
3,260,997 R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

July 12, 1966

93. Sheets-Sheet
Filed Sept. 3, 196l.

€

@)

ROLLAND B ARMD
'N VENTORS

W LLAM WEGLER

ATTORNEYS

3,260,997 R. B., ARNOT ETAL

STORED FROGRAM SYSTEM

July 12, 1966

93. Sheets-Sheet 2
Filed Sept. 3, 196l

- ? ?????.

Sin32 3 HBip

July 12, 1966

Filed Sept. 3, 196l

?

A 6A 8A

R. B. ARNDT ETAL.

STORED PROGRAM SYSTEM

3,260,997

95 Sheets-Sheet 3

s

e

3,260,997 R. B., ARNOT ETAL

STORED PROGRAM SYSTEM

July 12, 1966

| LINN ÁHOWEW |NBNWWH3d

3,260,997 R. E. ARNDT ETAL

STORED PROGRAM SYSTEM

July 12, 1966

July 12, 1966 R. B. ARNDT ETAL- 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 13, l96) 33 Sheets-Sheet 6

(b) (C) (d)

4-3 4 - 4 4 - 5

CLEAR SET

(e) (Cill_EAR (f) SET

FIG.4

July 12, 1966 R. B., ARNOT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 13, 1961 93 Sheets-Sheet 7

(9) OO? HTO

| -?---

(¿?) GON Will TV3

&O. Of 79 ld

July 12, 1966 R. B. ARNDT ETAL- 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, l96 93. Sheets-Sheet 8

------------- --+----- -- - - -- z n-s

|

? 0g (4) tOd GS

0000 - d .3S3

9) 2Od TJ

orm

July 12, 1966 R. E. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196l. 93. Sheets-Sheet 9

: (6) YISNI IW3d 32

WGNON

adW

July 12, 1966 R. B. ARNOT ETAL

STORED PROGRAM SYSTEM

Filed Sept. 3, 196)

SOd LS

20d 3S

OOd 3S

3,260,997

93 Sheets-Sheet llll

July 12, 1966 R. B. ARNOT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 13, 196l. 93. Sheets-Sheet l?

9 O d

Onn

???? ? --- wHam-s •
awan · -- awan

alumn
--- -----

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 1961

GOOW dy z

d 3S I

93. Sheets-Sheet lis

c? () a-300w day ION

(0ty) dIXIS 103 138
2) LSN | d | XS

6c9W

| ld i3S -

Old 3S - le

?

July 12, 1966

Filed Sept. 13, 196

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM,

3,260,997

93. Sheets-Sheet la

d --d

O3 3000

dW

July 12, 1966

Filed Sept. 13, 196l

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

ÇEO 1SN | - 69-9

3,260,997

93. Sheets-Sheet lis

?

?

|--|-

July 12, 1966 R. B. ARNDT ETAL
STORED PROGRAM SYSTEM

Filed Sept. 3, l96.

3,260,997

93 Sheets-Sheet l8

(6) 39N3 3 ON 783d O.W.

(8) 9x X2

SigvN3 agoyls

(6) 39W N3 3 ONW 3d O A

July 12, 1966 R. B. ARND ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. l5, 196l. 93. Sheets-Sheet l',

V CO {8) 90 81SN]

COW W3W S

July 12, 1966

Filed Sept. 3, 1961

R. E, ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

93. Sheets-Sheet l8

:

July 12, 1966 R. E, ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. l3, 196l 93 Sheets-Sheet 13

(d30) 2 d 1 » S LONGS

SN3S OS

O

dOS 03:3S

July 12, 1966

Filed Sept. 3, 196l

9O SN |

|-
92 SM |

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

-
s ?

3

| ! -

3,260,997

93 Sheets-Sheet 20

ti di N

1 ?

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. l3, 196l. 93 Sheets-Sheet 2

OI YLSNI,

| || LSN |

10 djSN

| - || ?0?

2.I JSN1

2 0 LSN |

92 LSN |

2 SNI Fil
90 SNI ??| - - Of

177 1SN |

- Os

L -

July 12, 1966 R. E. ARNDT ETAL- 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, l96l. 95 Sheets-Sheet 24

(61) In O. Auvº

OdW

—

July 12, 1966

Filed Sept. 3, 196l.

07

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

93. Sheets-Sheet 25

(6) blem 0.1 A44w0

(6) In O. JVO

3-9

C T (61) 2In OL A89v0

July 12, 1966 R. B. ARNDT ETAL- 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 13, 196l. 93. Sheets-Sheet 26

(6) 2n O. Ke8V)

-

s

July 12, 1966

Filed Sept. 3, 196l

R. E, ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

93. Sheets-Sheet 27

July 12, 1966 R. B. ARNDT ETAL- 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196l 93. Sheets-Sheet 28

800

July 12, 1966

Filed Sept. 3, 196l

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

95 Sheets-Sheet 30

wama

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 1961 95 Sheets-Sheet 3l

July 12, 1966

Filed Sept. 15, 196l.

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

i -

F 70 - o ?? { c

s

?0 810 - 8 e 2

?
ic ???- 10 0

3,260,997

93. Sheets-Sheet 32

GO

O

July 12, 1966 R. B. ARNDT ETAL

STORED FROG FAM SYSTEM

Filed Sept. 3, 196

s

10- | ie ||

- ?

9
N

5, 15 g | ie |

? ?????? 6?
s

900- |ie

3,260,997

93. Sheets-Sheet 33
|

(6) -- 007 WW 3 GS

(8) - GO, W3W HO
3

-

July 12, 1966 R. E. ARNDT ETAL- 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196l 93. Sheets-Sheet 3:

X

2 O

(I) 2. LO-H

(II) £ 810 - 8

July 12, 1966

Filed Sept. 3, 196l.

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

95 Sheets-Sheet 36

-

9

July 12, 1966

Filed Sept. 5, 196l

5 Eu?le : -

R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

95 Sheets-Sheet 37

July 12, 1966 R. E, ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196l 93. Sheets-Sheet 58

???

t

s

?) : = ee

ÓA (OOA)

July 12, 1966

filed Sept. 13, 196l.

R. B. ARNDT ETAL
STORED PROGRAM SYSTEM

- ? -- ? .

3,260,997

93 Sheets-Sheet 39

CA E.
OA 20A) 3-2

9-12 E
(tOA EQA 20A)
GI 3 S 13C 2CA

3 SIS 0A

KVD
f

c

2
a.

- CN:
Od cd S25

- >

?

July 12, 1966

Filed Sept. 3, 196l.

R. E, ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

93. Sheets-Sheet 40

8 3 Si3S GOA

July 12, 1966

Filed Sept. 13, l96.

O

OO

?00

:00 N39
HN G8 NG

Oe 8-2

89-2

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

33 Sheets-Sheet 4l

000 N39
18 KN) 38 WING

26-2 9-22

SOINOO SO3:3 AD:

O- EO

July 12, 1966

Filed Sept. 3, 196)

26

v2.0 N39
SHX3 38M

R. E, ARNDT ETAL

STORED PROGRAM SYSTEM

?

3,260,997

93 Sheets-Sheet 42

OldW

July 12, 1966

Filed Sept. 3, 1961

ti 20 JH i 000
di WNW-S 80S

SOLWTSNWR OW3). G. W9)

a-2

8-2

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

?

i
?

3,260,997

93. Sheets-Sheet 43

I-9

6-2

{6} Tgi NG GSOS

July 12, 1966

Filed Sept. 13, 1961

F. B. ARNDT ETAL

STORED PROGRAM SYSTEM

H

ºX AS 33 y NT |-

93 Sheets-Sheet 44

3,260,997

July 12, 1966

Filed Sept. 15, l96l.

R. E, ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

93. Sheets-Sheet 48

8

80

2X HOMS

l. 3 S13S

X MS
SS3037

OX AS SSTOV
df0d0 398 : NG

9| 3 SAS 90M

SS S S

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196l 95 Sheets-Sheet 50

--|--|----

O
OWN9 ISO

OS 3.
NOON

.
6)???n

O
OO
CN

S2
LL

O
l
H
LY)
CD
LL
Oa.

-???

July 12, 1966 R. E, ARNDT ETAL

STORED PROGRAM SYSTEM

Filed Sept. 3, 196

3,260,997

93. Sheets-Sheet 5

4d09.

GdOS)

dOS)

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196 93 Sheets-Sheet 52

O} O - 39

20 O

(OS) IO-TO

July 12, 1966 R. E, ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196l 93. Sheets-Sheet is 4

- f

LL- ??????
ro

o

Io e i does a

2d.
0-2

d

(?) 2- HO
??

09 3 N

a

SN3S 2

July 12, 1966 R. E. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. l3, 196l. 33 Sheets-Sheet 55

rfs

inaino awiga-2

July 12, 1966

Filed Sept. 13, l96)

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

93. Sheets-Sheet 56

206
CO

(SS) 2) s- i NG XS 9179

100
O O

CN 00 ?
o O No OO
u

CD oE
- OC - || N? , 7 M3X3

l E) 0-0

July 12, 1966 R. B. ARNOT ETA 3,260,997
STORED PROGRAM, SYSTEM

Filed Sept. 13, 196l 33. Sheets-Sheet 7

(2) AOW3& 2 NWHO

2) GWnSqq ? NwH)

ran o -- 3 9. (IS) 098 ind N &3
20) “-WN3X3 3y9) 2 N? X33 WS3-20

7 Ia no Kid -2. - ??
S. - . 6 dW

62.

83- 9 z--

- -

20 O

:

4 WNW 3 NO IN 2) B - Ed LM - CE

SNV | O N

{6, 2 NV HO LOf N. C.

e

2 - 8 ?

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

July 12, 1966

Filed Sept. 3, 196l

900

- O
G1900

1I-20
Ol 900

900

OO I

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

93. Sheets-Sheet 59

(y -40 All Wid W08-) 900 3S

! -- Xl 07:49, 3d W:

92-20

I-2)

9-SS M.

2-2)

9-2

O-20

i-SS M.

3 XOW. ScjWi

- O

G-3

60-0

2-SS NA

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196 93. Sheets-Sheet 60

3WSG 3d in G
(8)

O | O G GO'HS YOyg

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196l 93 Sheets-Sheet 6l.

vid

i
g-ML 3 w8
AdWO

20 - ??? 0

23 = f?? (2%)

3WSG 3d, N.

i -- --- --
???????????????? ---

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

July 12, 1966 R. B. ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196l. 95 Sheets-Sheet 63

AO

July 12, 1966

Filed Sept. 13, 1961

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

1 XIOti81 3dtil
OL 9OT

3,260,997

93. Sheets-Sheet 64

900

2 4078 i 3dW|

9 XOYj.i. 3d Wi.
O. O.

s

GOO

?00

OO

July 12, 1966 R. B. ARNDT ETAL- 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196l 93. Sheets-Sheet 65

??? 2d

EE 3d 19 WS E dTLYCANCIS
E di SL ????

Tr- ? 9) ISIS

: ?

WO

dOS

July 12, 1966

Filed Sept. 13, 196

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

93. Sheets-Sheet 66

July 12, 1966

Filed Sept. 3,

?? + ?? ???? ?

d 3

10 d?

Old NOW WINON

Oi ON.W30 W

R. E, ARNDT ETAL- 3,260,997
STORED PROGRAM SYSTEM

1961 93. Sheets-Sheet 68

i.

July 12, 1966 R. E. ARNDT ETAL- 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 3, 196 93. Sheets-Sheet 69

(0)} dOS 103 3S

On CNvidi,
(6) 34O4S / OWO

(6) & ISIN HL7

(2I) diXIShvine3-NON
{2} d IXS SSG

O) dIMS (OSS

glys longs

July 12, 1966 R. E, ARNDT ETAL 3,260,997
STORED PROGRAM SYSTEM

Filed Sept. 13, 196l 93. Sheets-Sheet 70

(8) d-d

OdW

Ot7) diyS Gil

ad

-OCA d):

| - 3OO Bº ION

3rd NC SSIO

G.N.
d ~ ??? 408 M

3-2- O TO

GiN

July 12, 1966

Filed Sept. 3, 196l

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

95 Sheets-Sheet 7 l.

I SN71 TO
de LN || 30883

OdW

Sfid
LSS

T
(??)

dgJN 90-83. O33

????

{trib) Idyll,
GS fd f’S OG

OOW
W. WG OM

3 us

Gd N

July 12, 1966

filed Sept. l3, 196.

R. B. ARNDT ETAL
STORED PROGRAM SYSTEM

3,260,997

93. Sheets-Sheet 72

(¿t7) SNVal VIVO

(27) idèN 8 O3

(2t7) SNyi IWO

Old W

(27) idèi Ni

(217 day IN, O

(27) iddi. Ni 20

July 12, 1966

Filed Sept. 3, 196l

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

3,260,997

93. Sheets-Sheet 73

???

? s ? s
(1INf LX3 WOJ -) - 4 N |

CoW

(10 OG WO -)

djIN
NX3

OG

l s
?

idei LN 308-3

3,260,997 R. E. ARNDT ETAL
STORED PROGRAM, SYSTEM,

July 12, 1966

33 Sheets-Sheet 74 Filed Sept. 3, 196l.

|800° 18 2 IN 3000 dQ ? |N

| || 9 | 9 | : | ; EN|HOW W

0

?THalSB? 69.)
| | |

3,260,997 R. E, ARNDT ETAL.
STORED PROGRAM SYSTEM

July 12, 1966

93. Sheets-Sheet 76 1961 Filed Sept. 13,

800)||8 9 10 |
| 1

|

|

| P || g || 3 :

|

[×] G IN|
| 00 G 1 N

11 || O || 6 || 8 || 2 || 9 9 3710) 0 BIN|HOVW

| | 1 |

3,260,997

93. Sheets-Sheet 77

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

Filed Sept. 3, 1961

July 12, 1966

P2P 8?

3000 'd0 9 |0(ÖBS 030N 31X3) 300083181€38 G-6)

3,260,997

93 Sheets-Sheet 78

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

Filed Sept. 3, 196l

July 12, 1966

|| BT10) 0 BN|HOW W

Lae
| | (M)

800, 8 | 800??? 3(10) d() 9 || 800W (8 , ! 3000 d()) |

3,260,997 R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

July 12, 1966

93. Sheets-Sheet 73 Filed Sept. 3, 196l

? | HCOV S 12 10
|

H(10w (8

|

9) || 2| || 3:|

3000 d0 Ç ?N

6 | 8 || || || 9 | 9

92 ET10) 0 BNÍHOWW

M.) 800V
6 (A) HÖGV 1 v. 10

TH31$10386-9,0

3,260,997 R. B. ARNDT ETAL
STORED PROGRAM SYSTEM

, 1966 July 12

93. Sheets-Sheet RO 96. Filed Sept. 13,

O

? ? ? |

? ? ? | N

OVW

||

q8
99 BT10KO BIN|HOW W

3,260,997

93. Sheets-Sheet 81

R. E, ARNDT ETAL

STORED PROGRAM SYSTEM

Filed Sept. 13, 196l.

July 12, 1966

|

3,260,997

95 Sheets-Sheet 8:

R. B. ARNDT ETAL
STORED PROGRAM SYSTEM

Filed Sept. 13, 196

July 12, 1966

Tualsignae +
|·

9?9) ?? ? 41 (? 831S1038 22:01,0
LOL| ??????? *** ?

83

3,260,997

93. Sheets-Sheet

R. B. ARNDT ETAL
STORED PROGRAM SYSTEM

Filled Sept. 3, 196l.

July 12, 1966

260,997 3 AR NOT ETAL

STORED PROGRAM SYSTEM

R. ES July 12, 1966

4 93. Sheets-Sheet 8 Filed Sept. 13, 196l

3,260,997 R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

July 12, 1966

33 Sheets-Sheet Ri,

N

3,260,997 R. B. ARNDT ETAL

STORED PROGRAM SYSTEM
July 12, 1966

93. Sheets-Sheet 86 l3, 196 Filed Sept.

3)| | | 0 | | 6 || 8 21 3710)\O BIN|HOW W

||

0|| 6 || 8 | 1 || 9 | G | #º || ? 19 ET10), O BIN|HOW W

3,260,997 R. B. ARNDT STAL

STORED rROGRAM SYSTEM

July 12, 1966

93 Shost g-Sheet. A filed Sept. 3, 196l.

? ? ? ?|-D2G ?H
| |

3,260,997 R. E. ARNDT ETAL

STORED PROGRAM SYSTEM

July 12, 1966

3,260,997 R. B. ARNDT ETAL
STORED PROGRAM SYSTEM

July 12, 1966

93. Sheets-Sheet 91 Filed Sept. 13, 196l.

b) || 31 || 3

91 BT10) 0 BN|HOVW

äGOV S HJCIV (8
3000 do wº | N |

91 || 3)

(W)800???NHLT LI ??????t)|---- | ((~o: … dag og

8· · · ·

3,260,997

95 Sheets-Sheet 9:

R. B. ARNDT ETAL

STORED PROGRAM SYSTEM

96. V

July 12, 1966

Filed Sept. l3

| || | | ||? ? ? ? ? ? ? — _____??T??????????????????????—————?TT | || || || || || || || || ? ?????????????????

| | ||? ? ?&!!

| (A) ?ddy : 11

; ;| |{(M) J(JQW || 27 | 0?00???N ?_DTF? ______________?——?========= } ????——??

United States Patent Office 3,260,997
Patented July 12, 1966

1.

3,260,997
STORED PROGRAM SYSTEM

Rolland B. Arndt, Minneapolis, and William Weigler,
St. Paul, Minn., assignors to Sperry Rand Corporation,
New York, N.Y., a corporation of Delaware

Filed Sept. 13, 1961, Ser. No. 137,795
92 Claims. (C. 340-172.5)

This invention relates to instruction sequencing of a
stored program data processing system, and more particu
larly, to one wherein a next instruction can be acquired
from memory simultaneously with the execution of a
current instruction.

In data processing systems of the digital type, the
manipulation and transfer of data words is normally
under control of instruction words in a program which
is stored internally of the system in a memory unit. The
data words are usually also stored within the memory
unit. The typical instruction sequencing requires that
the memory address of an instruction word be generated
to acquire same for subsequently controlling the acquisi
tion and manipulation of a data word within an arithmetic
unit or the like. In the so-called single address system,
the memory address of each instruction in the stored
program is calculated by a unit of the control section
designated as a program address counter, or the like.
The instruction word itself has a format including at
least an operation code specifying the function to be
executed, as well as the memory address of a data word
to be used in execution of this function. The time re
quired for the processing of an instruction is usually
measured commencing from the time that the program ad
dress counter references the memory to acquire the in
struction itself, and ending with the time that the execu
tion of the instruction using the data word has been
terminated. Therefore, for programming purposes, the
processing time of each instruction in the program covers
a period occupied by two successive memory reference
cycles, the first being the reference for the instruction
word and the second being the reference for the data
word whose address is specified by the previously ac
quired instruction. Thus, for most programs devised
for prior art systems, the number of arithmetic operations
which can be processed in a given period of time is sub
stantially less than would be the case if an execution
(which includes a memory reference for the operand)
could be performed during each machine cycle.
The present invention permits a substantial decrease

in effective processing time of instructions of a stored
program by normally permitting the acquisition of an
instruction word from a memory unit at the same time
that the execution of a previously acquired instruction
is being performed. Thus, as soon as the execution of a
previously acquired instruction is terminated, a new in
struction has already been placed into the control unit
from the memory unit, so that a new execution cycle can
commence immediately without requiring an intervening
cycle for instruction acquisition only. Therefore, for
purposes of the programmer, each machine cycle of the
system can normally be considered one in which a proc
essing of a different instruction will occur. There would
therefore be but few machine cycles in which the arithme
tic unit of the system cannot be utilized, whereas in the

5

()

20

40

45

50

55

60

2
prior art, the arithmetic unit normally stands idle every
other cycle. For a given number of instructions in the
program, the total time required to process these instruc
tions is therefore substantially less and may approach one
half the time required to process the same number of
instructions in the typical prior art system.
The above advantages of the present invention are

obtained by providing at least two individual memories
each of which can store both instruction and data words,
and each of which has its own address and buffer trans
fer registers for gaining access thereto. The invention
also has the ability to reference both memories simul
taneously, one for the next instruction and the other for
the data word to be used in execution of the previously
acquired instruction. This feature is herein designated
as an overlap instruction sequencing cycle. However, in
certain programs it may be necessary to acquire the next
instruction from the same memory that issues the operand
data word used in the execution of the current instruction.
In such cases, the next instruction does not begin until
the operand used in the current instruction is extracted
from this memory. Thus, the acquisition of the data
word operand for the current instruction takes precedence
over acquisition of the next instruction so that the overlap
sequencing feature is inhibited, and the next instruction
cannot be acquired from its memory until one machine
cycle later. In this event, the programmer must consider
that the processing time of the next instruction (whose
acquisition has been delayed by inhibition of overlap)
is extended by a time equal to the duration of one machine
cycle.

It is therefore an object of the present invention to
provide a data processing system having at least two
individual and independent memory units for storing both
instruction and data words, together with means for ref
erencing said memory units simultaneously with a view
toward extracting an instruction from one and a data
word from the other.

Another object of the present invention is to provide
a data processing system having at least two independent
memory units for storing both instruction and data words
wherein acquisition of a data word takes priority over
acquisition of an instruction word if both are stored in
the same memory unit.
A further object of the present invention is to provide

a data processing system of the above described kind
which utilizes a double rank instruction register for hold
ing two instruction words at a time.
A further object of the present invention is to provide

a data processing system of the above described type
which employs single address instructions, and has a
double rank program address counter capable of simul
taneously holding the memory addresses of two successive
instructions of the stored program.

For some instruction words, such as those specifying
multiply, divide, square root, and shift operations, the
actual execution time in most cases requires more than
one machine cycle as compared to execution times of one
machine cycle for the simpler arithmetic operations such
as add, subtract, etc. The present system provides con
trol circuitry within the arithmetic unit for executing these
extended sequence instructions without need for the in
struction word to be continuously held in the program unit

3,260,997
3

execution is terminated. Therefore, upon initiation of
the extended sequence execution, the program unit may be
cleared of the initiating instruction word, and subsequent
instrutcion words of the program are acquired from
memory and executed by units of the system other than
the arithmetic unit. Thus, the present system provides
a maximum utilization of time in that the processing of
non-arithmetic instructions, which follow an extended se
quence instruction, need not be delayed until execution of
the extended sequence istruction is terminated. How
ever, if a subsequent instruction is acquired which re
quires use of the arithmetic unit at the time that the
arithmetic unit is executing a previously acquired ex
tended sequence instruction, then the memory instruction
sequencing of the system must be inhibited until the arith
metic unit is free to accept another arithmetic instruction.

It is therefore another object of the present invention
to provide a data processing system having at least two
independent memories for storage of both instruction and
data words wherein the acquisition and execution of non
arithmetic instructions can continue with overlap even
though a previously acquired extended sequence instruc
tion is being executed by the arithmetic unit.

For certain special instructions, the above described
novel overlap feature must be modified. For example, i.
the execution of some instruction words requires that a
jump be made in the program sequencing from an instruc
tion memory address held by the program address counter
to an instruction memory address held in the instruction
word itself. In this case, the program address counter is
inhibited from referencing memory for the next instruc
tion during one machine cycle, at which time a memory
is referenced by a portion of the instruction word itself.
Furthermore, a class of instruction words may require
that the execution of an instruction word be prevented,
with a skip being made to the next following instruction
word in the program. This skip operation is usually con
ditional upon the result of an arithmetic operation in the
arithmetic unit. Therefore, if the skip condition is sensed
to be present, the program address counter is required to
calculate the address of the next instruction following the
instruction to be skipped.

Consequently, yet another object of the present in
vention is to provide means in the system of the above
described type to inhibit the normal operation of a pro
gram address counter when a jump instruction is to be
executed.
A further object of the present invention is to modify

the operation of the program address counter in the sys
tem of the above described type if an instruction skip con
dition is detected.

For repeated executions of a particular instruction word
in the program, the technique in the present system is to
precede the repeated instruction by a special instruction
for the purpose of setting up certain control circuits de
signed to carry out the repeated operations. In this event,
the repeated instruction is maintained in the instruction
register until all of the required number of executions is
terminated. Therefore, overlap of instruction acquisition
and data operand acquisition is inhibited for this period of
time so that the repeated instruction cannot be erased
from the instruction register by the next following instruc
tion,

It is therefore another object of the present invention to
provide control means in the system of the above de
scribed type whereby the acquisition of instruction words
from memory is inhibited during the execution of a re
peated instruction.

Other conditions which affect the overlap instruction
sequencing of the present invention are those in which a
request is made for the computer to transfer a data word
between it and some external unit, and those in which
a request is made to interrupt the processing of main pro
gram instructions for the purpose of initiating a sub

i)

| 5

2)

3; 5

4)

5 5

6)

4
routine opearition. In either of these cases, the overlap
function is inhibited for at least one machine cycle so that
special instructions can be forced into the program in
struction register from sources other than the individual
1810 rle:S.

It is therefore a further object of the present invention
to provide means in a system of the above described type
to inhibit overlap, and thereby delay acquisition of an
instruction in the program, upon granting of a request for
a data word transfer or the initiating of a sub-routine.
These and other objects of the present invention will

become apparent during the course of the following de
scription when taken in conjunction with the drawings,
which illustrate a preferred embodiment of the inven
tion for carrying out the above described novel features.
FIGURES 1a and 1b show an overall block diagram of

the system incorporating the present invention;
FIGURE 2 is a block diagram of the variable memory

access circuits;
FIGURES 3a and 3b comprise a block diagram of the

permanent memory access circuits;
FIGURES 4a through 4f show the basic logic elements

used in the present system;
FIGURES5a, 5b, and 5c show the P register;
FIGURE 6 shows the P* register;
FIGURES 7a, 7b, and 7c show the PAC Address

Counter;
FIGURES 8a and 8b show U register stages 0 through

5;
FIGURES 9a and 9b show the command translator cir

cuits for the U register;
FIGURES 10a and 10b show U register stages 10

through 23;
FIGURES 11a and 1 lb show U* register stages 0

through 5;
FIGURES 2a and 12b show the command translator

circuits for the U* register;
FIGURES 13a, 13b and 13c show U* register stages

10 through 23;
FIGURES 14a and 14b show U register stages 6

through 9 and U* register stages 6 through 9;
FIGURE 15 shows the address translator circuits for

U* register stages 6 through 9;
FIGURES 16a and 16b show the R register;
FIGURES 17 at and 17b show the R Memory Counter;
FIGURES 18a and 18b show the OR gates;
FIGURES 19a and 19b show the U* Carry Tree;
FIGURE 20 shows the comparator;

l FIGURES 21a and 21b show the V register and trans
ators;
FIGURES 22a and 22b show the O register;

fi FIGURE 23 shows the variable memory control flip
ops;
FIGURES 24a, 24b and 24c show the W register and

translators;
FIGURE 25 shows the permanent memory gating

Ogic;
FIGURE 26 shows the Z register;
FIGURE 27 shows the permanent memory control flip-flops;
FIGURES 28a and 28b show the F1 register;
FIGURE 29 shows the C1 register;
FIGURE 30 shows C1 sequence control;
FIGURES 31a and 3 lb show the F2 register;
FIGURE 32 shows the C2 register;
FIGURE 33 shows C2 sequence control;
FIGURE 34a and 34b show the D register;
FIGURES 35a and 35b show D sequence control;
FIGURE 36 shows the D counter;
FIGURES 37a and 37b show the L register;
FIGURES 38a and 38b show the Line Pulse Gen

erator;
FIGURES 39a and 39b show the memory access con

trol;

3,260,997
5

FIGURE 40 shows the skip and arithmetic lockout
control;
FIGURE 41 shows the repeat control;
FIGURE 42 shows the priority circuits;
FIGURE 43 shows the interrupt and data transfer

intruction generator;
FIGURE 44 shows the external real time sync control;
FIGURES 45a and 45b comprise a timing diagram

illustrating operation of the invention when overlap is
permissible;
FIGURE 46 is a timing diagram illustrating operation

of the invention when overlap is inhibited;
FIGURES 47a and 47b comprise a timing diagram

illustrating operation of the invention during an extended
sequence;
FIGURES 48a and 48b comprise a timing diagram

illustrating operation of the invention when executing
an instruction jump;
FIGURE 49 is a timing diagram illustrating operation

of the invention when executing a selective skip instruc
tion;
FIGURE 50 is a timing diagram illustrating operation

of the invention when executing an arithmetic skip
instruction;
FIGURES 51a, 51b, 51c and 51d comprise a timing

diagram illustrating operation of the invention for an
input-output data transfer operation;
FIGURES 52a and 52b comprise a timing diagram

illustrating operation of the invention when an interrupt
subroutine is requested;
FIGURES 53a and 53b comprise a timing diagram

illustrating operation of the invention when executing
a repeated instruction;
FIGURES 54a and 54b comprise a timing diagram

illustrating operation of the invention when repeating
the operation of a skip instruction; and
FIGURE 55 is a timing diagram illustrating the opera

tion of the invention when an interrupt subroutine or
data transfer is requested during the repeat mode.

In the system disclosed herein, both words of data
and words of instruction are stored in memory locations
and, when acquired therefrom, are employed in a man
ner similar to that shown in much of the prior art. For
example, an instruction word is comprised of 25 binary
bits with parity and includes an operation code portion
(OP CODE) specifying the function, e.g., ADID, SUB
TRACT, etc., to be executed. A word memory ad
dress portion "S' is also included which usually specifies
the location of the data word (operand) to be used in
execution of the operation code. Alternatively, this
address portion can denote the address of the next in
struction word to be processed, a constant, a shift con
trol value, or other special values. Instruction words
further contain an index address portion "j" which may
be used to obtain a number from auxiliary storage for
the purpose of adding same to the "S" address in order
to modify the latter just prior to execution of the opera
tion code. This modified word address portion of the
instruction is designated as "T." Data words are also
comprised of 25 binary bits with parity and represent
numbers in fractional binary notation with a sign bit
placed to the left of the binary point. Negative num
bers are represented by the 2's complement of positive
numbers. Thus, 0.1011 is equal to the decimal value
of /2 --/8 --Ag or -- A6), while 1.0101 is equal to
- 1-4-4-46 or I-1A6. The instruction and data
word formats are illustrated below.

INSTRUCTION WORD FORMAT

OP CODE j S, then T

22:23:24 olla also shoulashdish
?

Parity (odd)

5

20

2. 5

3. 5

55

65

()

75

6
In general, "S' and "T" specify memory addresses where
in are stored operands. "j" specifies an address in an
auxiliary memory (here designated as R memory) where
in is stored a modifying index number specified as R.

Thus, R+"S"="T."

DATA WORD FORMAT
Sign: 0 = plus; 1 =negative

FRACTIONAL NUMBER

34 o:
? ; ??K Binary Point Parity (odd)

Basically, acquisition and execution of a single instruc
tion requires 10 microseconds in the present system. As
shown below, the basic instruction processing time is con
sidered in terms of two 5-microsecond periods, where a
5-microsecond period is defined to be one machine cycle.

INSTRUCTION PROCESSING TIME

?? \/ ?????
Acquire Instruction Acquire Operand
froln Memory fron Memory
and Index 'S' Address and Executive. Op Code

N /N^????
N / N /?/

«H—- 5 inicroseconds —» «-—- 5 microSeconds -»

TIME RELATIONSHIP IN THE BASIC
INSTRUCTION

Common Commands, used to acquire an instruction,
are executed during the first 5-microsecond period. Dur
ing the next 5-microsecond period, the operand is acquired,
and then used in the execution of the instruction.

In order to effect a maximum utilization of time, the
present invention is designed logically in a way that per
mits the simultaneous processing of certain portions of
successive instructions. Thus, the memory acquisition
time associated with the current instruction occurs during
the same actual time as the execution time associated with
the previous instruction. Likewise, the execution time
associated with the current instruction and the memory
acquisition time of the next instruction occur simultane
ously. This association of successive instructions is illus
trated below.

Microseconds
5 10 15

Current Instruction

/?
N ?????

acquisition execution

--------------------------------- -- --
acquisition excution

N /
N/

Next Instruction

NORMAL ASSOCIATION OF SUCCESSIVE
INSTRUCTIONS

The illustration above shows that the computer may
handle a new instruction every five microseconds. There
fore, for programming purposes, five microseconds can be
considered the basic processing time requirement for any
given instruction.

3,260,997
7

Two individual memories designated as W and V, plus
the ability of the computer to reference both memories
simultaneously, make this instruction-overlapping feature
possible. However, in certain programs it may be neces
sary to acquire the next instruction from the same memory
that issues the operand used in the current execution of
the instruction. In such cases, the processing of the next
instruction does not begin until the operand used in the
current instruction is extracted from memory, thus adding
five microseconds to the program at this point as shown
below.

Microseconds
O 5 10 15 20

------------------ ---
Current Instruction

\’’?
/ W operand N

YS S MMMM S M iiSJSGSGSSSMSSSMSu S u SSSSSSMSSSS
: y Wreference
--------------- N ?? /^

NI cannot reference W NeXt Stre: tÓ In
at this time

THE ASSOCIATION OF SUCCESSIVE INSTRUC
TIONS WHEN AN ATTEMPT IS MADE TO SIMUL
TANEOUSLY REFERENCE THE SAME MEMORY

During the Multiply, Divide Square Root, and Shift
instructions (hereafter called extended sequences), spe
cial conditions exist regarding the overlap of instructions.
For these instructions from two to thirteen machine cycles
may be required for execution by the arithmetic unit. .
Only instructions which are non-arithmetic may be proc
essed during the existence of an extended sequence since
the arithmetic unit can only operate on one instruction at
a time. During the extended sequence, each non-arithme
tic instruction is handled in the conventional manner. A
normal succession of non-arithmetic instructions during
an extended sequence is subject to the same conditions as
a normal succession of arithmetic or non-arithmetic in
structions during those times that an extended sequence
does not exist. A maximum of 13 non-arithmetic instruc
tions can be processed during the extended sequence as
shown below. The only instruction shown (other than
the extended sequence itself) that may be arithmetic is
n+13.

Microseconds

n (Extended Sequence)

THE RELATIONSHIP OF A SERIES OF NON-ARITH
METIC INSTRUCTIONS AND AN EXTENDED
SEQUENCE

The number of instructions that is processed during an
extended sequence reduces proportionally as the number
of special conditions increases. Other conditions that in
fluence the processing times of instructions are those in
which a jump or a skip instruction is being executed, or
when an instruction is being repeated. Furthermore, the
request by the system of an input/output data transfer or
for an interrupt sub-routine also affects the normal pro
gram Sequence.

5

:20

3:)

st

si

E)

s 5

i)

65

()

--

TABLE () F {{}NTENTS Columns

Overall System --- 8
8 - ? ? ? ? - - - ? ? ? ? ? ? ? - - - - - - - - - - -- ? ? ? ? ? ? ? ? ? ? ? ? ? i.0. O0ntrol

1.1. Memory---- 12
1.2. Arithletic.-- 15
1.3. Input/Output 16
1. 4. Error--------- 7

General.-------------- 8
2.0. Memory Adltiresses.------------------------- 18
2.I. Basic Circuits--------- - - - - 18

Detailed Figure Description-------- SSSSSSSS 20
8.0. Prograin Aldress Counter--------------------------- 20
8.1. Instruction Registers and Connland Translators- 28
3. 3. R. Motºry -- ------ - 3S
3.3. Variable Meinlory -...-------------------- 4.
3... Permanent Memory an tor Input S 49
3.5. Channel 1 Input Output - - - - 54
3.6. Channel 2 Input Output.------------ - - - - 57
8.7. Subcommand and Memory Access Control- - - ?8
3.8. Interrupt and Data Trailsfer Control ------ - 79

S4 ? ? ? ? ? ? - - - - - - - ? Operation
4.0. Overla!)------------- 84
4.1. Overla) Inhibition - S
4.2. Extended Sequence. S9
4.3. Instruction Junp--- 92
4.4. II,struction Skip -- 95
4.5. Data Traunsfer- 100 ? ?? ?? ? ? - ? - -- ? ?? ? ? ? ??- ? - ? ? ?

46. Interrupt---------------- 105
4.7. Repeated Instruction--- - -- ?0?

16 ? - - - - - - - - - - - - - - - - - ? lValtie8?)Ill0g .4.8

OVERALL SYSTEM
FIGURE 1 is a block diagram of the overall system,

which will first be described in order to subsequently make
clear the relationships between the individual detailed
units. The transmission of data between functional units
is depicted with heavy connecting lines. Control paths
between functional units are indicated by light connecting
lines. The arrowhead(s) indicates in what direction data
may be transferred from one functional unit to another or
the relative paths of control between functional units.
Arrowheads on both ends of a line indicate that data
transmission or control paths may occur in either direc
tion. A circle with a number within it is placed on all
data flow lines. The number indicates the number of bits
that are contained in the binary quantity that can be trans
mitted. Whenever a dot also appears within the circle,
this indicates that the data is "double gated' from one
functional unit to another. Double gated should be con
strued to mean that both the "O's" and "1's' of a binary
quantity are transmitted. If no dot appears within the
circle, the quantity is single gated, which means that only
"1’s” are transmitted. The letter (s) “A,” “C.” “IAO,'
“M,” or "E' next to a particular block indicates that it is
a part of the arithmetic, control, input/output, memory,
or error units respectively.

1.0. Control

The Control Section receives, interprets, and directs the
processing of each instruction. In directing the execution
of an instruction, the Control Section exercises supervi
sion over the activities of the computer by controlling the
timing of all computer operations. The principal circuits
of the Control Section are the Interrupt and Data Trans
fer Control, Instruction Register (U and U* registers).
Command Translator Circuits, Subcommand and Memory
Access Control, Main Pulse Distributor, Program Address
Counter (P and P*), and R Memory Control. During the
execution of an instruction, the instruction word is held
in the Instruction Register. The Command Translator
Circuits interpret the operation code portion of the in
struction and determine which commands are required
for its execution. The Subcommand and Memory Access
Control interprets the address portion of the instruction
and determines which memory section is to be referenced.
The Command Translator Circuits and the Subcommand
and Memory Access Control generate the commands in a
Specific sequence of steps necessary to execute the instruc
tion. The Interrupt and Data Transfer Control enables
the computer operation to be interrupted and directed to
perform special operations. The R Memory Control is
normally employed to reference R Memory and withdraw
a number used to index the 'S' address portion of the
instruction word to form the "T" address portion.

3,260,997

Program. Address Counter-The Program Address
Counter provides the memory address of the next instruc
tion to be acquired. The memory address is entered in
the Program Address Counter either manually or auto
matically from the Instruction Register as the result of an
Interrupt or Jump instruction. As each instruction is ac
quired, the Program Address Counter normally advances
by one count and thus presents the next address in order.
In specific cases, however, the current instruction being
executed will prevent the normal advancing of the Pro
gram Address Counter. For example, a skip instruction
forces the Program Address Counter to advance by two,
while a Jump instruction or an Interrupt will force a new
address into the Program Address Counter. An address
is generated by the Program Address Counter in the fol
lowing manner:
P* is cleared
P is transmitted to P*
P is cleared
(P*--n) is transmitted to P (where n=1 or n-2)
P Register.-The P register is a 14-bit register which

holds the memory address of the next instruction after it
is computed by the Address Counter. An address can
also be placed in P from U*10-23 if a Jump instruction
is being performed. The P register communicates with
the W and V address registers and with the R transfer
register.

Address Counter.- The Address Counter provides a
means for adding either one or two to the quantity in P*,
i.e., it computes the address of the next instruction.

P* Register.- The P* register is a 14-bit register which
holds the address of the instruction currently being per
formed.

Instruction Register.- This provides enabling signals
to the Command Translator Circuit, R Memory Read and
Word-Write Circuits, and the Subcommand and Memory
Access Control. The address portion of instruction is
transmitted to one of several possible destinations as de
termined by the Command Translator Circuits and Sub
command and Memory Access Control. For example,
if the instruction code specifies a store operation, then the
address portion will be treated as an address and trans
mitted to the appropriate memory as directed by the Sub
command and Memory Access Control. If the instruc
tion is interpreted as a selective sense instruction, then the
address poriton of the instruction will be treated as an
operand to determine whether or not the action requested
will occur. (The selective sense instructions are always
sensed and interpreted, but are only executed if a corre
sponding sense Selection has been made at the Computer
Control Panel.)

In general, the Instruction Register receives an instruc
tion word from either the Variable or Permanent Memory
(or manually from the Computer Control Panel),
translates the operation code into commands, modifies the
Variable or Permanent Memory address by some quantity
from R Memory if necessary, and uses this modified or
unmodified Variable or Permanent Memory address to
obtain an operand from storage if one is required for the
instruction. The commands issued by the Command
Translator Circuits make possible various operations by
different sections of the computer so that the instruction
can be performed in logical, sequential steps.
The registers which comprise the Instruction Register

and the main data paths for data transmitted to and from
the Instruction Register are shown in FIGURE 1.
U and U* Registers.--These registers are 24-bit regis

ters used to hold a complete instruction word while vari
ous operations necessary for the execution of the instruc
tion are being performed. A quantity can be entered into
U0-23 via the Z or O transfer register, or manually from
the Computer Control Panel (not shown).

(a) U0-5: This portion of the U register holds the

5

()

30

40

5 5

60

5

10
operation code of an instruction while the code is being
translated by the Command Translator Circuits.

(b) U* 0-5: This portion of the U* register holds the
operation code (after its transmission from UO-5) for
further translation of the instruction by the Command
Translator Circuits.

(c) U6–9: This portion of the U register holds the
address of an R Memory index word which is referenced
by the 'i' address portion of the instruction. If no R
memory word is required, no quantity is placed in U.6-9.

(d) U* 6-9: This portion of the U* register holds the
j address (after its transmission from U6-9) of an R
Memory word also. From this register the address can
be translated, and the R Memory address specified can
be referenced.

(e) U10-23: This portion of the U register holds the
“S” address of an operand in Permanent or Variable
Memory or the Accumulator. The operand is required
for the execution of the instruction,

(f) U*Add Tree: The U* Add Tree makes possible
the addition of some quantity in the R register (R Mem
ory) to the quantity in U10-23. This operation is es
pecially usefui for indexing. For some instructions,
U10-23 is modified by the addition of the contents of the
R register, and for others U10–23 is left unmodified and
placed directly into U* 10-23.

(g) U* 10–23. This portion of the U* register holds
the modified "T' (or unmodified) Variable or Permanent
Memory or Accumulator address of the instruction oper
and. Register bits U* 0–23 are the main portion of the
Instruction Register that communicate directly with vari
ous sections of the computer.
Command Translator Circuits.-The Command Trans

lator Circuits sense the output of the six highest order bits
of the Instruction Register (U0–5 and U*0-5), and trans
lates each of 35 possible operation codes into a unique
set of command enables. Timing pulses, generated by the
Main Pulse Distributor, strobe these enables and thereby
generate the commands in the sequence necessary to carry
out the steps in the execution of each instruction.
Subcommand and Memory Access Control.-The Sub

command and Memory Access Control directs the refer
encing of all memory sections except R memory. It
Senses the outputs of the Instruction Register, Program
Address Counter and the Command Translator Circuit
and determines which memory section is to be referenced.
Using timing signals generated by the Main Pulse Distri
butor, the Subcommand and Memory Access Control is
Sues the commands to reference the specific memory
section.

There are two primary functions of Subcommand and
Memory Access Control. The first primary function is
the control of the computer during the execution of a
Repeat, Selective Sense or Skip instruction, or during the
execution of an "extended sequence instruction" (arith
metic lockout). An extended sequence instruction is an
instruction that requires more than 5 microseconds (one
machine cycle) for its execution; e.g., Divide, Multiply,
etc. The second primary function is that of Permanent or
Variable Memory access (Memory Access Control).
The units comprising the Subcommand and Access Con
trol are the following.

Repeat Control.-Repeat Control governs the repeat of
an instruction and provides the circuitry necessary for
the correct interruption of a Repeat instruction. If a
Repeat instruction is interrupted, it is completed after the
interrupte has been satisfied.

Skip and Arithmetic Lockout Control.--Skip and Arith
metic Lockout Control governs the performance of a
Selective Sense Or Skip instruction and also permits the
computer to delay the execution of an instruction follow
ing an extended sequence instruction until the extended
sequence is completed, if the next instruction is an arith
metic instruction (requires use of the Arithmetic Sec

3,26?,997
11

tion). All extended sequence instructions are performed
in the Arithmetic Section.
Memory Access Control.-Memory Access Control

governs the access to either Permanent or Variable Mem
ory, or to the Accumulator. Instructions and operands
can be referenced in memory. An instruction is a com
puter word that initiates a particular operation, e.g., Add,
Load A, etc. An operand is a quantity (constant) refer
enced by the address portion of the instruction word that
is to be used in the performance of the instruction.

In summary, Subcommand and Memory Access Con
trol govern the special operations of the Repeat, Selective
Sense, Skip, and extended sequence instructions. It
also controls the access or referencing of a word in
Variable or Permanent Memory or the Accumulator.

Interrupt and Data Transfer Control.- The Interrupt
Control circuits provide for the acceptance and process
ing of interrupt signals from both external and internal
units. Interrupt signals are received by the Interrupt and
Data Transfer Control and are assigned a priority. An
interrupt signal is a command to the computer to discon
tinue present operation and process a new instruction.
An instruction is generated by the Interrupt Control cir
cuits and is forced into the Instruction register which
then executes the instruction.
the starting of the computer or deviating from a program
must be processed by the Interrupt and Data Transfer
Control.

Interrupt and Data Transfer Control consists of three
basic parts: External Real Time Sync Control, Priority
Circuits, and the Interrupt and Data Transfer Instruc
tion Generation circuits. These circuits act collectively
either to generate interrupts internally or to produce In
terrupt and I/O Data Transfer instruction upon request
from various sections of the computer. Any program
being performed by the computer may be interrupted
by an Interrupt instruction. If an interrupt request is
received, all other interrupt requests are locked out for
six instruction times so that an interrupt program can
be performed. At the end of 6 instruction times, another
interrupt program can be performed if an interrupt re
quest is held in the Priority Circuits; otherwise the in
terrupted program will be resumed. Data transfers can
be performed regardless of interrupt priorities. Also, no
six-instruction-time lockout exists for I/O Data Trans
fer instructions because they do not disrupt the main
program completely as Interrupt instructions do.

External Real Tinne Sync Control.---External Real
Time Sync Control produces Start Pulse and CI interrupt
requests when a Start Pulse or CI interrupt request is
received externally from a critical external device. Ex
ternal Real Time Sync Control also gates the Error In
terrupt request to the Priority Circuits.

Priority Circuits.--The Priority Circuits assign inter
rupt and data transfer requests, prearranged priorities,
and also generate the 6 instruction-time lockout required
by an interrupt program.

Interrupt and Data Transfer Instruction Generation.
This portion of Interrupt and Data Transfer Control
produces automatically the proper operation code, 'i'
reference, and memory address comprising a particular
Interrupt or I/O Data Transfer instruction.
In summary, Interrupt and Data Transfer Control re

ceives the interrupt and data transfer requests from ex
ternal sources. If necessary, these interrupt and data
transfer requests are held, and at the proper time the
first instruction of their respective program (for inter
rupts) is placed in U0–23. I/O Data Transfer instruc
tions do not call for the execution of special programs.
Therefore, a data transfer operation requires only that
the Data Transfer instruction be place in U0-23.
Main Pulse Distributor.-The Main Pulse Distributor

produces the main pulses upon which all computer oper
ations are based. The distributor produces a cycle of
16 main pulses, 0 through 15, then repeats this cycle.

All operations affecting :

O

2. 5

3)

3 5

(i)

5

12
Main pulses produced by the Main Pulse Distributor are
pulse signals that are produced in a numerical sequence,
i.e., 0, 1, 2, 3, through 15. There are 16 main pulses
in a main pulse cycle. Each main pulse cycle is 5
inicroseconds in length. These main pulses are identified
by the numbers 0 through 15 written MP0, MP1, etc.).
Main pulses are issued to all sections of the computer to
enable the performance of instructions in a logical, time
ordered sequence. This unit is not shown in detail in the
instant application.
R Memory Access and Control.-R Memory Access

and Control provides access to the R memory. It also
provides for the comparison of U*10-23 with R register
and for the addition of 1 to the quantity in the R register.

R Register.-The IR register is a 14-bit data transfer
register which provides an output communication path
between R Memory and other sections of the computer.
It contains, among other values, the number used to
index the 'S' address portion of an instruction.
OR Gates.-The OR Gates provide a 14-bit path for

writing a quantity into R Memory from several sources,
e.g., U* 10–23, X register, etc.
R Memory Counter..—The R Memory Counter pro

vides the necessary circuitry for adding 1 to the R regis
ter if required and then entering (R-1) into R Memory
via the OR Gates. Also, the content of R register may
be gated through the counter without any change.
Comparator.-The Comparator compares R with

U 10-23 to determine when a data transfer operation
should be terminated.

In summary, words which are read out of R Memory
enter the R register and are thereafter distributed to the
various portions of the computer. Words which are to
be written into R Memory are transmitted to R Memory
via the OR Gates. The quantity (R-I-1) can be written
into R Memory via the OR Gates if required.

1.1. Memory
The Memory Section of the system is made of three

independent units of storage: Reference memory (desig
nated R Memory), which consists of a small capacity,
high-speed, destructive readout (DRO) ferrite core stor
age unit; Variable Memory, which consists of a medium
capacity, destructive readout storage unit using a con
ventional magnetic core storage system; and Permanent
Memory, which consists of a large capacity nondestruc
tive readout (NDRO) storage unit using permanent mag
nets and a twistor matrix.
A fourth unit, the Twistor Input Switch (Twistor Input

Unit) is associated with permanent Memory and acts as
a high-speed input device between certain critical ex
ternal units and the computer.
The characteristics of the three memory units are high

Speed operation, random access to stored data, and re
tention of data when power is turned off (nonvolatility).
All thrce storage units have provisions for checking par
ity. Variable Memory, Permanent Memory, and the
Twistor Input Switch each provide for storing parity
along with the data word. Parity for the R Memory is
stored in the Error Circuits.
R Mcmory.-The R Memory is recognized as a part

of the Control Section because of the tasks it performs
in modifying the address portion of instruction words
and in storing data transfer addresses during subroutines.
The description presented in the Memory Section treats
only the physical operation of the unit as an independent
storage device. For an explanation of R Memory as an
integrated part of the complete system, refer to the above
description of the Control Section. The R Memory is
a magnetic core storage device capable of storing fifteen
14-bit words at address locations 1 through 15. The
memory is word-organized and employs a coincident
current write and a single current read cycle. Four bits
of the instruction word are required to specify an address
in R Memory. Bits 6, 7, 8 and 9 of U*, the second rank

13
of the instruction register, are translated to select one of
15 word addresses, Information is inserted into R
Memory through the OR gates. This information may
come from the O, X, U* or R registers. R, the 14-bit
rest of the computer and back into R Memory if desired.
Parity for R Memory is stored and checked in the Error
Circuits.
The Read and Word-Write Circuits provide the drive

current for switching the state of selected memory devices.
One Read Circuit and one Word-Write Circuit is associ
ated with a specific address. Their selection is determined
by enable signals from the translator circuits of bits 6-9
of the Instruction Register U*. A Read Circuit, when
enabled by U*6-9, applies a full drive signal to the associ
ated memory devices which drives them all to the "0"
state. The Word-Write Circuits, when enabled, apply a
half write signal to the associated memory devices, which
is not by itself of sufficient value to drive them to the "1"
state. The additional force necessary to drive a given
element to the “1” state is supplied by the Digit Write
Circuits. Therefore, only those elements which receive
the Digit Write signal in addition to the Word-Write sig
nal will switch to the “1' state.
The R-Memory device store the information. The

element employed is the magnetic core. The cores are
arranged in rows and columns in a 16 x 16 matrix. One
Read wire and one Word-Write wire is threaded through
each row of cores; one Digit Write wire and one Sense
Wire is threaded through each column of cores. The
application of signals to these wires enable the cores to
Switch to either the "0" or "1" state. The Sense Am
plifiers receive and amplify the sense signals during a
Read operation. The outputs set appropriate stages of
the R-Register. The Digit Write Circuits supply drive
current necessary to complement the Word-Write signal
to effect the storing of "1's" in R Memory. Enables are
supplied from the OR Gates.

Variable Memory-The Variable Memory is a con
ventional magnetic core storage system. The unit con
tains 2048 address word locations capable of storing a
24-bit instruction word or operand (data word) plus
parity. Characteristics are high-speed operation, random
access to stored data, and retention of data when power
is turned off (nonvolatility). The time required for one
memory reference (the basic memory cycle) is 5 micro
Seconds. Variable Memory is used to store input-output
data, the results of intermediate calculations, error ad
dresses, and variables. Except during the Real Time
Mode, the Variable Memory may also be used to store
instruction. A block diagram of Variable Memory and
asSociated control circuitry is shown in FIGURE 2,
A read operation followed by a write operation make

up what is called the basic cycle in Variable Memory.
The duration and timing of these operations is controlled
by the Variable Memory control flip-flops and clock
pulses from the Main Pulse Distributor. Major sequence
commands for the transmission of address information to
the V register and for data transmission to and from
the Oregister are issued by the Control Section.
V, the 11-bit address register, selects one of the 2048

address locations during a Variable Memory reference.
The translators associated with V simultaneously enable
Xand Y access switches (selectors) and drivers at op

posite ends of the drive lines to permit the flow of current
through the cores. Once an address has been selected,
data is transferred from Variable Memory to the rest of
the computer and from the rest of the computer to Vari
able Memory through O, the 24-bit transfer register.

In addition to transferring a 24-bit data word, the O
register also contains an additional bit for storing parity.
Parity is generated when data is sent to O for storage in
Variable Memory. The parity thus generated is stored
in the memory along with the data word. Parity is
checked when the word is taken out of the memory and
placed in O for transmission to other parts of the com

IO

15

()

60

5

14
puter. If a parity error exists, the address at which the
error occurred is stored in the E* register until such a
time that the error can be analyzed. The address system
also has provisions for checking parity. The address that
is sent to the V register is checked against the parity of
the P or U* registers each time a Variable Memory refer
ence is made. If there is a parity error, the address in
P* is stored in the E* register until such a time that the
error can be analyzed.

Permanent Memory.-The Permanent Memory is a
word organized, large capacity, non-destructive readout
storage unit. Information is stored in the memory in a
pattern of permanent magnets arranged on a card. A
twistor matrix is used to sense the presence or absence of
a magnet for the bits of a word being addressed. The
lunit contains 10,240 address locations each capable of
storing a 24-bit instruction word or constant plus parity.
Characteristics of the unit are high-speed operation, ran
dom access to stored data, and retention of data when
power is turned off (non-volatility). The time required
for one memory reference (the basic memory cycle) is
five microseconds. Permanent Memory is used to store
critical constants and instruction words. Because the pro
gram is Stored in permanent magnets, the cards in which
the magnets are embedded are called "program cards."
These cards are inserted along columns of twistor wires
So that the magnets are close enough to set up an external
magnetic field in the twistor wires. The presence or ab
Sence of a magnet denotes a "0" or a “1." Thus the pro
gram can be changed by inserting new program cards con
taining a revised pattern of magnets. A block diagram of
Permanent Memory and associated control circuitry is
shown in FIGURE 3.
A read operation followed by a bias operation make

up what is called the basic cycle in Permanent Memory.
The duration and timing of these operations is controlled
by the Permanent Memory control flip-flops and by clock
pulses from the Main Pulse Distributor. Major sequence
commands for the transmission of address information
to the W register and for data transmission to and from
the Z register are issued by the Control Section. W, the
14-bit address register, selects one of the 10,240 address
locations during a Permanent Memory reference. The
translators associated with W simultaneously enable X
and Y group access switches (selectors) and line access
switches (selectors) at opposite ends of the drive lines to
permit the flow of current through the word access cores.
Switching the word access cores enables data to be read
out of Permanent Memory. The information stored on
the program cards is not destroyed by the read operation
(nondestructive readout), therefore a write operation is
not necessary. However, since the word access cores
change stages during a read operation, a bias current
which is on continuously is used to switch the cores back
to their original state. Once the address has been selected
and the read operation initiated, data is transmitted from
Permanent Memory to the rest of the computer through
Z, the 24-bit transfer register.

In addition to transferring a 24-bit data word, the Z.
register also contains an additional bit for parity. Parity
is stored in the memory along with the data word and
is checked when the word is taken out of the memory
and placed in Z for transmission to other parts of the
computer. If a parity error is found, the address at
which the error occurred is stored in the Ek register
until such a time that the error can be analyzed. The
address system in Permanent Memory also has provisions
for checking parity. The address that is sent to the W
register is checked against the parity of the P or Uk
register each time a Permanent Memory reference is
made. If there is a parity error, the address in P* is
stored in the E* register until a time that the error can
be analyzed.

Twistor Input Switch.--The Twistor Input Switch
(Twistor-Input Unit or TIS) is a word-organized device

