(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 October 2003 (09.10.2003)

(10) International Publication Number

WO 03/083672 Al

(51) International Patent Classification”: GO6F 12/14
(21) International Application Number: PCT/US02/40740

(22) International Filing Date:
18 December 2002 (18.12.2002)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
10/108,253 27 March 2002 (27.03.2002) US

(71) Applicant: ADVANCED MICRO DEVICES, INC.
[US/US]; One AMD Place, Mail Stop 68, P.O. Box 3453,
Sunnyvale, CA 94088-3453 (US).

(72) Inventors: STRONGIN, Geoffrey, S.; 7210 Montana

3915 Eagles Nest Street, Round Rock, TX 78664 (US).
SCHMIDT, Rodney; 203 Thatchers Court, Dripping
Springs, TX 78620 (US).

(74) Agent: DRAKE, Paul, S.; Advanced Micro Devices, Inc.,
5204 East Ben White Boulevard, Mail Stop 562, Austin,
TX 78741 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ,NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, 7M, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

[Continued on next page]

|

TO HOST BRIDGE 404

— Norte, Austin, TX 78731 (US). BARNES, Brian, C.;
—
—
—
—
—
I
= ENCRYPTION
I
—
—
I
—
— CONTROL EXECUTION
— REGS. UNIT
— 608 600
—
I
—
—— SEGMENTED
— ADDRESSES
I
—
e SEM l cPU Mﬂﬁg‘ﬁ?‘(
= REGS. Scu -
I
— 610 416 UNIT
— T ' — 802
—
—
—— PHYSICAL
— ADDRESSES
—
S—

ENCR/

DECR. CﬁﬁﬁE

UNIT 604

612 =
< —

PHYSICAL

o ADDRESSES
~ ]
\o 402 BUS
e, INTERFACE
w UNIT
S o
~

(54) Title: SYSTEM AND METHOD PROVIDING REGION-GRANULAR, HARDWARE-CONTROLLED MEMORY

(57) Abstract: A memory (406) and method for providing secu-
rity for data stored within the memory (406) and arranged within
a plurality of memory regions. The method includes receiving an
address within a selected memory region and using the address to
access an encryption indicator. The encryption indicator indicates
whether data stored in the selected memory page are encrypted.
The method also includes receiving a block of data from the se-
lected memory region and the encryption indicator and decrypting
the block of data dependent upon the encryption indicator.



WO 03/083672 A1 |0 AOHRA 00 O O A

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK,  For two-letter codes and other abbreviations, refer to the "Guid-
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, ance Notes on Codes and Abbreviations" appearing at the begin-
GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

Published:
—  with international search report



WO 03/083672 PCT/US02/40740
SYSTEM AND METHOD PROVIDING REGION-GRANULAR,

HARDWARE-CONTROLLED MEMORY ENCRYPTION

CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is related to co-pending patent application serial no. 10/011,151, entitled “System
and Method for Handling Device Accesses to a Memory Providing Increased Memory Access Security and co-
pending patent application serial no. 10/005,271, entitled “Memory Management System and Method Providing
Increased Memory Access Security”, both filed on December 5, 2001, and co-pending patent application serial
no. 10/108,253 (Atty. Dkt. No. 2000.056000/TT4080) entitled “System and Method for Controlling Device-To-
Device Accesses Within a Computer System”, filed on the same day as the present patent application.

TECHNICAL FIELD

This invention relates generally to computer systems, and, more particularly, to systems and methods for
protecting confidential data from discovery via external monitoring of signals during transfers of the confidential
data within computer systems.

BACKGROUND ART

A typical computer system includes a memory hierarchy in order to obtain a relatively high level of
performance at relatively low cost. Instructions of several different software programs are typically stored on a
relatively large but slow non-volatile storage unit (e.g., a disk drive unit). When a user selects one of the
programs for execution, the instructions of the selected program are copied into 2 main memory unit, and a
central processing unit (CPU) obtains the instructions of the selected program from the main memofy unit. The
well-known virtual memory management technique allows the CPU to access data structures larger in size than
that of the main memory unit by storing only a portion of the data structures within the main memory unit at any
given time. Remainders of the data structures are stored within the relatively large but slow non-volatile storage
unit, and are copied into the main memory unit only when needed.

Virtual memory is typically implemented by dividing an address space of the CPU into multiple blocks
called page frames or “pages.” Only data corresponding to a portion of the pages is stored within the main
memory unit at any given time. When the CPU generates an address within a given page, and a copy of that page
is not located within the main memory unit, the required page of data is copied from the relatively large but slow
non-volatile storage unit into the main memory unit. In the process, another page of data may be copied from the
main memory unit to the non-volatile storage unit to make room for the required page.

The popular 80x86 (x86) processor architecture includes specialized hardware elements to support a
protected virtual address mode (i.e., a protected mode). Figs. 1-3 will now be used to describe how an x86
processor implements both virtual memory and memory protection features. Fig. 1 is a diagram of a well-known
linear-to-physical address translation mechanism 100 of the x86 processor architecture. Address translation
mechanism 100 is embodied within an x86 processor, and involves a linear address 102 produced within the x86
processor, a page table directory (i.e., a page directory) 104, multiple page tables including a page table 106,
multiple page frames including a page frame 108, and a control register 3 (CR3) 110. Page directory 104 and the
multiple page tables are paged memory data structures created and maintained by operating system software (i.e.,
an operating system). Page directory 104 is always located within 2 memory (e.g., a main memory unit). For

simplicity, page table 106 and page frame 108 will also be assumed to reside in the memory.

-1-



WO 03/083672 PCT/US02/40740

As indicated in Fig. 1, linear address 102 is divided into three portions in order to accomplish the linear-
to-physical address translation. The highest ordered bits of CR3 110 are used to store a page directory base
register. The page directory base register is a base address of a memory page containing page directory 104.
Page directory 104 includes multiple page directory entries, including a page directory entry 112. An upper
“directory index” portion of linear address 102, including the highest ordered or most significant bits of linear
address 102, is used as an index into page directory 104. Page directory entry 112 is selected from within page
directory 104 using the page directory base register of CR3 110 and the upper “directory index” portion of linear
address 102.

Fig. 2 is a diagram of a page directory entry format 200 of the x86 processor architecture. As indicated
in Fig. 2, the highest ordered (i.e., most significant) bits of a given page directory entry contain a page table base
address, where the page table base address is a base address of a memory page containing a corresponding page
table. The page table base address of page directory entry 112 is used to select the corresponding page table 106.

Referring back to Fig. 1, page table 106 includes multiple page table entries, including a page table entry
114. A middle “table index™ portion of linear address 102 is used as an index into page table 106, thereby
selecting page table entry 114. Fig. 3 is a diagram of a page table entry format 300 of the x86 processor
architecture. As indicated in Fig. 3, the highest ordered (i.e., most significant) bits of a given page table entry
contain a page frame base address, where the page frame base address is a base address of a corresponding page
frame.

Referring back to Fig. 1, the page frame base address of page table entry 114 is used to select
corresponding page frame 108. Page frame 108 includes multiple memory locations. A lower or “offset” portion
of linear address 102 is used as an index into page frame 108. When combined, the page frame base address of
page table entry 114 and the offset portion of linear address 102 produce the physical address corresponding to
linear address 102, and indicate a memory location 116 within page frame 108. Memory location 116 has the
physical address resulting from the linear-to-physical address translation.

Regarding the memory protection features, page directory entry format 200 of Fig. 2 and page table
entry format 300 of Fig. 3 include a user/supervisor (U/S) bit and a read/write (R/W) bit. The contents of the U/S
and R/W bits are used by the operating system to protect corresponding page frames (i.e., memory pages) from
unauthorized access. U/S=0 is used to denote operating system memory pages, and corresponds to a “supervisor”
level of the operating system. The supervisor level of the operating system corresponds to current privilege level
0 (CPLO) of software programs and routines executed by the x86 processor. (The supervisor level may also
correspond to CPL1 and/or CPL2 of the x86 processor.) U/S=1 is used to indicate user memory pages, and
corresponds to a “user” level of the operating system. The user level of the operating system corresponds to
CPL3 of the x86 processor. (The user level may also correspond to CPL1 and/or CPL2 of the x86 processor.)

The R/W bit is used to indicate types of accesses allowed to the corresponding memory page. R/W=0
indicates the only read accesses are allowed to the corresponding memory page (i.e., the corresponding memory
page is “read-only”). R/W=1 indicates that both read and write accesses are allowed to the corresponding
memory page (i.e., the corresponding memory page is “read-write”).

During the linear-to-physical address translation operation of Fig. 1, the contents of the U/S bits of page
directory entry 112 and page table entry 114, corresponding to page frame 108, are logically ANDed determine if
the access to page frame 108 is authorized. Similarly, the contents of the R/W bits of page directory entry 112
and page table entry 114 are logically ANDed to determine if the access to page frame 108 is authorized. If the

2-



WO 03/083672 PCT/US02/40740

logical combinations of the U/S and R/W bits indicate the access to page frame 108 is authorized, memory
location 116 is accessed using the physical address. On the other hand, if the logical combinations of the U/S and
R/W bits indicate the access to page frame 108 is not authorized, memory location 116 is not accessed, and a
protection fault indication is signaled.

Unfortunately, the above described memory protection mechanisms of the x86 processor architecture are
not sufficient to protect data stored in the memory. For example, any software program or routine executing at
the supervisor level (e.g., having a CPL of 0) can access any portion of the memory, and can modify (i.e., write
to) any portion of the memory that is not marked "read-only" (R/W=0). In addition, by virtue of executing at the
supervisor level, the software program or routine can change the attributes (i.e., the U/S and R/W bits) of any
portion of the memory. The software program or routine can thus change any portion of the memory marked
"read-only" to "read-write" (R/W=1), and then proceed to modify that portion of the memory.

The protection mechanisms of the x86 processor architecture are also inadequate to prevent errant or
malicious accesses to the memory by hardware devices operably coupled to the memory. It is true that portions
of the memory marked "read-only" cannot be modified by write accesses initiated by hardware devices (without
the attributes of those portions of the memory first being changed as described above). It is also true that
software programs or routines (e.g., device drivers) handling data transfers between hardware devices and the
memory typically execute at the user level (e.g., CPL3), and are not permitted access to portions of the memory
marked as supervisor level (U/S=0). However, the protection mechanisms of the x86 processor architecture
cover only device accesses to the memory performed as a result of instruction execution (i.e., programmed
input/output). A device driver can program a hardware device having bus mastering or DMA capability to
transfer data from the device into any portion of the memory accessible by the hardware device. For example, it
is relatively easy to program a floppy disk controller to transfer data from a floppy disk directly into a portion of
the memory used to store the operating system.

Further, the CPU communicates with other computer system components (e.g., the memory) via signals
conveyed upon signal lines. Such signals are subject to monitoring (e.g., by external equipment). Analysis of.
such signals may reveal not only confidential data being transferred, but also methods embodied within the
computer system (e.g., software programs) used to process the confidential data.

It would thus be beneficial to have a system and method for providing increased access security for the
memory. The desired system and method would also include the capability to encrypt all data (including
instructions) transferred in and out of the CPU in order to mask both confidential data and the methods used to
process the confidential data.

DISCLOSURE OF INVENTION

In one aspect of the present invention, a memory is provided. The memory includes at least one storage
location and an encryption/decryption unit for encrypting and decrypting data. The storage location is coupled to
receive a block of data and a corresponding encryption indicator for the block of data. The block of data
corresponds to a selected memory region. The encryption indicator indicates whether the data corresponding to
the selected memory region is encrypted. The encryption/decryption unit is configured to decrypt the block of
data dependent upon the encryption indicator before the block of data is stored in the storage location.

In another aspect of the present invention, a system is provided. The system includes a memory
management unit (MMU) operably coupled to a memory and configured to manage the memory, a security check

unit coupled to receive a physical address within a selected memory region, and a cache unit coupled to receive a

“



WO 03/083672 PCT/US02/40740

block of data obtained from the selected memory region and to receive an encryption indicator. The MMU is
configurable to manage the memory such that the memory stores data arranged within a plurality of memory
regions. The security check unit is configured to use the physical address to access at least one security attribute
data structure located in the memory to obtain the encryption indicator. The encryption indicator indicates
whether data stored in the selected memory region is encrypted. The security check unit is configured to provide
the encryption indicator to an encryption/decryption unit. The cache unit includes the encryption/decryption unit.
The encryption/decryption unit is configured to decrypt the block of data dependent upon the encryption indicator
before storing the block of data.

In still another aspect of the present invention, a method for providing security for data stored within a
memory and arranged within a plurality of memory regions is provided. The method includes receiving an
address within a selected memory region and using the address to access an encryption indicator. The encryption
indicator indicates whether data stored in the selected memory page are encrypted. The method also includes
receiving a block of data from the selected memory region and the encryption indicator and decrypting the block
of data dependent upon the encryption indicator.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be understood by reference to the following description taken in conjunction with the
accompanying drawings, in which like reference numerals identify similar elements, and in.which:

Fig. 1 is a diagram of a well-known linear-to-physical address translation mechanism of the x86
processor architecture;

Fig. 2 is a diagram of a page directory entry format of the x86 processor architecture;

Fig. 3 is a diagram of a page table entry format of the x86 processor architecture;

Fig. 4 is a diagram of one embodiment of a computer system including a CPU and a system or “host”
bridge, wherein the CPU includes a CPU security check unit (SCU), and wherein the host bridge includes a host
bridge SCU; '

Fig. 5 is a diagram illustrating relationships between various hardware and software components of the
computer system of Fig. 4;

Fig. 6 is a diagram of one embodiment of the CPU of the computer system of Fig. 4, wherein the CPU
includes a memory management unit (MMU) and a cache unit, wherein the cache unit includes and
encryption/décryption unit which performs both a data encryption function and a data decryption function;

Fig. 7 is a diagram of one embodiment of the MMU of Fig. 6, wherein the MMU includes a paging unit,
and wherein the paging unit includes the CPU SCU;

Fig. 8 is a diagram of one embodiment of the CPU SCU of Fig. 7;

Fig. 9 is a diagram of one embodiment of a mechanism for accessing a security attribute table (SAT)
entry of a selected memory page in order to obtain additional security information of the selected memory page;

Fig. 10 is a diagram of one embodiment of a SAT default register;

Fig. 11 is a diagram of one embodiment of a SAT directory entry format;

Fig. 12 is a diagram of one embodiment of a SAT entry format;

Fig. 13 is a diagram of one embodiment of the host bridge of Fig. 4, wherein the host bridge includes the
host bridge SCU;

Fig. 14 is a diagram of one embodiment of the host bridg‘ekSCU of Fig. 13;

-



WO 03/083672 PCT/US02/40740

Fig. 15 is a flow chart of one embodiment of a first method for managing a memory used to store data
arranged within multiple memory pages;

Fig. 16 is a flow chart of one embodiment of a second method for providing access security for a
memory used to store data arranged within multiple memory pages;

Fig. 17 is a diagram of an exemplary physical address generated by the MMU of Fig. 6 and provided to
the cache unit of Fig,. 6;

Fig. 18 is a diagram of one embodiment of a cache memory entry of the cache unit of Fig. 6;

Fig. 19 is a diagram of one embodiment of a cache directory entry of the cache unit of Fig. 6; and

Fig. 20 is a flow chart of one embodiment of a method for providing security for data stored within the
memory of Fig. 4 and transferred between the CPU of Fig. 4 and the memory.

While the invention is susceptible to various modifications and alternative forms, specific embodiments
thereof have been shown by way of example in the drawings and are herein described in detail. It should be
understood, however, that the description herein of specific embodiments is not intended to limit the invention to
the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and
alternatives falling within the spirit and scope of the invention as defined by the appended claims.

MODE(S) FOR CARRYING OUT THE INVENTION

Ilustrative embodiments of the invention are described below. In the interest of clarity, not all features
of an actual implementation are described in this specification. It will, of course, be appreciated that in the
development of any such actual embodiment, numerous implementation-specific decisions must be made to
achieve the developers’ specific goals, such as compliance with system-related and business-related constraints, -
which will vary from one implementation to another. Moreover, it will be appreciated that such a development
effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordi-
nary skill in the art having the benefit of this disclosure.

Fig. 4 is a diagram of one embodiment of a computer system 400 including a CPU 402, a system or
“host” bridge 404, a memory 406, a first device bus 408 (e.g., a peripheral component interconnect.or PCI bus), a
device bus bridge 410, a second device bus 412 (e.g., an industry standard architecture or ISA bus), and four
device hardware units 414A-414D. Host bridge 404 is coupled to CPU 402, memory 406, and device bus 408.
Host bridge 404 translates signals between CPU 402 and device bus 408, and operably couples memory 406 to
CPU 402 and to device bus 408. Device bus bridge 410 is coupled between device bus 408 and device bus 412,
and translates signals between device bus 408 and device bus 412. In the embodiment of Fig. 4, device hardware
units 414A and 414B are coupled to device bus 408, and device hardware units 414C and 414D are coupled to
device bus 412. One or more of the device hardware units 414A-414D may be, for example, storage devices
(e.g., hard disk drives, floppy drives, and CD-ROM drives), communication devices (e.g., modems and network
adapters), or input/output devices (e.g., video devices, audio devices, and printers).

In the embodiment of Fig. 4, CPU 402 includes a CPU security check unit (SCU) 416, and host bridge
404 includes a host bridge SCU 418. As will be described in detail below, CPU SCU 416 protects memory 406
from unauthorized accesses generated by CPU 402 (i.e., “software-initiated accesses™), and host bridge SCU 418
protects memory 406 from unauthorized accesses initiated by device hardware units 414A-414D (i.e., “hardware-
initiated accesses”). It is noted that in other embodiments, host bridge 404 may be part of CPU 402 as indicated
in Fig. 4.



WO 03/083672 PCT/US02/40740

Fig. 5 is a diagram illustrating relationships between various hardware and software components of
computer system 400 of Fig. 4. In the embodiment of Fig. 5, multiple application programs 500, an operating
system 502, a security kernel 504, and device drivers 506A-506D are stored in memory 406. Application
programs 500, operating system 502, security kernel 504, and device drivers 506A-506D include instructions
executed by CPU 402. Operating system 502 provides a user interface and software “platform” on top of which
application programs 500 run. Operating system 502 may also provide, for example, basic support functions
including file system management, process management, and input/output (I/O) contro'l'.

Operating system 502 may also provide basic security functions. For example, CPU 402 (Fig. 4) may be
an x86 processor which executes instructions of the x86 instruction set. In this situation, CPU 402 may include
specialized hardware elements to provide both virtual memory and memory protection features in the protected
mode as described above. Operating system 502 may be, for example, one of the Windows® family of operating
systems (Microsoft Corp., Redmond, WA) which operates CPU 402 in the protected mode, and uses the
specialized hardware elements of CPU 402 to provide both virtual memory and memory protection in the
protected mode.

As will be described in more detail below, security kernel 504 provides additional security functions
above the security functions provided by operating system 502 in order to protect data stored in memory 406
from unauthorized access. In the embodiment of Fig. 5, device drivers 506A-506D are operationally associated
with, and coupled to, respective corresponding device hardware units 414A-414D. Device hardware units 414A
and 414D are “secure” devices, and corresponding device drivers 506A and 506D are “secure” device drivers.
Security kernel 504 is coupled between operating system 502 and secure device drivers 506A and 506D, and
monitors all accesses by application programs 500 and operating system 502 to secure device drivers 506A and
506D and corresponding secure devices 414A and 414D. Security kernel 504 prevents unauthorized accesses to
secure device drivers S06A and 506D and corresponding secure devices 414A and 414D by application programs
500 and operating system 502.

As indicated in Fig. 5, security kernel 504 is coupled to CPU SCU 416 and host bridge SCU 418 (e.g.,
via one or more device drivers). As will be described in detail below, CPU SCU 416 and host bridge SCU 418
control accesses to memory 406. CPU SCU 416 monitors all software-initiated accesses to memory 406, and
host bridge SCU 418 monitors all hardware-initiated accesses to memory 406. Once configured by security
kernel 504, CPU SCU 416 and host bridge SCU 418 allow only authorized accesses to memory 406.

In the embodiment of Fig. 5, device drivers 506B and 506C are “non-secure” device drivers, and
corresponding device hardware units 414B and 414C are “non-secure” device hardware units. Device drivers
506B and 506C and corresponding device hardware units 414B and 414C may be, for example, “legacy” device
drivers and device hardware units.

It is noted that in other embodiments security kernel 504 may be part of operating system 502. In yet
other embodiments, security kernel 504, device drivers 506A and 506D, and/or device drivers 506B and 506C
may be part of operating system 502.

Fig. 6 is a diagram of one embodiment of CPU 402 of computer system 400 of Fig. 4. In the
embodiment of Fig. 6, CPU 402 includes an execution unit 600, a memory management unit (MMU) 602, a cache
unit 604, a bus interface unit (BIU) 606, a set of control registers 608, and a set of secure execution mode (SEM)
registers 610. CPU SCU 416 is located within MMU 602. As will be described in detail below, the set of SEM

registers 610 are used to implement a secure execution mode (SEM) within computer system 400 of Fig. 4, and

-6



WO 03/083672 PCT/US02/40740

operations of CPU SCU 416 and host bridge SCU 418 are governed by the contents of the set of SEM registers
610. SEM registers 610 are accessed (i.e., written to and/or read from) by security kernel 504 (Fig. 5). Computer
system 400 of Fig. 4 may, for example, operate in the SEM when: (i) CPU 402 is an x86 processor operating in
the x86 protected mode, (ii) memory paging is enabled, and (iii) the contents of SEM registers 610 specify SEM
operation.

In general, the contents of the set of control registers 608 govern operation of CPU 402. Accordingly,
the contents of the set of control registers 608 govern operation of execution unit 600, MMU 602, cache unit 604,
and/or BIU 606. The set of control registers 608 may include, for example, the multiple control registers of the
x86 processor architecture.

Execution unit 600 of CPU 402 fetches instructions (e.g., x86 instructions) and data, executes the
fetched instructions, and generates signals (e.g., address, data, and control signals) during instruction execution.
Execution unit 600 is coupled to cache unit 604, and may receive instructions from memory 406 (Fig. 4) via
cache unit 604 and BIU 606.

Memory 406 (Fig. 4) of computer system 400 includes multiple memory locations, each having a unique
physical address. When CPU 402 is operating in protected mode with paging enabled, an address space of CPU
402 is divided into multiple blocks called page frames or “pages.” As described above, only data corresponding
to a portion of the pages is stored within memory 406 at any given time. In the embodiment of Fig. 6, address
signals generated by execution unit 600 during instruction execution represent segmented (i.e., “logical”)
-addresses. As described below, MMU 602 translates the segmented addresses generated by execution unit 600 to
-corresponding physical addresses of memory 406. MMU 602 provides the physical addresses to cache unit 604.
Cache unit 604 is a relatively small storage unit used to store instructions and data recently fetched by execution
unit 600. BIU 606 is coupled between cache unit 604 and host bridge 404, and is used to fetch instructions and
data not present in cache unit 604 from memory 406 via host bridge 404.

As indicated in Fig. 6, the cache unit 604 includes an encryption/decryption unit 612 that performs both
a data encryption function and a data decryption function. When the CPU 402 is operating in protected mode
with paging enabled, the memory 406 stores data arranged within multiple pages (i.e., memory pages). As
described in detail below, the data (including instructions) of selected memory pages may be encrypted for
security purposes. The data decryption function of encryption/decryption unit 612 is used to decrypt encrypted
data (including instructions) received by cache unit 604 from memory 406 via BIU 606. The data encryption
function of encryption/decryption unit 612 is used to encrypt unencrypted (i.e., “plaintext”) data (including
instructions), stored within cache unit 604 and available to execution unit 600, before the data is evicted from
cache unit 604 (e.g., to make room for more recently referenced instructions and/or data). It is noted that the data
encryption and decryption functions performed by encryption/decryption unit 612 do not affect the operation of
execution unit 600 (i.e., are fransparent to execution unit 600). It is also noted that in other embodiments
encryption/decryption unit 612 may be located within BIU 606.

Fig. 7 is a diagram of one embodiment of MMU 602 of Fig. 6. In the embodiment of Fig. 7, MMU 602
includes a segmentation unit 700, a paging unit 702, and selection logic 704 for selecting between outputs of
segmentation unit 700 and paging unit 702 to produce a physical address. As indicated in Fig. 7, segmentation
unit 700 receives a segmented address from execution unit 600 and uses a well-know segmented-to-linear address
translation mechanism of the x86 processor architecture to produce a corresponding linear address at an output.

As indicated in Fig. 7, when enabled by a “PAGING” signal, paging unit 702 receives the linear addresses

-



WO 03/083672 PCT/US02/40740

produced by segmentation unit 700 and produces corresponding physical addresses at an output. The PAGING
signal may mirror the paging flag (PG) bit in a control register 0 (CRO) of the x86 processor architecture and of
the set of control registers 608 (Fig. 6). When the PAGING signal is deasserted, memory paging is not enabled,
and selection logic 704 produces the linear address received from segmentation unit 700 as the physical address.

When the PAGING signal is asserted, memory paging is enabled, and paging unit 702 translates the
linear address received from segmentation unit 700 to a corresponding physical address using the above described
linear-to-physical address translation mechanism 100 of the x86 processor architecture (Fig. 1). As described
above, during the linear-to-physical address translation operation, the contents of the U/S bits of the selected page
directory entry and the selected page table entry are logically ANDed determine if the access to a page frame is
authorized. Similarly, the contents of the R/W bits of the selected page directory entry and the selected page table
entry are logically ANDed to determine if the access to the page frame is authorized. If the logical combinations
of the U/S and R/W bits indicate the access to the page frame is authorized, paging unit 702 produces the physical
address resulting from the linear-to-physical address translation operation. Selection logic 704 receives the
physical address produced by paging unit 702, produces the physical address received from paging unit 702 as the
physical address, and provides the physical address to cache unit 604.

On the other hand, if the logical combinations of the U/S and R/W bits indicate the access to the page
frame 108 is not authorized, paging unit 702 does not produce a physical address during the linear-to-physical
address translation operation. Instead, paging unit 702 asserts a general protection fault (GPF) signal, and MMU
602 forwards the GPF signal to execution unit 600. In response to the GPF signal, execution unit 600 may
execute an exception handler routine, and may ultimately halt the execution of one of the application programs -
500 (Fig. 5) running when the GPF signal was asserted.

In the embodiment of Fig. 7, CPU SCU 416 is located within paging unit 702 of MMU 602. Paging unit °
702 may also include a translation lookaside buffer (TLB) for storing a relatively small number of recently
determined linear-to-physical address translations.

Fig. 8 is a diagram of one embodiment of CPU SCU 416 of Fig. 7. In the embodiment of Fig. 8, CPU
SCU 416 includes security check logic 800 coupled fo the set of SEM registers 610 (Fig. 6) and a security
attribute table (SAT) entry buffer 802. As described below, SAT entries include additional security information
above the U/S and R/W bits of page directory and page table entries corresponding to memory pages. Security
check logic 800 uses the additional security information stored within a given SAT entry to prevent unauthorized
software-initiated accesses to the corresponding memory page. SAT entry buffer 802 is used to store a relatively
small number of SAT entries of recently accessed memory pages.

As described above, the set of SEM registers 610 are used to implement a secure execution mode (SEM)
within computer system 400 of Fig. 4. The contents of the set of SEM registers 610 govern the operation of CPU
SCU 416. Security check logic 800 receives information to be stored in SAT entry buffer 802 from MMU 602
via a communication bus indicated in Fig. 8. The security check logic 800 also receives a physical address
produced by paging unit 702.

Figs. 9-11 will now be used to describe how additional security information of memory pages selected
using address translation mechanism 100 of Fig. 1 is obtained within computer system 400 of Fig. 4. Fig. 9 isa
diagram of one embodiment of a mechanism 900 for accessing a SAT entry of a selected memory page in order to
obtain additional security information of the selected memory page. Mechanism 900 of Fig. 9 may be embodied

within security check logic 800 of Fig. 8, and may be implemented when computer system 400 of Fig. 4 is

-8-



WO 03/083672 PCT/US02/40740

operating in the SEM. Mechanism 900 involves a physical address 902 produced by paging mechanism 702 (Fig.
7) using address translation mechanism 100 of Fig. 1, a SAT directory 904, multiple SATs including a SAT 906,
and a SAT base address register 908 of the set of SEM registers 610. SAT directory 104 and the multiple SATs,
including SAT 906, are SEM data structures created and maintained by security kernel 504 (Fig. 5). As described
below, SAT directory 104 (when present) and any needed SAT is copied into memory 406 before being accessed.

SAT base address register 908 includes a present (P) bit which indicates the presence of a valid SAT
directory base address within SAT base address register 908. The highest ordered (i.e., most significant) bits of
SAT base address register 908 are reserved for the SAT directory base address. The SAT directory base address
is a base address of a memory page containing SAT directory 904. If P=1, the SAT directory base address is
valid, and SAT tables specify the security attributes of memory pages. If P=0, the SAT directory base address is
not valid, no SAT tables exist, and security attributes of memory pages are determined by a SAT default register.

Fig. 10 is a diagram of one embodiment of the SAT default register 1000. In the embodiment of Fig. 10,
SAT default register 1000 includes a secure page (SP) bit. The SP bit indicates whether or not all memory pages
are secure pages. For example, if SP=0 all memory pages may not be secure pages, and if SP=1 all memory
pages may be secure pages.

Referring back to Fig. 9 and assuming the P bit of SAT base address register 908 is a ‘1°, physical
address 902 produced by paging logic 702 (Fig. 7) is divided into three portions in order to access the SAT entry .
of the selected memory page. As described above, the SAT directory base address of SAT base address register
908 is the base address of the memory page containing SAT directory 904. SAT directory 904 includes multiple -
SAT directory entries, including a SAT directory entry 910. Each SAT directory entry may have a corresponding
SAT in memory 406. An “upper” portion of physical address 902, including the highest ordered or most
significant bits of physical address 902, is used as an index into SAT directory 904. SAT directory entry 910 is
selected from within SAT directory 904 using the SAT directory base address of SAT base address register 908
and the upper portion of physical address 902.

Fig. 11 is a diagram of one embodiment of a SAT directory entry format 1100. In accordance with Fig.
11, each SAT directory entry includes a present (P) bit which indicates the presence of a valid SAT base address
within the SAT directory entry. In the embodiment of Fig. 11, the highest ordered (i.e., the most significant) bits
of each SAT directory entry are reserved for a SAT base address. The SAT base address is a base address of a
memory page containing a corresponding SAT. If P=1, the SAT base address is valid, and the corresponding
SAT is stored in memory 406.

If P=0, the SAT base address is not valid, and the corresponding SAT does not exist in memory 406 and
must be copied into memory 406 from a storage device (e.g., a disk drive). If P=0, security check logic 800 may
signal a page fault to logic within paging unit 702, and MMU 602 may forward the page fault signal to execution
unit 600 (Fig. 6). In response to the page fault signal, execution unit 600 may execute a page fault handler
routine which retrieves the needed SAT from the storage device and stores the needed SAT in memory 406.
After the needed SAT is stored in memory 406, the P bit of the corresponding SAT directory entry is set to ‘1’,
and mechanism 900 is continued.

Referring back to Fig. 9, a “middle” portion of physical address 902 is used as an index into SAT 906.
SAT entry 906 is thus selected within SAT 906 using the SAT base address of SAT directory entry 910 and the
middle portion of physical address 902. Fig. 12 is a diagram of one embodiment of a SAT entry format 1200. In
the embodiment of Fig. 12, each SAT entry includes a secure page (SP) bit. The SP bit indicates whether or not

9-



WO 03/083672 PCT/US02/40740

the selected memory page is a secure page. For example, if SP=0 the selected memory page may not be a secure
page, and if SP=1 the selected memory page may be a secure page.

BIU 606 (Fig. 6) retrieves needed SEM data structure entries from memory 406, and provides the SEM
data structure entries to MMU 602. Referring back to Fig. 8, security check logic 800 receives SEM data
structure entries from MMU 602 and paging unit 702 via the communication bus. As described above, SAT entry
buffer 802 is used to store a relatively small number of SAT entries of recently accessed memory pages. Security
check logic 800 stores a given SAT entry in SAT entry buffer 802, along with a “tag” portion of the
corresponding physical address.

During a subsequent memory page access, security check logic 800 may compare a “tag” portion of a
physical address produced by paging unit 702 to tag portions of physical addresses corresponding to SAT entries
stored in SAT entry buffer 802. If the tag portion of the physical address matches a tag portion of a physical
address corresponding to a SAT entry stored in SAT entry buffer 802, security check logic 800 may access the
SAT entry in SAT entry buffer 802, eliminating the need to perform the process of Fig. 9 in order to obtain the
SAT entry from memory 406. Security kernel 504 (Fig. 5) modifies the contents of SAT base address register
908 in CPU 402 (e.g., during context switches). In response to modifications of SAT base address register 908,
security check logic 800 of CPU SCU 416 may flush SAT entry buffer 802.

When computer system 400 of Fig. 4 is operating in the SEM, security check logic 800 receives the
current privilege level (CPL) of the currently executing task (i.e., the currently executing instruction), along with -
the page directory entry (PDE) U/S bit, the PDE R/W bit, the page table entry (PTE) U/S bit, and the PTE R/'W
bit of a selected memory page within which a physical address resides. Security check logic 800 uses the above
information, along with the SP bit of the SAT entry corresponding to the selected memory page, to determine if
memory 406 access is authorized.

CPU 402 of Fig. 6 may be an x86 processor, and may include a code segment (CS) register, one of the
16-bit segment registers of the x86 processor architecture. Each segment register selects a 64k block of memory,
called a segment. In the protected mode with paging enabled, the CS register is loaded with a segment selector
that indicates an executable segment of memory 406. The highest ordered (i.e., most significant) bits of the
segment selector are used to store information indicating a segment of memory including a next instruction to be
executed by execution unit 600 of CPU 402 (Fig. 6). An instruction pointer (IP) register is used to store an offset
into the segment indicated by the CS register. The CS:IP pair indicate a segmented address of the next
instruction. The two lowest ordered (i.e., least significant) bits of the CS register are used to store a value
indicating a current privilege level (CPL) of a task currently being executed by execution unit 600 (i.e., the CPL
of the current task).

Table 1 below illustrates exemplary rules for CPU-initiated (i.e., software-initiated) memory accesses
when computer system 400 of Fig. 4 is operating in the SEM. CPU SCU 416 (Figs. 4-8) and security kernel 504
(Fig. 5) work together to implement the rules of Table 1 when computer system 400 of Fig. 4 is operating in the
SEM in order to provide additional security for data stored in memory 406 above data security provided by

operating system 502 (Fig. 5).



WO 03/083672 PCT/US02/40740

Table 1. Exemplary Rules For Software-Initiated Memory Accesses
When Computer System 400 Of Fig. 4 Is Operating In The SEM.

Currently Selected

Executing Memory

Instruction Page

Permitted

SP CPL SP U/S RIW Access Remarks

1 0 X X 1®Rw R/W Full access granted.
(Typical accessed page
contents: security kernel and
SEM data structures.)

1 0 X X o® Read Write attempt causes GPF;

Only if selected memory page
is a secure page (SP=1), a SEM
Security Exception
is signaled instead of GPF.

1 3 1 1(U)1 R/W Standard protection
mechanisms apply.

(Typical accessed page
contents: high security
applets.)

1 3 1 0(SX None Access causes GPF.
(Typical accessed page
contents: security kernel and
SEM data structures.)

1 3 0 0 1 None Access causes GPF.
(Typical accessed page
contents: OS kernel and
Ring 0 device drivers.)

0 0 I X X None Access causes SEM security
exception.

0 0 0 1 1 R/W Standard protection
mechanisms apply.

(Typical accessed page
contents: high security
applets.)

0 3 X 0 X None Access causes GPF; if
selected memory page is a secure
page (SP=1), a
SEM Security Exception

-11-



WO 03/083672 PCT/US02/40740

is raised instead of GPF.
0 3 0 1 1 R/W Standard protection

mechanisms apply.

(Typical accessed page

contents: applications.)

In Table 1 above, the SP bit of the currently executing instruction is the SP bit of the SAT entry
corresponding to the memory page containing the currently executing instruction. The U/S bit of the selected
memory page is the logical AND of the PDE U/S bit and the PTE U/S bit of the selected memory page. The R/'W
bit of the selected memory page is the logical AND of the PDE R/W bit and the PTE R/W bit of the selected
memory page. The symbol “X” signifies a “don’t care”: the logical value may be either a ‘0’ ora ‘1°.

Referring back to Fig. 8, security check logic 800 of CPU SCU 416 produces a general protection fault
(“GPF”) signal and a “SEM SECURITY EXCEPTION” signal, and provides the GPF and the SEM SECURITY
EXCEPTION signals to logic within paging unit 702. When security check logic 800 asserts the GPF signal,
MMU 602 forwards the GPF signal to execution unit 600 (Fig. 6). In response to the GPF signal, execution unit
600 may use the well-known interrupt descriptor table (IDT) vectoring mechanism of the x86 processor
architecture to access and execute a GPF handler routine.

When security check logic 800 asserts the SEM SECURITY EXCEPTION signal, MMU 602 forwards
the SEM SECURITY EXCEPTION signal to execution unit 600. Unlike normal processor exceptions which use
the use the IDT vectoring mechanism of the x86 processor architecture, a different vectoring method may be used
to handle SEM security exceptions. SEM security exceptions may be dispatched through a pair of registers (e.g.,
model specific registers or MSRs) similar to the way x86 “SYSENTER” and “SYSEXIT” instructions operate.
The pair of registers may be “security exception eniry point” registers, and may define a branch target address for
instruction execution when a SEM security exception occurs. The security exception entry point registers may
define the code segment (CS), then instruction pointer (IP, or the 64-bit version RIP), stack segment (SS), and the
stack pointer (SP, or the 64-bit version RSP) values to be used on entry to a SEM security exception handler.
Under software control, execution unit 600 (Fig. 6) may push the previous SS, SP/RSP, EFLAGS, CS, and
IP/RIP values onto a new stack to indicate where the exception occurred. In addition, execution unit 600 may
push an error code onto the stack. It is noted that a normal return from interrupt (IRET) instruction may not be
used as the previous SS and SP/RSP values are always saved, and a stack switéh is always accomplished, even if
a change in CPL does not occur. Accordingly, a new instruction may be defined to accomplish a return from the
SEM security exception handler.

Fig. 13 is a diagram of one embodiment of host bridge 404 of Fig. 4. In the embodiment of Fig. 13, host
bridge 404 includes a host interface 1300, bridge logic 1302, host bridge SCU 418, a memory controller 1304,
and a device bus interface 1306. Host interface 1300 is coupled to CPU 402, and device bus interface 1306 is
coupled to device bus 408. Bridge logic 1302 is coupled between host interface 1300 and device bus interface
1306. Memory controller 1304 is coupled to memory 406, and performs all accesses to memory 406. Host
bridge SCU 418 is coupled between bridge logic 1302 and memory controller 1304. As described above, host
bridge SCU 418 controls access to memory 406 via device bus interface 1306. Host bridge SCU 418 monitors all

accesses to memory 406 via device bus interface 1306, and allows only authorized accesses to memory 406.

-12-



WO 03/083672 PCT/US02/40740

Fig. 14 is a diagram of one embodiment of host bridge SCU 418 of Fig. 13. In the embodiment of Fig.
14, host bridge SCU 418 includes security check logic 1400 coupled to a set of SEM registers 1402 and a SAT
entry buffer 1404. The set of SEM registers 1402 govern the operation of security check logic 1400, and includes
a second SAT base address register 908 of Fig. 9. The second SAT base address register 908 of the set of SEM
registers 1402 may be an addressable register. When security kernel 504 (Fig. 5) modifies the contents of SAT
base address register 908 in the set of SEM registers 610 of CPU 402 (e.g., during a context switch), security
kernel 504 may also write the same value to the second SAT base address register 908 in the set of SEM registers
1402 of host bridge SCU 418. In response to modifications of the second SAT base address register 908, security
check logic 1400 of host bridge SCU 418 may flush SAT entry buffer 1404.

Security check logic 1400 receives memory access signals of memory accesses initiated by hardware
device units 414A-414D (Fig. 4) via device bus interface 1306 and bridge logic 1302 (Fig. 13). The memory
access signals convey physical addresses from hardware device units 414A-414D, and associated control and/or
data signals. Security check logic 1400 may embody mechanism 900 (Fig. 9) for obtaining SAT entries of
corresponding memory pages, and may implement mechanism 900 when computer system 400 of Fig. 4 is
operating in the SEM. SAT entry buffer 1404 js similar to SAT entry buffer 802 of CPU SCU 416 (Fig. 8)
described above, and is used to store a relatively small number of SAT entries of recently accessed memory
pages.

When computer system 400 of Fig. 4 is operating in SEM, security check logic 1400 of Fig. 14 uses
additional security information of a SAT entry associated with a selected memory page to determine if a given
hardware-initiated memory access is authorized. If the given hardware-initiated memory access is authorized,
security check logic 1400 provides the memory access signals (i.e., address signals conveying a physical address
and the associated control and/or data signals) of the memory access to memory controller 1304. Memory
controller 1304 uses the physical address and the associated control and/or data signals to access memory 406. If
memory 406 access is a write access, data conveyed by the data signals is written to memory 406. If memory 406
access is a read access, memory controller 1304 reads data from memory 406, and provides the resulting read
data to security check logic 1400. Security check logic 1400 forwards the read data to bridge logic 1302, and
bridge logic 1302 provides the data to device bus interface 1306.

If, on the other hand, the given hardware-initiated memory access is not authorized, security check logic
1400 does not provide the physical address and the associated control and/or data signals of memory 406 accesses
to memory controller 1304. If the unauthorized hardware-initiated memory access is a memory write access,
security check logic 1400 may signal completion of the write access and discard the write data, leaving memory
406 unchanged. Security check logic 1400 may also create a log entry in a log (e.g., set or clear one or more bits
of a status register) in order to document the security access violation. Security kernel 504 may periodically
access the log to check for such log entries. If the unauthorized hardware-initiated memory access is a memory
read access, security check logic 1400 may return a false result (e.g., all “F”s) to device bus interface 1306 via
bridge logic 1302 as the read data. Security check logic 1400 may also create a log entry as described above in
order to document the security access violation.

Fig. 15 is a flow chart of one embodiment of a method 1500 for providing access security for a memory
used to store data arranged within multiple memory pages. Method 1500 reflects the exemplary rules of Table 1

for CPU-initiated (i.e., software-initiated) memory accesses when computer system 400 of Fig. 4 is operating in

-13-



WO 03/083672 PCT/US02/40740

the SEM. Method 1500 may be embodied within MMU 602 (Figs. 6-7). During a step 1502 of method 1500, a
linear address produced during. execution of an instruction is received, along with a security attribute of the
instruction (e.g., a CPL of a task including the instruction). The instruction resides in 2 memory page. During a
step 1504, the linear address is used to access at least one paged memory data structure located in the memory
(e.g., a page directory and a page table) in order to obtain a base address of a selected memory page and security
attributes of the selected memory page. The security attributes of the selected memory page may include, for
example, a U/S bit and a R/W bit of a page directory entry and a U/S bit and a R/W bit of a page table entry.

During a decision step 1506, the security attribute of the instruction and the security attributes of the
selected memory page are used to determine whether or not the access is authorized. If the access is authorized,
the base address of the selected memory page and an offset are combined during a step 1508 to produce a
physical address within the selected memory page. If the access is not authorized, a fault signal (e.g, a general
protection fault signal or GPF signal) is generated during a step 1510.

During a step 1512 following step 1508, at least one security attribute data structure located in the
memory (e.g., SAT directory 904 of Fig. 9 and a SAT) is accessed using the physical address of the selected
memory page in order to obtain an additional security attribute of the first memory page and an additional
security attribute of the selected memory page. The additional security attribute of the first memory page may
include, for example, a secure page (SP) bit as described above, wherein the SP bit indicates whether or not the
first memory page is a secure page. Similarly, the additional security attribute of the selected memory page may
include a secure page (SP) bit, wherein the SP bit indicates whether or not the selected memory page is a secure
page.

.The fault signal is generated during a step 1514 dependent upon the security attribute of the instruction,
the additional security attribute of the first memory page, the security attributes of the selected memory page, and
the additional security attribute of the selected memory page. It is noted that steps 1512 and 1514 of method
1500 may be embodied within CPU SCU 416 (Figs. 4-8).

Table 2 below illustrates exemplary rules for memory page accesses initiated by device hardware units
414A-414D (i.e., hardware-initiated memory accesses) when computer system 400 of Fig. 4 is operating in the
SEM. Such hardware-initiated memory accesses may be initiated by bus mastering circuitry within device
hardware units 414A-414D, or by DMA devices at the request of device hardware units 414A-414D. Security
check logic 1400 may implement the rules of Table 2 when computer system 400 of Fig. 4 is operating in the
SEM in order to provide additional security for data stored in memory 406 above data security provided by
operating system 502 (Fig. 5). In Table 2 below, the “target” memory page is the memory page within which a

physical address conveyed by memory access signals of a memory access resides.

Table 2. Exemplary Rules For Hardware-Initiated Memory Accesses

When Computer system 400 Of Fig. 4 Is Operating In The SEM.

Particular
Memory
Page
Access
SP Type  Action

-14-



WO 03/083672 PCT/US02/40740

0 R/'W The access completes as normal.

1 Read The access is completed returning
all “F”’s instead of actual memory
contents. The unauthorized access

may be logged.

1 Write The access is completed but write
data is discarded. Memory contents
remain unchanged. The unauthorized

access may be logged.

In Table 2 above, the SP bit of the target memory page is obtained by host bridge SCU 418 using the
physical address of the memory access and the above described mechanism 900 of Fig. 9 for obtaining SAT
entries of corresponding memory pages.

As indicated in Fig. 2, when SP=1 indicating the target memory page is a secure page, the memory
access is unauthorized. In this situation, security check logic 1400 (Fig. 14) does not provide the memory access
signals to the memory controller. A portion of the memory access signals (e.g., the control signals) indicate a
memory access type, and wherein the memory access type is either a read access or a write access. When SP=1
and the memory access signals indicate the memory access type is a read access, the memory access is an
unauthorized read access, and security check logic 1400 responds to the unauthorized read access by providing all
“F”s instead of actual memory contents (i.e., bogus read data). Security check logic 1400 may also respond to the
unauthorized read access by logging the unauthorized read access as described above.

When SP=1 and the memory access signals indicate the memory access type is a write access, the
memory access is an unauthorized write access. In this situation, security check logic 1400 responds to the
unauthorized write access by discarding write data conveyed by the memory access signals. Security check logic
1400 may also respond to the unauthorized write access by logging the unauthorized write access as described
above.

Fig. 16 is a flow chart of one embodiment of a method 1600 for providing access security for a memory
used to store data arranged within multiple memory pages. Method 1600 reflects the exemplary rules of Table 2
for hardware-initiated memory accesses when computer system 400 of Fig. 4 is operating in the SEM. Method
1600 may be embodied within host bridge 404 (Figs. 4 and 13-14). During a step 1602 of method 1600, memory
access signals of a memory access are received, wherein the memory access signals convey a physical address
within a target memory page. As described above, the memory access signals may be produced by a device
hardware unit. The physical address is used to access at least one security attribute data structure located in the
memory in order to obtain a security attribute of the target memory page during a step 1604. The at least one
security attribute data structure may include, for example, a SAT directory (e.g., SAT directory 904 in Fig. 9) and
at least one SAT (e.g., SAT 906 in Fig. 9), and the additional security attribute of the target memory page may
include a secure page (SP) bit as described above which indicates whether or not the target memory page is a
secure page. During a step 1606, the memory is accessed using the memory access signals dependent upon the

security attribute of the target memory page.

-15-



WO 03/083672 PCT/US02/40740

CPU 402 (Figs. 4 and 6) communicates with other components of computer system 400 (Fig. 4) via
signals conveyed upon signal lines. As described above, such signals are subject to monitoring (e.g., by external
equipment). Analysis of such signals may reveal not only confidential data being transferred, but also methods
embodied within the computer system (e.g., software programs) used to process the confidential data. Computer
system 400 has the capability to encrypt all data (including instructions) transferred in and out of CPU 402 to
mask both confidential data and methods used to process the confidential data.

As described above, cache unit 604 (Fig. 6) includes encryption/decryption unit 612 that is used to
perform both a data encryption function and a data decryption function. When CPU 402 is operating in protected
mode with paging enabled, memory 406 stores data-arranged within multiple pages (i.e., memory pages) as
described above. The data (including instructions) of selected memory pages may be encrypted for security
purposes. The data decryption function of encryption/decryption unit 612 is used to decrypt encrypted data
(including instructions) received by cache unit 604 from memory 406 via BIU 606. The data encryption function
of encryption/decryption unit 612 is used to encrypt unencrypted (i.e., “plaintext”) data (including instructions),
stored within cache unit 604 and available to execution unit 600, before the data is evicted from cache unit 604
(e.g., to make room for more recently referenced instructions and/or data). Encryption/decryption unit 612 may
employ any of various encryption and decryption algorithms to encrypt and decrypt data.

Referring back to Fig. 12, SAT entry format 1200 entry includes an encrypt memory (E) bit in addition
to the SP bit described above. The E bit indicates whether or not data stored in memory locations of the
corresponding memory page is encrypted. For example, if E=0, data in the corresponding memory page may not
be encrypted, and if E=1, data in the corresponding memory page may be encrypted.

Figs. 17-19 will now be used to describe the operation of an embodiment of cache unit 604 of Fig. 6
where cache unit 604 is a set associative cache unit having multiple sets. As a set associative cache unit, cache
unit 604 may be considered as being arranged as two-dimensional arrays having rows and columns. Each row
represents one of multiple “sets” of cache unit 604, and each column represents one of multiple “ways” of cache
unit 604. Data mapped to a particular row (i.e., set) of cache unit 604 may be stored:in any of the multiple
columns (i.e., ways) of the set.

Fig. 17 is a diagram of an exemplary physical address 1700 generated by MMU 602 of Fig. 6 and
provided to cache unit 604 of Fig. 6. Cache unit 604 divides physical address 1700 into three portions: an upper
“address tag” portion 1702 including the highest ordered (i.e., most significant) bits of physical address 1700, a
middle “set address” portion 1704, and a lower “byte address” portion 1706 including the lowest ordered (i.e.,
least significant) bits of physical address 1700. The bits of set address portion 1704 are used to select one of the
multiple sets of cache unit 604, and the bits of byte address portion 1706 are used to select a particular byte
within a corresponding cache memory entry present within cache unit 604.

Fig. 18 is a diagram of one embodiment of a cache memory entry 1800 of cache unit 604 of Fig. 6. Each
cache memory entry is used to store multiple bytes of data (e.g., instructions). Fig. 19 is a diagram of one
embodiment of a cache directory entry 1900 of cache unit 604 of Fig. 6. Each cache directory entry corresponds
to a different cache memory entry, and is used to store data associated with the corresponding cache memory
entry. In the embodiment of Fig. 19, cache directory entry 1900 includes an address portion 1902 and a control
portion 1904. Address portion 1902 includes multiple bit positions, and is used to store an address tag portion of
a physical address (e.g., address tag portion 1702 of physical address 1700) associated with data stored in the

-16-



WO 03/083672 PCT/US02/40740

corresponding cache memory entry. Control portion 1904 also includes multiple bit positions, and is used to
store data used to manage the contents of the corresponding cache memory entry.

In the embodiment of Fig. 19, control portion 1904 of the cache directory entry 1900 includes a valid
(V) bit, a write protect (W) bit, one or more replacement (R) bits, and an encrypt data (E) bit. The valid (V) bit
specifies whether or not the contents of the corresponding cache memory entry is valid or not. For example, if
V=1, the corresponding cache memory entry may store valid data. On the other hand, if V=0, the contents of the
corresponding cache memory entry may not be valid. The write protect (W) bit specifies whether or not the
contents of the corresponding cache memory entry is write protected. For example, W=1 may indicate that the
contents of the corresponding cache memory entry may not be written, while W=0 may indicate that the contents
of the corresponding cache may be written.

The one or more replacement (R) bits are used to implement a strategy for replacing the contents of the
corresponding cache memory entry. The replacement strategy may be, for example, a least recently used (LRU)
replacement strategy. The encrypt data (E) bit specifies whether or not the contents of the corresponding cache
memory entry is encrypted. For example, E=1 may indicate that the contents of the corresponding cache memory
entry is encrypted, while E=0 may indicate that the contents of the corresponding cache is not encrypted.

When cache unit 604 (Fig. 6) receives a physical address (e.g., physical address 1700 of Fig. 17) from
MMU 602 (Fig. 6) associated with data required by execution unit 600 (e.g., an instruction), cache unit 604 uses
set address portion 1704 of physical address 1700 as an index into rows (i.e., sets) of the two-dimensional cache
structure of cache unit 604. Used as an index, set address portion 1704 selects a particular set within cache unit
604. Cache unit 604 then compares address tag portion 1702 of physical address 1700 to address portions 1902
of (valid) cache directory entries 1900 of each column (i.e., way) within the selected row (i.e., set). If a match is
found, a cache “hit” occurs, and cache unit 604 uses byte address portion 1706 of physical address 1700 to
provide the requested data byte.

If the comparison does not produce a match, a cache “miss” occurs, signaling a need to obtain the
requested data from memory 406 (Fig. 4). In this situation, cache unit 604 provides physical address 1700 to BIU
606 (Fig. 6) along with a “cache miss” signal. In response, BIU 606 uses physical address 1700 to obtain a block
of data (i.e., a cache line) including the requested data from memory 406, and provides the block of data
including the requested data to cache unit 604.

When a cache miss occurs, cache unit 604 also provides the cache miss signal to CPU SCU 416 (Fig. 6).
Following the linear-to-physical address translation operation performed by MMU 602, CPU SCU 416 uses the
physical address to obtain a SAT entry of a memory page including the physical address (i.e., a SAT entry of a
corresponding memory page) as described above. In response to the cache miss signal from cache unit 604, CPU
SCU 416 provides the value of the encrypt data (E) bit in the corresponding SAT eniry to cache unit 604. (See
Fig. 12.)

If the encrypt memory (E) bit in the corresponding SAT entry is set, the block of data obtained from
memory 406 by BIU 606 is encrypted. In this situation, cache unit 604 uses encryption/decryption unit 612 (Fig.
6) to decrypt the block of data before storing the block of data in a cache memory entry of a way of the selected
set. Cache unit 604 also sets the encrypt data (E) bit of the control portion 1904 of the corresponding cache
directory entry 1900. (See Fig. 19.)

If all of the ways of the selected set contain valid data, cache unit 604 may implement the replacement

strategy to evict a cache line from cache unit 604 in order to make room for the block of data obtained from

-17-



WO 03/083672 PCT/US02/40740

memory 406 by BIU 606. If the encrypt data (E) bit of a cache directory entry 1900 corresponding to a cache
memory entry 1800 (i.e., a cache line) evicted from cache unit 604 is set, cache unit 604 uses
encryption/decryption unit 612 to encrypt the block of data before providing the evicted cache line to BIU 606 to
be written to memory 406.

Fig. 20 is a flow chart of one embodiment of a method 2000 for providing security for data stored within
memory 406 (Fig. 4) and transferred between CPU 402 (Fig. 4) and memory 406. As described above, data
stored within memory 406 is arranged within multiple memory pages. During a step 2002 of method 2000, a
physical address within a selected memory page is received. The physical address is used during a step 2004 to
access the SEM data structures located in memory 406 in order to obtain an encryption indicator of the selected
memory page. As described above, the SEM data structures include SAT directory 904 (Fig. 9) and at least one
SAT (e.g., SAT 906 of Fig. 9). The encryption indicator of the selected memory page indicates whether or not
data stored in the selected memory page is encrypted. The encryption indicator of the selected memory page may
be, for example, the encrypt memory (E) bit of the SAT entry corresponding to the selected memory page. (See
Fig. 12.)

During a step 2006, a block of data from the selected memory page and the encryption indicator are
received. The block of data may, for example, include multiple data units (e.g., bytes of data) stored within
contiguous locations of memory 406. The block of data is decrypted during a step 2008 dependent upon the
encryption indicator, and the block of data is stored during a step 2010.

It is noted that steps 2002 and 2004 of method 2000 may be embodied within CPU SCU 416 (Figs. 4 and
6-8), and steps 2006, 2008, and 2010 of method 2000 may be embodied within cache unit 604 (Fig. 6).

It is also noted that the encrypting of select data (e.g., confidential data and software programs used to
process the confidential data) within computer system 400 when present outside of CPU 402 (e.g:, when stored.
within memory 406), and the transfer of encrypted data between CPU 402 and other components of computer
system 400 (e.g., memory 406) masks both the confidential data and the software programs used to process the

.confidential data. Note also that while the methods of the present invention have been described using
flowcharts, the methods of the present invention are not limited to the embodiments shown. In other
embodiments, one or more steps of the method may be performed in different orders or omitted.

In the illustrated embodiments, the memory region used is the memory page. In other embodiments,
other granularities of the memory may be used, including memory segments or memory address pairs, such as
base-band pairs. Memory address pairs may include an upper and lower address defining the memory range, or a
base memory with an extent, such as in base-band pairs. In one embodiment, the granularity of the memory
region used is the granularity used by the operating system. In another embodiment, the granularity of the
memory region used is the granularity used by the hardware.

Some aspects of the invention as disclosed above may be implemented in hardware or software. Thus,
some portions of the detailed descriptions herein are consequently presented in terms of a hardware implemented
process and some portions of the detailed descriptions herein are consequently presented in terms of a software-
implemented process involving symbolic representations of operations on data bits within a memory of a
computing system or computing device. These descrliptions and representations are the means used by those in
the art to convey most effectively the substance of their work to others skilled in the art using both hardware and
software. The process and operation of both require physical manipulations of physical quantities. In software,

usually, though not necessarily, these quantities take the form of electrical, magnetic, or optical signals capable of

-18-



WO 03/083672 PCT/US02/40740

being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like.

It should be borne in mind, however, that all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient labels applied to these quantifies. Unless specifically
stated or otherwise as may be apparent, throughout the present disclosure, these descriptions refer to the action
and processes of an electronic device, that manipulates and transforms data represented as physical (electronic,
magnetic, or optical) quantities within some electronic device’s storage into other data similarly represented as

physical quantities within the storage, or in transmission or display devices. Exemplary of the terms denoting

M K& ” &

such a description are, without limitation, the terms “processing,” “computing,” “calculating,” “determining,”
“displaying,” and the like.

Note also that the software-implemented aspects of the invention are typically encoded on some form of
program storage medium or implemented over some type of transmission medium. The program storage medium
may be magnetic (e.g., a floppy disk or a hard drive) or optical (e.g., a compact disk read only memory, or “CD
ROM™), and may be read only or random access. Similarly, the transmission medium may be twisted wire pairs,
coaxial cable, optical fiber, or some other suitable transmission medium known to the art. The invention is not
limited by these aspects of any given implementation.

The particular embodiments disclosed above are illustrative only, as the invention may be modified and
practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the
teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown,
other than as described in the claims below. It is therefore evident that the particular embodiments disclosed
above may be altered or modified and all such variations are considered within the scope and spirit of the:

invention. Accordingly, the protection sought herein is as set forth in the claims below.

-19-



WO 03/083672 PCT/US02/40740

CLAIMS

1. A memory (406), comprising:

at least one storage location (604) coupled to receive a block of data and a corresponding encryption indicator for
the block of data, wherein the block of data corresponds to a selected memory region, and wherein the
encryption indicator indicates whether the data corresponding to the selected memory region is
encrypted; and

an encryption/decryption unit (612) for encrypting and decrypting data, wherein the encryption/decryption unit
(612) is configured to decrypt the block of data dependent upon the encryption indicator before the block

of data is stored in the storage location.

2. The memory (406) as recited in claim 1, wherein the block of data comprises a plurality of data units stored
within contiguous locations, and wherein the selected memory region corresponds to one of a memory page, a

memory segment, or a base-band pair.

3. The memory (406) as recited in claim 1, wherein the encryption indicator is at least one encrypt memory bit

that is obtained by accessing at least one security attribute data structure (906).

4. The memory (406) as recited in claim 3, wherein the at least one encrypt memory bit comprises at least one
of a user/supervisor (U/S) bit, a read/write (R/W) bit as defined by the x86 processor architecture, and a secure

page (SP) bit, and wherein the SP bit iridicates whether the selected memory region is a secure region.

5. The memory (406) as recited in claim 1, wherein the memory comprises a cache (604), wherein the cache
(604) is coupled to receive the block of data and the corresponding encryption indicator from the selected

memory region.

6. The memory (406) as recited in claim 5, wherein the cache (604) includes a plurality of cache memory
entries (1800) for storing blocks of data and a pluraiity of cache directory entries (1900) for storing data needed to
access the blocks of data, and wherein each of the cache directory entries (1900) corresponds to a different one of
the cache memory entries (1800), and wherein each of the cache directory entries (1900) includes an encrypt data
bit indicating whether or not a block of data stored in the corresponding cache memory entry (1800) is to be

encrypted before being stored.

7.  The memory (406) as recited in claim 6, wherein when a block of data stored in a given cache memory entry
(1800) is to be stored in the memory (406), the cache (604) is configured to use the encryption/decryption unit
(612) to encrypt the block of data dependent upon the encrypt data bit in the cache directory entry (1900)
corresponding to the given cache memory entry (1800) before storing the block of data in the memory (406).

8. A method for providing security for data stored within a memory (406), wherein the data are arranged

within a plurality of memory regions, the method comprising:

receiving an address within a selected memory region;

-20-



WO 03/083672 PCT/US02/40740

using the address to access an encryption indicator, wherein the encryption indicator indicates whether
or not data stored in the selected memory page is encrypted;
receiving a block of data from the selected memory region and the encryption indicator;

decrypting the block of data dependent upon the encryption indicator; and

9.  The method as recited in claim 8, wherein receiving the block of data from the selected memory region and
the encryption indicator comprises receiving a plurality of data units stored within contiguous locations from the
selected memory region and the encryption indicator, and wherein decrypting the block of data dependent upon
the encryption indicator further comprises decrypting the plurality of data units stored within contiguous locations

dependent upon the encryption indicator.

10. The method as recited in claim 8, wherein receiving the address within the selected memory region
comprises receiving a physical address within the selected memory region, and wherein using the address to
access the encryption indicator comprises using the physical address to access at least one security attribute data
structure (906) located in the memory to obtain a security attribute table entry (912) comprising an encrypted

memory bit.

21-



PCT/US02/40740

WO 03/083672

1115

(LYY HOIdd)

d311SO3d 3Sv4E

I OI4 AYOLD3NIA IOV
0LL €YD
— — ZLL AYLNT
L1 NOILVOO1 VLI AMLNG <4
AHONIN 4 JavL Fovd AHO0LO3dId 3OVd
801 901 oL
NV HA OV d A78v1 A9Vd AHOLO3FYEId A9V 4
- _
13s440 X3AN! F1avL XIANI AHOLD3HIA

ol

00l

<01 SSFHUAAY UV ANIT




WO 03/083672 PCT/US02/40740

2/15

PAGE DIRECTORY ENTRY FORMAT 200:

PAGE TABLE l/J '7
BASE ADDRESS S
" FIG. 2
(PRIOR ART)
PAGE TABLE ENTRY FORMAT 300:
PAGE FRAME l/J '7
BASE ADDRESS - L
FIG. 3

(PRIOR ART)



WO 03/083672

3/15

PCT/US02/40740

400
CPU CPU /
SCU 402
416
|
l HOST
| BRIDGE | HOST MEMORY
| SCuU BRIDGE 406
| 418 404
I— — — — — — — a—
/ \
< DEVICE BUS 408 >
{
< 7
DEVICE DE\SSCE DEVICE
HDW. BRIDGE HDW.
414A 410 414B
/ \
< DEVICE BUS 412 >
< 7
DEVICE DEVICE
HDW. HDW.
414C 414D

FIG. 4



WO 03/083672

4115

PCT/US02/40740

418

APPLICATION
PROGRAMS
500 |
OPERATING
SYSTEM ME%C(;RY
502 -
SECURITY
KERNEL
504
'DEVICE DEVICE DEVICE DEVICE
DRIVER DRIVER DRIVER DRIVER
S06A 506D 506B 506C
DEVICE DEVICE CPU DEVICE DEVICE
HDW. HDW. SCU HDW. HDW.
414A 414D 416 414B 4140
HOST
BRIDGE
SCcU FIG. 5



WO 03/083672

PCT/US02/40740

5/15

CONTROL EXECUTION
REGS. UNIT
608 600

l SEGMENTED

ADDRESSES
SEM cpy | MEMORY
REGS. scu MGMT.
610 416 UNIT
T — 602
PHYSICAL
ADDRESSES
DECR.
UNIT
612 -
PHYSICAL
ADDRESSES
CPU
402 BUS
INTERFACE
UNIT
606

l

FIG. 6 TO HOST BRIDGE 404



WO 03/083672

6/15
TO CPU 402

PCT/US02/40740

l SEGMENTED

ADDRESS

SEGMENTATION
UNIT
700

LINEAR
: ADDRESS

MEMORY
MGMT. ®
UNIT
802
CPU PAGING
SCU UNIT
416 702
PHYSICAL
ADDRESS
PAGING 704
PHYSICAL
ADDRESS
TO CACHE

UNIT 604




WO 03/083672 PCT/US02/40740

7115
CPU SCU 416
COMM.
P
BUS
PHYSICAL
i ADDRESS
- CPL
SECURITY - PDE U/S
TO CHECK
SEM & -« PDE RW
LOGIC
REGS. 800 -~ 'ETE U/s
8610 > PTE RW
» GPF
SEM
» SECURITY
EXCEPTION
SAT
ENTRY
BUFFER
802




PCT/US02/40740

WO 03/083672

8/15

6 9Olid
g SSAHAAY 3ISVY |
: AMOLOFHIA LVYS
806 -HILSIOTY SSIAYAAY ASY I LVS
019 'SO3IY NIS
y \ «
Z16 AHLNT LVS €
016 AHLN3 )
07 , AMOLDTHIA LYS
AHOWaN 566
IIEvL o
¥08
JLNEHLLY
ALMNoas AHOLOTHIA LYS
NOILYOd ¥3IMO1 NOLLYOd 31aain NOLLHOJ H3ddNn
'Z06 SSIYUAAY TWIISAH

7

006




WO 03/083672 PCT/US02/40740

9/15

SEM REGS. 610
SAT DEFAULT REGISTER 1000: |

S
P
FIG. 10
SAT DIRECTORY ENTRY FORMAT 1100:
SAT p
BASE ADDRESS
FIG. 11
SAT ENTRY FORMAT 1200:
S
5 E

FIG. 12



WO 03/083672

10/15

TO CPU

402

PCT/US02/40740

HOST BRIDGE 404

1300

HOST INTERFACE

BRIDGE
LOGIC
1302

HOST
BRIDGE
scu
418

MEMORY
CONT.
1304

TO

—————2 MEMORY
406

1306

DEVICE BUS
INTERFACE

TO
DEVICE

BUS 408

FIG. 13



WO 03/083672

11715

PCT/US02/40740

HOST
BRIDGE
scu
418
PHYSICAL PHYSICAL
ADDRESS ADDRESS
7 P 7>
0 DATA DATA 0
BRIDGE ¢ €—+—P SECURITY <«———» ¢ MEMORY
LOGIC CHECK CONT.
1302 LOGIC 1304
CONTROL 1400 CONTROL
—F—P > ‘
SEM SAT
REGS. ENTRY
1402 BUFFER
1404

FIG. 14



WO 03/083672

FIG. 15

PCT/US02/40740

12/15

RECEIVE LINEAR ADDRESS 1502

AND
INSTRUCTION SECURITY ATTRIBUTE

!

USE LINEAR ADDRESS 1504
TO ACCESS PAGED MEMORY
DATA STRUCTURES
TO OBTAIN SECURITY ATTRIBUTES
OF SELECTED MEMORY PAGE

1500

ACCESS
AUTHORIZED?
1506

1510

GENERATE
FAULT SIGNAL

YES

PRODUCE PHYSICAL ADDRESS 1508

Y

N

USE PHYSICAL ADDRESS 151
TO ACCESS SEM DATA STRUCTURES
TO OBTAIN ADDITIONAL
SECURITY ATTRIBUTE
OF INSTRUCTION MEMORY PAGE
AND SELECTED MEMORY PAGE

|

'

GENERATE FAULT SIGNAL 151
DEPENDENT UPON
INSTRUCTION SECURITY ATTRIBUTE,
ADDITIONAL SECURITY ATTRIBUTE OF
INSTRUCTION MEMORY PAGE,
SECURITY ATTRIBUTES OF
SELECTED MEMORY PAGE,
AND ADDITIONAL SECURITY ATTRIBUTE
OF SELECTED MEMORY PAGE

N

|




WO 03/083672

13/15

1602

RECEIVE MEMORY ACCESS SIGNALS
CONVEYING PHYSICAL ADDRESS
WITHIN TARGET MEMORY PAGE

y

1604

USE PHYSICAL ADDRESS
TO ACCESS SEM DATA STRUCTURES
TO OBTAIN SECURITY ATTRIBUTE
OF TARGET MEMORY PAGE

:

1606

ACCESS THE MEMORY
USING THE MEMORY ACCESS SIGNALS
DEPENDENT UPON
SECURITY ATTRIBUTE
OF TARGET MEMORY PAGE

FIG. 16

PCT/US02/40740

1600



WO 03/083672

14715

PHYSICAL ADDRESS 1700:

PCT/US02/40740

ADDRESS TAG SET ADDRESS AD%YRTEESS
PORTION PORTION
1702 1704 PORTION
1702 1704 1706
FIG. 17
CACHE ENTRY 1800:
BYTE BYTE o o o BYTE
FIG. 18
CACHE DIRECTORY ENTRY 1900
ADDRESS PORTION y " c

1902

CONTROL PORTION 1904

FIG. 19



WO 03/083672 PCT/US02/40740

156/15
J 2000
2002
RECEIVE PHYSICAL ADDRESS
WITHIN SELECTED MEMORY PAGE
2004

USE PHYSICAL ADDRESS
TO ACCESS SEM DATA STRUCTURES
TO OBTAIN ENCRYPTION INDICATOR
OF SELECTED MEMORY PAGE

:

RECEIVE BLOCK OF DATA
FROM SELECTED MEMORY PAGE
AND ENCRYPTION INDICATOR
OF SELECTED MEMORY PAGE

DECRYPT BLOCK OF DATA
DEPENDENT UPON

ENCRYPTION INDICATOR
OF SELECTED MEMORY PAGE

l

STORE BLOCK OF DATA

2008

N
-
o

FIG. 20




International Application No

INTERNATIONAL SEARCH REPORT PCT/US 02/40740

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F12/14

According to International Patent Classification (IPG) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation 1o the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where praclical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5 915 025 A (SAITO KAZUO ET AL) 1-10
22 June 1999 (1999-06-22)

column 8, line 7-15

column 11, Tine 16-26; figure 4
column 16, 1ine 17-59; figure 15
column 17, Tine 31-44; figure 17
column 17, Tine 61 —column 18, line 3;
figure 4

X US 5 784 459 A (ZUKOWSKI DEBORRA JEAN ET 1-10
AL) 21 July 1998 (1998-07-21)
column 2, Tine 15-25; figure 1
column 3, 1ine 1-b1; figures 3,4
column 4, 1ine 31-57; figure 5
column 5, 1ine 9-12

-/

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

) g *T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*A* document defining the general state of the ar which Is not
considered to be of particular relevance

*E* earlier document but published on or after the international *X* document of patticular relevance; the claimed invention
fiing date cannot be considered novel or cannot be considered to

*L* document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

which is cited to establish the publication date of another "W do . . . N
; - cument of patticular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

*Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
*P* document published prior to the international filing date but inthe art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
20 May 2003 27/05/2003
Name and mailing address of the 1SA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
,Plll.zzszao HV Rijswik . . |

el. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Weber, R

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2



INTERNATIONAL SEARCH REPORT

|

International Application No

PCT/US 02/40740

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Calegory ©

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

X

US 6 003 117 A (BUER MARK LEONARD ET AL)
14 December 1999 (1999-12-14)

cotumn 3, Tine 46 -column 4, Tline 2;
figures 1-3

column 4, line 49-55

column 5, Tine 54-67

column 6, Tine 36-51; figure 3
column 7, Tine 29-41

US 5 757 919 A (DAVIS DEREK L ET AL)
26 May 1998 (1998-05-26)

the whole document

1-10

1-10

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 02/40740

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5915025 A 22-06-1999 JP 9258977 A 03-10-1997

US 5784459 A 21-07-1998  NONE

Us 6003117 A 14-12-1999  NONE

uUs 5757919 A 26-05-1998 AU 5688998 A 03-07-1998
DE 19782169 C2 06-09-2001
DE 19782169 TO 28-10-1999
GB 2334866 A ,B 01-09-1999
HK 1022797 Al 22-03-2002
JP 2001508893 T 03-07-2001
WO 9826535 Al 18-06-1998

Form PCTASA/210 (patent family annex) (July 1992)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

