
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0147390 A1

US 201701 47390A1

Araujo et al. (43) Pub. Date: May 25, 2017

(54) CREATING TEMPLATES OF OFFLINE G06F 9/50 (2006.01)
RESOURCES G06F 9/445 (2006.01)

(52) U.S. Cl.
(71) Applicant: Microsoft Technology Licensing, LLC, CPC G06F 9/45558 (2013.01); G06F 8/61

Redmond, WA (US) (2013.01); G06F 8/71 (2013.01); G06F
9/5077 (2013.01); G06F 2009/45562 (2013.01)

(72) Inventors: Nelson S. Araujo, Redmond, WA (US);
Steven P. Robertson, Redmond, WA (57) ABSTRACT
(US) Implementations of the present invention allow software

resources to be duplicated efficiently and effectively while
(21) Appl. No.: 15/427,681 offline. In one implementation, a preparation program

receives an identification of a software resource, such as a
(22) Filed: Feb. 8, 2017 virtual machine installed on a different volume, an offline

operating system, or an application program. The prepara
Related U.S. Application Data tion program also receives an indication of customized

(63) Continuation of application No. 14/966,766, filed on initia are to b e RE A. RING sty, Dec. 11, 2015, now Pat. No. 9,600.276, which is a s s an R UC E. 1zed information as we
continuation of application No. 1 1/393,585, filed on as the lik y updates, SO settings, user
Mar. 30, 2006, now Pat. No. 9,213,542. settings Or the 1 e. Upon execution, t epreparation program

redirects the function calls of the preparation program to the
Publication Classificati software resource at the different volume (or even the same
ublication Classification volume) while the software resource is not running. The

(51) Int. Cl. preparation program thus can thus creates a template of the
G06F 9/455 (2006.01) Software resource in a safe manner without necessarily
G06F 9/44 (2006.01) affecting the Volume at which the preparation program runs.

Server 105 HOSt 110

Preparation
Program 145

Offline ReSOUrCes

Volume Z\
ReSOUrCe140

Volume:\ 165
ReSOurce 140b

Resource
Template
140a

Volume JA 180
ReSOUrce ReSOUrCe 140C
Template

1 40a

May 25, 2017 Sheet 1 of 4 US 2017/O147390 A1 Patent Application Publication

US 2017/0147390 A1 May 25, 2017. Sheet 2 of 4 Patent Application Publication

g? fil

??? uleifiold

May 25, 2017 Sheet 3 of 4 US 2017/O147390 A1 Patent Application Publication

May 25, 2017. Sheet 4 of 4 US 2017/0147390 A1 Patent Application Publication

57] uelfiold UO?ejedeld

US 2017/O 147390 A1

CREATING TEMPLATES OF OFFLINE
RESOURCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 14/966,766, filed on Dec. 11, 2015,
which is a continuation of U.S. patent application Ser. No.
11/393,585, filed on Mar. 30, 2006, now U.S. Pat. No.
9,213,542, Issued on Dec. 15, 2015, the entireties of which
are incorporated herein by reference.

BACKGROUND

Background and Relevant Art

0002 There are a number of ways to distribute different
types of resources (software, hardware, or combinations
thereof) in a computerized environment. From a software
standpoint, for example, an enterprise might install multiple
copies of the operating system (or application program) on
multiple different computers, and thereby distribute one
copy among many systems. Along these lines, the enterprise
may also need to install several additional Software updates
to the copied or shared operating system, and thus also share
multiple copies of these updates among the many systems.
Conventional ways of sharing hardware include setting up
computer systems on a network so that multiple different
computer systems can access another computer's drive
space for various storage or file sharing needs.
0003. Additional ways of distributing resources from a
combined software and hardware standpoint include creat
ing unique entities on a single physical computer system,
where the entities behave as separate and independent
computer systems, but share the same physical media and
processing resources. For example, an enterprise might
create multiple virtual machines on at the same single server,
each of which can be separately addressed by another
computer as if each given virtual machine were its own
separate computer system. In one Such implementation, one
or few servers in a large enterprise can also host several
virtual machines on the same set of hardware, where those
virtual machines can each serve as additional servers, or
network accessible personal computers, however config
ured.

0004 One will understand that such entities as virtual
machines combine the sharing of Software and hardware
resources since they are typically set up with an existing
copy of an operating system used by another virtual
machine, and since they may even share a drive that is
already being used by the other virtual machine. Despite
sharing the same operating system, however, the enterprise
will need to customize aspects of the operating system so
that the virtual machine is not confused with other virtual
machines using the same copy of the operating system,
particularly when installed on the same physical drive. To
create a customized virtual machine, therefore, a system
administrator will need to provide the new virtual machine
with unique indicia that distinguishes it from other virtual
machines (or other computer systems). Such as machine
name, time Zone, domain name, company name, product
keys, and the like.
0005 Simply customizing the virtual machine, however,
can be fairly difficult. For example, the system administrator

May 25, 2017

may desire to simply install the virtual machine from a basic
installation copy of an operating system, and then apply all
the various Software patches of interest, as well as unique
virtual machine indicia. Of course, this can be fairly incon
venient if there are a large number of software patches and
other unique customizations that the system administrator
would like to apply. Thus, the system administrator may
prefer to copy one instance of an operating system that has
already been customized to the system administrator's pref
erences from a Software standpoint, and then install that
copy in the new virtual machine albeit with different unique
indicia. As such, the system administrator will need to
remove the custom indicia from the existing copy-of-interest
before installing that copy in the new virtual machine.
0006 Nevertheless, there are different difficulties with
simply removing customized indicia from one operating
system copy and then adding new customized indicia to the
operating system copy on a new virtual machine. In par
ticular, conventional preparation Software that might be used
to create a 'generic' or “template' copy of an operating
system (or application) can be difficult to use, and can take
a significant amount of time. For example, a system admin
istrator might need to start up a copy of the operating system
of interest, and then run certain preparation Software on top
of the operating system while it is running. As the prepara
tion Software removes certain unique features of the oper
ating system copy, the preparation Software may require the
operating system to reboot several times until all unique
features have been removed.
0007 Besides the difficulties inherent in continually
restarting the operating system (or application) due to simple
delay, conventional preparation Software can also be tech
nically complex and difficult to use. In particular, if a user
fails to appropriately configure the preparation software
before attempting to convert an operating system into a
generic or template copy, the user may strip out items the
user did not intend to strip. This could result in the user
spending more time getting the operating system back to an
appropriate point, or even rendering the given operating
system-of-interest (or template thereof) inoperable.
0008 Accordingly, there are a number of problems with
creating new instances of entities using preexisting software
that can be addressed.

BRIEF SUMMARY

0009 Implementations of the present invention solve one
or more problems in the art with systems, methods, and
computer program products configured to create template
copies of offline resources. In particular, implementations of
the present invention allow a copy of a particular resource,
Such as a copy of an operating system or application, to be
turned into a generic or template copy of the resource in
accordance with a user's specifications, and while the
resource is not running (i.e., offline). Implementations of the
present invention, therefore, allow a user to create as many
template copies of the same resource as desired with a great
deal of efficiency and configurability. Such implementations
can also provide a convenient user experience toward cus
tomizing the template during the process at a later point.
0010 For example, a method of creating a template of at
least one of the one or more software resources while the at
least one software resource is offline can involve identifying
an offline software resource, as well as identifying one or
more template settings. These template settings will gener

US 2017/O 147390 A1

ally indicate one or more indicia to be removed from the
software resource. In addition, the method can involve
executing at a first operating system a preparation program
configured to remove indicia in accordance with the tem
plate settings. The method can also involve redirecting one
or more function calls of the preparation program to the
identified software resource. As such, the indicia identified
by the one or more template settings are removed from the
Software resource, and a template of the Software resource is
created.
0011. In addition, a method of duplicating a virtual
machine while it is offline, such that the virtual machine and
the duplicate virtual machine have distinguishable identities
when running can involve receiving the identity of a virtual
machine file installed on a first storage space. The method
can also involve receiving one or more function calls from
a preparation program installed on a second storage space,
where the one or more function calls request removal of one
or more indicia. In addition, the method can involve execut
ing the one or more function calls on the virtual machine file,
which can result in the removal of the requested indicia at
the first storage space. Furthermore, the method can involve
creating a template copy of the virtual machine file.
0012. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed Subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed Subject matter.
0013 Additional features and advantages of exemplary
implementations of the invention will be set forth in the
description which follows, and in part will be obvious from
the description, or may be learned by the practice of such
exemplary implementations. The features and advantages of
Such implementations may be realized and obtained by
means of the instruments and combinations particularly
pointed out in the appended claims. These and other features
will become more fully apparent from the following descrip
tion and appended claims, or may be learned by the practice
of Such exemplary implementations as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

0014. In order to describe the manner in which the
above-recited and other advantages and features of the
invention can be obtained, a more particular description of
the invention briefly described above will be rendered by
reference to specific embodiments thereof which are illus
trated in the appended drawings. Understanding that these
drawings depict only typical embodiments of the invention
and are not therefore to be considered to be limiting of its
scope, the invention will be described and explained with
additional specificity and detail through the use of the
accompanying drawings in which:
0015 FIG. 1A illustrates an overview schematic diagram
in accordance with an implementation of the present inven
tion in which a preparation program creates one or more
template copies of an offline resource, and installs the
resource at one or more host volumes;
0016 FIG. 1B illustrates a more detailed view of the
schematic shown in FIG. 1A in which a preparation program
interfaces with a preparation agent to create templates of a
resource at one storage medium and install customized
versions of that resource at different storage mediums on
different host volumes;

May 25, 2017

0017 FIG. 10 illustrates a set of application layers in
accordance with the present invention configured to redirect
function calls from a preparation program to an appropriate
resource target file; and
0018 FIG. 2 illustrates flowcharts comprising a series of
acts from the perspective of a preparation program and of a
preparation agent for creating a template copy of an offline
SOUC.

DETAILED DESCRIPTION

0019. The present invention extends to systems, methods,
and computer program products configured to create tem
plate copies of offline resources. In particular, implementa
tions of the present invention allow a copy of a particular
resource, such as a copy of an operating system or applica
tion, to be turned into a generic or template copy of the
resource in accordance with a user's specifications, and
while the resource is not running (i.e., offline). Implemen
tations of the present invention, therefore, allow a user to
create as many template copies of the same resource as
desired with a great deal of efficiency and configurability.
Such implementations can also provide a convenient user
experience toward customizing the template during the
process at a later point.
0020. As will be understood more fully from the descrip
tion and claims herein, at least one advantage of these
implementations is that users (e.g., system administrators)
can efficiently provide a customized virtual machine to a
large number of other users without having to recreate that
customized virtual machine from a base level. Furthermore,
the user or owner of a customized virtual machine can easily
create a template of the user's virtual machine without
necessarily having to go through several reboots and/or
restarts of the hardware or software associated therewith. In
addition, since the process can be automated. Some of the
typically tough decisions to which regular users would not
know the answer (such as Product Keys, DNS, WINS, etc.)
can be addressed by the system automatically, ultimately
saving costs, for example, in help desk or administrative
calls. Still further, implementations of the present invention
allow the function calls of certain preparation software to be
easily redirected to another location so that the user can
create a template out of a virtual machine located remotely.
0021. As used herein, a “preparation program' refers to
a set of generally independent computer-executable instruc
tions configured to interface with a particular file as
instructed by a particular user, Such as an image file of a
virtual machine or operating system, or an image (or execut
able) of an application program file. The preparation pro
gram can then, in accordance with provided template set
tings, remove certain customized indicia from that file. In at
least one implementation with respect to the MICROSOFT
operating environment for example, one preparation pro
gram (e.g., 145) that can be used in accordance with one or
more implementations of the present invention is the System
Preparation tool, also referred to as "Sysprep.”
0022. In In any event, in some cases, such as described
primarily herein, the preparation program will further inter
face with a “preparation agent.” by configuration from the
user or other administrator. A preparation agent is also a set
of computer-executable instructions that effectively acts as a
shim interface (e.g., FIG. 1C) between the preparation
program and the file of interest (and/or also through any
other appropriate interface components relevant to a par

US 2017/O 147390 A1

ticular operating system). In particular, the preparation agent
will be configured to receive and redirect calls from the
preparation program. In at least one implementation, the
preparation agent is configured to take and redirect calls
from the preparation program without the preparation pro
gram’s knowledge of Such receipt and/or redirection.
0023 FIG. 1A illustrates an overview schematic diagram
in accordance with an implementation of the present inven
tion in which a preparation program creates one or more
template copies of an offline resource, and installs. One or
more other resources or components (not shown) (e.g., one
or more other redistribution or storage modules or mecha
nisms) can then provide the template copies of the resource
at one or more host volumes. For example, FIG. 1A shows
that server 105 hosts one or more resources, such as resource
140, which is currently "offline' or not running. In this
example, resource 140 comprises a “virtual machine,” which
is essentially an independent entity running on an allocated
hard disk partition at server 105.
0024. As a virtual machine, resource 140 can provide
most or all of the benefits of a conventional physical
machine, Such as run application programs, interact with
other physical or virtual machines, serve network or data
base applications/functions, and so on. In one implementa
tion, for example, server 105 comprises a main partition that
acts primarily as a storage server, while resource 140 acts as
a mail or database server. As such, others on the network are
generally unaware that resource 140 is only a virtual
machine hosted by server 105, at least in part since resource
140 is sufficiently customized and independently address
able compared with other machines on the network.
0025 FIG. 1A further shows that, at some point, a user
desires to duplicate resource 140. For example, the user likes
the way the various Software settings, updates, and customi
zations have been applied to resource 140, and so would like
to duplicate resource 140 for use on other hosts, without
starting from scratch, or removing those software customi
Zations. Accordingly, FIG. 1A shows that preparation pro
gram 145 interfaces with resource 140 while it is offline, and
creates corresponding template copies 140a. These tem
plates can then be sent, installed, and optionally customized
as appropriate, at hosts 110 and 115, in separate volumes
(i.e., 165, 180). Upon appropriate customization, these new
versions of resource 140 (i.e., resource 140b, 140c can then
be viewed as independent entities, which, for all intents and
purposes are new machines to other uses on the network.
0026 FIG. 1B illustrates a more detailed view of the
schematic shown in FIG. 1A in which the previously
described preparation program 145 interfaces with prepara
tion agent 150 to create templates 14.0a of resource 140. In
particular, FIG. 1B shows that server 105 comprises a
plurality of different machines and/or virtual machines, and
therefore acts in Some respects as a virtual machine library.
For example, FIG. 1B shows that server 105 comprises
separate entities stored on main volume 160 (“c:\'), as well
as additional virtual machine volumes 170 (“x:\') and 175
“Z:\'). Each such volume in this example also includes a
particular resource with its own, separately customized
operating system. For example, Volume 160 has resource
130 stored and/or installed thereon, while volumes 170 and
175 have resources 135 and 140 stored and/or installed
thereon, respectively. In this particular case, both resources
135 and 140 are presently offline (i.e., "offline resources'
125).

May 25, 2017

0027. By way of explanation, this particular example
shows that each volume 160, 170, 175, etc. is identifiable
through a particular drive letter designation. One will appre
ciate, however, that this is not required in accordance with
implementations of the present invention. For example, a
drive path can be designated by any appropriate Global
Unique Identifier (“GUID) appropriate for a given operat
ing system. A drive path can also be designed without a
GUID in other cases. For example, drive path could desig
nate an un-mounted Volume, a mounted Volume without a
drive letter (e.g., a mount point), a mounted Volume with a
drive letter, or even a transportable snapshot. Ultimately,
there only need be a way of addressing the particular
Volume. Thus, the illustrations and designations of particular
drive or file paths made herein illustrate at least one possible
implementation out of descriptive convenience.
0028. In any event, and as previously mentioned, each
resource will generally be separately customized at least in
terms of basic indicia that allow the resource to be distin
guished by a local or remote computer system. For example,
FIG. 1B shows that resource 130 comprises “custom indicia
a, b, c’ while resource 135 comprises “custom indicia c, d,
e' and resource 140 comprises "custom indicia c. f. g.”
Notably, each resource in this case has at least one common
indicium “c.” which might indicate a domain name, a time
Zone setting, or some other indicium or property that can be
shared. Each resource, however, further comprises unique
indicia, such as “a, b’ for resource 130, “d, e” for resource
135, and “f g” for resource 140. For example, the common
indicium 'c' might be a common network domain name
membership, while the unique indicium “a, b, d, e" and “f.
g” might be unique computer names, owner accounts, con
figuration settings, or the like.
0029 FIG. 1B further shows that each resource may also
be separately customized with various Software versions,
updates, and/or patches, etc. For example, resources 130 and
135 include “software updates x, y, z, while resource 140
includes “software updates V, y, and Z. At some point, a user
might decide that they have a preference for the way that
resource 140 runs for any number of reasons. Such as being
based on updates “v, y, z' rather than “x, y, Z. As such, the
user might then decide to create a template of resource 140
that preserves the relevant software updates, but removes
other custom indicia, Such as the computer name, owner
accounts, daylight savings settings, or the like.
0030. Accordingly, the user prepares template settings
155, which target resource 140 via volume “Z:\” 175, and
include a specific request only to remove custom indicia "f.
and g.” In one implementation, template settings 155 are
simply electronic data provided to preparation program 145
and created in response to input received through a user
interface. In other cases, template settings 155 can be a file
or component created separately using another program,
where preparation program 145 simply receives the data
therein. In any event, FIG. 1B further shows that preparation
program 145 incorporates template settings 155 as it
executes through preparation agent 150.
0031. As shown in FIG. 10, for example, preparation
agent 150 serves in effect as a shim between preparation
program 145 and any other appropriate components, such as
a volume hard drive mounter 195, which in turn can inter
face directly with a corresponding file for the resource. As
Such, preparation agent 150 can serve at least in part as a
shield, in that the function calls made by preparation pro

US 2017/O 147390 A1

gram 145 can be directed as set up by template settings 155
to another offline Volume, rather than to the operating system
on which preparation program 145 runs. That is, preparation
agent 150 can be configured to redirect function calls to an
appropriate target, and thereby ensure that preparation pro
gram 145 makes a template only out of resource 140, rather
than of resource 130, where preparation program 145 and
preparation agent 150 are installed.
0032 Referring again to FIG. 1B, the figure shows that
preparation agent 150 redirects the function calls of prepa
ration program 145, which include instructions to strip
custom indicia “f, g, from offline resource 140. In one
implementation, preparation program 145 simply strips the
one or more specified indicium of resource 140 directly,
Such that a user would need to reconfigure the custom indicia
before resource 140 could be turned back online. In another
implementation, the user filters the results of the copying
and filtration function calls to another file without removing
indicia directly from resource 140. In still another imple
mentation, the user may first copy the offline file of resource
140 to a separate location, and then strip the indicia included
in template settings 155. However configured, the function
calls of preparation program 145 can cause resource 140 to
be stripped as specified, resulting in as many template copies
140a as desired with minimal disruption. As previously
mentioned, this is at least in part since execution of these
function calls will require no additional rebooting or restart
ing of resource 140.
0033 For example, with particular respect to virtual
machines, preparation program 145, via preparation agent
150, can mount any virtual hard disks (e.g., volume 175) of
the corresponding resource (i.e., resource image file). Alter
natively, preparation program 145 might be configured to
simply read or write to the resource file without necessarily
mounting the Volume. Preparation program 145 can then set
up preparation agent 150 with any appropriate flags, such as
by initiating preparation agent 150 as a new process in a
debugging mode. When initiating preparation agent 150,
preparation program 145 can set up preparation agent 150 in
accordance with template settings 155 to trap all calls to the
file system, trap all calls to the system registry, and trap any
other calls necessary to make the execution run Successfully.
Preparation program 145 can then begin passing the appro
priate function calls to preparation agent 150, which then
redirects those function calls in accordance with the set up
(i.e., template settings 155). For example, commands from
preparation program 145 to remove customized indicia from
resource 130 are redirected instead by preparation agent 150
to resource 140.

0034. Once the appropriate customizations have been
removed, FIG. 1B further shows that the newly created
template 140a can now be installed elsewhere as desired.
For example, FIG. 1B shows that server 105 provides
resource template 140a and a set of new indicia 185 to
volume “p:\' at host 110, to thereby create resource 140b.
Similarly, FIG. 1B shows that server 105 provides resource
template 140a and new indicia 190 to volume i:\' at host
115, to thereby create resource 140c. In both cases, the new
iteration of resource 140 (i.e., resource 140b-c) retains the
requested Software updates “V, y, Z, as well as custom
indicium “c.” Nevertheless, FIG. 1B shows that resource
140b is at least unique by including additional indicia, Such
as “h, i” for resource 140b, and j, k” for resource 140c. As
previously mentioned, these unique indicia can correspond

May 25, 2017

to any number of items, such as computer name, or other
appropriate settings information.
0035. There are a number of different ways in which the
new indicia 185, 190 can be provided during a new instal
lation of resource template 140a. As previously mentioned,
for example, these settings may be provided in advance to
preparation program 145 through a user interface prompt
when stripping the indicia from resource 140, or can be
received from a different storage medium, Such as a floppy
disk, at any appropriate time. In other cases, the preparation
program 145 (or the like) can be used again at host 110, 115
to prompt a user for this information through an appropriate
user interface at installation.
0036. In addition, one will appreciate that there can be a
number of variations on the aforementioned components and
mechanisms within the context of the present invention. For
example, in addition to stripping custom indicia and/or
specific Software components or updates from a targeted
resource installed on a local volume, a system administrator
can also perform Such functions on remote offline resources.
For example, a system administrator might use preparation
program 145 and preparation agent 150 to strip certain
Software updates of all offline resource in a large enterprise.
Similarly, the system administrator might use preparation
program 145 and preparation agent 150 to strip all custom
indicia from a virtual machine owned by a former employee.
In addition, a system administrator might use preparation
program 145 and preparation agent 150 to set up a particu
larly customized version of an operating system for use at
personal stations around an enterprise, and then create
copies that can be installed with minimal effort at east
station.
0037. Still further, individual users can use these com
ponents in various personal settings. For example, a user
could create a copy of a working, updated version of an
operating system that has all patches and various security
Software installed and configured, remove the relevant prod
uct keys, and then reinstall this copy at another friends or
family member's computer with different but valid product
keys, computer names, and so on. Accordingly, FIGS.
1A-1C illustrate a number of schematics and components
that can be used in a wide range of settings to create
templates of existing resources with a great deal of efficiency
and precision.
0038. Implementations of the present invention can also
be described in terms of flowcharts of one or more method
comprising a series of different acts for accomplishing a
particular result. In particular, FIG. 2 illustrates flowcharts
of acts from the perspective of preparation program 145 and
of preparation agent 150 for creating a template copy of an
offline resource. The acts of FIG. 2 are described below with
reference to the components and mechanisms described in
FIGS. 1A through 1C.
0039. As a preliminary matter, reference is sometimes
made herein to a “first,” “second, or “third component
(e.g., first, second, or third storage space). One will appre
ciate, however, that Such designations are merely to differ
entiate components, such that the “first component or
storage space need only be different from a “second’ or
“third component or storage space, without regard to points
at which the component might be accessed. For example, the
use of a first storage space, and a second, or third storage
space only means that those first, second, or third storage
spaces are at least different from each other, and these

US 2017/O 147390 A1

designations do not require that the first, second, or third
storage spaces are necessarily presented, accessed, created,
or have other action performed thereon in any particular
sequence or order.
0040. For example, FIG. 2 shows that a method from the
perspective of preparation program 145 for creating a tem
plate of at least one of the one or more software resources
while the at least one software resource is offline, comprises
an act 200 of identifying an offline resource. Act 200
includes identifying an offline software resource. For
example, preparation program 145 receives input from a
user to create a template out of resource 140, which is
located at volume “Z:\’ 175.
0041. Similarly, FIG. 2 shows that the method from the
perspective of preparation agent 150 for duplicating a virtual
machine while it is offline, such that the virtual machine and
the duplicate virtual machine have distinguishable identities
when running, comprises an act 210 of receiving an offline
file identity. Act 210 includes receiving the identity of a
virtual machine file installed on a first storage space. For
example, preparation agent 150 receives an indication from
preparation program to target resource 140 on Volume “Z:\'
175. In the specific case of a virtual machine, resource 140
may be identifiable as a single file, such as a Virtual Hard
Disk (i.e., “..vhd,” “VHD,” or “..vhd') file. One will appre
ciate that in Some cases, a virtual machine may alternatively
be represented alternatively by a plurality of “..vhd' files.
0042 FIG. 2 also shows that the method from the per
spective of preparation program 145 comprises an act 220 of
identifying template settings. Act 220 includes identifying
one or more template settings that identify one or more
indicia to be removed from the software resource. For
example, preparation agent 145 receives template settings
155, which include instructions to remove custom indicia "f,
g,” but to preserve any one or more of Software updates “v,
y, z, as desired. In addition, FIG. 2 shows that the method
from the perspective of preparation program 145 comprises
an act 230 of executing the preparation program. Act 230
includes executing at a first operating system a preparation
program configured to remove indicia in accordance with
the template settings. For example, FIG. 1B shows that
preparation program 145 runs and/or executes on resource
130 (i.e., the corresponding operating system), but redirects
function calls to resource 140 in accordance with template
settings 155.
0043. Accordingly, FIG. 2 shows that the method from
the perspective of preparation program 145 further com
prises an act 240 of redirecting function calls to the identi
fied resource. Act 240 includes redirecting one or more
function calls of the preparation program to the identified
software resource, such that the indicia identified by the one
or more template settings are removed from the Software
resource, and Such that a template of the Software resource
is created. For example, preparation program 145 initiates
preparation agent 150 as a new process in debugging mode,
and sets up preparation agent 150 with all appropriate
redirection functions in accordance with template settings
155. Thus, when preparation program 145 sends a function
call to remove a custom indicium, the call is appropriately
redirected to the targeted Software resource, and a template
is ultimately created.
0044 Similarly, therefore, FIG. 2 further shows that the
method from the perspective of preparation agent 150 com
prises an act 250 of receiving one or more function calls. Act

May 25, 2017

250 includes receiving one or more function calls from a
preparation program installed on a second storage space, the
one or more function calls requesting removal of one or
more indicia. For example, as shown in both FIGS. 1B and
10, preparation agent 150 interfaces directly with prepara
tion program 145 to receive instructions and implement
those instructions where indicated by template settings 155.
AS Such, preparation agent 150 can ensure that, though
preparation program 145 is executed on main Volume 160,
the intended stripping functions only occur on the Volume
(e.g., 175) of the appropriate offline target (e.g., resource
140).
0045. In addition, FIG. 2 shows that the method from the
perspective of preparation agent 150 comprises an act 260 of
executing the one or more function calls on the file. Act 260
includes executing the one or more function calls on the
virtual machine file. Such that the one or more indicia are
removed at the first storage space. For example, in the
particular case of a virtual machine that is represented by a
virtual machine file, preparation agent 150 interfaces
directly with the virtual machine file (or directly with a
volume hard drive mounter 195) to remove the specified
custom indicia (e.g., “f g” of resource 140) or unwanted
software components from the virtual machine file. This
execution by preparation agent 150 can be done locally-on
server 105, or even via remote function calls over a network.
0046 FIG. 2 further shows that the method from the
perspective of preparation agent 150 comprises an act 270 of
creating a template copy of the offline file. Act 270 includes
creating a template copy of the virtual machine file. For
example, as shown in FIG. 1B, the results of execution on
resource 140 are the creation of template copies 140, which
include Software updates “V, y, Z, and only custom indicium
C

0047 Accordingly, the methods and corresponding com
ponents and Schematics described herein provide one or
more implementations for creating an template of an offline
software resource much more efficiently than otherwise
available. In particular, implementations of the present
invention allow templates to created using processes that are
relatively fast, reliable, and typically require no end-user
interaction or credentials to perform the customization. In
addition, there is no explicit need to run the software
resource (i.e. the virtual machine) or install additional soft
ware components on the Software resource before preparing
it. Furthermore, these features can all be performed with
little interface on the virtual machine, that is, without
necessarily requiring user logon, user profile creation, or the
like. Still further, since these preparation programs and
components are generally generic enough to be used on a
wide range of resources, these preparation programs and
components do not necessarily need to be updated each time
a corresponding target Software resource undergoes a ver
Sion change.
0048. As previously mentioned, this ability to create
templates in Such an efficient manner can be very useful for
large enterprises that wish to install particularly customized
or updated Software resources at various computer stations.
In particular, implementations of the present invention allow
such copies to be made with less time and effort than
previously needed, and allow Such copies to be installed to
a particularly customized point also with much less time and
effort than previously needed. Such advantages can be
particularly helpful to duplicating virtual machines, operat

US 2017/O 147390 A1

ing systems, and application programs that may be custom
ized from a software and/or personalization standpoint many
times over during their lifetime.
0049. By way of example, and not limitation, such com
puter-readable media can comprise RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk stor
age or other magnetic storage devices, or any other medium
which can be used to carry or store desired program code
means in the form of computer-executable instructions or
data structures and which can be accessed by a general
purpose or special purpose computer. When information is
transferred or provided over a network or another commu
nications connection (either hardwired, wireless, or a com
bination of hardwired or wireless) to a computer, the com
puter properly views the connection as a computer-readable
medium. Thus, any such connection is properly termed a
computer-readable medium. Combinations of the above
should also be included within the scope of computer
readable media.
0050 Computer-executable instructions comprise, for
example, instructions and data which cause a general pur
pose computer, special purpose computer, or special purpose
processing device to perform a certain function or group of
functions. Although the subject matter has been described in
language specific to structural features and/or methodologi
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.
0051. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be con
sidered in all respects only as illustrative and not restrictive.
The scope of the invention is, therefore, indicated by the
appended claims rather than by the foregoing description.
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
Scope.

1. A system, comprising:
a processor; and
a memory having instructions that configure the processor

to at least:
receive a request to create a second virtual machine from

a first virtual machine based on a settings file;
identify a first software resource installed on the first

virtual machine in response to the software resource
having a first set of indicia;

remove from the software resource at least one of one the
indicia based on one or more settings in the settings file;

add to the software resource at least one of one indicia
based on one or more settings in the settings file; and

store the virtual machine with the removed and added at
least one indicia as a generic virtual machine.

2. The system as recited in claim 1, wherein the first
Software resource is an operating system of the first virtual
machine.

3. The system as recited in claim 1, wherein the first
Software resource is an application program installed on an
operating system of the first virtual machine.

4. The system as recited in claim 1, wherein the one or
more settings comprise a system or user setting comprising
an indication of any one or more of computer name, user
name, company name, domain name, or network address.

May 25, 2017

5. The system as recited in claim 1, wherein the one or
more settings comprise a system or user setting comprising
an indication of any one or more of a resource product key,
a software version, or a security setting.

6. The system as recited in claim 1 wherein the memory
has instructions that configure the processor to at least to
instantiate the generic virtual machine as a third virtual
machine.

7. The system as recited in claim 1 wherein the memory
has instruction that instructions that further configure the
processor to at least store the removed one or more indicia
that were removed from the software resource.

8. A method, comprising:
receiving a request to create a second virtual machine

from a first virtual machine based on a settings file;
identifying a first software resource installed on the first

virtual machine in response to the software resource
having a first set of indicia;

removing from the Software resource at least one of one
the indicia based on one or more settings in the settings
file;

adding to the Software resource at least one of one indicia
based on one or more settings in the settings file; and

storing the virtual machine with the removed and added at
least one indicia as a generic virtual machine.

9. The method as recited in claim 8, wherein the first
Software resource is an operating system of the first virtual
machine.

10. The method as recited in claim 8, wherein the first
Software resource is an application program installed on an
operating system of the first virtual machine.

11. The method as recited in claim 8, wherein the one or
more settings comprise a system or user setting comprising
an indication of any one or more of computer name, user
name, company name, domain name, or network address.

12. The method as recited in claim 8, wherein the one or
more settings comprise a system or user setting comprising
an indication of any one or more of a resource product key,
a software version, or a security setting.

13. The method as recited in claim 8 further comprising
instantiating the generic virtual machine as a third virtual
machine.

14. The method as recited in claim 8, further comprising
storing the removed one or more indicia that were removed
from the software resource.

15. A computer-readable storage device excluding signals
per se, the storage device having stored thereon computer
readable instructions that upon execution on a computing
device, causes the computing device at least to:

receive a request to create a second virtual machine from
a first virtual machine based on a settings file;

identify a first software resource installed on the first
virtual machine in response to the software resource
having a first set of indicia;

remove from the software resource at least one of one the
indicia based on one or more settings in the settings file;

add to the software resource at least one of one indicia
based on one or more settings in the settings file; and

store the virtual machine with the removed and added at
least one indicia as a generic virtual machine.

16. The computer-readable storage device as recited in
claim 15, wherein the first software resource is an operating
system of the first virtual machine.

US 2017/O 147390 A1

17. The computer-readable storage device as recited in
claim 15, wherein the first software resource is an applica
tion program installed on an operating system of the first
virtual machine.

18. The computer-readable storage device as recited in
claim 15, wherein the one or more settings comprise a
system or user setting comprising an indication of any one
or more of computer name, user name, company name,
domain name, or network address.

19. The computer-readable storage device as recited in
claim 15, wherein the one or more settings comprise a
system or user setting comprising an indication of any one
or more of a resource product key, a software version, or a
security setting.

20. The computer-readable storage device as recited in
claim 15, the computer-readable storage device further hav
ing stored thereon computer readable instructions that upon
execution on a computing device, causes the computing
device at least to instantiate the generic virtual machine as
a third virtual machine.

k k k k k

May 25, 2017

