wo 20187022257 A1 I 0K 0000 A O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual P <
O remiation = 0T 02 A O
International Bureau = (10) International Publication Number
(43) International Publication Date -—-/ WO 201 8/ 022257 Al

01 February 2018 (01.02.2018) WIPOI|PCT

(51) International Patent Classification: (71) Applicant: QUALCOMM INCORPORATED [US/US];
GO6F 21/53 (2013.01) GO6F 11/36 (2006.01) ATTN: International IP Administration, 5775 Morehouse
GO6F 21/56 (2013.01) Drive, San Diego, California 92121-1714 (US).

(21) International Application Number: (72) Inventors: DE, Subrato Kumar; 5775 Morehouse Drive,

PCT/US2017/040502 San Diego, California 92121 (US). GEORGE, Sajo Sun-

(22) International Filing Date: ?81;)5775 Morehouse Drive, San Diego, California 92121

30 June 2017 (30.06.2017) ’
.re . . (74) Agent: WIGMORE, Steven, P. ¢t al.; Smith Tempel Bla-

(25) Filing Language: English ha LLC, Two Ravinia Drive, Suite 700, Atlanta, Georgia

(26) Publication Language: English 30346 (US).

(30) Priority Data: (81) Designated States (unless otherwise indicated, for every
62/368,223 29 July 2016 (29.07.2016) Us kind of national protection available): AE, AG, AL, AM,
15/465,515 21 March 2017 (21.03.2017) Us AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

(54) Title: KERNEL-BASED DETECTION OF TARGET APPLICATION FUNCTIONALITY USING OFFSET-BASED VIRTUAL
ADDRESS MAPPING

100

“

MEMORY 104
VIRTUAL APPLICATION BINARY APPLICATION SOURCE
MACHINE 118 CODE 108 CODE 110

CPU 102

HIGH-LEVEL OPERATING SYSTEM (HLOS) 106

VIRTUAL ADDRESS-
| TO-FUNCTION
MAPPING TABLE 120

REGISTERED APPLICATIONS 11

TRUSTED ZONE 114

MALICIOUS CODE DETECTION IDENTIFIER-TO- FIG 1
ALGORITHM(S) 116 VIRTUAL- ADDRESS -
MAPPING TABLE 122

(57) Abstract: Systems and methods are disclosed for detecting high-level functionality of an application executing on a computing
device. One method comprises storing, in a secure memory, an application-specific virtual address mapping table for an application.
The application-specific virtual address mapping table has several virtual address offsets in the application binary code mapped to
corresponding target application functionalities. In response to launching the application, a process-specitic virtual address mapping
table is generated for an instance of an application process to be executed. The process-specific virtual address mapping table defines
actual virtual addresses corresponding to the target application functionalities using the virtual address otfsets in the application-specific
virtual address mapping table. During execution of the application code, the method detects when one or more of the actual virtual
addresses corresponding to the target application functionalities are executed based on the process-specific virtual address mapping

[Continued on next page]

WO 2018/022257 A1 ||/ A0 N OO O

KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

table.

WO 2018/022257 PCT/US2017/040502

KERNEL-BASED DETECTION OF TARGET
APPLICATION FUNCTIONALITY USING
OFFSET-BASED VIRTUAL ADDRESS MAPPING

PRIORITY AND RELATED APPLICATIONS STATEMENT
[0001] This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional
Patent Application Serial No. 62/368,223 filed on July 29, 2016 and entitled “Kernel-
Based Detection of Target Application Functionality Using Virtual Address Mapping”
(Qualcomm Docket No. 163161P1), which is hereby incorporated by reference in its
entirety.
[0002] This application is also related to U.S. Patent Application Serial No.
15/245,037 filed on August 23, 2016 and entitled “Kernel-Based Detection of Target
Application Functionality Using Virtual Address Mapping” (Docket No. 163161U1)
and U.S. Patent Application Serial No. 15/245,041 filed on August 23, 2016 and
entitled “Updating Virtual Memory Addresses of Target Application Functionalities for
an Updated Version of Application Binary Code” (Docket No. 163161U2).

DESCRIPTION OF THE RELATED ART

[0003] There are various high level applications running on a hardware platform that
does not show any noticeable activity at the system or platform layer and hence
provides no opportunities to detect useful functional and behavioral information of the
application execution. A common example being high level Web browser application
on being compromise

[0004] There are various high level applications running on a hardware platform that
does not show any noticeable activity at the system or platform layer and hence
provides no opportunities to detect useful functional and behavioral information of the
application execution. A common example being high level Web browser application
on being compromised with security exploits (e.g., Cross Site Scripting) during its
execution on the device that do not leave any indicative trace at the system and the
platform level. There is no way to determine that such an activity is happening on the
high level application by probing either the system libraries, the platform, the SOC
hardware, or watching the device level activities. Hence to have better platform level
control on various third party applications running on the device and to detect some of

the functional and behavioral activities of these executing high level applications, there

WO 2018/022257 PCT/US2017/040502

is a need to develop a mechanism that enables expressing and communicating the high
level application functionalities and behavior into a form that the platform’s HLOS or
kernel can understand. This will allow the platform to have better understanding on the
executing application’s behavior and allow the platform to take decisions and actions to
handle various different situations of the executing applications. As an example a
platform level decision to prevent a Web Security exploit on a third party web browser
application can be taken using the information. Other areas of example uses are the
platform taking decisions like increasing/decreasing the frequencies of various SOC
components (DDR, Bus, CPU, Caches) or engage high or low power modes once a
specific functional or behavioral nature of the application is detected using the
mechanisms in this disclosure at the HLOS or kemel layer. In general with this
disclosure the platform gets the opportunity to do various controls on the various third
party applications executing on the device by detecting and recognizing the
functionality being executed by the application. This allows SOC and platform vendors
to provide a better solution from the platform level for various third party applications

on which the platform otherwise have no control over.

SUMMARY OF THE DISCLOSURE
[0005] Systems, methods, and computer programs are disclosed for detecting high-level
functionality of an application executing on a computing device. One embodiment of a
method comprises storing, in a secure memory on a computing device, an application-
specific virtual address mapping table for an application. The application-specific
virtual address mapping table comprises a plurality of virtual address offsets in the
application binary code mapped to corresponding target application functionalities. In
response to launching the application, the method generates a process-specific virtual
address mapping table for an instance of an application process to be executed. The
process-specific virtual address mapping table defines actual virtual addresses
corresponding to the target application functionalities using the virtual address offsets in
the application-specific virtual address mapping table. During execution of the
application binary code for the instance of the application process, the method detects
when one or more of the actual virtual addresses corresponding to the target application
functionalities are executed based on the process-specific virtual address mapping table.
[0006] Another embodiment is a system comprising a processing device configured to

execute application binary code and a high-level operating system (HLOS). The HLOS

WO 2018/022257 PCT/US2017/040502

comprises an application-specific virtual address mapping table comprising a plurality
of virtual address offsets in the application binary code mapped to corresponding target
application functionalities. The HLOS further comprises a kernel module configured to
generate, in response to launching the application, a process-specific virtual address
mapping table for an instance of an application process to be executed. The process-
specific virtual address mapping table defines actual virtual addresses corresponding to
the target application functionalities using the virtual address offsets in the application-
specific virtual address mapping table. The HLOS is configured to detect, during
execution of the application binary code for the instance of the application process,
when one or more of the actual virtual addresses corresponding to the target application

functionalities are executed based on the process-specific virtual address mapping table.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] In the Figures, like reference numerals refer to like parts throughout the
various views unless otherwise indicated. For reference numerals with letter character
designations such as “102A” or “102B”, the letter character designations may
differentiate two like parts or elements present in the same Figure. Letter character
designations for reference numerals may be omitted when it is intended that a reference
numeral to encompass all parts having the same reference numeral in all Figures.
[0008] FIG. 1 is a block diagram of an embodiment of a system for detecting target
application functionality using virtual address mapping in a secure memory.
[0009] FIG. 2 illustrates an exemplary mapping of target application functionality to
the corresponding application binary code.
[0010] FIG. 3 illustrates an exemplary embodiment of a virtual address-to-function
mapping table (VAFMT).
[0011] FIG. 4 is a flowchart illustrating an embodiment of a method for detecting
malicious code activity in the system of FIG. 1.
[0012] FIG. 5 illustrates another embodiment of a VAFMT used for dynamically
identifying boundaries of a virtual machine code space.
[0013] FIG. 6 illustrates an embodiment of an identifier-to-virtual mapping table
(IVAMT) used in combination with a VAFMT.
[0014] FIG. 7 shows a portion of a VM code space used in connection with a garbage

collection process.

WO 2018/022257 PCT/US2017/040502

[0015] FIG. 8 shows exemplary points of interest for a garbage collection function in
the virtual machine of FIG. 1 and the virtual addresses for the functional points of
interest in the VAFMT that are used to detect the execution of the garbage collection
activity during the execution of the application binary containing the virtual machine.
FIG. 9 illustrates an exemplary mapping of virtual addresses for external/internal
boundaries for a virtual machine heap.

[0016] FIG. 10 is a flowchart illustrating an embodiment of a method for detecting
malicious code activity in the system of FIG. 1 in a virtual machine embodiment.

[0017] FIG. 11 illustrates an embodiment of a VAFMT comprising virtual addresses
for specific buffer allocator functions that are used to determine the virtual addresses of
dynamically allocated buffers containing objects of specific data structure types and
values of members/fields of the objects allocated in the buffer.

[0018] FIG. 12 is a combined block/flow diagram illustrating an embodiment of
system for automatically updating the VAFMT in response to receiving an updated
version of the application binary code.

[0019] FIG. 13 illustrates the VAFMT of FIG. 12 with updated virtual addresses and
metadata.

[0020] FIG. 14 illustrates an exemplary matching of functional points of interest in
the VAFMT of FIG. 12 to a pseudo binary code template.

[0021] FIG. 15 illustrates an exemplary matching of the pseudo binary code template
of FIG. 14 to a matched region in the updated version of the application binary code.
[0022] FIG. 16 is a flowchart illustrating an embodiment of a method for updating the
VAFMT in response to receiving an updated version of the application binary code.
[0023] FIG. 17 is a block/flow diagram of an embodiment of a system for detecting
target application functionality using offset-based virtual address mapping.

[0024] FIG. 18 illustrates an exemplary embodiment of the application-specific
VAFMT in FIG. 17.

[0025] FIG. 19 illustrates an exemplary embodiment of one of the process-specific
VAFMTs in FIG. 17.

[0026] FIG. 20 illustrates another embodiment of an application-specific URL buffer
VAFMT.

[0027] FIG. 21 illustrates an embodiment of a process-specific VAFMT for a first
application identified in the application-specific URL bufter VAFMT of FIG. 20.

WO 2018/022257 PCT/US2017/040502

[0028] FIG. 22 illustrates an embodiment of a process-specific VAFMT for a second
application identified in the application-specific URL buffer VAFMT of FIG. 20.
[0029] FIG. 23 is a flowchart illustrating an embodiment of a method for detecting

target application functionality using offset-based virtual address mapping.

DETAILED DESCRIPTION
[0030] The word “exemplary” is used herein to mean “serving as an example, instance,
or illustration.” Any aspect described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects.
[0031] In this description, the term “application” may also include files having
executable content, such as: object code, scripts, byte code, markup language files, and
patches. In addition, an “application” referred to herein, may also include files that are
not executable in nature, such as documents that may need to be opened or other data
files that need to be accessed.
[0032] The term “content” may also include files having executable content, such as:
object code, scripts, byte code, markup language files, and patches. In addition,
"content" referred to herein, may also include files that are not executable in nature,
such as documents that may need to be opened or other data files that need to be

accessed.

I3 27 e

[0033] As used in this description, the terms “component,” “database,” “module,”
“system,” and the like are intended to refer to a computer-related entity, either
hardware, firmware, a combination of hardware and software, software, or software in
execution. For example, a component may be, but is not limited to being, a process
running on a processor, a processor, an object, an executable, a thread of execution, a
program, and/or a computer. By way of illustration, both an application running on a
computing device and the computing device may be a component. One or more
components may reside within a process and/or thread of execution, and a component
may be localized on one computer and/or distributed between two or more computers.
In addition, these components may execute from various computer readable media
having various data structures stored thereon. The components may communicate by
way of local and/or remote processes such as in accordance with a signal having one or
more data packets (e.g., data from one component interacting with another component
in a local system, distributed system, and/or across a network such as the Internet with

other systems by way of the signal).

WO 2018/022257 PCT/US2017/040502

[0034] FIG. 1 illustrates an embodiment of a system 100 for detecting desired or
target high-level functionalities of an application binary from a kernel or operating
system (O/S) layer. As illustrated in the embodiment of FIG. 1, the system 100
comprises a processing device (e.g., a central processing unit (CPU) 102), a memory
104, and a high-level operating system (HLOS) 106. The memory 104 stores one or
more applications that may be executed by the CPU 102. The memory 104 may store
the application binary code 108 corresponding to reference application source code 110
associated with the application(s) installed on a computing device. In this regard, the
system 100 may be implemented in any desirable computing device or system,
including, for example, a personal computer, a laptop computer, a workstation, a server,
or a portable computing device (PCD), such as a cellular telephone, a smart phone, a
portable digital assistant (PDA), a portable game console, a navigation device, a tablet
computer, a wearable device (e.g., smart watch), or other battery-powered portable
device.

[0035] In an embodiment, the kernel or O/S layer comprises a high-level operating
system (HLOS) 106. As illustrated in FIG. 1, the HLOS 106 comprises a list of
registered applications 112, a secure memory (e.g., a trusted zone 114), and specially
configured virtual address mapping table(s) for the application binary code 108 of each
registered application. The list of registered applications 112 identifies applications
installed on the system 100 that have been registered with the HLOS 106 for secure
control and/or support. For example, the application binary code 108 of an application
(e.g., a web application, a browser application, efc.) may be registered with the HLOS
106 and identified in the list 112. As known in the art, the trusted zone 114 comprises a
secure memory or area configured to guarantee that code and/or data loaded into
memory and/or executed is protected with respect to security, confidentiality, integrity,
efc. The application binary code 108 for the registered application(s) may have one or
more virtual address mapping table(s), which are used by the HLOS 106 and/or the
algorithms in the trusted zone 114 to identify desired or target high-level application
functionalities by tracking the execution of predetermined virtual address points.

[0036] It should be appreciated that the system 100 may be applied to various
application domains in which tracking and detecting high-level application
functionalities at the kernel layer is advantageous. For example, in one exemplary
embodiment, the kernel may control decisions, such as, increasing and/or decreasing the

frequency of various system on chip (SoC) components (e.g., a central processing unit

WO 2018/022257 PCT/US2017/040502

(CPU), cache(s), double data rate (DDR) memory, one or more buses, ezc.) or set high
and/or low power modes and enable/disable specific hardware features in response to
the detection of specific functional or behavioral nature of executing applications. In
this manner, the HLOS 106 and the kernel has the opportunity to implement various
controls on the various third party applications executing on the device by detecting and
recognizing the functionality being executed by the application. It should be
appreciated that this may allow the SoC and platform vendors to provide improved
solutions from the platform/HLOS/kernel level for various third party applications on
which the platform otherwise may have no control.

[0037] In an exemplary application domain, the system 100 may provide real-time
security protection against malicious attacks or other exploits of web applications, web
browsers, JavaScript code, efc. As known in the art, JavaScript is the programming
language used in many websites and web applications, JavaScript-based attacks are one
of the top threats for cyber security. As more and more web activity shifts from desktop
computers to mobile, JavaScript attacks are becoming a major threat on portable
computing devices.

[0038] Most malicious JavaScript attacks utilize the characteristics of the JavaScript
language and the constraints of web standards and specifications for the exploits.
Common examples of web-based exploits through malicious JavaScript include the
following: cross-site scripting (i.e., XSS/CSS), cross-site request forgery (i.e.,
CSRFE/XSRF), drive-by downloads, user intent hijacking, clickjacking, distributed
Denial of Service (DDoS), JavaScript steganography, and various forms of obfuscated
JavaScript. Because high-level web behavior and functionality knowledge is needed in
the attempt to detect malicious behaviors, current web and JavaScript security solutions
are typically built within the browser software architecture.

[0039] In-built web security mechanisms within the HLOS, kernel and the device
platform, however, are limited because web/JavaScript-based exploits may have no
visible indication on the platform activity (e.g., system calls, device usage, efc.). Many
web/JavaScript-based attacks are outward-facing and only compromise the user’s online
assets, activity, identity, erc. In other words, the visible activity patterns may only be
detected within the web browser/application software and hence most security
mechanisms against web exploits are almost always built within the web browser

application.

WO 2018/022257 PCT/US2017/040502

[0040] In this regard, exemplary embodiments of the application binary code 108 in
system 100 may comprise web applications, browser applications, or other applications
in which the HLOS 106 detects high-level application functionalities by tracking
predetermined virtual address points. As further illustrated in FIG. 1, the system 100
may further comprise one or more malicious code detection algorithms 116 residing in
the trusted zone 114. The malicious code detection algorithms 116 may receive data
related to execution of the virtual address points and their associated functional
meanings as identified in the virtual address mapping tables. Based on this data, the
algorithm(s) 116 may detect, for example, malicious code and behavior, malicious
JavaScript code and execution, efc. and initiate appropriate methods for resolving the
security threat or otherwise thwarting the malicious attack. In an embodiment, when a
security threat is detected, the system 100 may automatically resolve the threat or
prompt a user for appropriate action(s).

[0041] As illustrated in the embodiment of FIG. 1, the virtual address mapping tables
used by the HLOS 106 may comprise a virtual address-to-function mapping table 120
and an identifier-to-virtual address mapping table 122. It should be appreciated that the
HLOS 106 and the mapping tables 120 and 122 comprise an integrated platform
mechanism by which the system 100 may determine desired or target high-level
functional information from the executing application binary code 108. The high-level
functional information may be used by algorithm(s) and/or model(s) (e.g., malicious
code detection algorithm(s) 116) implemented in the trusted zone 114 to detect
malicious behavior.

[0042] As described below in more detail, the system 100 may support two different
execution models for executing the application binary code 108. A first execution
model involves native binary execution (e.g., from C/C++ code). A second execution
model involves managed runtime execution (e.g., execution by a virtual machine 118).
In an embodiment, the virtual machine 118 may execute dynamic just-in-time (JIT) or
interpreted code from JavaScript sources. In managed runtime execution embodiment,
the virtual machine 118 may comprise part of the binary code 108 in which the virtual
machine 118 runs within the binary code 108. It should be appreciated, however, that in
other embodiments there may be separate VM and binary workloads.

[0043] An exemplary embodiment of the native binary execution model is illustrated
in FIGS. 2 — 4. For native binary execution, cach application in the list of registered

applications 112 has a corresponding VAFMT 120, which is maintained by the HLOS

WO 2018/022257 PCT/US2017/040502

106. The VAFMT 120 may reside in the trusted zone 114. The VAFMT 120 comprises
different virtual addresses of interest mapped with their associated high-level
functionality. In an embodiment, each associated high-level functionality may be
denoted as a macro name that the algorithm(s) 116 understand. It should be
appreciated, however, that other mechanisms for representing the associated high-level
functionality may be implemented, including, for example, pointers to functions or
function names in the algorithms 116 such that the activity detected at a particular
virtual address directly corresponds to a functionality that needs to be triggered in the
algorithm(s) 116. The virtual addresses of the specific application functions (and
specific points within functions) in a binary image may be referred to as “points of
interest”. In an embodiment, virtual address points of interest may comprise points
within, at the start, or at the end of, or multiple specific points in between, for example,
sensitive sources/sinks routines, dangerous web application program interfaces (APIs),
specific web functionality, start/end of buffers, or any other objects that an attacker may
exploit or other suitable information for the analysis and detection of known
web/JavaScript attacks. In other embodiments, the virtual address points of interest
may comprise points in the implementation of a JavaScript interpreter, just-in-time (JIT)
compiler, or a runtime environment (e.g., allocation/deallocation functions for a virtual
machine heap that stores JavaScript source code, bytecode/JITcode, efc.

[0044] FIGS. 2 and 3 illustrate an exemplary embodiment of a VAFMT 120. FIG. 2
illustrates a logical mapping 200 of certain desired or target functionality points within
the application source code 110 to the corresponding virtual address points within the
application binary code 108. In FIGS. 2 & 3, the virtual addresses are shown but the
binary object code is not shown. In this embodiment, the application source code 110
comprises C++ code for a “documentWrite” function. The point 201 in the source code
is mapped to a virtual address 202 in the binary code. The point 203 in the source code
is mapped to the virtual address 204 in the binary code. The point 205 of the source
code is mapped to the virtual address 206 in the binary code. FIG. 3 illustrates a logical
mapping 300 of the virtual addresses in the binary code 202, 204, and 206 that are under
the column 302 in the VAFMT 120 to the respective functional meanings that the code
at those virtual addresses represent. As illustrated in FIG. 3, the VAFMT 120 may
comprise a plurality of virtual addresses (column 302) with a corresponding description
of the functional point of interest (column 304). The virtual address (0x3273fa94)

represented by 202 for the binary code point is mapped to a functional point

WO 2018/022257 PCT/US2017/040502

corresponding to the EVAL FUNCTION. The wvirtual address (0x3473fac8)
represented by 204 for the binary code point corresponding to the functional point of
interest that denotes DOCUMENT WRITE FUNCTION START. The virtual address
(0x3473fad4) represented by 206 in the binary code is mapped to the functional point
that has a macro meaning DOCUMENT_ WRITE 1.

[0045] FIG. 11 illustrates an embodiment of a VAFMT 120 comprising a custom
virtual address table that has virtual addresses for specific buffer allocator functions that
may be used to determine virtual addresses of the start and the end of the dynamically
allocated buffers comprising objects of specific data structure types (e.g., class,
structure, union). The values of the members/fields of the objects allocated in the buffer
may be determined using the offset and the length fields, which may also be maintained
in the table for a particular field /member that is a point of interest. The wvirtual
addresses of the buffer allocation functions may be used to detect the size and the
addresses of the allocated buffer by, for example, tracking the execution of the system
memory allocator functions from the region covered by the virtual addresses of the
allocator functions. Once the buffer start and end virtual addresses are known, the
offset and the length fields may be used to determine the value of a particular
member/field of the objects for the particular data structure type.

[0046] As illustrated by the dashed lines in FIG. 1, the application source code 110
need not be stored in the system 100. Rather, it may be located off-line or off-device
and available as reference or open source code. The reference source code for a
particular version can be used as reference and guidance to determine the virtual
addresses of interest in the actual commercial binary of the browser or the web
applications. An equivalent binary may be compiled from the open source project’s
matching code revision/version. The compiled binary may be used as a reference to
detect the desired or target virtual addresses and functions/points of the application
binary that is based on that version/revision. Similar compiler and linker options may
be used. Furthermore, breakpoints at various points in the application code can be used
for the determination of the virtual addresses and their functional mapping points.
Binary code recognition and similarity extraction methods may be utilized to identify
the functionalities in the given application binary by using the reference binary from the
known compiled functions for the open source project. For binaries with slightly
modified versions (or binaries originating from a source base with some source code

differences from the known reference open source projects), test codes may be written

10

WO 2018/022257 PCT/US2017/040502

that invoke the important web functions and APIs. The virtual address access
sequences from various test cases may be used to converge to a set of target virtual
address points. It should be appreciated that other mechanisms may be used to extract
functionality from the application binary code.

[0047] FIG. 4 is a flowchart illustrating an embodiment of a method 400 for detecting
malicious code activity in a native binary execution model. At block 402, a VAFMT
120 1s generated for an application. As described above, the VAFMT 120 comprises a
plurality of virtual addresses of interest mapped to corresponding high-level application
functionality. At block 404, the application may be installed on a computing device,
such as, for example, a portable computing device. At block 406, the application may
be registered for security support provided by the HLOS 106 (e.g., registered
applications 112). At block 408, the application may be launched and, in response, the
CPU 102 may execute the application binary code 108. When a registered application
112 runs, the HLOS 106 may intercept the application’s running processes (block 410).
At block 412, the HLOS 106 may use the corresponding VAFMT 120 to detect and
record the functional points of interest as they are executed. At block 414, the recorded
points may be provided to the malicious code detection algorithm(s) 116 to detect and
resolve malicious attacks. The malicious code detection algorithm(s) 116 may comprise
signature-based algorithm(s), pattern matching algorithms, or employ machine learning,
or other techniques. In this manner, the malicious code detection algorithm(s) 116 may
use the VAFMT 120 to provide the meaning of the virtual addresses it receives as input.
[0048] Because the VAFMT 120 is under the control of the HLOS 106, any
transformation/randomization of the virtual addresses of the application binary code 108
performed by the HLOS 106 (e.g., address space layout randomization (ASLR)) may be
applied to the virtual addresses in VAFMT 120 to keep them in synchronization with
the effective virtual address of the executing application. In an embodiment, the
information gathered from the JavaScript code and the application execution with the
VAFMT 120 may provide the high-level web/JavaScript functionality information,
which can be fed to the malicious code detection algorithms 116. Upon detecting any
malicious behavior (block 416), the HLOS 106 may pause the
application/renderer/JavaScript process and open a dialog box for the user, warning
about the potential danger, and asking the user for instructions for proceeding. If the
user still wants to proceed, the browser process may be resumed by the HLOS 106. If

the user does not want to proceed, the HLOS 106 may ask the user to close the tab or

11

WO 2018/022257 PCT/US2017/040502

navigate to some other website, or the HLOS 106 may end the process for that
execution instance (browser tab).

[0049] The VAFMT 120 may be updated via, for example, over-the-air (OTA)
updates when the application binary code 110 version changes. These updates ensure
the HLOS 106 is ready with updated binaries for any registered applications 112. The
updated binaries may yield new virtual addresses for the same points of interest.

[0050] It should be appreciated that the HLOS 106 and the mapping tables 120 and
122 may also be configured to support a managed runtime execution model involving,
for example, a virtual machine 118 (FIG. 1). In this regard, the integrated platform
mechanism(s) described above enable the system 100 to determine desired or target
high-level functional information from the executing application binary code 108. An
exemplary embodiment of the managed runtime execution model is illustrated in FIGS.
5-10.

[0051] In embodiments involving managed runtime or virtual machine execution,
JavaScript sources and/or bytecode/just-in-time (JIT) binary for the JavaScript sources
may be read from different parts of a virtual machine (VM) heap with the aid of another
table (e.g., the identifier-to-address mapping table (IVAMT) 122). The IVAMT 122
comprises virtual memory addresses for important boundaries of the VM heap. It may
further comprise other types of entries where virtual addresses for various functional
points of the virtual machine 118 or the application binary 108 could be maintained. It
should be appreciated that the IVAMT 122 may be generally used for virtual addresses
for specific functional points that may be updated and/or determined dynamically
during application execution. In this regard, the IVAMT 122 may map a functional
point to the virtual address. The VAFMT 120, on the other hand, may map a statically
defined virtual address to a functional meaning. Therefore, the VAFMT 120 may not
change during application execution but may be updated by, for example, other-the-air
(OTA) updates to a computing device. It should be further appreciated that other
miscellaneous tables may be associated with the VAFMT 120 and the IVAMT 122.
The miscellaneous tables may comprise various macro or parameter names mapped to
their parameter values or settings that are not virtual addresses.

[0052] In the embodiment of FIG. 9, virtual memory addresses 901 are identified for
various external and/or internal boundaries of an exemplary VM heap structure 900. As
illustrated in FIG. 9, the VM heap structure 900 may comprise a plurality of data fields

identifying various internal and/or external boundaries, including, for example, a from

12

WO 2018/022257 PCT/US2017/040502

field 912, a to field 914, a code field 902, a map field 904, a large object field 906, an
old data field 908, and old pointer fields 910. The VM heap is a VM managed memory
region that is allocated in the native system heap. As known in the art, in the VM Heap,
the VM performs abstraction of, for example, memory management, allocating and
deallocating the code (e.g., JavaScript source), the bytecode, intermediate code, JITed
binary, the objects created during execution, and all other associated housekeeping
information and internal data structures used for the execution of the program (e.g.,
JavaScript program). As further illustrated in FIG. 9, the VM heap region may
comprise various sub-regions (e.g., 910, 908, 906, 904, 902, 912, and 914) depending
on the type of things the VM stores. Sub-regions 912 and 914 may be used to contain
the objects created for the first time and any garbage collection activity swaps the live
objects from sub-regions 912 to 914 and vice versa. In an embodiment, sub-region 902
may be used to save JavaScript source, bytecodes, intermediate codes, and JITed
binary/assembly codes. Sub-region 904 may be used to keep certain internal data
structures associated with the objects created by the VM during execution of a program
(e.g., JavaScript program). Sub-region 906 may be used to keep any kind of item (code,
object) that is bigger than a predetermined size (e.g., 1| MB). Sub-regions 908 and 910
may keep objects and data that have survived multiple cycles of garbage collection with
sub-region 908 focusing objects with constant values and sub-region 910 focusing on
objects that point to other objects.

[0053] In operation, the HLOS 106 may identify and dynamically update the virtual
memory addresses 901 in the IVAMT 122 as memory allocations change for the VM
heap. It should be appreciated that a JavaScript virtual machine 118 keeps the sources
in the heap until the function is active. The managed runtime or virtual machine
execution model may involve identifying JavaScript sources and/or bytecode/JIT code
from the VM heap. The VM heap objects holding JavaScript sources may be tracked
for any new writes, and new JavaScript sources received by the virtual machine 118
may be identified. The identified JavaScript sources may be provided to the
algorithm(s) 116 in the trusted zone 114, which extracts various features from the
JavaScript code and uses them for detecting any malicious behavior. Examples of
features extracted from the JavaScript code include the following or other features:
document object model (DOM) modification and sensitive functions; a number of

evaluations; a number of strings; a script length; string modification function(s); “built-

13

WO 2018/022257 PCT/US2017/040502

ins” for de-obfuscation, ezc.). The trusted zone 115 may feed the extracted features to
the malicious code detection algorithms 116 to determine any malicious activity.

[0054] In certain embodiments, when only JIT binary/bytecodes are available, the
features may be extracted from them and then sent to the malicious code detection
algorithms 116. For example, the HLOS 106 may maintain a library of bytecode/JIT
code sequences representing high-level JavaScript artifacts. Any matches of the
bytecode/JIT code stream from the JavaScript functions in the VM code space with
these artifacts may be recorded and passed to the malicious code detection algorithms
116 for the determination of malicious characteristics.

[0055] FIGS. 5 & © illustrate an exemplary embodiment of the IVAMT 122 and the
VAFMT 120 used during managed runtime or virtual machine execution. FIG. 5
illustrates a logical mapping 500 of target functionality related to allocation of a VM
code space to corresponding application binary code 108. In this embodiment, the
application source code 110 comprises code for an “AllocateVMCodeSpace” function.
As illustrated in FIG. 5, a first point in the source code 110 may be mapped to a virtual
addresses 502 in the binary code 108. A second point in the source code 110 may be
mapped to a virtual address 504 in the binary code 108. In an example implementation,
the function AllocateVMCodeSpace may be called when the VM during execution gets
a new JavaScript source code that it needs to execute and it is determined that there is
not much space in the current VM heap code space (902). This function may take the
size of the new JavaScript code and determine the amount by which the VM heap code
space needs to be increased in size so that the VM can save the JavaScript source, the
associated bytecode or intermediate code and/or the JITed binary. Based on the
determined size, the AllocateVMCodeSpace function may increase the allocated space
of the VM heap code space in the native platform’s heap using the system allocator
functions, such a, mmap(), malloc(), calloc(), or realloc(). The mmap() function is a
POSIX compliant Unix system call that maps a sequence of bytes starting at an offset
from the other object specified by the file descriptor into memory, preferably at address
start. The mmap() function returns the actual place where the object is mapped.
Malloc(), realloc(), calloc() and free() comprise a group of functions in the C standard
library for performing manual memory management for dynamic memory allocation in
the C/C++ programming language. The virtual addresses 502 and 504 for the points of
interest in the binary code 108 may be directly placed in the column 302 in the VAFMT

120. The functional meanings of the different points of interests represented by the

14

WO 2018/022257 PCT/US2017/040502

virtual addresses may be listed as macro names in the column 304 of VAFMT 120. The
detection algorithm(s) 116 (FIG. 1) may have a clear understanding of the functionality
represented by the macros in column 304 of VAFMT 120. The macro name (in column
304) for a particular row in VAFMT 120 may distinctly identify the functionality that is
being executed when the processor (e.g., CPU 102) executes the application’s binary
instruction at that virtual address point (in column 302). In this manner, by knowing the
execution statistics, counts and profile of the virtual addresses for the points of interests,
the detection algorithm(s) 116 fully understand the functionality being executed by the
high level application binary. It should be appreciated that the mapping may be directly
between the virtual address 302 and the functional meaning that is represented by the
macro (304) and understood by the detection algorithm(s) 116 that performs the
processing or detection, thereby eliminating a need to know the actual binary instruction
at that virtual address point of interest.

[0056] The points of interest represented with virtual addresses and the macro meanings
may determined offline and then populated in the VAFMT 120 for a particular
application binary. Many types of applications may have available matching reference
source code. For example, matching reference source code may be available for
commonly available applications developed from popular open source projects (e.g.,
blink/Chromium based browsers, Webkit based browsers, various virtual machines in
Android platforms, such as, Dalvik, ART, RenderScript). For applications with
available matching reference source code, various offline mechanisms may be used to
determine the virtual address for the points of interest in the commercial application
binary for a corresponding expression/statement in the source code for those points of
interest.

[0057] An exemplary embodiment for offline determination of the virtual addresses for
the points of interest will be described. Certain important and useful functions in the
source code 110 that implement the functionalities of interests may be identified in the
matching reference source code. Various points within the source code 110 may be
manually determined to form a unique set of points that together would represent a
particular unique functionality. It should be appreciated that this may be equivalent to a
set of sample points within the source code 110 that uniquely represent the overall
functionality of the complete source code 110 for the functionality. The source code
110 may be compiled, assembled, and linked to a reference application that is

equivalent to the actual commercial third party application. Both the binaries (reference

15

WO 2018/022257 PCT/US2017/040502

and commercial third party) may originate from the same source code 110 and use
similar build techniques (e.g., compile, assemble, link) and toolchains. As known in the
art, open source applications may use freely available GCC or LLVM toolchains. The
compiler, assembler, and linker tools may be used to generate a reference binary
application and the virtual address points corresponding to the important points in the
source code may be noted. Because the virtual addresses for the points of interest may
comprise a direct mapping of the points of interest in the source code 110 from which
the binary application 1s built (compiled, assembled, linked), the reference binary may
be used offline to compare with the commercial binary to identify the virtual address
points of interest in the commercial third party binary. It should be further appreciated
that other offline or other techniques may be used to determine the virtual address for
the points of interest in the commercial third party binary. In an embodiment, FIG. 2
shows how different points of interest (201, 203, 205) in the source code 110 may be
directly mapped to the corresponding virtual addresses (202, 204, 206) in the binary
108.

[0058] FIG. 6 illustrates a logical mapping 600 between the VAFMT 120 of FIG. 5
and an exemplary IVAMT 122. The VAFMT 120 comprises virtual addresses of fixed
and known points of interest in the binary application whose execution are of interest
and are being tracked. These virtual addresses may be updated whenever the binary
application changes. The IVAMT 122 comprises virtual addresses of specific points
that are created or updated when the binary application executes, which may be
dynamic and represent virtual addresses of dynamic items (e.g., runtime buffer start or
end points). The left hand column (302) of VAFMT 120 comprise the virtual addresses,
and the right hand column (304) may indicate the functional description that is present
in the binary code 108 at that virtual address point. In this manner, the VAMFT 120
maps virtual address to functional meanings. In general, the IVAMT 122 comprises the
reverse. In this case, the functional meaning or macro names are known, and the system
determine the virtual address 602 where the functional meaning or the macro name 604
are implemented or available in the execution instance of the binary application. The
virtual addresses in the IVAMT 122 may comprise dynamic values that are determined
at runtime. For the case where the start and the end of a dynamically allocated buffer
(or the virtual machine heap or its sub spaces) are determined, the virtual addresses for
the points of interest within the functions in the binary application that are doing the

dynamic buffer/heap-space allocation may be obtained from the VAFMT 120. The

16

WO 2018/022257 PCT/US2017/040502

execution of these functions may be determined by detecting the execution of the virtual
addresses in the VAMFT 120. Furthermore, the start/end virtual addresses of the
buffer/heap-space allocation may be determined by detecting the system memory
allocation functions invoked from these functions. These determined start/end virtual
addresses of the buffer/heap-space allocations may be updated in the IVAMT (122).

[0059] FIG. 7 shows the impact of garbage collection on the VM heap code space and
how the JavaScript sources may be determined consistently in the presence of garbage
collection activity of the virtual machine 118. It should be appreciated that garbage
collection is an integral activity of a managed runtime or virtual machine because
allocation of new objects and deallocation of dead (i.e., not in use) objects may be
explicitly handled by the runtime or virtual machine 118. The activity of reclaiming
dead (unused) objects from the managed VM heap is referred to as garbage collection.
In this regard, when unneeded Script objects or other objects are reclaimed, the VM
heap may be reorganized and existing objects moved around and compacted to make
space for new object allocations. FIG. 7 shows the effect of such a garbage collection
activity on VM heap code Space 704a. VM heap code space 704a comprises JavaScript
Objects JS1, JS2, JS3, and JS4. After a garbage collection event, they may be
compacted with the removal of a JavaScript Object JS3 that was detected as unneeded
or dead by the garbage collector and, therefore, reclaimed (deleted) from the VM heap
code space 704b. However, any such movement (e¢.g., removal, compaction, efc.) of
objects in the VM heap changes the virtual addresses start and end locations that
determine where the JavaScript object resides. In an exemplary method, the virtual
addresses may be changed by re-running the virtual address determination mechanism
illustrated in FIGS. 5 & 6 for the VM heap and the various spaces within the heap (FIG.
9) after every garbage collection activity, thereby updating the virtual addresses with the
new values if the Script Object moved during garbage collection. As illustrated in FIG.
8, the kernel may keep track of the object moves happening during garbage collection
and the distance by which they move. By keeping track of the address offset the objects
moved, the virtual address values for the start and the end of the JavaScript object in the
VM heap code space may be updated. In a similar manner, the virtual address in
IVAMT 122 for the VM heap’s various code spaces may be updated by tracking the
allocations/deallocations/moves of the various sub-spaces of the VM heap illustrated in

FIG. 9.

17

WO 2018/022257 PCT/US2017/040502

[0060] FIG. 10 is a flowchart illustrating an embodiment of a method 1000 for
detecting malicious code activity in a managed runtime or virtual machine execution
model. It should be appreciated that the steps or functionality represented in blocks
1002, 1004, 1006, 1008, and 1010 in FIG. 10 may generally correspond to blocks 402,
404, 406, 408, and 410 described above in connection with the method of FIG. 4. At
block 1012, the method 1000 detects the points of interest virtual addresses for the VM
heap allocator/deallocator functions when executed. As illustrated at block 1014, when
the execution is detected to be inside a VM heap allocator/deallocator function, the
method 1000 may detect the entry VM into the kernel’s system allocator/deallocator
function and record the system memory allocation/deallocation. Based on that, the
method 1000 may compute and determine the start/end virtual addresses of the VM’s
heap. By implementing similar mechanism(s) for a specific allocation region for the
VM heap (e.g., code space, large object space, etc.), the start/end virtual addresses for
the specific sub-regions (e.g., code space, large object space, etc.) within the VM heap
may be determined. A illustrated at block 1016, once the VM heap space used to store
the JavaScript Source Code objects are determined at block 1014, the method 1000 may
use a Script Object Header signature/pattern (in binary) to determine the start of the
JavaScript Object within the VM heap. The length of the JavaScript Object may be
extracted from the header and used to extract the entire JavaScript Source code. As
illustrated at block 1018, the JavaScript source code may be used to extract specific
features of interest used by the detection algorithm(s) 116 to detect, for example,
malicious behavior. At block 1020, the malicious behavior of the JavaScript code may
be determined based on, for example, the features extracted from the JavaScript source
in block 1018.

[0061] As mentioned above, the VAFMT 120 may be initially configured in an off-line
manner and provided to the computing system 100 (FIG. 1). In an embodiment, when a
new version of the application binary code 108 is made available to the computing
system 100, the VAFMT 120 may be similarly updated in an off-line manner and
provided to the computing system 100 via, for example, a communication network
(referred to as an “over-the-air (OTA) update™). Updating the VAFMT 120 in this
manner may be a disadvantage for binary applications that are frequently updated. It
should be appreciated that a relatively large portion of the binary code in the updated
version of the application binary code 108 may remain unchanged. The functional

points of interest 304 identified in the VAFMT 120 may comprise a relatively limited

18

WO 2018/022257 PCT/US2017/040502

portion of the application binary code 108 and/or binary code that may be unchanged
from version-to-version.

[0062] For example, compiler operations and/or settings may infrequently change and
the various modules in the binary code may maintain similar or predetermined offsets
among the modules. FIGS. 12 — 16 illustrates various mechanisms that may be
implemented in the computing system 100 for automatically updating the virtual
addresses in the VAFMT 120 when a new or updated version of the application binary
code 108 1s installed.

[0063] It should be appreciated that these mechanisms may reduce the need for OTA
updates of the VAFMT 120 for various types of applications and/or use cases. For
example, in the context of web security applications, these mechanisms may eliminate
the need for OTA updates for many of the most frequent types of updates to web
browser applications that are based on the same originating codebase. Existing web
browser applications may update binary application code on a weekly or monthly basis.
Virtual addresses for the new binary version may change even when the source code has
not changed for the specific modules related to the functional points of interest 304. In
this case, the virtual addresses may change where there are source code changes in parts
of the application other than the functional points of interest 304, or changes in variable
types and data structure types (e.g., C++ classes, C-structures, unions, efc) accessed in
other parts of the application. Furthermore, certain kinds of changes in compiler,
assembler, and linker options may result in virtual changes in other parts of the
application.

[0064] FIG. 12 illustrates an embodiment of exemplary mechanisms that may be
implemented in the computing system 100 for automatically updating the VAFMT 120
when a new or updated version of the application binary code 108 is installed. As
illustrated in FIG. 12, the VAFMT 120 may be supplemented with metadata 1200 and
one or more pseudo binary code templates 1202. As described below in more detail, the
metadata 1200 and the pseudo binary code templates 1202 may enable the HLOS 106 to
determine new virtual addresses 302 for the functional points of interest 304 when the
application binary code 108 is updated with a new version.

[0065] It should be appreciated that the pseudo binary code template 1202 comprises a
sequence of operation statements using symbolic representation for storage locations in
memory and pseudo-registers for local variables. The pseudo binary code template

1202 may use various categories of pseudo registers that indicate their purpose. In an

19

WO 2018/022257 PCT/US2017/040502

embodiment, an ArgumentReg# may denote pseudo registers that pass arguments to
subroutines. A ReturnReg may comprise the return address when returning back from a
subroutine call. A ProgCounter may comprise the current address pointed by the
program counter of the processor. A ReturnValueReg# may denote the registers used to
return values from subroutine calls back to the caller code. The operations may
comprise close representations of the assembly operations in the processor with inputs
and outs that can be variables or storage locations. For example, an AddWord variable
may indicate an addition operation of operands of sizes 4-bytes or l-word. A
LoadWord variable may indicate loading a value from memory that is of a
predetermined size (e.g., 4 bytes or 1 word). A LoadByte variable may indicate loading
a value from memory that is of a predetermined size (e.g., 1 byte). A branchEQ may
comprise a conditional branch that branches to the target provided as an operand if the
previous comparison operation results in the equality of the operands being compared.
The addressing modes or address computation may be separated from the load or the
store operations. In an embodiment, a load operation with a base register and an offset
may be split into two operations: an add operation that computes the final address by
adding the constant offset value to a pseudo register, followed by the actual load
operation that uses the pseudo register containing the computed final address. This may
be done to keep the representation in a most generic form as addressing modes of
various forms can be used by the updated application binary. The operation arguments
that are constants may be represented by a number of bits that is needed to encode the
valid range of constants.

[0066] For example, a constant “Const8bits” may be used as an operand for an
operation that indicates that the operand is any valid value that can be encoded by 8 bits
and, therefore, determine the valid dynamic range of values allowed. Some operands
may be hard-coded constants (e.g., “#8” indicating the value ‘8”). The operands of the
direct branch operation may be represented as an offset from the current program
counter (e.g., (“ProgCounter + #Const20bits”, or “ProgCounter + #127)). A pseudo
binary code template 1202 may implement the functionality of interest using these or
other operation statements. It should be appreciated that the operation statements may
be used to identify the region in the new updated binary that implements the exact
functionality via, for example, a matching functionality or module. The matching
module is configured to understand both the format and the representation of the pseudo

binary code template 1202 and the actual binary of the application. The matching

20

WO 2018/022257 PCT/US2017/040502

module may perform an operation-by-operation comparison within a window of
operations to detect matches, or use control-data-flow and the operations within the
control-data-flow region for comparison.

[0067] Various matching techniques may be used. The operation statements in the
pseudo binary code template 1202 may use Static Single Assignment (SSA)
representation, where a particular pseudo register variable is assigned only once,
thereby exposing the true dependencies among the operation statements. The SSA
representation may enable improved matching of the functionality region in the updated
binary of the application. The term “pseudo” refer to the fact that the representation is
not a binary executable and does not use actual assembly instructions, registers, and
addressing mode of the processor and is not assembled into binary code. The pseudo
binary code template 1202 provides the functionality reference that the matching
module uses as a template pattern and guideline to detect the functionality of interest in
the updated binary of the application. It should be appreciated that the actual format
and representation of the pseudo binary code template 1202 is implementation
dependent and various other alternatives can be used. In other embodiments, some
implementations may use the actual assembly instruction representation or
representation(s) that resemble the assembly representation for the CPU 102 on which
the binary application runs.

[0068] As described above, the HLOS 106 may maintain a list of registered applications
112. For each registered application, the HLOS 106 maintains tables (e.g., VAFMT
120, IVAMT 122) comprising virtual addresses 302 for functional points of interest
304. As illustrated in FIG. 12, one or more virtual addresses 302 in the VAFMT 120
may be associated with a pseudo binary code template 1202. In the embodiment of
FIG. 12, the pseudo binary code template 1202 is associated with a set of virtual
addresses 302 for a particular set of functional points of interest 304 representing a
unique functionality (documentWrite function). The pseudo binary code template 1202
comprises pseudo code instruction(s) generically equivalent to the binary code covering
the documentWrite function. In an embodiment, the pseudo binary code template 1202
may not use the processor instruction set architecture (ISA) and need not be assembled
into actual binary code. The pseudo binary code template 1202 may use operation
statements similar to assembly operations and use pseudo registers and symbolic
references for storages. Through the use of a sequence of such operation statements, the

pseudo binary code template 1202 may implement the functionality of interest that it

21

WO 2018/022257 PCT/US2017/040502

represents (e.g., functionality of “documentWrite” function in the above example) that
is the same as or equivalent to the functionality of interest (e.g., the documentWrite
function) implemented in the actual binary of the application. It should be appreciated
that the computing system 100 may include any number of pseudo binary code
templates 1202. The number of different pseudo binary code templates 1202 may be
such that all the different functionalities captured in the VAFMT 120, through the
different sets of functional points of interest, have at least one representative pseudo
binary code template 1202 that is used for updating the virtual addresses for the
function points it covers when a new application binary code is installed.

[0069] In an embodiment, the pseudo binary code template 1202 may comprise a
generic form of the target assembly instruction(s), one or more pseudo registers, and
memory access offsets from a generic base (e.g., global heap or stack, a symbol/variable
name) representing a specific reference points in memory. The metadata 1200
generally comprises a virtual-address free representation using, for example, a byte
offset. The metadata 1200 for the virtual address (0x3473fac8) comprises a byte offset
(BASE2 = BASEO + 74709704). The metadata 1200 for the virtual address
(0x3473fad4) comprises a byte offset (BASE2 + 12). The metadata 1200 for the virtual
address (0x3473fae8) comprises a byte offset (BASE2 + 32). It should be appreciated
that this metadata may form a unique set corresponding to the set of three virtual
address points of interest that uniquely represents the “document write” functionality.
[0070] The pseudo binary code templates 1202 may be initially generated in an oft-line
manner, provided to the computing system 100, and stored in the secure storage of the
device. It should be appreciated that the pseudo binary code templates 1202 may only
need to be updated when there 1s a noticeable change in, for example, code and/or data
structures in a region covered by the functional points of interest 304. These types of
changes may be relatively infrequent (e.g., once per 6 months). Updates of this or other
types may be implemented via an OTA update. This may enable a significant reduction
of OTA updates of the virtual addresses from, for example, a weekly/monthly basis to
only doing the OTA updates of the pseudo binary code templates 1202 once per 6
months.

[0071] An update or a re-install of a new binary version for an existing registered
application may be detected. In response, the metadata 1200 and the pseudo binary
code templates 1202 may be used to automatically update the VAFMT 120, As
illustrated in FIG. 12, the pseudo binary code templates 1202 may be used to pattern

22

WO 2018/022257 PCT/US2017/040502

match a region 1206 of the binary code in the new application where the functional
points of interest 304 represented by pseudo binary code templates 1202 (and hence the
virtual address points of interests that this particular pseudo binary code template
represents) are located. The metadata 1200 may be used to focus the region 1206 to be
searched in the updated version 1204 of the application binary code 108. Initial
attempts may be made to search on a focused region 1206 (e.g., a predetermined
percentage before and after the base, BASE2) by using a relative OFFSET from an
original base (BASEO) for the functional points of interest 304 for a unique
functionality. It should be appreciated that in many types of frequent updates these
relative offsets remain close by. As further illustrated in FIG. 12, when a match is
detected, the new virtual addresses may be obtained from the new binary, and the
VAFMT 120 may be updated to reflect the new virtual addresses. If one or more
functional points of interest 304 fail to yield a match in the new binary, the computing
system 100 may initiate an OTA update or, in other embodiment, delete the specific
functionality of interest and the associated virtual addresses from the VAFMT 120
based on the importance of the particular functionality.

[0072] FIG. 13 shows the VAFTM 120 from FIG. 12 with updated virtual addresses
(represented by grey-out boxes). The virtual address 302 corresponding to the
DOCUMENT WRITE FUNCTION_ START point of interest 304 has been updated to
a new virtual address (0x3133b61¢). The virtual address 302 corresponding to the
DOCUMENT WRITE 1 point of interest 304 has been updated to a new virtual
address (0x3133b62c). The wvirtual address 302 comresponding to the
DOCUMENT WRITE 2 point of interest 304 has been updated to a new virtual
address (0x3133b62¢). As further illustrated in FIG. 12, the metadata 1200
corresponding to the virtual addresses may also be updated. As illustrated in F1G. 13,
metadata 1200 for the new virtual address (0x3133b61c¢) has been updated to “BASE2 =
BASEO + 74709000”. This illustrates that there has been a slight relative position
change between the two functionalities of interest in the updated binary of the
application (i.e., between the “KERNEL ALLOCATOR FUNCTION” and the
“DOCUMENT WRITE FUNCTION”). The change may be relatively slight. For
example, the change may be a reduction in 704 bytes out of the total original distance of
74709704 bytes between them. Therefore, with the search having been focused with
some tolerance before and after the base offset metadata (i.e., 74709704 bytes) between

the two functionalities of interest allows for effective matches by narrowing the search

23

WO 2018/022257 PCT/US2017/040502

region. Metadata 1200 for the new virtual address (0x3133b62c) has been updated to
BASE2 + 16. Metadata 1200 for the new virtual address (0x3133b640) has been
updated to BASE2 + 36.

[0073] FIGS. 14 & 15 illustrate an exemplary embodiment of a pseudo binary code
template 1202 associated with a set of functional points of interest 304 related to a
DOCUMENT WRITE function. The set of functional points of interest 304 comprises
a DOCUMENT WRITE FUNCTION START module, a DOCUMENT WRITE 1
module, and a DOCUMENT WRITE 2 module. As illustrated in FIG. 14, each of the
functional points of interest 304 in the set are directly asscciated with specific pseudo
code instructions that form the “pseudo binary instruction points of interest” within the
pseudo binary code template 1202. These “psuedo binary instruction points of interest”
within the pseudo binary code template 1202 comprise the one-to-one mapping of the
virtual address points of interest in the current VAFMT 120 with the new virtual
address points of interest in the updated version of the application binary depending on
the specific binary instructions in the updated application binary that directly matched
with the “pseudo binary points of interest”. As illustrated in FIG. 14, the
DOCUMENT WRITE FUNCTION START module is associated with a “push”
operation that saves the first two caller saved pseudo registers (CallSave0, CallSavel)
and the Return register (ReturnReg). It is followed by an AddWord operation that
computes the address required by the subsequent LoadWord operation. The AddWord
operation adds a constant value that should fit in 8 bits with the program counter and
saves the result in pseudo register reg0. The subsequent LoadWord operation directly
uses the address in reg0 as the address to load the value from. In the actual binary for
the application, the AddWord with the 8 bit constant can be directly included in the
LoadWord instruction as a part of the addressing mode. The ‘Const8bits’ allows the
option to have any constant value that fits in 8-bits. The loaded value is kept in the
pseudo register regl and is used as the address for the second LoadWord operation that
loads a value in pseudo register reg2. For the functional point of interest denoted by
DOCUMENT WRITE FUNCTION START, the “push” operation is the “pseudo
binary instruction point of interest” in this pseudo binary code template 1202.

[0074] The DOCUMENT_ WRITE 1 module is associated with a logical-shift-left
operation by 16-bits of a value that is kept in pseudo register (reg0) and saved in pseudo

B

register regl. It is then added with the constant value ‘4’ and saved in pseudo register

reg?2 that is then used as an address from which a value is loaded in pseudo register

24

WO 2018/022257 PCT/US2017/040502

(reg3). It is to be noted that for the actual binary load instruction, the addressing mode
could directly perform the addition by the constant value 4, and hence the AddWord and
the LoadWord could be represented by a single load instruction. The value in reg3 is
further added to the program-counter value (PC) to create the final address in pseudo
register reg4 that is the address from which a byte value is loaded into the first argument
register ‘ArgumentReg0’ that is used to pass as the first argument to a called routine.
After that there 1s a direct branch to the address that is at an oftset which is a value that
can fit in 20 bits. However, before the direct branch instruction there is an AddWord
instruction that saves the address to return to (by properly setting the ReturnReg) after
the direct branch takes the control to a different part of the application. The “logical-
shift-left” operation is the “pseudo binary instruction point of interest” in this pseudo
binary code template 1202 for the functional point of interest denoted by
DOCUMENT_WRITE_1.

[0075] The DOCUMENT_ WRITE_ 2 module is associated with an AddWord operation
that adds a constant value that can fit in 8bits with the program counter and keeps the
result in pseudo register regO. The pseudo register reg0 is then used as an address from
which a value is loaded in pseudo register (reg2). It is followed by another AddWord
operation that adds the pseudo register (reg2) and the current value of the program
counter and keeps the result in pseudo register regl. The pseudo register regl is then
used as an address from which a value is loaded in the ArgumentRegO that is used to
pass a value to the subsequent subroutine call through a direct branch instruction. It is
to be noted that for the actual binary load instruction, the addressing mode could
directly perform the addition by the constant value, and hence the AddWord and the
LoadWord could be represented by a single load instruction in the actual binary of the
application. After the LoadWord operation, there is a direct branch to the address that is
at an offset which is a value that can fit in 20 bits. However, before the direct branch
instruction there is an AddWord instruction that saves the address to return (by properly
setting the ReturnReg) to after the direct branch takes the control to a different part of
the application. The call to the subroutine is followed by two sets of comparisons and
branching to nearby locations within the pseudo binary code template 1202. Both the
comparisons are done on the first Subroutine Return Value Register (ReturnValueReg0)
to check for specific values (‘0’ and ‘1’) returned by the subroutine and based on the
returned value doing branches locally using BranchEQ and BranchNE operations

respectively. The branch target addresses are provided as a Constant offset from the

25

WO 2018/022257 PCT/US2017/040502

current program counter value. The AddWord operation that adds the Const8bits
operand with the program counter is the “pseudo binary instruction point of interest” in
this pseudo binary code template 1202 for the functional point of interest denoted by
DOCUMENT WRITE 2. It is to be noted that the actual binary of the application
could have this address computation operation (AddWord) together with the LoadWord
operation in the pseudo binary code template match to a single actual binary instruction
(as “ldr rl, [pc,#80]), and in this case the actual binary instruction where the “pseudo
binary instruction point of interest” matches either in full or as a subpart of, becomes
the instruction that determines the updated virtual address in the new version of the
binary of the application.

[0076] FIG. 15 illustrates the matching of each of the pseudo code instructions in the
pseudo binary code template 1202 to equivalent corresponding binary code in the
matched region 1206 of the updated version 1204 of the application binary code 108. In
operation, when the pseudo binary code template 1202 matches the region 1206, the
virtual addresses of the corresponding instructions in the binary code that match the
functional points of interest 304 become the new virtual addresses and are updated in
the VAFMT 120. The new base and offsets may be computed based on the new virtual
addresses, and the metadata 1200 may be updated.

[0077] FIG. 16 illustrates an embodiment of a method 1600 implemented in the
computing system 100 for automatically updating the VAFMT 120 when a new or
updated version of the application binary code 108 is installed. At block 1602, a virtual
address mapping table 120 for an application registered with the HLOS 106 may be
stored in the computing system 100, as described above. The VAFMT 120 may be
stored in a secure memory in the HLOS 106. As illustrated in FIG. 12, the VAFMT
120 may comprise a plurality of sets of virtual addresses 302 mapped to corresponding
target application functionalities (functional points of interest 304) in the application
binary code 108 for the registered application. In response to receiving an updated
version 1204 of the application binary code 108 (decision block 1604), the
corresponding pseudo binary code templates 1202 associated with one or more of the
plurality of sets of virtual addresses 302 in the virtual address mapping table 120 may
be determined (block 1606). As mentioned above, in an embodiment, the pseudo binary
code templates 1202 may initially be acquired through over-the-air (OTA) updates to
the system 100 together with the initial VAFMT 120, or by any other means of
downloading and installing code/date on the system 100. Both these pseudo binary

26

WO 2018/022257 PCT/US2017/040502

code templates 1202 and the VAFMT 120 may be stored in the system 100 in locations
accessible by the HLOS 106 and the kemel. The actual storage location is
implementation dependent. Various levels of security protection or secure memory
configurations can be considered for the storage locations and is dependent on the
implementation choice. The pseudo binary code templates 1202 may be updated when,
for example, one or more of the existing templates are not able to find any matches in
the updated binary of the application. Mismatches may happen due to large scale
change in the application code in the regions of interests, or other kinds of changes
described above. During such situations, updated pseudo binary code templates 1202
and an updated VAFMT 120 may be OTA downloaded and installed in the system 100.
At decision block 1608, the pseudo binary code template 1202 is used to search the
updated version 1204 of the application binary code 108 and match the pseudo code
instruction(s) to the equivalent binary instructions. When matches are found, at block
1610, the new virtual addresses corresponding to the binary instructions are determined.
At block 1612, the virtual address mapping table 120 may be updated with the new
virtual addresses and corresponding updated base/offset metadata 1200.

[0078] As illustrated in FIG. 16, blocks 1606, 1608, 1610, and 1612 may be iterated for
all the different pseudo binary code templates 1202 until all the pseudo binary code
templates 1202 are matched and all the virtual addresses in the VAFMT 120 are
updated. At decision block 1611, the method 1600 may determine if all pseudo binary
code templates 1202 have been processed. If “yes”, the method 1600 may end at block
1613. If “no”, a new pseudo binary code template 1202 may be selected at block 1606.
At decision block 1608, as matching binary sequences are identified in the updated
binary of the application for a particular pseudo binary code template 1202, the method
1600 may iterate to the next pseudo binary code template 1202 for matching. If at some
iteration there is no match for a pseudo binary code template 1202 in the updated binary
of the application, it is first determined if the functionality of interest, represented by the
pseudo binary code template 1202, can be deleted from the VAFMT 120 (decision
block 1607). If it can be deleted (which may be due to different reasons, including the
importance of the functionality being low), all the virtual address point of interest
entries for this functionality of interest may be deleted from the VAFMT 120 (block
1605) and the iteration continues to block 1606 to search for a match for the next
pseudo binary code template 1202. However, if the functionality (and hence the pseudo

binary code templatel1202) is important and should not be deleted (block 1609), an

27

WO 2018/022257 PCT/US2017/040502

automatic update mechanism fails, in which case a complete over—the-air (OTA) update
for the wvirtual addresses and/or the pseudo binary code templates 1202 may be
performed. This may represent the case where there is a drastic change/modification in
the updated binary of the application (e.g., that happens with less frequency, once in a
6-month).

[0079] FIGS. 17 — 23 illustrates various embodiments of systems and methods for
detecting the target application functionality using an offset-based virtual address
mapping scheme. In general, the offset-based virtual address mapping scheme involves
a mapping of the wvirtual addresses in the application binary code 108 to the
corresponding high-level target application functionalities using virtual address offsets.
It should be appreciated that offset-based virtual address mapping may be particularly
useful to enable the detection of the target application functionality for simultaneous
execution of multiple processes of the same application. In an embodiment, the target
application functionality may be detected in simultaneous execution of multiple browser
tabs or instances of a web browser application. Furthermore, the offset-based virtual
address mapping scheme may employ dynamic shared libraries with relocatable
addresses.

[0080] FIG. 17 illustrates the architecture and/or operation of an exemplary
embodiment of an offset-based virtual address mapping scheme 1700. As illustrated in
FIG. 17, the offset-based virtual address mapping scheme 1700 involves a two-stage
scheme supported by two different types of virtual address-to-function mapping tables:
an application-specific VAFMT 1702 and one or more process-specific VAFMTs 1714.
Each registered application 112 may have an application-specific VAFMT 1702 that
may be generated for the corresponding application binary code 108. The application-
specific VAFMT 1702 comprises a plurality of virtual address offsets in the application
binary code 108, which are mapped to the corresponding target application
functionalities. In this regard, the application-specific VAFMT 1702 comprises virtual
address offsets rather than directly defining the actual virtual addresses as described
above. It should be appreciated that a virtual address offset defines a location difference
in the virtual address range. In an embodiment, the virtual address offset may define a
location difference with respect to a base virtual address defined from the start of the
application binary code 108 or, in other embodiments, a relative difference in the virtual

address range between target application functionalities.

28

WO 2018/022257 PCT/US2017/040502

[0081] As further illustrated in FIG. 17, when the application is loaded, an O/S
application launcher and loader 1704 may initiate two or more instances of the
application or two or more instances of a process associated with the application
(collectively referred to as “application process instances” 1708), which are
simultaneously executed. For example, where the application comprises a web browser,
the application process instances 1708 may comprise multiple instances of the web
browser or multiple browser tabs. In the embodiment of FIG. 17, the O/S application
launcher and loader 1704 has initiated three application process instances 1708a, 1708b,
and 1708c. For each application process instance 1708, a corresponding process-
specific VAFMT 1714 is generated. Process-specific VAFMT 1714a is generated for
the application process instance 1708a. Process-specific VAFMT 1714b is generated
for the application process instance 1708b. Process-specific VAFMT 1714c is
generated for the application process instance 1708c¢.

[0082] As illustrated in the embodiment of FIG. 17, a kernel module 1706, in
response to launch of the application process instances 1708, may create the
corresponding process-specific VAFMTs 1714. A process-specific VAFMT 1714 is
generated using the virtual address offsets stored in the application-specitic VAFMT
1702 (reference numeral 1712) and a base virtual address provided by the O/S
application launcher and loader 1704 (reference numeral 1710). For example, when
application process instance 1708a is initiated, the O/S application launcher and loader
1704 may provide the virtual address base where application process instance 1708a has
been loaded. Kernel module 1706 may determine the actual virtual addresses for the
target application functionalities by adding the virtual address offsets to the virtual
address base. The calculated actual virtual addresses for the application process
instance 1708a are stored in the process-specific VAFMT 1714a. When application
process instance 1708b is initiated, the O/S application launcher and loader 1704 may
provide the virtual address base where application process instance 1708b has been
loaded. Kermnel module 1706 may determine the actual virtual addresses for the target
application functionalities by adding the virtual address offsets to the virtual address
base. The calculated actual virtual addresses for the application process instance 1708b
are stored in the process-specific VAFMT 1714b. When application process instance
1708c is initiated, the O/S application launcher and loader 1704 may provide the virtual
address base where application process instance 1708c has been loaded. Kernel module

1706 may determine the actual virtual addresses for the target application functionalities

29

WO 2018/022257 PCT/US2017/040502

by adding the virtual address offsets to the virtual address base. The calculated actual
virtual addresses for the application process instance 1708c are stored in the process-
specific VAFMT 1714c.

[0083] In this manner, the process-specific VAFMTs 1714a, 1714b, and 1714c
comprise the actual virtual addresses for application process instances 1708a, 1708b,
and 1708c, respectively, mapped to the target application functionalities in the
application binary code 108. During simultaneous execution of the application process
instances 1708a, 1708b, and 1708c, the process-specific VAFMTs 1714a, 1714b, and
1714c, respectively, are used to detect the target application functionalities in the
manner described above. It should be appreciated that the structure of the other
mapping tables described above in connection with FIGS. 1 — 16 (e.g., IVAMTs 122,
“JavaScript Source Code List Tables”, etc.) may remain unchanged. These mapping
tables may comprise unique instances for the application process instances 1708, which
may be initialized with the actual process-specific virtual addresses. In an embodiment,
the mapping tables may be dynamically initialized during the application process
execution. It should be further appreciated that any process-specific adjustments to the
virtual addresses (e.g., for activities such as ASLR, e7c.) may be done on the process-
specific VAFMT instances and for the other tables (e.g., IVAMT 122, erc.) that are
dynamically initialized during process runtime because they are under kernel control.
The application-specific VAFMT 1702 has virtual address offsets, which may not need
to be adjusted for ASLR and other activities.

[0084] FIG. 18 illustrates an exemplary embodiment of the application-specific
VAFMT 1702. It should be appreciated that the application-specific VAFMT 1702 may
be configured in the same manner as VAFMT 120 with the exception that column 1800
defines virtual address offsets instead of the actual virtual addresses as in VAFMT 120.
In this regard, FIG. 18 illustrates a logical mapping of the virtual address offsets
(column 1800) associated with code in the application binary code 108 to the respective
functional meanings that the code at those virtual address offsets represent (the
functional points of interest identified in column 1802). The application-specific
VAFMT 1702 may similarly comprise metadata (column 1804) used in combination
with the pseudo binary code templates 1202 to enable the HLOS 106 to determine new
virtual address offsets for the functional points of interest (column 1802) when the

application binary code 108 is updated with a new version.

30

WO 2018/022257 PCT/US2017/040502

[0085] FIG. 19 illustrates an exemplary embodiment of a process-specific VAFMT
1714. The process-specific VAFMT 1714 may include columns 1802 and 1804
identifying the functional points of interest and the metadata, respectively, in the same
manner as the application-specific VAFMT 1702. As illustrated in FIG. 19, the
process-specific VAFMT 1714 may comprise a column 1900 for storing the actual
virtual addresses for the corresponding application process instance 1708 instead of the
virtual address offsets identified in the application-specific VAFMT 1702. The values
stored in column 1900 for the actual virtual addresses may be determined by the kernel
module 1706 using the virtual address offsets stored in the application-specific VAFMT
1702 and a base virtual address provided by the O/S application launcher and loader
1704. In the example of FIG. 19, the application process instance 1708 may be loaded
from a base virtual address having the value 0x30000000. The kernel module 1706 may
receive this base virtual address value and, in response, calculate the actual virtual
addresses for the application process instance 1708. Referring to the first row in the
application-specific VAFMT 1702 in FIG. 18, an EVAL FUNCTION (column 1802)
may have a virtual address offset value of 0x373ea94 (column 1800). To calculate the
actual virtual address for EVAL. FUNCTION in the application process instance 1708,
the kernel module 1706 may add the base virtual address value (0x30000000) and the
virtual address offset value (0x373ea94). As illustrated in the first row of FIG. 19, the
calculated actual virtual address for EVAL FUNCTION has the value 0x3373ea%4 (the
sum of the values 0x30000000 and 0x373ea94). In the second row of FIG. 19, the
calculated actual virtual address for DOCUMENT WRITE FUNCTION START has
the value 0x3473fac8 (the sum of the values 0x30000000 and Ox473fac8). It should be
appreciated that the actual virtual addresses for the remaining rows in FIG. 19 may be

similarly calculated according to Equation 1 and stored in column 1900.

Actual VA = base VA + virtual address offset
Equation 1

[0086] The above exemplary embodiments employ an addition operation to calculate
the actual virtual addresses. However, it should be appreciated that in other
embodiments the actual virtual addresses may be obtained by subtracting the virtual

address offset from the base virtual address depending on, for instance, the conventions

31

WO 2018/022257 PCT/US2017/040502

used to calculate, the direction of memory allocation (e.g., towards the higher or lower
address) for the particular operation system/platform, ezc.

[0087] FIG. 20 illustrates another embodiment of an application-specific VAFMT
2000 comprising a URL buffer virtual address mapping using virtual address offsets.
The application-specific VAFMT 2000 generally corresponds to the VAFMT 120
illustrated in FIG. 11 with the exception that the table stores virtual address offsets
instead of actual virtual addresses. In this regard, the application-specific version
comprises a custom virtual address offset table that has virtual address offsets for
specific buffer allocator functions that may be used to determine virtual addresses of the
start and the end of dynamically allocated buffers comprising objects of specific data
structure types (e.g., class, structure, union). The URL buffer virtual address mapping
of FIG. 20 comprises separate rows for applications using a built-in HTTPS stack
(column 2002). A first row defines the URL buffer virtual address mapping for a first
such application (Application-1), and the second row defines the URL buffer virtual
address mapping for a second such application (Application-2). Column 2004 stores the
virtual address offset values of Application-1 and Application-2 for a function
performing, for example, URL data structure allocation. Columns 2006, 2008, 2010,
2012, 2014, and 2016 correspond directly with columns 1104, 1106, 1108, 1110, 1112,
and 1114 in FIG. 11. In this regard, it should be appreciated that the values of the
members/fields of the objects allocated in the buffer may be determined using the offset
and the length fields, which may also be maintained in the table for a particular
field/member that is a point of interest. The virtual addresses of the buffer allocation
functions may be used to detect the size and the addresses of the allocated buffer by, for
example, tracking the execution of the system memory allocator functions from the
region covered by the virtual addresses of the allocator functions. Once the buffer start
and end virtual addresses are known, the offset and the length fields may be used to
determine the value of a particular member/field of the objects for the particular data
structure type.

[0088] FIGS. 21 and 22 illustrate an embodiment of the process-specific VAFMTs
2100 and 2200 generated for Application-1 and Application-2, respectively. The
process-specific VAFMTs 2100 and 220 are generated using the virtual address offset
values (column 2004) in FIG. 20 and the base virtual addresses where Application-1
and Application-2 are respectively loaded by the OS application launcher/loader 1704.

The actual virtual address for Application-1 calculated according to Equation 1 above is

32

WO 2018/022257 PCT/US2017/040502

stored in column 2102 (FIG. 21), and the actual virtual address for Application-2 is
stored in column 2202.

[0089] FIG. 23 is a flowchart illustrating an embodiment of a method 2300 for
detecting target application functionality using the offset-based virtual address mapping
described above in connection with FIGS. 17 - 22. At block 2302, an application-
specific VAFMT 1702 is generated for an application. As described above, the
application-specific VAFMT 1702 comprises a plurality of virtual address offsets of
interest mapped to corresponding high-level application functionality. At block 2304,
the application may be installed on a computing device, such as, for example, a portable
computing device. At block 2306, the application may be registered for security
support provided by the HLOS 106 (e.g., registered applications 112). At block 2308,
the application may be launched. In response to launching the application, a process-
specific VAFMT 1714 may be generated for an instance of the application or an
application process instance 1708. The process-specific VAFMT 1714 defines the
actual virtual addresses of the high-level application functionality using the virtual
address offsets stored in the application-specific VAFMT 1702 and the base virtual
address from which the application or instance is loaded. The application binary code
108 may begin executing.

[0090] At block 2310, the HLOS 106 may intercept the application’s running
processes. At block 2312, the HLOS 106 may use the process-specific VAFMT 1714 to
detect and record the functional points of interest as they are executed. At block 2314,
the recorded points may be provided to the malicious code detection algorithm(s) 116 to
detect and resolve malicious attacks. The malicious code detection algorithm(s) 116
may comprise signature-based algorithm(s), pattern matching algorithms, or employ
machine learning, or other techniques. As illustrated by reference numeral 2318, blocks
2308, 2310, 2312, 2314, and 2316 may be repeated for multiple application process
instances, such that malicious code may be detected for simultaneously executing
application process instances.

[0091] It should be appreciated that one or more of the method steps described herein
may be stored in the memory as computer program instructions, such as the modules
described above. These instructions may be executed by any suitable processor in
combination or in concert with the corresponding module to perform the methods

described herein.

33

WO 2018/022257 PCT/US2017/040502

[0092] Certain steps in the processes or process flows described in this specification
naturally precede others for the invention to function as described. However, the
invention is not limited to the order of the steps described if such order or sequence
does not alter the functionality of the invention. That is, it is recognized that some steps
may performed before, after, or parallel (substantially simultaneously with) other steps
without departing from the scope and spirit of the invention. In some instances, certain
steps may be omitted or not performed without departing from the invention. Further,
words such as “thereafter”, “then”, “next”, etc. are not intended to limit the order of the
steps. These words are simply used to guide the reader through the description of the
exemplary method.

[0093] Additionally, one of ordinary skill in programming is able to write computer
code or identify appropriate hardware and/or circuits to implement the disclosed
invention without difficulty based on the flow charts and associated description in this
specification, for example.

[0094] Therefore, disclosure of a particular set of program code instructions or
detailed hardware devices is not considered necessary for an adequate understanding of
how to make and use the invention. The inventive functionality of the claimed computer
implemented processes is explained in more detail in the above description and in
conjunction with the Figures which may illustrate various process flows.

[0093] In one or more exemplary aspects, the functions described may be
implemented in hardware, software, firmware, or any combination thereof. If
implemented in software, the functions may be stored on or transmitted as one or more
instructions or code on a computer-readable medium. Computer-readable media
include both computer storage media and communication media including any medium
that facilitates transfer of a computer program from one place to another. A storage
media may be any available media that may be accessed by a computer. By way of
example, and not limitation, such computer-readable media may comprise RAM, ROM,
EEPROM, NAND flash, NOR flash, M-RAM, P-RAM, R-RAM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic storage devices, or any
other medium that may be used to carry or store desired program code in the form of
instructions or data structures and that may be accessed by a computer.

[0096] Also, any connection is properly termed a computer-readable medium. For
example, if the software is transmitted from a website, server, or other remote source

using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (“DSL”), or

34

WO 2018/022257 PCT/US2017/040502

wireless technologies such as infrared, radio, and microwave, then the coaxial cable,
fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium.

[0097] Disk and disc, as used herein, includes compact disc (“CD”), laser disc, optical
disc, digital versatile disc (“DVD”), floppy disk and blu-ray disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers.
Combinations of the above should also be included within the scope of computer-
readable media.

[0098] Alternative embodiments will become apparent to one of ordinary skill in the
art to which the invention pertains without departing from its spirit and scope.
Therefore, although selected aspects have been illustrated and described in detail, it will
be understood that various substitutions and alterations may be made therein without
departing from the spirit and scope of the present invention, as defined by the following

claims.

35

WO 2018/022257 PCT/US2017/040502

CLAIMS

What is claimed is:

1. A method for detecting high-level functionality of an application executing on a
computing device, the method comprising:

storing, in a secure memory on a computing device, an application-specific
virtual address mapping table for an application, the application-specific virtual address
mapping table comprising a plurality of virtual address offsets in the application binary
code mapped to corresponding target application functionalities;

in response to launching the application, generating a process-specific virtual
address mapping table for an instance of an application process to be executed, the
process-specific virtual address mapping table defining actual virtual addresses
corresponding to the target application functionalities using the virtual address offsets in
the application-specific virtual address mapping table; and

during execution of the application binary code for the instance of the
application process, detecting when one or more of the actual virtual addresses
corresponding to the target application functionalities are executed based on the

process-specific virtual address mapping table.

2. The method of claim 1, further comprising:

generating another process-specific virtual address mapping table for another
instance of the application process to be simultaneously executed with the other
instance of the application process;

during execution of the application binary code for the another instance of the
application process, detecting when one or more of the actual virtual addresses
corresponding to the target application functionalities are executed based on the another

process-specific virtual address mapping table.

3. The method of claim 1, wherein the actual virtual addresses are determined
using a base virtual address for the instance of the application process and the virtual
address offsets in the application-specific virtual address mapping table.

4, The method of claim 1, wherein the secure memory resides in a trusted zone in a

high-level operating system (HLOS).

36

WO 2018/022257 PCT/US2017/040502

5. The method of claim 1, further comprising:

providing the executed target application functionalities as detected from the
actual virtual addresses in the process-specific virtual address mapping table into an
exception handling module configured to detect one or more exceptions or behaviors
associated with execution of the application binary code for the instance of the

application process.

6. The method of claim 5, wherein the exception handling module comprises a

malicious code detection algorithm.

7. The method of claim 1, wherein the application comprises one of a secure web

application and a web browser.

8. The method of claim 1, wherein the application binary code is executed as

native binary code.

9. A system for detecting high-level functionality of an application executing on a
computing device, the system comprising:

means for storing on a computing device an application-specific virtual address
mapping table for an application, the application-specific virtual address mapping table
comprising a plurality of virtual address offsets in the application binary code mapped
to corresponding target application functionalities;

means for generating, in response to launching the application, a process-
specific virtual address mapping table for an instance of an application process to be
executed, the process-specific virtual address mapping table defining actual virtual
addresses corresponding to the target application functionalities using the virtual
address offsets in the application-specific virtual address mapping table; and

means for detecting, during execution of the application binary code for the
instance of the application process, when one or more of the actual virtual addresses
corresponding to the target application functionalities are executed based on the

process-specific virtual address mapping table.

37

WO 2018/022257 PCT/US2017/040502

10. The system of claim 9, further comprising:

means for generating another process-specific virtual address mapping table for
another instance of the application process to be simultaneously executed with the other
instance of the application process;

means for detecting, during execution of the application binary code for the
another instance of the application process, when one or more of the actual virtual
addresses corresponding to the target application functionalities are executed based on

the another process-specific virtual address mapping table.

11. The system of claim 9, wherein the actual virtual addresses are determined using
a base virtual address for the instance of the application process and the virtual address

offsets in the application-specific virtual address mapping table.

12. The system of claim 9, wherein the means for storing resides in a trusted zone in

a high-level operating system (HLOS).

13. The system of claim 9, further comprising:

means for providing the executed target application functionalities as detected
from the actual virtual addresses in the process-specific virtual address mapping table
into an exception handling module configured to detect one or more exceptions or
behaviors associated with execution of the application binary code for the instance of

the application process.

14. The system of claim 13, wherein the exception handling module comprises a

malicious code detection algorithm.

15. The system of claim 9, wherein the application comprises one of a secure web

application and a web browser.

16. The system of claim 9, wherein the application binary code is executed as native

binary code.

38

WO 2018/022257 PCT/US2017/040502

17. A computer program embodied in a memory and executable by a processor for
detecting high-level functionality of an application executing on a computing device,
the computer program comprising logic configured to:

store, in a secure memory on a computing device, an application-specific virtual
address mapping table for an application, the application-specific virtual address
mapping table comprising a plurality of virtual address offsets in the application binary
code mapped to corresponding target application functionalities;

generate, in response to launching the application, a process-specific virtual
address mapping table for an instance of an application process to be executed, the
process-specific virtual address mapping table defining actual virtual addresses
corresponding to the target application functionalities using the virtual address offsets in
the application-specific virtual address mapping table; and

detect, during execution of the application binary code for the instance of the
application process, when one or more of the actual virtual addresses corresponding to
the target application functionalities are executed based on the process-specific virtual

address mapping table.

18. The computer program of claim 17, further comprising logic configured to:
generate another process-specific virtual address mapping table for another
instance of the application process to be simultaneously executed with the other
instance of the application process;
during simultaneous execution of the application binary code for both instances
of the application process, detect when one or more of the actual virtual addresses
corresponding to the target application functionalities are executed based on the another

process-specific virtual address mapping table.
19. The computer program of claim 17, wherein the actual virtual addresses are
determined using a base virtual address for the instance of the application process and

the virtual address offsets in the application-specific virtual address mapping table.

20. The computer program of claim 17, wherein the secure memory resides in a

trusted zone in a high-level operating system (HLOS).

39

WO 2018/022257 PCT/US2017/040502

21. The computer program of claim 17, further comprising logic configured to:
provide the executed target application functionalities as detected from the
actual virtual addresses in the process-specific virtual address mapping table into an
exception handling module configured to detect one or more exceptions or behaviors
associated with execution of the application binary code for the instance of the

application process.

22. The computer program of claim 21, wherein the exception handling module

comprises a malicious code detection algorithm.

23. The computer program of claim 17, wherein the application comprises one of a

secure web application and a web browser.

24. The computer program of claim 17, wherein the application binary code is

executed as native binary code.

25. A system for detecting high-level functionality of an executing application, the
system comprising;
a processing device configured to execute application binary code; and
a high-level operating system (HLOS) comprising:
an application-specific virtual address mapping table comprising a
plurality of virtual address offsets in the application binary code mapped to
corresponding target application functionalities; and
a kernel module configured to generate, in response to launching the
application, a process-specific virtual address mapping table for an instance of an
application process to be executed, the process-specific virtual address mapping table
defining actual virtual addresses corresponding to the target application functionalities
using the virtual address offsets in the application-specific virtual address mapping
table;
the HLOS configured to detect, during execution of the application binary code
for the instance of the application process, when one or more of the actual virtual
addresses corresponding to the target application functionalities are executed based on

the process-specific virtual address mapping table.

40

WO 2018/022257 PCT/US2017/040502

26. The system of claim 25, wherein the HLOS is further configured to:

generate another process-specific virtual address mapping table for another
instance of the application process to be simultaneously executed with the other
instance of the application process; and

detect, during simultanecus execution of the application binary code for both
instances of the application process, when one or more of the actual virtual addresses
corresponding to the target application functionalities are executed based on the another

process-specific virtual address mapping table.

27. The system of claim 26, wherein the actual virtual addresses are determined
using a base virtual address for the instance of the application process and the virtual

address offsets in the application-specific virtual address mapping table.

28. The system of claim 26, wherein the application-specific virtual address

mapping table is stored in a trusted zone in the HLOS.

29. The system of claim 26, wherein the HLOS further comprises an exception
handling module configured to receive the executed target application functionalities as
detected from the actual virtual addresses in the process-specific virtual address
mapping table and detect one or more exceptions or behaviors associated with execution

of the application binary code for the instance of the application process.

30. The system of claim 29, wherein the exception handling module comprises a

malicious code detection algorithm.

41

PCT/US2017/040502

WO 2018/022257

221 319v1 ONIddVYIN
h ON l SS3HAAv -VNLAIA 9T (SIAHLIYO9DTY
~0L-d3141LN3Al NOILD313d 3d0D SNOIDINVIA
711 INOZ a3LSndlL
021 3719vL ONIddVYIN
NOILONN4-OL ZIT SNOILYDI1ddY a3y31sio3ay
-$S3¥AAY VNLNIA
301 (SOTH) W3LSAS ONILYYIHO TIAITHOIH
201 NdD
0rr 309 80} 3d09 81T ANIHOVIA
304N0S NOILYDITddY AYVYNIE NOILYDITddY IVNLYIA
0T AYOWIN

/!

00}

1/23

PCT/US2017/040502

WO 2018/022257

¢ Ol

00¢ /
{
‘(uawnaoganioe ‘Buligpaluawbas)aium<-Jusaindop
‘(puswinoop<-()|dwi<
AoﬁumEO_mno_@_mo_xm_A-owme\souc >>_>_Om_m_.mm = EmE:oonZﬁm Juswinooq
s0¢ () “Je10eIBYDE ge-BuLIISpajuswbas
/ foulmeNppe) JI
{{{
ooz — geeiivenn | €T | tiBumiSiuenbesans prgdde Buuygpsjuswbes
aaxa-=bBdL)SIusnbasgns Bug
}(++ ‘9zIS > 11, =17 92IS) IO}
p0C —1 REICLPEXD }osio
..... 0z {()Jes|o Bulyspaluswbes (azisi) Y
20z — _ BUBIELPEN) b =i 0219
‘Bumgisiy = Buuigpsjuswbes Buligpsiuswbag
SHIMIUBWINIOP 30 B33 Ak / miaRX3)8N[eA<-(08X8)BuLygoy (0 luswnbie<-o8xe = Bulngysiy bumg
oE:oQEwE:QmA-ooxm oN_mH “oz1s }

801

10C
UBWNI0P JUSUNIOTINLH ‘99X8 81e1S08XT)a)l buIlul J181S

S)AUBWNOOP LICH a? 104 8000 ++7

2/23

PCT/US2017/040502

WO 2018/022257

€ O

LYV1S NOILONNA LNOINILLIS 7928/P6SX0
NOILONNS 31M002 LNIWND0A 4C8/P6SX0
NOILINNS HDITINO 0ZrE6d62X0

T 3L¥M LNIAND0Q geRIE/YEXD

T 3L¥MINIAND0Q 7PBIE /7EX0

1HVIS NOILONNS 3LI¥M INIWNDO0A 8oeJe /FEX0
NOILONNA VA3 yBBIELCEXD

BORILL VDX

/

FREICLPERD

/

BRI PEXC

SJUANUBLUNIOP 18] &R03 AL

¥0€ LSTYILNI 40 INIOd TYNOILONNA

Z0E SSAMAaAy WNLYIA

0Z1 379V1 ONIddYW NOILONNL-0L-SSIUAAY TVYNLYIA

/!

00€

/

80}

90¢

44

¢0¢

3/23

WO 2018/022257 PCT/US2017/040502

400

g

GENERATE A VIRTUAL ADDRESS-TO-FUNCTION MAPPING TABLE
(VAFMT) FOR AN APPLICATION, THE VAFMT COMPRISING A
PLURALITY OF VIRTUAL ADDRESSES OF INTEREST MAPPED TO
CORRESPONDING HIGH-LEVEL APPLICATION FUNCTIONALITY

'

INSTALL THE APPLICATION ON A COMPUTING DEVICE |— 404

l

REGISTER THE APPLICATION FOR SECURITY SUPPORT
WITH A HIGH-LEVEL OPERATING SYSTEM (HLOS)

l

LAUNCH THE APPLICATION AND BEGIN
EXECUTING THE APPLICATION BINARY CODE

l

INTERCEPT RUNNING PROCESSES FOR THE
APPLICATION BINARY CODE

l

DETECT AND RECORD VIRTUAL ADDRESSES OF
INTEREST FROM THE VAFMT WHEN EXECUTED

l

PROVIDE THE RECORDED VIRTUAL ADDRESSES OF
INTEREST TO A MALICIOUS CODE DETECTION ALGORITHM

|

DETERMINE MALICIOUS CODE ACTIVITY BASED ON THE
RECORDED VIRTUAL ADDRESSES OF INTEREST — 416

— 402

— 406

— 408

— 410

— 412

L 414

FIG. 4

4/23

PCT/US2017/040502

WO 2018/022257

05
YPZYZec X0

= 6EICLOEX0

c0S
apoo Aleulg

LYVLS NOILONNA LNOANILLIS ¥928/P6SX0
NOILONNZ 300D LNIWND0J d28.P6SX0
NOILONNA MDINONO 0Zre6962X0

T 3L¥M ININND0A goeJE /iEX0

T 3LI¥M LNIWNNJ0J YPBIE/FEX0

L4V1S NOILONNS 3LI¥M LNIWND0d 8oBIC/PEXQ
NOILONND VA3 Y6RIELZEXD

70€ LSIYILNI 40 LNIOd TVNOILONNA

Z0€ SS3HAAY TvNLMIA

¢l 3719V.1 ONIddVIN NOILONNZ-OL-SS3YAAV TVNLYIA

/

009

\A

80}

11

} (Jeoeds

SPOJNNSIEDQ| Y

\

oLl

G Ol4

5/23

PCT/US2017/040502

WO 2018/022257

80aIe90eX0 ANT 3OVYdSMAN WA

08BJC99eX0 LYVLIS IOVdSMIN A

AN3 30VdS rdo IouvT WA

LYVLIS 30VdS rE0 39uYT WA

14VLS NOILONNS LNOIWILLIS 7978.P6SX0
NOILONNA 300D LNIWNJ0J ?4Z82P6SX0
NOILONN4 M2I1ONO 02FE6A6ZX0
Z 3LM INJNND0A 8SeICc/FEXD
T 31¥M LNIWND0d yPBIE/YEXD
1YVLS NOILONNA LM LNIWNJ0Q 8oeJe L EX0
NOILONNS VA3 6RIELTEXO
70€ 1S3IYILNI 40 INIOd T¥NOILONNA 20 YA

¢l 379V1 ONIddVIN NOLLONNA-0L-SS3AAAY TVNLAIA

08BISLYEXD aN3 32VdS 3000 WA

_— 80edZeIZX0 LYv1S 30VdS 3000 INA

209 $3SS3¥aav vnLAdIA | #09 ONINYIN OHOVIN

Z¢1 31gavl
ONIddVIN SSIHAAY TYNLHIA-OL-HIIHILNIAl

N 9 OIl4

009

6/23

PCT/US2017/040502

WO 2018/022257

L "9Old

/

20Z (S)¥3Av3aH LD3rg0 LdIMoS

qr0Z 30VdS 3000 WA
¥Sr [¢SP | ISP
90/ NOILO3T109D
39VadvO
PSI | €SP ¢Sr | Lsr
B0, 3IDVdS 300D NA

004

7/23

PCT/US2017/040502

WO 2018/022257

8 94

08

YRCYZCr1X0

(Jaowwsw

— [6eic/92X0] |

¥0€ LSIYALNI 40 LNIOd
TYNOILONNA

20¢€
$S34Aayv 1vn.Lyin

c08
apoo Aleulg

¢l 379V1 ONIddVIN NOILONN-0OL-SS3Aav TvnLdlA

/

801

} O108)j0D8beqIR

oLl

008

8/23

PCT/US2017/040502

WO 2018/022257

6 Ol

(sJ8Y10 03
Bunuiod syoslqo “69)
016 ¥3LNIOd d10

(sBuys “69)
806 vLvadaio

906
103r4g0 394V

(oyur ynoAe) joafqo)
706 dvW

(epoovifg
‘Aleulq NSV LIr)
206 3d09

I 1

006

106 $3SS3¥AAY TVNLHIA

ccl

9/23

WO 2018/022257 PCT/US2017/040502

.~ 1000

GENERATE A VIRTUAL ADDRESS-TO-FUNCTION MAPPING TABLE
(VAFMT) FOR AN APPLICATION, THE VAFMT COMPRISING A
PLURALITY OF VIRTUAL ADDRESSES OF INTEREST MAPPED TO
CORRESPONDING HIGH-LEVEL APPLICATION FUNCTIONALITY

v
INSTALL THE APPLICATION ON A COMPUTING DEVICE [— 1004

v

REGISTER THE APPLICATION FOR SECURITY SUPPORT
WITH A HIGH-LEVEL OPERATING SYSTEM (HLOS)

v

LAUNCH THE APPLICATION AND BEGIN
EXECUTING THE APPLICATION BINARY CODE

v

INTERCEPT RUNNING PROCESSES FOR THE
APPLICATION BINARY CODE

v

DETECT VIRTUAL ADDRESSES OF INTEREST FOR THE
VIRTUAL MACHINE HEAP ALLOCATOR/DEALLOCATOR |— 1012
FUNCTION(S) WHEN EXECUTED

v

DETECT THE VIRTUAL MACHINE ENTRY INTO A KERNEL SYSTEM|— 1014
ALLOCATOR/DEALLOCATOR FUNCTION; DETERMINE START/END
VIRTUAL ADDRESSES OF THE VIRTUAL MACHINE HEAP

;

USE A SCRIPT OBJECT HEADER SIGNATURE/PATTERN TO
DETERMINE A START OF THE JAVASCRIPT OBJECT WITHIN THE [— 1016
VIRTUAL MACHINE HEAP

:

USE THE JAVASCRIPT SOURCE CODE TO EXTRACT HIGH-LEVEL
APPLICATION FUNCTIONALITY TO DETECT MALICIOUS BEHAVIOR

— 1002

— 1006

— 1008

— 1010

— 1018

A 4

DETERMINE MALICIOUS BEHAVIOR OF THE JAVASCRIPT CODE
BASED ON THE EXTRACTED HIGH-LEVEL APPLICATION — 1018
FUNCTIONALITY

FIG. 10

10/23

PCT/US2017/040502

WO 2018/022257

b O

omMfelA o v T SUGIEE0EXD | DERIEBDEXD PRBIEL PR BRI LPeX
ONIBTA o e OSBILLPEXD | gOBIIREXD FERIELY XD YERIELYEXD
—_ - {uopenydde ==
vill {isunnin 0Lkl 30 Bueny Okl
fieuopdo) freuogao) SR Buunp (hayepdny Y10
{pasepdn y10 01T SOTT peLuLRaQ) P pauussEg
fpagepdn | ppoumsieg | (perepdn viD uoHEaGHE Apeonels pugo)
Vig BRI § pauslaamcy e
¥ SBUGO) AR BIER 0 pyng uoReILjEe
potauoRry PGt e} Buiop suoysuny mnpngs
Appanars BINIDNAS He] {pounLaeD sionenyddy 7IRp 10 iBHng
RO BIEP BHNG BINAR Apanusuhel | Ayeouisidyy) 1101} paNoAUL fiuop uogoung
DOROOJIE Ul M Biep Joyng (S0 E uopeoyddy
sepnnid sozho w mbugr | pelesnne wpm SB55SDPY SREEIDDY wigyshs 135R0uE
& pisy sapnod e | yange sped {RALIA A, jauae, BU {A1PR, 849 40}
SO 8 sy A DI o DU Joung MEIR JaUDE | DI SSSIDDY IEnUA | SSRIDDY BIMAA
, yiBuey pue yesyo uim sjqe) Buiddey ssauppy jenus woisng
\q ZLLL 10125

0cl

11/23

PCT/US2017/040502

WO 2018/022257

#0¢l 3d02
AHVYNIE NOILYIITddV
40 NOISH3IA A31vddn

90cL
NOIO3H A3FHOLVIA

AAA

¢l O

V1vavidiN
ANV S3SS3HAAV 1vNLAIA d31vaddn

¢0cl
A1Vv1diN3L 300
AHVYNIE 0dN3Sd

03sve NOILONN4 YOLY20TIV TINYI 0000000€X0

7€ +3sve T LM INFWN20Q geejgLyeX0

71 +73svd T 3LHM ™ INIWNJ0Q ¥PBIC L7EX0

v0/60/%L +03SVE =23SVE | L¥VIS NOLLONNA LM INIWND0Q 8oBJE/¥EX0

AN

00Zl V1vavli3dN

v0E
1S3431NI 40 INIOd T¥NOILINNA

¢0E Ss3ayaay
TVNLYIA

¢l 378V1 ONIddVIN NOILONN4-0L1-SS34aayv 1vnLAIA

t11

#

80l 300D AYVNIE NOILYIITddY

12/23

PCT/US2017/040502

WO 2018/022257

&L Old

03svd NOILONNS ¥O1VY201IV TINYIN

1904q9¢X0

T ALIEM LNIWN20Aa

T 3LI¥M LIN3INND0Q

0006041/ + 035V = €35V 14V1S NOILONN4 3LIHM ININND0d

00cl

13S440-31A9 ONISN NOILYLNISIdd3d $0E ONINV3IW T¥NOILONNA

J344 SSFHAAV-TVNLHIA

Z0€ Ss3ayaay
TvNLAIA

ONILNISIdd3Id OHOVIN
0Z1 319VL 9NIddVIN NOILLONN4-01-SS34aav 1vN.LHIA

13/23

PCT/US2017/040502

WO 2018/022257

{snggisuosy + noobong) INuLRIg
Vi phmenpaamey wedwos

{214 + sopunolBoid) DIYoURIG

o ‘phagenipruimey aediuon
{syanzsuelg + unolBold) sCuouey
e sewnonBug Seyumpy pIOMPDY
{1804 ‘oBappumunBy DIoADEGT
smunoeBond Pha: 1By mophy
tobai] Z8es pioppran

SHORISUO0R URUNLGROL] TgRal RIOSARPY

T T Y F LT

{sunuZisuodg « JaunodBboig) Jgunuesg
g GqunonBoig Baellaniey IOMDDY
{phad pleypusnbyy wfgpesy
Jowunonboig ‘efies vlies popopy
{gBad ghes paoppen

' oy ‘7 1ODDY

R TR S EHN Ty

{1Ba)} ‘78 pioaspeo
{oBail Ley puospRoT
siagisuong elunooboid ‘phar wompRy
{BoEUma T(oARRIRS (eARRIvS] Yang

TOEL oyepdwia) aposy Aspus opnesy

vi Ol

NOILONNA HOLYI0TIY TINYIN 0000000€X0
L Z 3LMm LNINND0A 8eeIe/EX0
T 3LM ININND0Q rPeIeLyEX0
1¥VLS NOILONNS LM LNIWNJ0Q 89BIE/EX0
¥0€ ONINVIN T¥NOILONNA Z0¢ sSs3yaav
ONILINISIHdId OHIOVIN IVNLYIA
ozt

378V1 ONIddVIN NOILONNS-OL-SS3JAAV TvNLAIA

14/23

PCT/US2017/040502

WO 2018/022257

L S T O e A P P R T T

OV0T POR'ZE BA0W 1GI90EELE

Gl "Old

{(BupgEuosy + Jpnolboig) INyIeY
18 ‘oBoysnppumiey aedunn

{Zha + smuno)bosd) DayoUeg

o8 ‘obeyareawmey asedunn
{BUGGZIsHOE + MunonBold) suIuRig
a8 aaunonbosd Bosunsy DIOMDDY
{1 Bad] ‘pRewuswntey mopmpeny
munanbong '7hes’ 1Bes pIOsDDY

{sngpzisuacs + seunonbiosg) aguouBig
o “4EpinonBos "Boxma RIOKADDY
fpfias) phewusunbyy aidgpe
spunonbold obel 'vBos papIDY
{704 ‘phas piDAADECY

ot ‘L4 AW 1Y LGREELE
BYSAOPLE i HIRUEELE
oo @ Y O08UESLE
vof o ADUL 'ROBARELE
{o# i} g i F950EELE
PTEEOCLE 19 HU9EELE
PLGUERLE 8L GHOCE1E
b 4w geunEeLs
08BIESLE beq 1p5auELss
[s (OSaURELE
DGOGEYLE ¥4 SHIGEELE
Tow 14 DL SRUEELE
o8 *q) PPR YPOUEELE

foms oay IV e
ogRREYLE 1§ DESOLELE
Io% e o WP} RESUCE1E
od g ppE HES0ceLE

Tog 24] "o 3P} OERGECLS
CIE MRS ST R
foow 'od} 44 10} RTGULELE
oy v} D} YERUERLE
{yog 'od} ' 3P} OTGUEELE
H AR TR RS
7] X0 BI9UELLL

i ' g '} s aveupy YLOURELE
gl ‘g AU IOLBUEELE
44 KoM OOG0EELE
T AOH CBOSYERLE
¥hTE

AHYNIE NOLIYOd4Y 40 NOISHIA 031v34h

___ vBIOvE0N paowppy
~ GIFGERTVE R TSOeT

[1Bas) 2Bor paoppBoyy
fnBad '10ss pioppeECT
syamsuoy depnopficyy ober ploppy
/ 23O TLENESHED "OBARGHEY USNY

ZHET spmiduny spog Ay opnesd

15/23

WO 2018/022257

PCT/US2017/040502

1600

i

STORE A VIRTUAL ADDRESS MAPPING TABLE ASSOCIATED WITH
APPLICATION BINARY CODE REGISTERED WITH A HIGH-LEVEL
OPERATING SYSTEM, THE VIRTUAL ADDRESS MAPPING TABLE

COMPRISING A PLURALITY OF VIRTUAL ADDRESSES MAPPED TO

CORRESPONDING TARGET APPLICATION FUNCTIONALITIES IN THE

APPLICATION BINARY CODE

— 1602

1605
I

DELETE THE VIRTUAL
ADDRESS POINT
ENTRIES FOR
CURRENT PSEUDO
BINARY CODE
TEMPLATE

NEW OR
UPDATED
VERSION?

NO

1604

1606

SELECT A PSEUDO BINARY CODE TEMPLATE

ASSOCIATED WITH ONE OR MORE OF THE
PLURALITY OF VIRTUAL ADDRESSES IN THE
VIRTUAL ADDRESS MAPPING TABLE

1608
y /

MATCH THE PSEUDO BINARY CODE
TEMPLATE TO BINARY INSTRUCTIONS IN
THE UPDATE VERSION OF THE
APPLICATION BINARY CODE?

YES
A\ 4
INITIATE OTA UPDATE DETERMINE THE NEW VIRTUAL |— 1610
FOR THE PSEUDO ADDRESSES CORRESPONDING TO
BINARY CODE THE BINARY INSTRUCTIONS
TEMPLATE
A 4
UPDATE THE VIRTUAL ADDRESS
MAPPING TABLE WITH THE NEW [— 1612
VIRTUAL ADDRESSES
1611
NO
»<_ ALL TEMPLATES?
1613
FIG. 16 \/s v
- » END

16/23

PCT/US2017/040502

WO 2018/022257

Ll "OId

YiZl LINdVYA

014103dS-SS3008d J14193dS$-5SS300dd

arlil 1N4VA

OviZL 1INAVA
J14103dS-55300dd

08041
JONVLSNI
§§300dd

ddv

d80.1
JONVLSNI
SS300¥d
ddVv

V801
JONVLSNI
§S3004dd

ddv

01 ITNAOIN TINYIA

(T]

$13S440 VA

VA d8vd

20ZT (LAFVA) 318vL
ONIddVIN NOILONN4-0.L-SS3IHaav
TYNLYIA 214193dS-NOILYDIddY

01 ¥3Aav01 ® 43IHONNV

NOILYOI'lddV S/0

4

0041

80l 3009

AdVNIE NOILVOI'lddVY

17/23

PCT/US2017/040502

81 "9l

18/23

OE00085E + 0ASYE = L38VE | NOMLONNG HOLYOOTIVIG ANy POLYTETXG
98 + 9A3VE HOLVOOTIVAC TENNEN TIVD BIGICLGX0
YOYYSEe0L + 038YE = 838YE | HOLYDOTIVIQ 30VdS 3000 WA YRUIELEX0
0388 NOLLONNE HOLYDOTIY NG 0000000X0
. ooscasvE | MOIYOOTI ENMBTWO | OCRIEISN

PROPOER0L + 0ASVE = GI8VE HOLYOOTIY H30VdS 3000 A PEEICLOXD
¥9681 1601 + 03SVYE = PASYE IMYIS NOILONNA INOIWILLES $O2RIPEX0
081 + £35v4 L UONIONO PPYEBALXD
0ZLyLE82 + 0I8YE = £I8YH NOUONMA MOMOND OZHEEULX0
28 + 7a8vY I LHMININNDON ORI PX0

2L+ 238vE L ILRA ININNDOO PREIELPXD
YOL60LPE + 0IBVE = ZISYE | LHVLS NOLLONNZ FUEM IN3NN00Q BOBIE L X0
0YE826/6 + 03SVE = 13SVE NOILLDNNE WAZ YHRRELEXD

¥0BL vivavisw 2081 10d TYNOLLDNAH G081 138440 YA

LOLL LWAVA DHID3dS-NOLLYDddY

WO 2018/022257

PCT/US2017/040502

6. Ol

19/23

9E0008SE + 03SYE = Z38YE | NOILONNS HOLYOOTWED 13Ny YEEYPZZZEX0
8% + 99SvE HOLYOOTIVEG ENEEY T SINICLGEXD
¥OPVEZE0L + 03SVE = 838VE | HOLVOOTIVE(30vdS 3000 WA FRAIELIEXD
09 + GAEYE HMOLYZOTIY TENNE TV OOBIEL08%0
PR0Y9ZE0L + 038VE = $38VE HOLYDOTIY 30Vd4S 3000 WA YBERIELOEXD
995811591 + 03SYE = ¥ISvE | AHYLS NOLLONNS LNOINLLLES YIERLPBEXD
0241682 + (38vVEA = £38vE NOLLONNA SO IONG QZFEBALEXD
Z% + Z35YE Z LM INSNND0A BOBIELPEXD)
ZL + 238YH VLA ININND0D YPRIELYEXD
YOL60LYE + 0FSVE = ZI8YE | LHYIS NOLONNS 3U8M INSNN00Q BIBIELDEXD
OPESZELE + 048YE = LASYE NOLLONNA TYAS PEEOCIEEND
yi81 vivaviaw 7681 104 TYROLLONN 3061 vA WNLOVY

vidl LWNAVYA DIID348-883008d

WO 2018/022257

PCT/US2017/040502

WO 2018/022257

0¢ Oid

RERR

ON/SIA BORIEIYXO Z-ueneoytdy
ON/Ig3A PERIELYXD {-uoeoyddy
Gz 2108 J— ”
5167 mm% »%mm 18 FYNLINYLS 0ioe BO0Z 900e pooz
LiNIBS wIvH H344nG Yiy0 ¥asane ATIVIINVNAG AT DIVNAL LW ANYNAG INOULY20TTY 007 wovis
v e GAYOOTTe N | RLYDOTH aIMNEILI0) O3INME3LIN aaNwaLaal RINLOBYLS SaEiHRECHRE
i euiio N tuona | NHLM SILAS $3EEIV0AV $385IUOAV «SUOLYIOTIV yiva 1un SNISH SROILY DI ddY
e o) MO N1 138440 WRDNIA WRLNA HALSAS BNIOO NOUONNA) ‘
: fomnseid oy YINOHOTHS | ONIHIHNG TN | IUVISUILNG THN | TENNIN. HOSVA 135340 YA
YIGMIN TN

0802 LMY A 434408 TUN DIIO3dS-NOLY I IddY

20/23

PCT/US2017/040502

WO 2018/022257

k¢ OId

ON/S3A > A] goenzZREzxg YERIEL PG PERICLICA) L-uoenytdy
BIBF k414 e e
i1 mx% »wﬂa.m m TUNLOOULS 0ioZ 5007 5007 cole
LINIDG V10 NILANE ¥iva ¥344n8 KTV ONYNAG (ATTYONNYHAG ATV DINVRAG MOULYDOTTY 3567 wowis
Rgpitiva LRy Basalig. OFLYIOTH aaNmaLa0) GomEaLI P T s FUOLINBLE i
Vaud | QRLYOOTIWNIHUR | yuiiinen)ia S38sIUOOY 93I55TUAAY SUOIYIOTTY Yiva R SeLLLE RkIRNE
UIGNTH S3LAE N HIORTY by ; : “ , , OHIBN SHOWY I daY
prrpAp ENIOLT I i 138440 LA THNLMA WALISAS BNDA ROLLINAS L o
: MW TN MTINIOHOTIY | OONEIIINE N | VIS UISNg THn TANNTH, O VA 138340 VA
BISWIH TE0

932 LNHYA U334N8 TN DTS- S8IC0UL

21/23

PCT/US2017/040502

WO 2018/022257

¢¢ 9Old

ONISTA e i BaIE90ZX0 088iE987%0 YERICLY LA FABEL XD Z-uogeonddy
YRS ZLZ N S — Srss
BLh7 mm% hwmmx 15 BHALINYLS BLoe 2607 - 50602 r{\Y44
ol S eiiyd CIVONIANE | ATIOHAYNAD (AT OIYNAG (ATHORYNAG INOLYODTTY THEE WVLS
SanIE : : OIVIOTY GANNNEL30) GaNINE3130) GININETIIT IWNLINHIS v
vamd - GAYOOTIYNIBLM © o saiae S35538aGY ga533HOTY SHOLYODTTY YiVQ N SdilH Nrlung
NIENIN SILAG NT HiDNTT . « : ! DNISN SNOLY I ddY
e LA M iioKa Nt 135440 TONLHIA TERLMIA WALSAS IRIOG NOLLONDA)
A3 L0/ 13 WAINIOIATIZNS | GNIM3LNE N | INVISHIISNG TN | TINNIN. MO VA 13840 VA
WA E0 NI,

00Ze LAAYA H334N8 TN JHID3dS-S83004d

22/23

WO 2018/022257 PCT/US2017/040502

2300

e

GENERATE AN APPLICATION-SPECIFIC VIRTUAL ADDRESS-TO-
FUNCTION MAPPING TABLE (VAFMT) FOR AN APPLICATION, THE
APPLICATION-SPECIFIC VAFMT COMPRISING A PLURALITY OF 2302
VIRTUAL ADDRESS OFFSETS IN THE APPLICATION BINARY CODE
MAPPED TO CORRESPONDING HIGH-LEVEL APPLICATION
FUNCTIONALITY

v

INSTALL THE APPLICATION ON A COMPUTING DEVICE |—2304

v

REGISTER THE APPLICATION FOR SECURITY SUPPORT
WITH A HIGH-LEVEL OPERATING SYSTEM (HLOS)

LAUNCH THE APPLICATION, GENERATE A PROCESS-SPECIFIC
VAFMT FOR AN INSTANCE OF AN APPLICATION PROCESS TO
BE EXECUTED (THE PROCESS-SPECIFIC VAFMT DEFINING
ACTUAL VIRTUAL ADDRESSES USING THE VA OFFSETS IN THE|_ 550g
APPLICATION-SPECIFIC VAFMT), AND BEGIN EXECUTING THE
APPLICATION BINARY CODE

I

INTERCEPT RUNNING PROCESSES FOR THE

APPLICATION BINARY CODE — 2310
INTEREST FROM THE VAFMT WHEN EXECUTED — 2312

:

PROVIDE THE RECORDED VIRTUAL ADDRESSES OF D314
INTEREST TO A MALICIOUS CODE DETECTION ALGORITHM |
DETERMINE MALICIOUS CODE ACTIVITY BASED ON THE
RECORDED VIRTUAL ADDRESSES OF INTEREST — 2316

(REPEATED FOR MULTIPLE APPLICATION PROCESS
2318 |NSTANCES EXECUTED SIMULTANEOUSLY)

— e —— —— — — — — — — — —— —

FIG. 23

23/23

[|
I |
[|
[|
I |
[|
[|
I |
[|
[|
I |
[|
I |
I |
[|
I |
| |
I DETECT AND RECORD VIRTUAL ADDRESSES OF |
I |
| |
| |
I |
I |
I |
I |
I |
I |
[|
[|
I |
[|
[|
I |
[|
[|

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/040502

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/53 GO6F21/56 GO6F11/36
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2602/032804 Al (HUNT GALEN C [US]) 1-30
14 March 2002 (2002-03-14)
paragraph [0047] - paragraph [0057]
paragraph [0095] - paragraph [0129]
paragraph [0190] - paragraph [0205]
paragraph [0223] - paragraph [0247]
X US 6 681 331 B1 (MUNSON JOHN C [US] ET AL) 1-30
20 January 2004 (2004-01-20)
colum 3 - column 7

A US 2011/082962 Al (HOROVITZ ODED [US] ET 1-30
AL) 7 April 2011 (2011-04-07)
paragraph [0046] - paragraph [0067]

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : i i . " .
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X* document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
speoial reason (as specified) considered to involve an inventive step when the document is

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
21 September 2017 29/09/2017
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel, (+31-70) 340-2040
sz:((+31-78) 340-3018 Chabot, Pedro

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/040502

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

WO 20127154996 Al (QUALCOMM INC [US];
KOTTILINGAL SUDEEP RAVI [US]; MANDAYAM
JAYANTH [US])

15 November 2012 (2012-11-15)
paragraph [0023] - paragraph [0035]
US 2014/032875 Al (BUTLER JAMES [US])
30 January 2014 (2014-01-30)

paragraph [0049] - paragraph [0063]

1-30

1-30

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/040502
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2002032804 Al 14-03-2002 US 2002032804 Al 14-03-2002
US 2005246378 Al 03-11-2005

US 6681331 Bl 20-01-2004 US 6681331 Bl 20-01-2004
US 2004143756 Al 22-07-2004
US 2006070118 Al 30-03-2006

US 2011082962 Al 07-04-2011 NONE

WO 2012154996 Al 15-11-2012 BR 112013028501 A2 10-01-2017
CA 2835000 Al 15-11-2012
CN 103518206 A 15-01-2014
EP 2707831 Al 19-03-2014
JP 6049702 B2 21-12-2016
JP 2014519089 A 07-08-2014
KR 20140016370 A 07-02-2014
RU 2013154544 A 20-06-2015
US 2013132735 Al 23-05-2013
US 2015106630 Al 16-04-2015
WO 2012154996 Al 15-11-2012

US 2014032875 Al 30-01-2014 EP 2877927 A2 03-06-2015
US 2014032875 Al 30-01-2014
WO 2014018458 A2 30-01-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - wo-search-report
	Page 68 - wo-search-report
	Page 69 - wo-search-report

