发明名称
高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法

摘要
本发明涉及含铍溶液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法技术领域，是一种高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法。本发明所述的高纯含铍反萃液的铍离子的浓度高达70g/L至150g/L，其高于采用现有工艺制得的含铍溶液，为下游氟铍酸铵、氟化铍和金属铍的制备提供了高浓度条件，并且，采用本发明所述的高纯含铍反萃液的制备方法、氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法时，原料的适用范围广，适合于任意浓度的含铍浸出液，无论是矿石浸出液还是含铍废液，只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到70g/L至150g/L。
1. 一种高纯含铍反萃液，其特征在于按下述方法制得：第一步，将磷酸类萃取剂、醇和
碘化煤油混合在一起后配置成萃取剂，将pH值为1至3的含铍溶液与萃取剂按比例为1:0.5至6进行多级逆流萃取，经过多级逆流萃取后得到萃取有机相和萃余水相，多级逆流萃取
至萃取有机相中的铍离子的浓度为1.8g/L至3.6g/L，其中，磷酸类萃取剂、醇和碘化煤油
的体积比为10至40:4至15:50至90；第二步，将质量百分比为5%至25%的草酸水溶液和萃取
有机相按体积比为1:3至6进行多级逆流洗涤，经过多级逆流洗涤得到洗后萃取有机相和洗
涤废水，多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10⁻³g/L至10⁻⁵g/L；第三
步，将体积百分比为40%至55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20至35进行
多级逆流反萃取，经过多级逆流反萃取得到贫有机相和高纯含铍反萃液，高纯含铍反萃液
中的铍离子的浓度为70g/L至150g/L。

2. 根据权利要求1所述的高纯含铍反萃液，其特征在于磷酸类萃取剂为不同取代基的
磷酸类系列萃取剂。

3. 根据权利要求2所述的高纯含铍反萃液，其特征在于磷酸类萃取剂为二-(2-乙基已
基) 磷酸类和3,9-二乙基三乙基胺-6 及3,6,8-三甲基三-4 与五氧化二磷作用合成的
十七烷基磷酸类或十二烷基磷酸类或二-(正丁基) 磷酸类或甲基对-特-辛基-苯基磷酸
酸类。

4. 根据权利要求1或2或3所述的高纯含铍反萃液，其特征在于醇为辛醇-2 或乙醇-1
或甲基异丁酮或异戊醇。

5. 一种根据权利要求1或2或3或4所述高纯含铍反萃液的制备方法，其特征在于按下述
方法进行：第一步，将磷酸类萃取剂、醇和碘化煤油混合在一起后配置成萃取剂，将pH值为1
至3的含铍溶液与萃取剂按比例为1:0.5至6进行多级逆流萃取，经过多级逆流萃取后得
到萃取有机相和萃余水相，多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L至3.6g/L，其中，磷酸类萃取剂、醇和碘化煤油的体积比为10至40:4至15:50至90；第二步，将
质量百分比为5%至25%的草酸水溶液和萃取有机相按体积比为1:3至6进行多级逆流洗涤，
经过多级逆流洗涤得到洗后萃取有机相和洗涤废水，多级逆流洗涤至洗后萃取有机相中的
铁铝杂质的总浓度为10⁻³g/L至10⁻⁵g/L；第三步，将体积百分比为40%至55%的氢氟酸水溶液
与洗后萃取有机相按体积比为1:20至35进行多级逆流反萃取，经过多级逆流反萃取得到贫
有机相和高纯含铍反萃液，高纯含铍反萃液中的铍离子的浓度为70g/L至150g/L。

6. 一种使用权利要求1或2或3或4所述的高纯含铍反萃液制备氟铍酸铵的方法，其特征
在于按下述方法进行：将高纯含铍反萃液中通入液氨进行盐析反应，当高纯含铍反萃液中
的pH值为7至9时，停止通入液氨，然后将经过盐析反应后的溶液按序经过冷却结晶和过滤
后得氟铍酸铵。

7. 一种使用权利要求1或2或3或4所述的高纯含铍反萃液制备氟化铍的方法，其特征在
于按下述方法进行：第一步，将高纯含铍反萃液中通入液氨进行盐析反应，当高纯含铍反萃
液中的pH值为7至9时，停止通入液氨，然后将经过盐析反应后的溶液按序经过冷却结晶和
过滤后得氟铍酸铵；第二步，将氟铍酸铵在温度为400℃至800℃的条件下煅烧120分钟至
180分钟后得到氟化铍。

8. 一种使用权利要求1或2或3或4所述的高纯含铍反萃液制备氟化铍的方法，其特征在
于按下述方法进行：第一步，将高纯含铍反萃液中通入液氨进行盐析反应，当高纯含铍反萃
液中的pH值为7至9时，停止通入液氨，然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵；第二步，将氟铍酸铵在温度为400℃至800℃的条件下煅烧120分钟至180分钟后得到煅烧物，将煅烧物和镁锭发生还原反应后得到金属铍。
高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法

技术领域
[0001] 本发明涉及含铍溶液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法技术领域，是一种高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法。

背景技术
[0002] 金属是一种特殊的高熔点和低活性的金属，其应用领域与国防体系息息相关。铍虽然属于稀有轻金属，但随着科学技术和工业的发展，它的应用范围越来越广。其在高科技领域应用较早，工业和民用领域应用发展较快，特别是近几年工业和民用应用范围迅速扩大，用量猛增，给工业带来了发展机遇。目前，只有两种方法在工业上用于生产铍，即氟化铍镁热还原法和氯化铍熔盐电解法。电解法早在二战期间德国使用，美国和法国也曾使用过电解法，但该工艺在较长时间内一直没有得到工业化推广，目前工业上普遍采用镁热还原法。氟化铍常用作镁热还原法制备金属铍的原料，其也在原子工业的熔盐反应堆中用作熔融盐燃料和二次载热剂的组分，中子减速剂、反射体材料、核反应器和裂变反应介质，也用于制造铍合金和光学玻璃工业等。近20年来，金属铍及含铍材料在工艺技术、新材料的研发方面取得了许多新的研究进展，但这些成果主要集中在苏联、美国和日本，我国金属铍及含铍材料的研究集中在传统工艺优化上，对新材料和工艺技术研究较少。而在所有含铍材料中，金属铍含量最少但最重要，金属铍的粉末冶金技术亟需发展。

[0003] 目前工业上常用湿法工艺(含铀湿法工艺)通过硫酸法制备氢氧化铍、氢氧化铍经精制、再用氨氟酸溶解、再析结晶制备氟铍酸铵，该工艺流程较为复杂，并且铍的回收率有待提高，公开号为103663506的中国专利文献公开了一种精制氟化铍的制备方法以及利用该精制氟化铍制备纯级金属铍的方法，根据该专利文献中所述的工艺方法，当需要回收含铍溶液制备铍时，先需将含铍溶液中的铍制备成氢氧化铍，再通过重溶解制成精制氢氧化铍，再加入HCl(氢氟酸)水，片碱经过溶解反应制成铍离子浓度仅为27g/L的含铍溶液(氟铍酸溶液)，为了获得高纯度的金属铍，需要将含铍溶液先进行浓缩后再进行后续的盐析反应，另外，根据公开号为103663506的中国专利文献所述的工艺制备金属铍时，由于工艺步骤较多，容易引入杂质，使得氟釉酸溶液的杂质含量较高，因此需要加入双氧水进行除杂，工艺步骤的增加，使含铍溶液中的铍的回收率有所下降。

发明内容
[0004] 本发明提供了一种高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法，克服了上述现有技术之不足，其能有效解决现有工艺制得的含铍溶液存在的铍离子浓度较低的问题。

[0005] 本发明的技术方案之一是通过以下措施来实现的：一种高纯含铍反萃液，按下述方法得到，第一步，将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂，将pH值为1至3的含铍溶液与萃取剂按体积比为1:0.5至6进行多级逆流萃取，经过多级逆流萃取后得
到萃取有机相和萃余水相，多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L至3.6g/L，其中，磷酸类萃取剂、醇和磺化煤油的体积比为10至40：4至15：50至90；第二步，将质量百分比为5%至25%的草酸水溶液和萃取有机相按体积比为1：3至6进行多级逆流洗涤，经过多级逆流洗涤得到洗后萃取有机相和洗涤废液，多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10⁻³g/L至10⁻⁵g/L；第三步，将体积百分比为40%至55%的氢氟酸水溶液与洗涤萃取有机相按体积比为1：20至35进进行多级逆流反萃取，经过多级逆流反萃取得到贫有机相和高纯含铍反萃液，高纯含铍反萃液中的铍离子的浓度为70g/L至150g/L。

[0006] 下面是对上述发明技术方案之一的进一步优化或／和改进：

上述磷酸类萃取剂为不同取代基的磷酸类系列萃取剂。

[0007] 上述磷酸类萃取剂为二-(2-乙基己基)磷酸类和3,9-二乙基三乙基醇-6及2,6,8-三甲基醇-4与五氧化二磷作用合成的十七烷基磷酸类或十二烷基磷酸类或二-(正丁基)磷酸类或甲基对-特-辛基-苯基磷酸类。

[0008] 上述醇为辛醇-2或乙醇-1或甲基异丁醚或异戊醇。

[0009] 本发明的技术方案之二是通过以下措施来实现的：一种高纯含铍反萃液的制备方法，按下述方法进行：第一步，将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂，将pH值为1至3的含铍溶液与萃取剂按体积比为1:0.5至6进行多级逆流萃取，经过多级逆流萃取后得到萃取有机相和萃余水相，多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L至3.6g/L，其中，磷酸类萃取剂、醇和磺化煤油的体积比为10至40：4至15：50至90；第二步，将质量百分比为5%至25%的草酸水溶液和萃取有机相按体积比为1：3至6进行多级逆流洗涤，经过多级逆流洗涤得到洗后萃取有机相和洗涤废液，多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10⁻³g/L至10⁻⁵g/L；第三步，将体积百分比为40%至55%的氢氟酸水溶液与洗后萃取有机相按体积比为1：20至35进进行多级逆流反萃取，经过多级逆流反萃取得到贫有机相和高纯含铍反萃液，高纯含铍反萃液中的铍离子的浓度为70g/L至150g/L。

[0010] 下面是对上述发明技术方案之二的进一步优化或／和改进：

上述磷酸类萃取剂为不同取代基的磷酸类系列萃取剂。

[0011] 上述磷酸类萃取剂为二-(2-乙基己基)磷酸类和3,9-二乙基三乙基醇-6及2,6,8-三甲基醇-4与五氧化二磷作用合成的十七烷基磷酸类或十二烷基磷酸类或二-(正丁基)磷酸类或甲基对-特-辛基-苯基磷酸类。

[0012] 上述醇为辛醇-2或乙醇-1或甲基异丁醚或异戊醇。

[0013] 本发明的技术方案之三是通过以下措施来实现的：一种氟酸酸液的制备方法，按下述方法进行：向高纯含铍反萃液中通入液氮进行盐析反应，当高纯含铍反萃液中的pH值为7至9时，停止通入液氮，然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟酸酸液。

[0014] 本发明的技术方案之四是通过以下措施来实现的：一种氟酸酸液的制备方法，按下述方法进行：第一步，向高纯含铍反萃液中通入液氮进行盐析反应，当高纯含铍反萃液中的pH值为7至9时，停止通入液氮，然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟酸酸液；第二步，将氟酸酸液在温度为400℃至800℃的条件下煅烧120分钟至180分钟后得到氟化铍。

[0015] 本发明的技术方案之五是通过以下措施来实现的：一种金属铍的制备方法，按下
述方法进行：第一步，向高纯含铍反萃液中通入液氨进行盐析反应，当高纯含铍反萃液中的
pH值为7至9时，停止通入液氨，然后将经过盐析反应后的溶液依次经过冷却结晶和过滤后
得氯化铍；第二步，将氯化铍酸化在温度为400℃至800℃的条件下煅烧120分钟至180分钟
后得到煅烧物，将煅烧物和镉酸发生还原反应后得到金属铍。
[0016] 本发明所述的高纯含铍反萃液的液化离子的浓度高达70g/L至150g/L，其高于采用
现有工艺制得的含镍溶液，为下游氯化铍和金属铍的制备提供了高浓度条件，并
且，采用本发明所述的高纯含铍反萃液的制备方法、氯化铍酸化的方法、氯化铍的制备方
法和金属铍的制备方法时，原料的采用范围广，适合在于任意浓度的含铍废液中，无论是矿石
浸出液还是含铍废液，只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到
70g/L至150g/L，因此，本发明所述的高纯含铍反萃液及其制备方法、氯化铍酸化的方法、
氯化铍的制备方法和金属铍制备方法具有广阔的应用前景，为铍材料的研究和发展提供
了新手段，同时，根据本发明所述的氯化铍酸化的方法、氯化铍的制备方法和金属铍制
备方法，能够提高铍的回收率，能够降低产物的杂质含量，在本发明的工艺中，主要产生酸
性废液，中和处理即可排放，废渣和废气量少，工艺环保，适应经济发展与环境保护并存的
理念。

具体实施方式
[0017] 本发明不述实施例的限制，可根据本发明的技术方案与实际情况来确定具体
的实施方式。
[0018] 下面结合实施例本发明作进一步描述：

实施例1：该高纯含铍反萃液，按上述制备方法得到：第一步，将磷酸类萃取剂、醇和磺
化煤油混合在一起后配置成萃取剂，将pH值为1至3的含镍废液与萃取剂按体积比为1:0.5
至6进行多级逆流萃取，经过多级逆流萃取后得到萃取有机相和萃取余水相，多级逆流萃取至
萃取有机相中的镍离子的浓度为1.8g/L至3.6g/L，其中，磷酸类萃取剂、醇和磺化煤油的体
积比为10至40:4至15:50至90；第二步，将质量百分比为5%至25%的草酸溶液与萃取有机
相按体积比为1:3至6进行多级逆流洗涤，经过多级逆流洗涤得到洗后萃取有机相和洗涤废
液，多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10^{-3}g/L至10^{-5}g/L；第三步，
将体积百分比为40%至55%的氨氯酸水溶液与洗后萃取有机相按体积比为1:20至35进行多
级逆流反萃取，经过多级逆流反萃取得到贫有机相和高纯含镍反萃液，高纯含镍反萃液中
的镍离子的浓度为70g/L至150g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行
酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含镍反萃液的
方法，原料的采用范围广，适合于任意浓度的含镍废液（含镍溶液），无论是矿石浸出液还
是含镍废液，只需根据镍浓度改变相比和逆流级即可将镍离子的浓度富集到70g/L至
150g/L，因此，本实施例所述的高纯含镍反萃液直接用于盐析反应制备氯化铍酸化。无
需在盐析反应之前进行高纯含镍反萃液的浓缩，并且根据本实施例得到的高纯含镍反萃液的
杂质含量较低，因此，无需采用双氧水除杂，由此，相应的减少了一个工艺步骤，仅此一个步
骤使镍的回收率提升4.4%至4.8%，从而提高了含镍溶液中的镍的回收率，在使用本实施例
所述的高纯含镍反萃液制备下游产品时，能够减少本实施例所述的高纯含镍反萃液的使用
量，并且，本实施例中所述的高纯含镍反萃液的制备方法相对于现有工艺以及公开号为
103663506的中国专利文献而言，简化了工艺流程。在本实施例所述的制备高纯含镀反萃液的方法中，含镀溶液经萃取使其大部分铁铝和镀分离，再经草酸洗涤进一步除铁铝，从而降低了本实施例所述的高纯含镀反萃液的杂质含量。本实施例采用氢氯酸做反萃剂，相比大，氢氟酸用量少。在制备本实施例所述的高纯含镀反萃液的过程中，主要产生酸性废液，中和处理即可排放，废渣和废气量少，工艺环保。

【0019】 实施例2：该高纯含镀反萃液，按上述制备方法得到；第一步，将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂，将pH值为1或3的含镀溶液与萃取剂按体积比为1：0.5或6进行多级逆流萃取，经过多级逆流萃取后得到萃取有机相和萃余水相，多级逆流萃取至萃取有机相中的镀离子的浓度为1.8g/L或3.6g/L，其中，磷酸类萃取剂、醇和磺化煤油的体积比为10或40:1或15:50或90:第二步，将质量百分比为5%或25%的草酸水溶液和萃取有机相按体积比为1:3或6进行多级逆流洗涤，经过多级逆流洗涤得到洗后萃取有机相和洗涤废水，多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为1×10⁻³g/L或1×10⁻⁴g/L；第三步，将体积百分比为40%或55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20或35进行多级逆流反萃取，经过多级逆流反萃取得到贫有机相和高纯含镀反萃液，高纯含镀反萃液中的镀离子的浓度为70g/L或150g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。

【0020】 实施例3：该高纯含镀反萃液，按上述制备方法得到；第一步，将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂，将pH值为1的含镀溶液与萃取剂按体积比为1:0.5进行多级逆流萃取，经过多级逆流萃取后得到萃取有机相和萃余水相，多级逆流萃取至萃取有机相中的镀离子的浓度为1.8g/L，其中，磷酸类萃取剂、醇和磺化煤油的体积比为10:4:86；第二步，将质量百分比为5%的草酸水溶液和萃取有机相按体积比为1:3进行多级逆流洗涤，经过多级逆流洗涤得到洗后萃取有机相和洗涤废水，多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为1×10⁻³g/L；第三步，将体积百分比为40%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20进行多级逆流反萃取，经过多级逆流反萃取得到贫有机相和高纯含镀反萃液，高纯含镀反萃液中的镀离子的浓度为70g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含镀反萃液的方法，原料的适用范围广，适合于任意浓度的含镀浸出液（含镀溶液），无论是浸出液还是含镀废液，只需根据镀浓度改变相比和逆流级数即可将镀离子的浓度富集到70g/L，因此，可将本实施例得到的高纯含镀反萃液直接用于酸化反应制备氟镀酸铵，无需在酸化反应之前进行高纯含镀反萃液的浓缩，并且根据本实施例得到的高纯含镀反萃液的杂质含量较低，因此，无需采用双氧水除杂，由此，相应的减少了一个工艺步骤，仅此一个步骤使镀的回收率提升4.4%，从而提高了含镀溶液中的镀的回收率，在使用本实施例所述的高纯含镀反萃液制备下游产品时，能够减少本实施例所述的高纯含镀反萃液的使用量，并且，本实施例中的高纯含镀反萃液的制备方法相对于现有工艺以及公开号为103663506的中国专利文献而言，简化了工艺流程。在本实施例所述的制备高纯含镀反萃液的方法中，含镀溶液经萃取使其大部分铁铝和镀分离，再经草酸洗涤进一步除铁铝，从而降低了本实施例所述的高纯含镀反萃液的杂质含量。本实施例采用氢氟酸做反萃剂，相比大，氢氟酸用量少。在制备本实施例所述的高纯含镀反萃液的过程中，主要产生酸性废液，中和处理即可排放，废渣和废气量少，工艺环保。
[0021] 实施例4：该高纯含镍反萃液，按上述制备方法得到：第一步，将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂，将pH值为3的含镍溶液与萃取剂按体积比为1:6进行多级逆流萃取，经过多级逆流萃取后得到萃取有机相和萃余水相，多级逆流萃取至萃取有机相中的镍离子的浓度为3.6g/L，其中，磷酸类萃取剂、醇和磺化煤油的体积比为15:5:80；第二步，将质量百分比为25%的草酸水溶液和萃取有机相按体积比为1:6进行多级逆流洗涤，经过多级逆流洗涤得到洗后萃取有机相和洗涤废液，多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10^{-5}g/L；第三步，将体积百分比为55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:35进行多级逆流反萃取，经过多级逆流反萃取得到贫有机相和高纯含镍反萃液，高纯含镍反萃液中的镍离子的浓度为150g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含镍反萃液的方法，原料的适用范围广，适合于任意浓度的含镍浸出液（含镍溶液），无论是矿石浸出液还是含镍废液，只需根据镍浓度改变相比和逆流级数即可将镍离子的浓度富集到150g/L，因此，可将本实施例得到的高纯含镍反萃液直接用于盐析反应制备氯酸酸铵，无需在盐析反应之前进行高纯含镍反萃液的浓缩，并且根据本实施例得到的高纯含镍反萃液的杂质含量较低，因此，无需采用双氧水除杂，由此，相应的减少了一个工艺步骤，仅此一个步骤使镍的回收率提升4.8%，从而提高了含镍溶液中的镍的回收率。在使用本实施例所述的高纯含镍反萃液制备下游产品时，能够减少本实施例所述的高纯含镍反萃液的使用量，且本实施例中的高纯含镍反萃液的制备方法对于现有工艺以及公开号为103663506的中国专利文献而言，简化了工艺流程。在本实施例所述的制备高纯含镍反萃液的方法中，含镍溶液经萃取使其大部分铁铝和镍分离，再经草酸洗涤进一步除铁铝，从而降低了本实施例所述的高纯含镍反萃液的杂质含量。本实施例采用氢氧化钠做反萃剂，相比大，氢氟酸用量少。在制备本实施例所述的高纯含镍反萃液的过程中，主要产生酸性废液，中和处理即可排放，废渣和废气量少，工艺环保。

[0022] 实施例5：该高纯含镍反萃液，按上述制备方法得到：第一步，将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂，将pH值为3的含镍溶液与萃取剂按体积比为1:1.9进行多级逆流萃取，经过多级逆流萃取后得到萃取有机相和萃余水相，多级逆流萃取至萃取有机相中的镍离子的浓度为3.5g/L，其中，磷酸类萃取剂、醇和磺化煤油的体积比为28:7:65；第二步，将质量百分比为15%的草酸水溶液和萃取有机相按体积比为1:4进行多级逆流洗涤，经过多级逆流洗涤得到洗后萃取有机相和洗涤废水，多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10^{-3}g/L；第三步，将体积百分比为45%的氢氟酸水溶液与洗后萃取有机相按体积比为1:25进行多级逆流反萃取，经过多级逆流反萃取得到贫有机相和高纯含镍反萃液，高纯含镍反萃液中的镍离子的浓度为110g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含镍反萃液的方法，原料的适用范围广，适合于任意浓度的含镍浸出液（含镍溶液），无论是矿石浸出液还是含镍废液，只需根据镍浓度改变相比和逆流级数即可将镍离子的浓度富集到110g/L，因此，可将本实施例得到的高纯含镍反萃液直接用于盐析反应制备氯酸酸铵，无需在盐析反应之前进行高纯含镍反萃液的浓缩，并且根据本实施例得到的高纯含镍反萃液的杂质含量较低，因此，无需采用双氧水除杂，由此，相应的减少了一个工艺步骤，仅此一个步骤使镍的回收率提升4.6%，从而提高了含镍溶液中的镍的回收率。
用本实施例所述的高纯含铍反萃液制备下游产品时，能够减少本实施例所述的高纯含铍反萃液的使用量，并且，本实施例中的高纯含铍反萃液的制备方法相对于现有工艺以及公开号为103663506的中国专利文献而言，简化了工艺流程。在本实施例所述的制备高纯含铍反萃液的方法中，含铍溶液经萃取使其大部分铁铝和铍分离，再经草酸洗涤进一步除铁铝，从而降低了本实施例所述的高纯含铍反萃液的杂质含量。本实施例采用氢氟酸做反萃剂，相比大，氢氟酸用量少。在制备本实施例所述的高纯含铍反萃液的过程中，主要产生酸性废液，中和处理即可排放，废液和废气量少，工艺环保。

【0023】 实施例6：该高纯含铍反萃液，按下述制备方法得到：第一步，将磷酸类萃取剂、醇和硫化碳油混合在一起后配置成萃取剂，将pH值为3的含铍溶液与萃取剂按体积比为1：2.2进行多级逆流萃取，经过经逆流萃取后得到萃取有机相和萃余水相，多级逆流萃取至萃取有机相中的铍离子的浓度为2.2g/L，其中，磷酸类萃取剂、醇和硫化碳油的体积比为30：8：62；第二步，将质量百分比为8%的草酸水溶液和萃取有机相按体积比为1：5进行多级逆流洗涤，经过多级逆流洗涤得到洗后萃取有机相和洗涤废液，多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10^5g/L；第三步，将体积百分比为44%的氢氟酸水溶液与洗后萃取有机相按体积比为1：2.8进行多级逆流反萃取，经过多级逆流反萃取得到贫有机相和高纯含铍反萃液，高纯含铍反萃液的铍离子的浓度为130g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含铍反萃液的方法，原料的适用范围广，适合于任意浓度的含铍浸出液（含铍溶液），无论是矿石浸出液还是含铍废液，只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到30g/L，因此，可将本实施例得到的高纯含铍反萃液直接用于盐析反应制备氟铍酸铵，无需在盐析反应之后进行高纯含铍反萃液的浓缩，并且根据本实施例得到的高纯含铍反萃液的杂质含量较低，因此，无需采用双氧水除杂，由此，相应的减少了一个工艺步骤，仅此一个步骤使铍的回收率提升4.8%，从而提高了含铍溶液中的铍的回收率，在使用本实施例所述的高纯含铍反萃液制备下游产品时，能够减少本实施例所述的高纯含铍反萃液的使用量，并且，本实施例中的高纯含铍反萃液的制备方法相对于现有工艺以及公开号为103663506的中国专利文献而言，简化了工艺流程。在本实施例所述的制备高纯含铍反萃液的方法中，含铍溶液经萃取使其大部分铁铝和铍分离，再经草酸洗涤进一步除铁铝，从而降低了本实施例所述的高纯含铍反萃液的杂质含量。本实施例采用氢氟酸做反萃剂，相比大，氢氟酸用量少。在制备本实施例所述的高纯含铍反萃液的过程中，主要产生酸性废液，中和处理即可排放，废液和废气量少，工艺环保。

【0024】 实施例7：作为上述实施例的优化，磷酸类萃取剂为不相同取代基的磷酸酯类系列萃取剂。

【0025】 实施例8：作为上述实施例的优化，磷酸类萃取剂为二-(2-乙基乙基)磷酸酯和3,9-二乙基三甲基酯-6 及2,6,8-三甲基酯-4 与五氧化二磷作用合成的十七烷基磷酸酯或十二烷基磷酸酯或二-(正丁基)磷酸酯或甲基对-特-辛基-苯基磷酸酯。

【0026】 实施例9：作为上述实施例的优化，醇为辛醇-2 或己醇-1 或甲基异丁酮或异戊醇。

【0027】 实施例10：该氟化铍酸铵的制备方法，按下述方法进行：向高纯含铍反萃液中通入液氨进行盐析反应，当高纯含铍反萃液中的pH值为7至9时，停止通入液氨，然后将经过盐析反
应后的溶液依序经过冷却结晶和过滤后得氟酸酸铵。将上述实施例所述的高纯含磷反萃液用于氟酸酸铵的制备方法时，由于上述实施例所述的高纯含磷反萃液的离子浓度高达70g/L至150g/L，一方面，无需将上述实施例所述的高纯含磷反萃液浓缩即可进行盐析工序；另一方面，在制备大量不同氟酸酸铵时，相对于现有工艺制备氟酸酸铵对氟酸酸铵溶液的使用量，上述实施例所述的高纯含磷反萃液的使用量低。根据本实施例所述的氟酸酸铵的制备方法得到的氟酸酸铵的分析结果如表1所示，通过表1可以看出，根据本实施例所述的氟酸酸铵的制备方法得到的氟酸酸铵的杂质含量低。目前国内外某厂现有工艺，浸出液（含磷溶液）到氢氧化铝再到氟酸酸铵，氟的回收率达到70%，而根据本实施例所述的氟酸酸铵的制备方法，氟的回收率提高到94%至98%。同时，由于根据上述实施例得到的高纯含磷反萃液的杂质含量低，因此，在氟酸酸铵的制备工艺中，无需采用双氧水除杂，由此，相应的减少了一个工艺步骤，仅此一个步骤便使氟的回收率提升4.8%，从而提高了含磷溶液中的氟的回收率。

【0028】实施例11：该氟化铵的制备方法，按述方法进行：第一步，向高纯含磷反萃液中通入氢气进行盐析反应，当高纯含磷反萃液中的pH值为7至9时，停止通入氢气，然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟酸酸铵；第二步，将氟酸酸铵在温度为400℃至800℃的条件下烧烧120分钟至180分钟后得到氯化酸。将上述实施例所述的高纯含磷反萃液用于氯化酸的制备方法时，由于上述实施例所述的高纯含磷反萃液的离子浓度高达70g/L至150g/L，能够具有以下有益效果：一方面，无需将上述实施例所述的高纯含磷反萃液浓缩即可进行盐析工序；另一方面，在本实施例所述的氯化酸的制备方法中，相对于现有工艺制备氯化酸对氟酸酸铵溶液的使用量，上述实施例所述的高纯含磷反萃液的使用量低，根据上述实施例得到的高纯含磷反萃液的杂质含量低，使得根据本实施例所述的氯化酸的制备方法得到的氯化酸的杂质含量相应降低。根据本实施例所述的氟化铵的制备方法得到的氯化酸的分析结果如表2所示，国内某厂生产的氯化酸的分析结果如表2所示，通过表2可以看出，根据本实施例所述的氯化酸的制备方法得到的氯化酸的铁杂质含量；根据上述实施例所述的氯化酸的制备方法得到的氯化酸的铝杂质含量低于国内某厂生产的氯酸钙的铝杂质含量，即说明根据本实施例所述的氯化酸的制备方法得到的氯化酸的杂质含量低于现有工艺制备的氟化铵的杂质含量。

【0029】实施例12：该金属酸的制备方法，按述方法进行：第一步，向高纯含磷反萃液中通入氢气进行盐析反应，当高纯含磷反萃液中的pH值为7至9时，停止通入氢气，然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟酸酸铵；第二步，将氟酸酸铵在温度为400℃至800℃的条件下烧烧120分钟至180分钟后得到煅烧物，将煅烧物和镍钻发生还原反应后得到金属酸。将上述实施例所述的高纯含磷反萃液用于氟酸酸铵的制备方法时，由于上述实施例所述的高纯含磷反萃液的离子浓度高达70g/L至150g/L，一方面，无需将上述实施例所述的高纯含磷反萃液浓缩即可进行盐析工序；另一方面，在本实施例所述的金属酸的制备方法中，上述实施例所述的高纯含磷反萃液的使用量相对于现有工艺制备金属酸对氟酸酸铵溶液的使用量低，根据上述实施例所述的高纯含磷反萃液的杂质含量低，使得根据本实施例所述的金属酸的制备方法得到的金属酸的纯度相应得到提高。

【0030】综上所述，本发明所述的高纯含磷反萃液的磷离子的浓度高达70g/L至150g/L，其高于采用现有工艺制得的含磷溶液，为下游氟酸酸铵、氯化酸和金属酸的制备提供了高浓
度条件，并且，采用本发明所述的高纯含铍反萃液的制备方法、氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法时，原料的适用范围广，适合于任意浓度的含铍浸出液，无论是矿石浸出液还是含铍废液，只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到70g/L至150g/L。因此，本发明所述的高纯含铍反萃液及其制备方法、氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法具有广阔的应用前景，为铍材料的研究和发展提供了新手段。同时，根据本发明所述的氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法，能够提高铍的回收率，能够降低产物的杂质含量。在本发明的工艺中，主要产生酸性废液，中和处理即可排放，废渣和废气量少，工艺环保，适应经济发展与环境保护并存的理念。

【0031】以上技术特征构成了本发明的实施例，其具有较强的适用性和实施效果，可根据实际需要增减非必要的技术特征，来满足不同情况的需求。

<table>
<thead>
<tr>
<th>主成分/%</th>
<th>杂质含量/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>Fe</td>
</tr>
<tr>
<td>7至11</td>
<td>0.007至0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>主成分/%</th>
<th>杂质含量/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>Fe</td>
</tr>
<tr>
<td>本实施例</td>
<td>21</td>
</tr>
<tr>
<td>国内某厂的氟化铍</td>
<td>17</td>
</tr>
</tbody>
</table>