
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0017584A1

Jones et al.

US 2010.0017584A1

(43) Pub. Date: Jan. 21, 2010

(54) CALL STACK SAMPLING FOR A Publication Classification
MULT-PROCESSOR SYSTEM (51) Int. Cl.

(75) Inventors: Scott Thomas Jones, Austin, TX G06F 9/30 (2006.01)
(US); Frank Eliot Levine, Austin, (52) U.S. Cl. 712/227; 712/E09.032
TX (US)

(57) ABSTRACT
C d Address:
iWory CSS A computer implemented method for sampling call stack
CfOYEE & ASSOCATES PC information. Responsive to identifying a set of interrupts, a
P.O. BOX 802.333 determination is made as to whether all processors in a plu
DALLASTX 7S380 US rality of processors have generated the set of interrupts. A

9 (US) number of addresses are identified for a set of interrupted
(73) Assignee: INTERNATIONAL BUSINESS threads identified by the set of interrupts response to a deter

MACHINES CORPORATION mination that all of the processors have generated the set of
Armonk, NY (US) s interrupts. A determination is made as to whether the identi

s fied address falls within a set of address ranges. Responsive to
(21) Appl. No.: 12/173,107 a determination that the identified address falls within the set

of address ranges, a sampler thread is notified to obtain call
(22) Filed: Jul. 15, 2008 stack information.

232

SIGNAL EWCEDRWERWORKAREA
216

DEWCEDRWER
206 THREAD

RORT FRR INFORMATION
240 PROCEDURE CALL 230

POLICY HAIRR ROCESSOR
COUNTERS

ROFILER DATA AREA INTERRUPT 225

210 218 HAE;ER ADDRESS
236 RANGES

227
224

SAMPLING THREADS
214 234 THREADS

-e SELECTED 212 231 WIRTUAL OPERATING

SAMPLING THREAD TARGT THRA MNE sSIM

call 1. t

220 NTRRUPT

PROCESSORUNIT
200

INTRRUPT Y222

Patent Application Publication Jan. 21, 2010 Sheet 1 of 9 US 2010/001 7584 A1

PROCESSOR PERSISTENT
UNIT MERY STORAGE
104 108

/ N.

^ N N /

- N / N/ N / N
(102 >

/ N / N

COMMUNICATIONS INPUTIOUTPUT DISPLAY
UNIT UNIT
110 114

/ N
COMPUTER READABLE 120

MEDIA 118

CODE
\ 116

\ PROGRAM

FIG. I.

Patent Application Publication Jan. 21, 2010 Sheet 2 of 9 US 2010/001 7584 A1

232

SIGNAL ? DEWCEDRWERWORKAREA
216

DEWCEDRIVER
206 THRA

RErt 228 FRR INFORTION (s PROCEDURE CALL

POLICY - HAER PROCESSOR
o COUNTERS

DATA AREA INTERRUT 225
PROFILER 218 HANDLER

210 36 229 ADDRESS
RANGES

227
224

SAMPLING THREADS
214

SELECTED
SAMPLING THREAD

234 THREADS
212

TARGET THREA

231 WIRTUAL OPERATING
MACHINE SYSTEM

204 202

CALL 1Yaa
INTERRUP 22

PROCESSORUNIT
200

FIG 2

Patent Application Publication

PROFILER
424

DEVICE DRIVER
414

Jan. 21, 2010 Sheet 3 of 9

THREAD INFORMATION
300

PROCESS IDENTIFICATION
302

STACKPOINTER
304

ADDRESS INFORMATION
306

OTHER THREAD INFORMATION
308

FIG. 3

US 2010/001 7584 A1

400
4.

VIRTUAL MACHINE
422

SAMPLING THREAD PROCESSOR TARGET THREAD
416 402 408

SAMPLING THREAD PROCESSOR THREAD
418 404 410

SAMPLING THREAD PROCESSOR THREAD
420 406 412

FIG. 4

Patent Application Publication Jan. 21, 2010 Sheet 4 of 9 US 2010/001 7584 A1

METHODIFUNCTION
IDENTIFIER

602
LV
604

COUNTS
606

508

FIG. 5 FIG. 6

600

START

IDENTIFY A SET OF GARBAGE COLLECTION THREADS
1200

INCREASING PRIORITY OF GARBAGE COLLECTION
THREADS

1202

IDENTIFY A SET OF NON-GARBAGE COLLECTION
THREADS

1204

DECREASE PRIORITY OF THE SET OF NON-GARBAGE
COLLECTION THREADS

12O6

FIG. 12

Patent Application Publication Jan. 21, 2010 Sheet 5 of 9 US 2010/001 7584 A1

STARTING ENTERED COMPLETED
HISTORY GARBAGE GARBAGE GARBAGE

734 COLLECTION COLLECTION COLLECTION
720 722 724

THREAD

PROFER REGISTRATION
o OPERATING SYSTEM 718

714

PRIORITY
GARBAGE COLLECTION INTERFACE CHANGE

716 726

GARBAGE

NOTTON THREADS COLLECTION SCHELER
o 708 THREADS o

712

V
VIRTUAL MACHINE LOCKS

702 710

HEAP
704

OBJECTS
7O6

FIG. 7

Patent Application Publication Jan. 21, 2010 Sheet 6 of 9 US 2010/001 7584 A1

START

WAIT TO RECEIVE
AN INTERRUPT

800

IDENTIFY
PROCESSOR

802

SET COUNTERFOR
PROCESSOR

804

INTERRUPTS
RECEIVED FROMALL
PROCESSORSP

806

NO

YES

OBTAIN
CALL STACK

INFORMATION?
808

PERFORM
OTHER

PROCESSINGP
812

NO NO

YES YES

INITIATE A
DEFERRED

INITIATE OTHER
PROCESSING

PROCEDURE CALL
810

814

END

FIG. 8

Patent Application Publication Jan. 21, 2010 Sheet 7 of 9 US 2010/001 7584 A1

(START

EXECUTE SPIN LOOP
900

- N
- N

- ALLDEFERRED
- PROCEDURE CALL
THREADS EXECUTINGP

N 902
YES

\ NO

SEND A SIGNAL TO A SET
OF SAMPLING THREADS

904

FIG. 9 (START
RECEIVE NOTIFICATION TO SAMPLE CALL

STACK INFORMATION FOR A TARGET THREAD
1OOO

RETRIEVE CALL STACK INFORMATION
1002

GENERATE TREE FROM CALL STACK
INFORMATION

1004

STORE TREEN DATA AREA
1006

FIG. I.0

Patent Application Publication Jan. 21, 2010 Sheet 8 of 9 US 2010/001 7584 A1

IDENTIFY ADDRESS
1100

--- *-

u- ADDRESS is
NO u- WITHINA SET OF ADDRESS is

RANGESP
1102

--- ---

DO NOT COLLECT CALL STACK
INFORMATION AND RETURN TO STEP 716

1108 1104

COLLECT CALL STACK INFORMATION AND
RETURN TO STEP 710

1106

(RETURN)
FIG. I. I

Patent Application Publication Jan. 21, 2010 Sheet 9 of 9

START

IDENTIFY NON-GARBAGE COLLECTION
THREADS AND/OR ASSOCATED DATA AREAS

LOCATED IN PRIMARY MEMORY
13OO

PAGE OUT THE DENTIFIED NON-GARBAGE
COLLECTION THREADS AND/OR ASSOCATED
DATA AREAS TO ASECONDARY MEMORY

1302

IDENTIFY ANY GARBAGE COLLECTION THREADS
AND/OR ASSOCATED DATA AREAS NOT IN THE

PRIMARY MEMORY
1304

PAGE IN THE DENTIFIED GARBAGE
COLLECTION THREADS AND/OR ASSOCATED
DATA AREAS INTO THE PRIMARY MEMORY

1306

START

US 2010/001 7584 A1

FIG. 13 RECEIVE USER INPUT IDENTIFYING ASET
SOFTWARE COMPONENT AND/OR DATA OBJECTS

1400

IDENTIFY ASET OF ADDRESS RANGES
1402

STORE THE SET OF ADDRESS RANGES INA
WORKAREA

1404

US 2010/001 7584 A1

CALL STACK SAMPLING FORA
MULT-PROCESSOR SYSTEM

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002 The present disclosure relates generally to an
improved data processing system and in particular to a
method and apparatus for processing data. Still more particu
larly, the present disclosure relates to a computer imple
mented method, apparatus, and computer program code for
call stack sampling in a multi-processor data processing sys
tem

0003 2. Description of the Related Art
0004. In writing code, runtime analysis of the code is often
performed as part of an optimization process. Runtime analy
sis is used to understand the behavior of components or mod
ules within the code using data collected during the execution
of the code. The analysis of the data collected may provide
insight to various potential misbehaviors in the code. For
example, an understanding of execution paths, code cover
age, memory utilization, memory errors and memory leaks in
native applications, performance bottlenecks, and threading
problems are examples of aspects that may be identified
through analyzing the code during execution.
0005. The performance characteristics of code may be
identified using a software performance analysis tool. The
identification of the different characteristics may be based on
a trace facility of a trace system. A trace tool may use various
techniques to provide information, such as execution flows,
as well as other aspects of an executing program. A trace may
contain data about the execution of code. For example, a trace
may contain trace records about events generated during the
execution of the code. A trace also may include information,
Such as a process identifier, a thread identifier, and a program
counter. Information in the trace may vary depending on the
particular profile or analysis that is to be performed. A record
is a unit of information relating to an event that is detected
during the execution of the code.
0006. In obtaining trace data, it is a common practice to
obtain information about executing threads. This information
may include call stack information obtained from call stacks
associated with the threads of interest. Call stack information
may be obtained from a virtual machine, such as a JavaTM
virtual machine. JavaTM is a trademark of Sun Microsystems,
Inc. Many approaches are presently used for obtaining call
stack information. These approaches include using entry/exit
events, an application timer tick, or instrumenting codes that
sample the instrumented values.

BRIEF SUMMARY OF THE INVENTION

0007. The illustrative embodiments provide a computer
implemented method for sampling call stack information.
Responsive to identifying a set of interrupts, a determination
is made as to whether all processors in a plurality of proces
sors have generated the set of interrupts. A number of
addresses for the interrupt is identified to form a set of iden
tified addresses in response to a determination that all of the
processors have generated the set of interrupts. A determina
tion is made as to whether the set of identified addresses falls
within a set of address ranges. Responsive to a determination
that any address within the set of identified addresses falls

Jan. 21, 2010

within the set of address ranges, a sampler thread is notified to
obtain the call stack information.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0008 FIG. 1 is a diagram of a data processing system in
which an illustrative embodiment may be implemented;
0009 FIG. 2 is a diagram illustrating components used to
obtain call stack information in accordance with an illustra
tive embodiment;
0010 FIG. 3 is diagram illustrating thread information
and a device driver work area in accordance with an illustra
tive embodiment;
0011 FIG. 4 is a diagram illustrating components to
obtain call stack information in accordance with an illustra
tive embodiment;
0012 FIG. 5 is a diagram of a tree in accordance with an
illustrative embodiment;
0013 FIG. 6 is a diagram illustrating information in a node
in accordance with an illustrative embodiment;
0014 FIG. 7 is a diagram of components used in garbage
collection in accordance with an advantageous embodiment;
0015 FIG. 8 is a flowchart of a process for processing
interrupts in accordance with an illustrative embodiment;
(0016 FIG. 9 is a flowchart of a deferred procedure call in
accordance with an illustrative embodiment;
0017 FIG. 10 is a flowchart of a process for collecting call
stack information in accordance with an illustrative embodi
ment;
0018 FIG. 11 is a flowchart of a process for determining
whether to obtain call stack information in accordance with
an advantageous embodiment;
0019 FIG. 12 is a flowchart of a process that may be
initiated for other processing in accordance with an illustra
tive embodiment;
0020 FIG. 13 is a flowchart of a process for increasing
garbage collection performance in accordance with an illus
trative embodiment; and
0021 FIG. 14 is a flowchart of a process for selecting
address ranges in accordance with an illustrative embodi
ment.

DETAILED DESCRIPTION OF THE INVENTION

0022. As will be appreciated by one skilled in the art, the
present invention may be embodied as a system, method, or
computer program product. Accordingly, the present inven
tion may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resi
dent software, micro-code, etc.), or an embodiment combin
ing Software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module.” or “system.” Fur
thermore, the present invention may take the form of a com
puter program product embodied in any tangible medium of
expression having computer usable program code embodied
in the medium.
0023. Any combination of one or more computerusable or
computer readable medium(s) may be utilized. The computer
usable or computer readable medium may be, for example but
not limited to, an electronic, magnetic, optical, electromag
netic, infrared, or semiconductor system, apparatus, device,
or propagation medium. More specific examples (a non-ex
haustive list) of the computer readable medium would include
the following: an electrical connection having one or more

US 2010/001 7584 A1

wires, a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an eras
able programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CDROM), an optical storage device, a transmission
media Such as those Supporting the Internet or an intranet, or
a magnetic storage device.
0024 Note that the computer usable or computer readable
medium could even be paper or another Suitable medium
upon which the program is printed, as the program can be
electronically captured, via, for instance, optical scanning of
the paper or other medium, then compiled, interpreted, or
otherwise processed in a Suitable manner, if necessary, and
then stored in a computer memory. In the context of this
document, a computer usable or computer readable medium
may be any medium that can contain, store, communicate,
propagate, or transport the program for use by or in connec
tion with the instruction execution system, apparatus, or
device. The computer usable medium may include a propa
gated data signal with the computer usable program code
embodied therewith, either in baseband or as part of a carrier
wave. The computerusable program code may be transmitted
using any appropriate medium, including but not limited to
wireless, wireline, optical fiber cable, RF, etc.
0025 Computer program code for carrying out operations
of the present invention may be written in any combination of
one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++, or the like and conventional procedural programming
languages. Such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user's computer, partly on the user's computer,
as a stand-alone software package, partly on the user's com
puter and partly on a remote computer, or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).
0026. The present invention is described below with ref
erence to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions.
0027. These computer program instructions may be pro
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine. Such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer pro
gram instructions may also be stored in a computer readable
medium that can direct a computer or other programmable
data processing apparatus to function in a particular manner,
such that the instructions stored in the computer readable
medium produce an article of manufacture including instruc
tion means which implement the function/act specified in the
flowchart and/or block diagram block or blocks.

Jan. 21, 2010

0028. The computer program instructions may also be
loaded onto a computer or other programmable data process
ing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer implemented process Such that the
instructions which execute on the computer or other program
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.
0029 Turning now to FIG. 1, a diagram of a data process
ing system is depicted in accordance with an illustrative
embodiment. In this illustrative example, data processing
system 100 includes communications fabric 102, which pro
vides communications between processor unit 104, memory
106, persistent storage 108, communications unit 110, input/
output (I/O) unit 112, and display 114.
0030 Processor unit 104 serves to execute instructions for
software that may be loaded into memory 106. Processor unit
104 may be a set of one or more processors or may be a
multi-processor core, depending on the particular implemen
tation. Further, processor unit 104 may be implemented using
one or more heterogeneous processor Systems in which a
main processor is present with secondary processors on a
single chip. As another illustrative example, processor unit
104 may be a symmetric multi-processor system containing
multiple processors of the same type.
0031 Memory 106 and persistent storage 108 are
examples of storage devices. A storage device is any piece of
hardware that is capable of storing information either on a
temporary basis and/or a permanent basis. Memory 106, in
these examples, may be, for example, a random access
memory or any other Suitable Volatile or non-volatile storage
device. Persistent storage 108 may take various forms
depending on the particular implementation. For example,
persistent storage 108 may contain one or more components
or devices. For example, persistent storage 108 may be a hard
drive, a flash memory, a rewritable optical disk, a rewritable
magnetic tape, or some combination of the above. The media
used by persistent storage 108 also may be removable. For
example, a removable hard drive may be used for persistent
storage 108.
0032 Communications unit 110, in these examples, pro
vides for communications with other data processing systems
or devices. In these examples, communications unit 110 is a
network interface card. Communications unit 110 may pro
vide communications through the use of either or both physi
cal and wireless communications links.
0033. Input/output unit 112 allows for input and output of
data with other devices that may be connected to data pro
cessing system 100. For example, input/output unit 112 may
provide a connection for user input through a keyboard and
mouse. Further, input/output unit 112 may send output to a
printer. Display 114 provides a mechanism to display infor
mation to a user.
0034. Instructions for the operating system and applica
tions or programs are located on persistent storage 108. These
instructions may be loaded into memory 106 for execution by
processor unit 104. The processes of the different embodi
ments may be performed by processor unit 104 using com
puter implemented instructions, which may be located in a
memory, such as memory 106. These instructions are referred
to as program code, computer usable program code, or com
puter readable program code that may be read and executed
by a processor in processor unit 104. The program code in the

US 2010/001 7584 A1

different embodiments may be embodied on different physi
cal or tangible computer readable media, Such as memory 106
or persistent storage 108.
0035. Program code 116 is located in a functional form on
computer readable media 118 that is selectively removable
and may be loaded onto or transferred to data processing
system 100 for execution by processor unit 104. Program
code 116 and computer readable media 118 form computer
program product 120 in these examples. In one example,
computer readable media 118 may be in a tangible form, such
as, for example, an optical or magnetic disc that is inserted or
placed into a drive or other device that is part of persistent
storage 108 for transfer onto a storage device, such as a hard
drive that is part of persistent storage 108. In a tangible form,
computer readable media 118 also may take the form of a
persistent storage. Such as a hard drive, a thumb drive, or a
flash memory that is connected to data processing system
100. The tangible form of computer readable media 118 is
also referred to as computer recordable storage media. In
Some instances, computer readable media 118 may not be
removable.

0036 Alternatively, program code 116 may be transferred
to data processing system 100 from computer readable media
118 through a communications link to communications unit
110 and/or through a connection to input/output unit 112. The
communications link and/or the connection may be physical
or wireless in the illustrative examples. The computer read
able media also may take the form of non-tangible media,
Such as communications links or wireless transmissions con
taining the program code.
0037. The different components illustrated for data pro
cessing system 100 are not meant to provide architectural
limitations to the manner in which different embodiments
may be implemented. The different illustrative embodiments
may be implemented in a data processing system including
components in addition to or in place of those illustrated for
data processing system 100. Other components shown in
FIG. 1 can be varied from the illustrative examples shown.
0.038. As one example, a storage device in data processing
system 100 is any hardware apparatus that may store data.
Memory 106, persistent storage 108 and computer readable
media 118 are examples of storage devices in a tangible form.
0039. In another example, a bus system may be used to
implement communications fabric 102 and may be com
prised of one or more buses, such as a system bus or an
input/output bus. Of course, the bus system may be imple
mented using any suitable type of architecture that provides
for a transfer of data between different components or devices
attached to the bus system. Additionally, a communications
unit may include one or more devices used to transmit and
receive data, Such as a modem or a network adapter. Further,
a memory may be, for example, memory 106 or a cache Such
as found in an interface and memory controller hub that may
be present in communications fabric 102.
0040. With reference to FIG. 2, a diagram illustrating
components used to obtain call stack information is depicted
in accordance with the illustrated embodiment. In the
depicted example, the components are examples of hardware
and Software components found in the data processing sys
tem, such as data processing system 100 in FIG. 1.
0041. These components include processor unit 200, oper
ating system 202, virtual machine 204, device driver 206,

Jan. 21, 2010

deferred procedure call handler 208, profiler 210, threads
212, sampling threads 214, device driver work area 216, and
data area 218.
0042 Processor unit 200 is similar to processor unit 104 in
FIG.1 and may generate interrupts, such as interrupts 220 and
222 from processors within processor unit 200. These inter
rupts may be, for example, without limitation, timer inter
rupts.
0043. In particular, interrupt 220 and interrupt 222 may be
generated based on timed interrupts that may be initiated for
all of the processors within processor unit 200. In these
examples, this type of interrupt may be generated using an
advanced programmable interrupt controller within each pro
cessor and processor unit 200.
0044) The interrupts may be passed to device driver 206 in
a number of different ways. For example, interrupt 220 is
passed to device driver 206 through call 224. Alternatively,
interrupt 222 is passed directly to device driver 206 via an
Interrupt Vector Table (IVT). After receiving an interrupt,
device driver 206 may process the interrupt using a deferred
procedure call (DPC) to deferred procedure call handler 208
located within device driver 206. Of course, other routines or
processes may be used to process these interrupts. The
deferred procedure call initiated by device driver 206 is used
to continue processing interrupt information from interrupt
222.

0045. In another embodiment, a dispatcher in operating
system 202 may record the process and thread information of
the dispatched process in a per processor work area and this
information may be used to determine the threads for which
call stacks are obtained. In this embodiment, deferred proce
dure call handlers may be initiated on all processors by one
specific processor interrupt handler. Alternatively, one pro
cessor may be identified to process the interrupt and interpro
cessor interrupt (IPI) may be used for interrupting the other
processors.
0046. In yet another embodiment, the interrupt handlers
may determine if all processors are synchronized to be pro
cessing an interrupt by simply looping until it is determined
that all the processors have entered the interrupt state. Each
interrupt provides information that may be used by the inter
rupt handler to identify an instruction address for a thread that
has been interrupted as identified using the saved interrupt
state. When the interrupted instruction is a load or a store
instruction, the data address may be determined by interrupt
handler by examining the saved interrupt state. The address of
the interrupted instruction and if available the data address for
the interrupted instruction is saved when the interrupt occurs
and can be used to identify set the address for the interrupted
thread. In this manner a set of addresses for a set interrupted
threads can be identified.

0047. In the different illustrative embodiments, deferred
procedure call handler 208 determines whether all of the
processors with processor unit 200 have generated an inter
rupt in response to device driver 206 receiving interrupt 222
or call 224. Deferred procedure call handler 208 may update
a counter within processor counters 225 in device driver work
area 216. Each processor counter within processor counters
225 may be associated with a particular processor in proces
sor unit 200. Processor counters 225 also may be referred to
as flags. One implementation may involve atomically ORing
a bit in a word identifying the processor currently being
interrupted and comparing the word to the active processor
Set.

US 2010/001 7584 A1

0048 More specifically, deferred procedure call handler
208 determines whether the interrupt received from the pro
cessor has a counter set in processor counts 225. If the counter
is not set for the processor, deferred procedure call handler
208 sets that counter. Next, deferred procedure call handler
208 determines whether all of processor counters 225 have
been set. If all of processor counters 225 have not been set,
deferred procedure call handler 208 loops until all the pro
cessors have taken an interrupt or a determination has been
made that there is a problem. If a problem is a detected, for
example, by determining that the elapsed time has exceeded a
threshold, then either the process is terminated or an attempt
is made to reset the interrupt processing.
0049. By looping, deferred procedure call handler 208
places that processor into a state in which the processor does
not execute instructions for an application. In addition,
deferred procedure call handler 208 may also initiate high
priority sampler threads on each processor reducing the
amount of forward progress made by the monitored applica
tion. These sampler threads may be retrieving call stacks or
may run in a “spin loop” until execution of that thread is
terminated. As a result, the forward progress of the applica
tion is eliminated or reduced. In some cases, the application
must progress to a state in which the call stack may be
retrieved.

0050. If interrupts have been received from all of the pro
cessors within processor unit 200, deferred procedure call
handler 208 may then determine whether call stack informa
tion should be obtained. This determination may be made
using policy 228. Policy 228 may be a set of rules identifying
what actions to take. For example, policy 228 may specify
that call stacks will be obtained only if a virtual machine 204
is interrupted or if there is no sampling in process. Determi
nation of sampling in process may be made by Verifying that
the interrupt is not in a sampling thread and all of sampling
threads 214 are blocked and waiting for work. As another
example, policy 228 may specify that call stack information
should not be obtained if the interrupt occurs whena sampling
thread is executing on a processor. In either event, the fact that
a sampling process is occurring or that a sampling thread was
encountered when an interrupt occurred may be identified for
later processing. For example, the occurrence of one of these
two conditions may be identified by incrementing a counter
for the particular condition. In yet another example, policy
228 may specify a set of ranges as ones of interest for call
stack sampling. If interrupt 222 indicates that an address
identified by interrupt 222 falls within a set of address ranges,
Such as address ranges 227, call stack sampling may be ini
tiated. In these examples, an address range may be one or
more addresses. A set as used herein refers to one or more
items. For example, a set of address ranges is one or more
address ranges. Address ranges 227 may be for a particular
process, application, Subroutine, or some other unit of code
that may be executed by processor unit 200. In other illustra
tive embodiments, the set of address ranges may be for data
objects that may be accessed during execution.
0051. These address ranges may be identified by receiving
an identification for a set of executable code in a user input.
This executable code may be for example, a process, a thread,
a routine, a function, or some other type of executable code.
This identification may be, for example, a method name or
function name. The identification is converted to a set of
addresses for the set executable code to form the set of address
ranges. In some cases, the address range within the set of

Jan. 21, 2010

address ranges may change during execution. When this
occurs, a new address range is identified In one illustrative
example, a user may identify a method to be monitored, the
profiler keeps track of JITed methods and their loaded
addresses by JVMPI or JVMTI events and passes the infor
mation to the driver.
0052. In these examples, the interrupt handler 229 may
identify the address interrupted or the data address being
accessed at the time of interrupt 222. For example, a user may
identify a set of routines of interest. Profiler 210 may identify
the address ranges for a set of routines by obtaining loaded
module information or by monitoring addresses of JITed
methods to form address ranges 227. Profiler 210 passes
address ranges 227 to device driver 206, which places address
ranges 227 into device driver work area 216. In a similar
manner, a user may specify a specific object class or object
instance meeting specific criteria or a data area referenced by
a lock or monitor using profiler 210. Profiler 210 may obtain
the data information area from virtual machine 204 and pass
this information to device driver 206. In turn, device driver
206 places this information into device driver work area 216
as address ranges 227. In this manner, the interrupt handler
may compare the identified address with the set of address
ranges stored in device driver work area 216.
0053. If deferred procedure call handler 208 decides that
call stack information should be sampled using one rule and
policy 228, another rule may initiate other processing other
than call stack sampling. For example, policy 228 may
specify that other processing should occur instead of call
stack sampling if a set of particular conditions are present
within the data processing system environment. For example,
policy 228 may specify that call stack information should not
be obtained if garbage collection is occurring within the data
processing system. With this condition being present in the
data processing system, policy 228 may specify that other
types of processing should occur.
0054 For example, the other type of processing may be to
perform no other actions, change a state of the garbage col
lection threads, or perform some other action. In another
example, call stack sampling may not occur even though the
address identified for interrupt 222 is within a set of address
ranges as if call stack sampling is already being performed. In
one embodiment, detection that virtual machine 204 is cur
rently performing garbage collection and a determination that
virtual machine 204 was interrupted, may simply be the incre
ment of a counter for each virtual machine thread interrupted.
0055 Similarly, if it is detected that an interrupted proces
Sor was idle, a counter may be incremented indicating the
count of idle processors interrupted. If the interrupted process
was not the virtual machine of interest, then a non-virtual
machine counter may also be incremented. These Summary
counts may be reported as part of the profiling reports, which
may include an accounting of all processed ticks. In the
Summary reports, there may be summaries counts for non
idle processes interrupted, idle processors, samples not taken
because sampling still in process, Samples during garbage
collection, samples not taken because the criteria Such as not
find the sample in the specified sampling address range cri
teria. In some embodiments, this determination and counting
may be performed on the interrupt leveland avoiding the need
to queue a deferred procedure call.
0056. If device driver 206 determines that call stack infor
mation should be obtained through processing of the interrupt
by deferred procedure call handler 208, initiation of call stack

US 2010/001 7584 A1

sampling information may be made for a thread such as, for
example, target thread 231 and threads 212. Device driver 206
may send signal 232 to sampling threads 214. Signal232 may
wake selected sampling thread 234 to obtain call stack infor
mation.
0057 Selected sampling thread 234 may obtain informa
tion from thread information 230 in device driver work area
216 and place the information into data area 218. Selecting
sampling thread 234 may access device driver work area 216
through a pointerpassed to the sampling thread in signal 232
by device drive 206.
0058. This information may be placed into tree 236 for
later analysis. Further, selected Sampling thread 234 also may
send call 238 to virtual machine 204 to obtain call stack
information. Virtual machine 204 may be, for example, a
JavaTM virtual machine. Of course, virtual machine 204 may
take the form of any other type of virtual machine, depending
on the particular implementation.
0059 Selected sampling thread 234 takes the call stack
information obtained from virtual machine 204 and places
this information into tree 236 for analysis. Additionally, tree
236 contains call stack information and other information,
such as, number of samples. Tree 236 also may include infor
mation about each leaf node, which was the last routine being
executed on that thread at the time the call stack was retrieved.
After call stack information has been collected, profiler 210
may generate report 240. Report 240 is a presentation of
information stored within tree 236 in data area 218.
0060. With reference now to FIG.3, a diagram illustrating
thread information and a device driver work area is depicted
in accordance with an illustrative embodiment. In this
example, thread information 300 is a more detailed example
of thread information 230 in FIG. 2. As illustrated, thread
information 300 includes process identification 302, stack
pointer 304, address information 306, and other thread infor
mation 308. This thread information may be used to obtain
call stack information for a particular thread. Further, this
information may be used by deferred procedure call handler
208 along with policy 228 to determine whether call stack
information should be obtained.
0061 Also, this information may be used to identify a
particular target thread for which call stack information may
be obtained. As one illustrative example, address information
306 may be compared to a set of address ranges such as
address range 227 in FIG. 2 to determine whether address
information 306 falls within any of those address ranges.
Address information 306 may include, for example, an iden
tification of an address for code being executed or identifica
tion of an address of data being accessed.
0062 Turning now to FIG. 4, a diagram illustrating com
ponents to obtain call stack information is depicted in accor
dance with an illustrative embodiment. In this example, data
processing system 400 includes processors 402,404, and 406.
These processors are examples of processors that may be
found in processor unit 200 in FIG. 2. During execution, each
of these processors has threads executing on them in the
depicted examples. In other examples, one or more proces
sors may be in an idle state in which no threads are executing
on these processors.
0063. When an interrupt occurs, target thread 408 is
executing on processor 402; thread 410 is executing on pro
cessor 404; and thread 412 is executing on processor 406. In
these examples, target thread 408 is the thread interrupted on
processor 402. For example, the execution of target thread

Jan. 21, 2010

408 may be interrupted by a timer interrupt or hardware
counter overflow, where the value of the counter is set to
overflow after a specified number of events, for example, after
100,000 instructions are completed.
0064. When an interrupt is generated, device driver 414
determines whether to send a signal to a selected sampling
thread in sampling threads 416, 418, and 420. In these
examples, device driver 414 determines whether all of the
processors have generated interrupts. If all of processors 402.
404, and 406 have generated interrupts, device driver 414
may then determine whether to obtain call stack information
using a policy as described above.
0065. Each of these sampling threads is associated with
one of the processors. In this example, sampling thread 418 is
associated with processor 404, sampling thread 420 is asso
ciated with processor 406, and sampling thread 416 is asso
ciated with processor 402.
0.066 One of these sampling threads is woken by device
driver 414 when the sampling criteria is met. In these
examples, device driver 414 is similar to device driver 206 in
FIG. 2. In this example, target thread 408 is the thread of
interest for which call stack information is desired.

0067. In the depicted examples, device driver 414 sends a
signal to one or more of sampling threads 416, 418, and 420
to obtain call stack information. In this example, sampling
thread 416 is woken by device driver 414 to obtain call stack
information for target thread 408.
0068. The call stack information may be obtained by mak
ing appropriate calls to virtual machine 422. In these
examples, virtual machine 422 is a JavaTM virtual machine. In
these examples, the interface used to make calls is the JavaTM
Virtual Machine Tools Interface (JVMTI). This interface
allows for the collection of call stack information. The call
stacks may be, for example, used to create standard trees
containing count usage for different threads or methods. The
JavaTM Virtual Machine Tool interface is an interface that is
available in JavaTM 5 software development kit (SDK), ver
sion 1.5.0.

0069. The JavaTM Virtual Machine Profiler Interface
(JVMPI) is available in JavaTM 2 platform, standard edition
(J2SE) SDK version 1.4.2. These two interfaces allow pro
cesses or threads to obtain information from the JavaTM Vir
tual machine. Descriptions of these interfaces are available
from Sun Microsystems, Inc. Either interface, or any other
interface to a JavaTM virtual machine, may be used to obtain
call Stack information for one or more threads in this particu
lar example. Call stack information obtained by sampling
thread 416 is provided to profiler 424 for processing. A call
tree is constructed from the call stack obtained from virtual
machine 422 at the time of a sample. The call tree may be
constructed by monitoring method/functions entries and
exits. In these examples, however, tree 500 in FIG. 5 is gen
erated using samples obtained by a sampling thread, such as
sampling thread 416 in FIG. 4.
0070 Turning to FIG. 5, a diagram of a tree is depicted in
accordance with an illustrative embodiment. Tree 500 is a call
tree and is an example of tree 236 in FIG. 2. Tree 500 is
accessed and modified by an application, such as profiler 210
in FIG. 2. In this depicted example, tree 500 contains nodes
502, 504, 506, and 508. Node 502 represents an entry into
method A, node 504 represents an entry into method B, and
nodes 506 and 508 represent entries into method C and D,

US 2010/001 7584 A1

respectively. Each of these nodes may include call stack infor
mation as well as sample counts associated with a particular
thread for a method.

0071. With reference now to FIG. 6, a diagram illustrating
information in a node is depicted in accordance with an illus
trative embodiment. Entry 600 is an example of information
in a node, such as node 502 in FIG. 5. In this example, entry
600 contains method/function identifier 602, tree level (LV)
604, and sample count 606.
0072 The information within entry 600 is example infor
mation that may be determined for a node within a tree. For
example, method/function identifier 602 contains the name of
the method or function. Tree level (LV). 604 identifies the tree
level of the particular node within the tree. For example, with
reference back to FIG. 5, if entry 600 is for node 502 in FIG.
5, tree level (LV) 604 would indicate that this node is a root
node. Sample count 606 may include accumulated counts for
a node on a thread.

0073. When the profiler is signaled, the profiler may
request that a call stack be retrieved for each thread of interest.
Each call stack that is retrieved is walked into a call stack tree
and each sample or changes to metrics that are provided by
the device driver are added to the leaf node's base metrics,
which may be the count of samples of occurrences for a
specific call stack sequences. In other embodiments, the call
stack sequences may simply be recorded.
0074. With reference now to FIG. 7, a diagram of compo
nents used in garbage collection is depicted in accordance
with an advantageous embodiment. In this example, garbage
collection environment 700 is an example of an environment
in which other processing may occur when a condition occurs
in which garbage collection state is present. In this example,
virtual machine 702 includes heap 704. Heap 704 contains
objects 706. These objects may be allocated during the execu
tion of threads 708. Threads 708 may access objects 706.
When a thread within threads 708 accesses an object within
objects 706, a lock is obtained for that object from locks 710.
This lock prevents other threads from accessing the same
object. Once the thread releases the lock for the object, then
that object may be accessed by another thread.
0075 When automatic garbage collection is supported,
any threads within threads 708 that need to allocate objects
must release their locks and wait for garbage collection
threads 712 to acquire and release locks from locks 710.
0076. During the phase of acquiring ownership of locks
710 by garbage collection threads 712, it is advantageous for
any of threads 708 currently owning at the lock within locks
710 to complete processing as quickly as possible to allow
garbage collection threads 712 to acquire locks 710 and begin
processing of heap 704. Once garbage collection threads 712
own locks 710, it is advantageous to allow garbage collection
threads 710 to execute as fast as possible without interference
from threads 708. It is also desirable for threads 708 to stay
inactive until garbage collection is completed by garbage
collection threads 712.

0077. Some of this type of processing is performed auto
matically by operating system 714 as a part of normal lock
handling processing. The length of time required to perform
garbage collection, however, may be longer and require more
resources than other types of processing handled by other
uses of locks 710. For example, traversing heap 704 accesses
more virtual storage. This situation is true for large multi
gigabyte heaps. As a result, the illustrative embodiments rec

Jan. 21, 2010

ognize that effective garbage collection by garbage collection
threads 712 may be improved through specialized handling.
0078. In these different examples, operation system 714
has garbage collection interface 716. In this example, this
garbage collection interface may support registering garbage
collection threads in thread registration 718. As a result, when
a garbage collection thread within garbage collection threads
712 obtains a lock from locks 710, the registration 718 may be
used to identify the lock as a garbage collection lock. In other
words, a garbage collection thread registered in registration
718 may be identified when that thread obtains a lock from
locks 710.

0079. With this information, operating system process 714
may identify a number of different phases for a garbage
collection state. In these examples, these phases include start
ing garbage collection 720, entered garbage collection 722,
and completed garbage collection 724. Starting garbage col
lection 720 may be identified when a garbage collection
thread within garbage collection threads 712 obtains a lock
from lock 710. Entered garbage collection 722 occurs when
all of threads 708 have released any locks from locks 710.
Completed garbage collection 724 occurs when garbage col
lection threads 712 release all of locks 710.

0080. In these examples, when operating system 714
detects starting garbage collection 720, operating system pro
cess 714 may change the priority of garbage collection
threads 712. In particular, the priority of garbage collection
threads 712 may be increased. This priority may be increased
until any locks obtained by garbage collection threads 712 are
released. Once entered garbage collection 722 has occurred,
or a lock has been released by a thread within threads 708, the
priority of threads 708 may be reduced. In this manner,
threads 708 do not contend with garbage collection threads
712 for processor resources. The priorities may be restored
after the garbage collection state ends.
I0081. In these depicted examples, operating system 714
may change the priority of threads 708 and garbage collection
threads 712 by sending priority change 726 to scheduler 728.
Scheduler 728 schedules the execution of threads such as
threads 708 and garbage collection threads 712.
I0082. Additionally, operation system 714 also may per
form other operations such as, for example, paging out non
garbage collection threads and paging in garbage collection
threads and including expected data area accesses in this
paging process.
I0083. In an alternative embodiment, the support for gar
bage collection processing may be performed using profiler
730. Virtual machine 702 may send notification 732 to pro
filer 730 when a garbage collection state occurs. In this
example, virtual machine 702 is used to identify when a
garbage collection process occurs as opposed to using oper
ating system 714 as described above. When profiler 730
receives notification 732, profiler 730 may use garbage col
lection interface 716 to change the priority for garbage col
lection threads 712. In other examples, profiler 730 may use
data collected during previous garbage collection processing
to adjust thread priorities and to touch data areas to preload
processor caches with heap data.
I0084. In these examples, the steps performed by operating
system 714 to perform actions to increase the performance of
garbage collection may be performed using an operating sys
tem process, such as, for example, a device driver or other
operating system process within operating system 714.

US 2010/001 7584 A1

I0085. With this type of embodiment, profiler 730 may
notify a device driver such as, for example, device driver 206
in FIG. 2, to obtain thread identification information when
garbage collection occurs. This information, collected using
the process described in FIG. 2, may be used to obtain an
identification of threads that are active during garbage collec
tion as well as the data areas that are active during garbage
collection. In this manner, previously collected information
may be used to adjust thread priorities and pre-fetch data in
heap data areas. In particular, the priorities for threads 712
may be decreased while the priorities for garbage collection
threads 712 may be increased while a garbage collection state
is present. This thread information may be stored in history
734 for use by profiler 730.
I0086. With reference now to FIG. 8, a flowchart of a pro
cess for processing interrupts is depicted in accordance with
an illustrative embodiment. In this example, process 800 may
be implemented in Such a component, such as, for example,
deferred procedure call handler 208 in FIG. 2.
0087. The process begins by receiving an interrupt (step
800). This interrupt may be received directly from the pro
cessor or through the operating system depending on the
particular implementation. The process then identifies the
processor generating the interrupt (step 802). Thereafter, the
process sets a counter for the processor (step 804). The loop
ing through steps 800, 802, 804, and 806 prevent the forward
progress.

0088 A determination is then made as to whether inter
rupts have been received from all of the processors (step 806).
This determination may be made by checking the different
counters to see whether all of the counters have been set for
the different processors. If interrupts have not been received
from all the processors, the process returns to step 800 to wait
to receive another interrupt. If interrupts have been received
from all of the processors, a determination is made as to
whether to obtain call stack information (step 808). The deter
mination may be made using a policy Such as policy 228 in
FIG 2.

0089. If call stack information is to be obtained, the pro
cess initiates a deferred procedure call for each processor
(step 810) with the process terminating thereafter. This
deferred procedure call is used by the device driver to prevent
forward progress in execution and to initiate call stack Sam
pling. For example, the events may be a signal sent to a
sampling thread Such as signal 232 in FIG. 2.
0090. With reference again to step 808, if call stack infor
mation is not to be obtained, a determination is made as to
whether other processing is to be performed (step 812). Step
812 may be made by determining whether selected conditions
are present within the operating system. For example, if a
condition is present in which garbage collection is occurring,
then other processing may be performed. If other processing
is to be performed, this other processing is initiated (step 814)
with the process terminating thereafter. This step may include
various actions. These actions may include, for example,
increasing the priority of garbage collection threads if gar
bage collection is occurring within the operating system. As
another example, no action may be performed as the other
processing if a call stack sampling condition is present with
call stack sampling already occurring. In this case, it may be
undesirable to obtain call stack information on the threads
performing call stack sampling.
0091. With reference again to step 812, if other processing

is not to be performed, the process terminates. In these

Jan. 21, 2010

examples, call stack information may not be obtained for a
number of different reasons, depending on the policy used.
0092 Turning next to FIG. 9, a flowchart of a deferred
procedure call is depicted in accordance with an illustrative
embodiment. In these examples, the process in FIG. 9 is an
example of a process that may be executed by a deferred
procedure call inaccordance with an illustrative embodiment.
0093. The process begins by executing a spin loop (step
900). In this step, the deferred procedure call thread executes
on the processor at a priority that is higher than the sampling
threads at a priority that is lower than an interrupt. The spin
loop may be a loop that occurs until the deferred procedure
call thread is to be terminated. In this manner, the deferred
procedure call thread may keep the processor busy to prevent
any forward progress in the execution of an application.
0094. The process then determines whether all of the
deferred procedure call threads are executing (step 902). This
determination may be made by accessing a work area in
which the deferred procedure call handler threads may regis
ter. This work area may be, for example, device driver work
area 216 or some other work area that may be provided
through the operating system. If all of the deferred procedure
call threads are not executing, the process returns to step 900.
0.095 Otherwise, a signal is sent to a set of sampling
threads (step 904) with the process terminating thereafter. In
these examples, step 904 may be performed by only one of the
deferred procedure call threads. This deferred procedure call
thread may obtain ownership of sampling and send a signal to
the set of sampling threads to initiate collection of call stack
information. In other embodiments, each deferred procedure
call thread may send a signal to an associated sampling
thread.
0096. With reference now to FIG. 10, a flowchart of a
process for collecting call Stack information is depicted in
accordance with an illustrative embodiment. In this example,
the process may be implemented in a software component
Such as a virtual machine.
0097. The process begins by receiving a notification to
sample call stack information for a target thread (step 1000).
The call stack information is then retrieved (step 1002). Next,
a tree is generated from the call stack information (step 904).
In this example, the tree may be tree 500 in FIG. 5. This tree
is stored in a data area (step 1006) with the process terminat
ing thereafter. In these examples, this data area may be data
area 218 in FIG. 2. Some sampler threads may simply loop
while other sampler threads are getting call stacks. The loop
ing terminates when all the call Stacks from the other Sam
pling threads have been retrieved and/or processed.
0098. With reference now to FIG. 11, a flowchart of a
process for determining whether to obtain call stack informa
tion is depicted in accordance with an advantageous embodi
ment. The process illustrated in FIG. 11 is a more detailed
illustration of one implementation of step 808 in FIG. 8.
0099. The process begins by identifying an address (step
1100). This address is the address for the interrupt that has
been generated. The address may be identified using an inter
rupt handler. The process determines whether the address is
within a set of address ranges (step 1102). These address
ranges may be address ranges 227 located within a work area
such as, for example, device driver work area 216 in FIG. 2.
The set of address ranges may be specified by user input. For
example, user may identify routines or data objects of inter
est. Addresses for these routines or data objects may be iden
tified by a profiler and stored in the work area.

US 2010/001 7584 A1

0100 If the address is within the set of address ranges, the
process determines whether a selected condition is present in
the operating system (step 1104). This determination may be
used to decide whether call stack information should be
obtained or samples even though the address is within the set
of address ranges. In these examples, some conditions may be
present in which call stack sampling is not desired. For
example, if a condition in which garbage collection is occur
ring, it may be undesirable to obtain call stack information.
Another illustrative example is if call stack sampling is
already occurring, then sampling call stack information for
the threads that are performing the call stack sampling may
not be desirable.
0101 If the selected condition is not present, the process
determines that call stack information should be collected.
This identification results in the process then proceeding to
step 810 as described in FIG. 7 (step 1106). The process then
returns to the identified step in FIG. 8.
0102. With reference again to step 1102, if the address is
not within the set of address ranges, the process determines
that call stack information should not be collected and deter
mines that the process should return to step 816 (step 1108).
The process then returns to the identified step in FIG. 8.
(0103 With reference now to FIG. 12, a flowchart of a
process that may be initiated for other processing when gar
bage collection is occurring is depicted in accordance with an
illustrative embodiment. The process illustrated in FIG. 12
may be implemented in an operating system, such as, for
example, operation system 714 in FIG. 7.
0104. The process begins by identifying a set of garbage
collection threads (step 1200). Thereafter, the priority of the
garbage collection threads are increased (step 1202). The
process then identifies a set of non-garbage collection threads
(step 1204). The priority of the set of non-garbage collection
threads are decreased (Step 1206), with the process terminat
ing thereafter.
0105. The changing of the priority of threads in these
examples may be performed by requesting thread priority
changes via operating system interfaces. Of course, various
other actions may be performed depending on the condition
identified within the operating system. The examples of dif
ferent conditions and actions that may be initiated are pro
vided for purposes of illustration and not meant to limit the
conditions or actions that may be taken. The different illus
trative embodiments may monitor for other conditions and
perform other actions depending upon the rules within the
policy.
01.06 With reference now to FIG. 13, a flowchart of a
process for increasing garbage collection performance is
depicted in accordance with an illustrative embodiment. The
process illustrated in FIG. 13 may be performed by an oper
ating system such as operating system 714 in FIG. 7. This
process may be initiated when a garbage collection condition
is detected.
0107 The process begins by identifying non-garbage col
lection threads and/or associated data areas located in pri
mary memory (step 1300). In these examples, the primary
memory is a random access memory. The process then pages
out the identified non-garbage collection threads and/or asso
ciated data areas to a secondary memory (step 1302). This
secondary memory may be, for example, a hard disk.
0108. The process then identifies any garbage collection
threads and/or associated data areas that are not the primary
memory (step 1304). The associated data areas may be ones

Jan. 21, 2010

that are expected to be used or touched by the garbage col
lection threads. The process then pages in the identified gar
bage collection threads and/or associated data areas into pri
mary memory from the secondary memory (step 1306) with
the process terminating thereafter.
0109. In this manner, the performance of garbage collec
tion may be improved. This performance may be improved
through the placement of garbage collection threads and data
areas into the primary memory rather than having those
threads being accessed from a secondary memory. In these
examples, an operating system may perform other processing
Such as, for example, the steps described above, to enhance
garbage collection processes.
0110. With reference now to FIG. 14, a flowchart of a
process for selecting address ranges is depicted in accordance
with an illustrative embodiment. The process illustrated in
FIG. 14 may be performed within a software component such
as profiler 210 in FIG. 2.
0111. The process begins by receiving user input identi
fying a set of Software components and/or data objects (step
1400). The process then identifies a set of address ranges from
user input (step 1402). Next, a set of address ranges are stored
in a work area (step 1404) with the process terminating there
after. In these examples, the work area may be, for example,
device driver work area 216 in FIG. 2.
0112 The different illustrative embodiments may provide
a computer implemented method, apparatus, and computer
usable program code for sampling call stack information. In
response to identifying the interrupt, an address for the inter
rupt is identified. A determination is made as to whether the
identified address falls within a set of address ranges. In
response to the determination that the identified address falls
within the set of address ranges, call stack information is
sampled.
0113. Further, the different advantageous embodiments
also provide a computer implemented method, apparatus and
computer useable program code for processing interrupts. In
response to identifying an interrupt, a determination is made
as to whether a selected condition is present in an operating
system. If the selected condition is present, a determination is
made as to whether processing other than call stack sampling
should be performed.
0114 Thus, the different advantageous embodiments pro
vide a capability to perform for selective and/or more granu
lar call Stack sampling through the use of address ranges to
identify executable code and/or data objects. Further, the
different illustrative embodiments also provide a capability to
avoid call stack sampling when other conditions are present.
In addition, other processing to enhance or process those
conditions may be initiated.
0115 Thus, the different illustrative embodiments provide
a computer-implemented method, apparatus, and computer
usable program code for sampling call stack information. In
the different illustrative examples, a determination is made as
to whether all processors in the plurality of processors have
generated an interrupt when an interrupt is identified or
received. If all of the processors have generated an interrupt,
a determination is made as to whether call stack information
should be sampled based on a policy. The call Stack informa
tion is sampled if the determination is made to sample that call
stack information using the policy.
0116. The different illustrative embodiments provide a
capability to selectively perform call Stack sampling even if
all of the processors have generated interrupts. Different

US 2010/001 7584 A1

types of processing other than call stack sampling may occur,
depending on the various conditions or parameters. Of
course, other types of criteria or rules may be used to deter
mine whether to collect call stack information and what pro
cessing to perform in other implementations and these
examples are not meant to limit the manner in which that type
of processing and determination may be made.
0117 The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods, and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures.
0118 For example, two blocks shown in succession may,
in fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and
computer instructions.
0119 The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an', and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0120. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed.
0121 The invention can take the form of an entirely hard
ware embodiment, an entirely software embodiment, or an
embodiment containing both hardware and Software ele
ments. In a preferred embodiment, the invention is imple
mented in software, which includes but is not limited to
firmware, resident Software, microcode, etc.
0122 Furthermore, the invention can take the form of a
computer program product accessible from a computer
usable or computer readable medium providing program
code for use by or in connection with a computer or any
instruction execution system. For the purposes of this
description, a computerusable or computer readable medium
can be any tangible apparatus that can contain, store, com
municate, propagate, or transport the program for use by or in
connection with the instruction execution system, apparatus,
or device.
0123 The medium can be an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system (or appa
ratus or device) or a propagation medium. Examples of a
computer readable medium include a semiconductor or Solid

Jan. 21, 2010

state memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk, and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/write (CD-R/W),
and DVD.
0.124. A data processing system Suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.
0.125 Input/output or I/O devices (including but not lim
ited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers.
0.126 Network adapters may also be coupled to the system
to enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modem, and Ethernet cards are just a few of
the currently available types of network adapters.
I0127. The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
Suited to the particular use contemplated.

What is claimed is:
1. A computer implemented method for sampling call stack

information, the computer implemented method comprising:
responsive to identifying a set of interrupts, determining

whether all processors in a plurality of processors have
generated the set of interrupts:

responsive to a determination that all of the processors have
generated the set of interrupts, identifying a number of
addresses for a set of interrupted threads identified by
the set of interrupts to form a set of identified addresses;

determining whether any address within the set of identi
fied addresses falls within a set of address ranges; and

responsive to a determination that the any address within
the set of identified addresses falls within the set of
address ranges, notifying a sampling thread to obtain the
call stack information.

2. The computer implemented method of claim 1, wherein
the set of address ranges is at least one of a set of executable
code and a set of data objects.

3. The computer implemented method of claim 2 further
comprising:

receiving user input identifying at least one of the set of
executable code and the set of data objects:

identifying the set of address ranges from the user input;
and

storing the set of address ranges in a work area.
4. The computer implemented method of claim3, wherein

the receiving step comprises:

US 2010/001 7584 A1

receiving the user input identifying at least one of the set of
executable code and the set of data objects at a profiler.

5. The computer implemented method of claim 2, wherein
the step of identifying the number of addresses for the set of
interrupted threads identified by the set of interrupts to form
the set of identified addresses comprises: receiving an iden
tification for the set of executable code in a user input; and

converting the identification to a set of addresses for the set
executable code to form the set of address ranges.

6. The computer implemented method of claim 5, wherein
the wherein the step of identifying the number of addresses
for the set of interrupted threads identified by the set of
interrupts to form the set of identified addresses further com
prises:

responsive to a change in an address range within the set of
address ranges during execution of the set of executable
code, identify a new address range.

7. The computer implemented method of claim 1, wherein
the determining step and the sampling step are performed by
a deferred procedure call handler.

8. The computer implemented method of claim 1 further
comprising:

responsive to a determination that at least one of the set of
identified addresses does not fall in the set of address
ranges, performing an action.

9. The computer implemented method of claim 8, wherein
the action is at least one of incrementing a counter and noti
fying the sampling thread to sample the call stack information
for each address within the set of identified addresses falling
within the set of address ranges.

10. A computer comprising:
a bus;
a storage device connected to the bus, wherein program

code is stored on the storage device; and
a processor unit connected to the bus, wherein the proces

Sor unit executes the program code to determine whether
all processors in a plurality of processors have generated
a set of interrupts in response to identifying the set of
interrupts; identify a number of addresses for a set of
interrupted threads identified by the set of interrupts to
form a set of identified addresses in response to a deter
mination that all of the processors have generated the set
of interrupts; determine whether any address within the
set of identified addresses falls within a set of address
ranges; and notify a sampling thread to obtain the call
stack information in response to a determination that any
address within the set of identified addresses falls within
the set of address ranges.

11. The computer of claim 10, wherein the set of address
ranges is at least one of a set of executable code and a set of
data objects.

12. The computer of claim 11, wherein the processor unit
further executes the program code to receive user input iden
tifying at least one of the set of executable code and the set of
data objects; identify the set of address ranges from the user
input; and store the set of address ranges in a work area.

Jan. 21, 2010

13. The computer of claim 12, wherein in executing the
program code to receive the user input identifying at least one
of the set of executable code and the set of data objects, the
processor unit executes the program code to receive the user
input identifying at least one of the set of executable code and
the set of data objects at a profiler.

14. The computer of claim 13, wherein in executing the
program code to identifying the number of addresses for a set
of interrupted threads identified by the set of interrupts to
form the set of identified addresses, the processor unit
executes the program code to receive an identification for a set
of executable code in a user input and convert the identifica
tion to a set of addresses for the set executable code to form
the set of address ranges.

15. The computer of claim 10, wherein the processor unit
further executes the program code to perform an action in
response to a determination that at least one of the set of
identified addresses does not fall in the set of address ranges.

16. The computer of claim 15, wherein the action is at least
one of incrementing a counter and notifying the sampling
thread to sample the call stack information for each address
within the set of identified addresses falling within the set of
address ranges.

17. A computer program product for sampling call stack
information, the computer program product comprising:

a computer readable storage medium;
program code, stored on the computer readable medium,

responsive to identifying a set of interrupts, for deter
mining whether all processors in a plurality of proces
sors have generated the set of interrupts:

program code, stored on the computer readable medium,
responsive to a determination that all of the processors
have generated the set of interrupts, for identifying a
number of addresses for a set of interrupted threads
identified by the set of interrupts to form a set of identi
fied addresses;

program code, stored on the computer readable medium,
for determining whether any address within the set of
identified addresses falls within a set of address ranges;
and

program code, stored on the computer readable medium,
responsive to a determination that any address within the
set of identified addresses falls within the set of address
ranges, for notifying a sampling thread to obtain the call
stack information.

18. The computer program product of claim 17, wherein
the set of address ranges is at least one of a set of executable
code and a set of data objects.

19. The computer program product of claim 17 further
comprising:

program code, stored on the computer readable medium,
for receiving user input identifying at least one of the set
of executable code and the set of data objects; and

program code, stored on the computer readable medium,
for identifying the set of address ranges from the user
input.

