US 20140136700A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0136700 A1

Dubovik et al.

43) Pub. Date: May 15, 2014

(54)

(71)

(72)

(73)

@

(22)

(63)

METHOD AND SYSTEM FOR
RESOURCE-AWARE DYNAMIC BANDWIDTH
CONTROL

Applicant: Net Power and Light, Inc., San
Francisco, CA (US)

Inventors: Gleb Dubovik, Palo Alto, CA (US);

Vadim Shtayura, San Francisco, CA
(US); Nikolay Surin, San Francisco, CA
(US)

Assignee: Net Power and Light, Inc., San

Francisco, CA (US)
Appl. No.: 14/162,293
Filed: Jan. 23, 2014

Related U.S. Application Data

Continuation of application No. 12/938,249, filed on
Nov. 2, 2010, now Pat. No. 8,667,166.

100—’\

Publication Classification

(51) Int.CL
HO4L 12/24 (2006.01)
(52) US.CL
() SR HO4L 41/0896 (2013.01)
1673 G 709/224
(57) ABSTRACT

Resource-aware dynamic bandwidth control uses informa-
tion about current network state and receiver performance to
avoid, minimize and/or recover from the effects of network
spikes and data processing spikes. Linear models may be used
to estimate a time required to process data packets in a data
processing queue, and are thus useful to determine whether a
data processing spike is occurring. When a data processing
spike occurs, an alarm may be sent from a client to a server
notifying the server that the client must drop packets. In
response, the server can encode and transmit an independent
packet suitable for replacing the queued data packets which
can then be dropped by the client and the independent packet
present to the processor instead.

106

Processor

May 15, 2014 Sheet 1 of 5 US 2014/0136700 A1

Patent Application Publication

I DI

USo2

auibug
3oMaN

$8320.d
uoneoyddy

108832014

w19

901 [40)8

/l\.oor

Patent Application Publication

200
_'-\

(Start)

A

Transmit data packets from a first
network node to a:j second network
node

L~ 202

Monitor the network state

|~ 204

206 .
3 FJ

Monitor the input bandwidth of the
second network node

May 15, 2014 Sheet 2 of 5 US 2014/0136700 A1

208
~

A

Respond to processing spikes at
the second network node

v

Dynamically adjust the output
bandwidth of the first network node
to adapt to the input bandwidth

|~ 210

A
(Done)

FIG. 2

Patent Application Publication

300
.’\

May 15, 2014 Sheet 3 of 5

Intercept graphical
output from application

I~ 302

'

Convert intercepted
output into graphical
commands and video data

L~ 304

306

Has alarm signal
been received?

US 2014/0136700 A1

Generate | packet for
responding to alarm

|~ 310

A

A

308\

Dynamically adjust output
bandwidth

Insert | packet into data
stream for transmission

~ 312

A

Encode | packet (if any) and [~_ 314
subsequent N packets
Transmit data packets —~—316

FIG. 3

Patent Application Publication = May 15, 2014 Sheet 4 of 5 US 2014/0136700 A1

400 N (Start)

Measure time spent |~ 402
handling packets

y

Use least square method to 404
estimate processing bandwidth & |~
processing delay constant

Use linear model to estimate time 406
required to process packets in T~
queue

Determine whether spike ,~_ 408
has begun

A
(Done)

FIG. 4

Patent Application Publication = May 15, 2014 Sheet S of § US 2014/0136700 A1

500 ——\ (Start)

A

Transmit alarm to server —~— 502
A 4
Receive I-packet ~504
A
Ignore/delete queued ,—~_~506
packets
A
Process |-packet —~508

v
(Done)

FIG. 5

US 2014/0136700 Al

METHOD AND SYSTEM FOR
RESOURCE-AWARE DYNAMIC BANDWIDTH
CONTROL

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation application of
U.S. patent application Ser. No. 12/938,249 filed Nov. 2,
2010, and entitled “METHOD AND SYSTEM FOR
RESOURCE-AWARE DYNAMIC BANDWIDTH CON-
TROL”.

FIELD OF INVENTION

[0002] The present invention relates to network communi-
cations and more specifically to dynamically adjusting output
bandwidth, and recovery from data processing spikes in
response to current network state and receiver processing
performance.

DESCRIPTION OF RELATED ART

[0003] On a variety of devices, the available processing
power can be extremely limited, and can dramatically vary
over time. For example, an application executing on a por-
table computer such as an iPad, is only provided limited
processor power as the operating system and other applica-
tions tend to monopolize. The application here has no control
over prioritizing the efforts of the processor, and thus may run
into untenable data processing spikes, where the queued up
data from the application can simply not accomplish the
requested workload in the necessary timeframe.

[0004] The data processing latency problems are only exac-
erbated when the application is executing on a remote server
and streaming the data packets to the client device. In such
cases, network latency and data processing latency both con-
tribute to the inability of the client to perform the desired
workload.

SUMMARY OF THE INVENTION

[0005] The present teaching contemplates a variety of
methods, systems and paradigms for providing resource-
aware dynamic bandwidth control. Resource-aware dynamic
bandwidth control is applicable to a pair of executable com-
ponents instantiated on different network nodes (e.g. a client-
server pair, or a sender node and a receiver node), where a first
component sends data and a second component receives and
processes the received data. The computational resources
expended at the client processing the received data are
assumed to correspond with an input bandwidth at the
receiver. Through a variety of mechanisms, the server may
control output bandwidth.

[0006] Resource-aware dynamic bandwidth control uses
information about current network state and receiver perfor-
mance to avoid, minimize and/or recover from the effects of
network spikes and data processing spikes. Network spikes
may imply packet loss and dramatic growth of the data deliv-
ery latency caused by network connection overloading. Data
processing spikes correspond to the processing state of the
receiver, i.e., incoming data cannot be processed at the
receiver because the computational resources have been
exhausted. Linear models may be used to estimate a time
required to process data packets in a data processing queue,
and are thus useful to determine whether a data processing
spike is occurring.

May 15,2014

BRIEF DESCRIPTION OF DRAWINGS

[0007] These and other objects, features and characteristics
of the present invention will become more apparent to those
skilled in the art from a study of the following detailed
description in conjunction with the appended claims and
drawings, all of which form a part of this specification. In the
drawings:

[0008] FIG. 1 illustrates a block diagram of a server client
system providing one example of a resource-aware dynamic
bandwidth control system;

[0009] FIG. 2 is a flowchart showing one example method
for providing resource-aware dynamic bandwidth control;
[0010] FIG. 3 is a flowchart showing one example for trans-
mitting data according to a low-latency protocol;

[0011] FIG. 4 is a flowchart showing one suitable method
for monitoring input bandwidth of a client or receiving net-
work node; and

[0012] FIG. 5 is a flow chart illustrating a suitable method
for responding to a processing spike occurring at a client or
receiving network node.

DETAILED DESCRIPTION OF THE INVENTION

[0013] The present teaching provides a variety of methods,
systems and paradigms for providing resource-aware
dynamic bandwidth control. Resource-aware dynamic band-
width control is applicable to a pair of executable components
instantiated on different network nodes (e.g. a client-server
pair, or a sender node and a receiver node), where a first
component sends data and a second component receives and
processes the received data. The computational resources
expended at the client processing the received data are
assumed to correspond with an input bandwidth at the
receiver. Through a variety of mechanisms, the server may
control output bandwidth.

[0014] Resource-aware dynamic bandwidth control uses
information about current network state and receiver perfor-
mance to avoid, minimize and/or recover from the effects of
network spikes and data processing spikes. Network spikes
may imply packet loss and dramatic growth of the data deliv-
ery latency caused by network connection overloading. Data
processing spikes correspond to the processing state of the
receiver, i.e., incoming data cannot be processed at the
receiver because the computational resources have been
exhausted.

[0015] FIG. 1 illustrates a system 100 according to an
embodiment of the present teaching. System 100 includes a
server 102 coupled bi-directionally via a network 104 to a
client 106. It is helpful to consider server 102 and the client
106 as a transmitting network node and a receiving network
node, respectively. The server 102 transmits data to the client
104, and is operable to control an output bandwidth for trans-
missions to the client 104. The data may represent a workload
or task to be performed by the client. For example, the data
stream may be encoded video which the client decodes, ren-
ders and displays. An input bandwidth of the client 104 is
related to the computational resources needed to process data
received from the server 102.

[0016] The server 102 includes a network engine 110, a
dataencoder 112, and an application 114. The network engine
110 and the encoder 112 operate on a data stream generated
by the application 114 to create and transmit an encoded
packetized data stream. Data encoder 112 is any suitable
encoder such as a video or audio encoder. Another suitable

US 2014/0136700 Al

data encoder is a sentio encoder described in more detail in
Vonog et al’s U.S. patent application Ser. No. 61/373,236,
entitted EXPERIENCE OR SENTIO CODECS, AND
METHOD AND SYSTEMS FOR IMPROVING QOE AND
ENCODING BASED ON QOE EXPERIENCES, incorpo-
rated herein by reference for all purposes. The network
engine 110 monitors state information of network 112, and is
responsive to signals such as a data processing spike alert
received from the client 106, to dynamically adjust an output
bandwidth for the network transmission to client 106.
[0017] For example, network latency can be measured and/
or estimated, and the bitrate raised or lowered accordingly.
Likewise, client processing latency can be monitored, and the
bitrate raised or lowered accordingly. In the case of the data
stream being video, an unacceptable client processing latency
could lead to a lowering of the output bandwidth by decreas-
ing the quality of the encoded video output for transmission.
[0018] The network engine 110 is operable of generating at
least two packet types for transmission: I and N. I-packets can
be processed at the client 106 independently, i.e., the I-packet
does not depend on any other packets for processing at the
client 106. In contrast, to process an N-packet, the client 106
must first successfully process the last received I-packet and
any N-packets received subsequent to the last I-packet. The
“normal” packet prepared for delivery is the N-packet. An
I-packet is prepared by the server 102 in specific response to
receipt of an alert message from the client 106. The client 106
handles the I-packet as described below.

[0019] The client 106 includes a network engine 120, a data
packet queue 122, and a processor 124. The network engine
120 receives the data stream from server 102, typically in the
form of data packets. When the received data exceeds the
processing capability available to the network engine 120, the
network engine 120 must queue up the received data packets
in the data packet queue 122 for presentation to the processor
124. This queuing up process increases data processing
latency, which in extreme cases (“spikes”) effects the desired
operation. When the network engine 120 detects the begin-
ning of a processing spike, the network engine 120 transmits
an alarm signal back to the server 102 indicating that the
client 106 needs to drop packets.

[0020] Inresponse to the alarm signal, the server 102 gen-
erates and transmits an I-packet to the client 102. Upon
receiving the I-packet, the network engine 120 drops all
related packets pending in the queue 122 and presents the
I-packet to the processor 124 for execution. Once the [-packet
is processed, the client 106 can begin processing normal
N-packets. Additionally, as mentioned above, the server 102
can also lower the output bandwidth to minimize alarm sig-
nals.

[0021] TItwill be appreciated that a variety of different algo-
rithms for dynamic bandwidth control may be implemented.
In a firstembodiment, the server 102 may respond to an alarm
signal by sending an I-packet and then lowering output band-
width. The output bandwidth may then remain at the lowered
state indefinitely, or reduced as subsequent alerts are
received. Alternatively, the server 102 may incrementally
and/or periodically increase output bandwidth until another
alarm signal is received. Or, the client 106 may continuously
send information to the server 104 related to available input
bandwidth, and the server 106 may constantly readjust the
output bandwidth accordingly.

[0022] The server 102 and the client 106 can each be any
suitable computer system including a workstation, a personal

May 15,2014

computer, a netbook, or a system that is distributed across a
plurality of computers at a data center or geographically
disparately located, etc. The network 104 could take any
suitable form including a local area network (LAN), a wire-
less network such as a WLAN, an intranet, or the Internet
backbone. The processor 124 can include any combination of
a graphics processing unit (GPU), a central processing unit
(CPU), and other components necessary for processing data
packets. The processor 124 can even be viewed as an abstract
entity, and thus could include various distributed components
not necessary existing locally with the network engine 120
and packet queue 122.

[0023] FIG. 2 illustrates a flow chart for a method 200 for
resource-aware dynamic bandwidth control including data
processing spike response. A step 202 transmits data packets
from a first network node to a second network node. The data
packets may be generated by a software application executing
on the first network node, or may arise from another source
local or remote. In some embodiments, the data packets are
sent via a low-latency transmission protocol. One suitable
low-latency transmission protocol is described in Vonog et
al’s U.S. patent application Ser. No. 12/569,876, filed Sep.
29, 2009, entitled METHOD AND SYSTEM FOR LOW-
LATENCY TRANSFER PROTOCOL, and incorporated
herein by reference. Another suitable data transmission
operation is described below with reference to FIG. 3.
[0024] A step 204 of FIG. 2 monitors a state of the trans-
mission network. In particular, step 204 typically estimates
network transmission latency. Other network characteristics
such as jitter, bandwidth, and packet loss can be measured. As
those skilled in the art will appreciate, there are a variety of
suitable techniques for measuring these characteristics.
[0025] A step 206 of FIG. 2 monitors an input bandwidth of
the second network node. The input bandwidth corresponds
to available processing horsepower, which, e.g., is associated
with the time required for the second network node to process
a data packet and/or a set of data packets held in a queue
waiting for processor cycles. In one embodiment, the second
network node in step 206 attempts to determine whether a
processing spike is beginning or in process. A processing
spike correlates to packet or packet queue processing time
exceeding a certain defined threshold for a predefined period.
One suitable method for determining whether a spike is hap-
pening is described in more detail below with reference to
FIG. 4.

[0026] Other types of data processing patterns beyond
spikes may have other meanings or require other action, and
so the input bandwidth monitoring may look for such patterns
as well. For example, it may be useful to monitor for the end
of a spike, or excess processing capacity, and report this
information back to the first network node. The definition of
a spike may even depend on the nature of the workload.
However, data processing spikes as described herein are pre-
sumably detrimental to many types of workloads.

[0027] A step 208 of FIG. 2 responds to a processing spike
occurring at the second network node. In general, the second
network node must drop packets, notify the first network
node, and somehow satisfy the task or workload associated
with the received data. This was described above in more
detail, and one example method for accomplishing this is
described below with reference to FIG. 5. Step 208 further
includes notifying the first network node of the processing
spike, typically by sending back an alarm signal. As previ-
ously mentioned, in one embodiment the alarm just indicates

US 2014/0136700 Al

that a spike is beginning. However, more sophisticated infor-
mation such as packet data processing time can be included in
the alarm. Packet data processing time could be used by the
first network node to adjust the output bandwidth, or in form-
ing the I-packet.

[0028] A step 210 of FIG. 2 dynamically adjusts the output
bandwidth of the first network node to adapt to the available
input bandwidth at the first network node. Typically this
includes decreasing the bitrate by taking some action such as
decreasing video quality thereby decreasing bandwidth
requirements.

[0029] FIG. 3 illustrates a method 300 for low-latency
transmission of graphical image data packets. The teaching of
the present invention is well suited to such a workload, as
lowering output bandwidth for this type of workload and data
processing spike estimation are doable. A step 302 intercepts
a graphical output data stream from an application or other
source. A step 304 converts the interrupted graphical output
into graphical commands and video data. As described in
Vonog et al’s application Ser. No. 12/569,876 referenced
above, a suitable encoder can use different algorithms to
encode graphical commands and video data, decreasing
bandwidth requirements for transmitting a graphical image
workload.

[0030] A step 306 of FIG. 3 determines whether an alarm
signal has been received. Ifno alarm signal has been received,
control passes to a step 308 where output bandwidth can be
dynamically adjusted. As previously mentioned, a variety of
suitable strategies for adjusting output bandwidth are avail-
able. In one embodiment, output bandwidth is only lowered,
and only in response to receipt of an alarm signal. However
other embodiments contemplate increasing output bandwidth
when it is determined that the input bandwidth of the second
network node can handle an increase.

[0031] If in step 306 the alarm signal has been received,
control passes to a step 310 where an I-packet is generated. As
described above, an I-packet can be processed independently
and replaces earlier transmitted normal, or N-packets,
enabling the second network node to drop unprocessed data
packets. A step 312 inserts the generated [-packet into the data
stream for encoding, and control is passed to step 308 where
the output bandwidth is adjusted as necessary. A step 314
encodes the available data packets, whether an I-packet or
N-packets, according to the output bandwidth. A step 316
transmits the data to second network node via the network.

[0032] FIG. 4 illustrates a method 400 for data processing
spike detection. In order to generate a useful response to a
data processing spike, such as an alarm and/or I-packet gen-
eration, the presence of a data processing spike should be
determined as soon as possible. In one embodiment, if packet
processing time exceeds a predefined threshold for a pre-
defined period, it is determined that a processing spike is
occurring.

[0033] Inthe method 400 of FIG. 4, a linear model is used
to estimate packet processing time. This linear model
assumes processing time is proportional to packet size, and
includes a factor for available processing horsepower. In
practice, the inventors have determined that this linear model
provides a useful estimate, in particular for data packets such
as graphical image where processing time does generally
correspond with packet size. The linear model estimates
packet processing time as follows:

T=C+S*B

May 15,2014

[0034] where T is processing time, C is a constant process-
ing delay independent of packet size, B is processing band-
width, and S is packet size. Step 402 directly measures time
spent by the processor at the receiving network node process-
ing data packets. Step 404 uses a least square algorithm to
estimate the processing bandwidth B and the processing
delay constant C. Step 406 uses the parameters estimated in
step 404 in the dynamic linear model to estimate the time
required to process packets in the queue. Step 408 determines
whether a processing spike has begun, e.g., has packet pro-
cessing time exceeded a predefined threshold for a predefined
period. To be more specific, one possible implementation
would be to determine whether it takes longer than 200 ms to
process a packet, and will this threshold been exceeded for
more than 200 ms.

[0035] The thresholds and limits here tend to depend on the
type of workload indicated by the data being processed. For
example, tasks related to a user interface must have process-
ing delays ideally not detectable via human senses, or at least
not distracting to a user. Likewise, the linear model used here
to estimate packet processing time was developed by the
inventors to specifically address a workload including image,
video and audio information. It is contemplated that for other
types of workloads, different models may be better suited for
estimating processing time.

[0036] FIG. 5 illustrates a method 500 for responding to
detection of a data processing spike at a client. In a step 502
the client transmits an alarm signal to a server transmitting the
workload to the client. In some embodiments, the alarm sig-
nal simply indicates to the server that the client is experienc-
ing a data processing spike and thus must drop packets. Alter-
natively, the alarm signal could include more detailed
information regarding the processing spike. In a step 504, the
client receives an I-packet from the server. As described
above, an [-packet can be processed independent of other
packets, and provides a new, less processor intensive, work-
load used to replace the workload indicated by earlier pack-
ets. Thus, an I-packet can be inserted anywhere into the data
stream and enables the client to recover from a data process-
ing spike. In a step 506, the client drops any queued data
packets, allowing the client to exit the data processing spike.
In a step 508, the client presents the I-packet to the processor.
Once the I-packet has been processed, the client can begin
processing normal packets again.

[0037] In addition to the above mentioned examples, vari-
ous other modifications and alterations of the invention may
be made without departing from the invention. Accordingly,
the above disclosure is not to be considered as limiting and the
appended claims are to be interpreted as encompassing the
true spirit and the entire scope of the invention.

What is claimed is:

1. A server comprising:

a data encoder and a network engine, the data encoder and
network engine operable to receive a data stream, and
encode the data stream into I-packets or N-packets for
transmission to a client according to an output band-
width, wherein the data stream is encoded in N-packets
during normal operation, and the data stream is encoded
in I-packets only during an alarm state; and

wherein the network engine is operable to monitor network
state information, and is responsive to the network state
information and data processing state information
received from the client, to adjust the output bandwidth.

US 2014/0136700 Al

2. The server as recited in claim 1, wherein the network
engine is further responsive to a data processing spike alarm
received from said client to encode the data stream in I-pack-
ets replacing a portion of previously transmitted N-packets.

3. The server as recited in claim 1, wherein the data stream
is encoded according to a low-latency transport protocol.

4. The server as recited in claim 3, wherein the data stream
includes graphical output, and the encoder is operable to
encode graphical commands and video data converted out of
the data stream.

May 15,2014

