PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/70507
GOG6F 17/30 Al . o

(43) International Publication Date: 23 November 2000 (23.11.00)

(21) International Application Number: PCT/US00/09439 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

(22) International Filing Date: 10 April 2000 (10.04.00)

(30) Priority Data:

09/315,220 19 May 1999 (19.05.99) UsS

(71) Applicant: SUN MICROSYSTEMS, INC. {US/US]; 901 San
Antonio Road, Palo Alto, CA 94303 (US).

(72) Inventor: WESCHLER, Paul, William, Jr.; 12278 Utica Place,
Broomfield, CO 80020 (US).

(74) Agents: BURTON, Carol, W. et al.; Hogan & Hartson LLP,
Suite 1500, 1200 17th Street, Denver, CO 80202 (US).

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, UA, UG, UZ,
VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW,
SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH,
CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: PROFILE SERVICE ARCHITECTURE

(87) Abstract

A mechanism for managing a plurality of profile data structures where each profile data structure comprising a hierarchical structure
of attributes. The mechanism includes a core profile service engine having a number of predefined built-in functions. A first pluggable
interface within the core profile service supports runtime binding to remote protocol adapters. A second pluggable interface within the
core profiling service supports runtime binding to external datastore plug—ins. A third pluggable interface within the core profiling service
supports runtime binding to external service plug—ins where the external service plug—ins provide functions for manipulating profile data
structures in addition to built in functions provided by the core profile service.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
CU

DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA

KR
Kz
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Traly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/70507 PCT/US00/09439

[

PROFILE SERVICE ARCHITECTURE

BACKGROUND OF THE INVENTION

1. Field of the Invention.

The present invention relates, in general, to enterprise computing
systems and methods, and, more particularly, to a method and system that
provides a high performance interface to integrate, store, retrieve and

manage reference information about entities.

2. Relevant Background.

Computer systems including business systems, entertainment
systems, and personal communication systems are increasingly implemented
as distributed software systems. These systems are alternatively referred to
as "enterprise networks" and "enterprise computing systems". These
systems include application code and data that are distributed among a
variety of data structures, data processor systems, storage devices and
physical locations. They are intended to serve a geographically diverse and
mobile set of users. This environment is complicated because system users
move about the distributed system, using different software applications to
access and process data, different hardware to perform their work, and often
different physical locations to work from. These trends create a difficult

problem in providing a secure yet consistent environment for the users.

In general, distributed computing systems must scale well. This means
that the system architecture desirably adapts to more users, more
applications, more data, and more geographical distribution of the users,
applications, and data. The cost in money and time to switch over a network
architecture that is adapted to a smaller business to one suited for a larger

business is often prohibitive.

A conventional computing system uses a client/server model

implemented on a local area network (LAN). In such systems powerful server

10

15

20

25

30

WO 00/70507 PCT/US00/09439

N

computers (e.g., application servers and file servers) are used to process and
access data. The requested data is then transmitted to the client computer for
further processing. To scale to larger networks, multiple LANs may be
internetworked using, for example, leased data lines to create a wide area
network (WAN). The equipment required to implement a WAN is expensive
and difficult to administer. Also, as networks become larger to include multipie
LANs and multiple servers on each LAN it becomes increasingly difficult to

find resources (i.e., files, applications, and users) on any one of the LANSs.

As computing power continues to become less expensive, clients tend
to process and store their own data, using the server primarily as a file server
for sharing data with other client computers. Each software application
running on the client, or the client's operating system (OS) may save client-
specific configuration data that is used by the client to fine-tune and define

the user's software environment at runtime.

As used herein, the term "profile information" refers to any information
or meta-data used by a particular piece of hardware, software, or operating
system to configure, initialize, shutdown and aide in making runtime
processing decisions. The profile information may be associated with a
particular application or group of applications, a particular hardware device or
group of devices, as well as a particular user or group of users. Some
operating systems store user profile information that is used during boot
operations at application startup to tailor a limited number of the system
characteristics to a particular machine user. However, this profile information
is closely tied to a single machine and operating system. As a result, the
profile information is not useful to a new user the first time that user logs onto
a particular machine. Moreover, this information is not available to remote

users that are accessing the LAN/WAN using remote access mechanisms.

Existing mechanisms tend to focus on a single type of profile
information, user information or application information or hardware

information. Also, because these mechanisms are very application specific

10

15

20

25

30

WO 00/70507 PCT/US00/09439

they limit the number and type of attributes that can be retained. Further, the
profile information is isolated and fails to indicate any hierarchical or relational
order to the attributes. For example, it may be desirable that a user group is
required to store all files created using a particular application suite to a
specific file server. Existing systems, if such a service is available at all, must
duplicate profile information in each application program merely to implement
the required file storage location preference. Storage location direction based
on a user-by-user or user group basis is difficult to implement and may in fact
require a shell application running on top of the application suite. Even then,
the system is not extensible to access, retrieve, and use profile information for

a new user that has not used a particular machine before.

As in the example above, existing systems for storing configuration
information lead to duplicative information stored in many locations. Each
application stores a copy of its own configuration information, as does each
hardware device and each user. Much of this information is identical. Itis
difficult to maintain consistency among these many copies in a distributed
computing environment. For example, when the specified file storage
location changes, each copy of the configuration information must be
changed. The user or system administrator must manually track the location
and content of each configuration file. An example of the inefficiencies of
these types of systems is found in the Windows 95 registry file that holds
profile information but has an acknowledged tendency to bloat over time with
duplicative and unused data. Moreover, the registry file in such systems is so
closely tied to a particular machine and instance of an operating system that it
cannot be remotely accessed and used to configure other computers or
devices. Hence, these systems are not generally extensible to manage
multiple types of profile information using a single mechanism. A need exists
for profile information that is readily accessible to all machines coupled to a
network and to machines accessing the network through remote access

mechanisms.

10

15

20

25

30

WO 00/70507 PCT/US00/09439

Another complicating influence is that networks are becoming
increasingly heterogeneous on many fronts. Network users, software,
hardware, and geographic boundaries are continuously changing and
becoming more varied. For example, a single computer may have multiple
users, each of which work more efficiently if the computer is configured to
meet their needs. Conversely, a single user may access a network using
multiple devices such as a workstation, a mobile computer, a handheld
computer, or a data appliance such as a cellular phone or the like. A user
may, for example, use a full featured email application to access email while
working from a workstation but prefer a more compact application to access
the same data when using a handheld computer or cellular phone. In each
case, the network desirably adapts to the changed conditions with minimal

user intervention.

There is increasing interest in remote access systems that enable a
user to access a LAN/WAN using a public, generally insecure, communication
channels such as the Internet. Further, there is interest in enabling LANs to
be internetworked using public communication channels. This is desirable
because the network administrator can provide a single high speed gateway
to the Internet rather than a remote server/modem combination for each user
and expensive WAN communication lines. The Internet gateway can use
leased lines to access the Internet rather than more costly business phone
lines. Also, the Internet gateway can be shared among a variety of
applications and so the cost is not dedicated solely to providing remote
access or wide area networking. The reduction in hardware cost and
recurrent phone line charges would be significant if remote users could
access the LAN/WAN in this manner.

From a network user's perspective these limitations boil down to a
need to manually configure a given computer to provide the user's desired
computing environment. From a remote user's perspective these limitations
require the user to manually reconfigure the remote access computer to

mimic the desired computing environment or tolerate the generic environment

10

15

20

25

30

WO 00/70507 PCT/US00/09439

(6]

provided by default by the remote access server. From a network
administrator's perspective, these complications require software and
operating systems to be custom configured upon installation to provide the
desired computing environment. In each case, the time and effort consumed
simply to get "up and running" is a significant impediment to efficient use of
the distributed computing environment. What is needed is a system that
readily adapts to the changing, heterogeneous needs of a distributed network

computing environment.

One solution to the problem of finding resources in a distributed
system is to use directories. Directories are data structures that hold
information such as mail address book information, printer locations, public
key infrastructure (PKI) information, and the like. Because of the range of
functions and different needs of driving applications, most organizations end
up with many different, disparate directories. These directories do not interact
with each other and so contain duplicative information and are difficult to

consistently maintain.

Directory software tends to be special purpose to serve the needs of a
defined set of users to access information about and stored in a defined set
of datastore mechanisms. For example, a DOS file system (i.e., a directory of
filename:physical location information) is written to be accessible only by a
particular operating system (e.g., DOS, Windows, Unix, and the like). Hence,
the file system information is not accessible to computers running other
operating systems. Similarly, a file system cannot be amended to serve as a
directory for other types of devices (e.g., an email directory). Moreover, the
functionality of a file system is rigidly fixed and is not readily extended to
provide new functionality such as authentication, replication, file system
logging, and the like. These types of changes require rewrite and recompile
of the file system software. A need exists for a directory system that is
flexible and adaptable to service a variety of user entities, store directory
information about a variety of objects, and incorporate a variety of

functionality at runtime.

10

15

20

25

WO 00/70507 PCT/US00/09439

N

Meta-directories are a partial solution that provide a directory
integration to unify and centrally manage disparate directories within an
enterprise. However, existing solutions are not sufficiently extensible to
account for the wide variety and continuously changing set of resources for
which directory information is desirable. In the past, metadirectory technology
has not been used to catalog meta-data of sufficiently general nature to meet
the needs of a dynamically growing and changing distributed computing
environment. Also, meta-directory software continues to have the
disadvantages of being written to support a specific, narrow set of users
working on software/hardware platforms in a manner that provides a defined,
non-extensible set of functionality. What is needed in a service architecture
that provides directory integration together with extensible user interfaces and

functionality.

SUMMARY OF THE INVENTION

Briefly stated, the present invention involves a mechanism, method,
and computer program product for managing a plurality of profile data
structures where each profile data structure comprising a hierarchical
structure of attributes. The mechanism includes a core profile service engine
having a number of predefined built-in functions. A first pluggable interface
within the core profile service supports runtime binding to remote protocol
adapters. A second pluggable interface within the core profiling service
supports runtime binding to external datastore plug-ins. A third pluggable
interface within the core profiling service supports runtime binding to external
service plug-ins where the external service plug-ins provide functions for
manipulating profile data structures in addition to built in functions provided by

the core profile service.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary network computing environment in

which the present invention is implemented;

10

15

20

25

WO 00/70507 PCT/US00/09439

FIG. 2 shows a more specific network architecture in which in which

the present invention is employed;

FIG. 3 shows in block diagram form significant components in a
particular example of a profile service mechanism in accordance with the

present invention;

FIG. 4 shows an exemplary data structure for holding profile objects in

accordance with the present invention; and

FIG. 5A and FIG. 5B show class structure and relationships between

classes used in an exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention involves an architecture for implementing a
profile service. A profile service is a mechanism for storing and retrieving
profile information, particularly in a distributed computing environment. Profile
information refers to any information or meta-data used by a particular piece
of hardware, software, or operating system to configure, initialize, shutdown
and aid in making runtime processing decisions. The architecture in
accordance with the present invention is described herein in terms of a
layered model using industry standard components where appropriate to
improve interoperability, platform independence, and to leverage existing

experience.

In general, the present invention involves an architecture that employs
a lightweight core profile engine (301 in FIG. 3) that provides multiple
"pluggable" interfaces for runtime extensibility. The core profile engine
provides essential functionality and may provide built-in (i.e., non-pluggable)
interfaces as well to provide built-in functionality upon instantiation. Plug-in
components are provided with the core profile engine or by third-party
component manufacturers to implement functionality and program behavior

that is not included in the built in "essential" functions.

10

15

20

25

30

WO 00/70507 PCT/US00/09439

The plug-in behavior is of three general types. First, plug-in protocol
adapters manage communication with user entities such as people, software
applications, and hardware devices that make access requests to obtain
information from the profile system. Second, plug-in service provider
interfaces implement access protocols for data storage mechanisms including
naming and directory services for data storage mechanisms. Third, service
module plug-ins attach at runtime to provide functionality and behavior that
augments the program behavior implemented in the core profile service. In
this manner, the core profile engine is readily extended to provide new
functionality, using new hardware devices and network configurations to

provide service to new types of clients.

The present invention is illustrated and described in terms of a
distributed computing environment such as an enterprise computing system
using public communication channels such as the Internet. However, an
important feature of the present invention is that it is readily scaled upwardly
and downwardly to meet the needs of a particular application. Accordingly,
unless specified to the contrary the present invention is applicable to
significantly larger, more complex network environments as well as small

network environments such as conventional LAN systems.

It is contemplated that the present invention will be particularly useful
in environments where dynamic runtime modification of core application
functionality and behavior is required or desirable. Also, the system of the
preferred implementation is optimized to store and make available relatively
compact units of data that serve to configure devices and computer
environments rather than operational or analytical data upon which the
computer environment may operate at runtime. Hence, the present invention
is best used when it stores and retrieves data that is frequently searched and

retrieved, but infrequently changed.

To aid understanding several words and terms used herein to describe

the present invention are defined below:

10

15

20

25

WO 00/70507 PCT/US00/09439

\O

Attribute The combination of a key related to one or more values.

Frequently described as a key=value pair.

Binding A special type of attribute where the value of the key=value
pair is itself a Profile. Binding one Profile to another in a chained fashion it is
possible build tree structures of related profiles and attribute information

(called a profile tree).

Profile A collection of attributes related either directly or indirectly to a

EntityProfile that represents some sort of entity such as a user.

EntityProfile A collection of attributes that establish the root of a profile
tree and serve as the base representation of some entity. This is the core
data object around which the entire Profile Service is designed to function. In
an object oriented sense an EntityProfile extends a Profile to add special

functions & behavior.

ProfileList A special type of Profile whose member attributes (with the
exception of some system attributes) are themselves Profiles. In an object
oriented sense a ProfileList extends a Profile to add special functions &

behavior.

Profile Service The term generally used to refer to all of the functional

interfaces of Profile Service. The term is frequently used to refer specifically

to the core Profile Service interface.

Profile Service Interface The core functional interface of the Profile

Service. This interface provides functions for creating, searching and

removing profiles in addition to some administrative utilities.

Profile Interfaces A term used to collectively refer to the functional

interfaces of Profile, EntityProfiles and ProfileLists. These interfaces provide

functions for manipulating the composition of individual Profiles.

Resource ID An identifier that is constructed by the Profile Service to
uniquely identify every constituent profile and attribute therein. Resource IDs

have a well defined string structure.

10

15

20

25

30

WO 00/70507 PCT/US00/09439

Profile Type A special attribute of all Profiles. This attribute is
mandatory for all profiles and plays an important role in generating resource

IDs and data indexing.

Entity-Entity ID A special attribute of all EntityProfiles. This attribute

plays an important role in generating resource |Ds and data indexing. The
Profile Service enforces the rule that all entity IDs are unique within the set of

all EntityProfiles of the same type.

List Key A special attribute of all ProfileLists. This attribute plays an
important role in generating resource I1Ds and data indexing. The Profile
Service enforces the rule that all profiles bound to a ProfileList are bound to
the key such that that the profileList.attKey=memberProfile.listKey.value.

ProfileLists may only have one member Profile with a specific list key value.

List Members A term used to refer to the collection of Profiles bound

to a ProfileList. Each bound profile is referred to as a member.

FIG. 1 shows an exemplary computing environment 100 in which the
present invention may be implemented. Essentially, a number of computing
devices and groups of devices are interconnected through a network 101.
For example, a LAN 102 and a LAN 103 are each coupled to network 101
through gateway machines 104 and 105 respectively. LANs 102 and 103
may be implemented using any available topology such as a hub and spoke
topology of LAN 102 and a loop topology of LAN 103. LANs 102 and 103
may implement one or more server technologies including, for example a
UNIX, Novell, or Windows NT, or peer-to-peer type network. Each network
will include distributed storage implemented in each device and typically
includes some mass storage device coupled to or managed by a server
computer. Network 101 comprises, for example, a public network such as the
internet or another network mechanism such as a fibre channel fabric or

conventional WAN technologies.

LAN 102 includes one or more workstations such as personal

computer (PC) 106. LAN 102 also includes a server machine 107 and one or

10

15

20

25

WO 00/70507 PCT/US00/09439

more shared devices such as printer 108. A hub or router 109 provides a
physical connection between the various devices in LAN 102. Router 104 is
coupled through gateway 109 to provide shared access to network 101.
Gateway 109 may implement any desired access and security protocols to
manage access between network 101 and devices coupled to network 102.
Similarly, network 103 comprises a collection of workstations 111, 112 and

113 that share a common connection to network 101 through gateway 105.

Distributed computing environment 100 further includes a wide variety
of devices that have a logical connection to the network supported by a
physical connection to network 101. For example, a stand alone workstation
114 may couple to network 101 through a modem or other suitable physical
connection. Likewise, notebook computer 115 and palmtop computer 116
may connect to network 101 using known connection technologies. Itis
contemplated that a wide variety of devices may join the distributed network
100 including mobile phones, remote telemetry devices, information
appliances, and the like. An important feature of the present invention is that
it tolerates and adapts to an environment filled with heterogeneous hardware

devices coupled to the network 101 from a variety of physical locations.

Each of the devices shown in FIG. 1 may include memory, mass
storage, and a degree of data processing capability sufficient to manage their
connection to network 101. The computer program devices in accordance
with the present invention are implemented in the memory of the various
devices shown in FIG. 1 and enabled by the data processing capability of the
devices shown in FIG. 1. In addition to local memory and storage associated
with each device, it is often desirable to provide one or more locations of
shared storage such as disk farm 116 that provides mass storage capacity
beyond what an individual device can efficiently use and manage. Selected
components of the present invention may be stored in or implemented in

shared mass storage such as disk farm 116.

10

15

20

25

30

WO 00/70507 PCT/US00/09439

FIG. 2 shows a generalized diagram of the present invention
implemented in a distributed computing environment including three
geographic regions 205, 215 and 225. The bold dashed lines indicate
geographic boundaries that separate the hardware upon which the various
elements shown in FIG. 2 are implemented. Connections between
components are indicated by lines with arrowheads and are typically bi-
directional unless specifically indicated otherwise by this description. The
connections represent physical and logical connections that may be
implemented using any available communications protocols and data

transport mechanisms including both public and private network facilities.

The environment of FIG. 2 includes two profile services instances 201
and 202. Each profile service instance is implemented in a separate
geographic environment (e.g., a LAN or standalone environment) as
suggested by the dashed vertical lines in FIG. 2. The local environments are
coupled by an available WAN connection provided by, for example, a
continuous connection, an on-demand connections, and/or multiplexed

connections.

A client application 211 accesses the profile service instance 201 to
request profile services. The profile service instance 201, performs the
requested service using a virtual profile data store comprising dedicated
datastore 206, iocal external datastore 208 and remote external datastore
209. Profile service instances 201 and 202 are associated with a dedicated
data store 206 and 207 respectively. The dedicated data store is local to the
associated profile service instance and is not used by other applications.
Dedicated data store 206 and 207 may be implemented using any available
persistent storage device such as a magnetic, optical, or magneto-optical
disk, solid state memory, and the like. Dedicated datastore 206 and 207 may
use only a portion of the physical storage device upon which they are
implemented. For example, datastore 206 may be a single volume or file on

a multi-volume storage device.

10

15

20

25

30

WO 00/70507 PCT/US00/09439

13

In an exemplary implementation, profile service instances include a
build-in adapter for coupling to their associated dedicated datastore. The
built-in adapter may be implemented using, for example, a lightweight
directory access protocol (LDAP) that provides an industry standard directory
access mechanism. Other directory access protocols including industry
standardized and proprietary protocols may be equivalently substituted in
particular applications. A feature of the present invention is that some or all
of the contents of a dedicated data store are replicated across each
dedicated datastore of each profile service instance in a given system. ltis
contemplated that not all of the data need be replicated as some profile data
will be of a nature that will only be used in a given geographic area and
replication may be wasteful. For example, if it is known that client application
214 never requests profile services through profile service instance 201, any
profile information held in dedicated datastore 207 about client application
214 need not be replicated in dedicated datastore 206. The degree and
manner of replication is determined to meet the needs of a particular

application.

"User entities" such as client software and/or hardware use the profile
service by establishing a runtime binding to a profile service instance. In FIG.
2, client applications 211, 212, 213 and 214 and application 204 represent
user entities. Client application 212 is an indirect user of profile service
instance 202 because it accesses through the domain-specific application
204. Domain specific application 204 is essentially an adapter or shell that
provides accessibility when, for example, client application 212 is unable to

communicate with an external service.

Each profile service instance 201 and 202 include one or more plug-in
remote protocol adapters in addition to any built-in protocol adapters. Each
remote protocol adapter implements a transport protocol supporting
communication with a client 211-214) and a particular communications
network used by the client. For example, remote protocol adapters may

implement hypertext transfer protocol (HTTP) with embedded extensible

10

15

20

25

30

WO 00/70507 PCT/US00/09439

markup language (XML) documents, HTTP with hypertext markup language
(HTML) forms, remote method invocation (RMI), common object request
broker (CORBA), and the like. It is contemplated that other transport
mechanisms may be useful in particular applications such as transport
mechanisms specified for fibre channel fabrics as well as proprietary transport
protocols. The markup language document is used to encode commands and
control information in a declarative fashion in a readily transportable fashion.
Accordingly, any available encoding format that is readily transportable using
the available transport mechanism (e.g., HTTP) is suitable. These and other
implementations are considered equivalent to the specific embodiments

disclosed herein unless specifically indicated otherwise.

Important functions of a protocol adapter include providing a data
transport mechanism that is compatible with the associated client and with the
physical communication link between the client and the profile service
instance. Further, where the data transport mechanism requires, the protocol
adapter must translate messages from and to the client application into a
form that can be embedded in the data transport mechanism. In addition to
plug-in protocol adapters, one or more protocol adapters may be built in to the

profile service itself.

Each profile service instance 201 and 202 include plug-in interfaces for
coupling to external datastore mechanisms. As shown in FIG. 2, profile
service instance 201 couples to a local external datastore 208 and a remote
external data store 209. In operation each profile service 201 and 202 make
a runtime binding to an appropriate storage provider plug-in to make the
necessary connections to store and retrieved data from the attached external
storage device. External storage devices 208, 209, 210 and 217 may be
accessed using any available storage access mechanisms including X.500,
LDAP, Novell directory service (NDS), network file system (NFS), network
information system (NIS), remote method invocation (RMI), common object
request broker (CORBA) and the like. By providing an appropriate plug-in,

new directory services that have not been defined when the core profile

10

15

20

25

WO 00/70507 PCT/US00/09439

-
(G2

service is written can be integrated into the system in accordance with the

present invention.

As illustrated by the instance in region 215, multiple client applications
212-214 may access a single profile service instance. Typically, a client
application would attempt to access the profile service instance in the same
geographic area, however, one may not be available as in the case of mobile
users. Because the profile service instance can plug-in remote protocol
adapters as needed to support a communication link, the client applications
need not be using the same hardware or software platform, and may be using
different data transport protocols to access profile service instance 202.
Similarly, a single profile service instance can attach to a variety of

heterogeneous datastore devices simultaneously.

As shown in geographic region 225, remote data service applications
such as service 216 can also be attached using storage provider plug-ins. A
data service application may be implement a comparatively simple operation
such as a network file system or more complex such as a meta-directory, an
on-line data service such as LEXIS or DIALOG commercial on-line data

services, or an internet search engine.

As suggested by link 227, multiple profile service instances can be
federated to establish a single logical profile data base by setting
configuration parameters on the desired instance (e.g., instances 201 and
202 in FIG. 2). Collaboration is implemented utilizing a combination of profile
and field level identifiers and request forwarding between instances of the
profiling service over link 227. When two profile instances are linked, the
profile information stored in the dedicated databases 206 and 207 become
available to each of the instances. This creates a potential for conflict if a
profile service attempting to access a profile or attribute within a profile cannot
distinguish between two profiles or between two or more attributes of a

profile.

10

15

20

25

30

WO 00/70507 PCT/US00/09439

In accordance with the present invention, each profile and.each
attribute is marked with a resource identifier. Previously unconnected
profiling service instances can be connected with virtually no risk of data
conflicts by leveraging the resource identifiers built-into the core profiling

service.

FIG. 3 shows a more detailed example of an implementation of the
present invention. The components include a core profile engine 301 that is
accessed by a client application 302 through a profile services application
programming interface (API) 303. API 303 implements within itself or
attaches to one or more protocol adapters 304. Client applications 302 that
have a corresponding interface to one of protocol adapters 304 send and
receive messages through API 303 to core profile engine 301. The
messages enable client application 302 to send data and commands to

request profile services from core profile engine 301.

In a particular implementation the profile service AP! 303 includes a
built in protocol adapter 305 to provide client accessibility without any plug-in
adapters 304. In a particular embodiment, built-in adapter 305 implements a
protocol based on extensible markup language documents embedded within
hypertext transport protocol (HTTP) data packets. The XML documents have
embedded elements that contain formatted versions of request and response
messages communicated between client application(s) 302 and core profile
engine 301. XML documents are a useful format because the language is
well understood, actively developed, and readily transportable through a
variety of communications media using commonly available HTTP transport
mechanisms. Routers, switches, network ports, and other network devices
recognize XML formatted documents embedded in HTTP data transport
packets and are configured to handle them appropriately and reliably. It is
contemplated that other formats and transport mechanisms may be used such
as HTML or SGML format documents. Also, other transport mechanisms may
be useful in particular applications such as transport mechanisms specified for

fibre channel fabrics as well as proprietary transport protocols. These and

10

15

20

25

30

WO 00/70507 PCT/US00/09439

17

other implementations are considered equivalent to the specific embodiments

disclosed herein unless specifically indicated otherwise.

Core profile engine 301 responds to the client request messages by
passing the message to an appropriate method to execute requested
functions on virtual profile data store 314. Core profile engine 301 comprises
a profile manager object and a piurality of profile objects that are described in
greater detail with reference to FIG. 5A and FIG. 5B. Typically the core
profile service will respond to a request message by accessing profile
information from its dedicated datastore or an external datastore (shown in
FIG. 2) and generating a response message. The response message is sent
back through API 303 to the appropriate protocol adapter 304 (or built-in
adapter 305) to the requesting client application 302.

In the implementation of FIG. 3, core profiling engine 301 includes a
built-in interface for attaching to data storage devices. Java™ naming and
directory interface™ (JNDI) is a commercially available naming and directory
interface that includes a pluggable service provider interface (SPIs). JNDI is
essentially an AP! that provides naming and directory functionality to
applications written in a Java programming environment. Java and Java
Naming and Directory Interface are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries. JNDI is
defined to be independent of any specific directory service implementation.
Hence, a variety of directories including legacy, emerging, and already
deployed directories can be accessed in a common manner. In operation
core profile engine 301 causes JNDI to create a transparent runtime binding
to naming and directory service such as an X.500 datastore 311 or LDAP
datastore 307 as shown in FIG. 3.

It is contemplated that instead of or in addition to JNDI the present
invention may also incorporate a built-in interface to support directory access
to its associated dedicated datastore 309. Because dedicated datastore 309

is not accessed by other applications, a compiled, built-in interface may be

10

15

20

25

30

WO 00/70507 PCT/US00/09439

more appropriate and efficient than a plug-in interface. In the example of
FIG. 3, built-in LDAP module 308 is used to access dedicated datastore 309.
However, the JNDI layer provides flexibility in the choice of the mechanism
used to implement dedicated data store 309 as the LDAP module 308 is

readily replaced by any of a wide variety of available modules.

Virtual profile data store 314 may comprise a single data storage
device, but more often comprises a plurality of disparate, heterogeneous data
storage devices. The specific example of FIG. 3 includes an LDAP datastore
307, X.500 datastore 311, and a relational database 306 accessed through a
database application such as a structured query language (SQL) server 310.
As noted above, virtual profile data store 314 may also include flat data file(s),
object oriented database(s) and the like. Virtual data store 314 includes a
dynamically changing number of data store devices as datastore mechanisms
can be added, changed, modified and deleted by modifications to the

associated adapter module.

The core profiling engine 301 includes another pluggable interface 315
for attaching to a group of optional pluggable service modules 316 including
service modules 317-324, that provide supporting functionality and implement
program behavior. The set of plug in service modules 316 are optional in that
core profile engine 301 will run even if no plug-in modules are available. In a
particular implementation, modules are plugged in by specifying an
initialization parameter when the profile manager object within core profile
service 301 is instantiated. Alternatively, the pluggable modules may be
dynamically loaded at runtime. The initialization parameter comprises an
address or fully qualified path pointing to a location at which the plug-in
module is stored. The plug-in module need not be stored locally or in the
same machine as the core profile engine 301. Upon instantiation, core profile
engine 301 creates a runtime binding to the plug-in service module and
thereafter the program behavior embodied in the plug-in module is available.
While plug-in service modules will typically extend functionality of core

profiling service 301, it is contemplated that in some applications a plug-in

10

15

20

25

WO 00/70507 PCT/US00/09439

\0

module may override or overload basic functionality and behavior
implemented as built-in functions within core profile service 301. In this
manner the core profiling engine can be customized and extended to meet

the needs of a particular application.

Example plug-in service modules shown in FIG. 3 include authorization
module 317 and authentication module 318 that implement authentication
and authorization for a particular application. Some implementations may not
need this service and so it may not be integrated into core profile engine 301.
Also, the complexity of these features will vary significantly in response to the
needs of a particular application. These modules combine with core profiling

service 301 to provide enterprise level functionality and are fully optional.

A notification plug-in implements functionality that is responsible for
executing trigger-specified notifications of external systems. It is
contemplated that the notification engine plug-in may itself use a pluggable
architecture to handle notification in different formats based on the destination
of the notification. In general, when a profile record is updated other profiles
may require or desire to be updated as well. For example, consider a case
involving a human resources profile having attributes for a plurality of
employees within the organization. An employee may change addresses or
phone numbers and other profiles, such as an employee phone directory
profile, may need that information. Notification may be lazy or immediate
depending on the type of notification. An employee that has been terminated
may require immediate notification to security and expense account profiles,

for example.

Yet another example of a plug-in module is event logging module 321
that functions to record events that occur in the profiling service. File systems
often are implemented with logging functions to enable the system to recreate
transactions in the event of hardware failure. Logging module 321 is similar

to such a logging function, however, is not limited to file-system type logging.

10

15

20

25

30

WO 00/70507

PCT/US00/09439

Instead, any profile information or operation within profile service 201 (shown

in FIG. 2) may be logged.

Group plug in 322 is used to define and manage group specifications
in profile service 301. A group is an organizational entity that includes
members that have shared attribute information by virtue of their membership.
A group may be, for example, a workgroup or team within an organization, a
suite of software applications, a group of hard disk drives that form a RAID
storage set, and the like. The members of each group may share specified
privileges or have specified restrictions imposed on them. In the particular
example group services are not built into core profile service 301 because the
types of groups and form of group management is expected to take
exceptionally application-specific form. Accordingly, it is more efficient to add
the group behaviors as special purpose plug-in modules rather than increase
the bulk of the core profiling service. It should be understood that the group
plug-in, as with any other plug-in, can be built into the core profiling service if
desired with some expected increase in size and complexity of the core

profiling service.

Another example of a plug-in module is enitylDFactory 323. As noted
hereinbelow, the present invention supports a special type of entity profile
referred to as an entity profile that has a unique ID associated with it. The
unique 1D enables the profile to be readily distinguished from all other profiles
of the same type. While it is a simple task to assign unique Ids and that task
could readily be built into core profile service 302, it has been found that
users may wish to exert some control over the manner in which Ids are
assigned. Accordingly, implementation of ID assignment by a plug-in module

enables this task to be customized to satisfy user desires.

Replication plug-in 324 implements functionality required to replicate
the contents of dedicated datastore 206 and 207 shown in FIG. 2. As noted
hereinbefore, users may wish to customize the replication methodology by

specifying only a portion of the dedicated database that is replicated.

10

15

20

25

WO 00/70507 PCT/US00/09439

Moreover, user's may wish to specify the frequency and timing of replication
events to balance the need for replication against the cost of transporting
data between replicas. Replication plug-in provides this customizable

functionality.

The profile service in accordance with the present invention provides a
high-speed mechanism to lookup, structure and store key/value pairs stored
in data structures called profiles. These key/value pairs represent information
about "entities" such as application software, users, hardware devices, and
the like. The present invention is preferably implemented as a service
running on a gateway server. The present invention is intended to integrate
several physical data stores into a single, distributed logical data store of

reference information.

As used herein, a "profile" is a data object containing a set of key/value
pairs, such as profile 400 shown in FIG. 4. Each key/value pair is referred to
as an "attribute" such as attribute 412 in FIG. 4. The value associated with a
given key may be either a primitive value (e.g., a numeric value, string value,
logical value, and the like) or may be another profile. When the value is
another profile the value is referred to as a "subprofile". An individual profile
in data structure 400 comprises 0 to n attributes and 0 to n subprofile
bindings 402 where "n" is an arbitrary value selected to meet the needs of a
particular application. In the example of FIG. 4, profile names are enclosed

by brackets [] and attributes are represented as key=value pairs.

All profiles contain a type attribute. When the value of an attribute is a
subprofile, the key is the type of the subprofile. In the case when the value is
a subprofile the key/value pair is called a "binding". By binding several
profiles it is possible to build hierarchical trees of information. It is possible to
bind a profile to multiple parent profiles which is referred to herein as "linking".
Linking enables the representation of relational information in addition to

hierarchical information.

10

15

20

25

WO 00/70507 PCT/US00/09439

Profiles are not restricted in type as defined by the profile's attribute
key or number of attributes that may be stored in a single profile. Moreover,
individual attributes may have multiple values set as illustrated by the
publickey attribute in the Security profile in FIG. 4. However, each binding
has only a single value, although each profile may contain any number of
bindings. Moreover, a bound subprofile may itself contain other subprofile

bindings enabling a hierarchical structure.

Optionally, a schema may be associated with a profile data structure
400. A user may define a schema that forces profiles of specified types to
contain at least a minimum set of attributes upon creation. A schema aids in
providing uniformity and a minimal level of compatibility without limiting the
dynamic and extensible nature of the profiles in accordance with the present
invention. In the specific examples, conformance with a defined schema is
only enforced when a profile is created. Hence, subsequent profile
modifications may bring a profile out of compliance with the schema. In other
words, the concept of a schema is loosely imposed on the profiles in the
specific embodiment in favor of giving the user a greater freedom to

manipulate, modify, and extend a schema after it is created.

As used herein, the term "object" refers to a data structure stored in
mass storage or memory accessible by a computer that contains specified
data and a set of methods or operations that enable the object to perform
operations on the data it contains. The methods contained in an object also
implement an interface enabling the object to receive data from and send
data to other computer program devices. Data structure 400 is a
representation of a profile object. It should be understood that the physical
implementation of data structure 400 may vary significantly from application-
to-application and may be implemented as a contiguous segment of storage
locations or a dispersed arrangement of physical locations that are logically

ordered in a manner shown in FIG. 4.

10

15

20

25

30

WO 00/70507 PCT/US00/09439

In general, when a profile is created it must be the "child" of some
other profile, or it must be an "entity profile". In FIG. 4, profile 411 labeled
"Contact" is an example of entity profile. An entity profile is a special
subclass of a profile object that has an additional fixed attribute 412 called an
entitylD. The profile service in accordance with the present invention
provides facilities for generating the entitylD in @ manner such that all entity
profiles of the same type have unique entitylDs. Essentially, entity profiles
serve a special role of establishing roots from which other profiles may be
attached. Entity profiles support all of the operations of a profile, but add in

addition support for some specialized method for accessing the ID attribute.

Entity profiles are used to represent data that has no single child
relationship to another profile, or when no other profile exists. Entity profiles
are useful to represent users, contacts, resources, components, groups, and
the like. All of these entities have a discreet and meaningful independent
existence and role in the real world. In contrast, conventional profiles (i.e.,
nonentity profiles) must always be attached as a child to either an entity
profile or another nonentity profile. Nonentity profiles are useful for
representing data such as display preferences, demographic information,
identification information, and the like. All of these groups of information are
meaningless unless related to some stand alone concept such as a user,

resource, component, and the like.

in FIG. 4 the entity profile "Contact” includes a number of attributes
including a subprofile binding "DemographicList”. The profile
DemographicList itself contains subprofile bindings to its list members "email”,

"postalworkList", and "Security".

DemographicList and PostalworkList in FIG. 4 are examples of another
special profile type called a "profilelist”. A profilelist relates multiple profiles of
the same type to a single parent. This is done by binding a single profile list
(e.g., postalworklist) to the parent (e.g., Contact) with multiple member
profiles (e.g., "gb" and "us" in FIG. 4) are added to the list. While ProfileLists

10

15

20

25

30

WO 00/70507 PCT/US00/09439

24

are serve to collect profiles of the same type, it is contemplated that they may
also be used as a convenient collection object for subprofiles of different
types. It is important to note that profilelist member profiles may not contain
any attributes and do not support the concept of a schema. As a result of this

limitation, several profile operations are not supported by ProfileLists.

FIG. 5A and FIG. 5B show simplified class diagrams indicating basic
functional objects and characteristics of a profile service in accordance with
the present invention. The profile service supports two basic functional
objects, profiles themselves and a "profile manager". The profile manager
interface is alternatively referred to as the profile service interface. The
logical interfaces shown in FIG. 5A and FIG. 5B are not intended to be literal.
Instead they are intended to articulate the fundamental functional operations
that the service supports. All implementation of the profile service desirably
support these classes of functions. In addition, individual implementations
may support additional methods that are not supported in all implementations

to meet the needs of a particular applications.

FIG. 5A and FIG. 5B list functions implemented in profile objects. All
of the listed functions require the specification of a profile upon which the
function will operate. The profile can be specified, for example, by passing
context information from the requesting entity to the profile service in the
request message. The profile class shown in FIG. 5A lists functions available
in instances of profile objects. In general, this category of methods
manipulate attributes within a specified profile. Hence, once a profile object is
created it is autonomous in the sense that it can be directly accessed by user
calls and it no longer relies on the profile manager (discussed in reference to

FIG. 5B) to enable attribute manipulation.

In the exemplary implementation profile objects include meta-data
associated with each attribute indicating such information as
read/write/execute permissions, ownership, and the like. Meta-data is used

by the profile service to for managerial purposes, but is not considered an

10

15

20

25

30

WO 00/70507 PCT/US00/09439

[\
n

explicit part of a profile as it is not normally provided in response to attribute
access requests. Nevertheless, each profile includes meta-data manager

methods for retrieval and modification of attribute values.

Schema methods within profile objects create and maintain a profile
schema. A profile schema is created to enforce specified properties on all
profile instances of a particular type. For example, consider a profile of
type=employee. If no schema is defined, for each instance of the
type=employee an independent profile is created in such a way that each
profile can have a different set of attributes, subprofile bindings, and external
data references. In contrast, when a schema is defined for a specified profile
type, the schema specified a minimum set of attributes that must be included

in the new profiles of that type and enforced upon new instances of that

Subprofile binding methods are used to bind profiles to other profiles.
Functions offered by the subprofile binding methods include method to list
and retrieve existing bindings within a profile, as well as to create new

bindings, revise existing bindings, and destroy existing bindings.

Profile objects also include search, template, and control methods as
indicated in FIG. 5A. A search method accepts a user entity specified search
expression, returns a list of subprofiles, or possibly attributes of a specified
profile, that match the specified search expression. Template methods
control the manner in which a given profile refreshes itself against a specified
template to which it is attached. By attaching a profile to a template, changes
in the template are reflected in the attached profile whenever the profile's
refresh method is activated. Refresh can be performed on demand by the
user entity, or automatically as specified in the template methods. Control
methods include, for example, methods that define whether the profile can be
extended by a user. As noted hereinbefore, a powerful feature of the present
invention is that profiles can be dynamically extended by users. However, the
present invention also provides a means by which this feature can be turned
off.

10

15

20

25

30

WO 00/70507 PCT/US00/09439

26

Entity profile objects include variables, data and methods necessary to
define basic functional interfaces of entity profiles described hereinbefore. In
the specific example of FIG. 5A the entity profile class extends the profile
interface (i.e., it supports all the methods found in the profile interface) by
providing several method that are specific to entity profiles. The profile list
class includes variables, data and methods necessary to define basic
functional interfaces of profile lists described hereinbefore. The profile list
class also extends the profile interface and provides additional methods used

to look at and manipulate the contents of a profile list.

The profile manager object provides a mechanism for creating,
retrieving and establishing schemas for profiles. Essentially, the methods
summarized in Fig. 5B include factory methods that create new profiles
(including entity profiles and profile lists), retrieve profiles, search profiles,
define profile schema, and implement external data store methods. Search
methods are substantially similar to the search methods used in profile
objects, however, search all attributes within a specified profile rather than all

attributes hierarchically below a specified profile.

To understand the power of these methods it is important to note that a
user entity may be a human user, another software application, hardware
device, or the like. The functions described above are representative only
and it is contemplated that the profile, entity profile, profile list, and profile
manager classes will implement a variety of other methods to meet the needs
of a particular application. The specific methods and interfaces identified
herein can be implemented in any available object-oriented programming
environment such as, for example, SmallTalk, C++, the Java platform, and
the like.

FIG. 6 shows an exemplary mechanism for accessing the buiit-in
interface 305 (shown in FIG. 3) of a profile service instance in accordance
with the present invention. In FIG. 6, the user entity is a client software

application 601. The interface in accordance with the present invention is

10

15

20

25

30

WO 00/70507 PCT/US00/09439

useful in a distributed, heterogeneous computing environment where the
machine upon which profile service program 301 is running may be separate
from client application 601. Moreover, profile service 301 may be running on
a server using a first operating system such as Solaris™ operating system,
Linux, WindowsNT, or the like. Client application 601 may be running on a
personal computer, laptop computer or palm computer or the like executing
another operating system such as Windows 98, Windows CE, or a Java run
time environment, for example. Java and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and

other countries.

The implementation shown in FIG. 6 leverages the large installed base
of hypertext transfer protocol (HTTP) transport layer devices that are ported
to a wide variety of hardware and software applications. Client application
601 should include or have access to an HTTP transport protocol mechanism.
The HTTP transport mechanism is widely used on the Internet for transporting
hypertext documents such as hypertext markup language (HTML) and
extensible markup language (XML) documents. Existing switches and routers
in the physical communication network recognize HTML and XML documents,
among other formats, encoded into an HTTP data packet. In this manner, the
present invention requires little or no change in the user entities' configuration

and physical transport network configuration.

In accordance with the present invention, a user entity such as client
application 601 generates one or more request messages that access
services provided by core profile engine 301. The request messages have a
one-to-one correspondence with the profile manager methods and profile
methods described hereinbefore. That is to say, for each method there is a
corresponding request message used to access that method. The request
message also includes argument data required by the method such as
context information identifying the requesting user entity, providing

authentication information, and the like.

10

15

20

25

WO 00/70507 PCT/US00/09439

[\
[0}

In the preferred implementation the request messages is encapsulated
in an XML document called a "request set". A request set is defined by an
XML data type description (DTD). The request set DTD comprises a plurality
of nested elements where at least one of the elements corresponds to a
method in the profile manager or a profile itself. The element can include

arguments required by the corresponding method.

As shown in FIG. 3, protocol adapter 304 implements the HTTP
transport protocol to extract the request set from the HTTP data packet and
reformats the request set document as a plurality of request messages.
Profile services APl 303 accepts the request messages and passes the
messages to appropriate profile objects or the profile manager object for
execution within core profile service engine 301. Typically a response
message will be generated for each request message. Profile service API
303 receives the response messages and formats them into mark-up
language documents called a "response set" document. Like the request set,
a response set is defined by a data type definition and includes a plurality of
nested elements at least some of which correspond to formatted response

messages.

It will be appreciated that the profile service architecture described
herein provides generic profiling capability accessible over conventional
network facilities and readily integrated with a wide variety of software
application in a manner that defines the fundamental behavior,
representation, and functional interfaces for profile objects. Although the
invention has been described and illustrated with a certain degree of
particularity, it is understood that the present disclosure has been made only
by way of example, and that numerous changes in the combination and
arrangement of parts can be resorted to by those skilled in the art without

departing from the spirit and scope of the invention, as hereinafter claimed.

10

15

20

25

WO 00/70507 PCT/US00/09439

29

WE CLAIM:

1. A mechanism for managing a plurality of profile data structures,
each profile data structure comprising a hierarchical structure of attributes,
the mechanism comprising:

a core profile service engine having a number of predefined built-in
functions;

a first pluggable interface within the core profile service and supporting
runtime binding to remote protocol adapters;

a second pluggable interface within the core profiling service and
supporting runtime binding to external datastore plug-ins; and

a third pluggable interface within the core profiling service and
supporting runtime binding to external service plug-ins, the external service

plug-ins comprising functions for manipulating profile data structures.

2. The mechanism of claim 1 wherein the core profile service
engine comprises a profile manager component and a plurality of profile

objects.

3. The mechanism of claim 1 wherein the built-in functions within
the core profiling service include functions for creating, storing, instantiating

and manipulating profile data structures.

4. The mechanism of claim 1 further comprising a first built-in
interface built in to the core profile service supporting requests from remote
user entities, the first built-in interface causing the core profile service engine

to execute the built-in functions specified by the request.

5. The mechanism of claim 4 further comprising a second built-in
interface within the core profile service supporting data exchange with a

dedicated datastore.

6. The mechanism of claim 1 wherein the third pluggable interface

comprises a naming and directory interface having a pluggable service

10

15

20

25

WO 00/70507 PCT/US00/09439

30

provider interface supporting runtime bindings to a plurality of naming and

directory service plug-ins.

7. The mechanism of claim 1 further comprising a plurality of
remote protocol adapters coupled to the core profiling engine by a runtime

binding to the first pluggable interface.

8. The mechanism of claim 1 further comprising a plurality of
datastore plug-ins coupled to the core profiling engine by a runtime binding to

the second pluggable interface.

9. The mechanism of claim 1 further comprising a plurality of
service module plug-ins coupled to the core profiling engine by a runtime

binding to the third pluggable interface.

10. The mechanism of claim 1 further comprising:

a naming and directory interface coupled to the core profile service, the
naming and directory interface having a fourth pluggable interface comprising
a Java naming and directory interface (JNDI) having a pluggable JNDI service
provider interface (SPI) supporting runtime bindings to a plurality of naming

and directory service plug-ins.

11. A method for operating a software application to manage a
plurality of profile objects comprising the steps of:

storing a plurality of profile objects in a datastore mechanism, each of
the profile objects having a number of built-in functions;

instantiating a core profile service mechanism having a number of
predefined built-in functions, a first pluggable interface within the core profile
service and supporting runtime binding to remote protocol adapters and a
second pluggable interface within the core profiling service and supporting
runtime binding to external datastore plug-ins;

receiving service request messages through the first pluggable

interface;

10

15

20

25

WO 00/70507 PCT/US00/09439

instantiating a specified profile object according to a specification in the
service request message;

generating a response message using the predefined functions of the
instantiated profile object; and

sending the response message to an external user through the first

pluggable interface.

12. The method of claim 11 further comprising the steps of:
creating a runtime binding between the first pluggable interface and a
specified remote protocol adapter where the remote protocol adapter is

specified to be compatible with a protocol used by the external user.

13. The method of claim 11 further comprising the steps of:

creating a runtime binding between the second pluggable interface and
a specified naming and directory service plug-in;

accessing the datastore using the second pluggable interface and the

specified naming and directory service plug-in to retrieve the specified profile.

14. The method of claim 11 further comprising:

providing a third pluggable interface within the core profiling service;
and

establishing a runtime binding to an external service module plug-ins,
the external service module plug-ins comprising functions for manipulating

profile data structures.

15. The method of claim 14 further comprising creating a runtime
binding between the third pluggable interface and a service provider plug-in,
the service module plug-in, the service module plug-ins comprising functions

for manipulating profile data structures.

16. The method of claim 11 wherein the step of instantiating further

comprises:

10

15

20

25

WO 00/70507 PCT/US00/09439

32

initiating a naming and directory interface coupled to the core profile
service and
creating a dedicated binding to the datastore mechanism through the

directory and naming interface.

17. The method of claim 16 wherein the directory and naming

service includes an integrated service provider interface (SPI).

18. A distributed profile service system for providing profile services
to a number of user software applications, the profile service system
comprising:

a plurality of geographically distributed profile service instances;

a dedicated datastore coupled to each profile service instance;

a plurality of shared datastore mechanisms;

a first runtime binding mechanism in each profile service instance
configured to establish a runtime binding to the user software applications;

a second runtime binding mechanism in each profile service instance
configured to establish a runtime binding to one of the shared datastore
mechanisms; and

a third runtime binding mechanism in each profile service instance

configured to establish a runtime binding to a service module plug-in.

19. The profile service system of claim 18 wherein each dedicated
data store includes a replica of at least some data from the other dedicated

datastore mechanisms.

20 The profile system of claim 18 wherein the user software

application is geographically remote from the profile service instance.

21. The profile system of claim 18 wherein the user software
application comprises a domain-specific software application communicating

with a client software application.

10

15

20

25

WO 00/70507 PCT/US00/09439

22. The profile system of claim 18 wherein each profile service
instance includes a naming and directory interface coupled to access the

dedicated datastore.

23. The profile service of claim 18 wherein each profile service
instance includes mechanisms to forward service requests received by a first

profile service instance to a second profile service instance.

24. A computer program product embodied in a tangible form
comprising:

computer program devices readable by a data processor coupled to
receive the propagating signal for managing a profile data service, the
computer program product comprising:

first program code devices configured represent a plurality of profile
objects, each of the profile objects including program code devices configured
to cause a computer to perform a number of predefined built-in functions;

a second program code device configured to cause a computer to
instantiate a profile manager object, the profile manager object including
program code devices expressing a number of predefined built-in functions;

third program code devices configured to cause a data processor to
implement a first pluggable interface supporting runtime binding to remote
protocol adapters;

fourth program code devices configured to cause a computer to
implement a second pluggable interface supporting runtime binding to
external datastore plug-ins; and

fifth program code devices configured to cause a computer to
implement a third pluggable interface supporting runtime binding to external

service module plug-ins.

25. The computer program product of claim 24 further comprising:
sixth program code devices configured to make a runtime binding with

the third program code devices and cause the computer to communicate

10

15

20

25

WO 00/70507

PCT/US00/09439

34

service request messages through the first pluggable interface to the first and

second program code devices.

26. The computer program product of claim 24 further comprising:

sixth program code devices configured to make a runtime binding with
the fourth program code devices and to cause a computer to provide naming
and directory services with an external data store according to a protocol

described by the sixth program code devices.

27. The computer program product of claim 24 further comprising:

sixth program code devices configured to make a runtime binding with
the fifth program code devices and cause a computer to provide a number of
predefined functions in addition to the functions provided by the first and

second program code devices.

28. The computer program product of claim 24 wherein the tangible

form comprises a magnetic disk.

29. The computer program product of claim 24 wherein the tangible

form comprises an optical disk.

30. The computer program product of claim 24 wherein the tangible

form comprises a propagating signal.

31. The computer program product of claim 24 wherein the tangible

form comprises a random access memory device.

32. A mechanism for managing a plurality of profile objects
comprising:

means for storing a plurality of profile objects in a datastore
mechanism, each of the profile objects having a number of built-in functions;

means for instantiating a core profile service mechanism having a
number of predefined built-in functions, a first pluggable interface within the

core profile service and supporting runtime binding to remote protocol

WO 00/70507 PCT/US00/09439

35

adapters and a second pluggable interface within the core profiling service
and supporting runtime binding to external datastore plug-ins;

means for receiving service request messages through the first
pluggable interface;

5 means for instantiating a specified profile object according to a

specification in the service request message;

means for generating a response message using the predefined
functions of the instantiated profile object; and

means for sending the response message to an external user through

10 the first pluggable interface.

WO 00/70507 PCT/US00/09439

o)
-
bl
A o)
)
S
/’—\\ LL
7/ AN
/ \
/ \
/ \
/ \
\
\
\ sl
) \
S \ ©
@ ! A
= \
e
aoo _ |
- - \ ‘||-
M I
1 B\
| S
! <
) o
‘ A aud
i ’——\\
)

=
101
105
> ~
113
)
Pd
//

100
112 —

PCT/US00/09439

WO 00/70507

Llc

4401S
viva
TVYNY3LX3

IDINY3S Viva

i

// 91¢

2/5

¢ Old

vic N

i
NOILVYOINddV

IN3NO

»/ T4

1] %4

JHOLS
viva
IVNYH3LX3

34018
vivd
IVYNY31X3

JONVLSNI

80¢

FHOLS
vivd
ITYNY3LX3

L2¢

90¢

|

w”w_>mmw 311404d

(4114 \ 4

ddv
O1d4103dS NIVINOQ

v0c \

ﬁ L2 X & X J lL

1

“

1 NOILLVOITddV NOILVOf1ddV
“ IN3NO .rzw_._o

- l

mrm\

»/ Nz
51T

JONVLSNI

JJINY3S w._EO.mn_

/ 102

e
Y

NOILVYOINddVY
IN3ITO

>/ 502

PCT/US00/09439

3/5

WO 00/70507

Sce

€ Old vie JMOLSYLV 3y01sv1lva $sa
S| 00sX dvan —
3YO.LSvLvd
a3Lvoia3a
)
.. : S
NIFON1d NOILYOINd3Y
: . 005X NIFON1d dvai
iz WOLSND 80¢
a ‘]
NIFOMN1d AHOLOVH Al ALILNT — - dvai ~
[§
N—gze
gle
NIFON1d dNOYD IaNP
_ iJ .
~-gzee SiE
fm 10t
NI-ON1d 901
\ ANIONIT 31140¥d JH0D
~~—12¢
NI-FON1d NOILYDI4ILON > coe
_ Y¥3aldvay ¥3aldvav ¥3idvav yaldvav 44>
NI-ON1d NOILYOILNIHLNY ; Nr1ng 1020104d 1000104d 7000L0¥d -
|}
g — H i
NIFON1d NOILYZIYOHLNY _
\— ; NOILYDINddY NOILYDINddVY NOILYDI1ddV
R 4 SN IN3NO IN3ND +zm:o
|

J J
Z0€ Z0€ Nom\

WO 00/70507

FIG. 4

PCT/US00/09439
411 400
) [
[Contact]
entitylD=157073 — 412
type=user
name=John T. Roth
413
[DemographicList] —
type=DemograpnicList 414
[Ii_st_igex'—'_tyge_ _______________________ .
[email] |
I type=email !
: email=johnr@acme.com :
| email=71202,4572@compuserve.com |
fF--"- - """ "F""-"—-"=-""-"""”"-"——"———=—_-————_7——=- =]
| [postalworkList]
I type=postaiworkList
415
: . listkey=iocale [
, figbl 5.
[type=postaiwork :
' locaie=gb ;
: add1=SunHouse, 31-41 Pembroke Broadway |
I add2
! city=Camerley ’
: state=
!
i

i{us]
416 N type=postalwork

i

: locale=us
P add1=9805 Caldera Ave
I add2

b city=Laudesta
: state=CA

I postalcode=78001
I

——— - —————— — — - —— —— — —— - — - ——— — - — > ——

[Security] !
type=Security :
publickey= 98646064... I
publickey=88hxruih7by43-km... I
publickey=8740865456418981... ||
publickey=0732rn0ybcr{08741in1cB %... "

PCT/US00/09439

WO 00/70507

5/5

JOING3S
J11404d

10€

IdVv
saomsas | By
371404d

374 TANX=3SNOJS3H di1H

9 "OId

€0t

140}

139 "0 1SOd d11H

NOILVOIlddV
IN3NO

/

109 \

SpoYIaW Xapul 1si
SPOYlaW S$300E. ISI

spoyjaw ssaooe Aug

1SI171 31140¥d

I71408d ALIINT

g5 Old

Spoyjaw 310)g ejeq (ewsdixy

Spoyjs jeAslal aoid

spoyjaw ewayss
(s)poypw yoseasg

spoyjsw Aiojoe4

H3IOVNVI 371404d

Y

spoyiawl josuo)
spoyjaw ajejdwa)

spouyjaus ewayos

yoleas ajpoid

spoyjaw Buipuiq sjyosdqng
spoyjauwl sabeuew ejep-ejeiN
spoyiaw Jabeuew ajnquNyY

J71408d

o

VS '9l4

INTERNATIONAL SEARCH REPORT

intern 1al Application No

PCT/US 00/09439

A._CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F17/30

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbois)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuilted during the intemational search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, INSPEC, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Retevant to claim No.
A EP 0 675 451 A (SIEMENS STROMBERG CARLSON) 1-4,
4 October 1995 (1995-10-04) 6-14,16,
18-32
abstract

page 3, line 51 -page 4, line 16
page 5, line 49 -page 6, line 38
page 6, line 51 -page 7, last line

A US 5 506 984 A (MILLER JAMES S) 1-4,

9 April 1996 (1996-04-09) 6-14,16,
18-32

abstract :

column 3, line 65 -column 4, line 20

column 5, line 8 —column 6, line 54

—_ o

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : . . . -

“T" later document published after the intemational filing date
of priority date and not in conflict with the application but
cited to understand the principle or theory undertying the
invention

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the intemational X" document of particular relevance; the claimed invention

fiing date cannot be considered novel or cannot be considered to
‘L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the pubiication date of another w4 ; . : ; :
: : P ocument of particuiar retevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"0Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled
"P" document published prior to the intemational filing date but in the art.
later than the priority date claimed "'&* document member of the same patent family
Date of the actual completion of the intemational search Date of mailing of the intemational search report
16 October 2000 30/10/2000
Name and mailing address of the {1SA Autrorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 Archontopoulos, E

Form PCT.13A,210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Interne " al Application No

PCT/US 00/09439

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° { Citation of document, with indication,where appropriate, of the relevant passages
9 g

Relevant to claim No.

A "DEVELOPING DATABLADE MODULES FOR
INFORMIX-UNIVERSAL SERVER"
, ‘Online!
11 September 1996 (1996-09-11), pages 1-8,
XP002150108

Retrieved from the Internet:
<URL:http://www.informix.com/informix/whit
epapers/databld/databld.htm>

‘retrieved on 2000-09-28!

page 2, line 13 - line 23

page 3, line 28 - line 44

page 5, line 11 - line 46

1-4,
6-14,16,
18-32

Form PCT/ISA210 {continuation of second sheet) iJuly 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Intern: al Application No

PCT/US 00/09439

Patent document Publication Patent family Pubiication

cited in search report date member(s) date

EP 0675451 A 04-10-1995 CA 2145737 A 01-10-1995
JP 8055048 A 27-02-1996
us 5764977 A 09-06-1998
us 5687363 A 11-11-1997
us 5721909 A 24-02-1998
us 5835757 A 10-11-1998

US 5506984 A 09-04-1996 NONE

Form PCT/ISA/210 {patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

