

R. W. AUGUSTINE. TELEPHONE SYSTEM. FILED JULY 31, 1916.

2 SHEETS-SHEET 1

R. W. AUGUSTINE. Telephone System. Filed July 31, 1916.

2 SHEETS-SHEET 2

ROY W. AUGUSTINE, OF CHICAGO. ILLINOIS, ASSIGNOR TO HIELLOGG SWATCHBOARD AND SUPPLY COMPANY, OF CHICAGO, ILLUNOIS, A COMPORATION OF THATEOIS.

TELEPHONE SYSTEM.

Application filed July 31, 1916. Serial No. 118,242.

 $To \ all \ whom \ it \ may \ concern;$

Be it known that I, Roy W. Augustine, a citizen of the United States of America, re-5 of Illinois, have invented certain new and

customary to manually code ring the sub-15 station upon the polystation lines, but this method is slow and inaccurate as the difracy, I have arranged a device to automati-20 cally transmit the code rings with no other duty necessary on the part of the operator terrupter device will be more particularly than to select the required code. There are pointed out in the ensuing specification, ranged a mechanically operated device to perform the above-mentioned function where shown a cord circuit C for interconnecting the exchange is of a size to provide a contract two subscribers' lines B and D which ter-75 25 the exchange is of a size to provide a con-

tively inexpensive device to automatically code ring the substations upon a polystation telephone line. It is a further object of my 35 invention to provide means for insuring that the signaled substation will receive the full code ring, no matter in what position the sending apparatus may be in at the time that the operator selects the desired code. 40 These and other objects of my invention will appear in the ensuing specification and will

be more particularly out in the appended

For a more complete understanding of my 45 invention, reference may be had to the accompanying drawings in which-

Wig. I illustrates a relay interrupter for code ringing operating in connection with a common battery cord circuit and

cluding a mechanically controlled device for . automatic code ringing, and adapted to be used in connection with magneto lines.

siding in Chicago, county of Cook, and State of Illinois, have invented certain new and useful Improvements in Telephone Systems, of which the following is a specification.

My invention relates to code ringing apparatus such as its used in connection with are slow-acting relays, that is, slow to retelephone systems to code rings the different lease their apparatus when despecification and states. stations upon a polystation line.

In telephone systems wherein so-called code ringing apparatus is used, it has been customary to manually code ring the substation upon the polystation lines, but this method is slow and inaccurate as the different operators differently transmit the same code ring. To overcome this imagentation while release and perfect decided and evice to automatically and perfect a simulatures upon de-energization, 60 while release and perfect decided and evice that is been unterrupter deads 1, 2, 3 and 4 connected with these release, and with this arrangement it is possible to install eight parties on one subscriber's line and have 65 them rung selectively, that is, by using four arranged a device to automatically. 10 telephone systems to code ring the different lease their armatures upon de-energization, 60 tively and four parties will be given two rings selectively. The operation of the in- 70

stantly operating device, and I have also arranged an electromagnetically operated device for use in exchanges where it is found desirable to use the same.

The principal object of my invention is to provide a simple, compact and comparationly incorporate device to a supple of the principal object of the principal object of the provide a simple of the provided and comparation of the principal object of the provided and comparation of the provided and the provided of the provided of the provided of the principal object of the provided of that when a call is initiated over any line the line signals S are lighted, and any one of a plurality of operators may seize the call to the exclusion of the other operators. The 85 line circuit L¹ is similar to that of L bearing the same reference characters, but with the

subix prime added.

The cord circuit C comprises the usual answering plug AP and the calling plug CP, 90 the two pines being connected by the heavily marked tip and sleeve conductors which have the condensers K and K interposed. At the answering end of the cord circuit, I provide a comparitively high resistance test 95 relay TE which is connected to the sleeve strand and energized when the answering plug AP is inserted into an answering jack, mmon battery cord circuit and thereby connecting the answering sleeve su-Fig. 2 illustrates a modified device, in-pervisory relay AS to the sleeve conductor. 100

With this arrangement the first operator to answer a call seizes it to the exclusion of any subsequent operator, that is, when the first plug AP is connected to a calling line the sleeve relay AS associated therewith is connected to the sleeve strand and should a second operator attempt to seize this call, the high resistance test relay TE of the second cord circuit cannot operate, and this pre-10 vents the second operator from connecting to this line. An answering tip supervisory relay AT is also associated with the answering end of the cord and is connected to the tip strand. The said relays AS and AT control the answering supervisory signal AL. I also provide an instantaneous disconnect and recall arrangement including a link disconnect LD so that should a calling subscriber desire to recall, as soon as his receiver 20 has been replaced and prior to the disconnection of the operator's cord C from his line, the replacing of his receiver energizes the link disconnect relay LD thereby disconnecting relays AT and AS so that the renecting relays AT and AS so that the re-25 moval of his receiver will again operate his line lamp S and the recall may be seized by the same or a different operator.

Associated with the calling end of the cord circuit C, I provide a calling sleeve relay 30 CS and a calling tip supervisory relay CT which are operated in a well-known manner, the two relays controlling the calling supervisory signal CL. Automatic party line ringing is also provided, and to this end I 35 have provided a party line key RK together with ringing generators G, G¹, G² and G² and a ringing control relay RCR which is energized when a plunger of the ringing key RK is actuated. An interrupter relay 40 IR is also provided for alternately connecting ringing generator and the calling tip relay CT to the called line. A call register is also provided comprising a meter relay MR and a meter magnet MM which are controlled through the common contacts of the ringing key RK. Automatic listening and disconnect of the operator's set O is also provided, the operator's set being connected to the cord conductors by the answering 50 sleeve relay AS when connection is made to a calling line and again disconnected by the operation of the calling sleeve relay CS when connection is extended to a called line.

For the purpose of describing my inven-55 tion, it will be assumed that the interrupter circuit A is associated with a twelve-position switchboard equipped with cord circuits as C. The interrupter A has four interrupter leads, 1, 2, 3 and 4 controlled by the operation of different connecting relays in the interrupter circuit, and are multiply connected to different positions of the 65 first, third, fifth, seventh, ninth and eleventh lishes a circuit for relay i traced from 130

positions, and lead 2 is also common to the first, third, fifth, seventh, ninth and eleventh positions. Lead 3 is common to the second, fourth, sixth, eighth, tenth and twelfth positions, and lead 4 to the second, fourth, etc., 70 positions. I distribute the leads as above described to equalize and evenly distribute the load. It is to be understood, however, that my invention is not limited to this exact method of grouping but that it is broader 75 in scope and the interrupter leads may be associated with the link circuits in any de-

sirable manner. The interrupter circuit A is constantly operating but may be shut off by the switch 80 SW in the battery lead. I will now describe one complete cycle of operation of the inter-

rupter circuit A. Assuming that the apparatus is in normal position, as illustrated, a circuit for the relay a is established, when 85 the switch SW is closed, traced from ground over the conductor 5, through winding of relay a, conductor 6, and through normal contact 7 of relay n to battery. The energization of the relay a closes a circuit for the 90 relay b, traced from ground over the conductor 5, through winding of relay b, alternate contact 8 of relay a, and conductor 9 to the other side of battery. The energization of the relay b establishes an energizing 95 circuit for relay c traced from ground over conductor 5, through winding of relay c, alternate contact 10 of relay b, and conductor 9 to the other side of battery. The closing of alternate contact 11 of relay c con- 100 nects interrupter lead 1 in operative relation with the ringing apparatus of its asso-ciated cord circuits. The closure of alternate contact 12 of relay c establishes a circuit for relay d, traced from ground over 105 conductor 5, through winding of relay d, alternate contact 12 of relay c, and conductor 9 to the other side of battery. The energization of relay & establishes an energizing circuit for relay e traced from ground over 110 conductor 5, through winding of relay e, alternate contact 13 of relay d, and conductor 9 to the other side of battery. The energization of relay e establishes an energizing circuit for relay f traced from ground over 115 conductor 5, through winding of relay f, alternate contact 14 of relay e, and ever conductor 9 to other side of battery. The energization of relay / establishes an energizing circuit for relay g traced from 120 ground, over conductor 5, through winding of relay g, alternate contact 15 of relay f, and over conductor 9 to the other side of battery. The energization of relay g establishes an energizing circuit for relay h traced 125 from ground over conductor 5, through winding of relay h, alternate contact 16 of switchboard preferably as follows: The lead relay g and conductor 9 to the other side of 1 is common to the cord circuits C of the battery. The energization of relay h estab-

ground over conductor 5, through winding of relay i, alternate contact 17 of relay h, and over conductor 9 to the other side of battery. The energization of relay i estab-5 lishes an energizing circuit for relay j traced from ground over conductor 5. through winding of relay j, alternate contact 18 of relay i, and over conductor 9 to the other side of battery. The energization of relay j establishes an energizing circuit for the relay k, traced from ground over conductor 5, through winding of relay k, alternate contact 19 of relay j, and over conductor 9 to the other side of bettery. The energiza-15 tion of relay k establishes an energizing circuit for relay I traced from ground over conductor 5, through winding of relay I, alternate contact 20 of relay k, and over conductor 9 to the other side of battery. The 20 energization of relay I establishes an energizing circuit for relay m, traced from ground over conductor b, through winding of relay m, alternate contact 21 of relay l, and over conductor 9 to the other side of 25 battery. The energization of the relay mestablishes an energizing circuit for the relay n traced from ground over conductor 5, through winding of relay n, alternate contact 22 of relay m, and over conductor 9 to 30 the other side of battery. Thus all of the relays a to n are energized having come up successively, but, of course, in the fraction of a second. The energization of the relay n brings about the opening of normal con-35 tact 7 and the opening of the said contact 7 interrupts the circuit of the relay a which slowly restores to normal. The relay a restoring, opens its alternate contact 8, opening the energizing circuit of relay b and the 40 restoration of relay b brings about the opening of its alternate contact 10 which opens the circuit of the relay c. The relay c, upon restoration, opens its alternate contact 11 disconnecting the interrupter lead 1, interrupter lead 1 having been in operative relation with its associated cord circuits, while relays c to n were being energized and while relays a, b and c are de-energizing. closing of normal contact 11 upon the restor-50 ation of relay c, establishes an energizing circuit for relay o traced from ground over conductor 5, through normal contact 11 of relay c, conductor 24, winding of relay o, alternate contact 25 of relay i, conductor 26 to alternate contact 27 of relay c, and conductor 9 to the other side of battery. Relay o energizing closes its alternate contact 28 thereby placing interruptor load 2 in operative relation with its associated cord cir-60 cuits. The opening of alternate contact 12, upon de-energization of relay c, brings about the restoration of the relay d and the opening of alternate contact 13 of relay d brings about the restoration of the relay e. The 65 opening of alternate contact 27 of relay e

brings about the de-energization of relay o, and relay o restoring to normal, opens its alternate contact 28 to disconnect interrupter lead 2 from its associated cord circuits. The closing of normal contact 27 of 70 relay e establishes an energizing circuit for relay p traced from ground over conductor 5, through alternate contact 30 of relay k. winding of relay 2, alternate contact 31 of relay 2, conductor 26, normal contact 27 of 75 relay e, and conductor 9 to the other side of battery. The closing of alternate contact 32 of relay p connects interrupter lead 3 with its associated cord circuits. The opening of alternate contact 14 of relay e, upon its de- 80 energization, brings about the restoration of the relay f and the opening of alternate contact 15, upon restoration of relay f, brings about the de-energization of relay g. The opening of alternate contact 31 of relay g 85 interrupts the energizing circuit of relay p bringing about its de-energization and the opening of alternate contact 32, thereby disconnecting the interrupter lead 3. The closing of normal contact 33 of relay g, upon its 90 de-energization, again establishes an energizing circuit for relay o traced from ground over conductor 5, normal contact 11 of relay c. conductor 24, winding of relay o, alternate contact 25 of relay i, conductor 26, nor- 95 mal contact 33 of relay g, and conductor 9 to the other side of battery.

The closing of alternate contact 28 of relay o again connects the interrupter lead 2 with its associated cord circuits. The open- 100 ing of alternate contact 16, upon restoration of relay g, brings about the restoration of the relay h, and the opening of its alternate contact 17 brings about the restoration of the relay i. The opening of alternate con- 105 tact 25. upon restoration of relay i brings about the restoration of the relay o and the opening of alternate contact 28 of relay o, again disconnects interrupter lead 2. The closing of normal contact 35, upon restora- 110 tion of relay i, establishes an energizing circuit for relay p traced from ground over conductor 5, through alternate contact 30 of relay k, coil of velay p, back contact 35 of relay i, conductor 36, normal contact 27 of 115 relay c, and conductor 9 to the other side of bottony. The closing of alternate contact 52 of relay p again connects interrupter lead 3 with its associated cord circuits. The opening of alternate contact 18, upon de- 120 energization of relay i, brings about the de-energization of the relay j and the opening of alternate contact 19 of relay j brings about the restoration of the relay k. The opining of normal contact 30 of relay k 125 ngain interrupts the circuit of relay p and the opening of alternate contact 32 of relay p, when it de-energizes, disconnects the interrupter lead 3 from its associated cord circuits. The closing of normal contact 30 139

of relay k connects the interrupter lead 4 of the second cord will not become energized with its associated cord circuits. The opening of alternate contact 20 of relay k upon de-energization, brings about the de-5 energization of the relay I and the opening of alternate contact 21 of relay l brings about the de-energization of the relay m, and the opening of alternate contact 22 of relay m brings about the de-energization of the relay n. The relay n, upon restoring to normal, again closes its normal contact 7 to again bring about another cycle of operation of the interrupter A. The intereration of the interrupter A. rupter lead 4 remains in operative relation 15 with its associated cord circuits while relays k to n inclusive restore to normal and relays a to k inclusive again operate. Upon the operation of the relay k its normal contact 30 is opened to disconnect the inter-20 rupter lead 4 from its associated cord circuits. The relays continue to perform the above cycle of operation and maintain an automatic sequential energization and de-energization thereof at predetermined in-25 tervals.

I will now describe the interrupter circuit A operating in connection with the cord circuit C which I will assume is one of the plurality of cord circuits of the first position 30 with which the interrupter leads 1 and 2 are common. Assuming now that a call is initiated at substation B by the removal of the receiver thereat, line relay LR is energized over the calling line effecting the op-35 eration of the line signals S. An operator upon noting the glowing of the signals inserts an answering plug AP into a jack J of the calling line thereby connecting relays
TE and CO in series and causing the energization of TE but not that of CO. Relay TE, upon energizing connects the sleeve relay AS to the sleeve conductor of the cord circuit C through alternate contact 40 of relay TE, causing the energization of relay 45 AS and CO in series followed by the energization of the tip relay AT over the calling line. Relay AS upon energizing, closes its alternate contact 41 effecting a locking circuit for itself through the sleeve conductor 50 independent of the alternate contact 40. The closing of alternate contacts 42 and 43 of the relay AS connects the operator's set O in circuit with the cord circuit C through alternate contacts 44 and 45 of the calling sleeve

55 relay CS. Before proceeding further with the description of the connection, we will refer briefly to the arrangement for excluding operators who may subsequently connect to 60 this same line. Assuming that a second operator inserts a plug AP into another jack J of this calling line after the insertion of the first plug, this second operator's tele-phone will not be connected to this calling 65 line due to the fact that the test relay TE

because of the circuit established through the comparatively low resistance relay AS of the cord. Therefore, the sleeve relay AS of the second cord does not energize and the 70 second operator receiving no reply knows that the call has been seized.

Again taking up the first connection above referred to, the first operator to seize the call inquires the wants of the calling sub- 75 scriber A and assuming that it is the substation D which is wanted, the operator of the cord circuit C tests a multiple jack of the called line D, as to its idle or busy condition. Should the line be busy the operator 80 receives the customary busy click in her head receiver. Assuming that the line of the called substation D is idle, the operator inserts the calling plug CP into a multiple jack J of the wanted line, bringing about a 85 series energizing circuit for the sleeve supervisory relay CS and the cut-off relay CO¹ of the line circuit L¹ traced from battery through the winding of the relay CS, the sleeve contacts of the connected plug and 90 jack, and through the winding of the relay CO to ground. The opening of normal contacts 44 and 45 disconnects the operator's set

O from the cord circuit C.
A key KY is provided which is used when 95 a subscriber on a party line is rung selectively by two rings. If a subscriber on the party line is rung selectively by one ring, the key KY is not actuated by the operator but remains normal as illustrated. Should 100 the called subscriber on a party line be rung selectively by two rings, the key is moved to its alternate position for purposes as will be more fully described in another part of the specification. The operator now 105 fully depresses the proper ringing plunger of the party line ringing key RK and assuming that it is the plunger 47 which is depressed, the end springs 48 and 49 immediately assume their alternate positions, 110 the spring 48 closing an energizing circuit for the ringing control relay RCR, traced from battery through the winding of the said relay, conductor 50, alternate contact 48 of the end spring, conductor 51, normal 115 contact 52 of the relay LD, conductor 53, and normal contact 54 of the calling tip supervisory relay CT to ground at alter-nate contact 55 of relay CS. Although the circuit of the relay RCR is interrupted 120 at contact 48 when the operator removed pressure from the actuated plunger, the relay RCR remains locked up over a circuit extending from battery, through alternate contact 56 of relay RCR, conductor 57, con- 125 ductor 51, normal contact 52, conductor 53, and normal contact 54 of relay CT to ground at alternate contact 55 of relay CS. Upon the energization of the relay RCR, the alternate contact 58 is closed which connects 130

the energization of the guard relay GR, but the operation of this relay is only incidental when a subscriber of the called line is rung selectively with one ring as will be more fully hereinafter described.

Assuming that the relay c of the interrupter circuit A is in its energized position, as previously described, and its alternate contact 11 closed, an energizing circuit for the relay IR is established. It is 15 to be noted that the conductor I is connected with the same side of the exchange battery as is interrupter relay IR and the circuit of the said relay is traced from ground through the alternate contact 11 of relay c, the in-20 terrupter lead 1, the normal contact 60 of the key KY, alternate contact 58 of relay RCR, and through the winding of the interrupter relay IR to battery. Upon the energization of relay IR, its alternate contact 61 is closed which connects ringing current to the called line from the ungrounded pole of the generator C, through the alternate contact 47 of the springs of the depressed ringing plunger, the ringing 30 lead 62, alternate contact 61 of relay IR, alternate contact 63 of relay CS, up contacts of the connected ping and jack, alter-contact 55 of relay CS. The relay AS benate contact of the cut-off relay CO through ing of one hundred ohm resistance, the subthe condenser and call boll of the called 35 substation IX, the alternate contact of the 100 prevents an excess battery flow through 100 relay COL sleeve contacts of the competed the relay AS. Upon the energization of plug and jack, alternate connect 64 of relay RCR, conductor 65, and through the winding 66 of relay AT to battery. The winding 66 of relay AT is of few turns and of low resistance, and the ringing current passing through this winding induces current into the winding 67 of the relay AT, thus giving an audible signal to the call-45 ing subscriber at substation B notifying him that the party wanted is being rung. Lik, which energization lights the line significant the relay IR is energized each time the in- nals S. The recall may then be siezed terrupter lead 1 is connected to ground the same operator or by another operator. through alternate contact 11 of the relay of thus connecting ringing current to the wanted line for substantially one second of rings, the operation of the circuit of the time, and allowing a silent interval of about cord circuit C is the same as previously three and two thirds seconds fine. When described, up to and including the actuation of the relay RCR. The relay GR is actuated and time the interrupter circuit A starts a over the line, thereby causing said relay to cycle of operation due to the closure of alenergize and open its normal contact 54, ternate contact 75 of relay a, the circuit which interrupts the locking circuit of the for relay GR being traced from ground

the interrupter lead 1 of the interrupter cir- are now in conversational circuit, the talkcuit A with the interrupter relay IR of ing circuit being traced over the heavily the cord circuit C. The closing of altermarked conductors. When conversation has nate contact 59 of relay RCR brings about been completed and the receivers have been replaced on their respective switch-hooks, 70 the relays CT and AT de-energize to bring about the lighing of the supervisory signals AL and CL whereupon the operator with-draws plags AP and CP from the jacks J and J', rectoring the apparatus of the cord 75

and line circuits to normal.

Should the subscriber at the substation B wish to recall before disconnection has taken place, the replacement of the receiver thereat brings about the energization of the link 80 disconnect relay LD, its circuit being traced from battery through the winding of the said relay, normal contact 70 of the now normal answering tip supervisory relay AT, the alternate contact 71 of relay AS, and 85 conductor 72 to ground at alternate contact 55 of relay CS. The series circuit of answering supervisory relay AS and cut off relay CO is opened upon the energization of relay LD, but due to the make before 90 break contact 74 of relay LD a substitute circuit is established for relay AS traced from battery, through the winding of re-Tay AS, alternate contact 74 of relay LD, resistance 100, alternate contact 71 of relay 95 AS, conductor 72 to ground at alternate contact 55 of relay CS. The relay AS bestitute circuit which includes the resistance the relay LD, the contacts 73 and 74 of said relay assume their alternate positions opening the cord conductors, allowing the relay CO to restore; the relay CO restoring to 105 normal places the relay LR of the line circuit L in operative relation with the subscriber's line and the removal of the receiver at the substation B for a recall brings about the energization of the said relay 110 LR, which energization lights the line signals S. The recall may then be siezed by

D is one that requires a code ring of two 115 ing circuit for the relay CT is established each time the interrupter circuit A starts a 120 relay RCR allowing the said relay to dethrough alternate contact 75 of said relay a,

60 energize and open the circuit of the relay IR
at the alternate contact 58. The opening
of alternate contact 58 disconnects the lead
of alternate contact 58 disconnects the lead
of alternate contact 58 disconnects the lead
of afternate contact 59 of relay RCR, and
through the winding of the relay GR to
operating. The subscriber at the substacloses a locking circuit for itself traced
to tion B and the subscriber at substation D from battery through the winding of the 130

said relay, the alternate contact 59 of relay RCR, and the alternate contact 77 of relay GR to ground. The operator now actuates the key KY to close its alternate contact 60 and assuming that the operator has actuated the said key KY at the beginning of a cycle of operation, the interrupter lead 2 will be connected and disconnected twice as previously described in connection with the 10 interrupter circuit A. The first energizing circuit for the relay IR extends from ground through alternate contact 28 of relay o, the interrupter lead 2, the alternate of relay o to place the lead 2 in operative contact 80 of relay GR, conductor 81, alrelation with its associated cord circuits for 15 ternate contact 60 of key KY, alternate contact 58 of relay RCR, and through the interrupter relay IR to battery. The first ative relation for its second period for two-period of energization of the relay IR con- thirds of a second of time. The lead 2 will period of energization of the relay IR connects the ringing lead 62 through alternate thus be connected for two-thirds seconds

20 contact 61 of relay IR to ring the call bell for its first period and off for two-thirds 85 of the called subscriber at substation F, as seconds, while lead 3 is connected for two-described in the previous connection. The thirds of a second for its first period. The second period of energization of the relay lead 2 is again connected for two-thirds sec-IR is brought about upon the energization 25 of the relay o of the interrupter circuit A when the relay c of said interrupter circuit A is restored to normal. Interrupter relay IR is again energized over the circuit previously traced to connect the ringing 30 lead 62 to the called line, to operate the call bell of the called subscriber D a second time. Now should the operator depress the key after the interrupter lead 2 has been operatively associated with the cord circuit 35 C once, no actuation of the interrupter refact that the interrupter lead 2 is connected connected for two-thirds seconds, then disto the cord circuit C after the first relay a connected for two-thirds seconds for its of the series has de-energized, and therefore second period, again connected for two40 no energizing circuit for the relay GR of the thirds seconds and then disconnected for 105
cord circuit C can be established. It is thus two and two-thirds seconds of time, until readily apparent that the code ring cannot another cycle for the interrupter lead 3 is be transmitted until the apparatus is in a started. The de-energization of relay kposition to transmit a full code signal. 50 places the lead 1 in operative relation with and two-thirds seconds. its associated cord circuits, during the pegoing, it is apparent that leads to be a second circuits of the pegoing energization of relay n which energization duration of time. 55 opens its normal contact 7. This places the interrupter lead 1 in operative relation with its associated cord circuits for a period of one second of time, and off for three and terrupter lead 2 is placed in operative rela- well known in the art, such as one ring, two tion with its associated cord circuits for rings, one long and one short ring, etc. My

while relays c and e are de-energizing, thus placing the lead 2 in operative relation for its first period for two-thirds of a second of time. The de-energization of the relay e brings about the energization of 70 relay p which places lead 3 in operative relation with its associated cord circuits for the first period while relays f and g are de-energized which places lead 3 in operative relation for its first period of two-75 thirds of a second of time. The de-energization of relay g again causes the operation a second period while relays h and i are 80 de-energized thus placing lead 2 in operonds while lead 3 is disconnected for two-thirds seconds of time. Thus interrupter 90 lead 2 is disconnected for two and twothirds seconds of time until another cycle of operation for said interrupter lead 2 is started. Upon the de-energization of relay i, another operation of the relay p is brought 95 about to place the lead 3 in operative relation with its associated cord circuits for its second period, while relays j and k are de-energized thus placing lead 3 in oper-C once, no actuation of the interrupter re- ative relation for a second period of two 100 lay IR will be brought about, due to the thirds of a second. The lead 3 will thus be places lead 4 in operative relation with its I have found by experiment that by tim- associated cord circuits while relays l, m and 110 ing the relays a to n of interrupter circuit n restored and relays a to k again operate A so that one cycle of the operation occurs during the next cycle thus placing the lead in about four and two-thirds seconds very 4 in operative relation for about one second satisfactory results can be obtained. This of time and disconnecting it for about three From the fore- 115 going, it is apparent that I may arrange the riod relays d to n are energized and relays apparatus to transmit various codes cona, b and c are de-energizing due to the taining any desired combination and of any Referring now to Fig. 2, I show a me- 120 chanical interrupter arrangement operating in connection with magneto lines. Each

magneto line of an exchange is generally two-thirds seconds until a new cycle is again equipped with a plurality of subscribers' 60 completed as is well understood. The in- substations and code ringing is used as is 125 its first period by the de-energization of invention is most particularly directed to relay c which de-energization operates recode ringing as just described and I provide 1 lay o, the said relay o remaining energized at the exchange a plurality of keys M, N, 130

exchange, there being as many keys as there are codes to be rung. The keys have a normal, indicating and fully depressed position, and a key which has been fully depressed is restored to its indicating position as is readily apparent from the inspection of the drawing. I also provide an interrupter device IN which is common to the exchange, 10 said device IN being provided with a plu-rality of disks 100, each of these disks being provided with a different number or combination of projections 101 to control the different code rings, as will hereinafter be more 15 particularly pointed out. The disks 100 are suitably mounted on a shaft, the said shaft being constantly driven by a suitable motor MO. The projections 101 on the different disks 100 in their rotation engage suitable springs, said springs being normally open but when engaged, by the projections, the spring contacts are closed to transmit code ringing current to the called subscriber's substation bell. The character of the 25 code is dependent upon which key, M, N, etc., is depressed. A disk 103 is previded which presents the splitting up of a code ring should a key be depressed after a code has been started, that is, after a projection 30 101 on a disk 100 has passed its associated spring, thus preventing false code rings from being transmitted to the called substation. My invention, of course, is not limited to the number of code disks or the character of the code, as it is readily apparent that any number of code disks of any desired character may be used. I also provide two relays 104 and 105, the relays being individual to the cord circuit. The operation of the 40 relays will hereafter be more fully described.

To further illustrate my invention, I have shown a magneto cord circuit C1 for interconnecting magneto subscribers' lines as B1 and \mathbb{D}^1 which terminate respectively in the line circuits L^2 and L^2 . The line circuit L^2 comprises a combined jack J² and visual signal or drop DS. Line circuit L3 is similar to that of L² and comprises the usual combined jack J³ and drop signal DS¹. 50 Magneto cord circuit C1 comprises the answering and calling plugs P and P1 and the usual clearing-out drops DS2 and DS3. I also show a listening key LK which, when actuated connects the operator's set O1 to the 55 cord conductors so that she may inquire the

wants of the calling subscriber. Having described in general the apparatus of Fig. 2. I will now describe the operation of the circuit more in detail. The subscriber 60 at the substation B1 desiring a connection, operates the hand generator at the substation to throw the drop signal DS at the exchange which drop in actuating signals the 65 cord circuit C noting the actuated drop, in- substation D1, sleeve contact of the connected 130

etc., individual to each cord circuit of the serts plug P into jack J2 of the calling line and then throws her listening key LK to connect the operator's set O1 to inquire the wants of the calling subscriber. The insertion of the plug P into the jack J2 restores 70 the drop signal DS and disconnects it from the line conductors.

Assuming that it is the subscriber at D1 that is wanted, the operator inserts the calling plug Γ^1 into the jack J^2 of the wanted 75 line, and assuming further that the character of the code ring to signal substation D1 is two long rings, the operator depresses the key N to its fully depressed position, which act causes the cam 110 of the key plunger to 80 move the cam plate 111 to momentarily close the end springs 112 and 113. The momentary closure of these two contacts establishes an energizing circuit for relay 105, its circuit being traced from battery through the 85 right hand winding of the relay 105, momentarily closed contacts 112 and 113, and conductor 114 to the other side of battery. The relay 105 then closes a locking circuit for itself traced from battery through right 90 hand winding of relay 105, its alternate contact 115, and conductor 114 to the other side of battery. Assuming that the interrupter TK which is constantly rotating and is in the position illustrated 95 when the key N is depressed, the disk 103 in rotating causes the projection 116 on said disk 103 to move spring 117 to engage spring 118, but this engagement of springs 117 and 118 is only incidental as the relay 104 is still 100 at normal. Projection 116 after passing spring 117 engages spring 119 causing spring 119 to engage spring 120 bringing about an energizing circuit for relay 104 traced from battery, through conductor 121, closed spring 105 contacts 119 and 120, right hand winding of relay 104, alternate contact 122 of relay 105, and conductor 114 to the other side of bat. tery. Relay 104, upon energizing, closes a locking circuit for itself traced from battery 110 through its now closed centact 128, left hand winding of said relay 104, alternate contact 124 of relay 105, and conductor 114 to the other side of battery. After pressure has been released from the depressed key plunger 115 of the key M, said key assumes its indicating position as is readily apparent, and in this position springs 126, 127 of the key M are closed. Generator current is now transmitted to the called substation Di over a cir- 120 enit traced from generator (45, through the closed contacts 128, 129, (said contacts being closed when the first projection 1011 of the disk 1001 engages the said spring 128) over conductor 130, closed contacts 126, 127 of the 125 key N, conductor 181, alternate contact 182 of the relay 104, tip conductor of the cord circuit C¹, tip contacts of the connected plug operator. The operator associated with the and jack through the call bell of the called

plug and jack, and sleeve conductor of the cord circuit C¹ to ground at alternate contact 133 of relay 104. When the first projection 1011 of the disk 1001 disengages the 5 spring 128, said springs 128 and 129 assume their normal position interrupting the path of the ringing current. When the second projection engages spring 128, said contacts 128 and 129 are again closed to transmit an impulse of ringing current to the call bell of the called subscriber at substation D¹. Thus the two long rings, which we have assumed are the code ring of the called substation D1, are transmitted to the substation D¹. Just be-15 fore the completion of one complete revolution of the shaft upon which the disks 100 and 103 are mounted, the projection 116 upon the disk 103 engages the spring 117 causing it to momentarily engage contact 118. This 20 closes a circuit through left hand winding of relay 105, over a circuit traced from battery through the closed contacts 117, and 118 through left hand winding of said relay 105, alternate contact 135 of the relay 104, and 25 conductor 114 to the other side of battery. Since the relay 105 is differentially wound, the circuit through the left hand winding of relay 105 brings about its de-energization, and the opening of contact 124 of relay 105 30 opens the locking circuit of said relay 104, which relay restores to normal and interrupts alternate contacts 132, 133 bringing about disconnection of ringing current. Thus a particular code is rung once; then the 35 ringing is automatically stopped. The operator to again ring the called substation D1, again depresses the key N to its fully depressed position again momentarily closing the contacts 112 and 113 to bring about the 40 operation of the relay 105 to again complete a cycle of operation as just described. The disk 103 with its projection 116 acts

as a guard against splitting up of the different code rings. Assuming that the oper-45 ator has depressed a key after the projection 116 of disk 103 has passed the springs 119 and 117, no energization of relay 104 is brought about as the energization of said relay is controlled by the contacts 119 and 50 120. The contacts 132 and 133 of relay 104 remain at normal and no ringing current is transmitted until the disk has completed a revolution, when the projection 116 engages the contact 119 and brings about the closing 55 of contact 120 with that of 119 to energize

This automatic code ringing is non-interfering and automatic in its action so that a plurality of keys in different cord circuits may be depressed simultaneously without interfering with each other.

While I have shown and described my invention in connection with certain forms of link circuits, it is apparent that my invenconnection with any form of link circuit and that many modifications and changes may be made in my apparatus without departing from the spirit and scope of the same.

Having described my invention, what I 70 claim as new and desire to secure by United

States Letters Patent, is:

1. A signalling system of the character described including a poly-station telephone line, a manual link circuit for connection to 75 said line, code ringing apparatus associated with said link circuit, a plurality of switches controllable by a central office operator for connecting the said code ringing apparatus to said telephone line to automatically code 80 ring the substations thereon, and substation controlled means for operatively disconnecting said code ringing apparatus from said telephone line.

2. A signalling system of the character 85 described including a poly-station telephone line, a manual link circuit for connection to said line, code ringing apparatus associated with said link circuit, a plurality of switches controllable by a central office operator for 90 connecting the said code ringing apparatus to said telephone line to automatically code ring the substations thereon, means for insuring that any substation upon said line will receive its full code ring, and substa- 95 tion controlled means for operatively disconnecting said code ringing apparatus

from said telephone line.

3. A telephone system including a calling and a called telephone line, a plurality of 100 substations connected to said called telephone line, a link circuit provided with a pair of normally connected terminal plugs for connecting said lines in conversational circuit, code ringing apparatus associated 105 with said link circuit, and an operator's key for connecting said ringing apparatus with said called telephone line to automatically code ring the desired substation upon said line and for disconnecting one of said plugs 110 from the other of said pair of plugs.

4. A telephone system including poly-station telephone lines, a plurality of connecting links for interconnecting said telephone lines, code ringing apparatus common to 115 said link circuits, switch keys for individually associating the different codes with the said link circuits, and means responsive to an operation of one of said keys to connect the desired code with a called one of said lines 120 to automatically code ring the substations thereon and for disconnecting said called line from the associated connecting link.

5. In a telephone system, the combination with a manual link circuit connected to a 125 called telephone line, of code ringing apparatus for selectively signalling the substations upon said called line, operator controlled means for operating said code ring-65 tion is of broader scope and may be used in ing apparatus to selectively automatically 130

and means controlled over said called telephone line for disassociating said code ringing apparatus from said called line.

6. In a telephone system, the combination with a plug-ended link circuit connected to a poly-station telephone line, of code ringing apparatus associated with said link circuit, a plurality of switch keys for selecting the 10 code to signal a desired substation upon said line, and means controlled by one of said keys to connect the desired code at predetermined intervals to signal the desired substation upon said line and for disconnecting said 15 link circuit from said telephone line.

7. A telephone system including a polystation telephone line, a link circuit for extending a call to said line, code ringing apparatus for selectively signalling the sub-20 stations upon said line, a selective device controllable by a central office operator for selecting the desired code, a relay controllable by said selective device to associate the code ringing apparatus with the said line 25 to automatically signal the desired substation thereon, and automatically controlled means for de-energizing said relay to disassociate said code ringing apparatus from said line.

8. A telephone system comprising subscribers' poly-station telephone lines, a plurality of link circuits for interconnecting said lines in conversational circuits, code ringing apparatus associated with said link 35 circuits, operator controlled switches for selecting codes, a relay for connecting the selected codes to called lines to automatically signal the desired substations thereon, said relay being controlled by said operators' switches and subscriber controlled means for deenergizing said relay.

9. A signalling system of the character described, including a plug-ended link circuit connected to a poly-station telephone 45 line, code ringing apparatus associated with said link circuit, an operator controlled device for connecting said code ringing apparatus to said telephone line, means for automatically operating said signalling apparatus to insure that a full code ring will be applied to signal the desired substation, and automatic means for operatively disconnecting said code ringing apparatus from said telephone line.

10. A telephone system including a called subscriber's line provided with a plurality of substations, a plurality of sources of ringing current located at the central exchange, the number of substations connected to said 60 line being a multiple of the number of sources of ringing current, and code ringing apparatus for connecting said sources of ringing current to said line to signal the desired substations thereon.

11. A telephone system including a called

signal the desired one of said substations, subscriber's line provided with a plurality of substations, a plurality of sources of ringing current located at the central exchange, the number of substations connected to said line being a multiple of the number of 70 sources of ringing current, code ringing mechanism, and operator controlled means for connecting said ringing current to said line via said ringing mechanism to signal desired substations upon said line.

12. A telephone system including a called subscriber's line provided with a plurality of substations, a plurality of sources of ringing current located at the central exchange, the number of substations connected 80 to said line being a multiple of the number of sources of ringing current, an operator's link circuit for extending a connection to said line, code ringing interrupter mechanism, and operator controlled means for con- 85 necting said ringing current to said line via said code ringing mechanism.

13. A telephone system including a called subscriber's line provided with a plurality of substations, a plurality of sources of 90 ringing current located at the central exchange, the number of substations connected to said line being a multiple of the number of sources of ringing current, an operator's link circuit for extending a con- 95 nection to said line, code ringing interrupter mechanism, operator controlled means for connecting said ringing current to said line via said code ringing mechanism, and automatic means for disconnecting said code 100 ringing apparatus and said ringing current from said telephone line.

14. A telephone system including a calling subscriber's line and a poly-station called subscriber's line, an operator's link circuit 105 for connecting said lines, code ringing apparatus associated with said link circuit, switchboard operator-controlled means for connecting said code ringing apparatus to said called line and for insuring that a full 110 code ring will be applied to signal the desired substation upon said line, and automatic means for disconnecting said code ringing apparatus from said called line.

15. A telephone system including a calling 115 and a called telephone line, a plurality of substations connected to said called telephone line, an operator's link circuit for connecting said lines in conversational circuit, code ringing apparatus associated with said 120 link circuit and common to a plurality of telephone lines, switchboard operator controlled means for connecting said code ringing apparatus with said called telephone line to automatically code ring the desired sub- 125 station upon said line, and means for insuring that a full code ring will be applied to said called line.

16. A telephone system including a calling subscriber's telephone line and a called 130

subscriber's poly-station telephone line, a sources of signaling current, code ringing manual link circuit for connecting said lines in conversational circuit, a ringing current generator, a relay for connecting said ring-ing current generator to said called line, code ringing apparatus for differently en-ergizing said relay according to the desired means for preventing further energization 10 of said relay controlled over said called line.

17. A telephone system including a callsubscriber's poly-station telephone line, a manual link circuit for connecting said lines 15 in conversational circuit, a ringing current generator, a relay for connecting said ringing current generator to said called line, code ringing apparatus for differently energizing said relay according to the desired 20 substation to be called upon said line, and substation controlled means for disconnecting said relay from said code ringing apparatus to prevent further operations of said

relay

25

18. A telephone system including subscriber's poly-station telephone lines, a manual link circuit for connection to one of said lines, code ringing apparatus associated with said link circuit and common to said lines, switchboard operator controlled means for connecting said code ringing apparatus with said telephone line to automatically code ring the desired substation upon said line, means for insuring that a full code ring will 35 be applied to said called line and means con-

trolled by the called subscriber for disconnecting said code ringing apparatus from

said telephone line.

19. A telephone system including subscribers' poly-station telephone lines, a link circuit for connecting said lines, a plurality of sources of signaling current, code ringing apparatus, means for operatively associating said code ringing apparatus with said

45 link circuit, whereby said code ringing apparatus connects one of said sources of current to the called one of said lines to automatically code ring the desired substation

upon said line.

20. A telephone system including subscribers' poly-station telephone lines, a link circuit for connecting said lines, a plurality of sources of signaling current, code ringing apparatus, means for operatively asso-55 ciating said code ringing apparatus with said link circuit, whereby said code ringing apparatus connects one of said sources of current to the called one of said lines to auto-

matically code ring the desired substation 60 upon said line, and automatic means for in-suring that a full code ring will be applied

to said called line.

21. A telephone system including subscribers' poly-station telephone lines, a link cir-65 cuit for connecting said lines, a plurality of

apparatus, means for operatively associating said code ringing apparatus with said link circuit, whereby said code ringing apparatus connects one of said sources of cur- 70 rent to the called one of said lines to autoergizing said relay according to the desired matically code ring the desired substation substation to be called upon said line, and upon said line, and automatic means for disassociating said code ringing means and said sources of current from said called line. 75

22. A telephone system including a calling subscriber's telephone line and a called ing subscriber's line, a poly-substation called subscriber's line, a manual link circuit for connecting said lines, a plurality of sources of signaling current and code signaling ap- 80 paratus associated with said link circuit, and means for controlling said code ringing apparatus to cause the same to apply one of said sources of signaling current to said called line to automatically code ring the 85

desired substation upon said line.

23. A telephone system including a calling subscriber's line, a poly-substation called subscriber's line, a manual link circuit for connecting said lines, a plurality of sources 90 of signaling current and code signaling apparatus associated with said link circuit, means for controlling said code ringing apparatus to cause the same to apply one of said sources of signaling current to said 95 called line to automatically code ring the desired substation upon said line, and subscriber-controlled means for disassociating said code apparatus from said called line.

24. In a telephone system, the combina- 100 tion of a signaling circuit including a plurality of signals, each signal constructed to respond to a particular one of a plurality of currents of different character, means for producing a number of currents of different 105 character, means for determining which character of current shall be connected in said circuit and mechanism for modifying the current thus connected into the circuit

110

according to a particular code.

25. In a telephone system, the combination of a signaling circuit, a plurality of tuned ringers connected in said cricuit, a plurality of sources of current of different frequency adapted to be connected in said 115 circuit, said sources producing current of a frequency to which said ringers are responsive, means for selecting each of said sources and connecting each in said circuit, and mechanism for breaking the current from 120 said sources up into periods according to a certain code.

26. In a telephone system, the combination of a signaling circuit including a plurality of signals, a plurality of sources of 125 signaling current for selectively operating said signals, mechanism for selecting and connecting said sources in said circuit, a plurality of devices for modifying the effect of the current from said sources on said sig- 130

NI 1,440,365

devices, each independently of the other, to modify the effect of the current from

each source upon said signals.

27. In a telephone system, the combination of a signaling circuit including a plurality of tuned ringers, a plurality of sources of current for operating said ringers, each source adapted to produce a cur-10 rent of a certain frequency calculated to operate a plurality of said signals, apparatus to selectively connect each of said sources in said circuit, a plurality of commutators differently arranged, and means to cause 15 each of said commutators to interrupt the current in said circuit from each of said

28. In a telephone system, the combination of a signaling circuit, a plurality of 20 signals in said circuit, a plurality of sources of signaling current each adapted to produce current of a character to which a plurality of said signals are responsive, mechanism to connect any of said sources of current in said circuit, a plurality of devices having differently arranged contacts, and means for causing either of said devices to interrupt the current in said circuit from

either_of said sources.

29. In a telephone system, the combination of a signaling circuit including a plurality of signals, a plurality of sources of current each adapted to produce current capable of operating a plurality of said sig-35 nals, means for selecting and connecting said sources in said circuit, a plurality of devices each adapted to interrupt the current from said sources according to a predetermined code, and a single key mecha-40 nism for determining which of said devices

nals, and means for selectively causing said should act upon the current in the ringing

circuit.

30. In a telephone system, the combination of a calling line and a called line, a signal on the called line, a cord circuit for con- 45 necting the lines together, an answering switch for connecting the cord to the calling line, a calling switch for connecting the cord to the called line, a ringing circuit including a portion of the cord circuit and the called 50 line, a source of signal operating current adapted to be connected in said circuit, a relay controlling the connection of said source in said circuit, a circuit for said relay, a second relay controlling said circuit, 55 and a circuit for the second relay controlled

by the answering switch.

31. In a telephone system, the combination of a calling telephone line, substation apparatus thereon, a called telephone line, 60 a signal on said line, a main station, link conductors at the main station for connecting the telephone lines together, a switching device for connecting the link conductors to the called line, a signaling generator at the 65 main station, means to connect said generator to said signal, including said called telephone line, a signaling key including key contacts controlling the connecting means and mechanism, operable independently of 70 said switching device and substation apparatus for relieving such key contacts from the control of said connecting means.

Signed by me at Chicago, county of Cook and State of Illinois, in the presence of two 75

witnesses.

ROY W. AUGUSTINE.

Witnesses:
G. A. Yanochowski, WM. BERGHAHN.