processing latency problems are only exac 
erbated when the application is executing on a remote server 
and streaming the data packets to the client device. In Such 
cases, network latency and data processing latency both con 
tribute to the inability of the client to perform the desired 
workload. 

SUMMARY OF THE INVENTION 

0005. The present teaching contemplates a variety of 
methods, systems and paradigms for providing resource 
aware dynamic bandwidth control. Resource-aware dynamic 
bandwidth control is applicable to a pair of executable com 
ponents instantiated on different network nodes (e.g. a client 
server pair, or a sender node and a receiver node), where a first 
component sends data and a second component receives and 
processes the received data. The computational resources 
expended at the client processing the received data are 
assumed to correspond with an input bandwidth at the 
receiver. Through a variety of mechanisms, the server may 
control output bandwidth. 
0006 Resource-aware dynamic bandwidth control uses 
information about current network state and receiver perfor 
mance to avoid, minimize and/or recover from the effects of 
network spikes and data processing spikes. Network spikes 
may imply packet loss and dramatic growth of the data deliv 
ery latency caused by network connection overloading. Data 
processing spikes correspond to the processing state of the 
receiver, i.e., incoming data cannot be processed at the 
receiver because the computational resources have been 
exhausted. Linear models may be used to estimate a time 
required to process data packets in a data processing queue, 
and are thus useful to determine whether a data processing 
spike is occurring. 
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BRIEF DESCRIPTION OF DRAWINGS 

0007. These and other objects, features and characteristics 
of the present invention will become more apparent to those 
skilled in the art from a study of the following detailed 
description in conjunction with the appended claims and 
drawings, all of which form a part of this specification. In the 
drawings: 
0008 FIG. 1 illustrates a block diagram of a server client 
system providing one example of a resource-aware dynamic 
bandwidth control system; 
0009 FIG. 2 is a flowchart showing one example method 
for providing resource-aware dynamic bandwidth control; 
0010 FIG.3 is a flowchart showing one example for trans 
mitting data according to a low-latency protocol; 
0011 FIG. 4 is a flowchart showing one suitable method 
for monitoring input bandwidth of a client or receiving net 
work node; and 
0012 FIG. 5 is a flow chart illustrating a suitable method 
for responding to a processing spike occurring at a client or 
receiving network node. 

DETAILED DESCRIPTION OF THE INVENTION 

0013 The present teaching provides a variety of methods, 
systems and paradigms for providing resource-aware 
dynamic bandwidth control. Resource-aware dynamic band 
width control is applicable to a pair of executable components 
instantiated on different network nodes (e.g. a client-server 
pair, or a sender node and a receiver node), where a first 
component sends data and a second component receives and 
processes the received data. The computational resources 
expended at the client processing the received data are 
assumed to correspond with an input bandwidth at the 
receiver. Through a variety of mechanisms, the server may 
control output bandwidth. 
0014 Resource-aware dynamic bandwidth control uses 
information about current network state and receiver perfor 
mance to avoid, minimize and/or recover from the effects of 
network spikes and data processing spikes. Network spikes 
may imply packet loss and dramatic growth of the data deliv 
ery latency caused by network connection overloading. Data 
processing spikes correspond to the processing state of the 
receiver, i.e., incoming data cannot be processed at the 
receiver because the computational resources have been 
exhausted. 
0015 FIG. 1 illustrates a system 100 according to an 
embodiment of the present teaching. System 100 includes a 
server 102 coupled bi-directionally via a network 104 to a 
client 106. It is helpful to consider server 102 and the client 
106 as a transmitting network node and a receiving network 
node, respectively. The server 102 transmits data to the client 
104, and is operable to control an output bandwidth for trans 
missions to the client 104. The data may representa workload 
or task to be performed by the client. For example, the data 
stream may be encoded video which the client decodes, ren 
ders and displays. An input bandwidth of the client 104 is 
related to the computational resources needed to process data 
received from the server 102. 

0016. The server 102 includes a network engine 110, a 
data encoder 112, and an application 114. The network engine 
110 and the encoder 112 operate on a data stream generated 
by the application 114 to create and transmit an encoded 
packetized data stream. Data encoder 112 is any Suitable 
encoder Such as a video or audio encoder. Another Suitable 
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data encoder is a sentio encoder described in more detail in 
Vonog et al’s U.S. patent application Ser. No. 61/373.236, 
entitled EXPERIENCE OR SENTIO CODECS, AND 
METHOD AND SYSTEMS FOR IMPROVING QOE AND 
ENCODING BASED ON QOE EXPERIENCES, incorpo 
rated herein by reference for all purposes. The network 
engine 110 monitors state information of network 112, and is 
responsive to signals such as a data processing spike alert 
received from the client 106, to dynamically adjust an output 
bandwidth for the network transmission to client 106. 
0017 For example, network latency can be measured and/ 
or estimated, and the bitrate raised or lowered accordingly. 
Likewise, client processing latency can be monitored, and the 
bitrate raised or lowered accordingly. In the case of the data 
stream being video, an unacceptable client processing latency 
could lead to a lowering of the output bandwidth by decreas 
ing the quality of the encoded video output for transmission. 
0018. The network engine 110 is operable of generating at 
least two packet types for transmission: I and N. I-packets can 
be processed at the client 106 independently, i.e., the I-packet 
does not depend on any other packets for processing at the 
client 106. In contrast, to process an N-packet, the client 106 
must first Successfully process the last received I-packet and 
any N-packets received Subsequent to the last I-packet. The 
“normal packet prepared for delivery is the N-packet. An 
I-packet is prepared by the server 102 in specific response to 
receipt of an alert message from the client 106. The client 106 
handles the I-packet as described below. 
0019. The client 106 includes a network engine 120, a data 
packet queue 122, and a processor 124. The network engine 
120 receives the data stream from server 102, typically in the 
form of data packets. When the received data exceeds the 
processing capability available to the network engine 120, the 
network engine 120 must queue up the received data packets 
in the data packet queue 122 for presentation to the processor 
124. This queuing up process increases data processing 
latency, which in extreme cases (“spikes”) effects the desired 
operation. When the network engine 120 detects the begin 
ning of a processing spike, the network engine 120 transmits 
an alarm signal back to the server 102 indicating that the 
client 106 needs to drop packets. 
0020. In response to the alarm signal, the server 102 gen 
erates and transmits an I-packet to the client 102. Upon 
receiving the I-packet, the network engine 120 drops all 
related packets pending in the queue 122 and presents the 
I-packet to the processor 124 for execution. Once the I-packet 
is processed, the client 106 can begin processing normal 
N-packets. Additionally, as mentioned above, the server 102 
can also lower the output bandwidth to minimize alarm sig 
nals. 
0021. It will be appreciated that a variety of different algo 
rithms for dynamic bandwidth control may be implemented. 
In a first embodiment, the server 102 may respond to an alarm 
signal by sending an I-packet and then lowering output band 
width. The output bandwidth may then remain at the lowered 
state indefinitely, or reduced as Subsequent alerts are 
received. Alternatively, the server 102 may incrementally 
and/or periodically increase output bandwidth until another 
alarm signal is received. Or, the client 106 may continuously 
send information to the server 104 related to available input 
bandwidth, and the server 106 may constantly readjust the 
output bandwidth accordingly. 
0022. The server 102 and the client 106 can each be any 
Suitable computer system including a workstation, a personal 
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computer, a netbook, or a system that is distributed across a 
plurality of computers at a data center or geographically 
disparately located, etc. The network 104 could take any 
suitable form including a local area network (LAN), a wire 
less network such as a WLAN, an intranet, or the Internet 
backbone. The processor 124 can include any combination of 
a graphics processing unit (GPU), a central processing unit 
(CPU), and other components necessary for processing data 
packets. The processor 124 can even be viewed as an abstract 
entity, and thus could include various distributed components 
not necessary existing locally with the network engine 120 
and packet queue 122. 
0023 FIG. 2 illustrates a flow chart for a method 200 for 
resource-aware dynamic bandwidth control including data 
processing spike response. A step 202 transmits data packets 
from a first network node to a second network node. The data 
packets may be generated by a software application executing 
on the first network node, or may arise from another source 
local or remote. In some embodiments, the data packets are 
sent via a low-latency transmission protocol. One Suitable 
low-latency transmission protocol is described in Vonog et 
al’s U.S. patent application Ser. No. 12/569,876, filed Sep. 
29, 2009, entitled METHOD AND SYSTEM FOR LOW 
LATENCY TRANSFER PROTOCOL, and incorporated 
herein by reference. Another suitable data transmission 
operation is described below with reference to FIG. 3. 
0024. A step 204 of FIG. 2 monitors a state of the trans 
mission network. In particular, step 204 typically estimates 
network transmission latency. Other network characteristics 
Such as jitter, bandwidth, and packet loss can be measured. As 
those skilled in the art will appreciate, there are a variety of 
Suitable techniques for measuring these characteristics. 
(0025. A step 206 of FIG. 2 monitors an input bandwidth of 
the second network node. The input bandwidth corresponds 
to available processing horsepower, which, e.g., is associated 
with the time required for the second network node to process 
a data packet and/or a set of data packets held in a queue 
waiting for processor cycles. In one embodiment, the second 
network node in step 206 attempts to determine whether a 
processing spike is beginning or in process. A processing 
spike correlates to packet or packet queue processing time 
exceeding a certain defined threshold for a predefined period. 
One suitable method for determining whether a spike is hap 
pening is described in more detail below with reference to 
FIG. 4. 

0026. Other types of data processing patterns beyond 
spikes may have other meanings or require other action, and 
so the input bandwidth monitoring may look for Such patterns 
as well. For example, it may be useful to monitor for the end 
of a spike, or excess processing capacity, and report this 
information back to the first network node. The definition of 
a spike may even depend on the nature of the workload. 
However, data processing spikes as described herein are pre 
Sumably detrimental to many types of workloads. 
0027. A step 208 of FIG. 2 responds to a processing spike 
occurring at the second network node. In general, the second 
network node must drop packets, notify the first network 
node, and somehow satisfy the task or workload associated 
with the received data. This was described above in more 
detail, and one example method for accomplishing this is 
described below with reference to FIG. 5. Step 208 further 
includes notifying the first network node of the processing 
spike, typically by sending back an alarm signal. As previ 
ously mentioned, in one embodiment the alarm just indicates 



US 2014/O 136700 A1 

that a spike is beginning. However, more Sophisticated infor 
mation Such as packet data processing time can be included in 
the alarm. Packet data processing time could be used by the 
first network node to adjust the output bandwidth, or inform 
ing the I-packet. 
0028. A step 210 of FIG. 2 dynamically adjusts the output 
bandwidth of the first network node to adapt to the available 
input bandwidth at the first network node. Typically this 
includes decreasing the bitrate by taking some action Such as 
decreasing video quality thereby decreasing bandwidth 
requirements. 
0029 FIG. 3 illustrates a method 300 for low-latency 
transmission of graphical image data packets. The teaching of 
the present invention is well Suited to such a workload, as 
lowering output bandwidth for this type of workload and data 
processing spike estimation are doable. A step 302 intercepts 
a graphical output data stream from an application or other 
source. A step 304 converts the interrupted graphical output 
into graphical commands and video data. As described in 
Vonog et al’s application Ser. No. 12/569,876 referenced 
above, a Suitable encoder can use different algorithms to 
encode graphical commands and video data, decreasing 
bandwidth requirements for transmitting a graphical image 
workload. 

0030. A step 306 of FIG. 3 determines whether an alarm 
signal has been received. If no alarm signal has been received, 
control passes to a step 308 where output bandwidth can be 
dynamically adjusted. As previously mentioned, a variety of 
suitable strategies for adjusting output bandwidth are avail 
able. In one embodiment, output bandwidth is only lowered, 
and only in response to receipt of an alarm signal. However 
other embodiments contemplate increasing output bandwidth 
when it is determined that the input bandwidth of the second 
network node can handle an increase. 

0031. If in step 306 the alarm signal has been received, 
control passes to a step 310 where an I-packet is generated. As 
described above, an I-packet can be processed independently 
and replaces earlier transmitted normal, or N-packets, 
enabling the second network node to drop unprocessed data 
packets. A step 312 inserts the generated I-packet into the data 
stream for encoding, and control is passed to step 308 where 
the output bandwidth is adjusted as necessary. A step 314 
encodes the available data packets, whether an I-packet or 
N-packets, according to the output bandwidth. A step 316 
transmits the data to second network node via the network. 

0032 FIG. 4 illustrates a method 400 for data processing 
spike detection. In order to generate a useful response to a 
data processing spike, such as an alarm and/or I-packet gen 
eration, the presence of a data processing spike should be 
determined as soon as possible. In one embodiment, if packet 
processing time exceeds a predefined threshold for a pre 
defined period, it is determined that a processing spike is 
occurring. 
0033. In the method 400 of FIG.4, a linear model is used 
to estimate packet processing time. This linear model 
assumes processing time is proportional to packet size, and 
includes a factor for available processing horsepower. In 
practice, the inventors have determined that this linear model 
provides a useful estimate, in particular for data packets Such 
as graphical image where processing time does generally 
correspond with packet size. The linear model estimates 
packet processing time as follows: 
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0034 where T is processing time, C is a constant process 
ing delay independent of packet size, B is processing band 
width, and S is packet size. Step 402 directly measures time 
spent by the processor at the receiving network node process 
ing data packets. Step 404 uses a least square algorithm to 
estimate the processing bandwidth B and the processing 
delay constant C. Step 406 uses the parameters estimated in 
step 404 in the dynamic linear model to estimate the time 
required to process packets in the queue. Step 408 determines 
whether a processing spike has begun, e.g., has packet pro 
cessing time exceeded a predefined threshold for a predefined 
period. To be more specific, one possible implementation 
would be to determine whether it takes longer than 200 ms to 
process a packet, and will this threshold been exceeded for 
more than 200 ms. 

0035. The thresholds and limits here tend to depend on the 
type of workload indicated by the data being processed. For 
example, tasks related to a user interface must have process 
ing delays ideally not detectable via human senses, or at least 
not distracting to a user. Likewise, the linear model used here 
to estimate packet processing time was developed by the 
inventors to specifically address a workload including image, 
video and audio information. It is contemplated that for other 
types of workloads, different models may be better suited for 
estimating processing time. 
0036 FIG. 5 illustrates a method 500 for responding to 
detection of a data processing spike at a client. In a step 502 
the client transmits an alarm signal to a server transmitting the 
workload to the client. In some embodiments, the alarm sig 
nal simply indicates to the server that the client is experienc 
ing a data processing spike and thus must drop packets. Alter 
natively, the alarm signal could include more detailed 
information regarding the processing spike. In a step 504, the 
client receives an I-packet from the server. As described 
above, an I-packet can be processed independent of other 
packets, and provides a new, less processor intensive, work 
load used to replace the workload indicated by earlier pack 
ets. Thus, an I-packet can be inserted anywhere into the data 
stream and enables the client to recover from a data process 
ing spike. In a step 506, the client drops any queued data 
packets, allowing the client to exit the data processing spike. 
In a step 508, the client presents the I-packet to the processor. 
Once the I-packet has been processed, the client can begin 
processing normal packets again. 
0037. In addition to the above mentioned examples, vari 
ous other modifications and alterations of the invention may 
be made without departing from the invention. Accordingly, 
the above disclosure is not to be considered as limiting and the 
appended claims are to be interpreted as encompassing the 
true spirit and the entire scope of the invention. 
What is claimed is: 

1. A server comprising: 
a data encoder and a network engine, the data encoder and 

network engine operable to receive a data stream, and 
encode the data stream into I-packets or N-packets for 
transmission to a client according to an output band 
width, wherein the data stream is encoded in N-packets 
during normal operation, and the data stream is encoded 
in I-packets only during an alarm state; and 

wherein the network engine is operable to monitor network 
state information, and is responsive to the network State 
information and data processing state information 
received from the client, to adjust the output bandwidth. 
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2. The server as recited in claim 1, wherein the network 
engine is further responsive to a data processing spike alarm 
received from said client to encode the data stream in I-pack 
ets replacing a portion of previously transmitted N-packets. 

3. The server as recited in claim 1, wherein the data stream 
is encoded according to a low-latency transport protocol. 

4. The server as recited in claim3, wherein the data stream 
includes graphical output, and the encoder is operable to 
encode graphical commands and video data converted out of 
the data stream. 


