
(57)【特許請求の範囲】
【請求項１】
ローカル・バスを介してローカル・プロセッサとメモリとに結合され、かつ第２のバスを
介してバス・エージェントに結合されたメッセージ通信装置において：
ａ）インバウンド・フリー待ち行列であって、前記ローカル・プロセッサによりこの待ち
行列の頭部ポインタによって示された該待ち行列の頭部から書き込まれ、かつ前記バス・
エージェントによって使用されるために該待ち行列の尾部ポインタによって示された該待
ち行列の尾部から読み出される空のメッセージ・バッファのハンドル

を
記憶するインバウンド・フリー待ち行列と；
ｂ）前記インバウンド・フリー待ち行列内のハンドル情報を利用するためにこのインバウ
ンド・フリー待ち行列に結合されたインバウンド・フリー回路手段であって、
前記インバウンド・フリー待ち行列の頭部ポインタと尾部ポインタとに基づき、前記イン
バウンド・フリー待ち行列が「空」であるか否かを判定する判定手段と、
前記インバウンド・フリー待ち行列の尾部から読み出したハンドル情報を保持するインバ
ウンド・フリー・レジスタと
を備え、 が、
（１）前記インバウンド・フリー待ち行列が空でない場合には、該インバウンド・フリー
待ち行列の尾部からハンドル情報をプリフェッチして前記インバウンド・フリー・レジス

10

20

JP 3884073 B2 2007.2.21

情報であってバス・
エージェントからローカル・プロセッサにメッセージを渡すために、該バス・エージェン
トによって使用され、かつ前記ローカル・プロセッサによって解放されるハンドル情報

前記インバウンド・フリー回路手段によるハンドル情報に対する操作

タに格納し、
（２）前記インバウンド・フリー待ち行列が空の場合には、該インバウンド・フリー・レ
ジスタに該インバウンド・フリー待ち行列が空であることを示す「空」指示情報をロード
し、かつ
（３） 前記バス・エージェントが前記インバウンド・
フリー・レジスタ内の情報を読み取ることを可能にするインバウンド・フリー回路手段と
；
ｃ）インバウンド・ポスト待ち行列であって、前記バス・エージェント

この待ち行列の頭部ポインタによって示された該待ち行列の頭部から 、か
つ前記ローカル・プロセッサによって使用されるために該待ち行列の尾部ポインタによっ
て示された該待ち行列の尾部から読み出される

メッセージのハンドル情報
を記憶するインバウンド・ポスト待ち行列と；

ｄ）前記インバウンド・ポスト待ち行列内のハンドル情報を利用するためにこのインバウ
ンド・ポスト待ち行列に結合されたインバウンド・ポスト回路手段であって、
前記インバウンド・ポスト待ち行列の頭部ポインタと尾部ポインタとに基づき、前記イン
バウンド・ポスト待ち行列が「フル」であるか否かを判定する判定手段と、
前記バス・エージェントからの べきメッセージのハンドル情報を保持するインバ
ウンド・ポスト・レジスタと
を備え、 が、
（１）前記インバウンド・ポスト待ち行列がフルである場合には、再試行信号を前記バス
・エージェントに返し、
（２）前記インバウンド・ポスト待ち行列がフルでない場合には、前記インバウンド・ポ
スト・レジスタに保持されたハンドル情報を前記インバウンド・ポスト待ち行列の頭部に
書込

インバウンド・ポスト回路
手段と
を備えたことを特徴とするメッセージ通信装置。
【発明の詳細な説明】

１．
本発明は、複数プロセッサ・システム内の分野に関する。さらに詳細には、本発明は、複
数プロセッサ・システム内のプロセッサ間でメッセージを送信する方法および装置に関す
る。
２．
メッセージは、単にオペレーショナル・パラメータおよびデータを伝達するデータ構造で
ある。メッセージは、１つまたは複数のプラットフォーム上で実行されている１つまたは
複数のプロセス（すなわち、アプリケーション）によって生成される。プラットフォーム
は、メモリに関連するプロセッサまたはプロセッサのクラスタ、ローカル・メモリ・バス
、およびメモリ入出力バスを含んでいる。プラットフォーム内のこれらの要素は、動作環
境を構成する。
さらに、プラットフォームは、オペレーティング・システムの単一のインスタンスを実行
する。言い換えれば、コンピュータ・システムは、単一のオペレーティング・システムが
複数のプロセッサをサポートする分配処理システムである。メッセージは、ある特定のプ
ラットフォーム上のプロセスの１つによって生成された後、処理のために他のプロセッサ
・プラットフォームに送られる。
メッセージは、メモリ内に常駐し、命令および追加の情報のデータ・ブロックに対する他
のポインタを含んでいる制御ブロックにポインタによって示される。例えば、制御ブロッ
クは、特定の周辺装置（例えば、ハード・ディスク・ドライブ）を指定し、装置の指定さ

10

20

30

40

50

(2) JP 3884073 B2 2007.2.21

一回のバス・トランザクションで、

から読み出された
後で 書き込まれ

、前記バス・エージェントからローカル・
プロセッサに渡される であって前記インバウンド・フリー待ち
行列から先に読み出されたハンドル情報

書き込む

前記インバウンド・ポスト回路手段によるハンドル情報に対する操作

み、さらに
（３）一回のバス・トランザクションで、前記バス・エージェントが前記インバウンド・
ポスト・レジスタにハンドル情報を書き込むことを可能にする

発明の背景
発明の分野

従来技術の説明

れたセクタからデータを読み取るよう要求する。
メッセージ送信は、プロセッサが「密に」結合された（すなわち、プロセッサが単一のキ
ャッシュを共用する）対称複数プロセッサ・システム（ＳＭＰ）内、およびプロセッサが
共通のバス構造によって「粗に」結合された非対称複数プロセッサ・システム内のプロセ
ッサ間で使用される。
メッセージを第１のプラットフォーム内のあるプロセッサから第２のプラットフォーム内
の第２のプロセッサに送るとき、そのメッセージを向けられたプロセッサが自身の資源が
自由なときにメッセージを処理することができるようにメッセージを待ち行列化しなけれ
ばならない。
メッセージを待ち行列化する従来技術の方法は、主としてソフトウェア技法を使用して実
施される。これらの方法は、共用された待ち行列構造への複数のアトミック・プロセッサ
・アクセスを必要とする。例えば、単一のプロセッサ上で動作している複数のプロセスは
、プロセッサによって共用されたメモリ内に配置されたメッセージの１つの待ち行列を共
用する。プロセスの１つに対してアトミック・アクセスを行うために、オペレーティング
・システムは、待ち行列へのアクセスを要求しているプロセスに、待ち行列に対するその
プロセス独占権（例えば、アトミック・アクセス）を与えるセマフォを付与する。セマフ
ォは、単に共用されたデータ構造（すなわち、オペレーティング・システム・コンテキス
トの一部）に対するプロセス独占アクセス権を与えるオペレーティング・システム変数で
ある。その場合、プロセスは、待ち行列に対してメッセージを追加したり、削除すること
ができる。特定のプロセスは、セマフォを制御するとき、その待ち行列に対してアクセス
を要求している他のプロセスをロックアウトする。他のプロセスは、共用された構造が使
用できるようになるまで、第１のプロセスがセマフォを解放するのを待たなければならな
い。
複数プロセッサ・システムでは、複数のプロセッサがセマフォへのアクセス権を同時に得
ようと試みることができる。したがって、同期のためにバス・ロック（すなわち、アトミ
ック・アクセス）が必要となる。１つのプロセッサがバスをロックしている間、他のプロ
セッサは、第１のプロセッサがそのバスをロック解除するまでメモリ内の同じ共用された
構造（すなわち、メモリ・ブロック）にアクセスすることはできない。セマフォはシステ
ム・メモリ内にあるので、他のプロセッサは、セマフォを求めて争っていなくてもロック
アウトされる。したがって、サスペンドすることができるソフトウェア・モジュール（す
なわち、マルチタスク・オペレーティング・システム）内では、バス・ロックは使用でき
ない。代わりに、これらのアプリケーション内でセマフォを獲得し、解放するとき、オペ
レーティング・システム・カーネルへのコールが必要となる。
上述の動作は、セマフォを待っている間またはバス・アクセスを待っている間、各プロセ
スがアイドルである時間のために非常に非効率的である。さらに、オペレーティング・シ
ステム・カーネルへの上述のコールは、高価なコンテキスト切換えを行う。
コンテキストは、単にアプリケーション（すなわち、アプリケーション・コードおよびデ
ータ）に充てられるメモリ領域である。アプリケーション・コンテキストは、フラグ、変
数、現在プロセスの状態を含んでいる。セマフォはアプリケーション・コンテキストと異
なるコンテキスト（すなわち、オペレーティング・システム・コンテキスト）内のオペレ
ーティング・システム変数であるので、システム資源はアプリケーション・コンテキスト
を切り換える必要がある。例えば、コンテキスト切換え中に、データ・ポインタを変更し
、ポインタをスタック上に押し上げ、プロセス制御パラメータも変更する。
バス・ロック能力を有しない従来技術のコンピュータ・システムは、高度に複雑なアルゴ
リズムを使用して、プロセッサ間の同期を実施する。これらのシステムでは、性能がさら
に低下する。
したがって、セマフォを使用せずに待ち行列への直接アクセスを効率的に可能にする方法
および装置が必要である。

複数プロセッサ・システム内のプロセッサ間でメッセージを送信する方法および装置。本

10

20

30

40

50

(3) JP 3884073 B2 2007.2.21

発明の概要

発明の方法および装置は、非対称複数プロセッサ・システム内のプロセッサ間でメッセー
ジの通信を可能にする。非対称複数プロセッサ・システムは、単にプロセッサが様々なオ
ペレーティング・システムを同時に実行しているシステムである。例えば、アプリケーシ
ョン・プラットフォーム上のアプリケーション・プロセッサは、ＷｉｎｄｏｗｓＮＴ T Mな
ど標準のアプリケーション・オペレーティング・システム・ソフトウェア上で動作してい
る。しかしながら、入出力プラットフォーム上のプロセッサは、入出力動作（例えば、実
時間オペレーティング・システム：ＲＴＯＳ）に適した特定のオペレーティング・システ
ムを動作させている。特に、本発明は、１つまたは複数のプロセッサ・プラットフォーム
上で実行されている１つまたは複数のプロセスからローカル・プロセッサを含んでいるプ
ラットフォームへのメッセージを待ち行列化する迅速かつ直接的な機構を提供する。
本発明は、他のプラットフォームにメッセージ・バッファを割り当てるインバウンド・フ
リー待ち行列、および入出力プラットフォームの外部のプロセッサおよびバス・エージェ
ントからメッセージをポストするインバウンド・ワーク待ち行列を提供する。さらに、本
発明は、ローカル・プロセッサ（すなわち、入出力プラットフォーム用のプロセッサ）か
らのメッセージを、他のプラットフォーム上のプロセッサがこれらのメッセージを検索す
ることができるように他のプロセッサ・プラットフォーム（すなわち、ホスト・プロセッ
サ）にポストするアウトバウンド・ワーク待ち行列を提供する。本発明はまた、ホスト・
プロセッサがそれに対してメッセージ・バッファを解放するアウトバウンド・フリー待ち
行列を提供する。この待ち行列は、ホスト・プロセッサがメッセージを処理した後、メッ
セージ・バッファをローカル・プロセッサに解放する。
本発明はホスト・プラットフォームと入出力プラットフォームとの間の非常に速くかつ効
率的なハードウェア待ち行列インタフェースを提供するメッセージ・ユニットを使用して
これらの待ち行列を管理する。本発明は、単一のＰＣＩバス・トランザクション・サイク
ル中に自由なメッセージ・バッファ、すなわち「エンプティ」インジケータを準備（すな
わち、メッセージ・ユニット内のレジスタの読取り）することができる。さらに、本発明
は、単一のＰＣＩバス・トランザクション中にメッセージまたは「フル」インジケータの
ポストまたは検索（すなわち、メッセージ・ユニット内のレジスタの書込み）を可能にす
る。
本発明は、待ち行列をハードウェア・インタフェースを使用して管理するので、従来技術
のソフトウェア待ち行列管理に勝るいくつかの利点を提供する。第１に、本発明はプロセ
スがフル待ち行列またはエンプティ待ち行列に対して待ち行列操作を実施しようとしたと
きデッドロックまたはロックアップを回避する。本発明のメッセージ・ユニットは、エン
プティ・リストまたは待ち行列からフェッチしようとする試みが検出されたときエンプテ
ィ指示を迅速に戻す。同様に、本発明は、フル待ち行列にポストしようとする試みが検出
されたとき特定の待ち行列がフルであるという指示を迅速に戻す。本発明は、最小のハー
ドウェア資源を使用して効率的に実施することができる。
さらに、本発明は単一のバス・トランザクション内で待ち行列アクセスを実行するので、
同期（すなわち、セマフォの獲得および解放）の必要がなく、またシステムの性能が大幅
に改善される。待ち行列アクセスは、単に要素を待ち行列に追加すること、または要素を
待ち行列から削除することである。待ち行列アクセスは、次の要素を見つけ出し、その要
素を変更し、次の待ち行列アクセスのために次の要素を示す待ち行列記述子を修正する特
定のタスクを含んでいる。これらのタスクは、本発明によって自動的に実施される。これ
らのタスクが完了する時間中、待ち行列は、他のプロセスが同じメッセージ・バッファを
獲得したり、または他のメッセージを上書きしないようにロックされる。本発明は、単一
のＰＣＩバス・トランザクションが本来アトミックであることを利用するために１つのバ
ス・トランザクション内で待ち行列アクセス（すなわち、トランザクションを実行してい
るバス・エージェントによる独占アクセス）を提供する。さらに、本発明は、読取り信号
および再試行信号を介して自動的に同期を処理する。
さらに、本発明ではセマフォが不要であるので、システム資源をタイアップするコンテキ
スト切換えが不要である。メッセージ・ユニット内のレジストに対する単一の読取りまた

10

20

30

40

50

(4) JP 3884073 B2 2007.2.21

は書込みだけで、特定の待ち行列にアクセスすることができ、また１つのバス・トランザ
クション内で読取りまたは書込みを行うことができるので、セマフォは不要である。
本発明について、添付の図面において例を挙げて非限定的に説明する。図面中、同じ参照
番号は同じ要素を示す。

第１図は、本発明を実施する非対称複数プロセッサ・コンピュータ・システムのブロック
図である。
第２図は、本発明を含む入出力プラットフォームを示す図である。
第３図は、本発明の一実施形態を示す図である。
第４図は、本発明の円形待ち行列を示す図である。
第５図は、本発明の円形待ち行列動作をさらに示す図である。
第６Ａ図は、本発明のインバウンド・フリー状態機械を示す図である。第６Ｂ図は、イン
バウンド・フリー状態機械の状態図である。
第７Ａ図は、本発明のインバウンド・ポスト状態機械を示す図である。第７Ｂ図は、イン
バウンド・ポスト状態機械の状態図である。
第８Ａ図は、本発明のアウトバウンド検索状態機械を示す図である。第８Ｂ図は、アウト
バウンド検索状態機械の状態図である。
第９Ａ図は、本発明のアウトバウンド解放状態機械を示す図である。第９Ｂ図は、アウト
バウンド解放状態機械の状態図である。

第１図は、本発明を実施する複数プロセッサ・コンピュータ・システムのブロック図であ
る。マルチプロセッサ・システム１００は、ホスト・プロセッサ１０２を含んでいる。ホ
スト・プロセッサ１０２は、複数のプロセッサ（すなわち、密に結合されたプロセッサの
クラスタ）を含んでいる。ホスト・プロセッサ１０２は、ホスト・バス１０３を介してホ
スト・メモリ１０４に結合される。メモリ・バス１０３はまた、ホスト・プロセッサ１０
２およびメモリ１０４をホスト・チップ・セット１０５に結合する。ホスト・チップ・セ
ット１０５は、メモリ・コントローラ、キャッシュ・コントローラ、およびメモリ・バス
１０３と入出力（Ｉ／Ｏ）バス１０６（例えばＰＣＩバス）とのインタフェースを提供す
るブリッジを含んでいる。
ホスト・チップ・セット１０５は、当技術分野において周知である。例えば、ホスト・プ
ロセッサ１０２はＩｎｔｅｌ社製のＰｅｎｔｉｕｍ T Mプロセッサである場合、適切なホス
ト・チップ・セット１０５は、これもＩｎｔｅｌ社製のＴｒｉｄｅｎｔ T Mである。同様に
、Ｐ６ T Mプロセッサが使用される場合、適切なホスト・チップ・セット１０５は、これも
Ｉｎｔｅｌ社製のＯｒｉｏｎ T Mチップ・セットである。ホスト・プロセッサ１０２、メモ
リ・バス１０３、ホスト・メモリ１０４、ホスト・チップ・セット１０５は、このマルチ
プロセッサ・システム１００内ではホスト・プラットフォームと呼ばれる。
複数プロセッサ・システム１００はさらに、第１のＰＣＩバス１０６に結合された入出力
プラットフォーム１０８を含んでいる。さらに、入出力プラットフォーム１０８は、第１
のＰＣＩバス１０６のアドレス空間と、入出力プラットフォーム１０８内に含まれている
プロセッサのアドレス空間とのインタフェースを提供する。入出力プラットフォーム１０
８はさらに、第１のＰＣＩバス１０６を第２のＰＣＩバス（図示せず）に結合するブリッ
ジを含んでいる。
入出力プラットフォーム１０８は、ホスト・プロセッサ用の入出力サポート、および第１
のＰＣＩバス１０６および第２のＰＣＩバスに結合されたデバイス（図示せず）

本発明を含んでいる（前に第１図において要素１０８と呼んでいた）入出
力プラットフォーム２００を詳細に示す。入出力プラットフォーム２００は、メモリ・コ
ントローラ２０５からローカル・バス２０４を介してローカル・メモリ２０６に結合され
たローカル・プロセッサ２０２を含んでいる。ローカル・プロセッサ２０２は、Ｉｎｔｅ
ｌ８０９６０ＪＦプロセッサである。
アドレス・トランザクション・ユニット（ＡＴＵ）２１８は、ローカル・バス２０４と（

10

20

30

40

50

(5) JP 3884073 B2 2007.2.21

【図面の簡単な説明】

好ましい実施形態の詳細な説明

を提供す
る。第２図は、

前に第１図において要素１０６と呼んでいた）第１のＰＣＩバス２０８とに結合される。
アドレス・トランザクション・ユニット（ＡＴＵ）２１８は、ＰＣＩバス２０８のアドレ
ス空間内のアドレスをプロセッサ２０２アドレス空間内のアドレスに変換し、その逆も行
う。したがって、ＰＣＩアドレス空間内のアドレスを有するＰＣＩバス２０８に対するト
ランザクションは、メモリ・コントローラ２０５がローカル・メモリ２０６内の正確な位
置またはＭＵ２１０内の正確なレジスタ２１２にアクセスすることができるようにローカ
ル・バス２０４アドレス空間に変換されなければならない。
ＡＴＵ２１８は、ローカル・バス・トランザクションをＰＣＩバス・トランザクションに
変換するアウトバウンド・モジュール、ＰＣＩバス・トランザクションをローカル・バス
・トランザクションに変換するインバウンド・モジュール、およびこのアドレス・トラン
ザクションを管理する制御状態機械を含んでいる。本発明では、ＡＴＵ２１８は、特定の
ＰＣＩバス・トランザクションがＭＵ２１０内のレジスタ２１２の１つにアクセスするこ
とを検出するアドレス・デコーダと考えられる。ＡＴＵ２１８は、トランザクションがＭ
Ｕ２１０内のレジスタ２１２の１つへのアクセスであることを検出した後、以下で説明す
るＭＵ２１０内の制御状態機械２１４を開始するためにデータ・パス２２１を介して信号
を送る。制御状態機械２１４は、ＭＵ２１０がトランザクションを受け取る準備ができて
いないことをＡＴＵ２１８に通知するため、または要求側プロセスに再試行を通知するよ
うＡＴＵ２１８に指示するために、複数の信号をデータ・パス２２１を介してＡＴＵ２１
８に送る。
ローカル・バス・アービタ２４０は、ローカル・バス・マスタ（すなわち、ＭＵ２１０、
ＡＴＵ２１８のインバウンド・モジュール、およびローカル・プロセッサ２０２）のいず
れかにローカル・バス２０４の制御権を付与する。アービトレーション回路２４０は、当
技術分野において周知である。
メモリ・コントローラ２０５は、データ・パス２２４および２２５を介してローカル・メ
モリ２０６にアクセスするために備えられる。ローカル・バス２０４は、単一のデータ・
パスとして示されているが、ローカル・バス２０４は、アドレス部分およびデータ部分か
ら構成される。
バス・エージェント２０１は、ホスト・プロセッサまたは他の入出力プラットフォームで
ある。さらに、バス・エージェント２０１は、第１図のホスト・メモリ１０４、ホスト・
プロセッサ１０２、ホスト・チップ・セット１０５、メモリ・バス１０３を含んでいる。
言い換えれば、バス・エージェント２０１は、それ自体サブシステムまたは任意のインテ
リジェント・バス・エージェントである。
メッセージ・ユニット（ＭＵ）２１０は、ローカル・バス２０４とＡＴＵ２１８とに結合
される。ＭＵ２１０は、本発明の教示を実施し、複数のレジスタ２１２および複数の状態
機械２１４を含んでいる。これらのレジスタ２１２および状態機械２１４について、第３
図に関して詳細に説明する。
第３図は、ＭＵ２１０内で実施された本発明を示す。ＭＵ２１０は、制御パス３５０を介
してＡＴＵ２１８に結合された複数の状態機械２１４を含んでいる。ＭＵ２１０はまた、
複数のプリフェッチおよび一時レジスタ３３２を含んでいる。これらのレジスタ３３２は
、データ・パス３３６を介してＡＴＵ２１８に結合される。プリフェッチおよび一時レジ
スタ３３２はまた、データ・パス３５２を介して制御状態機械２１４によって制御される
。レジスタ３３２はまた、ローカル・メモリ２０６にアクセスするためにデータ・パス３
３４を介してローカル・バス２０４に結合される。
この実施形態では、ＭＵ２１０は、４つの円形待ち行列を使用したメッセージ送信方式を
含んでいる。この実施形態では、４つのプリフェッチおよび一時レジスタ３３２がある。
ホスト・プロセッサが円形待ち行列にデータを書き込むことを可能にする２つのレジスタ
が備えられる。ホスト・プロセッサが円形待ち行列の１つからデータを読み取ることを可
能にする２つのレジスタが備えられる。
ＭＵ２１０はまた、データ・パス３４２を介して制御状態機械２１４に結合された複数の
待ち行列ポインタ・レジスタ３４０を含んでいる。これらのレジスタ３４０は、待ち行列

10

20

30

40

50

(6) JP 3884073 B2 2007.2.21

２０７の頭部ポインタおよび尾部ポインタを記憶する。これらの待ち行列について、第４
図および第５図に関して詳細に説明する。

ＭＵ２１０は、４つの円形待ち行列２０７へのアクセスをバス・エージェント２０１に提
供する。２つのインバウンド待ち行列および２つのアウトバウンド待ち行列がある。「イ
ンバウンド」および「アウトバウンド」は、活動メッセージの流れの方向を示す。「イン
バウンド」メッセージは、ローカル・プロセッサ２０２が処理すべきバス・エージェント
２０１によってポストされた新しいメッセージであるか、またはバス・エージェント２０
１が使用するために使用できるエンプティまたはフリーのメッセージ・バッファである。
「アウトバウンド」メッセージは、ホスト・プロセッサ２０１が処理すべきローカル・プ
ロセッサ２０２によってポストされた新しいメッセージであるか、またはローカル・プロ
セッサ２０２が使用するために使用できるフリーのメッセージ・バッファである。
一実施形態では、ホスト・プロセッサ／バス・エージェント２０１とローカル・プロセッ
サ２０２との間でメッセージを送るために使用される４つの円形待ち行列がある。インバ
ウンド・メッセージを処理するために使用される２つのインバウンド待ち行列があり、ア
ウトバウンド・メッセージを処理するために使用される２つのアウトバウンド待ち行列が
ある。インバウンド待ち行列の１つは、フリー待ち行列に指定され、インバウンド・フリ
ー・メッセージ・ハンドルを含んでいる。メッセージ・ハンドルは、メッセージ・バッフ
ァの論理アドレスまたは物理アドレスである。他のインバウンド待ち行列は、ポスト待ち
行列または作業待ち行列に指定され、インバウンド・ポスト・メッセージ・ハンドルを含
んでいる。同様に、アウトバウンド待ち行列の１つはフリー待ち行列に指定され、他のア
ウトバウンド待ち行列はポスト待ち行列に指定される。
２つのアウトバウンド待ち行列は、ローカル・プロセッサ２０２がアウトバウンド・メッ
セージをポスト待ち行列内にポストし、外部ホスト・プロセッサ２０１からアウトバウン
ド・フリー待ち行列内に戻ったフリー・メッセージを受信することを可能にする。２つの
インバウンド待ち行列は、バス・エージェント２０１がインバウンド・フリー待ち行列か
らフリー・メッセージ・バッファを獲得し、その後ローカル・プロセッサ２０２によって
処理するためにそのバッファをインバウンド・フリー待ち行列にポストすることを可能に
する。
円形待ち行列２０７のデータ記憶は、ローカル・メモリ２０６によって実施される。この
特定の実施形態では、待ち行列内の各エントリは、メッセージ・ハンドルである３２ビッ
ト・データ値である。さらに、待ち行列の読取りまたは書込みは、１つの待ち行列エント
リに正確にアクセスすることができる。
各円形待ち行列は、頭部ポインタおよび尾部ポインタを有する。待ち行列への書込みは、
待ち行列の頭部から行われ、読取りは、尾部から行われる。頭部ポインタおよび尾部ポイ
ンタは、ローカル・プロセッサ２０２上で動作しているソフトウェアまたはメッセージ・
ユニット２１０によって増分される。頭部ポインタおよび尾部ポインタがどのようにして
ローカル・プロセッサ２０２およびＭＵ２１０によって増分されるかに関する詳細につい
て、以下で説明する。
頭部ポインタおよび尾部ポインタは、それぞれの円形待ち行列内にオフセットされ、０か
ら円形待ち行列サイズ－１に及ぶ（すなわち、ポインタを０からラベル付けし始める）。
ポインタは、各待ち行列アクセスの後で増分される。頭部ポインタならびに尾部ポインタ
は、円形待ち行列サイズ（すなわち、待ち行列の終り）に達したときに０に丸められる。
メッセージ・ユニット２１０は、ある条件のもとで、ローカル・プロセッサ２０２に対し
て割込みを発生するか、またはＰＣＩバス割込み（すなわち、外部プロセッサに対する割
込み）を発生する。一般に、ポスト待ち行列が書き込まれたとき、メッセージがポストさ
れたターゲット・プロセッサを通知する割込みが発生する。
一実施形態では、各円形待ち行列のサイズは１６Ｋバイト（４０９６ハンドル）から２５
６Ｋバイト（６５５３６ハンドル）までである。さらに、この実施形態では、４つのすべ
ての待ち行列は、同じサイズであり、隣接している。したがって、円形待ち行列によって

10

20

30

40

50

(7) JP 3884073 B2 2007.2.21

円形待ち行列

必要とされるローカル・メモリの総量は、６４Ｋバイトから１Ｍバイトまでである。これ
らの待ち行列は、ローカル・メモリ２０６内に常駐し、待ち行列の頭部ポインタおよび尾
部ポインタは、ＭＵ２１０内のレジスタ内に常駐する。待ち行列サイズは、メッセージ・
ユニット構成レジスタ（ＭＵＣＲ）内の待ち行列サイズ・フィールドによって決定される
。ＭＵＣＲの可能な１つのフォーマットを表１に示す。また、この実施形態では、４つの
すべての待ち行列に対して１つのベース・アドレスがある。各待ち行列の開始アドレスは
、待ち行列ベース・アドレスおよび待ち行列サイズ・フィールドに基づいている。ベース
・アドレスは、これもＭＵ２１０内に常駐する待ち行列ベース・アドレス・レジスタ（Ｑ
ＢＡＲ）内に記憶される。ＱＢＡＲの可能な１つのフォーマットを表２に示す。第６図か
ら第９図に示す実施形態は、各待ち行列ごとに別個のベース・アドレスを含んでいる。
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
第４図は、本発明の４つの円形待ち行列を示す。ローカル・メモリ２０６内に常駐する２
つのアウトバウンド待ち行列４１０および４２０と、２つのインバウンド待ち行列４３０
および４４０がある。
ローカル・プロセッサ２０２は、アウトバウンド・ポスト待ち行列４２０の頭部に書込み
を行うことによってアウトバウンド・メッセージ４２２をポストする。ホスト・プロセッ
サ２０１は、アウトバウンド・ポスト待ち行列４２０の尾部の読取りを行うことによって
アウトバウンド・ポスト待ち行列４２０からポスト・メッセージを取り出す。
ホスト・プロセッサ２０１は、アウトバウンド・フリー待ち行列４１０の頭部に書込みを
行うことによってアウトバウンド・メッセージ・バッファ４１２を解放する。ローカル・
プロセッサ２０２は、アウトバウンド・フリー待ち行列４１０の尾部からフリー・メッセ
ージ・バッファ４１４を読み取る。
ホスト・プロセッサまたはバス・エージェント２０１は、インバウンド・ポスト待ち行列
４３０の頭部に書込みを行うことによってインバウンド・ポスト待ち行列４３０にインバ
ウンド・メッセージ４３２をポストする。ローカル・プロセッサ２０２は、インバウンド
・ポスト待ち行列４３０の尾部からこれらのポスト・メッセージを読み取る。ホスト・プ

10

20

30

40

50

(8) JP 3884073 B2 2007.2.21

ロセッサがインバウンド・ポスト待ち行列４３０に書込みを行ったとき、ローカル・プロ
セッサ２０２に対して割込み４３６が発生する。
ローカル・プロセッサ２０２によってアウトバウンド・ポスト待ち行列４２０に対してメ
ッセージがポストされたとき、ホスト・プロセッサ２０１に対して割込み４２６が発生す
る。ここでは、ＰＣＩバス仕様改訂２．０によって指定されている割込みを使用する。
ローカル・プロセッサ２０２は、インバウンド・フリー待ち行列４４０の頭部に書込みを
行うことによってこの待ち行列４４０にフリー・メッセージ・バッファ４４２を戻す。ホ
スト・プロセッサ／バス・エージェント２０１は、データ・パス４４４を介してインバウ
ンド・フリー待ち行列４４０の尾部から読取りを行うことによってフリー・メッセージ・
バッファを獲得する。
第５図は、アウトバウンド・フリー待ち行列５１０、アウトバウンド・ポスト待ち行列５
２０、インバウンド・ポスト待ち行列５３０、インバウンド・フリー待ち行列５４０を示
す。

アウトバウンド・フリー待ち行列（ＯＦＱ）５１０は、ローカル・プロセッサ２０２が使
用すべきバス・エージェント２０１によってそこに配置された（すなわち、解放された）
エンプティ・メッセージ用のハンドルを保持する。ホスト・プロセッサ２０１は、アウト
バウンド・ポート５１６内のレジスタに書込みを行うことによってＯＦＱ５１０に対して
メッセージ・バッファを解放する。ＯＦＱ５１０は、ローカル・プロセッサ２０２によっ
て待ち行列尾部から読み取られ、ホスト・プロセッサ２０１によって待ち行列頭部に書き
込まれる。頭部ポインタ（ＯＦＨＰ）５１２は、メッセージ・ユニット２１０によって維
持される。アウトバウンド・フリー待ち行列尾部ポインタ（ＯＦＴＰ）５１４は、ローカ
ル・プロセッサ２０２上で動作しているソフトウェアによって維持される。
アウトバウンド待ち行列ポート５１６にアクセスするＰＣＩ書込みトランザクションの場
合、ＭＵ２１０は、メッセージ・ハンドル（すなわち、フリー・メッセージ・バッファに
対するアドレス）を、アウトバウンド・フリー頭部ポインタ・レジスタ（ＯＦＨＰＲ）９
２６内に記憶された頭部ポインタ（ＯＦＨＰ）５１２によって示されたローカル・メモリ
２０６内の位置に書き込む。ローカル・メモリ・アドレスは、待ち行列ベース・アドレス
・レジスタ＋３＊待ち行列サイズ＋アウトバウンド・フリー頭部ポインタ・レジスタ（Ｏ
ＦＨＰＲ）９２６である。ＯＦＨＰＲの可能な１つのフォーマットを表３に示す。
アウトバウンド待ち行列ポート５１６に書き込まれたデータがローカル・メモリ２０６に
書き込まれたとき、ＭＵ２１０はＯＦＨＰ５１２を増分する。
データがローカル・メモリ２０６に書き込まれるまでＰＣＩ書込みトランザクションがＭ
Ｕ２１０によって受け取られ、かつＯＦＨＰ５１２が増分されたときから、インバウンド
待ち行列ポート５１６にアクセスしようと試みるＰＣＩトランザクションは、待ち状態を
挿入することによって遅延される。待ち状態を挿入している間にＰＣＩ待ち時間違反が発
生した場合、外部ＰＣＩエージェント２０１に再試行が通知される。
ローカル・プロセッサ２０２は、アウトバウンド・フリー待ち行列尾部ポインタ（ＯＦＴ
Ｐ）５１４によって示されたローカル・メモリ位置を読み取ることによってＯＦＱ５１０
からメッセージ・バッファ・ハンドルを取り出す。ローカル・メモリ・アドレスは、待ち
行列ベース・アドレス・レジスタ＋３＊待ち行列サイズ＋アウトバウンド・フリー尾部ポ
インタ・レジスタ（ＯＦＴＰＲ）９３８である。ＯＦＴＰＲの可能な１つのフォーマット
を表４に示す。次いで、ローカル・プロセッサ２０２は、（第９Ａ図に示される）アウト
バウンド・フリー尾部ポインタ・レジスタ（ＯＦＴＰＲ）９３８内のＯＦＴＰ５１４を増
分する。

10

20

30

40

(9) JP 3884073 B2 2007.2.21

アウトバウンド・フリー待ち行列

　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　

アウトバウンド・ポスト待ち行列（ＯＰＱ）５２０は、ホスト・プロセッサ２０１が取り
出し、処理するために、ローカル・プロセッサ２０２によってそこに配置されたポスト・
メッセージのハンドルを格納している。ホスト・プロセッサ２０１は、アウトバウンド待
ち行列ポート５１６内のレジスタの読取りを行うことによってＯＰＱ５２０からメッセー
ジを取り出す。ローカル・プロセッサ２０２は、待ち行列頭部に書込みを行うことによっ
てＯＰＱ５２０にメッセージを追加する。頭部ポインタ（ＯＰＨＰ）５２２は、ローカル
・プロセッサ２０２によって維持される。尾部ポインタ（ＯＰＴＰ）５２４は、メッセー
ジ・ユニット２１０によって維持される。
アウトバウンド待ち行列ポート５１６にアクセスするＰＣＩ読取りトランザクションの場
合、ＭＵ２１０は、ＯＰＴＰ５２４によって示されたローカル・メモリ位置においてデー
タをプリフェッチする。ローカル・メモリ・アドレスは、待ち行列ベース・アドレス・レ
ジスタ＋２＊待ち行列サイズ＋アウトバウンド・ポスト尾部ポインタ・レジスタ（ＯＰＴ
ＰＲ）８２６（第８Ａ図に示す）である。ＯＰＱ５２０がエンプティでない（すなわち、
頭部ポインタ５２２と尾部ポインタ５２４が等しくない）場合、メッセージ・ハンドルが
要求側プロセッサ２０１に供給される。ＯＰＱ５２０がエンプティである（すなわち、頭
部ポインタ５２２と尾部ポインタ５２４が等しい）場合、－１の値（ＦＦＦＦ．ＦＦＦＦ
Ｈ）が要求側プロセッサ２０１に供給される。ＯＰＱ５２０待ち行列がエンプティでなく
、かつＭＵ２１０が尾部におけるデータのプリフェッチに成功した場合、ＭＵ２１０は、
ＯＰＴＰＲ８２６内の尾部ポインタ（ＯＰＴＲ）５２４を増分する。
上述のように、プリフェッチ機構は、頭部ポインタ５２２と尾部ポインタ５２４が等しい
（すなわち、ＯＰＱ５２０がエンプティである）場合、－１の値（ＦＦＦＦ．ＦＦＦＦＨ
）を（以下で第８Ａ図に関して説明する）プリフェッチ・レジスタ８０６内にロードする
。メッセージがＯＰＱ５２０に追加され、それがエンプティでなくなったときにＯＲＲ８

10

20

30

40

50

(10) JP 3884073 B2 2007.2.21

アウトバウンド・ポスト待ち行列

０６を更新するために、ＭＵ２１０内のプリフェッチ機構は、ＯＲＲ８０６が（ＦＦＦＦ
．ＦＦＦＦＨ）を含んでいる場合、自動的にプリフェッチを開始し、アウトバウンド・ポ
スト頭部ポインタ・レジスタ（ＯＰＨＰＲ）４２２がローカル・プロセッサ２０２によっ
て書き込まれる。ＯＰＨＰＲの可能な１つのフォーマットを表５に示す。ローカル・プロ
セッサ２０２は、ローカル・プロセッサ２０２がＯＰＱ５２０にメッセージを追加したと
きＯＰＨＰＲ４２２を更新する。
プリフェッチは、外部バス・エージェント２０１から見てアトミックに見えなければなら
ない。プリフェッチが開始されたとき、アウトバウンド待ち行列ポート５１６内の（以下
で第８Ａ図に関して説明する）アウトバウンド検索レジスタ８０６にアクセスしようと試
みるＰＣＩトランザクションは、プリフェッチが完了するまで待ち状態を挿入することに
よって遅延される。待ち状態を挿入している間にバス待ち時間違反が発生した場合、外部
バス・エージェント２０１に再試行信号が通知される。
ＯＰＨＰ５２２がＯＰＴＰ５２４に等しくない場合、ホスト・プロセッサ２０１に対して
ＰＣＩ割込みが発生する。ＯＰＨＰ５２２がＯＰＴＰ５２４に等しい場合、割込みは発生
しない。アウトバウンド・ドーベル・レジスタ内のアウトバウンド・ポスト待ち行列割込
みビットは、ＯＰＨＰＲ８３８の値とＯＰＴＰＲ８２８の値との比較の状態を示す。頭部
ポインタ５２２と尾部ポインタ５２４が等しい場合、割込みはクリアされる。これは、ホ
スト・プロセッサ２０１がＯＰＱ５２０をエンプティにするために十分な待ち行列エント
リを読み取る場合に起こる。割込みは、ソフトウェアによって制御されるアウトバウンド
・ドーベル・マスク・レジスタによってマスクされる。
ローカル・プロセッサ２０２は、頭部ポインタ（ＯＰＨＰ）５２２によって示されたロー
カル・メモリ位置にデータを書き込むことによってメッセージをＯＰＱ５２０内に入れる
。ローカル・メモリ・アドレスは、待ち行列ベース・アドレス・レジスタ＋アウトバウン
ド・ポスト頭部ポインタ・レジスタ８３８である。ＯＰＴＰＲの可能な１つのフォーマッ
トを表６に示す。次いで、ローカル・プロセッサ２０２は、アウトバウンド・ポスト頭部
ポインタ・レジスタ８３８内のＯＰＨＰ５２２を増分する。
　
　
　
　
　
　
　
　
　
　
　
　
　

10

20

30

(11) JP 3884073 B2 2007.2.21

　
　
　
　
　
　
　
　
　
　
　
　
　

インバウンド・ポスト待ち行列（ＩＰＱ）５３０は、ローカル・プロセッサ２０２が処理
するために、バス・エージェント２０１によってそこに配置されたポスト・メッセージの
ハンドルを保持する。ホスト・プロセッサ２０１またはバス・エージェントは、インバウ
ンド待ち行列ポート５３６内のレジスタに書込みを行うことによってＩＰＱ５３０にメッ
セージをポストする。ＩＰＱ５３０は、ローカル・プロセッサ２０２によって待ち行列尾
部から読み取られ、外部バス・エージェント２０１によって待ち行列頭部に書き込まれる
。尾部ポインタ（ＩＰＴＰ）５３４は、ローカル・プロセッサ２０２上で動作しているソ
フトウェアによって維持される。頭部ポインタ（ＩＰＨＰ）５３２は、ＭＵ２１０によっ
て維持される。
インバウンド待ち行列ポート（ＩＱＰ）５３６にアクセスするＰＣＩ書込みトランザクシ
ョンの場合、ＭＵ２１０は、（第７Ａ図に示される）インバウンド・ポスト頭部ポインタ
・レジスタ（ＩＰＨＰＲ）７２４内に記憶されたＩＰＨＰ５３２によって示されたローカ
ル・メモリ位置にデータを書き込む。ローカル・メモリ・アドレスは、待ち行列ベース・
アドレス・レジスタ＋待ち行列サイズ＋インバウンド・ポスト頭部ポインタ・レジスタ（
ＩＰＨＰＲ）７２４である。ＩＰＨＰＲの可能な１つのフォーマットを表７に示す。ＩＰ
ＴＰＲの可能な１つのフォーマットを表８に示す。
インバウンド待ち行列ポート５３６に書き込まれたデータがローカル・メモリ２０６に書
き込まれたとき、ＭＵ２１０はＩＰＨＰＲ７２４を増分する。データがローカル・メモリ
２０６に書き込まれ、ＩＰＨＰＲ７２４が増分されたとき、ＭＵ２１０は、ローカル・プ
ロセッサ２０２に対して割込みを発生する。この割込みは、インバウンド・ドーベル・レ
ジスタのインバウンド・ポスト待ち行列割込みビットを設定することによって記録される
。割込みは、ソフトウェアによって制御されるインバウンド・ドーベル・マスク・レジス
タによってマスクされる。
　
　
　
　
　
　
　
　
　
　
　
　
　

10

20

30

40

50

(12) JP 3884073 B2 2007.2.21

インバウンド・ポスト待ち行列

　
　
　
　
　
　
　
　
　
　
　
　
　

インバウンド・フリー待ち行列５４０は、バス・エージェント２０１が使用するために、
ローカル・プロセッサ２０２によってそこに配置されたエンプティ・メッセージ・バッフ
ァのハンドルを保持する。ホスト・プロセッサ２０１は、インバウンド待ち行列ポート５
３６内のレジスタの読取りを行うことによってＩＦＱ５４０からメッセージ・バッファを
割り振られる。ＩＦＱ５４０は、外部バス・エージェント２０１によって待ち行列尾部か
ら読み取られ、ローカル・プロセッサ２０２によって待ち行列頭部に書き込まれる。頭部
ポインタ（ＩＰＨＰ）５４２は、ローカル・プロセッサ２０２上で動作しているソフトウ
ェアによって維持される。尾部ポインタ（ＩＦＴＰ）５４４は、ＭＵ２１０によって維持
される。
インバウンド待ち行列ポート（ＩＱＰ）５３６にアクセスするＰＣＩ読取りトランザクシ
ョンの場合、ＭＵ２１０は、ＩＦＴＰ５４４によって示されたローカル・メモリ位置にお
いてデータをプリフェッチする。ローカル・メモリ・アドレスは、尾部ポインタを記憶す
る待ち行列ベース・アドレス・レジスタ＋インバウンド・フリー尾部ポインタ・レジスタ
（ＩＦＴＰＲ）６２６である。ＩＦＴＰＲの可能な１つのフォーマットを表１０に示す。
ＩＦＱ５４０がエンプティでない（すなわち、頭部ポインタと尾部ポインタが等しくない
）場合、ホスト・プロセッサまたはバス・エージェントによる次のアクセスのためにＩＦ
ＴＰ５４４によって示されたデータが供給される。ＩＦＱ５４０がエンプティである（す
なわち、頭部ポインタと尾部ポインタが等しい）場合、－１の値（ＦＦＦＦ．ＦＦＦＦＨ
）が要求側ホスト・プロセッサまたはバス・エージェントに供給される。ＩＦＱ５４０が
エンプティでなく、かつＭＵ２１０がＩＦＴＰ５４４によって示されたデータをプリフェ
ッチした場合、ＭＵ２１０は、インバウンド・フリー尾部ポインタ・レジスタ（ＩＦＴＰ
Ｒ）６２６内のポインタの値を増分する（第６Ａ図に示す）。
ＰＣＩ読取りアクセスに対する待ち時間を短縮するために、ＭＵ２１０は、ＩＦＱ５４０
へのアクセスを予測するプリフェッチ機構を実施する。ＭＵ２１０は、ＩＦＱ５４０の尾
部からデータをプリフェッチし、それを内部プリフェッチ・レジスタ内にロードする。Ｐ
ＣＩ読取りアクセスが行われたとき、データは、プリフェッチ・レジスタから直接読み取
られる。
プリフェッチ機構は、頭部ポインタと尾部ポインタが等しい（すなわち、ＩＦＱ５４０が
エンプティである）場合、－１の値（ＦＦＦＦ．ＦＦＦＦＨ）をプリフェッチ・レジスタ
８０６内にロードする。メッセージがＩＦＱ５４０に追加され、それがエンプティでなく
なったときにプリフェッチ・レジスタを更新するために、プリフェッチ機構は、プリフェ
ッチ・レジスタがＦＦＦＦ．ＦＦＦＦＨを含んでいる場合、自動的にプリフェッチを開始
し、インバウンド・フリー頭部ポインタ・レジスタ（ＩＦＨＰＲ）６３８が書き込まれる
。ＩＦＨＰＲの可能な１つのフォーマットを表９に示す。ローカル・プロセッサ２０２上
で動作しているソフトウェアは、ＩＦＨＰ５４２がＩＦＱ５４０にメッセージを追加した
ときにＩＦＨＰ５４２を更新する。

10

20

30

40

50

(13) JP 3884073 B2 2007.2.21

インバウンド・フリー待ち行列

プリフェッチは、外部バス・エージェント２０１から見てアトミックに見えなければなら
ない。プリフェッチが開始されたとき、インバウンド待ち行列ポート５３６内のインバウ
ンド・フリー・レジスタにアクセスしようと試みるＰＣＩトランザクションは、プリフェ
ッチが完了するまで待ち状態を挿入することによって遅延される。待ち状態を挿入してい
る間にＰＣＩ待ち時間違反が発生した場合、ＭＵ２１０によって外部バス・エージェント
２０１に再試行が通知される。
ローカル・プロセッサ２０２は、頭部ポインタ（ＩＦＨＰ）５４２によって示されたロー
カル・メモリ位置にデータを書き込むことによってメッセージをＩＦＱ５４０内に入れる
。ローカル・メモリ・アドレスは、待ち行列ベース・アドレス・レジスタ＋インバウンド
・フリー頭部ポインタ・レジスタ（ＩＦＨＰＲ）６３８である。次いで、ローカル・プロ
セッサ２０２上で動作しているソフトウェアは、ＩＦＨＰＲ６３８を増分する。
インバウンド・フリー表
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
　
第６Ａ図は、本発明がどのようにしてＰＣＩバス上のバス・エージェントにフリー・メッ
セージ・バッファを割り振るのかを示す。ＭＵ２１０内で実現される。データは、ローカ
ル・メモリ２０６内に配置されたインバウンド・フリー待ち行列（ＩＦＱ）５４０からロ
ーカル・データ・バスを介してインバウンド・フリー・レジスタ（ＩＦＲ）６０６まで移
動する。このコンテキストでは、データは、特にメッセージ・バッファのアドレス（すな
わち、メッセージ・ハンドル）を示す。その後、データは、インバウンド・フリー・レジ
スタ６０６からデータパス６０８を介してＡＴＵ２１８まで移動し、その後データパス６
１０を介してＰＣＩバス２０８上のバス・エージェントまで移動する。
ＭＵ２１０は、いくつかの制御信号を発生し、受信するフリー・メッセージ・バッファを
割り振るインバウンド・フリー状態機械６１２を含んでいる。インバウンド・フリー状態
機械６１２の状態図について、第６Ｂ図に関して詳細に説明する。
ＩＦＱ６０２にメッセージ・バッファを要求するために、バス・エージェントは、ＰＣＩ

10

20

30

40

50

(14) JP 3884073 B2 2007.2.21

バス２０８およびデータパス６１０を介して読取りトランザクションをＡＴＵ２１８に送
る。インバウンド・フリー・レジスタ６０６のアドレスを指定する読取りトランザクショ
ンは、ＡＴＵ２１８によって検出される。ＡＴＵ２１８が、バス・エージェントがインバ
ウンド・フリー・レジスタ６０６を読み取ることを望んでいることを検出した後、ＡＴＵ
は、ＩＦＲ＿Ｒｅａｄｙ信号６１４の状態をテストする。ＩＦＲ＿Ｒｅａｄｙ信号６１４
がアサートされた場合、ＡＴＵは、パス６０８を介してＩＦＲ６０６内のデータをＡＴＵ
２１８に供給するＰＣＩトランザクションを完了し、状態機械６１２に対してＲｅａｄ＿
Ｉｎｂｏｏｕｎｄ＿Ｆｒｅｅ信号６１６を発生する。
ＩＦＲ＿Ｒｅａｄｙ信号６１４がアサート解除された場合（すなわち、状態機械６１２が
準備できていない場合）、ＡＴＵ２１８は、待ち状態を挿入し、ＩＦＲ＿Ｒｅａｄｙ信号
６１４がアサートされるまでＲｅａｄ＿ＩＦＲ信号６１６を送らない。ＩＦＲ＿Ｒｅａｄ
ｙ信号６１４は、ＩＦＲ６０６内に状態データがある（すなわち、状態機械６１２がまだ
ＩＦＲ６０６へのデータのプリフェッチを完了していない）場合、アサート解除される。
状態機械６１２は、Ｒｅａｄ＿ＩＦＲ信号６１６を受信した後、ローカル・バス・アービ
タ２４０にＭｅｍｏｒｙ＿Ｒｅａｄ＿Ｒｅｑｕｅｓｔ信号６１８を送り、ＩＦＲ＿Ｒｅａ
ｄｙ信号６１４をアサート解除する。許可信号６３２に基づいて、ＭＵ２１０は、単にＩ
ＦＱ６０２の適切な尾部アドレスをローカル・アドレス・バス６３０にアサートする。次
いで、データがローカル・データ・バス６０４を介してローカル・メモリ２０６からＩＦ
Ｒ６０６に転送される（すなわち、ＩＦＱ６０２の尾部において値を読み取る）。ＭＵ２
１０は、ＩＦＱ６０２の適切な尾部アドレスを計算する加算器６２４を含んでいる。加算
器６２４は、インバウンド・フリー尾部ポインタ・レジスタ（ＩＦＴＰＲ）６２６および
インバウンド・フリーベースレジスタ（ＩＦＢＲ）６２８の内容の合計を発生する。
ＩＦＱ５４０の尾部ポインタによって示されたデータがローカル・データ・バス６０４上
にきた後、状態機械６１２は、ローカル・データ・バス６０４上のデータをＩＦＱ６０６
内にラッチするためにラッチ信号６３４を送り、増分信号６４４をＩＦＴＰＲ６２６に送
る。したがって、次の使用できるメッセージ・バッファのプリフェッチが行われた。
ＭＵ２１０はまた、インバウンド・フリー頭部ポインタ・レジスタ（ＩＦＨＰＲ）６３８
内の値とインバウンド・フリー尾部ポインタ・レジスタ（ＩＦＴＰＲ）６２６内の値とを
比較するコンパレータ６３６を含んでいる。これら２つの値が等しい場合、コンパレータ
６３６は、エンプティ信号６４０を発生する（すなわち、待ち行列内にフリー・メッセー
ジ・バッファがない）。このエンプティ信号６４０は、状態機械６１２に送られ、状態機
械６１２にプリセット信号をアサートさせる。プリセット信号６４２により、ＩＦＲ６０
６の内容がエンプティ指示に対して予約された（すなわち、有効なバッファアドレスでな
い）所定の値に設定される。バス・エージェントは、ＩＦＲ６０６を読み取る場合、ＩＦ
Ｒ６０６内に記憶されたプリフェッチされたデータか、またはＩＦＱ６０２がエンプティ
であることを示すプリセット値に直ちにアクセスする
第６Ｂ図は、インバウンド・フリー状態機械６１２の状態図を示す。状態機械６１２は、
エンプティ状態６５０、プリフェッチ状態６５２、プライム状態６５６の３つの状態を有
する。状態機械６１２は、エンプティ信号６５４がアサート解除されるまでエンプティ状
態６５０にある。ｎｏｔ＿Ｅｍｐｔｙ信号は、状態機械６１２をエンプティ状態６５０か
らプリフェッチ状態６５２に遷移させ、状態機械６１２は、Ｍｅｍｏｒｙ＿Ｒｅａｄ＿Ｒ
ｅｑｕｅｓｔ信号６１８を発生し、ＩＦＲ＿Ｒｅａｄｙ信号６１４をアサート解除する。
状態機械６１２は、許可信号６３２に基づいてプリフェッチ状態６５２からプライム状態
６５６に遷移する。許可信号６３２を受信すると、状態機械６１２は、Ｌａｔｃｈ＿ＩＦ
Ｒ信号６３４、Ｉｎｃｒｅｍｅｎｔ＿ＩＦＴＰＲ信号６４４を出力し、ＩＦＲ＿Ｒｅａｄ
ｙ信号６１４をアサートする。状態機械６１２は、Ｒｅａｄ＿ＩＦＲ信号６１６が受信さ
れたとき、プライム状態６５６からプリフェッチ状態６５２に遷移し、エンプティ信号６
５４はアサートされない。この遷移はまた、Ｍｅｍｏｒｙ＿Ｒｅａｄ＿Ｒｅｑｕｅｓｔ信
号６１８を発生し、ＩＦＲ＿Ｒｅａｄｙ信号６１４をアサートする。
状態機械６１２は、Ｒｅａｄ＿ＩＦＲ信号６１６が受信されたとき、プライム状態６５６

10

20

30

40

50

(15) JP 3884073 B2 2007.2.21

からエンプティ状態６５０に遷移し、エンプティ信号６４０はアサートされる。この遷移
は、プリセット信号６４２を発生させる。
第７Ａ図は、本発明がどのようにしてバス・エージェントによって生成されたメッセージ
を、ローカル・メモリ２０６内に配置されたインバウンド・ポスト待ち行列（ＩＰＱ）５
３０内にポストするかを示す。
バス・エージェントがインバウンド・ポスト・レジスタ（ＩＰＲ）７０６に書込みを行い
たい場合、データは、ＰＣＩバス２０８からデータパス７０２を介してＡＴＵ２１８まで
進み、次いでデータパス７０４を介してＩＰＲ７０６に進む。データは、ＩＰＲ７０６内
にラッチされた後、ローカル・データ・バス６０４を介してローカル・メモリ２０６内の
ＩＰＱ５３０内に転送される。
ＡＴＵ２１８は、ＩＰＲ＿Ｒｅａｄｙ信号７１６の状態をテストする。ＩＰＲ＿Ｒｅａｄ
ｙ信号７１６がアサートされた場合、ＡＴＵ２１８は、データをＩＰＲ７０６に供給し、
状態機械７１２に対してＷｒｉｔｅ＿ＩＰＲ信号７１８を発生することによってＰＣＩト
ランザクションを完了する。
ＩＰＲ＿Ｒｅａｄｙ信号７１６がアサートされない場合、ＡＴＵ２１８は、待ち状態を挿
入し、ＩＰＲ＿Ｒｅａｄｙ信号７１６がアサートされたときＰＣＩトランザクションを完
了する。要求側プロセスは、バスの制御権を保持し、ＰＣＩ待ち時間ルールが違反されな
ければＰＣＩトランザクションは完了する。
ＡＴＵ２１８はまた、ＩＰＲ＿Ｒｅｔｒｙ信号７１４の状態をテストする。ＩＰＲ＿Ｒｅ
ｔｒｙ信号７１４がアサートされた場合、ＰＣＩトランザクションは完了せず、要求側プ
ロセスは、再試行を通知され、バスを解放し後で再度試行する。
ＭＵ２１０のインバウンド・ポスト状態機械７１２について、第７Ｂ図に示される状態図
によって詳細に説明する。状態機械７１２は、アイドル状態７５０、ポスト状態７５２、
フル状態７５４の３つの状態を有する。状態機械７１２は、Ｗｒｉｔｅ＿Ｉｎｂｏｕｎｄ
＿Ｐｏｓｔ信号７１８がＡＴＵ２１８によってアサートされたときアイドル状態７５０か
らポスト状態７５２に遷移する。Ｗｒｉｔｅ＿Ｉｎｂｏｕｎｄ＿Ｐｏｓｔ信号が状態機械
７１２によって受け取られたとき、状態機械７１２は、Ｍｅｍｏｒｙ＿Ｗｒｉｔｅ＿Ｒｅ
ｑｕｅｓｔ信号７２０を発生し、ＩＰＲ＿Ｒｅａｄｙ信号７１６をアサート解除する。状
態機械７１２は、状態機械７１２がローカル・バス・アービタ２４０から許可信号７２８
を受信したときポスト状態７５２からアイドル状態７５０に戻る。許可信号７２８を受信
し、ＩＰＲデータ６０４をメモリに書き込んだとき、状態機械７１２は、インバウンド・
ポスト頭部ポインタ・レジスタ（ＩＰＨＰＲ）７２４に対して増分信号７４０を発生し、
またＩＰＲ＿Ｒｅａｄｙ信号７１６をアサートする。
状態機械７１２は、コンパレータ７３４からフル信号７３８を受信したときアイドル状態
７５０からフル状態７５４に遷移する。フル信号７３８は、インバウンド・ポスト尾部ポ
インタ・レジスタ（ＩＰＴＰＲ）７３０およびインバウンド・ポスト頭部ポインタ・レジ
スタ（ＩＰＨＰＲ）７２４の内容がインバウンド・ポスト待ち行列（ＩＰＱ）５３０がフ
ルであることを示す場合、コンパレータ７３４によって生成される。フル信号７３８を受
信したとき、状態機械７１２は、ＩＰＲ＿Ｒｅｔｒｙ信号７１４をＡＴＵ２１８にアサー
トする。
状態機械７１２は、フル信号７５６がフル信号７５６（すなわち、ｎｏｔ＿Ｆｕｌｌ）に
アサート解除されたときフル状態７５４からアイドル状態７５０に遷移する。ｎｏｔ＿Ｆ
ｕｌｌ信号を受信したとき、状態機械７１２は、ＩＰＲ＿Ｒｅｔｒｙ信号７１４をアサー
ト解除する。
コンパレータ７３４はまた、入出力プロセッサに対してローカル割込みを発生する割込み
発生論理（図示せず）に対してｎｏｔ＿Ｅｍｐｔｙ信号７３６を発生する。ｎｏｔ＿Ｅｍ
ｐｔｙ信号７３６を受信したときにローカル割込みを発生する論理は、当技術分野におい
て周知である。この論理はまた、割込みレジスタを含んでおり、またソフトウェアによっ
て制御され、割込みを選択的にマスクするマスクレジスタを含んでいる。
増分信号７４０は、ＩＰＨＰＲ７２４に送られ、インバウンド・ポスト頭部ポインタを増

10

20

30

40

50

(16) JP 3884073 B2 2007.2.21

分する。加算器７２２は、ＩＰＨＰＲ７２４の値７２５およびＩＰＢＲ７２６の値７２７
を使用して、新しいインバウンド・ポスト頭部ポインタ７２３を計算する。このアドレス
７２３は、ローカル・バス（すなわち、ローカル・アドレス・バス６３０）を介してロー
カル・メモリにアクセスするためにメモリ・コントローラ２０５に送られる。
前に説明したように、ＭＵ２１０は、ローカル・アドレス・バス６３０上のアドレス７２
３をアサートし、ＩＰＲ７０６内でＩＰＱ５３０の頭部にラッチされたデータ（すなわち
、メッセージ・バッファのアドレス）の転送を可能にする。
第８Ａ図は、アウトバウンド検索状態機械８１２、および本発明がどのようにしてホスト
・プロセッサまたはバス・エージェントがアウトバウンド・ポスト待ち行列５２０（ＯＰ
Ｑ）からポスト・メッセージを取り出すことを可能にするかを示す。ホスト・プロセッサ
またはバス・エージェントがポスト・メッセージ・ハンドルを取り出したとき、データ（
すなわち、メッセージ・バッファのアドレス）は、ローカル・データ・バス６０４を介し
てローカル・メモリ２０６内のＯＰＱ５２０からアウトバウンド検索レジスタ（ＯＲＲ）
８０６に進む。次いで、データは、ＯＲＲ８０６からデータパス８０８を介してＡＴＵ２
１８のアウトバウンド部分に送られる。次いで、データは、データパス８１０およびＰＣ
Ｉバス２０８を介してそれぞれホスト・プロセッサまたはバス・エージェントに送られる
。状態機械８１２は、ＯＲＲ８０６内の状態データを示すためにＯＲＲ＿Ｒｅａｄｙ８１
４をアサート解除する。ＯＲＲ＿Ｒｅａｄｙ信号８１４がアサート解除されたとき、ＡＴ
Ｕ２１８は、ＯＲＲ＿Ｒｅａｄｙ信号８１４がアサートされるまで待ち状態を挿入する。
これは、ＯＲＲ８０６が有効なデータであることを示す。
ＭＵ２１０のアウトバウンド検索状態機械８１２について、第８Ｂ図に示される状態図に
よって詳細に説明する。アウトバウンド検索状態機械８１２は、エンプティ状態８５０、
プリフェッチ状態８５２、プライム状態８５６の３つの状態を有する。アウトバウンド検
索状態機械８１２は、エンプティ信号８４０がアサート解除されたときエンプティ状態８
５０からプリフェッチ状態８５２に遷移する。それに応答して、アウトバウンド検索状態
機械８１２は、Ｍｅｍｏｒｙ＿Ｒｅａｄ＿Ｒｅｑｕｅｓｔ８１８をローカル・バスアービ
トレーションユニット２４０に対してアサートし、許可信号８３２を待っている間、ＯＲ
Ｒ＿Ｒｅａｄｙ信号８１４をアサート解除する。許可信号８３２を待っている間、加算器
８２４は、次のメッセージのアドレス（すなわち、尾部ポインタ）を計算し、このアドレ
スをローカル・アドレス・バス６３０上に配置する。
状態機械８１２は、許可信号８３２に基づいてプリフェッチ状態８５２からプライム状態
８５６に遷移する。メモリ・コントローラ２０５は、アドレス８２５を使用し、ＯＰＱ５
２０から適切なメッセージ・ハンドルを読み取る。このメッセージ・ハンドル（すなわち
、ポインタ）は、ローカル・アドレス・バス６０４上に配置され、ＯＲＲ８０６に転送さ
れる。次いで、状態機械８１２は、ＯＰＱ５２０からデータをＯＲＲ８０６内にラッチす
るラッチ＿ＯＲＲ８３４を発生し、またＯＰＴＰＲ８２６内に記憶されたＯＰＱ５２０の
尾部ポインタを増分するＩｎｃｒｅｍｅｎｔ＿ＯＦＴＰＲ信号８４４を発生する。このプ
リフェッチが完了し、新しいデータがＯＲＲ８０６内にラッチされた後、状態機械８１２
は、ＰＣＩバス２０８からの他のトランザクションを完了する準備ができていることをＡ
ＴＵ２１８に通知する前にＯＲＲ＿Ｒｅａｄｙ信号８１４をアサートする。
状態機械８１２は、Ｒｅａｄ＿ＯＲＰ信号８１６が発生したとき、プライム状態８５６か
らプリフェッチ状態８５２に遷移し、エンプティ信号８４０はアサートされない。それに
応答して、状態機械８１２は、Ｍｅｍｏｒｙ＿Ｒｅａｄ＿Ｒｅｑｕｅｓｔ信号８１８をロ
ーカル・バス・アービタ２４０に対してアサートし、ＡＴＵ２１８に対してＯＲＲ＿Ｒｅ
ａｄｙ信号８１４をアサート解除する。その結果、後のトランザクションは、プリフェッ
チが完了するまでＯＲＲ８０６の内容を読み取らない。
状態機械８１２は、エンプティ信号８４０がアサートされたときにアサートされたＲｅａ
ｄ＿ＯＲＰ信号を検知したときにプライム状態８５６からエンプティ状態８５０に遷移す
る。それに応答して、状態機械８１２は、プリセット信号８４２をアサートする。プリセ
ット信号８４２により、ＯＰＱ５２０に読取りを要求しているトランザクションにＯＰＱ

10

20

30

40

50

(17) JP 3884073 B2 2007.2.21

５２０がエンプティであることが通知されるようにＯＲＲ８０６の内容がエンプティ指示
に対して予約された値に設定される。
コンパレータ８３６がＯＰＨＰＲ８３８とＯＰＴＰＲ８２６の内容を比較し、各値が等し
い場合、エンプティ信号８４０はアサートされる。ｎｏｔ＿Ｅｍｐｔｙ　ＯＰＱ５２０（
すなわち、ｎｏｔ＿Ｅｍｐｔｙ）は、ホスト・プロセッサ２０１が処理するために保留さ
れているメッセージがあることを示す。本発明は、ＰＣＩバス仕様リリース２．０に指定
されている割込み線を介してホスト・プロセッサ２０１に対して割込みを発生する論理（
図示せず）を含んでいる。
第９Ａ図および第９Ｂ図は、アウトバウンド解放状態機械９１２を示す。ホスト・プロセ
ッサ２０１は、メッセージを処理した後、データ・バス９０４を通ってＰＣＩバス２０８
を介してフリー・メッセージ・バッファポインタをＡＴＵ２１８に戻し、アウトバウンド
解放レジスタ（ＯＲＬＳＲ）９０６内にラッチされる。次いで、フリー・メッセージ・バ
ッファ・ハンドルは、アウトバウンド解放レジスタＯＲＬＳＲ９０６からローカル・デー
タ・バス６０４を介してアウトバウンド・フリー待ち行列（ＯＦＱ）５１０に送られる。
フリー・メッセージ・バッファを解放するために、ホスト・プロセッサ２０１は、単に１
つのバストランザクションサイクル中にそのフリー・メッセージ・バッファのアドレスを
ＯＲＬＳＲ９０６に書き込む。
ＡＴＵ２１８は、ＯＲＬＳＲ＿Ｒｅｔｒｙ信号９１６およびＯＲＬＳＲ＿Ｒｅｔｒｙ信号
９１４の状態をテストする。ＯＲＬＳＲ＿Ｒｅｔｒｙ信号９１４がアサート解除された場
合、ＰＣＩトランザクション（すなわち、ＯＲＬＳＲ９０６への書込み）は完了しない。
要求側プロセスは再試行を通知され、要求側プロセスは、バスの制御権を解放し、後で再
度試行する。ＯＲＬＳＲ＿Ｒｅｔｒｙ信号９１６がアサート解除された場合、ＡＴＵ２１
８は、ＯＲＬＳＲ＿Ｒｅｔｒｙ信号９１６がアサートされるまで待ち状態を挿入する。Ｏ
ＲＬＳＲ＿Ｒｅｔｒｙ信号９１６がアサートされたとき、ＡＴＵ２１８は、状態機械９１
２に対してＷｒｉｔｅ＿ＯＲＬＳＲ信号９１８を発生し、データをＯＲＬＳＲ９０６内に
ラッチする。
第９Ｂ図は、アウトバウンド解放状態機械９１２の状態図を示す。状態機械９１２は、フ
ル状態９５４、アイドル状態９５０、ポスト状態９５２の３つの状態を有する。状態機械
９１２は、フル信号９４０がコンパレータ９３６によってアサートされたときアイドル状
態９５０からフル状態９５４に遷移する。このフル信号９４０に応答して、状態機械９１
２は、ＡＴＵ２１８に対してＯＲＬＳＲ＿Ｒｅｔｒｙ信号９１４をアサートする。ＯＲＬ
ＳＲ＿Ｒｅｔｒｙ信号９１４が発生したとき、ＯＲＬＳＲ９０６に対する書込みトランザ
クションを示すプロセスは、後で再度試行するよう通知される。
状態機械９１２は、フル信号９４０がアサート解除されたときフル状態９５４からアイド
ル状態９５０に遷移する。アウトバウンド・フリー待ち行列ＯＦＱ５１０がフルでない場
合、状態機械９１２は、ＯＲＬＳＲ＿Ｒｅｔｒｙ信号９１４をアサート解除する（すなわ
ち、ＯＦＱ５１０内に追加のフリー・メッセージ・ハンドル用の空きがある）。
状態機械９１２は、ＡＴＵ２１８からＷｒｉｔｅ＿ＯＲＬＳＲ信号９１８を受信したとき
アイドル状態９５０からポスト状態９５２に遷移する。Ｗｒｉｔｅ＿ＯＲＬＳＲ信号９１
８はまた、フリー・メッセージ・ハンドルをＯＲＬＳＲ９０６内にラッチする役目をする
。Ｗｒｉｔｅ＿ＯＲＬＳＲ信号９１８がアサートされたことに応答して、状態機械９１２
は、ローカル・バス・アービタ２４０に対してＭｅｍｏｒｙ＿Ｗｒｉｔｅ＿Ｒｅｑｕｅｓ
ｔ信号９１８をアサートする。アービタからの許可信号９３２を待つ。次のフリー・メッ
セージ・ハンドルを書き込むべきＯＦＱ５１０内の次の位置を計算する。状態機械９１２
はまた、後のトランザクションがＯＲＬＳＲ９０６内にラッチされているデータを上書き
するのを防ぐためにＯＲＬＳＲ＿Ｒｅｔｒｙ信号９１６をアサート解除する。
状態機械９１２は、ローカル・バス・アービタ２４０から許可信号９３２を受信したとき
ポスト状態９５２からアイドル状態９５０に遷移する。それに応答して、アウトバウンド
解放状態機械９１２は、Ｉｎｃｒｅｍｅｎｔ＿ＯＦＨＰＲ信号９４４を介してＯＦＨＰＲ
９２６内の頭部ポインタを増分する。状態機械９１２はまた、すでにＯＲＬＳＲ９０６の

10

20

30

40

50

(18) JP 3884073 B2 2007.2.21

内容を記憶していること、および次のフリー・メッセージ・ハンドルを記憶すべきＯＦＱ
アドレスを計算したことをＡＴＵ２１８に示すＯＲＬＳＲ＿作業可能信号９１６をアサー
トし、ＯＲＬＳＲ９０６への次の書込みの準備ができる。
要約すると、ホスト・プロセッサは、そのハンドルをＯＲＬＳＲ９０６に書き込むことに
よってＯＦＱ５１０に対してフリー・メッセージ・バッファを解放する。ＯＦＱ５１０が
フルである場合、要求側プロセスは、後で再試行するよう通知される。ＯＦＱ５１０がフ
ルでない場合、フリー・メッセージ・バッファのハンドルはＯＲＬＳＲ９０６内にラッチ
される。次いで、状態機械９１２は、ローカル・バスへのアクセス権を得るためにローカ
ル・バス・アービタ２４０からの許可信号９３２を待つ。ローカル・バスの制御権が付与
された後、状態機械９１２は、前に計算した頭部ポインタ／アドレスによって示された位
置においてＯＲＬＳＲ９０６内にラッチされたデータをＯＦＱ５１０に転送する。
以上、遠隔プロセスがセマフォの使用またはバスのロックなしにメッセージ・バッファを
割り振り、次いでメッセージ・バッファを作業待ち行列にポストすることを可能にする方
法および装置について説明した。
さらに、作業待ち行列からメッセージを取り出し、メッセージがホスト・プロセッサによ
って処理された後でメッセージをフリー待ち行列に解放する方法および装置について説明
した。
本発明はまた、スケーラビリティ、フレキシビリティ、および他のプラットフォームとの
互換性を提供する。例えば、上述のように、インバウンドメッセージ待ち行列を含むすべ
てのプラットフォームは、プロセッサ間メッセージを容易に送ることができる。インバウ
ンドメッセージ待ち行列を実施しない他のプラットフォームとの互換性については、プラ
ットフォームのハードウェアを修正することなくアウトバウンド・メッセージ待ち行列が
そのプラットフォームに同等の機能を供給する。さらに、本発明は、他のプロセッサがコ
ンピュータシステム内に存在することを明確に知ることなく、他のプラットフォームが１
つのプラットフォームのインバウンド待ち行列を同時に使用できるという抽象を可能にす
る。
したがって、本発明は、非対称マルチプロセッサ・システム内のプロセッサに対するハー
ドウェア修正を必要とすることなくプロセッサ間で非常に効率的な形でメッセージを直接
送る方法および装置を提供する。
以上、本発明について、その特定の例示的な実施形態に関して説明した。しかしながら、
下記の請求の範囲に記載されている本発明のより広い精神および範囲から逸脱することな
く本発明に様々な修正および変更を加えることができることが明らかであろう。したがっ
て、明細書および図面は、限定的なものではなく、例示的なものと考えられたい。

10

20

30

(19) JP 3884073 B2 2007.2.21

【 図 １ 】 【 図 ２ 】

【 図 ３ 】 【 図 ４ 】

(20) JP 3884073 B2 2007.2.21

【 図 ５ 】 【 図 ６ Ａ 】

【 図 ６ Ｂ 】 【 図 ７ Ａ 】

(21) JP 3884073 B2 2007.2.21

【 図 ７ Ｂ 】 【 図 ８ Ａ 】

【 図 ８ Ｂ 】 【 図 ９ Ａ 】

(22) JP 3884073 B2 2007.2.21

【 図 ９ Ｂ 】

(23) JP 3884073 B2 2007.2.21

フロントページの続き

(72)発明者 デイビス，バリー
 アメリカ合衆国・８５２２４・アリゾナ州・チャンドラー・ウエスト　サラゴサ　ストリート・７
 ４０
(72)発明者 フュトラル，ウイリアム・ティ
 アメリカ合衆国・９７２２９・オレゴン州・ポートランド・ノースウエスト　エルク　ラン　ドラ
 イブ・１７７１５
(72)発明者 ガーバス，エリオット
 アメリカ合衆国・８５２５７・アリゾナ州・スコッツデイル・ノース　ヘイデン　ロード・２７０
 ０・３１０６番

 審査官 鳥居　稔

(56)参考文献 特開平０５－２８２１６６（ＪＰ，Ａ）
 特開平０２－１５８８５８（ＪＰ，Ａ）
 特開平０５－２６８２９１（ＪＰ，Ａ）
 特表平１１－５１３１５０（ＪＰ，Ａ）

(58)調査した分野(Int.Cl.，ＤＢ名)
 G06F 13/10
 G06F 13/38
 G06F 15/16 - 177

(24) JP 3884073 B2 2007.2.21

	bibliographic-data
	claims
	description
	drawings
	overflow

