Abstract: The present invention discloses a method for assaying the binding of L104EA29YIg to a receptor. The receptor is preferably CD86 or CD80. The present invention also discloses antibodies to be used in the assay, as well as hybridomas expressing the antibodies.
FIELD OF THE INVENTION

The present invention relates to methods for monitoring compounds used to treat immune system diseases such as graft rejection following organ transplant. Specifically, the present invention relates to a flow-cytometry based CD86 or CD80 receptor competition based assay for measuring the binding efficiency of L104EA29YIg to CD86 or CD80 receptors by comparing the binding of non-competing anti-CD86 or CD80 monoclonal antibodies to CD86 or CD80 receptors (total CD86 or CD80 expression) respectively and the binding of competing anti-CD86 or CD80 antibodies to CD86 or CD80 receptors not bound by L104EA29YIg.

BACKGROUND OF THE INVENTION

The generation of a T lymphocyte ("T cell") immune response is a complex process involving cell-cell interactions (Springer et al., A. Rev. Immunol. 5:223-252 (1987)), particularly between T and accessory cells such as B cells, and production of soluble immune mediators (cytokines or lymphokines) (Dinarello and Mier, New Engl. Jour. Med 317:940-945 (1987)). This response is regulated by several T-cell

American Journal of Transplantation. 5(3):443-53. Thus, the CD28/B7 pathway represents a viable, logical target for an immunomodulatory therapeutic agent.

CTLA4Ig (BMS-188667), a fusion protein comprising the extracellular domain of human CTLA-4 (cytotoxic T-lymphocyte-associated antigen 4) and a fragment of the Fc domain of human IgGl, blocks the CD28/B7 pathway by binding to CD80 and CD86 on the surface of the antigen presenting cells. This compound has been found to be clinically useful as an immunosuppressant. See U.S. Patent Application 10/419,008 (Publication No. 20040022787 Al), hereby incorporated by reference in its entirety, which describes and discusses CTLA4Ig and L104EA29YIg and methods of preparation and use thereof. U.S. Patent Nos. 5,844,095, 5,885,796, and 5,851,795, also incorporated by reference in their entirety, describe and discuss CTLA4Ig.

A related molecule, L104EA29YIg (BMS-224818) (also known as LEA29Y), was found to be a particularly potent immunomodulatory therapeutic agent. This compound is a human CTLA4Ig molecule containing a two amino acid substitution that results in enhanced binding to CD80 and CD86 relative to CTLA4Ig. See Larsen, CP., Pearson, T.C., Adams, A.B., Tso, P., Shirasugi, N., Strobert, E., Anderson, D., Cowan, S., Price, K., NaemurFfia, J., Emswiler, J., Greene, J., Turk, L., Bajorath, J., Townsend, R., Hagerty, D., Linsley, P.S., and R. J. Peach. 2005. Rational Development of LEA29Y, a High-Affinity Variant of CTLA4-Ig with Potent Immunosuppressive Properties. American Journal of Transplantation. 5(3):443-53. US Patent Application 09/865,321 (Publication No. 2002-018221 1 Al), which is also hereby incorporated by reference in its entirety, describes and discusses L104EA29YIg.

Given that CTLA4Ig and L104EA29YIg bind to circulating leucocytes expressing CD80 and/or CD86 molecules, it would be informative to monitor the extent to which CD80 and/or CD86 is bound to the fusion protein(s), in addition to the amount of
compound circulating in the plasma during clinical use. In doing so, clinicians would be able to correlate compound exposure levels with receptor saturation levels required for efficacy in order to monitor binding efficiency. Understanding the extent to which CD86 is saturated with L104EA29YIg at various blood concentrations can be used to help justify different dosing schemes or regimes. For example, during the development phase, different formulations and routes of administration will be utilized (e.g. monthly intravenous or weekly subcutaneous treatment). This assay could be used to help establish the best route and course of administration which demonstrates maximum saturation for the longest period of time.

BRIEF SUMMARY OF THE INVENTION

The present invention relates to assays for monitoring and measuring the binding of L104EA29YIg to a receptor, in particular, a CD86 or CD80 receptor. In this assay, peripheral mononuclear cells are isolated from a blood sample, and portions of the mononuclear cell sample are preincubated with increasing concentrations of L104EA29YIg. After incubation, a labeled anti-CD86 or anti-CD80 antibody is added, and the binding of the labeled antibody is measured using flow cytometry. By comparing the binding of portions of the mononuclear cell sample with varying concentrations of L104EA29YIg added to a portion of the mononuclear cell sample with no L104EA29YIg added, one can determine that L104EA29YIg is binding the receptor.

In yet another embodiment of the invention, an assay method is provided in which the binding efficiency of L104EA29YIg to a receptor is measured using a competing antibody and a non-competing antibody concurrently. In such an assay, peripheral monocytes are isolated from a blood sample, and portions of the monocyte sample are preincubated with L104EA29YIg. After incubation, a labeled competing anti-receptor antibody is added, and then a non-competing anti-receptor antibody is added. The binding of the two antibodies is measured using flow cytometry. The binding of the non-competing antibody represents the amount of total receptor, and the binding of the competing antibody represents the amount of available receptor, unbound by L104EA29YIg. In this way, the binding efficiency of L104EA29YIg may be determined using a single sample.
In yet another embodiment of the invention, an assay method is provided in which the binding efficiency of L104EA29YIg to a receptor is measured using a competing antibody and a non-competing antibody in separate samples. In such an assay, whole blood is treated with L104EA29YIg. PBS is used as an untreated control. Mouse IgG solution is added to all samples to block non-specific binding of detection reagents. To detect levels of unbound CD86, fluorescently labeled competing anti-receptor antibody (e.g., mAb HA5) is added to one set of samples. To detect total CD86 levels, a fluorescently labeled non-competing anti-receptor antibody (e.g. mAb 2D4) is added to another set of samples. To detect monocytes, CD14-FITC is added to each sample. To assess non-specific fluorescence associated with the labeled anti-CD86 mAbs, excess unlabeled anti-human CD86 mAb is added to a subset of the relevant samples (e.g. unlabeled HA5 is added to samples containing labeled HA5). Cells are lysed using Lysing solution, and the binding of the antibodies is measured using flow cytometry. The binding of the non-competing antibody represents the amount of total receptor, and the binding of the competing antibody represents the amount of available receptor, unbound by L104EA29YIg. Specific binding (ΔMFI (Medium fluorescence intensity)) is determined by the difference between the total binding (labeled anti-CD86 mAb alone) and the non-specific binding (labeled + excess unlabeled anti-CD86 mAb). In this way, the binding efficiency of L104EA29YIg may be determined using two separate samples.

In yet another embodiment of the invention, an assay method is provided for monitoring the binding efficiency of L104EA29YIg in a clinical setting. In such an assay, a patient is dosed with L104EA29YIg. A blood sample from the patient is obtained, and a mixture of mouse IgGs are added to aliquots of the blood sample to reduce Fc receptor-mediated non-specific binding. Human CD14-FITC is added to identify monocytes. Then, labeled competing anti-receptor antibody and labeled non-competing anti-receptor antibody are added to the aliquots of blood sample. As above, to assess non-specific fluorescence associated with the labeled anti-CD86 mAbs, excess unlabeled anti-human CD86 mAb is added to a subset of the relevant samples (e.g. unlabeled HA5 is added to samples containing labeled HA5). A lysing/fixative solution is used to lyse red blood cells and fix leukocytes. The samples are centrifuged to remove lysed blood cells and isolate leukocytes. The total
receptor and available receptor (not bound by L104EA29YIg) are measured by determining the binding of the competing and non-competing antibodies (respectively). Specific binding (ΔMFI) is determined by the difference between the total binding (labeled anti-CD86 mAb alone) and the non-specific binding (labeled + excess unlabeled anti-CD86 mAb).

In one preferred aspect of the above embodiments of the present invention, the receptor is CD86 or CD80.

In another preferred aspect of the above embodiments, the anti-receptor antibody is an anti-CD86 antibody. In particular, the competing anti-CD86 antibody is FUN-I, IT2.2, or HA5 (clone HA5.2B7). In another preferred embodiment, the anti-receptor antibody is an anti-CD80 antibody. In particular, the competing anti-CD80 antibody is either mAb L307.4 or mAb MAB 104.

In another preferred aspect of the invention, the anti-human CD86 or anti-human CD80 antibody is labeled with a fluorophore. In another preferred aspect of the invention, the fluorophore is phycoerythrin (PE).

In yet another preferred aspect of the above embodiments, the non-competing anti-CD86 antibody is mAb 2D4.

In yet another preferred aspect of the above embodiments, the non-competing anti-CD80 antibody is mAb 1420.

In yet another embodiment of the invention, monoclonal antibodies mAb 1420 and 2D4, and hybridomas that express such mAbs are provided. The hybridomas used to produce these antibodies were deposited at the ATCC on January 13, 2006, as deposit numbers PAT-7304 (hybridoma expressing mAb 1420), and PAT-7305 (hybridoma expressing mAb 2D4). These and other embodiments of the invention will be apparent in light of the detailed description below.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 illustrates the results of a CD86 competition in isolated peripheral blood mononuclear cells with competing mAb FUN-1.
Figure 2 illustrates (a) the results of competition in whole blood with competing mAb FUN-I (lug/ml) and (b) the results of competition in whole blood with a non-competing mAb 2D4.

Figure 3 presents the nucleotide sequence (SEQ ID NO:1) of the CTLA4Ig molecule. Also shown is the amino acid sequence (SEQ ID NO:2) encoded by the nucleic acid. CTLA4Ig molecules that can be produced from this nucleotide sequence include molecules having the amino acid sequence of residues: (i) 26-383 of SEQ ID NO:2, (ii) 26-382 of SEQ ID NO:2, (iii) 27-383 of SEQ ID NO:2, or (iv) 26-382 of SEQ ID NO:2, or optionally (v) 25-382 of SEQ ID NO:2, or (vi) 25-383 of SEQ ID NO:2. The DNA and amino acid sequences comprise the following regions: (a) an Oncostatin M signal sequence (amino acids 1-26 of SEQ ID NO:2); (b) an extracellular domain of human CTLA4 (amino acids 27-151 of SEQ ID NO:2); (c) a modified portion of the human IgGl constant region (amino acids 152-383 of SEQ ID NO:2), including a modified hinge region (amino acids 152-166 of SEQ ID NO:2), a modified human IgGl CH2 domain (amino acids 167-276 of SEQ ID NO:2), and a human IgGl CH3 domain (amino acids 277-383 of SEQ ID NO:2).

Figure 4 depicts a nucleotide (SEQ ID NO:3) and amino acid (SEQ ID NO:4) sequence of L104EA29YIg (also known as "LEA29Y") comprising an Oncostatin M signal sequence; a mutated extracellular domain of CTLA4 starting at (as designated in Figure 4) methionine at position +1 and ending at aspartic acid at position +124, or starting at alanine at position -1 and ending at aspartic acid at position +124; and an Ig region. SEQ ID NO: 3 and 4 designate the first amino acid of the Oncostatin M signal sequence (M, which is followed by G) as 1. SEQ ID NO: 3 and 4 depict a nucleotide and amino acid sequence, respectively, of L104EA29YIg comprising an Oncostatin M signal sequence; a mutated extracellular domain of CTLA4 starting at methionine at position +27 and ending at aspartic acid at position +150, or starting at alanine at position +26 and ending at aspartic acid at position +150; and an Ig region. L104EA29YIg can have the amino acid sequence of residues: (i) 26-383 of SEQ ID NO:4, (ii) 26-382 of SEQ ID NO:4; (iii) 27-383 of SEQ ID NO:4 or (iv) 27-382 of
SEQ ID NO:4, or optionally (v) 25-382 of SEQ ID NO:4, or (vi) 25-383 of SEQ ID NO:4.

Figure 5 depicts the results of an ex vivo CD86 receptor competition in whole blood with mAb HA5 and mAb FUNl. (NHV = Normal healthy volunteer.) This figure demonstrates that the concentration of L104EA29YIg required to inhibit specific binding of HA5 by 50% is 0.13ug/ml, and the concentration of L104EA29YIg required to inhibit the specific binding of FUNl by 50% is 0.49ug/ml.

Figure 6 depicts the characterization of CD86 competition with mAb FUNl after incubation of whole blood with L104EA29YIg. (MFI = Median fluorescence intensity; MLR = Mixed leukocyte reaction; NS = Non-specific). This figure summarizes FUN-I performance in the assay on blood collected from 6 different NHVs demonstrating the effect of L104EA29YIg inhibition of antibody binding.

Figure 7 depicts the characterization of CD86 competition with mAb HA5 after incubation of whole blood with L104EA29YIg. This figure summarizes HA5 performance in the assay on blood collected from 6 different NHVs demonstrating the effect of L104EA29YIg inhibition of antibody binding.

Figure 8 depicts a CD86 receptor competition assay on whole blood collected from NHVs administered L104EA29YIg subcutaneously. (SC= Subcutaneous; squares indicate pre-dose, triangles indicate Day 5, circles indicate Day 14, and diamonds indicate Day 42). Figure 8 demonstrates that L104EA29YIg administration SC to normal healthy volunteers, inhibits the binding of FUNl to monocytes by day 5, but this effect is reversed by day 14.

Figure 9 depicts the correlation between pharmacokinetics (PK) and pharmacodynamics (PD) of the results shown in Figure 8, which helps one understand what serum drug concentrations are required to achieve a desired pharmacodynamic activity such as saturating the target. Open and closed triangles represent the two subjects who received L104EA29YIg. This figure demonstrates that in the subjects
administered L104EA29YIg SC, more inhibition of Fun-1 binding to peripheral blood monocytes is observed with increasing serum concentrations of L104EA29YIg.

Figure 10 depicts a comparison of the specific binding of several anti-CD86 mAbs in NFTVs to monocytes in whole blood. The data show that all three antibodies bind to monocytes in a similar fashion.

Figure 11 depicts specific binding of mAb 2D4 in clinical samples (including blood from renal transplant patients treated with L104E29YIg). In transplant patients receiving L104EA29YIg, 2D4 binding is unchanged following administration of L104EA29YIg and not significantly different from NHVs.

Figure 12 depicts specific binding of mAb HA5 and mAb FUNI in clinical samples (including blood from renal transplant patients treated with L104E29YIg). This data demonstrates that as opposed to 2D4, FUN-I and HA5 binding are significantly inhibited by L104E29YIg administration in transplant patients and significantly reduced compared to NHVs.

Figure 13 depicts simulated clinical PK and PD profiles. This figure depicts a model suggesting how this assay could be used to monitor receptor saturation following L104E29YIg administration. It hypothesizes that shortly after the first dose, receptor saturation is maximized and remains at the desired level despite changes in dose regimen such as frequency of dose or strength of dose.

Figure 14 depicts the titration of anti-CD86 PE FUNI, demonstrating the effects on L104EA29YIg binding. These results were used to determine the concentration of antibodies to use in competition assays.

Figure 15 depicts the titration of anti-CD86 PE HA5.2B7, demonstrating the effects on L104EA29YIg binding. These results were used to determine the concentration of antibodies to use in competition assays.
Figure 16 depicts the titration of anti-CD86 PE 2D4, demonstrating the effects of L104EA29YIg binding. L104EA29YIg does not affect the binding of mAb 2D4.

Figure 17 depicts specific binding of a non-competing mAb 2D4 in clinical samples of long term and short term subjects. In transplant patient receiving L104EA29YIg, 2D4 binding is unchanged following administration of L104EA29YIg and not significantly different from Cyclosporine A (CsA) treated control subjects. The assay is similar to the assay described in Figure 11 except that CsA treated subjects are used as controls and results from subjects treated with L104EA29YIg for a period of 6 months or less are also included.

Figure 18 depicts specific binding of a competing monoclonal antibody HA5 in clinical samples of long term and short term subjects. This data demonstrate that HA5 binding is significantly inhibited by L104EA29YIg administration in transplant patients and significantly reduced compared to CsA treated control subjects. The assay is similar to the assay described in Figure 12 except that CsA treated subjects were used as controls and results from subjects treated with L104EA29YIg for a period of 6 months or less are also included.

Figure 19 depicts CD86 receptor competition assay in whole blood from normal healthy volunteers with mAb HA5. The data demonstrates that the concentration of CTLA4Ig required to inhibit specific binding of HA5 by 50% is 2.63 µg/ml, whereas the concentration of L104EA29YIg required to inhibit specific binding of HA5 by 50% is 0.11 µg/ml. The assay is the same type of assay as shown in Figure 5, donor B, except that the results in Figure 19 represent the average response of 6 donors.

Figure 20 depicts CD80 receptor competition assay in whole blood from normal healthy volunteers with mAb L307.4. The data demonstrate that the concentration of CTLA4Ig required to inhibit specific binding of L307.4 by 50% is 0.01 µg/ml, and the concentration of L104EA29YIg required to inhibit specific
binding of L307.4 by 50% is 0.01 µg/ml. The results represent the average response of 6 donors.

Figure 2 depicts the results of CD80 and CD86 receptor saturation and inhibition of allo-response assay for comparison. Depicted are the IC50s of CTLA4Ig in a mixed leukocyte reaction, in a CD86 receptor competition assay using mAb HA5, and in a CD80 receptor competition assay using mAb L307.4. Also depicted are the IC50s of L104EA29YIg in a mixed leukocyte reaction, in a CD86 receptor competition assay, and in a CD80 receptor competition assay.

DETAILED DESCRIPTION OF THE INVENTION

The present invention may be understood more readily by reference to the following detailed description of the preferred embodiments of the invention and the Examples included herein. This invention describes the development of a flow cytometry-based "CD86 Receptor Competition Assay" for L104EA29YIg.

Preliminary attempts to develop a CTLA4Ig-based CD80 and/or CD86 receptor competition assay failed. Most peripheral blood monocytes express very low (or no) levels of CD80 on their surface prior to stimulation, thus developing a CD80 receptor competition assay would be highly challenging. Additionally, the relatively high affinity of L104EA29YIg for CD86 (relative to CTLA4Ig or mAbs) allows L104EA29YIg to compete for binding with the anti-CD86 mAbs tested.

Flow cytometry has been used with increasing regularity in clinical laboratories for immunophenotyping of leukocyte antigens. The advantages of flow cytometry include speed, sensitivity, precision and objectivity. The components and operation of flow cytometers is well known to those skilled in the art and will not be described in detail herein. For purposes of a description of such, applicants refer to U.S. Pat. No. 5,567,627, issued Oct. 22, 1996 which is incorporated herein by reference in its entirety. It is sufficient to indicate that the components and methodology of flow cytometry can be used to provide specific information on a number of parameters of a sample. For example it is possible to provide information on components of different sizes within a sample, while simultaneously providing
information on signals of different wavelengths received from different components received from the sample. Thus, when a sample includes components of varying sizes and also includes components with labels which emit different wavelengths of light the flow cytometry data obtained can provide multidimensional information to the user. The present invention utilizes this technology by providing different types of labeled antibodies and labeled and unlabelled cells expressing known antigens. By exposing a sample to such and thereafter analyzing such within a flow cytometer it is possible to obtain substantial amounts of information regarding the blood in a quick and efficient manner.

In this flow cytometric assay, the total CD86 expression levels on peripheral monocytes are detected by a truly non-competing mAb (e.g. 2D4) and the level of CD86 molecules not bound by L104EA29YIg is detected by a competing anti-CD86 mAb (e.g. FUN-I and IT2.2).

As used herein, a competing anti-receptor antibody is an antibody which is measurably prevented from binding to a receptor by a given molecule, such as L104EA29YIg. A non-competing anti-receptor antibody is an antibody which does not measurably prevent binding of a given molecule, such as L104EA29YIg, to the receptor.

As used herein, "CTLA4Ig" or "CTLA4-Ig" refers to a protein molecule having the amino acid sequence of residues: (i) 26-383 of SEQ ID NO:2; (ii) 26-382 of SEQ ID NO:2; (iii) 27-383 of SEQ ID NO:2, or (iv) 27-382 of SEQ ID NO:2, or optionally (v) 25-382 of SEQ ID NO:2, or (vi) 25-383 of SEQ ID NO:2. Expression of CTLA4Ig in mammalian cells can result in the production of N- and C-terminal variants. CTLA4Ig also refers to multimeric forms of the polypeptide, such as dimers, tetramers, and hexamers. Dimer combinations can include, for example: (i) and (i); (i) and (ii); (i) and (iii); (i) and (iv); (i) and (v); (i) and (vi); (ii) and (ii); (ii) and (iii); (ii) and (iv); (ii) and (v); (ii) and (vi); (iii) and (iii); (iii) and (iv); (iii) and (v); (iii) and (vi); (iv) and (iv); (iv) and (v); (iv) and (vi); (v) and (v); (v) and (vi); and, (vi) and (vi). These different dimer combinations can also associate with each other to form tetramer CTLA4Ig molecules. (DNA encoding CTLA4Ig as shown in SEQ ID NO:2 was deposited on May 31, 1991 with the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, VA 20110-2209 under the provisions of
the Budapest Treaty, and has been accorded ATCC accession number ATCC 68629; a Chinese Hamster Ovary (CHO) cell line expressing CTLA4Ig as shown in SEQ ID NO:2 was deposited on May 31, 1991 with ATCC identification number CRL-10762).

L104EA29YIg (also known as "LEA29Y" or "L104EA29Y") is a genetically engineered fusion protein similar in structure to CTAL4Ig. Two amino acid modifications were made to CTLA4Ig, leucine to glutamic acid at position 104 (L104E), which is position 130 of SEQ ID NO:2, and alanine to tyrosine at position 29 (A29Y), which is position 55 of SEQ ID NO:2, to generate L104EA29YIg.

As used herein, "L104EA29YIg" refers to a protein molecule having the amino acid sequence of residues: (i) 26-383 of SEQ ID NO:4, (ii) 26-382 of SEQ ID NO:4; (iii) 27-383 of SEQ ID NO:4, or (iv) 27-382 of SEQ ID NO:4, or optionally (v) 25-382 of SEQ ID NO:4, or (vi) 25-383 of SEQ ID NO:4. Expression of L104EA29YIg in mammalian cells can result in the production of N- and C-terminal variants. L104EA29YIg also refers to multimeric forms of the polypeptide, such as dimers, tetramers, and hexamers. Dimer combinations can include, for example: (i) and (i); (i) and (ii); (i) and (iii); (i) and (iv); (i) and (v); (i) and (vi); (ii) and (i); (ii) and (ii); (ii) and (iii); (ii) and (iv); (ii) and (v); (ii) and (vi); (iii) and (i); (iii) and (ii); (iii) and (iii); (iii) and (iv); (iii) and (v); (iii) and (vi); (iv) and (i); (iv) and (ii); (iv) and (iii); (iv) and (iv); (iv) and (v); (iv) and (vi); (v) and (i); (v) and (ii); (v) and (iii); (v) and (iv); (v) and (v); (v) and (vi); and, (vi) and (vi). These different dimer combinations can also associate with each other to form tetramer L104EA29YIg molecules. (DNA encoding L104EA29YIg was deposited on Jun. 20, 2000, with the American Type Culture Collection (ATCC) under the provisions of the Budapest Treaty. It has been accorded ATCC accession number PTA-2104. L104EA29YIg is further described in co-pending U.S. patent application Ser. Nos. 09/579,927, 60/287,576 and 60/214,065, and in US20020182211A1 and WO/01/923337 A2, which are incorporated by reference herein in their entireties.)

EXAMPLES

Example 1. In Vitro Assays

Initial experiments were performed to measure the binding of L104EA29YIg to CD86. Various antibodies were used singly or in combination to develop an assay
procedure that allows the measurement of L104EA29YIg binding relative to the availability of CD86 receptor.

Materials

- Dulbecco's PBS without Ca++ and Mg++ (Mediatech Inc., Herndon VA, Cat # 21-031-CM), or equivalent
- BMS-2248 18-01 (L104EA29YIg), 100 mg, resuspended and stored frozen as a 10 mg/ml stock solution in PBS
- Lymphocyte Separation Medium (Mediatech Inc., Herndon VA, Cat# 25-072-CV)
- Sodium azide (Sigma-Aldrich, Milwaukee, WI, Cat # S2002), or equivalent
- Trypan Blue, 0.4% (Invitrogen, Grand island NY, Cat# 15250-061) or equivalent
- 10X FACS Lysing Solution (BD Biosciences, San Jose CA, Cat # 349202)
- Fetal Bovine Serum (Mediatech Inc., Herndon VA, Cat # 35-011-CV), or equivalent
- Human IgG1κ from human plasma (Sigma-Aldrich, St. Louis, MO, Cat # 15154), or equivalent
- IgG from human serum (Sigma-Aldrich, St. Louis, MO, Cat # 14506), or equivalent
- IgG from murine serum (Sigma-Aldrich, St. Louis, MO, Cat # 15381), or equivalent
- Anti-CD 14-FITC conjugated mAb (Becton Dickinson, San Jose, CA Cat # 555397)
- Anti-CD86-PE conjugated mAb, clone FUN-I (Becton Dickinson, San Jose, CA Cat # 555658)
- Anti-CD86-PE conjugated mAb, clone IT2.2 (Becton Dickinson, San Jose, CA Cat # 555665)
- Anti-CD86-PE conjugated mAb 2D4-PE. (BMS proprietary mAb, conjugated to PE, Batch Control # 14640, by Caltag Laboratories)
- Anti-CD80 conjugated mAb (1420-PE) (BMS proprietary mAb, conjugated to PE, Batch Control # 17312, by Caltag Laboratories.)
- Sodium citrate CPT Vacutainer™, 8mL, (Becton Dickinson, Cat # 362761)
- Sodium heparin CPT Vacutainer™, 8mL, (Becton Dickinson, Cat # 362753)
- Anti-CD80 conjugated mAb L307.4 (Becton Dickinson, Cat 340294)
- Anti-CD80 conjugated mAB 104 (Beckman Coulter, Cat# IM1976)
Anticoagulant Acid Citrate Dextrose Solution Formula (ACD-A) (2mg/ml dextrose, 1.8mg/ml sodium citrate, 0.6mg/ml citric acid; Gambro #777967000)

Heparin (Sigma H3149, 30U/ml)

A. Detection of CD86 in Human PBMC and competition with L104EA29Y1g

Given that monocytes represent the circulating leukocyte population expressing the most abundant expression of CD86, the expression of CD86 on CD14+ monocytes was evaluated in a two color direct immunofluorescence assay (Figure 1). As expected, peripheral monocytes in PBMCs (peripheral blood monocytes) expressed moderate levels of CD86 as detected by anti-CD86 mAb FUN-I (or IT2.2 data not shown) binding. When PBMCs are pre-incubated with increasing concentrations of L104EA29Y1g (0.1 to 100 µg/test), the detectable anti-CD86 binding was inhibited in a concentration dependant manner. These data suggest that L104EA29Y1g can compete with selective anti-CD86 mAbs (e.g. FUN-I and IT2.2) for CD86 binding on peripheral blood monocytes. Thus the reagents and potential for generating a CD86 receptor competition assay to measure co-stimulation blockade by L104EA29Y1g exists and does so only due to the unique high affinity L104EA29Y1g has for CD86.

Not wishing to be bound by any specific procedure, the Applicants provide the following example procedure to demonstrate how the assay may be done in an in vitro setting:

PBMC Procedure:

1. 40 ml blood is drawn into a syringe containing heparin (30U/ml), EDTA (5.4mM) or ACD-A (2mg/ml dextrose, 1.8mg/ml sodium citrate, 0.6mg/ml citric acid) as an anti-coagulant.
2. Layer 20 ml of blood over 15 ml of Lymphocyte Separation Medium.
3. Centrifuge 1800rpm for 25 minutes at room temperature.
4. Remove the PBMC layer and transfer to a 50 ml tube. Add 30 ml PBS.
5. Centrifuge 1800 rpm for 10 minutes at room temperature.
6. Resuspend the pellet in 50 ml PBS.
7. Centrifuge at 1200rpm for 10 minutes at room temperature.
8. Resuspend the pellet in PBS and determine cell number using trypan blue staining.

9. Resuspend the cells at a final concentration of 107 cells per ml in 0.5% FBS / PBS / 0.1% sodium azide.

10. Aliquot 106 cells (100µl) into a 12x75mm polystyrene tube on ice.

11. Add L104EA29YIg at desired concentrations (e.g., between 0 and 200µg/ml) to tube and incubate for 15 minutes on ice.

12. Add 20µg of either human IgGl (200µg/ml final concentration) or mixed human IgGs (200µg/ml final concentration) to block potential FcR binding of detection antibodies. Incubate 10 minutes on ice.

13. Add indicated amount (e.g.,1 µg) of anti-human CD86 PE (antibody labeled with PE, i.e., phycoerythrin) (e.g. BD clone FUNl) antibody, incubate 30 minutes on ice.

14. Add 1 ml FACS Lysing Solution, incubate 30 minutes on ice.

15. Centrifuge at 1500 rpm for 5 minutes at 4C. Resuspend pellet in 250ul FACS Lysing Solution.

16. Read on flow cytometer. For acquisition, gate on the monocyte population, as identified by forward and side scatter properties (G1). Acquisition is stopped after accumulation of 5000 G1 events.

17. For analysis, the median fluorescence of G1 events is determined on a histogram of FL2 events (CD86 PE) and is used to determine the relative level of CD86 present on the surface of monocytes.

B. Detection of CD86 in Human Whole Blood Samples and competition with L104EA29YIg

To be useful as a clinical assay, the CD86 competition observed on PBMCs must also be detectable in whole blood samples. To demonstrate this potential, whole blood from a normal healthy volunteer was drawn into vacutainers containing either ACD or EDTA. The blood was then pre-incubated with 0, 5, 120 and 250 µg/mL L104EA29YIg at 37°C for 1 hour. Following incubation, CD86 not occupied by L104EA29YIg was measured by incubating the blood samples at 4°C with FUN-I (and/or IT2.2). The results of the flow cytometry measurements suggest that expected
levels of CD86 expression on CD14+ monocytes were detected; however, the use of
different anti-coagulants resulted in different levels of detectable CD86 in the absence
of L104EA29YIg. Increasing concentrations of L104EA29YIg inhibited FUN-I
binding in a concentration dependant manner (Figure 2a) and there appeared to be no
effect of anticoagulant choice on this inhibition.

Not wishing to be bound by any specific procedure, the Applicants provide the
following example procedure to demonstrate how the assay may be done:

Whole blood procedure

1. Draw blood into ACD-A anticoagulant
2. Dispense L104EA29YIg into 12x75mm polypropylene tube for desired final
 concentration (e.g., between 0 and 200 µg/ml).
3. Add whole blood to L104EA29YIg. Incubate on a rotator in the 37°C CO₂
 incubator for 1 hr.
4. Aliquot 200 µl of blood sample into a 12x75mm polystyrene tube on ice.
5. To each tube, add 25µg of mouse mixed IgGs to block potential FcR binding
 of detection antibodies. Incubate for 15 minutes on ice.
6. To each tube, add 20 µl anti-human CD14 FITC (5µg/ml) \ and indicated
 amount (e.g. lug) of anti-human CD86 PE (e.g. BD clone FUN1). Incubate on
 ice for 30 minutes.
7. Add 2 ml of FACS Lysing Solution (BD) to each tube. Incubate on ice for 30
 minutes.
8. Spin the tubes for 5 minutes at 1500rpm, at 4°C.
10. Read on flow cytometer, adjusting compensation settings as necessary. For
 acquisition, gate on the monocyte population, as identified by forward and
 side scatter properties (Gl). Gate on CD14+ monocytes using a dot plot of
 forward scatter vs. CD14 (G2). The additive events of G1 and G2 (termed
 G3) are observed on a histogram looking at the FL2 channel (CD86 PE).
 Acquisition is stopped after accumulation of 3000 G3 events.
11. For analysis, the median fluorescence of G3 events is determined on a
 histogram of FL2 events (CD86 PE) and is used to determine the relative level
 of CD86 present on the surface of CD14+ monocytes.
C. Detection of CD86 in Human Whole Blood Cells with Concurrent use of Competing and Non-Competing Anti-CD86 Antibodies.

Additionally, the binding of 2D4, an anti-CD86 mAb which does not compete with CTLA-4, is not affected by the preincubation with a high concentration (200 µg/ml) of L104EA29YIg (Figure 2b). This suggests that 2D4 does not compete with L104EA29YIg for binding to CD86 and can be used to measure the total surface expression of CD86 even in the presence of L104EA29YIg.

D. Summary

The data for these experiments are shown in Figures 1, 2a and 2b. These data demonstrate that selected anti-CD86 mAbs (e.g. FUN-I and IT2.2), which do not compete with CTLA4Ig, will compete with L104EA29YIg for binding to CD86 on the surface of antigen presenting cells. The data also demonstrate that truly non competing anti-CD86 mAbs (e.g. 2D4) can be used to measure total surface CD86 expression even in the presence of high concentrations of L104EA29YIg. These observations are unique to L104EA29YIg due to the enhanced affinity for CD86 as compared to CTLA4Ig and other CD86 ligands. These observations are the basis for the novel application of these reagents for the development of a clinical assay to measure costimulation blockade by L104EA29YIg.

Example 2. Clinical Ex Vivo and In Vivo Studies

To be useful as a clinical assay, the CD86 competition observed on PBMCs must also be detectable in whole blood samples. To demonstrate this potential, whole blood from a normal healthy volunteer was drawn into vacutainers containing either ACD or EDTA. The blood was then pre-incubated with varying concentrations of L104EA29YIg. Assay concentrations were determined by titration of FUN-I PE, HA5 PE and 2D4 PE. (See Figures 14-16, and Tables 1 and 2). Following incubation, CD86 not occupied by L104EA29YIg was measured by incubating the blood samples at 4°C with HA5.2B7. The concentration of L104EA29YIg required to inhibit antibody binding by 50% varies, depending on the antibody. For example, 0.13 µg/ml of L1 04EA29YIg is required to inhibit HA5 binding by 50%, while 0.49
μg/ml of L104EA29YIg is required to inhibit FUN-I binding by 50%. (See Figure 5). FUN-I and HA5 performance in the assay on blood collected from 6 different normal healthy volunteers (NHVs) demonstrating the effect of L104EA29YIg inhibition of antibody binding is shown in Figures 6 and 7. In general, HA5 appears to be more sensitive as it detects greater receptor saturation at similar L104EA29YIg concentrations and lower IC50s. All three monoclonal antibodies (FUN-I, HA5, and 2D4) bind to CD86 (on monocytes) at similar levels. (See Figure 10).

In clinical studies, FUN-I specific binding, as measured by change in median fluorescence intensity (MFI), is inhibited substantially by Day 5 after dosing with L104EA29YIg. (See Figure 8). L104EA29YIg inhibits binding of FUN-I, and, when administered subcutaneously, as the concentration of L104EA29YIg increases, so does the inhibition of FUN-I binding. (See Figure 9). In transplant patients continually receiving L104EA29YIg, 2D4 binding is unchanged following a single administration of L104EA29YIg and not significantly different from NHVs. (See Figure 11). The term "trough" refers to the time point just prior to the next administration of the drug, when the concentration of drug is at its lowest blood level in a patient. As opposed to 2D4, Fun-I and HA5 binding are significantly inhibited by L104EA29YIg administration in transplant patients and significantly reduced compared to NHVs. (See Figure 12; 2D4 data not shown.) Figure 13 is a model suggesting how this assay could be used to monitor receptor saturation following L104EA29YIg administration. It hypothesizes that shortly after the first dose, receptor saturation is maximized and remains at the desired level despite changes in dose regimen such as frequency of dose or strength of dose.

Not wishing to be bound by any specific procedure, the Applicants provide the following example procedure to demonstrate how the assay may be done:

Materials
- L104EA29YIg, BMS Syracuse, lot 4E82288/MSF52 IA; 100 mg vial reconstituted with 10 ml PBS, to a final concentration of 10mg/ml. 50μl aliquots stored @ -20°C
- CD86 PE (clone HA5.2B7) Beckman Coulter #IM2729 lot 15 (cone 6.25μg/ml)
• CD86 APC clone 2D4; 0.09 mg/ml; BMS generated mAb, APC conjugated by Calbiochem
• CD14 FITC BD#555397
• Purified anti-CD86 (clone HA5.2B7) Beckman Coulter # IM2728, 200 µg lyophilized; resuspended at 200 µg/ml in dH2O/0.1% azide
• Purified anti-human CD86 (clone 2D4) 2.29 mg/ml
• Mouse IgG, reagent grade, Sigma# I5381; 10 mg lyophilized; resuspend in 5 ml PBS to a final concentration of 2 mg/ml, stored @ 4°C
• FACS Lysing Solution, 10x, BD#349202

Whole blood In Vitro procedure

1. Draw blood into ACD-A vacutainer or syringe with ACD-A as anti-coagulant.
2. Dilute 10 mg/ml L104EA29YIg in PBS to a concentration that is 10-fold above the desired final concentration. See dilutions in Table 1 below.

<table>
<thead>
<tr>
<th>L104EA29YIg final conc.</th>
<th>µl PBS</th>
<th>µl 10 mg/ml L104EA29YIg</th>
<th>Correlation with clinical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 µg/ml</td>
<td>150</td>
<td>50</td>
<td>peak</td>
</tr>
<tr>
<td>125 µg/ml</td>
<td>175</td>
<td>25</td>
<td>intermediate</td>
</tr>
<tr>
<td>5 µg/ml</td>
<td>100</td>
<td>First dilute 1:100, then add 100</td>
<td>trough</td>
</tr>
<tr>
<td>2 µg/ml</td>
<td>160</td>
<td>First dilute 1:100, then add 40</td>
<td>trough</td>
</tr>
</tbody>
</table>

3. Dispense 150 µl of diluted L104EA29YIg into a 12x75 mm polypropylene tube. Dispense 150 µl PBS to additional tube for untreated control.
4. Add 1.35 ml of whole blood to L104EA29YIg or PBS. Incubate on a rotator in the 37°C CO2 incubator for 1 hr.
5. On ice, dispense 1 µl of mouse IgG solution to 12x75 mm polystyrene sample tubes.
6. Dispense 100 µl of blood for each sample into 12 -12x75 polystyrene tubes.
7. Incubate on ice 10 minutes.
8. To three tubes, add 3.5 µl purified, unlabeled HA5 mAb (purified). To three additional tubes, add 4.4µl of purified, unlabeled 2D4 mAb. (See table below). Incubate 15 minutes on ice.
9. To all tubes, add 10µl CD14 FITC.
10. Add 20µl of anti-human CD86 PE (clone HA5.2B7) antibody to tubes as indicated in table below. Add 10 µl of 2D4-APC to tubes as indicated in Table 2 below.

Table 2. Addition of unlabeled /labeled antibody reagents.

<table>
<thead>
<tr>
<th>TUBE</th>
<th>HA5 PE, µl</th>
<th>Unlabeled HA5, µl</th>
<th>2D4-APC,µl</th>
<th>Unlabeled 2D4,µl</th>
<th>CD14 – FITC, µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>3.5</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>3.5</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>3.5</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>4.4</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>4.4</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>4.4</td>
<td>10</td>
</tr>
</tbody>
</table>
11. Incubate 30 minutes on ice.
12. Dilute 10x FACS Lysing Solution 1:10 with dH₂O. Add 1 ml of FACS Lysing Solution to each tube. Vortex and incubate RT 15 minutes.
13. Spin the tubes for 5 minutes at 1500rpm, at 4°C.
15. Read on flow cytometer, adjusting compensation settings as necessary. For acquisition, gate on the monocyte population, as identified by forward and side scatter properties (Gl). Gate on CD14+ monocytes using a dot plot of forward scatter vs. CD14 (G2). The additive events of G1 and G2 (termed G3) are observed on a histogram looking at the FL2 channel (CD86 PE,
16. For analysis, the median fluorescence of G3 events is determined on a histogram of FL2 events (CD86 PE, HA5) or FL4 events (CD86 APC, 2D4) and is used to determine the relative level of CD86 present on the surface of CD14+ monocytes.

Example 3. Clinical Assay

A. CD86 Clinical Assay Procedure

To perform such an assay, blood samples obtained from patients dosed with L104EA29YIg can be aliquoted into 200 µl samples into a 12x75mm polystyrene tube on ice (4°C). To each tube, 25 µg of mouse mixed IgGs can be added to block potential FcR binding of detection antibodies (e.g. FUN-I, 2D4, 1420 etc.) and incubated for 15 minutes at 4°C. To each tube, 20 µl anti-human CD14 FITC can be added and indicated amount (e.g. 1 µg) of fluorescently labeled anti-human CD86 (e.g. FUN-l, HA5 or 2D4) and incubated at 4°C for 30 minutes. To assess non-specific fluorescence associated with the labeled anti-CD86 mAbs, excess unlabeled anti-human CD86 mAb is added to a subset of the relevant samples (e.g. unlabeled HA5 is added to samples containing labeled HA5). 2 ml of FACS Lysing Solution (BD) can be added to each tube to lyse the red blood cells and fix the leukocytes. The blood may be subsequently incubated at 4°C for 30 minutes. To isolate the leukocytes and remove lysed RBCs and excess reagents, the samples can be centrifuged at 1500rpm for 5 minutes at 4°C and resuspended in 200 µl FACS Lysing Solution for analysis on the flow cytometer as described in the methods. The total CD86 expressed on the surface of the APC can be determined by using mAb 2D4 while the available CD86 can be measured by using mAb FUN-I or HA5 as examples. Specific binding (AMFI) is determined by the difference between the total binding (labeled anti-CD86 mAb alone) and the non-specific binding (labeled + excess unlabeled anti-CD86 mAb). With this data one could calculate the ratio of unbound CD86 to total CD86 and determine the extent of receptor saturation by L104EA29YIg in a given blood sample. Alternatively, one could also perform the same procedure on patient blood.
obtained prior to administration of L104EA29YIg to determine the total CD86 levels and repeat the analysis following administration of the compound to measure the decrease in the binding of the competing antibody as compared to pre-treatment. In this way, one would be able to determine the extent of receptor saturation following administration of compound.

B. CD80 Clinical Assay Procedure

Although CD80 expression on monocytes is very low or not at all, other cell types or activated monocytes do express higher levels of CD80. The expression of total and available CD80 can be measured in a similar fashion on these cell types by using the non competing CD80 mAb 1420 to measure total CD80 expressed and the competing mAb L307.4 or mAb MAB104 to measure CD80 unbound by L104EA29YIg. With this data one could calculate the ratio of unbound CD80 to total CD80 and determine the extent of receptor saturation by L104EA29YIg in a given blood sample. Alternatively, one could also perform the same procedure on patient blood obtained prior to administration of L104EA29YIg to determine the total CD80 levels and repeat the analysis following administration of the compound to measure the decrease in the binding of the competing antibody as compared to pre-treatment. In this way, one would be able to determine the extent of receptor saturation following administration of compound.

As shown in Figure 20, whole blood was stimulated with 1µg/ml LPS for 4 hours at 37°C to induce the expression of CD80. The unbound CD80 level was determined by the level of binding of competing antibody L307.4. The results shown in Figure 20 represent the average response of 6 donors.

C. Allo-response Assay

To measure allo-responses, mixed leukocyte reactions (MLR) were performed. For MLR proliferation assays measuring titrations of CTLA-4Ig or L104EA29YIg, T cells were cultured at 1 X 10^5/well in quadruplicate wells together with 1 X 10^4, 2 X 10^3 or 0.4 X 10^3 allogeneic MoDC as antigen-presenting cells (APCs) in 96-well
round-bottom plates in a total volume of 200 µl of 10% FCS-RPMI. CTLA-4Ig or L104EA29YIg was added to wells at a starting final concentration of 30 µg/ml, followed by half-log dilutions down to a final concentration of 1 ng/ml. On day 5 after initiation of the MLR, cultures were pulsed with one µCi of \(^{3}\)H-thymidine (PerkinElmer, Boston, MA) for 6 hours, harvested on a Packard cell harvester (PerkinElmer), and counted by liquid scintillation on a Packard TopCount NXT (PerkinElmer). The results of CD80 and CD86 receptor saturation and inhibition of allo-response assay are shown in Figure 21.

Example 4. Methods of Producing Antibodies

The production of antibodies is discussed in detail in U.S Patent Application No. 10/375157 (Publication No. 2003-0224458) which is hereby incorporated by reference in its entirety. The antibodies of the invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques.

The mAb 2D4 and mAB 1420 were labeled with fluorochromes typically used in flow cytometry studies (FITC, PE, etc.). The assay is not dependent on the type of fluorochrome used, different labels can be used in this assay and mixed and matched to suit the investigators purpose.

Throughout this application various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
WHAT IS CLAIMED IS:

1. An assay method for monitoring binding efficiency of L104EA29YIg to a receptor, said method comprising the steps of:
 - isolating peripheral mononuclear cells from a blood sample to provide test and control monocytes;
 - treating the test monocytes with a predetermined amount of L104EA29YIg;
 - adding anti-receptor antibodies to control monocytes and treated test monocytes;
 - measuring binding of anti-receptor antibody in said treated test and control monocytes; and determining the binding efficiency of L104EA29YIg by comparing binding of anti-receptor antibody to said control monocytes relative to said treated test monocytes.

2. The assay of Claim 1, wherein the receptor is CD86.

3. The assay of Claim 2, wherein the anti-receptor antibody is anti-CD86 mAb.

4. The assay of Claim 3, wherein the anti-receptor antibody is FUN-I.

5. The assay of Claim 3, wherein the anti-receptor antibody is IT2.2.

6. The assay of Claim 3, wherein the anti-receptor antibody is HA5.2B7.

7. The assay of Claim 1, wherein the receptor is CD80.

8. The assay of Claim 7, wherein the anti-receptor antibody is mAb L307.4

9. The assay of Claim 7, wherein the anti-receptor antibody is mAb MAB 104.

10. An assay method for monitoring binding efficiency of L104EA29YIg to a receptor, said method comprising the steps of:
 - isolating peripheral mononuclear cells from a blood sample;
 - adding L104EA29YIg to said blood sample;
 - adding competing anti-receptor antibodies to said blood sample;
 - adding non-competing anti-receptor antibodies to said blood sample;
 - measuring the binding of competing anti-receptor antibody;
 - measuring the binding of non-competing anti-receptor antibody; and
 - comparing the binding of the non-competing anti-receptor antibody (total receptor binding) to the binding of the competing anti-receptor antibody to determine the binding efficiency of L104EA29YIg.
11. The assay method of Claim 10, wherein the receptor is CD86.
12. The assay method of Claim 11, wherein the competing anti-receptor antibody is anti-CD86 mAb.
13. The assay method of Claim 12, wherein the competing anti-receptor antibody is FUN-I.
14. The assay method of Claim 12, wherein the competing anti-receptor antibody is IT2.2.
15. The assay method of Claim 12, wherein the competing anti-receptor antibody is HA5.2B7.
16. The assay method of Claim 11, wherein the non-competing anti-receptor antibody is 2D4.
17. The assay method of Claim 10, wherein the receptor is CD80.
18. The assay method of Claim 17, wherein the competing anti-receptor antibody is mAb L307.4.
19. The assay method of Claim 17, wherein the competing anti-receptor antibody is mAb MAB 104.
20. The assay method of Claim 17, wherein the non-competing receptor antibody is mAb 1420.
21. An antibody mAb 2D4, produced by hybridoma cell line Mus muscalis, spleen cell: 2D4, deposited under ATCC Deposit No. PTA-7305.
22. A hybridoma cell line Mus muscalis, spleen cell: 2D4, deposited under ATCC Deposit No. PTA-7305, producing the antibody mAb 2D4.
23. An antibody 1420, produced by hybridoma cell line Mus muscalis, spleen cell: 1420 deposited under ATCC Deposit No. PAT-7304.
24. A hybridoma cell line Mus muscalis, spleen cell 1420 deposited under ATCC Deposit No. PAT-7304, producing the antibody mAb 1420.
25. An assay method for monitoring binding efficiency of L104EA29YIg to a receptor in a patient, said method comprising the steps of:
 (a) obtaining a blood sample from a patient dosed with L104EA29YIg, the blood sample including leucocyte cells;
 (b) adding a labeled marker to identify a subset of leukocyte cells of interest;
(c) adding labeled competing and non-competing anti-receptor antibodies to the blood sample;
(d) lysing the blood sample and fixing leukocytes;
(e) isolating leukocytes from the lysed blood sample;
(f) measuring the total receptor expression and available receptor from said subset of leukocyte cells of interest.

26. The assay of Claim 25, wherein the receptor is CD86.
27. The assay of Claim 26, wherein the competing anti-receptor antibody is mAb FUN-I.
28. The assay of Claim 26, wherein the competing anti-receptor antibody is mAb IT2.2.
29. The assay of Claim 26, wherein the competing anti-receptor antibody is mAB HA5.2B7.
30. The assay of Claim 26, wherein the non-competing anti-receptor antibody is mAb 2D4.
31. The assay of Claim 25, wherein the receptor is CD80.
32. The assay of Claim 31, wherein the competing anti-receptor antibody is mAb L307.4.
33. The assay of Claim 31, wherein the competing anti-receptor antibody is mAb MAB 104.
34. The assay of Claim 31, wherein the non-competing anti-receptor antibody is mAb 1420.
35. The assay of Claim 1, further comprising detecting the presence of antibodies using flow cytometry.
36. The assay of Claim 10, further comprising detecting the presence of antibodies using flow cytometry.
37. The assay of Claim 25, further comprising detecting the presence of antibodies using flow cytometry.
38. The assay of Claim 25, wherein subsequent to step (a) and prior to step (b), further comprising step (a') blocking Fc receptor-mediated non-specific binding.
39. The assay of Claim 38, wherein the Fc receptor-mediated non-specific binding is blocked by the addition of mixed mouse IgGs to the blood sample.

40. The assay of Claim 25, wherein the marker added to identify a subset of monocyte cells is CD14-FITC.

41. The assay of Claim 25, wherein the subset of leukocyte cells of interest are monocytes or dendritic cells.

42. The assay of Claim 25, wherein the binding efficiency of L104EA29YIg is measured by comparing bound and unbound receptors to determine percent of receptor saturation by L104EA29YIg.

43. An assay method for monitoring binding efficiency of L104EA29YIg to a receptor in a patient, said method comprising the steps of:
 (a) obtaining a control blood sample from said patient;
 (b) dosing said patient with L104EA29YIg,
 (c) obtaining a test blood sample from said patient dosed with L104EA29YIg;
 (d) adding a labeled marker to identify a subset of leukocyte cells of interest;
 (e) adding labeled competing anti-receptor antibody to the control and test blood samples;
 (f) lysing the blood samples and fixing leukocytes;
 (g) isolating leukocytes from the lysed blood sample;
 (h) comparing the binding of the competing anti-receptor antibody in test and control blood samples.

44. The assay of Claim 43, wherein the receptor is CD86.

45. The assay of Claim 44, wherein the competing anti-receptor antibody is mAb FUN-I.

46. The assay of Claim 44, wherein the competing anti-receptor antibody is mAb IT2.2.

47. The assay of Claim 44, wherein the competing anti-receptor antibody is mAb HA5.2B7.

48. The assay of Claim 43, wherein the receptor is CD80.
49. The assay of Claim 48, wherein the competing anti-receptor antibody is mAb L307.4.

50. The assay of Claim 48, wherein the competing anti-receptor antibody is mAb MAB 104.

51. The assay of Claim 42, further comprising detecting the presence of antibodies using flow cytometry.
FIG. 1

Anti-CD86 PE (clone FUN-1) (µg/test)

Anti-CD86 Binding (Median FI)

L104EA29Ylg (µg/test)

- ■ 100
- ▲ 10
- ● 1
- □ 0.1
- △ 0
FIG. 3A

SUBSTITUTE SHEET (RULE 26)
587 CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC CAC GAA
 P E V T C V V V D V S H E
626 GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG
 D P E V K F N W Y V D G V
665 GAG GTG CAT AAT GCC AAG ACA AAG CCG CGG GAG GAG CAG
 E V H N A K T K P R E E Q
704 TAC AAC AGC ACG TAC CGT GTG GTG AGC GTG CTC ACC GTC
 Y N S T Y R V V S V L T V
743 CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC
 L H Q D W L N G K E Y K C
782 AAG GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG AAA
 K V S N K A L P A P I E K
821 ACC ATC TCC AAA GCC AAA GGG CAG CCC CGA GAA CCA CAG
 T I S K A K G Q P R E P Q
860 GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG ACC AAG
 V Y T L P P S R D E L T K
899 AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT
 N Q V S L T C C L V K G F Y
938 CCC AGC GAC ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG
 P S D I A V E W E S N G Q
977 CCG GAG AAG AAC TAC AAG ACC ACG CCT CCC GTG CTG GAC
 P E N N Y K T T P P V L D
1016 TCC GAC GGC TCC TTC TTC TTC CTC AGC AAG CTC ACC GTG
 S D G S F F L Y S K L T V
1055 GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC
 D K S R W Q Q G N V F S C
1094 TCC GTG ATG CAT GAG GCT CTG CAC AAC CAC TAC ACG CAG
 S V M H E A L H N H Y T Q
1133 AAG AGC CTC TCC CTG TCT CCG GGT AAA TGA
 K S L S L S P G K -

FIG. 3B
SUBSTITUTE SHEET (RULE 26)
FIG. 4
SUBSTITUTE SHEET (RULE 26)
Ex Vivo CD86 Receptor Competition in NHV Whole Blood (L104EA29Ylg) IC$_{50}$

CD86 (FUN1) PE, 5 µg/ml

- Donor A
 - r2=0.965
 - IC$_{50}$: 0.49 µg/ml

CD86 (HA5) PE, 1.25 µg/ml

- Donor B
 - r2=0.985
 - IC$_{50}$: 0.13 µg/ml

FIG. 5
Characterization of CD86 Competition in NHV Whole Blood
Following Ex Vivo L104EA29Ylg Exposure

Anti-CD86 mAB FUN1 (5ug/ml)

<table>
<thead>
<tr>
<th>Donor#</th>
<th>BKGND MFI/NS</th>
<th>TOTAL MFI</th>
<th>ΔMFI/SPECIFIC</th>
<th>IC50 (μg/ml)</th>
<th>%INHIB @ 2μg/ml</th>
<th>%INHIB @ 5μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>059</td>
<td>25</td>
<td>64</td>
<td>39</td>
<td>0.49</td>
<td>63</td>
<td>70</td>
</tr>
<tr>
<td>190</td>
<td>22</td>
<td>70</td>
<td>48</td>
<td>2.05</td>
<td>50</td>
<td>62</td>
</tr>
<tr>
<td>078</td>
<td>26</td>
<td>49</td>
<td>23</td>
<td>0.84</td>
<td>65</td>
<td>79</td>
</tr>
<tr>
<td>126</td>
<td>31</td>
<td>56</td>
<td>25</td>
<td>0.17</td>
<td>86</td>
<td>93</td>
</tr>
<tr>
<td>122</td>
<td>25</td>
<td>75</td>
<td>50</td>
<td>0.07</td>
<td>83</td>
<td>88</td>
</tr>
<tr>
<td>194</td>
<td>21</td>
<td>45</td>
<td>24</td>
<td>1.49</td>
<td>54</td>
<td>66</td>
</tr>
<tr>
<td>AVG</td>
<td>25</td>
<td>60</td>
<td>35</td>
<td>0.85</td>
<td>67</td>
<td>76</td>
</tr>
<tr>
<td>SD</td>
<td>3.5</td>
<td>11.9</td>
<td>12.5</td>
<td>0.78</td>
<td>14.8</td>
<td>12.4</td>
</tr>
<tr>
<td>RANGE</td>
<td>21–31</td>
<td>45–70</td>
<td>23–48</td>
<td>0.07–2.05</td>
<td>50–86</td>
<td>62–93</td>
</tr>
</tbody>
</table>

- L104EA29Ylg potency in an *in vitro* MLR: IC50=0.2ug/ml; IC90=3–10ug/ml

FIG. 6
Characterization of CD86 Competition in NHV Whole Blood
Following Ex Vivo L104EA29Ylg Exposure

Anti-CD86 mAB HA5.2B7 (1.25μg/ml)

<table>
<thead>
<tr>
<th>Donor#</th>
<th>BKGND MFI/NS</th>
<th>TOTAL MFI</th>
<th>ΔMFI/SPECIFIC</th>
<th>IC50 (μg/ml)</th>
<th>%INHIB @ 2μg/ml</th>
<th>%INHIB @ 5μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>11</td>
<td>51</td>
<td>40</td>
<td>0.13</td>
<td>75</td>
<td>81</td>
</tr>
<tr>
<td>173</td>
<td>9</td>
<td>39</td>
<td>30</td>
<td>0.08</td>
<td>77</td>
<td>82</td>
</tr>
<tr>
<td>003</td>
<td>11</td>
<td>48</td>
<td>37</td>
<td>0.02</td>
<td>88</td>
<td>92</td>
</tr>
<tr>
<td>183</td>
<td>12</td>
<td>44</td>
<td>31</td>
<td>0.09</td>
<td>83</td>
<td>89</td>
</tr>
<tr>
<td>122</td>
<td>16</td>
<td>71</td>
<td>55</td>
<td>0.01</td>
<td>91</td>
<td>94</td>
</tr>
<tr>
<td>190</td>
<td>13</td>
<td>82</td>
<td>69</td>
<td>0.01</td>
<td>90</td>
<td>93</td>
</tr>
<tr>
<td>AVG</td>
<td>12</td>
<td>56</td>
<td>44</td>
<td>0.06</td>
<td>84</td>
<td>89</td>
</tr>
<tr>
<td>SD</td>
<td>2.4</td>
<td>16.9</td>
<td>15.3</td>
<td>0.05</td>
<td>6.8</td>
<td>5.7</td>
</tr>
<tr>
<td>RANGE</td>
<td>9–16</td>
<td>39–82</td>
<td>30–69</td>
<td>0.01–0.13</td>
<td>75–91</td>
<td>81–94</td>
</tr>
</tbody>
</table>

- L104EA29Ylg potency in an in vitro MLR: IC50=0.2μg/ml; IC90=3–10μg/ml

FIG. 7
CD86 Receptor Competition Assay on Whole Blood Clinical Samples (SC-NHV)

Note: Samples Collected in Heparin

FIG. 8

Pre-dose

Day 5

Day 14

Day 42

Fun-1 Specific Binding (AMFI)
CD86 Receptor Competition Assay
PK/PD Correlation

FIG. 9
CD86 Receptor Competition Assay in Whole Blood
Comparison of Specific Binding of mAbs in NHVs

FIG. 10
CD86 Receptor Competition Assay in Whole Blood Evaluation of Clinical Samples

L104EA29Ylg CD86 Competition with 2D4

Specific 2D4 Binding (AMFI)

2D4 NHVs Trough Post-L104EA29Ylg Infusion

L104EA29Ylg Treated Subjects

FIG. 11
CD86 Receptor Competition Assay in Whole Blood Evaluation of Clinical Samples

L104EA29Ylg CD86 Competition with FUN1

L104EA29Ylg CD86 Competition with HA5

Specific Fun-1 Binding (ΔMFI)

Specific HA5 Binding (ΔMFI)

NHVs Trough Post-infusion

L104EA29Ylg Treated Subjects

P<0.005 P<0.01 P<0.001 P<0.005

FIG. 12
- The CD86 RC Assay could be used to demonstrate that the target becomes saturated following initial exposure and remains adequately saturated over time and with dose changes.
Titration of Anti-CD86 PE (Clone 2D4) Effects on L104EA29Ylg Binding

FIG. 16
CD86 Receptor Competition Assay in Transplant Patients: 2D4 PE Specific Binding

FIG. 17
CD86 Receptor Competition Assay in Transplant Patients:
HA5 PE Specific Binding

ΔMFI

CsA Treated Subjects
Trough Post-dose Trough Post-dose
Short Term Subjects Long Term Subjects

L104EA29Y Ig Treated Subjects

Long Term L104EA29Y Ig > 6 mos.
Short Term L104EA29Y Ig < 6 mos.

FIG. 18