(19) (10 DE 197 09 227 B4 2006.05.24

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Patentschrift

(21) Aktenzeichen: 197 09 227.6 shytct:: GO6T 1/60(2006.01)
(22) Anmeldetag: 06.03.1997 GO6T 15/00 (2006.01)
(43) Offenlegungstag: 29.01.1998
(45) Veroffentlichungstag
der Patenterteilung: 24.05.2006

Innerhalb von drei Monaten nach Veréffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent Ein-
spruch erhoben werden. Der Einspruch ist schriftlich zu erklaren und zu begriinden. Innerhalb der Einspruchsfrist ist eine
Einspruchsgebiihr in Héhe von 200 Euro zu entrichten(§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2 Abs. 2
Patentkostengesetz).

(30) Unionsprioritat: (72) Erfinder:
08/690,426 26.07.1996 us Cunniff, Ross, Fort Collins, Col., US; Saunders,
Bradley L., Fort Collins, Col., US
(73) Patentinhaber:
Hewlett-Packard Development Co., L.P., Houston, (56) Fur die Beurteilung der Patentfahigkeit in Betracht
Tex., US gezogene Druckschriften:
US 5479634 A
(74) Vertreter: EP 00062 165 A2
Schoppe, F., Dipl.-Ing.Univ., Pat.-Anw., 82049 EP 07 49 100 A2
Pullach MESSMER, H.-P.: PC-Hardwarebuch,

Addison-Wesley,
1993, S. 233-240;

(54) Bezeichnung: Verfahren zum schnellen Herunterladen von Texturen auf eine Hardware fiir beschleunigte Gra-
phiken und zur Beseitigung von zusatzlichen Softwarekopien von Texeln

(57) Hauptanspruch: Verfahren zum Bereitstellen von Tex- PRI PR2 PRN
turtabellen fir die Erzeugung einer Graphik durch ein Com- Prozes | PRozEs pRozes '
putergraphiksystem, wobei das Computergraphiksystem KONTEXT 18 KONTEXT 2 ONTEXT NB
einen Host-Computer mit zugeordnetem Systemspeicher ° § °oe E

und einer Graphikhardwarevorrichtung (150) zum Aufberei- KONTEXT 1N KONTEXT 2N KONTEXT NN

ten von mit einer Textur versehenen Bildern umfasst, wobei o e o

die Graphikhardwarevorrichtung (150) einen lokalen Spei-

cher (155) aufweist und mit dem Host-Computer in Verbin- HWD1 HW02 HWON
dung ist, und wobei der Host-Computer konfiguriert ist, um (RAT S R
ein Anwendungsprogramm (PR1, PR2, PR3), eine Gra-

. . . . [[SOCKEL 1 SOCKEL 2 SOCKEL N__]
phik-Anwendungsprogrammierschnittstelle (Graphik-API) 1 e
(API1, API2, API3) und ein Hintergrundprogramm (160) T
auszufiihren, wobei das Verfahren folgende Schritte auf- BEFRALE ?ﬁﬁgﬁggﬁw BEFEMLE | BEFRMLE
weist: HINTERGRUND-
(a) ansprechend auf einen gultigen Aufruf (52, 54) der Gra-
phik-API (API1, API2, API3) durch das Anwendungspro- b
gramm (PR1, PR2, PR3), Laden (56) von durch das An- er——
wendungsprogramm (PR1, PR2, PR3) angegebenen Tex- '
turtabellen in den lokalen Speicher (155) der Graphikhard- spoTCHER
warevorrichtung (150) ohne eine Kopie der Texturtabellen

in dem Systemspeicher des Host-Computer zu erzeugen;
(b) Setzen (58) einer Flag, um die Existenz und die Gultig-
keit der in den lokalen Speicher (155) der Graphikhard-
warevorrichtung...

DE 197 09 227 B4 2006.05.24

Beschreibung

[0001] Die vorliegende Erfindung bezieht sich auf
ein Verfahren zum schnellen Herunterladen von Tex-
turen auf eine Hardware fur beschleunigte Graphiken
und zur Beseitigung von zusatzlichen Softwarekopi-
en von Texeln. Insbesondere bezieht sich die Erfin-
dung auf eine Software-Speicherverwaltung von Tex-
turtabellen eines Texturabbildungs-Computergra-
phiksystems und noch spezieller auf einen neuen L6-
sungsansatz, der das Herunterladen von Texturen
betrachtlich beschleunigt, wenn ein Texturunterbre-
chungs-Verwaltungshintergrundproze ("TIM"-Dae-
mon; TIM = Texture Interveniere Management), der
auf einem virtuellen Speicherverwaltungssystem ba-
siert, verwendet ist, um ein Hardwarevorrich-
tungs-Lokal-Cache-Speichersystem zum Speichern
von Texturabbildungsdaten zu liefern.

Stand der Technik

[0002] Gegenwartige Implementierungen einer Tex-
turabbildung, die beispielsweise in der nachverdéffent-
lichten EP 0 749 100 A2 mit dem Titel TEXEL CACHE
INTERRUPT DAEMON FOR VIRTUAL MEMORY
MANAGEMENT OF TEXTURE MAPS der Anmelde-
rin der vorliegenden Anmeldung beschrieben sind,
speichern eine Kopie der Textur des Benutzers soft-
waremafig, um einen Mechanismus fir eine Textur-
abfrage zu liefern und das hardwaremaRige Zwi-
schenspeichern (Cacheing) von Texeln zu ermdgli-
chen, wenn nicht ausreichend Speicher existiert, daf
alle Texel gleichzeitig in die Hardware passen.

[0003] Bei typischen Computergraphiksystemen ist
ein Objekt, das auf dem Anzeigebildschirm darge-
stellt werden soll, in eine Mehrzahl von Gra-
phik-Grundelementen unterteilt. Grundelemente sind
elementare Komponenten eines Graphikbilds und
kénnen Punkte, Linien, Vektoren oder Polygone, bei-
spielsweise Dreiecke, enthalten. Typischerweise ist
ein Hardware/Software-Schema implementiert, um
die Graphikgrundelemente, die die Ansicht von ei-
nem oder mehreren Objekten, das (die) auf dem Bild-
schirm dargestellt wird (werden), darstellen, fir den
zweidimensionalen Anzeigebildschirm aufzubereiten
oder auf demselben zu zeichnen.

[0004] Typischerweise werden die Grundelemente,
die das dreidimensionale Objekt, das aufbereitet wer-
den soll, definieren, von einem Hostcomputer gelie-
fert, der jedes Grundelement in Form von Grundele-
mentdaten definiert. Wenn das Grundelement bei-
spielsweise ein Dreieck ist, kann der Hostcomputer
das Grundelement in Form von x-, y-, z-Koordinaten
der Scheitelpunkte desselben definieren, ebenso wie
von R-, G-, B-Farbwerten jedes Scheitelpunkts. Eine
Aufbereitungshardware interpoliert die Grundele-
mentdaten, um die Anzeigebildschirm- pixel zu be-
rechnen, die eingeschaltet werden, um jedes Grund-

element darzustellen, ebenso wie die R-, G-, B-Werte
fur jedes Pixel.

[0005] Frihe Graphiksysteme waren nichtin der La-
ge, Bilder auf eine ausreichend realistische Art und
Weise anzuzeigen, um komplexe dreidimensionale
Objekte darzustellen oder zu modellieren. Die Bilder,
die durch solche Systeme angezeigt wurden, zeigten
extrem glatte Oberflachen ohne Texturen, Erhebun-
gen, Vertiefungen, Schatten oder anderen Oberfla-
chendetails, die bei dem Objekt, das modelliert wird,
vorliegen.

[0006] Folglich wurden Verfahren entwickelt, um Bil-
der mit verbesserten Oberflacheneinzelheiten anzu-
zeigen. Die Texturabbildung ist ein solches Verfah-
ren, das das Abbilden eines Quellenbilds, das hierin
als eine "Textur" bezeichnet wird, auf eine Oberflache
eines dreidimensionalen Objekts und nachfolgend
das Abbilden des texturierten dreidimensionalen Ob-
jekts auf dem zweidimensionalen Graphikanzeige-
bildschirm, um das resultierende Bild anzuzeigen,
enthalt. Oberflachen-Detailattribute, die Ublicherwei-
se mittels der Texturabbildung abgebildet werden,
umfassen die Farbe, Spiegelreflexionen, Vektorper-
turbationen, das Spiegelvermdgen, die Transparenz,
Schatten, Oberflachen-UnregelmaRigkeiten sowie
Abstufungen.

[0007] Die Texturabbildung umfal’t das Anwenden
von einem oder mehreren Punkttexturelementen
("Texeln") auf jedes Punktelement ("Pixel") des ange-
zeigten Abschnitt des Objekts, auf das die Textur ab-
gebildet wird. Die Texturabbildungshardware wird Ub-
licherweise mit Informationen beliefert, die die Art
und Weise anzeigen, auf die die Texel in einer Textur-
tabelle den Pixeln auf dem Anzeigebildschirm, der
das Objekt darstellt, entsprechen. Jedes Texel in ei-
ner Texturtabelle ist durch S- und T-Koordinaten defi-
niert, die den Ort desselben in der zweidimensiona-
len Texturtabelle identifizieren. Fir jedes Pixel wird
aus der Texturtabelle auf das entsprechende Texel
oder die Texel, die auf dasselbe abbilden, zugegrif-
fen, wobei dieselben in die endgultigen R-, G-,
B-Werte, die flr das Pixel erzeugt werden, eingear-
beitet werden, um das texturierte Objekt auf dem An-
zeigebildschirm darzustellen.

[0008] Es sollte offensichtlich sein, da® jedes Pixel
in einem Objektgrundelement fur jede Ansicht des
Objekts nicht in einer Eins-zu-Eins-Entsprechung auf
ein einzelnes Texel in der Texturtabelle abbildet. Bei-
spielsweise wird, je ndher das Objekt der Sichtebene,
die auf dem Anzeigebildschirm dargestellt ist, ist, das
Objekt umso groler erscheinen. Wenn das Objekt
auf dem Anzeigebildschirm gréRer erscheint, wird die
Darstellung der Textur detaillierter. Wenn das Objekt
einen ziemlich groflen Abschnitt des Anzeigebild-
schirms belegt, wird somit eine gro3e Anzahl von Pi-
xeln verwendet, um das Objekt auf dem Anzeigebild-

2/15

DE 197 09 227 B4 2006.05.24

schirm darzustellen, wobei jedes Pixel, das das Ob-
jekt darstellt, in einer Eins-zu-Eins-Entsprechung auf
ein einzelnes Texel in der Texturtabelle abbilden
kann, wobei alternativ ein einzelnes Texel auf mehre-
re Pixel abbilden kann. Wenn das Objekt jedoch ei-
nen relativ kleinen Abschnitt auf dem Anzeigebild-
schirm besetzt, ist eine viel kleinere Anzahl von Pi-
xeln verwendet, um das Objekt darzustellen, was zur
Folge hat, dal® die Textur weniger detailliert darge-
stellt wird, so dal jedes Pixel auf eine Mehrzahl von
Texeln abbilden kann. AuRerdem kann jedes Pixel in
eine Mehrzahl von Texeln abbilden, wenn eine Textur
auf einen kleinen Abschnitt eines Objekts abgebildet
wird. Fir jedes Pixel, das auf mehr als ein Texel ab-
bildet, werden resultierende Texeldaten berechnet.
Da es ublich ist, dald ein Pixel auf mehrere Texel ab-
bildet, stellen resultierende Texeldaten fir ein Pixel
typischerweise einen Mittelwert der Texel, die auf die-
ses Pixel abbilden, dar.

[0009] Texturabbildungs-Hardwaresysteme weisen
typischerweise einen lokalen Speicher auf, der Daten
speichert, die eine Textur darstellen, die dem Objekt,
das aufbereitet wird, zugeordnet ist. Wie oben erlau-
tert wurde, kann ein Pixel auf mehrere Texel abbil-
den. Wenn es notwendig ware, dal} die Texturabbil-
dungshardware eine groRe Anzahl von Texeln, die
auf ein Pixel abbilden, aus dem Lokalspeicher liest,
um einen Mittelwert zu erzeugen, dann ware eine
groRe Anzahl von Speicher-Auslesungen und die
Mittelwertbildung von vielen Texelwerten erforderlich,
was zeitaufwendig ware und das Systemverhalten
verschlechtern wirde.

[0010] Um dieses Problem zu l6sen, wurde ein
Schema entwickelt, das die Erzeugung einer Reihe
von Tabellen, die "MIP"-Tabellen ("MIP" bedeutet
"multum in parvo" = viele Dinge an einem kleinen Ort)
genannt werden, fir jede Textur enthalt, und das
Speichern der MIP-Tabellen der Textur, die dem Ob-
jekt, das aufbereitet wird, zugeordnet ist, in dem Lo-
kalspeicher der Texturabbildungshardware. Eine
MIP-Tabelle fir eine Textur weist eine Basistabelle
auf, die direkt der Texturtabelle entspricht, ebenso
wie eine Reihe von gefilterten Tabellen, in denen jede
aufeinanderfolgende Tabelle gréRenmafig um einen
Faktor von zwei in jeder der zwei Texturtabellendi-
mensionen reduziert ist. Ein darstellendes Beispiel
eines Satzes von MIP-Tabellen ist in Fig. 1 gezeigt.
Die MIP-Tabellen weisen eine Basistabelle ("Ebene
0") 100 auf, die acht mal acht Texel grof} ist, ebenso
wie eine Reihe von Tabellen 102, 104 und 108, die
eine Ebene 1, die vier mal vier Texel grof} ist, eine
Ebene 2, die zwei mal zwei Texel grof} ist, bzw. eine
Ebene 3, die 1 Texel groB ist, darstellen.

[0011] Die Ebene-1-Tabelle 102 der GréRe vier mal
vier wird durch eine Blockfilterung (Dezimierung) der
Basistabelle 100 erzeugt, derart, dal’ jedes Texel in
der Ebene-1-Tabelle 102 einem Mittelwert von vier

Texeln aus der Ebene-0-Basistabelle 100 entspricht.
Beispielsweise ist das Texel 110 in der Ebene-1-Ta-
belle 102 gleich dem Mittelwert der Texel 112 bis 115
der Ebene-0-(Basis-)Tabelle 100. In gleicher Weise
sind die Texel 118 und 120 in der Ebene-1-Tabelle
102 gleich den Mittelwerten der Texel 121 bis 124
bzw. 125 bis 128 der Ebene-0-(Basis-)Tabelle 100.
Die Ebene-2-Tabelle 104 der GroRe zwei mal zwei ist
in gleicher Weise durch eine Blockfilterung der Ebe-
ne-1-Tabelle 102 gebildet, derart, dal das Texel 130
in der Ebene-2-Tabelle 104 gleich dem Mittelwert der
Texel 110 und 118 bis 120 der Ebene-1-Tabelle 102
ist. Das einzelne Texel in der Ebene-3-Tabelle 108 ist
durch die Mittelwertbildung der vier Texel in der Ebe-
ne-2-Tabelle 104 erzeugt.

[0012] Herkémmliche Graphiksysteme laden Ubli-
cherweise die gesamte Reihe von MIP-Tabellen fir
jede Textur, die fiir die Grundelemente, die auf dem
Anzeigebildschirm gezeichnet werden sollen, ver-
wendet werden soll, aus dem Hauptspeicher des
Hostcomputers in den Lokalspeicher der Texturabbil-
dungshardware. Folglich kann die Texturabbildungs-
hardware auf Texturdaten aus jeder der Reihe von
MIP-Tabellen zugreifen. Die Bestimmung dessen, auf
welche Tabelle zuzugreifen ist, um die Texeldaten fir
jedes spezielle Pixel zu liefern, basiert auf der Anzahl
von Texeln, die dem Pixel zugeordnet ist. Wenn dem
Pixel ein einzelnes Texel in der Texturtabelle in einer
Eins-zu-Eins-Entsprechung zugeordnet ist, wird bei-
spielsweise auf die Basistabelle 100 zugegriffen.
Wenn das Pixel jedoch auf vier, sechzehn oder vier-
undsechzig Texel abbildet, wird jeweils auf die Tabel-
len 102, 104 und 108 zugegriffen, da diese Tabellen
jeweils Texeldaten speichern, die einen Mittelwert
von vier, sechzehn und vierundsechzig Texeln in der
Texturtabelle speichern.

[0013] Uberdies sind einige Texturabbildungssyste-
me pipelineartig aufgebaut, so dall verschiedene
Operationen auf unterschiedlichen Objektgrundele-
menten gleichzeitig durchgefihrt werden. Jedoch
kann eine Reihe von MIP-Tabellen fiir eine Textur
grol} sein. Die meisten Systeme verwenden einen
Lokalspeicher, der in der Lage ist, nur eine derart gro-
Re Reihe von MIP-Tabellen auf einmal zu speichern.
Wenn ein Wechseln der Textur, die bei der Aufberei-
tung von Grundelementen verwendet ist, vorliegt,
mull das System folglich eine neue Reihe von
MIP-Tabellen herunterladen. Typischerweise umfafdt
der Datenweg, der verwendet ist, um die neuen Tex-
turdaten in den Lokalspeicher der Texturabbildungs-
hardware herunterzuladen, das Durchlaufen der
Grundelement-Aufbereitungspipeline des Systems.
Wenn eine neue Textur abgebildet werden soll, mul}
daher erméglicht sein, daR die Grundelement-Aufbe-
reitungspipeline entleert ist, bevor die neue Reihe
von MIP-Tabellen heruntergeladen werden kann. So-
bald die Reihe von MIP-Tabellen heruntergeladen ist,
muf die Pipeline wieder geflllt werden. Die Notwen-

3/15

DE 197 09 227 B4 2006.05.24

digkeit des Spillens der Grundelement-Aufberei-
tungspipeline, jedesmal, wenn eine neue Textur er-
forderlich ist, reduziert die Bandbreite des Systems.

[0014] Fig. 2 ist ein Blockdiagramm, teils Hardware,
teils hierarchische Software, eines herkémmlichen
Computergraphiksystems, das die Softwareschich-
ten zeigt, die auf dem Prozessor des Systemhost-
computers ablaufen, ebenso wie die Hardwarevor-
richtung, mit der der Hostcomputer kommuniziert, um
die mit einer Textur versehenen Bilder aufzubereiten.
Der Systemspeicher des Hostcomputers kann eine
Mehrzahl Benutzerinteraktiver Prozesse PR1, PR2,
..., PRN speichern, die auf dem Systemprozessor
laufen kénnen, wie in Fig. 2 gezeigt ist. Jeder Pro-
zel3, PRI, ist ein Hochpegel-Computergraphik-Soft-
wareprogramm oder eine Anwendung, beispielswei-
se eine Datenbank, eine CAD/CAM-Anwendung,
eine Architekturentwurfsanwendung, eine Bautechni-
kanwendung, ein Textverarbeitungs-Datenpaket oder
dergleichen.

[0015] Innerhalb eines speziellen Prozesses kann
ein Benutzer mehrere Kontexte erzeugen. Jeder
Kontext, der in einem Prozel} erzeugt wird, kann eine
unterschiedliche Ansicht des gleichen Bilds enthal-
ten. Beispielsweise kann ein Benutzer in einem Bau-
technik-Entwurfsanwendungsprozef3 unterschiedli-
che Ansichten der gleichen Struktur, beispielsweise
eines Gebaudes, erzeugen. Jeder Kontext kann eine
Texturabbildung erfordern, um das Bild aufzuberei-
ten. Bei diesem Beispiel kdnnen Texturtabellen erfor-
derlich sein, um die Béden, Wande, Decken und an-
dere Oberflachenattribute des Gebaudes zu zeich-
nen. Folglich liefert der Benutzer die Textur-Tabelle
oder -Tabellen, um das Bild dieses Kontextes aufzu-
bereiten. Da mehrere Kontexte, die in dem gleichen
Prozel erzeugt werden, typischerweise unterschied-
liche Ansichten des gleichen Bilds umfassen, benéti-
gen die Kontexte innerhalb eines Prozesses ublicher-
weise die gleiche Textur oder die gleichen Texturen.

[0016] Wenn ein Kontext durch einen Benutzer er-
zeugt wird, erteilt der Benutzer einen Befehl, der fir
die Hochpegel-Prozeliprogrammiersprache erkenn-
bar ist, um das Bild zu zeichnen. Wenn das Bild eine
Texturtabelle erfordert, wird ein Befehl eingegeben,
der anzeigt, dal eine Texturtabelle erforderlich ist,
wobei die Texturtabelle dann durch den Benutzer von
einer externen Eingabevorrichtung, einer Floppy-Dis-
kette oder dergleichen, geliefert wird. Der ProzefR,
oder die Hochpegel-Programmiersprache, Ubersetzt
dann diesen Befehl in einen Niederpegel-Software-
befehl und kopiert die Textur, die durch den Benutzer
eingegeben wird. Bei bekannten Systemen, bei-
spielsweise dem, das in Fig. 2 gezeigt ist, erfordert
jeder Kontext, der in einem einzelnen Prozel} erzeugt
wird, seine eigene Kopie dieser Textur. Jeder Kontext
speichert seine Kopie der Textur in einem zugewiese-
nen Bereich des Systemspeichers auf dem Hostcom-

puter. Folglich werden, wenn mehrere Kontexte in-
nerhalb eines Prozesses die Verwendung der glei-
chen Textur erfordern, mehrere Kopien dieser Textur
in dem Systemspeicher gespeichert, wobei eine Ko-
pie jedem Kontext zugeordnet ist.

[0017] Der vom Benutzer eingegebene Befehl, um
ein Bild unter Verwendung einer speziellen Textur zu
zeichnen, wird, sobald er durch den Prozel Ubersetzt
ist, von dem ProzeR zu einer darunterliegenden Gra-
phikanwendungsprogrammier-Schnittstelle ("API";
API = Application Programmer Interface) ubertragen.
Wie in Fig. 2 gezeigt ist, kommuniziert eine eindeuti-
ge Graphik-API mit jedem Prozel} des Systems. Jede
Graphik-API ist eine darunterliegende Niederpe-
gel-Softwaresprache, die auf dem Prozessor des
Hostcomputers arbeitet, um jeden Hochpegel-Gra-
phikbefehl, der von dem entsprechenden Prozel
empfangen wird, in einen Niederpegel-Softwareco-
debefehl zu Ubersetzen. Die Graphik-API speichert
ferner eine Kopie jeder Textur, die erforderlich ist, um
das Bild aufzubereiten, in ihrem eigenen zugewiese-
nen Ort des Systemspeichers. Die Graphik-API un-
terteilt das Bild, das aufbereitet werden soll, zusatz-
lich in Graphikkomponenten, beispielsweise Viere-
cke oder Polygone. Derartige Informationen werden
dann einem entsprechenden Hardwaretreiber gelie-
fert.

[0018] Ein eindeutiger Hardwaretreiber kommuni-
ziert mit jeder Graphik-API. Jeder Hardwaretreiber ist
eine weitere darunterliegende Graphiksoftwarespra-
che niedrigeren Pegels, die jeden Niederpegel-Gra-
phikbefehl, der von der API empfangen wird, in Hard-
warebefehle Ubersetzt, die fir die Graphikhardware-
vorrichtung, mit der der Hostcomputer verbunden ist,
erkennbar ist. Diese Befehle werden dann von dem
Hardwaretreiber zu der Hardwarevorrichtung Uber-
tragen, die als Reaktion das mit der Textur versehene
Bild auf einen Anzeigebildschirm, der mit der Hard-
warevorrichtung verbunden ist, zeichnet. Wie in
Fig. 2 gezeigt ist, kommuniziert jedes Beispiel eines
Hardwaretreibers HWD1, HWD?2, ..., HWDN mit einer
jeweiligen Graphik-API, API1, API2, ..., APIN.

[0019] Bei dem Beispiel, das in Fig. 2 gezeigt ist,
sind alle Hardwaretreiber mit einer einzelnen Gra-
phikhardwarevorrichtung 150 verbunden. Es ist fur
Fachleute jedoch offensichtlich, dal der Hostcompu-
ter mit einer Mehrzahl unterschiedlicher Graphik-
hardwarevorrichtungen verbunden sein kann, wobei
jeweils ein unterschiedlicher Hardwaretreiber mit je-
der Hardwarevorrichtung kommuniziert.

[0020] Wenn eine Graphik-APl einen Niederpe-
gel-Softwarebefehl liefert, um ein mit einer Textur ver-
sehenes Polygon unter Verwendung einer speziellen
Textur, die ebenfalls geliefert wird, aufzubereiten,
Ubersetzt der Graphikhardwaretreiber den Niederpe-
gelbefehl in Hardwarebefehle, die flr die Hardware-

4/15

DE 197 09 227 B4 2006.05.24

vorrichtung 150 erkennbar sind. Der Graphikhard-
waretreiber liefert danach die Befehle, um das Poly-
gon aufzubereiten, zu der Hardwarevorrichtung 150,
indem dieselben in geeignete Register und Ein-
gangspuffer in der Hardwarevorrichtung geschrieben
werden. Zusatzlich liefert der Graphikhardwaretrei-
ber die Texturdaten fur dieses spezielle Polygon zu
dem Lokalspeicher 155 der Hardwarevorrichtung
150, wo dieselben wahrend der Aufbereitung dieses
Polygons temporar gespeichert werden. Wie hierin
beschrieben ist, laden bekannte Computergraphik-
systeme die gesamte Reihe von MIP-Tabellen fir
eine einzelne Textur aus dem Graphikhardwaretrei-
ber in den Lokalspeicher der Hardwarevorrichtung
herunter, jedesmal, wenn diese Textur erforderlich
ist, um ein Bild oder eine Komponente des Bilds auf-
zubereiten.

[0021] Bei herkdmmlichen Systemen, beispielswei-
se dem, das in Fig. 2 gezeigt ist, werden mehrere Ko-
pien einer einzelnen Textur an unterschiedlichen Or-
ten des Systemsoftwarespeichers des Hostcompu-
ters gespeichert. Wenn beispielsweise der Kontext
1A und der Kontext 1B des Prozesses PR1 die glei-
che Textur erfordern, um unterschiedliche Ansichten
eines speziellen Bilds aufzubereiten, liefert der Be-
nutzer eine erste Kopie dieser Textur, wenn dieselbe
anfanglich definiert und in den Prozel3 eingefuhrt
wird. Die Graphik-API1 erstellt eine Kopie der Textur
fur den Kontext 1A (die zweite Kopie) und eine weite-
re Kopie dieser Textur fir den Kontext 1B (die dritte
Kopie) und speichert dieselben in einem Speicher,
der von der API und der Hardware gemeinsam ver-
wendet wird. Folglich sind drei einzelne Kopien der
gleichen Textur an unterschiedlichen Orten des Sys-
temsoftwarespeichers gespeichert, um zwei Ansich-
ten des gleichen Bilds unter Verwendung der glei-
chen Textur aufzubereiten. Zuséatzlich werden eine
vierte und eine fiinfte Kopie der Textur der Hardware-
vorrichtung geliefert und in dem Lokalspeicher der-
selben gespeichert.

[0022] Wie offensichtlich wird, kann eine Reihe von
Textur-MIP-Tabellen zur Speicherung eine grofRe
Systemsoftwarespeichermenge erfordern. Beispiels-
weise erfordert eine Reihe von MIP-Tabellen fiir eine
Textur mit einer Texturbasistabelle von 1.024 x 1.024
Texeln mehr als 5 MByte Systemsoftwarespeicher,
um eine Kopie der MIP-abgebildeten Textur zu spei-
chern. Folglich verbraucht die Mehrzahl gespeicher-
ter Kopien der MIP-abgebildeten Textur einen signifi-
kanten Systemsoftwarespeicherbetrag.

[0023] Obwohl Systemsoftwarespeicher in der Lage
sein kénnen, Softwaredaten bis zu einigen Gigabyte
zu speichern, kénnen typische, zweckgebundene, lo-
kale Hardwaretexturspeicher einer Texturhardware-
vorrichtung viel weniger Daten speichern. Derartige
lokale Texturhardwarespeicher liegen typischerweise
in einem Bereich von vier MByte bis sechzehn

MByte. In vielen Texturabbildungsanwendungen
Ubersteigt daher der Systemspeicherbetrag, der
durch Texturen verbraucht wird, den des lokalen
Hardwaretexturspeichers weit. Obwohl der System-
speicher typischerweise mehrere MIP-abgebildete
Texturen fir die Verwendung mit mehreren Kontex-
ten eines Prozesses speichert, kann der lokale Hard-
warevorrichtungsspeicher gleichzeitig nur eine Textur
einer begrenzten GroR3e speichern. Daher ist die ord-
nungsgemale Verwaltung des Lokaltexturspeichers
der Hardwarevorrichtung kritisch, um ein maximales
Verhalten des Systems zu erreichen.

[0024] Zusatzlich zu dem groRRen Systemsoftware-
speicherverbrauch aufgrund der Speicherung mehre-
rer Kopien von Texturen leidet die Systembandbreite
allgemein unter herkdmmlichen lokalen Hardware-
texturspeicher-Verwaltungsschemata. Herkémmli-
che lokale Hardwarespeicher-Verwaltungsschemata
ersetzen wiederholt ganze Reihen von Tex-
tur-MIP-Tabellen in dem lokalen Hardwarespeicher.
Die Reihe von MIP-Tabellen fiir eine Textur wird in
dem lokalen Speicher jedesmal ersetzt, wenn diese
Textur bendtigt wird, um ein Polygon aufzubereiten.
Derartige Schemata sind weder in der Lage, die Ge-
schichte der Verwendung dieser Textur zu bertick-
sichtigen, noch die zukinftige Verwendung dieser
Textur vorherzusagen. Durch das wiederholte Herun-
terladen der gesamten Reihe der gleichen Textur von
dem Systemspeicher in den lokalen Hardwaretextur-
speicher wird die Systembandbreite negativ beein-
fluBdt.

[0025] Obwohl herkdmmliche Texturhardwarespei-
cher-Ersetzungsalgorithmen ganze Textur-MIP-Ta-
bellen-Reihen herunterladen, darf jede Tex-
tur-MIP-Tabellen-Reihe die physikalischen Speicher-
fahigkeitsgrenzen des lokalen Hardwaretexturspei-
chers nicht Uberschreiten. Daher muf der Benutzer
des Graphikprozesses, der mit der speziellen Hard-
warevorrichtung verbunden ist, die Kapazitat des Lo-
kaltexturspeichers kennen, so dal keine Texturen
verwendet werden, die gréRer sind als diese Kapazi-
tat. Obwohl viele Anwendungen (Prozesse) mit meh-
reren, unterschiedlichen, darunterliegenden Hard-
warevorrichtungen arbeiten kdnnen, von denen jede
eindeutige Lokaltexturspeicher-Beschrankungen
aufweist, fallt die Last dem Benutzer zu, Kenntnis von
solchen Beschrankungen zu besitzen und Bilder auf
eine vorrichtungsabhangige Art und Weise zu erzeu-
gen.

[0026] Wie oben angezeigt wurde, ist es moglich,
daf fiir jede gegebene Textur eine grolte Anzahl von
Softwarekopien erzeugt werden muf3. Jedoch exis-
tiert in vielen Fallen niemals ein Bedarf nach all die-
sen Softwarekopien. In diesen Fallen fragt der Benut-
zer die Textur niemals wieder ab, wobei wahrend der
Lebensdauer der Textur stets Raum bendtigt wird,
um dieselbe in dem Texel-Cache zu speichern. Fri-

5/15

DE 197 09 227 B4 2006.05.24

here Lésungen flr dieses Problem richteten sich auf
das Reduzieren der Anzahl von Operationen, die be-
zuglich der Texturtabelle durchgefihrt wurden, bevor
dieselbe in den Graphikkernspeicher kopiert wurde,
wobei dieselben jedoch nicht die verschiedenen Soft-
warekopien beseitigten, da davon ausgegangen wur-
de, dal die Softwarekopien bendtigt werden wiirden,
da der Graphikkern zukunftige Funktionen, die auf
der Textur durchgefihrt werden kdnnten (beispiels-
weise eine Abfrage der Textur), nicht bestimmen
kann.

[0027] Entsprechend ist in der EP 0 749 100 A2
1995 mit dem Titel TEXEL CACHE INTERRUPT
DAEMON FOR VIRTUAL MEMORY MANAGEMENT
OF TEXTURE MAPS, auf die oben Bezug genom-
men wurde, ein TIM beschrieben, der die gemeinsa-
me Speicherung von Texturen unter dem Verwalter
(dem "TIM"), dem Hardwaretreiber und der entspre-
chenden Graphik-API in dem Systemspeicher liefert.
Der Verwalter liefert ferner eine gemeinsame Spei-
cherung von Texturen unter mehreren Kontexten ei-
nes einzelnen Prozesses. Das Verwaltungsschema,
das von Gannett beschrieben ist, ermdglicht ferner,
dall der Benutzer der Hochpegel-Graphikprozesse
Bilder auf eine vorrichtungsunabhangige Art und
Weise erzeugt, ohne Kenntnis der Speicherfahig-
keitsgrenzen der Lokalspeicher der darunterliegen-
den Hardwarevorrichtungen.

[0028] Ein Ausfiihrungsbeispiel der Erfindung von
Gannett ist in Blockdiagrammform in Fig. 3 gezeigt,
bei der zur Bezeichnung von Elementen, die iden-
tisch zu denen von Fig. 2 sind, gleiche Bezugszei-
chen verwendet sind. Wie bei dem bekannten Aus-
fuhrungsbeispiel von Fig. 2 (vor Gannett) weist das
System mehrere Benutzer-interaktive Prozesse PR1,
PR2, ..., PRN auf, die auf dem Systemprozessor lau-
fen. In jedem ProzeR kann der Benutzer mehrere
Kontexte erzeugen, die die gleichen Texturtabellen
bendtigen. Das System weist ferner eine darunterlie-
gende Graphik-API und einen Graphikhardwaretrei-
ber fur jeden Prozel} auf.

[0029] Die Erfindung von Gannett bezog sich auf ein
Texturunterbrechungsverwaltungs-Hintergrundpro-
gramm ("TIM"-Daemon) 160, das ein unabhangiger
alleinstehender Softwareprozel ist, der auf dem Pro-
zessor des Hostcomputers ohne Kenntnis des Benut-
zers ablauft. Der TIM 160 der Erfindung von Gannett
steht mit jedem der Graphikhardwaretreiber Gber ei-
nen unterschiedlichen Sockel in Verbindung. Wie fur
Fachleute offensichtlich ist, ist ein Sockel ein Soft-
warekommunikationsweg, uber den zwei Software-
programme kommunizieren kénnen. Der TIM kom-
muniziert mit der Hardwarevorrichtung 150 ferner
Uber einen Bus 162.

[0030] Der TIM der Erfindung von Gannett kann auf
herkdmmlichen Prozessoren von Computergra-

phik-Systemhostcomputern, die als Computergra-
phikworkstations bekannt sind, ablaufen. Ein Beispiel
einer derartigen Workstation ist die Hewlett-Pack-
ard-9000-Reihe J200.

[0031] Der TIM 160 verwaltet das Speichern von
Texturdaten in dem Lokalspeicher 155 der Hardware-
vorrichtung 150, wobei der TIM einen vorrichtungsu-
nabhangigen Abschnitt enthielt, der die Softwaretex-
turspeicher-Verwaltung handhabte und sockelmafi-
ge Verbindungen mit den Graphikhardwaretreibern
und einem vorrichtungsabhangigen Abschnitt, der
Uber den Bus 162 in die Hardwarevorrichtung
schreibt und von derselben liest.

[0032] Bei einem Ausfuhrungsbeispiel der Erfin-
dung von Gannett ist der Lokalspeicher der Hard-
warevorrichtung als ein Cache-Speicher angeordnet,
bei dem Abschnitte von Texturen zu jeder einzelnen
Zeit in dem Lokalspeicher der Hardwarevorrichtung
gespeichert sind. Die vorrichtungsunabhangigen Ab-
schnitte des TIM verfolgen die Verwendung der Ab-
schnitte von Texturdaten, die in dem Cache gespei-
chert sind und Uberwachen die Prioritdten der Textu-
ren, um die zuklnftige Verwendung dieser Abschnitte
vorherzusagen. Ein Cache-Fehlgriff in der Hardware
findet statt, wenn von der Hardwarevorrichtung Tex-
turdaten benétigt werden, um ein Bild aufzubereiten,
die gegenwartig nicht in dem Cache gespeichert sind.
Wenn ein Cache-Fehlgriff stattfindet, bestimmt der
TIM, welcher Block von Texturdaten in dem Cache zu
ersetzen ist, indem bertcksichtigt wird, welcher Block
oder welche Blécke von Texturdaten in dem Cache
zuletzt verwendet wurden, und welche Texturen die
geringste Prioritat aufweisen.

[0033] Bei einem Ausfuhrungsbeispiel der Erfin-
dung von Gannett weist der TIM einen gemeinsam
verwendeten Speicherort in dem Systemspeicher
auf, an dem eine groRe Textur oder ein Texturab-
schnitt gespeichert ist, und zwischen der Gra-
phik-APl, dem Graphikhardwaretreiber und dem TIM
fur einen speziellen Prozel3 gemeinsam verwendet
wird. Sowohl die Graphik-API als auch der Graphik-
hardwaretreiber (fir einen speziellen ProzeR) als
auch der TIM 160 weisen einen Zeiger auf einen Ort
in dem gemeinsam verwendeten Systemspeicherbe-
reich auf, um auf die gespeicherte Texturkopie zuzu-
greifen. Zusatzlich liefert der TIM ein Speicherverwal-
tungsschema derart, dal} alle Kontexte, die in einem
einzelnen Prozel} erzeugt werden, die gleiche Kopie
jeder Textur, die fur diese Kontexte benétigt wird, ge-
meinsam verwenden. Fur bestimmte Anwendungen
liefert der TIM der Erfindung von Gannett daher enor-
me Einsparungen an Systemsoftwarespeicherraum.

[0034] Bezuglich des Beispiels, das oben bezug-
nehmend auf Fig. 2 beschrieben wurde, bei dem der
Kontext 1A und der Kontext 1B des Prozesses PR1
die gleiche Textur bendtigen, um unterschiedliche

6/15

DE 197 09 227 B4 2006.05.24

Ansichten eines speziellen Bilds aufzubereiten, lie-
ferte der TIM der Erfindung von Gannett enorme Sys-
temspeicherraumeinsparungen, wenn die Textur
grof ist. Im Gegensatz zu dem bekannten beschrie-
benen System (vor Gannett) kann eine einzelne Ko-
pie der Textur gespeichert werden, die zwischen dem
Kontext 1A und dem Kontext 1B gemeinsam verwen-
det wird. Wenn die Textur grof genug war, um zu ge-
wahrleisten, dal dieselbe an dem gemeinsam ver-
wendeten Speicherort gespeichert ist, wird zusatzlich
nur eine weitere Kopie der Textur an dem gemeinsam
verwendeten Systemspeicherort gespeichert und
zwischen dem TIM, der Graphik-API1 und dem Gra-
phikhardwaretreiber HWD1 gemeinsam verwendet
werden. Folglich werden bei diesem Beispiel nur drei
einzelne Kopien der gleichen Textur an unterschiedli-
chen Orten des Systemsoftwarespeichers gespei-
chert, um zwei Ansichten des gleichen Bilds unter
Verwendung der gleichen Textur aufzubereiten. Eine
Kopie ist die Benutzerkopie, eine Kopie wird zwi-
schen den zwei Kontexten des Prozesses PR1 ge-
meinsam verwendet, und eine Kopie wird zwischen
der Graphik-API, dem Graphikhardwaretreiber und
dem TIM gemeinsam verwendet. Bei dem bekannten
System von Fig. 2 (vor Gannett), das oben beschrie-
ben ist, hatten funf Kopien dieser gleichen Textur in
dem Systemsoftwarespeicher gespeichert werden
mussen. Daher missen bei dem TIM der Erfindung
von Gannett zwei Kopien der Textur weniger in dem
Systemsoftwarespeicher gespeichert werden, was
fur eine grof3e Textur groRe Speicherraumeinsparun-
gen zur Folge hat.

[0035] Andererseits erfordert die Verwendung der
Vorrichtung der vorliegenden Erfindung, wie hierin
nachfolgend erklart wird, dal® nur eine einzelne Kopie
der Textur existiert, und daR dieselbe in der Graphik-
hardware beibehalten wird.

[0036] Unter Verwendung der Erfindung von Gan-
nett war es notwendig, mehrere Schritte durchzufiih-
ren, um ein mit einer Textur versehenes Dreieck zu
zeichnen. Wie in Fig. 4 gezeigt ist, spezifizierte das
Anwendungsprogramm zuerst unter Verwendung ei-
nes API-Aufrufs eine Textur 12. Die API-Bibliothek
verifizierte, da® der API-Aufruf glltig war 14, worauf-
hin die API die Textur in einen privaten Bibliotheks-
puffer kopierte 16, wodurch die erste Kopie der Textur
erzeugt wurde.

[0037] Als nachstes kopierte das Texturhintergrund-
programm ("TIM") die Textur in den privaten Puffer
des Hintergrundprogramms (mdglicherweise unfor-
matiert, um Hintergrundprogrammanforderungen zu
erfillen), wobei die zweite Kopie der Textur erzeugt
wird 18.

[0038] Ein Anwendungsprogramm zeichnet ein
Dreieck unter Verwendung der Textur, indem die Gra-
phikhardware das Texturhintergrundprogramm auf-

fordert, Abschnitte der Textur, die erforderlich sind,
um das Dreieck zu zeichnen, zu liefern. Folglich muf®
das Texturhintergrundprogramm die erforderlichen
Abschnitte der Textur fir das Anwendungsprogramm
herunterladen, wodurch die dritte Kopie der Textur er-
stellt wird 24.

[0039] In &hnlicher Weise wird entsprechend der Er-
findung von Gannett eine zusatzliche Kopie der Tex-
tur beibehalten, um die Abfrage durch die Anwen-
dung des momentanen Werts der Textur zu handha-
ben, oder um die Beseitigung der Textur aus der Gra-
phikhardware zu handhaben, wenn eine neue Textur
bendtigt wird.

Aufgabenstellung

[0040] Ausgehend von dem genannten Stand der
Technik besteht die Aufgabe der vorliegenden Erfin-
dung darin, ein Verfahren zum schnellen Herunterla-
den von Texturen in einem Computergraphik-Hard-
waresystem zu schaffen, das nur eine geringe Anzahl
von Kopien der Textur bendétigt.

[0041] Diese Aufgabe wird durch ein Verfahren ge-
mafR Anspruch 1 geldst.

[0042] Gemal dem bevorzugten Ausflhrungsbei-
spiel der Erfindung wird das Erstellen der Software-
kopie der Textur verzégert, bis dieselbe absolut bend-
tigt wird oder die Textur durch den Benutzer verwor-
fen wird.

[0043] Ferner verallgemeinert die vorliegende Erfin-
dung ein Texturherunterladen, um stets diesen Me-
chanismus zu verwenden, was die Softwarearchitek-
tur stark vereinfacht und das Verhalten in Fallen wie
z.B. Rahmenpufferkopien in den Textur-Cache ver-
bessert, wobei wiederum keine Softwarekopie bend-
tigt wird, es sei denn, eine solche wird angefordert.

[0044] Das schnelle Herunterladen von Texturen zu
einer Hardware fiir beschleunigte Graphiken, das
einfach als "schnelles Herunterladen" bezeichnet
wird, liefert einen Mechanismus, um Texturen direkt
in den Hardware-Texel-Cache herunterzuladen, wo-
bei der Bedarf nach einer Softwarekopie der Texel
verzdgert oder mdglicherweise vollstandig beseitigt
wird. Dies verbessert das Verhalten des Herunterla-
dens von Texturen in die Hardware dramatisch, was
ferner das Verhalten von Anwendungen, die sich dy-
namisch andernde Texturen aufweisen, stark verbes-
sert.

Ausfihrungsbeispiel

[0045] Bevorzugte Ausflihrungsbeispiele der vorlie-
genden Erfindung werden nachfolgend bezugneh-
mend auf die beiliegenden Zeichnungen naher erlau-
tert. Es zeigen:

7/15

DE 197 09 227 B4 2006.05.24

[0046] Fig.1 eine graphische Darstellung eines
Satzes von Textur-MIP-Tabellen;

[0047] Fig.2 ein Blockdiagramm, teils Hardware,
teils hierarchische Software, eines bekannten Com-
putergraphiksystems;

[0048] Fig. 3 ein Blockdiagramm, teils Hardware,
teils Software, eines Computergraphiksystems ge-
mal der bekannten Erfindung von Gannett;

[0049] Fig. 4 ein FluRdiagramm, das das Verfahren,
das durch die bekannte Erfindung von Gannett ver-
wendet wird, darstellt; und

[0050] Fig.5 und Fig. 6 FluBRdiagramme, die das
Verfahren der vorliegenden Erfindung zeigen.

[0051] Um die zahlreichen Kopien von Texturen zu
vermeiden, zusammen mit der Zeit, die bendtigt wird,
um derartige Kopien zu erstellen, ebenso wie die gro-
Re Menge von Speicherbetriebsmitteln, die derartige
Kopien besetzen, liefert die vorliegende Erfindung
eine Einrichtung zum Plazieren von Texturen aus
dem Benutzerpuffer direkt in die Graphikhardware.
Die Verwendung der vorliegenden Erfindung verbes-
sert die Textur-Herunterladungsgeschwindigkeit
ebenso wie das Aufbereitungsverhalten von Anwen-
dungen, die sich dynamisch andernde Texturen auf-
weisen. Dieselbe ermdglicht, dall Benutzer einer
Texturabbildung ihre Texturen effizient direkt in den
Hardware-Texel-Cache herunterladen.

[0052] Die Erfindung verwendet einen Mechanis-
mus, um Texturen, die nur hardwaremafig gespei-
chert sind, zu verfolgen, bewahrt jedoch die Fahig-
keit, eine softwaremafige Kopie der Textur zu liefern,
wenn eine solche bendtigt wird. Wenn folglich ein Be-
nutzer die Textur wieder abfragt, oder wenn sich der
Graphikkontext andert, kann die Textur dem Benut-
zer wieder geliefert werden.

[0053] Wie oben erlautert wurde, speichern gegen-
wartige Texturabbildungsimplementierungen eine
Kopie der Benutzertextur softwaremafig, um einen
Mechanismus fir eine Texturabfrage zu liefern, und
um eine hardwaremafige Zwischenspeicherung von
Texeln zu ermdglichen, wenn nicht gentigend Spei-
cher existiert, dal} alle Texel gleichzeitig in die Gra-
phikhardware passen. In vielen Fallen wird diese
Softwarekopie der Textur niemals bendétigt. In diesen
Fallen fragt der Benutzer die Textur nicht wieder ab,
wobei wahrend der Lebensdauer der Textur stets
Raum existiert, um dieselbe in dem Texel-Cache zu
speichern. Die vorliegende Erfindung optimiert die-
sen Fall, indem die Softwarekopie der Textur verzo-
gert wird, bis dieselbe absolut benétigt wird, oder bis
die Textur durch den Benutzer ausrangiert wird.

[0054] Zusatzlich verallgemeinert die vorliegende

Erfindung das Texturherunterladen, um stets diesen
Mechanismus zu verwenden, was die Softwarearchi-
tektur stark vereinfacht und das Verhalten in Fallen
wie z.B. Rahmenpufferkopien in den Textur-Cache
erh6ht — wobei wiederum keine Softwarekopie beno-
tigt wird, es sei denn, eine solche wird beantragt.

[0055] Wie nun in dem FluRdiagramm von Fig. 5
gezeigt ist, spezifiziert gemal dem vorliegenden er-
finderischen Verfahren 50 das Anwendungspro-
gramm unter Verwendung eines API-Aufrufs 52 eine
Textur, um ein mit einer Textur versehenes Dreieck zu
zeichnen. Die API-Bibliothek verifiziert, dal® der
API-Aufruf gultig ist 54, woraufhin dieselbe unmittel-
bar die Textur in die Graphikhardware herunterladt
56. Gemal der vorliegenden Erfindung ist die Gra-
phikhardwarekopie der Textur die einzige Kopie, die
von der Textur gemacht wird, es sei denn, auRerge-
wohnliche Dinge geschehen.

[0056] Gemal der Erfindung wird eine Buchflihrung
durchgefiihrt, um sowohl die Bibliothek als auch das
Texturhintergrundprogramm zu informieren, daf} sich
die einzige Kopie der Textur in der Hardware 51 be-
findet. Diese Softwarekopie wird dann als "dirty" be-
trachtet, da sich die Textur nur in der Hardware befin-
det.

[0057] Das Anwendungsprogramm zeichnet dann
ein Dreieck unter Verwendung der Textur, indem die
Graphikhardware dasselbe einfach zeichnet 60, da
die Graphikhardware bereits eine gegenwartige Ko-
pie der Textur besitzt.

[0058] In dem Fall, in dem eine Textur aus der Gra-
phikhardware wiedergewonnen werden muf}, wurde
gemaf dem alten Algorithmus zum Wiedergewinnen
der Textur aus der Graphikhardware (entweder da
der Benutzer ihren Wert anfordert, oder da die Gra-
phikhardware eine andere Textur benétigt, die nicht
paft), die Textur entweder zu dem Benutzer zurlick-
kopiert (Abfrage) oder dieselbe wurde in der Graphik-
hardware einfach Uberschrieben (neue Textur bend-

tigt).

[0059] Wie nun in Fig. 6 gezeigt ist, Uberprift das
Anwendungsprogramm gemaf der vorliegenden Er-
findung andererseits zuerst den Buchfiuhrungsein-
trag, um zu sehen, ob die Textur "dirty" ist 74, d.h., ob
dieselbe bereits in der Graphikhardware ist, wenn
das Anwendungsprogramm eine Textur bendtigt.
Wenn dies der Fall ist, ladt das Texturhintergrundpro-
gramm die Textur von der Hardware herauf 76. Wenn
die API-Bibliothek die Textur bendtigt, gibt das Textur-
hintergrundprogramm dieselbe danach zu der
API-Bibliothek 78.

[0060] Fur Fachleute auf dem Gebiet der Computer-
graphiken ist es offensichtlich, dall die Verwendung
des Verfahrens gemal der vorliegenden Erfindung

8/15

DE 197 09 227 B4 2006.05.24

das Verhalten fir Benutzer von Texturabbildungen
stark verbessert, speziell fir Benutzer, die Anwen-
dungen mit sich dynamisch andernden Texturtabel-
len besitzen. Unter Verwendung dieser Technik sind
die Zeit und der Speicher, die bendtigt werden, um
eine Softwarekopie der Texturtabelle zu erstellen, be-
seitigt. Schlimmstenfalls sind dieselben beseitigt, bis
der Benutzer den Texel-Cache-Raum Uberschreitet,
ohne die Textur auszurangieren, oder bis die Textur
aufgrund einer Benutzerabfrage oder einer anderen
Software-Anforderung zuriickgelesen wird. Im bes-
ten Fall sind die Zeit und der Speicher, die bendtigt
werden, vollstandig beseitigt.

Patentanspriiche

1. Verfahren zum Bereitstellen von Texturtabellen
fur die Erzeugung einer Graphik durch ein Computer-
graphiksystem, wobei das Computergraphiksystem
einen Host-Computer mit zugeordnetem System-
speicher und einer Graphikhardwarevorrichtung
(150) zum Aufbereiten von mit einer Textur versehe-
nen Bildern umfasst, wobei die Graphikhardwarevor-
richtung (150) einen lokalen Speicher (155) aufweist
und mit dem Host-Computer in Verbindung ist, und
wobei der Host-Computer konfiguriert ist, um ein An-
wendungsprogramm (PR1, PR2, PR3), eine Gra-
phik-Anwendungsprogrammierschnittstelle (Gra-
phik-API) (API1, API2, API3) und ein Hintergrundpro-
gramm (160) auszufihren, wobei das Verfahren fol-
gende Schritte aufweist:

(a) ansprechend auf einen gultigen Aufruf (52, 54)
der Graphik-API (API1, API2, API3) durch das An-
wendungsprogramm (PR1, PR2, PR3), Laden (56)
von durch das Anwendungsprogramm (PR1, PR2,
PR3) angegebenen Texturtabellen in den lokalen
Speicher (155) der Graphikhardwarevorrichtung
(150) ohne eine Kopie der Texturtabellen in dem Sys-
temspeicher des Host-Computer zu erzeugen;

(b) Setzen (58) einer Flag, um die Existenz und die
Gultigkeit der in den lokalen Speicher (155) der Gra-
phikhardwarevorrichtung (150) geladenen Texturta-
bellen anzuzeigen; und

(c) falls eine Kopie der Texturtabellen in dem System-
speicher benétigt wird, Uberpriifen (72, 74) durch das
Anwendungsprogramm (PR1, PR2, PR3), ob fir die
bendtigten Texturtabellen die Flag gesetzt ist, und
Kopieren (76) der Texturtabellen durch das Hinter-
grundprogramm (160) von dem lokalen Speicher
(155) der Graphikhardwarevorrichtung (150) in den
Systemspeicher des Host-Computers, falls die Flag
gesetzt ist.

2. Verfahren gemafl Anspruch 1, bei dem der
Schritt (¢) das Weitergeben (78) der Texturtabellen
an die Graphik-API (API1, API2, API3) umfasst.

3. Verfahren gemal Anspruch 2, bei dem der
Schritt des Setzens der Flag das Setzen einer Variab-
le auf einen Wert aufweist, der anzeigt, ob sich die in

dem lokalen Speicher (155) der Graphikhardware-
vorrichtung (150) gehaltenen Texturtabellen geandert
haben, seit eine Kopie derselben in der Graphik-API
(API1, QAPI2, API3) zuletzt modifiziert wurde.

4. Verfahren Anspruch 3, das ferner den Schritt
des Wiedererlangens der Texturtabellen aus dem lo-
kalen Speicher (155) der Graphikhardwarevorrich-
tung (150) aufweist, wenn die Variable anzeigt, dass
die Kopie geandert wurde.

Es folgen 6 Blatt Zeichnungen

9/15

DE 197 09 227 B4 2006.05.24

Anhangende Zeichnungen

80!

[Ae]%

001

o"'\

(-] (-] -] -]
L] (] -] (-]
(-] (] (-] -]

‘vN_..\ nNF.\ m:..Mv .v:.\
NN_..\ —NF.\ n:\ N:\

10/15

FI1G.

PR1

7
i

PROZESB

KONTEXT 1A
KONTEXT 1B
(o]
o]

o]
KONTEXT 1N

~

APl

7

GRAPHIK-
API

-

HWD1

7
GRAPHIK-
HW-TREIBER

DE 197 09 227 B4 2006.05.24

2 (STAND DER TECHNIK)

PROZES

KONTEXT 2A
KONTEXT 2B
(o]

o)
(o]
KONTEXT 2N

4

GRAPHIK-
API

7
GRAPHIK-
HW-TREIBER

PR2
~

///— API2

/,—HWDZ

(o]

PRN

/
1

PROZES

KONTEXT NA
KONTEXT NB
o
o]

(o]
KONTEXT NN

-

APIN

7

GRAPHIK-
API

yd

HWDN

GRAPHIK-
HW-TREIBER

1 - l

HW-VORRICHTUNG
155
l/.

LOKALER
SPEICHER

~—

11/15

150

DE 197 09 227 B4 2006.05.24

PR1 PR2 PRN
“ ~ £
PROZES PROZEB PROZEB
KONTEXT 1A KONTEXT 2A KONTEXT NA
KONTEXT 1B KONTEXT 2b KONTEXT NB
(o] (o] 00O (o}
(o] (o] (o]
(o] (o] (o]
KONTEXT 1N KONTEXT 2N KONTEXT NN
/ APl / AP|2 / APIN
GRAPHIK- GRAPHIK- GRAPHIK-
API API API
s HWD1 e HWD2 pe HWDON
GRAPHIK- GRAPHIK- GRAPHIK-
HW-TREIBER HW-TREIBER HW-TREIBER
[SOCKEL 1 SOCKEL 2 SOCKEL N |
l l 160
\./
HARDWARE— TEXTUR- HARDWARE- HARDWARE-
BEFEHLE UNTERBRECHUNGS- BEFEHLE BEFEHLE
VERWALTUNGS-
HINTERGRUND-
PROGRAMM
i
150
HW-VORRICHTUNG 4/
155
l/-
LOKALER

SPEICHER

12/15

DE 197 09 227 B4 2006.05.24

FHG, 4 (STAND DER TECHNIK)

10

PROGRAMM MACHT //
API-AUFRUF y

API KOPIERT DIE //

TEXTUR ZU PRIVAT
BIBLIOTHEKSPUFFER,

WOBEI ERSTE KOPIE
ERSTELLT WIRD

TEXTUR-DAMON

IN PRIVATEN DAMON-
PUFFER,WOBEI ZWEITE,
KOPIE ERSTELLT WIRD

KOPIERT DIE TEXTUR /

18

]

13/15

ANWENDUNGS-

EIN DREIECK UNTER
VERWENDUNG DER “
TEXTUR '

PROGRAMM ZEICHNET /

GRAPHIKHARDWARE
FORDERT TEXTUR-
DAMON AUF,ABSCHNITTH
DER TEXTUR DIE BE- 4
NOTIGT WERDEN,UM
DREIECK ZU ZEICHNEN,
ZU LIEFERN

TEXTUR-DAMON LADT
ERFORDERLICHE AB-
SCHNITTE DER TEXTUR
HERUNTER ,WOBEI DRITTE
KOPIE ERSTELLT WIRD

DE 197 09 227 B4 2006.05.24

50

ANWENDUNGS~—
PROGRAMM MACHT
59 APT-AUFRUF

54

NEIN

GULTIG
?

]:[]:[Go 5 API KOPIERT TEXTUR IN

56 ~ GRAPHIKHARDWARE,WOBEI
NNUR EINE KOPIE ERSTELLT
WIRD

FUHRE BUCHFUHRUNG DURCH,
UM BIBLIOTHEK UND
T~ TEXTUR=DAMON ZU
“MINFORMIEREN,DAS "DIRTY"
KOPIE IN HARDWARE IST

58

ANWENDUNGSPROGRAMM
60 ZEICHNET EIN DREIECK
\\\ UNTER VERWENDUNG DER
\TEXTUR DURCH VERAN-
LASSEN DER GRAPHIKHARDH
WARE DASSELBE ZU
ZEICHNEN

14/15

DE 197 09 227 B4 2006.05.24

70

ANWENDUNGSPROGRAMM

72 MACHT API-AUFRUF

N

74
NEIN

I[HGo 6 | TEXTUR-DAMON LADT

76 ~ TEXTUR VON GRAPHIK-
NHARDWARE HERAUF

TEXTUR-DAMON GIBT

*«\\\\ TEXTUR ZU API-
\BIBLIOTHEK,WENN VON API-
BIBLIOTHEK BENOTIGT

78

v

15/15

	Titelseite
	Beschreibung
	Stand der Technik
	Aufgabenstellung
	Ausführungsbeispiel

	Patentansprüche
	Anhängende Zeichnungen

