发明名称 具有优良遮断性的纳米复合材料混合物组合物

摘要

本发明是关于一种具有优良遮断性的纳米复合材料混合物组合物，以及特别是关于一种包含聚烯烃树脂；一种或多种具有遮断性的纳米复合材料选自乙烯基乙烯醇（EVOH）/插入型粘土纳米复合材料，聚酰胺/插入型粘土纳米复合材料，离子交联聚合物/插入型粘土纳米复合材料，和聚乙烯醇（PVA）/插入型粘土纳米复合材料；以及增容剂的纳米复合材料混合物组合物。这种纳米复合材料混合物组合物具有优良机械强度和对氧气、有机溶剂以及水蒸汽有优良遮断性。此外，它具有优良化学遮断性，它可以用于单层/多层吹模塑形和胶膜加工。
1. 一种有遮断性（barrier property）的纳米复合材料混合物组合物（nanocomposite blend composition），包含：
 a) 1-97wt%的聚烯烃树脂；
 b) 1-95wt%的一种或多种有遮断性的纳米复合材料，选自
 i) 乙烯基乙烯醇（EVOH）/插入型粘土纳米复合材料；
 ii) 聚酰胺/插入型粘土纳米复合材料；
 iii) 离子交联聚合物/插入型粘土纳米复合材料；以及
 iv) 聚乙烯醇（PVA）/插入型粘土纳米复合材料；以及
 c) 1-95wt%的增容剂。

2. 按照权利要求1中所述的纳米复合材料混合物组合物，其中聚烯烃树脂（a）是一种或多种物质，选自高密度聚乙烯（HDPE），低密度聚乙烯（LDPE），直链低密度聚乙烯（LLDPE），乙烯-丙烯多聚体以及乙烯-丙烯共多聚体。

3. 按照权利要求1中所述的纳米复合材料混合物组合物，其中纳米复合材料（b）中的插入型粘土是一种或多种物质，选自蒙脱石，斑脱土，高岭石，云母，汉克特石，荧光汉克特石，皂石，贝得石，绿脱石，硅镁石，蛭石，halloysite，铬岭石，suconite，magadite和kenyalite。

4. 按照权利要求1中所述的纳米复合材料混合物组合物，其中纳米复合材料（b）中的插入型粘土包含1-45wt%的有机物。
5. 按照权利要求 4 中所述的纳米复合材料混合物组合物，其中有机物有一个或多个功能基团，选自四铵，醇，顺丁烯二酸盐，琥珀酸盐，丙烯酸盐，苯甲基氨和嘧啶。

6. 按照权利要求 1 中所述的纳米复合材料混合物组合物，其中乙烯基-乙烯醇（EVOH）/插入型粘土纳米复合材料（b, i）中乙烯基-乙烯醇中乙烯的含量是 10-50mol%。

7. 按照权利要求 1 中所述的纳米复合材料混合物组合物，其中聚酰胺/插入型粘土纳米复合材料（b, ii）中的聚酰胺是一种或多种物质，选自尼龙 4.6，尼龙 6，尼龙 6.6，尼龙 6.10，尼龙 6.12，尼龙 11，尼龙 12 和不定形的尼龙。

8. 按照权利要求 1 中所述的纳米复合材料混合物组合物，其中离子交联聚合物/插入型粘土纳米复合材料（b, iii）中离子交联聚合物的熔合指数是 0.1-10 克/10 分钟（190℃，2,160 克）。

9. 按照权利要求 1 中所述的纳米复合材料混合物组合物，其中增容剂（c）是一种或多种化合物，选自乙烯-乙烯酰-丙烯酸共多聚体，乙烯-乙烷基丙烯酸酯共多聚体，乙烯-烷基丙烯酸酯-丙烯酸共多聚体，顺丁烯二酐改性（接枝）高密度聚乙烯，顺丁烯二酐改性（接枝）直链低密度聚乙烯，乙烯-烷基异丁烯酸酯-甲基丙烯酸共多聚体，乙烯-丁基丙烯酸酯共多聚体，乙烯-乙烯基醋酸盐共多聚体，乙烯-乙烯基醋酸盐共多聚体及其改性体。

10. 按照权利要求 1 中所述的纳米复合材料混合物组合物，其中增容剂（c）对于 100wt% 的纳米复合材料混合物组合物包含 1-80wt% 的包含苯乙烯和环氧化合物组成的主链和丙烯酸单体组成的侧链的共多聚体。
11. 按照权利要求 10 中所述的纳米复合材料混合物组合物，其中环氧-改性聚苯乙烯的共多聚体包含：

a) 一条主链包含：

i) 70-99wt%的苯乙烯；以及

ii) 1-30wt%的由化学结构式 1 所表示的环氧化合物；以及

b) 侧链包含 1-80wt%的由化学结构式 2 所表示的丙烯酸单体：

[化学结构式 1]

-R-CH-CH-R'
\/
O

（在化学结构式 1 中，R 和 R' 是末端有双键的 C_{1-20} 的脂肪族残基或 C_{5-20} 芳香族残基。）

[化学结构式 2]

-CH_{2}-CH-
|
C=O
|
CH_{3}

12. 按照权利要求 9 中所述的纳米复合材料混合物组合物，其中顺丁烯二酐改性（接枝）高密度聚乙烯，顺丁烯二酐改性（接枝）高密度聚乙烯，顺丁烯二酐改性（接枝）乙烯-乙稀基酯酸盐共多聚体有侧链，对于 100wt%的主链包含 0.1-10wt%的顺丁烯二酐。

13. 包含权利要求 1 中的纳米复合材料混合物组合物的容器。
14. 包含权利要求 1 中的纳米复合材料混合物组合物的胶膜。
具有优良遮断性的纳米复合材料混合物组合物

发明背景

（a）发明领域

本发明是关于一种具有优良遮断性（barrier property）的纳米复合材料混合物组合物（nanocomposite blend composition），特别是关于一种具有优良机械强度和对氧气、有机溶剂以及水蒸汽有优良遮断性的纳米复合材料混合物组合物，它可以用于单层/多层吹膜塑形和胶膜加工。

（b）相关技术描述

由于优良可塑性，机械特性以及水蒸汽遮断性，在很多领域中使用常用树脂，如聚乙烯和聚丙烯。虽然这些树脂也具有良好的气体遮断性，但是它们被限制用于需要优良氧气遮断性的农用化学品和食品的包装和容器。因此，通过共挤压，打成薄片，加涂层等方法将这类物质的包装和容器（瓶）制作成多层。

由乙烯基-乙烯醇（EVOH）共多聚体和聚酰胺制成的多层塑料产品是透明的而且有良好的气体遮断性。然而，由于乙烯基-乙烯醇和聚酰胺较常用树脂贵，在这些产品中它们的含量是受限制的。乙烯基-乙烯醇和聚酰胺需要制作得尽可能薄。

为了减少塑料容器的生产成本，提出了一种乙烯基-乙烯醇和聚酰胺与便宜的聚烯烃混合的方法。然而，由于乙烯基-乙烯醇和聚酰胺与聚烯烃并
不十分相容，混合很难。如果乙烯基-乙烯醇和聚酰胺没有被充分混合，生产的胶膜和薄片的机械特性变得很差。

在这方面，提出了一种应用增容剂提高乙烯基-乙烯醇和聚酰胺与聚烯烃的相容性的方法。由于增容剂可以提高乙烯基-乙烯醇和聚酰胺对聚烯烃的相容性，因此在提高产品的机械强度和化学遮断性方面，选择一种好的增容剂是一个非常重要的技术问题。

美国专利 No.4,971,864，美国专利 No.5,356,990，欧洲专利 No.15,556
以及欧洲专利 No.210,725 公开了一种使用增容剂的方法，通过接枝聚乙烯和马来酰胺制得。虽然这种增容剂提高了氧气遮断性和机械强度，由于乙烯基-乙烯醇，聚酰胺和离子交联聚合物具有亲水特性，它的水蒸汽遮断性很差。因此，最外层的疏水树脂的加工很困难，没有获得有效遮断性形态的合适加工条件。

正如在美国专利 Nos. 4,739,007，4,618,528，4,874,728，4,889,885，
4,810,734 以及 5,385,776 中公开的，纳米复合材料是一种纳米尺寸的剥离的或插入的片状物，局部取向胶样结构，或者其弥散性混合物，包括弥散在基质多聚体中的插入型粘土，如低聚物，多聚体或者两者的组合物。

一般来讲，纳米复合材料制造技术分为两种方法。

第一种方法是上述聚酰胺纳米复合材料的制造方法。在本方法中，将
单体插入插入型有机粘土中，粘土片状物通过层间聚合弥散。本方法限定于只有当阳离子聚合可能的情况下才能够被应用。

因此，需要研究关于一种具有优良机械强度和化学遮断性以及能够实现有效遮断性形态的纳米复合材料混合物组合物。

发明内容

进行本发明是考虑到现有技术中的问题，本发明的一个目的是提供一种具有优良机械强度和对氧气、有机溶剂，与水蒸汽有优良遮断性，以及可以用于单层/多层吹膜塑形和胶膜加工的纳米复合材料混合物组合物。

本发明的另外一个目的是提供一种包含纳米复合材料混合物组合物的容器或胶膜。

为了达到上述目的，本发明提供了具有遮断性的纳米复合材料混合物组合物（nanocomposite blend composition），包括:

a) 1-97wt%的一种聚烯烃树脂；

b) 1-95wt%的一种或多种具有遮断性的纳米复合材料（nanocomposite），选自:
i) 乙烯基乙烯醇（EVOH）/插入型粘土纳米复合材料；

ii) 聚酰胺/插入型粘土纳米复合材料；

iii) 离子交联聚合物/插入型粘土纳米复合材料；以及

iv) 聚乙烯醇（PVA）/插入型粘土纳米复合材料；以及

5 c) 1-95wt%的一种增容剂。

本发明也提供包含上述纳米复合材料混合物组合物的容器或胶膜。

附图简要说明

图 1 是在不连续树脂存在时有遮断性的纳米复合材料形态的示意图。

图 2a 是根据本发明优选的实施例制备的，包含纳米复合材料混合物组合物的吹模容器切片的电子显微照片（×200）。

图 2b 是根据本发明优选的实施例制备的，包含纳米复合材料混合物组合物的吹模容器切片的电子显微照片（×5,000）。

图 3a 是包含一种混合物组合物，不包含本发明中的有遮断性的纳米复合材料混合物组合物的吹模容器切片的电子显微照片（×2,000）。

15 图 3b 是包含一种混合物组合物，不包含本发明中的有遮断性的纳米复合材料混合物组合物的吹模容器切片的电子显微照片（×5,000）。

图注
10: 连续的聚烯烃相

11: 不连续的高微合成物相

优选实施例的详细说明

现在将更加详尽地对本发明进行说明。

本发明的发明者们致力于开发一种可以提高纳米复合材料混合物组合物的机械强度和化学遮断性的方法。在这么做的过程中，他们发现在有遮断性的树脂，如乙烯基乙烯醇 (EVOH)，聚氨胺，离子交联聚合物和聚乙烯醇 (PVA) 中剥落插入型粘土制备的高微合成物，通过延伸在树脂中的气体和液体通道而提高对水蒸汽和液体的遮断性，并且在吹模塑形过程中通过增强连续聚烯烃相的熔合力抑制雏形下垂。此外，他们发现包含有遮断性的纳米复合材料，聚烯烃树脂和增容剂的纳米复合材料混合物组合物具有优异机械强度和对氧气、有机溶剂和水蒸汽的优良遮断性。

本发明中的纳米复合材料混合物组合物其特征为：包含聚烯烃树脂 (a)；有遮断性的纳米复合材料 (b)，选自一种或多种 i）乙烯基乙烯醇 (EVOH) /插入型粘土纳米复合材料，ii）聚氨胺/插入型粘土纳米复合材料，iii）离子交联聚合物/插入型粘土纳米复合材料，和 iv）聚乙烯醇 (PVA) /插入型粘土纳米复合材料；以及增容剂 (c)。

对于聚烯烃树脂 (a)，可以使用高密度聚乙烯 (HDPE)，低密度聚乙烯 (LDPE)，直链低密度聚乙烯 (LLDPE)，乙烯-丙烯多聚体，或乙烯-丙烯共多聚体。
100wt%的纳米复合材料混合物组合物中聚烯烃树脂的含量优选1-97wt%，更加优选20-97wt%。

纳米复合材料(b)中使用的插入型粘土优选包含有机插入型粘土。插入型粘土的有机物含量优选1-45%。

插入型粘土是一种或多种物质，选自蒙脱石，高岭石，云母，汉克特石，黄光汉克特石，皂石，贝得石，绿脱石，硅镁石(stevensite)，蛭石，hallosite，铬岭石(volkonokoite)，suconite，magadite和kenyalite，以及有机物，有机物优选有一个功能基团，选自四铵，膦，顺丁烯二酸盐，琥珀酸盐，丙烯酸盐，苯基基氯和唑啉。

乙烯基乙烯醇(EVOH)/插入型粘土纳米复合材料(b,i)中乙烯的含量优选10-50mol%。如果乙烯含量低于10mol%，由于可加工性很差，熔合铸型变得很困难。此外，如果含量超过50mol%，对氧气和液体的遮断性变得不够充分。

聚酰胺/插入型粘土纳米复合材料(b,ii)中的聚酰胺，可以使用尼龙4.6，尼龙6，尼龙6.6，尼龙6.10，尼龙6.12，尼龙11，尼龙12，或者不定形的尼龙。

离子交联聚合物/插入型粘土纳米复合材料(b,iii)中的离子交联聚合物优选丙烯酸和乙烯的共聚体，熔合指数为0.1-10克/10分钟(190℃，2,160克)。

100wt%的纳米复合材料混合物中，有遮断性的纳米复合材料(b)的含量优选1-95wt%，更加优选1-30wt%。
根据插入型粘土的含量，有遮断性的纳米复合材料为不连续树脂提供有利条件可以得到图1的形态。在不连续树脂（乙烯基乙烯醇、聚酰胺，离子交联聚合物或聚乙烯醇）中插入型粘土剥离得越细，就能得到越好的遮断性。这是由于剥离的插入型粘土能够形成一个阻挡膜，因此能提高树脂自身的遮断性和机械特性，最终提高组合物的遮断性和机械特性。

据此，本发明通过混合有遮断性的树脂和插入型粘土，在树脂中弥散纳米尺寸的插入型粘土从而最大化了多聚体系和插入型粘土的接触面积而最大化了对气体和液体的遮断性。

增容剂（c）降低了聚烯烃树脂的脆性，同时提高了其在纳米复合材料中的相容性，可以形成一个有稳定结构的组合物。

增容剂优选使用有极性基团的碳氢化合物多聚体。使用有极性基团的碳氢化合物多聚体时，碳氢化合物多聚体部分能提高增容剂对聚烯烃树脂和有遮断性的高分子组合物的亲和力，因此提供树脂组合物一个稳定的结构。

增容剂可以使用一种或多种化合物，选自环氧-改性聚苯乙烯共多聚体，乙烯-乙烯基-丙烯酸共多聚体，乙烯-乙醇基丙烯酸酯共多聚体，乙烯-碳基丙烯酸酯-丙烯酸共多聚体，顺丁烯二酐改性（接枝）高密度聚乙烯，顺丁烯二酐改性（接枝）乙烯基共多聚体，乙烯-丁基丙烯酸酯共多聚体，乙烯-乙烯基醋酸盐共多聚体及其改性体。

100wt%的纳米复合材料混合物组合物中，增容剂的含量优选1-95wt%，更加优选1-30wt%。
使用环氧-改性聚苯乙烯共聚物作为增容剂时，优选的共聚物包含：包含 70-99wt%的苯乙烯和 1-30wt%的化学结构式 1 中所表示的环氧化合物的主链，以及包含 1-80wt%的丙烯酸单体的侧链。其含量在 100wt%的纳米复合材料混合物组合物中为 1-80wt%。

\[
\begin{align*}
\text{[化学结构式 1]} \\
-R-\text{CH-CH-R'} \\
\text{O}
\end{align*}
\]

在化学结构式 1 中，R 和 R' 是末端有双键的 C_{1-20} 的脂肪族残基或 C_{5-20} 芳香族残基。

\[
\begin{align*}
\text{[化学结构式 2] } \\
\text{CH}_2-\text{CH-} \\
\text{C=O} \\
\text{CH}_3
\end{align*}
\]

顺丁烯二酚改性（接枝）高密度聚乙烯，顺丁烯二酚改性（接枝）直链低密度聚乙烯，或顺丁烯二酚改性（接枝）乙烯-乙烯基醋酸盐共多聚体优选包含在 100wt%的主链中 0.1-10wt%的顺丁烯二酚的侧链。

本发明的纳米复合材料混合物组合物可用于制造吹模塑形产品，单层产品和多层产品。此外，它可以通过吹模塑形，挤压模具，喷射模具或热力模具被制作成容器（瓶子）或胶带。

制作方法如下。
单一加工工序制造

在生产终产品的吹模塑形和喷射模塑过程中，有遮断性的纳米复合材料（b）被分散在基质树脂（a: 聚烯烃树脂）中，同时使用单螺旋挤压机，共旋转双螺旋挤机，反旋转双螺旋挤压机，连续混合机，行星齿轮挤压机等。

多加工工序制造

通过使用多聚体混合机，如单螺旋挤压机，共旋转双螺旋挤压机，反旋转双螺旋挤压机，连续混合机，行星齿轮挤压机，分批混合机等制备有遮断性的纳米复合材料（b）。然后将高聚物与基质树脂（a: 聚烯烃树脂）混合得到终产品。

制造方法可以用吹模，挤压模塑，喷射模塑或热力模塑。然而，本发明并不限定于上述方法，包括用于制造有遮断性的容器的所有加工方法。

在下文中通过实施例更加详尽地描述本发明。然而，以下实施例只是为了更好地理解本发明，本发明并不限定于以下实施例。

[实施例]

实施例 1

（有遮断性的纳米复合材料的制备）

将 15wt%的乙烯基-乙烯醇共多聚体（EVOH; E-105B（乙烯含量：44wt%）; Kuraray，日本；熔合指数：5.5 克/10 分钟；密度：1.14 克/立方
厘米）和作为增容剂的 13.3wt%的顺丁烯二酐改性（接枝）高密度聚乙烯（HDPE-g-MAH; Uniroyal Chemical, USA; PB3009 (MAH 含量: 1%); 熔合指数: 5 克/10 分钟; 密度: 0.95 克/立方厘米）置于双螺旋挤出机 (ZSK 25; W&P, 美国) 的主漏斗中。然后将 3.3wt%的经插入型粘土有机化的蒙脱石（南部插入型粘土产品, 美国; C2OA）单独置于侧漏斗中，制备乙烯基乙烯醇/插入型粘土纳米复合材料。挤出温度条件为 180-190-200-200-200-200-200℃，螺旋速率为 300 转/分钟，出料条件为 10 千克/小时。（纳米复合材料混合物的制备）

制备好的乙烯基乙烯醇/插入型粘土纳米复合材料与 68.4wt%的高密度聚乙烯（BD0390; LG Chem; 熔合指数: 0.3 克/10 分钟; 密度: 0.949 克/立方厘米）干混合，然后放入双螺旋挤出机中。挤压组合物以获得纳米复合材料混合物。挤压温度条件为 180-190-190-190-190-190℃，螺旋速率为 300 转/分钟，出料条件为 10 千克/小时。（容器的制备）

制备好的纳米复合材料混合物吹模塑形制成 1000 毫升容器。加工温度条件为 160-190-190-190-185℃，螺旋速率为 33 转/分钟。

实施例 2

（有遮断性的纳米复合材料的制备）

将 15wt%的乙烯-乙烯醇共多聚体和 13.3wt%顺丁烯二酐改性（接枝）高密度聚乙烯置于双螺旋挤出机的主漏斗中。然后将 3.3wt%的经插入型粘
土有机化的蒙脱石单独置于侧流斗中，制备乙烯基乙烯醇/插入型粘土纳米复合材料。挤压温度条件为 180-190-200-200-200-200℃，螺旋速率为 300 转/分钟，出料条件为 10 千克/小时。

（纳米复合材料混合物和容器的制备）

制备好的乙烯基乙烯醇/插入型粘土纳米复合材料与 68.4wt%的高密度聚乙烯干混合，然后吹模塑形制成 1000 毫升容器。加工温度条件为 160-190-190-190-185℃，螺旋速率为 33 转/分钟。

实施例 3

（有遮断性的纳米复合材料的制备）

将 97wt%的聚酰胺（尼龙 6）置于双螺旋挤压机的主流量中。然后将 3wt%的经插入型粘土有机化的蒙脱石单独置于侧流斗中制备聚酰胺/插入型粘土纳米复合材料。挤压温度条件为 220-230-245-245-245-245℃，螺旋速率为 300 转/分钟，出料条件为 10 千克/小时。

（纳米复合材料混合物和容器的制备）

15wt%的制备好的聚酰胺/插入型粘土纳米复合材料与增容剂即 7wt%的顺丁烯二酸酐改性（接枝）高密度聚乙烯和 68wt%的高密度聚乙烯干混合，然后吹模塑形制成 1000 毫升容器。加工温度条件为 160-190-190-190-185℃，螺旋速率为 33 转/分钟。用电子显微镜（×200；×5,000）观察吹模塑形容器的切片时可以看到圆盘样结构。结果如图 2a 和图 2b 所示。
实施例 4

（有遮断性的纳米复合材料的制备）

将 97wt%的聚酰胺（尼龙 6）置于双螺旋挤压机的主漏斗中。然后将 3wt%的经插入型粘土有机化的蒙脱石单独置于侧漏斗中，制备聚酰胺/插入型粘土纳米复合材料。挤压温度条件为 220-230-245-245-245-245℃，螺旋速率为 300 转/分钟，出料条件为 10 千克/小时。

（纳米复合材料混合物和容器的制备）

制备好的聚酰胺/插入型粘土纳米复合材料与一种增容剂即 7wt%的环氧-改性聚苯乙烯共多聚体（311 x 121 x 41；Johnson Polymer，美国）和 68wt%的高密度聚乙烯干混合，然后吹模塑形制成 1000 毫升容器。加工温度条件为 160-190-190-190-185℃，螺旋速率为 33 转/分钟。

比较实施例 1

100wt%的高密度聚乙烯吹模塑形制成 1000 毫升容器。

比较实施例 2

除了不使用经插入型粘土有机化的蒙脱石之外，进行与实施例 1 相同的程序。

比较实施例 3
除了不使用经插入型粘土有机化的蒙脱石之外，进行与实施例 2 相同的程序。

比较实施例 4

除了不使用经插入型粘土有机化的蒙脱石之外，进行与实施例 3 相同的程序。

比较实施例 5

除了不使用经插入型粘土有机化的蒙脱石之外，进行与实施例 4 相同的程序。用电子显微镜（×2,000；×5,000）观察吹模塑形容器的切片。结果如图 3a 和图 3b 所示。

比较实施例 6

（有遮断性的纳米复合材料的制备）

将 97wt%的高密度聚乙烯置于双螺旋挤出机的主漏斗中，然后将 3wt%的经插入型粘土有机化的蒙脱石单独置于侧漏斗中制备高密度聚乙烯/插入型粘土纳米复合材料。挤出温度条件为 175-190-190-190-190-190℃，螺旋速率为 300 转/分钟，出料条件为 10 千克/小时。

（纳米复合材料混合物和容器的制备）

制备好的高密度聚乙烯/插入型粘土纳米复合材料吹模塑形制成 1000 毫升容器。加工温度条件为 160-190-190-190-185℃，螺旋速率为 33 转/分钟。
实验实施例

对在实施例1和2以及比较实施例1和3中制造的吹模塑形容器的液体和气体的遮断性用以下方法测定。结果如表1所示。

[表1]

<table>
<thead>
<tr>
<th>分类</th>
<th>液体遮断性（%）</th>
<th>气体遮断性（cc/m²·day·atm）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25℃时重量变化</td>
<td>50℃时重量变化</td>
</tr>
<tr>
<td>甲苯</td>
<td>甲苯</td>
<td>Desys</td>
</tr>
<tr>
<td>实施例1</td>
<td>1.29</td>
<td>14.70</td>
</tr>
<tr>
<td>实施例2</td>
<td>0.03</td>
<td>0.97</td>
</tr>
<tr>
<td>实施例3</td>
<td>0.02</td>
<td>0.85</td>
</tr>
<tr>
<td>实施例4</td>
<td>0.02</td>
<td>0.88</td>
</tr>
<tr>
<td>比较实施例1</td>
<td>3.45</td>
<td>32.52</td>
</tr>
<tr>
<td>比较实施例2</td>
<td>1.14</td>
<td>12.88</td>
</tr>
<tr>
<td>比较实施例3</td>
<td>1.70</td>
<td>15.52</td>
</tr>
<tr>
<td>比较实施例4</td>
<td>1.37</td>
<td>13.25</td>
</tr>
<tr>
<td>比较实施例5</td>
<td>1.44</td>
<td>15.17</td>
</tr>
<tr>
<td>比较实施例6</td>
<td>2.96</td>
<td>27.45</td>
</tr>
</tbody>
</table>

a）液体遮断性-甲苯，Desys除草剂（1% deltametrine + 乳化剂，稳定剂和溶剂；Kyung Nong），Batsa杀虫剂（50% BPMC + 50%乳化剂和溶
剂）和水放在实施例 1 和 2 以及比较实施例 1 和 3 制造的容器中，然后在
50℃强制排气的条件下 30 天后测定重量的变化。

b）气体遮断性（cc/m²·day·atm） - 实施例 1 和 2 以及比较实施例 1
和 3 中的吹模塑形容器在温度为 23℃，相对湿度为 50% 的条件下放置 1 天。
然后测定气体的渗透率（Mocon OXTRAN 2/20，美国）。

如表 1 所示，按照本发明的实施例 1 到 4 的纳米复合材料混合物组合
5 物包含：聚烯烃树脂；一种或多种具有遮断性的纳米复合材料，选自乙烯
基乙烯醇（EVOH）/插入型粘土纳米复合材料，聚酰胺/插入型粘土纳米复
合材料，离子交联聚合物/插入型粘土纳米复合材料和聚乙烯醇（PVA）/
10 插入型粘土纳米复合材料；以及一种增容剂，这种纳米复合材料混合物组
合物与比较实施例 1 到 6 中的纳米复合材料混合物组合物相比对气体和液
体具有更好的遮断性。

如上所述，本发明中的纳米复合材料混合物组合物具有优良机械强度
15 和对氧气、有机溶剂以及水蒸汽有优良遮断性。此外，它具有良好的化学
遮断性，它可以用于单层/多层吹模塑形和胶膜加工。
图 3b