(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau
(43) International Publication Date

27 December 2013 (27.12.2013)

(10) International Publication Number WO 2013/190036 A1

- (51) International Patent Classification:
- (21) International Application Number:

PCT/EP2013/062869

(22) International Filing Date:

A24F 47/00 (2006.01)

20 June 2013 (20.06.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12173054.3 21 June 2012 (21.06.2012) EP 13159647.0 15 March 2013 (15.03.2013) EP

- (71) Applicant: PHILIP MORRIS PRODUCTS S.A. [CH/CH]; Quai Jeanrenaud 3, CH-2000 Neuchatel (CH).
- (72) Inventors: MITREV, Pande; Rue de la Gabelle 30, CH-1227 Carouge (CH). BADERTSCHER, Thomas; Rue du Pommeret 31, CH-2053 Cernier (CH).
- (74) Agent: MILLBURN, Julie; Reddie & Grose LLP, 16 Theobalds Road, London Greater London WC1X 8PL (GB).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: SMOKING ARTICLE FOR USE WITH AN INTERNAL HEATING ELEMENT

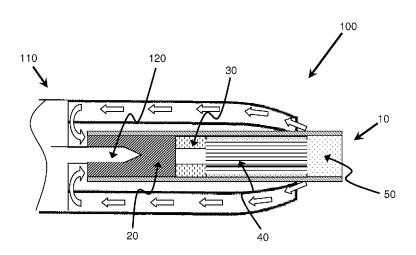


Figure 2

(57) Abstract: A smoking article (10) for use in an aerosol-generating device comprises an aerosol-forming substrate (20) located at an extreme upstream end (80) of the smoking article; and a support element (30) located immediately downstream of the aerosol-forming substrate (20). The support element (30) abuts the aerosol-forming substrate (20) and the aerosol-forming substrate (20) is configured to be penetrable by a heating element of an aerosol-generating device having a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate without substantial deformation of the smoking article. The support element is configured to resist downstream movement of the aerosol-forming substrate during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate.

SMOKING ARTICLE FOR USE WITH AN INTERNAL HEATING ELEMENT

The present specification relates to a smoking article comprising an aerosol-forming substrate for generating an inhalable aerosol when heated by an internal heating element of an aerosol-generating device. The specification also relates to a method of using such a smoking article.

5

10

15

20

25

30

35

A number of smoking articles in which tobacco is heated rather than combusted have been proposed in the art. One aim of such 'heated' smoking articles is to reduce known harmful smoke constituents of the type produced by the combustion and pyrolytic degradation of tobacco in conventional cigarettes.

Typically in such heated smoking articles, an aerosol is generated by the transfer of heat from a heat source to a physically separate aerosol-forming substrate or material, which may be located within, around or downstream of the heat source. During smoking, volatile compounds are released from the aerosol-forming substrate by heat transfer from the heat source and entrained in air drawn through the smoking article. As the released compounds cool, they condense to form an aerosol that is inhaled by the user.

A number of prior art documents disclose aerosol-generating devices for consuming or smoking heated smoking articles. Such devices include, for example, electrically heated aerosol-generating devices in which an aerosol is generated by the transfer of heat from one or more electrical heating elements of the aerosol-generating device to the aerosol-forming substrate of a heated smoking article. One advantage of such electric smoking systems is that they significantly reduce sidestream smoke, while permitting a user to selectively suspend and reinitiate smoking.

An example of an electrically heated cigarette used in an electrical smoking system is disclosed in US 2005/01722976 A1. In one embodiment, the electrically heated cigarette comprises a tobacco rod and a filter tipping joined together by tipping paper. The tobacco rod includes a tobacco web folded into a tubular form about a free-flow filter at one end and a tobacco plug at the other end. A void is between the free-flow filter and the tobacco plug. The void is an unfilled portion of the tobacco rod and is in fluid communication with the filter tipping through the free flow filter. The electrically heated cigarette is constructed to be inserted into and a cigarette receiver of a reusable lighter of an electrical smoking system. The lighter includes a power source that supplies energy to a heater fixture including a plurality of electrically resistive heating elements, which are arranged to slidingly receive the cigarette such that the heating elements are positioned alongside the cigarette.

As described above, the electrically heated cigarette disclosed in US 2005/01722976 A1 is for use in an electrical smoking system comprising a plurality of external heating elements. As well as electrical smoking systems comprising aerosol-generating devices with external

WO 2013/190036 PCT/EP2013/062869 - 2 -

heating elements, electrical smoking systems comprising aerosol-generating devices with internal heating elements are also known. In use, the internal heating elements of the aerosol-generating devices of such electrical smoking systems are inserted into the aerosol-forming substrate of a heated smoking article such that the internal heating elements are in direct contact with the aerosol-forming substrate.

5

10

15

20

25

30

35

Direct contact between an internal heating element of an aerosol-generating device and the aerosol-forming substrate of a heated smoking article can provide an efficient means for heating the aerosol-forming substrate to form an inhalable aerosol. In such a configuration, heat from the internal heating element may be conveyed almost instantaneously to at least a portion of the aerosol-forming substrate when the internal heating element is actuated, and this may facilitate the rapid generation of an aerosol. Furthermore, the overall heating energy required to generate an aerosol may be lower than would be the case in a smoking system comprising an external heater element where the aerosol-forming substrate does not directly contact the external heating element and initial heating of the aerosol-forming substrate occurs by convection or radiation. Where an internal heating element of an aerosol-generating device is in direct contact with an aerosol-forming substrate, initial heating of portions of the aerosol-forming substrate that are in direct contact with the internal heating element will be effected by conduction.

However, as well as the potential advantage described above there are also potential disadvantages associated with the use of electric smoking systems comprising aerosol-generating devices with internal heating elements.

During insertion of a heated smoking article into an aerosol-generating device comprising an internal heating element a user may be required to apply significant force in order to overcome the resistance of the aerosol-forming substrate of the heated smoking article to insertion of the internal heating element of the aerosol-generating device. This may damage one or both of the heated smoking article and the internal heating element of the aerosol-generating device.

In addition, the application of significant force during insertion of the internal heating element of the aerosol-generating device into the aerosol-forming substrate of the heated smoking article may displace the aerosol-forming substrate within the heated smoking article. This may result in the internal heating element not being fully inserted into the aerosol-forming substrate, which may lead to uneven and inefficient heating of the aerosol-forming substrate of the heated smoking article.

For example, insertion of an electrically heated cigarette as disclosed in US 2005/01722976 A1 into an aerosol-generating device with an internal heating element will result in displacement of the tobacco plug towards the free flow filter into the void between the free-flow filter and the tobacco plug.

WO 2013/190036 PCT/EP2013/062869 - 3 -

EP 2 395 520 A1 discloses a non-combustion smoking tool comprising a slender heater having a sharp end which is directly inserted into a commercially available cigarette or cigar to directly heat the tobacco leaves of the cigarette or cigar. EP 2 395 520 A1 discloses that to enable a smoker to smoothly insert the heater into a general filter cigarette having a diameter of 8mm the diameter of the heater is required to be 2.3mm or smaller and that attempts to insert heaters having a diameter greater than 2.3mm into a general filter cigarette having a diameter of 8mm results in deformation of the outline of the filter cigarette or tearing of the paper of the filter cigarette.

5

10

15

20

25

30

35

However, while reducing the diameter of an internal heating element as described in EP 2 395 520 A1 facilitates insertion of the internal heating element into the aerosol-forming substrate of a heated smoking article, there are also potential disadvantages associated with the use of electric smoking systems comprising aerosol-generating devices with slender internal heating elements.

Reducing the diameter of the internal heating element relative to the diameter of the aerosol-forming substrate of the heated smoking article adversely affects heat dissipation through the aerosol-forming substrate, which is critical to the generation of a satisfactory aerosol.

The present specification relates to a smoking article and a method of using a smoking article. In particular, the present specification relates to a smoking article comprising an aerosol-forming substrate for generating an inhalable aerosol when heated by an internal heating element of an aerosol-generating device. The specification also relates to a method of using such a smoking article with an aerosol-generating device comprising an internal heating element.

According to a first aspect, there is provided a smoking article for use in an aerosol-generating device, the smoking article comprising: an aerosol-forming substrate located at an extreme upstream end of the smoking article; and a support element located immediately downstream of the aerosol-forming substrate. The support element abuts the aerosol-forming substrate and the aerosol-forming substrate is configured to be penetrable by a heating element of an aerosol-generating device having a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate without substantial deformation of the smoking article.

According to another aspect, there is provided a method of using a smoking article according to the first aspect with an aerosol-generating device, the method comprising the steps of: inserting a heating element of an aerosol-generating device into the aerosol-forming substrate of the smoking article wherein the heating element has a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate; raising the temperature of the heating element of the aerosol-generating device to heat the aerosol-forming

WO 2013/190036 PCT/EP2013/062869 - 4 -

substrate of the smoking article to generate an aerosol; and withdrawing the heating element of the aerosol-generating device from the aerosol-forming substrate of the smoking article.

According to another aspect, there is provided an aerosol-generating system comprising: an aerosol-generating device comprising a heating element; and a smoking article for use with the aerosol-generating device, the smoking article comprising: an aerosol-forming substrate located at an extreme upstream end of the smoking article, wherein the aerosol-forming substrate is penetrable by the heating element of the aerosol-generating device; and a support element located immediately downstream of the aerosol-forming substrate, wherein the support element abuts the aerosol-forming substrate, wherein the heating element of the aerosol-generating device has a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate. The aerosol-forming substrate is configured to be penetrable by the heating element without substantial deformation of the smoking article.

5

10

15

20

25

30

35

According to a further aspect, there is provided a method of making a smoking article for use in an aerosol-generating device, the method comprising: providing an aerosol-forming substrate; providing a support element immediately downstream of the aerosol-forming substrate; and wrapping the aerosol-forming substrate and the support element in an outer wrapper to form a smoking article such that the aerosol-forming substrate is located at an extreme upstream end of the smoking article and the support element abuts the aerosol-forming substrate. The aerosol-forming substrate is configured to be penetrable by a heating element of an aerosol-generating device having a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate without substantial deformation of the smoking article.

As used herein, the term 'aerosol-forming substrate' is used to describe a substrate capable of releasing upon heating volatile compounds, which can form an aerosol. The aerosols generated from aerosol-forming substrates of smoking articles described herein may be visible or invisible and may include vapours (for example, fine particles of substances, which are in a gaseous state, that are ordinarily liquid or solid at room temperature) as well as gases and liquid droplets of condensed vapours.

As used herein, the terms 'upstream', 'downstream', proximal' and 'distal' are used to describe the relative positions of elements, or portions of elements, of smoking articles aerosol-generating devices and aerosol-generating systems according to the invention.

Smoking articles as described herein comprise a proximal end through which in use an aerosol exits the aerosol-generating article. The proximal end may also be referred to as the mouth end. In use, a user draws on the proximal or mouth end of the smoking article in order to inhale an aerosol generated by the smoking article. The smoking article comprises a distal end opposed to the proximal or mouth end. The proximal or mouth end of the smoking article may also be referred to as the downstream end and the distal end of the smoking article may also be

WO 2013/190036 PCT/EP2013/062869 - 5 -

referred to as the upstream end. Components, or portions of components, of the smoking article may be described as being upstream or downstream of one another based on their relative positions between the proximal or downstream end and the distal or upstream end of the smoking article.

As used herein the term 'extreme upstream end' is used to describe the outermost or farthest upstream portion of the smoking article.

5

10

15

20

25

30

35

As used herein the term 'diameter' is used to refer to the maximum transverse dimension of elements, or portions of elements, of smoking articles aerosol-generating devices and aerosol-generating systems according to the invention. For the avoidance of doubt, as used herein the term 'diameter' may refer to the 'width' of elements, or portions of elements, of smoking articles aerosol-generating devices and aerosol-generating systems according to the invention of non-circular transverse cross-section.

As used herein the term 'longitudinal' is used to describe the direction between the downstream or proximal end and opposed upstream or distal end of smoking articles, aerosol-generating devices and aerosol-generating systems according to the invention and the term 'transverse' is used to describe the direction perpendicular to the longitudinal direction.

For the avoidance of doubt, in the following description the term 'heating element' is used to mean one or more heating elements.

Inclusion of a support element immediately downstream of and abutting the aerosolforming substrate of the smoking article provides a number of advantages.

In preferred embodiments, the support element is configured to resist downstream movement of the aerosol-forming substrate during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate.

The insertion force experienced by the smoking article as it is inserted into the aerosolgenerating device by a user may be divided into three parts: friction force, penetration force and crush force.

As the smoking article is initially inserted into the aerosol-generating device and prior to the heating element of the aerosol-generating device being inserted into the aerosol-forming substrate of the smoking article, the insertion force is dominated by the force required to overcome friction due to interference between the exterior surface of the smoking article and the interior surface of the aerosol-generating device. As used herein, the term 'friction force' is used to describe the maximum insertion force prior to insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate of the smoking article.

As the smoking article is inserted further into the aerosol-generating device and prior to the smoking article reaching a position of maximum insertion, the insertion force is dominated by the force required to overcome resistance of the aerosol-forming substrate of the smoking article to insertion of the internal heating element of the aerosol-generating device.

WO 2013/190036 PCT/EP2013/062869 - 6 -

As used herein, the term 'penetration force' is used to describe the maximum insertion force during insertion of the heating element into the aerosol-forming substrate of the smoking article and prior to the smoking article reaching a position of maximum insertion.

Once the smoking article reaches a point of maximum insertion, the insertion force is dominated by the force required to deform the smoking article. At the position of maximum insertion, the extreme upstream end of the smoking article may come into contact with a surface, for example a bottom or rear surface, of the aerosol-generating device, which prevents the smoking article from being inserted further into the aerosol-generating device.

5

10

15

20

25

30

35

As used herein, the term 'crush force' is used to describe the maximum insertion force after the smoking article reaches a point of maximum insertion.

The support element of the smoking article resists the penetration force experienced by the smoking article during insertion of the internal heating element of the aerosol-generating device into the aerosol-forming substrate.

The insertion force required to insert a heating element into a aerosol-forming substrate where the heating element has a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate is greater than the insertion force required to insert a heating element into a aerosol-forming substrate where the heating element has a smaller diameter relative to the diameter of the aerosol-forming substrate.

In one embodiment, the support element is configured to resist a penetration force of at least 2.5 N during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate. The support element may be configured to resist a penetration force of between about 2.5 N and about 10 N during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate.

In another embodiment, the support element is configured to resist a penetration force of at least 4 N during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate. The support element may be configured to resist a penetration force of between about 4 N and about 10 N during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate.

The support element of the smoking article resists downstream movement of the aerosol-forming substrate within the smoking article during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate.

This may help to ensure that the heating element of the aerosol-generating device fully inserted into the aerosol-forming substrate and so avoid uneven and inefficient heating of the aerosol-forming substrate of the heated smoking article.

In one embodiment, the support element has a fracture force of at least 40 N, for example a fracture force of at least 45 N or at least 50 N. The fracture force is measured by conditioning the support element for at least 24 hours at 22 \pm 2 degrees Celsius and 50 \pm 5 %

relative humidity and then compressing the support element to fracture at a constant compression rate using a Instron® 5565 series or equivalent tensile test machine with a 100 N load cell. The test starts when a pre-load of 0.5 MPa is measured and finishes when the load has dropped to 60 % of the maximum load. The fracture force is the maximum force recorded during the test.

5

10

15

20

25

30

35

The support element may be formed from any suitable material or combination of materials. For example, the support element may be formed from one or more materials selected from the group consisting of: cellulose acetate; cardboard; crimped paper, such as crimped heat resistant paper or crimped parchment paper; and polymeric materials, such as low density polyethylene (LDPE). In one embodiment, the support element may be formed from cellulose acetate.

The support element may comprise a hollow tubular element. In one embodiment, the support element may comprise a hollow cellulose acetate tube.

The support element may have a length of between approximately 5 millimetres and approximately 15 mm, more preferably between approximately 6 millimetres and approximately 10 mm. In one embodiment, the support element has a length of approximately 8 millimetres.

As used herein, the term 'length' is used to describe the dimension in the longitudinal direction of the smoking article.

The support element has an external diameter that is approximately equal to the external diameter of the smoking article.

The support element may have an external diameter of between approximately 5 millimetres and approximately 12 millimetres. In one embodiment, the support element may have an external diameter of approximately 7.2 millimetres.

Where the support element comprises a hollow tubular element, the support element may have an internal diameter of between approximately 3 millimetres and approximately 8 millimetres. In certain embodiments, the support element may have an internal diameter of between approximately 3 millimetres and approximately 4 millimetres. In one embodiment, the support element may have an internal diameter of approximately 3.3 millimetres. In other embodiments, the support element may have an internal diameter of between approximately 6.5 millimetres and approximately 7.5 millimetres. In one embodiment, the support element may have an internal diameter of approximately 6.9 millimetres.

Support elements comprising a hollow tubular element allow volatile compounds released from the aerosol-forming substrate by heat transfer from the heating element of the aerosol-generating device to pass downstream through the hollow tubular element while also resisting downstream movement of the aerosol-forming substrate during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate

Where the support element comprises a hollow tubular element, the velocity of aerosol

WO 2013/190036 PCT/EP2013/062869 - 8 -

passing downstream through the support element is dependent on the internal diameter of the hollow tubular element.

As described further below, the smoking article may comprise a transfer element comprising an aerosol-cooling element or heat exchanger located between the support element and a mouthpiece located at the extreme downstream end of the smoking article. The velocity of aerosol passing downstream through the support element may affect the efficiency of heat exchange between the aerosol and the aerosol-cooling element or heat exchanger.

5

10

15

20

25

30

35

Where the support element comprises a hollow tubular element, the internal diameter of the hollow tubular element may be between about 35 percent and about 98 percent of the external diameter of the hollow tubular element. In certain embodiments, the internal diameter of the hollow tubular element may be between about 35 percent and about 55 percent of the external diameter of the hollow tubular element. In other embodiments, the internal diameter of the hollow tubular element may be between about 90 percent and about 98 percent of the external diameter of the hollow tubular element.

The aerosol-forming substrate is configured to be penetrable by a heating element of an aerosol-generating device having a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate.

The aerosol-forming substrate is configured to be penetrable by a heating element of an aerosol-generating device having a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate without substantial deformation of the smoking article.

As used herein the term 'substantial deformation' is used to describe one or more of bending of the smoking article by more than about 7 degrees relative to the longitudinal axis of the smoking article and tearing or ripping of an outer wrapper of the smoking article.

In preferred embodiments, the support element is resistant to the maximum temperature to which it is exposed at an interface during use of the smoking article in an aerosol-generating device. As used herein the term 'interface' is used to described a plane or point of contact abutting an end of the support element.

In the exemplary embodiment illustrated in Figure 1, a first interface 82 is the plane between the upstream end of support element 30 and the downstream end of aerosol-forming substrate 20 and a second interface 84 is the plane between the downstream end of support element 30 and the upstream end of transfer section 40.

In the exemplary embodiment illustrated in Figure 5, a first interface 82 is the plane between the upstream end of support element 30 and the downstream end of aerosol-forming substrate 20 and a second interface is the plane between the downstream end of support element 30 and the upstream end of the remainder of smoking article 200.

In certain embodiments, the support element is resistant to exposure to a temperature of

WO 2013/190036 PCT/EP2013/062869 - 9 -

at least about $100\,^{\circ}$ C for a period at least about 5 minutes. In preferred embodiments, the support element is resistant to exposure to a temperature of at least about $120\,^{\circ}$ C for a period at least about 5 minutes. In particularly preferably preferred embodiments, the support element is resistant to exposure to a temperature of at least about $150\,^{\circ}$ C for a period at least about 6 minutes.

5

10

15

20

25

30

35

As used herein the term 'resistant to exposure to a temperature' is used to describe a support element that maintains mechanical and structural integrity upon exposure to the specified temperature for a specified period of time. In particular, the term 'resistant to exposure to a temperature' is used to describe a support element that does not ignite, combust, melt, decompose or degrade upon exposure to the specified temperature for a specified period of time.

The aerosol-forming substrate may be a solid aerosol-forming substrate. Alternatively, the aerosol-forming substrate may comprise both solid and liquid components. The aerosol-forming substrate may comprise an aerosol-forming material containing tobacco. Alternatively, the aerosol-forming substrate may comprise a non-tobacco containing aerosol-forming material. The aerosol-forming substrate may further comprise an aerosol former. Examples of suitable aerosol formers include, but are not limited to, glycerine and propylene glycol.

The aerosol-forming substrate may have an aerosol former content of between approximately 5% w/w and approximately 30% w/w. The aerosol-forming substrate may have an aerosol former content of greater than approximately 5% w/w. In one embodiment, the aerosol-forming substrate has an aerosol former content of approximately 20% w/w.

If the aerosol-forming substrate is a solid aerosol-forming substrate, the solid aerosol-forming substrate may comprise, for example, one or more of: powder, granules, pellets, shreds, strands, strips or sheets containing one or more of: herb leaf, tobacco leaf, tobacco ribs, expanded tobacco and homogenised tobacco.

The solid aerosol-forming substrate may be in the form of a plug comprising an aerosol-forming material circumscribed by a paper or other wrapper and. Where an aerosol-forming substrate is in the form of a plug, the entire plug including any wrapper is considered to be the aerosol-forming substrate.

Optionally, the solid aerosol-forming substrate may contain tobacco or non-tobacco volatile flavour compounds, which are released upon heating of the solid aerosol-forming substrate. The solid aerosol-forming substrate may also contain capsules that, for example, include additional tobacco or non-tobacco volatile flavour compounds and such capsules may melt during heating of the solid aerosol-forming substrate.

Optionally, the solid aerosol-forming substrate may be provided on or embedded in a thermally stable carrier. The carrier may take the form of powder, granules, pellets, shreds, strands, strips or sheets. The solid aerosol-forming substrate may be deposited on the surface

of the carrier in the form of, for example, a sheet, foam, gel or slurry. The solid aerosol-forming substrate may be deposited on the entire surface of the carrier, or alternatively, may be deposited in a pattern in order to provide a non-uniform flavour delivery during use.

In one embodiment, the aerosol-forming substrate comprises homogenised tobacco material.

As used herein, the term 'homogenised tobacco material' denotes a material formed by agglomerating particulate tobacco.

The aerosol-forming substrate may comprise a gathered sheet of homogenised tobacco material.

As used herein, the term 'sheet' denotes a laminar element having a width and length substantially greater than the thickness thereof.

As used herein, the term 'gathered' is used to describe a sheet that is convoluted, folded, or otherwise compressed or constricted substantially transversely to the longitudinal axis of the smoking article.

The sheet of homogenised tobacco material may be crimped.

5

10

15

20

25

30

35

As used herein, the term 'crimped' denotes a sheet having a plurality of substantially parallel ridges or corrugations. Preferably, when the smoking article has been assembled, the substantially parallel ridges or corrugations extend along or parallel to the longitudinal axis of the smoking article.

The heating element may be any suitable heating element capable of being inserted into the aerosol-forming substrate of the smoking article. For example, the heating element may be in the form of a pin or blade.

The heating element may have a tapered, pointed or sharpened end to facilitate insertion of the heating element into the aerosol-forming substrate of the smoking article.

The smoking article may be substantially elongate. The smoking article may be substantially cylindrical in shape.

The aerosol-forming substrate may be substantially elongate. The aerosol-forming substrate may be substantially cylindrical in shape.

The smoking article may have a total length of between approximately 30 millimetres and approximately 100 millimetres. In one embodiment, the smoking article has a total length of approximately 45 millimetres.

The smoking article may have an external diameter of between approximately 5 millimetres and approximately 12 millimetres. In one embodiment, the smoking article may have an external diameter of approximately 7.2 millimetres.

The aerosol-forming substrate may have a length of between approximately 7 millimetres and approximately 15 mm. In one embodiment, the aerosol-forming substrate may have a length of approximately 10 millimetres. In an alternative embodiment, the aerosol-

WO 2013/190036 PCT/EP2013/062869 - 11 -

forming substrate may have a length of approximately 12 millimetres.

5

10

15

20

25

30

35

The aerosol-forming substrate preferably has an external diameter that is approximately equal to the external diameter of the smoking article.

The aerosol-forming substrate may have an external diameter of between approximately 5 millimetres and approximately 12 millimetres. In one embodiment, the aerosol-forming substrate may have an external diameter of approximately 7.2 millimetres.

The smoking article may comprise a mouthpiece located at the extreme downstream end of the smoking article. As used herein the term 'extreme downstream end' is used to describe the outermost or farthest downstream portion of the smoking article.

The mouthpiece may comprise a filter. The filter may be formed from one or more suitable filtration materials. Many such filtration materials are known in the art. In one embodiment, the mouthpiece may comprise a filter formed from cellulose acetate tow.

The mouthpiece may have a length of between approximately 5 millimetres and approximately 14 millimetres. In one embodiment, the mouthpiece may have a length of approximately 7 millimetres.

The smoking article may comprise a transfer element or spacer element located downstream of the support element. The transfer element may be located immediately downstream of the support element and abut the support element.

The transfer element may be located between the support element and a mouthpiece located at the extreme downstream end of the smoking article.

The transfer element may have a length of between approximately 5 millimetres and approximately 25 millimetres, more preferably of between approximately 16 millimetres and approximately 22 millimetres. In one embodiment, the transfer element may have a length of approximately 18 millimetres.

The transfer element may comprise an aerosol-cooling element or heat exchanger. The aerosol-cooling element may comprise a plurality of longitudinally extending channels.

In some embodiments, the aerosol-cooling element may comprise a gathered sheet of material selected from the group consisting of metallic foil, polymeric material, and substantially non-porous paper or cardboard. In some embodiments, the aerosol-cooling element may comprise a gathered sheet of material selected from the group consisting of polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyethylene terephthalate (PET), polylactic acid (PLA), cellulose acetate (CA), and aluminium foil.

In one embodiment, the aerosol-cooling element may comprise a gathered sheet of biodegradable polymeric material, such as polylactic acid or a grade of Mater-Bi[®] (a commercially available family of starch based copolyesters).

The aerosol-cooling element may have a total surface area of between approximately 300 square millimetres per millimetre length and approximately 1000 square millimetres per

millimetre length. In one embodiment, the aerosol-cooling element has a total surface area of approximately 500 square millimetres per millimetre length.

The aerosol-forming substrate and the support element and any other elements of the smoking article may be circumscribed by an outer wrapper. The outer wrapper may be formed from any suitable material or combination of materials. In one embodiment, the outer wrapper is a cigarette paper.

5

10

15

20

25

30

35

According to another aspect, there is provided a method of using a smoking article in an aerosol-generating device, the smoking article comprising: an aerosol-forming substrate located at an extreme upstream end of the smoking article; and a support element located immediately downstream of the aerosol-forming substrate, wherein the support element abuts the aerosol-forming substrate. The method comprises: inserting a heating element of an aerosol-generating device into the aerosol-forming substrate of the smoking article; raising the temperature of the heating element of the aerosol-generating device to heat the aerosol-forming substrate of the smoking article to generate an aerosol; and withdrawing the heating element of the aerosol-generating device from the aerosol-forming substrate of the smoking article.

According to another aspect, there is provided a method of using an aerosol-generating system, the aerosol-generating system comprising: an aerosol-generating device comprising a heating element; and a smoking article for use with the aerosol-generating device, the smoking article comprising: an aerosol-forming substrate located at an extreme upstream end of the smoking article, wherein the aerosol-forming substrate is penetrable by the heating element of the aerosol-generating device; and a support element located immediately downstream of the aerosol-forming substrate, wherein the support element abuts the aerosol-forming substrate. The method comprises inserting the heating element of the aerosol-generating device into the aerosol-forming substrate of the smoking article; raising the temperature of the heating element of the aerosol-generating device to heat the aerosol-forming substrate of the smoking article to generate an aerosol; and withdrawing the heating element of the aerosol-generating device from the aerosol-forming substrate of the smoking article.

The resistance to draw (RTD) of the smoking article after insertion of the heating element may be between approximately 80 mm WG and approximately 140 mm WG.

As used herein, resistance to draw is expressed with the units of pressure 'mm WG' or 'mm of water gauge' and is measured in accordance with ISO 6565:2002.

Features described in relation to one aspect or embodiment may also be applicable to other aspects and embodiments. For example, features described in relation to smoking articles and systems described above may also be used in conjunction with methods of using smoking articles and systems described above.

Specific embodiments will now be described with reference to the figures, in which:

Figure 1 is a schematic cross-sectional diagram of an embodiment of a smoking article

WO 2013/190036 PCT/EP2013/062869 - 13 -

for use with an aerosol generating-device;

5

10

15

20

25

30

35

Figure 2 is a schematic cross-sectional diagram of an embodiment of an aerosolgenerating system comprising an aerosol-generating device comprising an internal heating element and a smoking article according to the embodiment illustrated in Figure 1;

Figure 3 is a schematic cross-sectional diagram of an embodiment of an aerosolgenerating device comprising an internal heating element for use with a smoking article according to the embodiment shown in Figure 1;

Figure 4 is a graph showing insertion force as a function of insertion distance during insertion of smoking articles according to the embodiment shown in Figure 1 into the aerosol-generating device shown in Figure 3;

Figure 5 is a schematic cross-sectional diagram of the aerosol-forming substrate and support element of an embodiment of a smoking article for use with an aerosol generating-device; and

Figure 6 is a schematic view of the support element of the smoking article according to the embodiment illustrated in Figure 5.

Figure 1 illustrates a smoking article 10 according to an embodiment. The smoking article 10 comprises four elements arranged in coaxial alignment: an aerosol-forming substrate 20, a support element 30, a transfer section 40, and a mouthpiece 50. These four elements are arranged sequentially and are circumscribed by an outer wrapper 60 to form the smoking article 10. The smoking article 10 has a mouth end 70, which a user inserts into his or her mouth during use, and a distal end 80 located at the opposite end of the smoking article 10 to the mouth end 70.

In use air is drawn through the smoking article by a user from the distal end 80 to the mouth end 70. The distal end 80 of the smoking article may thus also be described as the upstream end of the smoking article 10 and the mouth end 70 of the smoking article 10 may also be described as the downstream end of the smoking article 10. Elements of the smoking article 10 located between the mouth end 70 and the distal end 80 can be described as being upstream of the mouth end 70 or, alternatively, downstream of the distal end 80.

The aerosol-forming substrate 20 is located at the extreme distal or upstream end of the smoking article 10. In the embodiment illustrated in Figure 1, aerosol-forming substrate 20 comprises a gathered sheet of crimped homogenised tobacco material circumscribed by a wrapper. The crimped sheet of homogenised tobacco material comprises comprising glycerine as an aerosol-former.

The support element 30 is located immediately downstream of the aerosol-forming substrate 20 and abuts the aerosol-forming substrate 20 along a first interface 82, which is the plane between the upstream end of support element 30 and the downstream end of aerosol-forming substrate 20.

WO 2013/190036 PCT/EP2013/062869 - 14 -

In the embodiment shown in Figure 1, the support element is a hollow cellulose acetate tube. The support element 30 locates the aerosol-forming substrate 20 at the extreme distal end 80 of the smoking article 10 so that it can be contacted with an internal heating element of an aerosol-generating device. As described further below, the support element 30 acts to prevent the aerosol-forming substrate 20 from being forced downstream within the smoking article 10 towards the transfer element 40 when an internal heating element of an aerosol-generating device is inserted into the aerosol-forming substrate 20. The support element 30 also acts as a spacer to space the transfer element 40 of the smoking article from the aerosol-forming substrate 20.

5

10

15

20

25

30

35

The transfer element 40 is located immediately downstream of support element 30 and abuts the support element 30 along a second interface 84, which is the plane between the downstream end of the support element 30 and the upstream end of the transfer element 40. In use, volatile substances released from the aerosol-forming substrate 20 pass along the transfer section 40 towards the mouth end 70 of the smoking article 10. The volatile substances may cool within the transfer section 40 to form an aerosol that is inhaled by the user. In the embodiment illustrated in Figure 1, the transfer element 40 is an aerosol-cooling element comprising a crimped and gathered sheet of polylactic acid circumscribed by a wrapper 90. The crimped and gathered sheet of polylactic acid defines a plurality of longitudinal channels that extend along the length of the aerosol-cooling element 40.

The mouthpiece 50 is located immediately downstream of the transfer section 40 and abuts the transfer section 40. In the embodiment illustrated in Figure 1, the mouthpiece 50 comprises a conventional cellulose acetate tow filter of low filtration efficiency.

To assemble the smoking article 10, the four elements described above are aligned and tightly wrapped within the outer wrapper 60. In the embodiment illustrated in Figure 1, the outer wrapper is a conventional cigarette paper. As shown in Figure 1, a row of perforations is provided in a region of the outer wrapper 60 circumscribing the support element 30 of the smoking article 10.

The smoking article illustrated in Figure 1 is designed to engage with an aerosol-generating device comprising an internal heating element in order to be smoked or consumed by a user. In use, the internal heating element of the aerosol-generating device heats the aerosol-forming substrate 20 of the smoking article 10 to a sufficient temperature to form an aerosol, which is drawn downstream through the smoking article 10 and inhaled by the user.

Figure 2 illustrates a portion of an aerosol-generating system 100 comprising an aerosol-generating device 110 and a smoking article 10 according to the embodiment described above and illustrated in Figure 1.

The aerosol-generating device comprises an internal heating element 120. As shown in Figure 2, the heating element 120 is mounted within a smoking article receiving chamber of the

WO 2013/190036 PCT/EP2013/062869 - 15 -

aerosol-generating device 100. In use, the user inserts the smoking article 10 into the smoking article receiving chamber of the aerosol-generating device 110 such that the internal heating element 120 is inserted into the aerosol-forming substrate 20 of the smoking article 10 as shown in Figure 2. In the embodiment shown in Figure 2, the internal heating element 120 of the aerosol-generating device 110 is a heater blade.

5

10

15

20

25

30

35

The aerosol-generating device 110 comprises a power supply and electronics (not shown) that allow the internal heating element 120 to be actuated. Such actuation may be manually operated or may occur automatically in response to a user drawing on a smoking article 10 inserted into the smoking article receiving chamber of the aerosol-generating device 110. A plurality of openings is provided in the aerosol-generating device to allow air to flow to the smoking article 10; the direction of air flow is illustrated by arrows in Figure 2.

Figure 3 illustrates an embodiment of an aerosol-generating device 110 comprising an internal heating element 120 for use with the smoking article 10 according to the embodiment described above and illustrated in Figure 1. The aerosol-generating device 110 comprises a power supply and electronics (not shown) that allow the internal heating element 120 to be actuated. Such actuation may be manually operated or may occur automatically in response to a user drawing on a smoking article inserted into the aerosol-generating device 110. In the embodiment shown in Figure 3, the internal heating element 120 is a pin heater.

In use, the user inserts the smoking article 10 into an open first end 130 of the aerosol-generating device 110 such that the internal heating element 120 is inserted into the aerosol-forming substrate 20 of the smoking article 10.

As discussed above, the insertion force experienced by the smoking article 10 as it is inserted into the aerosol-generating device 110 by the user is divided into three parts. Firstly, as the smoking article 10 is initially inserted into the aerosol-generating device 110, the smoking article experiences a friction force due to interference between the exterior surface of the smoking article and the interior surface of the aerosol-generating device. Secondly, as the smoking article 10 is inserted further into the aerosol-generating device 110, the smoking article experiences a penetration force due to the insertion of the internal heating element of the aerosol-generating device 110 into the aerosol-forming substrate 20 of the smoking article 10. Finally, as the smoking article 10 is inserted yet further into the aerosol-generating device 110, the smoking article experiences a crush force due to the distal end 80 of the smoking article contacting a closed second end 140 of the aerosol-generating device 110 opposed to the open first end thereof.

The support element 40 of the smoking article 10 resists the penetration force experienced by the smoking article 10 during insertion of the internal heating element 120 of the aerosol-generating device 110 into the aerosol-forming substrate 20. The support element 40 of the smoking article 10 thereby resists downstream movement of the aerosol-forming

WO 2013/190036 PCT/EP2013/062869 - 16 -

substrate within the smoking article 10 during insertion of the heating element of the aerosolgenerating device into the aerosol-forming substrate.

Once the internal heating element 120 is inserted into the aerosol-forming substrate 10 actuated of the smoking article 10 and actuated, the aerosol-forming substrate 20 of the smoking article 10 is heated to a temperature of about 375 degrees Celsius by the internal heating element 120 of the aerosol-generating device 110. At this temperature, volatile compounds are evolved from the aerosol-forming substrate 20 of the smoking article 10. As a user draws on the mouth end 70 of the smoking article 10, the volatile compounds evolved from the aerosol-forming substrate 20 are drawn downstream through the smoking article 10 and condense to form an aerosol that is drawn through the mouthpiece 50 of the smoking article 10 into the user's mouth.

As the aerosol passes downstream thorough the transfer element 40, the temperature of the aerosol is reduced due to transfer of thermal energy from the aerosol to the aerosol-cooling element. When the aerosol enters the aerosol-cooling element, its temperature is about 60 degrees Celsius. Due to cooling within the aerosol-cooling element, the temperature of the aerosol as it exits the aerosol cooling element is about 40 degrees Celsius.

EXAMPLE

5

10

15

20

25

The insertion force required to insert smoking articles according to the embodiment illustrated in Figure 1 into an aerosol-generating device according to the embodiment shown in Figure 3 was measured and used to evaluate the friction force, penetration force and crush force experienced by the smoking articles.

Materials & Methods

Materials: Ten smoking articles according to the embodiment illustrated in Figure 1 with the dimensions given in Table 1 and an aerosol-generating device according to the embodiment illustrated in Figure 3 with the dimensions labelled A, B, C, D, E and F in Figure 3 given in Table 2 were used in the measurements.

Length of smoking article (mm)	45
Diameter of smoking article (mm)	7.2
Length of aerosol-forming substrate (mm)	12
Length of support element (mm)	8
Length of transfer element (mm)	18
Length of mouthpiece (mm)	7
Length of outer wrapper (mm)	45

Table 1

A (mm)	31.5
B (mm)	20
C (mm)	18
D (mm)	5
E (mm)	7.3
F (mm)	8.3

5 Table 2

10

15

Methods: The smoking articles were inserted into the aerosol-generating device through the open first end thereof at a rate of 800 mm/min using an INSTRON 5565 tensile test machine with tailor made clamping equipment. The insertion force as a function of the insertion distance from the open first end of the aerosol-generating device was measured and recorded.

Results: Figure 4 shows a graph of the measured insertion force as a function of the insertion distance for each of the ten smoking articles.

At an insertion distance of 5 mm the smoking articles reach a first constriction in the internal diameter of the aerosol-generating device and the insertion force starts to increase due to friction between the exterior surface of the smoking articles and the interior surface of the cigarette aerosol-generating device as shown in Figure 4. The friction resulting from the first constriction dominates the insertion force up to an insertion distance of about 18 mm. At this insertion distance, the insertion force decreases slightly before the smoking articles reach a

WO 2013/190036 PCT/EP2013/062869 - 18 -

second constriction in the internal diameter of the aerosol-generating device at an insertion distance of 18 mm and the insertion force starts to increase due to friction between the exterior surface of the smoking articles and the interior surface of the cigarette aerosol-generating device.

5

10

15

20

25

30

At an insertion distance of 20 mm, the pin heater of the aerosol-generating device starts to penetrate the smoking article and the insertion force further increases due to the resistance of the aerosol-forming substrate of the smoking article to insertion of the pin heater of the aerosol-generating device. The resistance of the aerosol-forming substrate to insertion of the pin heater dominates the insertion force up to an insertion distance of about 31.5 mm. As shown in Figure 4, at this insertion distance the insertion force rapidly increases due to the distal or upstream end of the smoking articles contacting the second closed end of the aerosol-generating device. After that the smoking articles start to deform and the insertion force either decreases slightly or continues to increase during deformation of the smoking articles.

For each smoking article measured, the friction force was evaluated as the maximum insertion force measured up to an insertion distance of 20 mm. The average friction force for the ten smoking articles measured is given in Table 3.

For each smoking article measured, the penetration force was evaluated as the maximum insertion force measured up to an insertion distance of 31.5 mm. The average penetration force for the ten smoking articles measured is given in Table 3.

Friction For	ce (N)	Plug Penetration	on Force (N)
Range	Average	Range	Average
0.36 - 1.02	0.70	3.1 - 7.3	4.4

Table 3

Figure 5 illustrates the aerosol-forming substrate 20 and support element 30 of a smoking article 200 according to another embodiment. The aerosol-forming substrate 20 is located at the extreme distal or upstream end of the smoking article 200. In the embodiment illustrated in Figure 5, the aerosol-forming substrate 20 is 18 millimetres in length and 7.2 millimetres in diameter and comprises a gathered sheet of crimped homogenised tobacco material circumscribed by a wrapper. The crimped sheet of homogenised tobacco material comprises comprising glycerine as an aerosol-former.

The support element 30 is located immediately downstream of the aerosol-forming substrate 20 and abuts the aerosol-forming substrate 20 along a first interface 82, which is the plane between the upstream end of support element 30 and the downstream end of aerosol-

WO 2013/190036 PCT/EP2013/062869 - 19 -

forming substrate 20. In the embodiment shown in Figure 5, the support element is a hollow cellulose acetate tube and is 8 millimetres in length. As shown in Figure 6, the support element has an internal diameter of 3.3 millimetres and an external diameter of 7.2 millimetres.

The support element 30 abuts the remainder of the smoking article 200 along a second interface 84, which is the plane between the downstream end of the support element 30 and the upstream end of the remainder of the smoking article 200.

5

10

15

20

25

30

Although the support elements of the smoking article according to the embodiments described above and illustrated in Figures 1 and 6 are formed from cellulose acetate, it will be appreciated that this is not essential and that smoking articles according to other embodiments may comprise support elements formed from other suitable materials or combination of materials.

Similarly, although the smoking article according to the embodiment described above and illustrated in Figure 1 comprises a transfer element comprising an aerosol-cooling element comprising a crimped and gathered sheet of polylactic acid, it will be appreciated that this is not essential and that smoking articles according to other embodiments may comprise other transfer elements or may not comprise a transfer element.

Furthermore, although the smoking article according to the embodiment described above and illustrated in Figure 1 has four elements circumscribed by an outer wrapper, it will be appreciated than this is not essential and that smoking articles according to other embodiments may comprise additional elements or fewer elements.

It will also be appreciated that while the four elements of the smoking article according to the embodiment described above and illustrated in Figure 1 are circumscribed by an outer wrapper of conventional cigarette paper, this is not essential and that the elements of smoking articles according to other embodiments may be circumscribed by other outer wrappers.

It will further be appreciated that dimensions provided for elements of the smoking articles according to the embodiments described above and illustrated in Figures 1 and 5 and parts of the aerosol-generating device according to the embodiment described above and illustrated in Figure 3 are merely exemplary, and that suitable alternative dimensions may be chosen.

The exemplary embodiments described above are not limiting. Other embodiments consistent with the exemplary embodiments described above will be apparent to those skilled in the art.

CLAIMS:

5

10

15

20

25

1. A smoking article for use in an aerosol-generating device, the smoking article comprising:

an aerosol-forming substrate located at an extreme upstream end of the smoking article; and

a support element located immediately downstream of the aerosol-forming substrate,

wherein the support element abuts the aerosol-forming substrate and the aerosol-forming substrate is configured to be penetrable by a heating element of an aerosol-generating device having a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate without substantial deformation of the smoking article.

- 2. A smoking article according to claim 1 wherein the aerosol-forming substrate comprises homogenised tobacco material.
- 3. A smoking article according to claim 2 wherein the aerosol-forming substrate comprises a gathered sheet of homogenised tobacco material.
- 4. A smoking article according to claim 3 wherein the aerosol-forming substrate comprises a gathered crimped sheet of homogenised tobacco material.
 - 5. A smoking article according to any one of claims 1 to 4 wherein the support element is configured to resist downstream movement of the aerosol-forming substrate during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate.
 - 6. A smoking article according to any one of claims 1 to 5 wherein the support element is configured to resist a penetration force of at least 2.5 N during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate.
- 7. A smoking article according to any one of claims 1 to 6 wherein the support element is configured to resist a penetration force of at least 4 N during insertion of the heating element of the aerosol-generating device into the aerosol-forming substrate.
- 8. A smoking article according to any of claims 1 to 7 wherein the support element comprises a hollow tubular element.

WO 2013/190036 PCT/EP2013/062869 - 21 -

- 9. A smoking article according to claim 8 wherein the internal diameter of the hollow tubular element is between about 35 percent and about 55 percent of the external diameter of the hollow tubular element.
- 5 10. A smoking article according to claim 8 or 9 wherein the support element comprises a hollow cellulose acetate tube.
 - 11. A smoking article according to any one of claims 1 to 10 wherein the support element is resistant to exposure to a temperature of at least about $150\,^{\circ}$ C for a period at least about 6 minutes.

10

20

25

30

35

- 12. A smoking article according to any one of claims 1 to 11 further comprising an aerosol-cooling element located downstream of the support element.
- 13. A smoking article according to claim 12 wherein the aerosol-cooling element is located immediately downstream of the support element and abuts the support element.
 - 14. A smoking article according to claim 12 or 13 wherein the aerosol-cooling element comprises a gathered sheet of biodegradable polymeric material.
 - 15. A smoking article according to any one of claims 1 to 14 further comprising a filter located at an extreme downstream end of the smoking article.
 - 16. A method of using a smoking article according to any one of claims 1 to 15 in an aerosol-generating device, the method comprising the steps of:

inserting a heating element of an aerosol-generating device into the aerosol-forming substrate of the smoking article wherein the heating element has a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate;

raising the temperature of the heating element of the aerosol-generating device to heat the aerosol-forming substrate of the smoking article to generate an aerosol; and

withdrawing the heating element of the aerosol-generating device from the aerosol-forming substrate of the smoking article.

17. A method according to claim 16 wherein the support element of the smoking article resists downstream movement of the aerosol-forming substrate during the step of inserting the heating element into the aerosol-forming substrate.

WO 2013/190036 PCT/EP2013/062869 - 22 -

18. A method according to claim 16 or 17 wherein the resistance to draw of the smoking article after insertion of the heating element is between 80 mm WG and 140 mm WG.

19. An aerosol-generating system comprising:

5

10

15

20

25

35

- an aerosol-generating device comprising a heating element; and
- a smoking article for use with the aerosol-generating device, the smoking article comprising:

an aerosol-forming substrate located at an extreme upstream end of the smoking article, wherein the aerosol-forming substrate is configured to be penetrable by the heating element of the aerosol-generating device; and

a support element located immediately downstream of the aerosol-forming substrate, wherein the support element abuts the aerosol-forming substrate,

wherein the heating element of the aerosol-generating device has a diameter of between 40 percent and about 70 percent of the diameter of the aerosol-forming substrate and the aerosol-forming substrate is configured to be penetrable by the heating element without substantial deformation of the smoking article.

- 20. An aerosol-generating system according to claim 19 wherein the aerosol-forming substrate comprises a gathered sheet of homogenised tobacco material.
- 21. A method of using an aerosol-generating system according to claim 19 or 20 comprising: inserting the heating element of the aerosol-generating device into the aerosol-forming substrate of the smoking article;

raising the temperature of the heating element of the aerosol-generating device to heat the aerosol-forming substrate of the smoking article to generate an aerosol; and

withdrawing the heating element of the aerosol-generating device from the aerosol-forming substrate of the smoking article.

22. A method of making a smoking article for use in an aerosol-generating device, the method comprising:

providing an aerosol-forming substrate;

providing a support element immediately downstream of the aerosol-forming substrate; and

wrapping the aerosol-forming substrate and the support element in an outer wrapper to form a smoking article such that the aerosol-forming substrate is located at an extreme upstream end of the smoking article and the support element abuts the aerosol-forming substrate,

WO 2013/190036 PCT/EP2013/062869 - 23 -

wherein the aerosol-forming substrate is configured to be penetrable by a heating element of an aerosol-generating device having a diameter of between about 40 percent and about 70 percent of the diameter of the aerosol-forming substrate without substantial deformation of the smoking article.

5

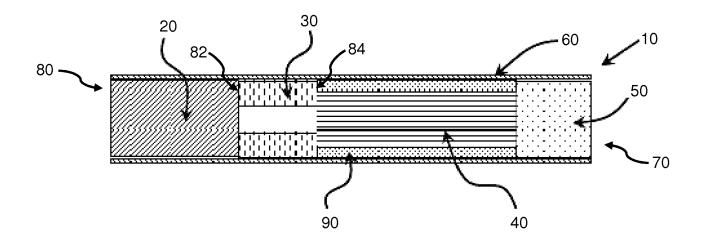


Figure 1

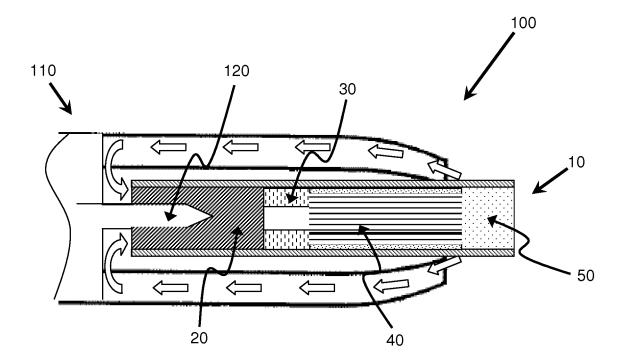


Figure 2

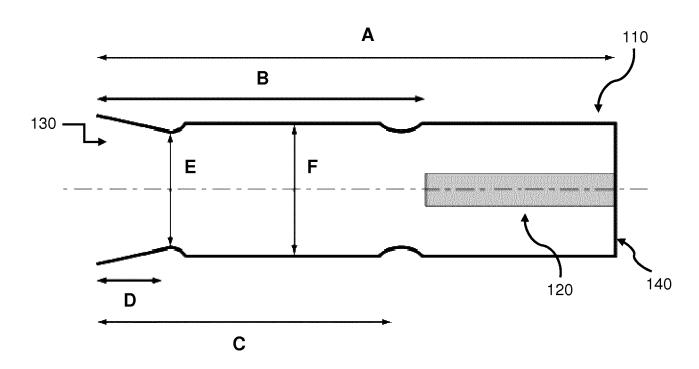


Figure 3

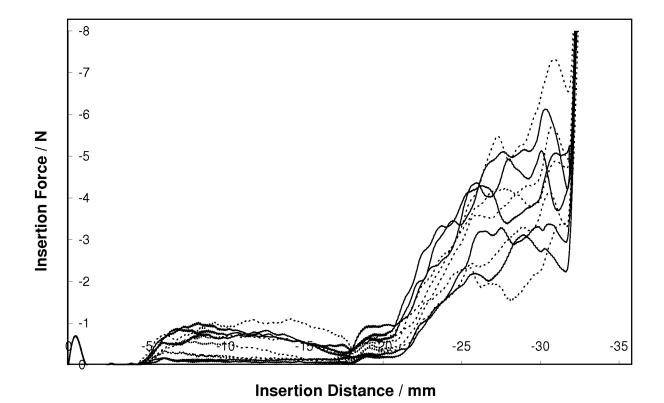


Figure 4

WO 2013/190036 PCT/EP2013/062869

- 3/3 -

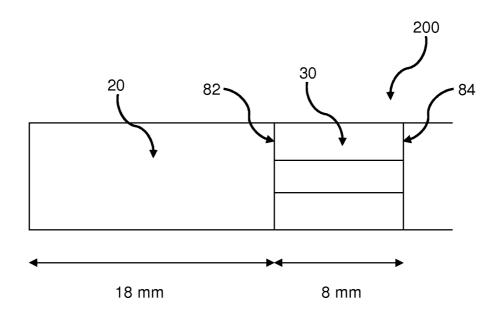


Figure 5

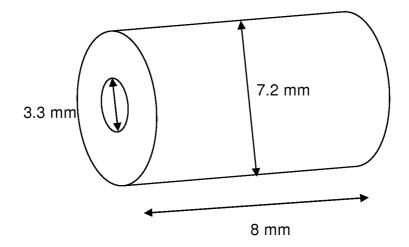


Figure 6

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2013/062869

a. classification of subject matter INV. A24F47/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A24F A24D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUME	ENTS CONSIDERED TO BE RELEVANT
Category*	Citation of document, with indication, whe

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2008/015441 A1 (BRITISH AMERICAN TOBACCO PACIF [JP]; BRITISH AMERICAN TOBACCO CO [GB];) 7 February 2008 (2008-02-07) pages 3,4,8; figures 2,3	1-22
X	GB 2 473 264 A (BRITISH AMERICAN TOBACCO CO [GB]) 9 March 2011 (2011-03-09) page 2, line 25 - page 3, line 12; figure 1	1-22
Х	EP 2 340 730 A1 (PHILIP MORRIS PROD [CH]) 6 July 2011 (2011-07-06) paragraphs [0001], [0004], [0009], [0052], [0053], [0065] - [0068]; figures 3,6-8	1-22

X Further documents are listed in the continuation of Box C	
---	--

Χ See patent family annex.

- Special categories of cited documents
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other
- document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of mailing of the international search report

Date of the actual completion of the international search

18 November 2013

26/11/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Kock, Søren

1

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2013/062869

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.	-	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A US 4 047 536 A (ASFOUR EMIL S) 13 September 1977 (1977-09-13) abstract; figures	A	EP 2 394 520 A1 (SHIMIZU KAZUHIKO [JP]) 14 December 2011 (2011-12-14) abstract; figures 1,2	1,16,19, 22
			22

1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2013/062869

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2008015441	A1	07-02-2008	AR AU BR CA CL CN EP JP KR RU TW US WO ZA	063679 2007280239 PI0715110 2658516 22262007 101500443 2046155 2008035742 2010520742 20090046820 2009107275 200819153 2010059070 2008015441 200900244	A1 A2 A1 A1 A A1 A A A A A A	11-02-2009 07-02-2008 04-06-2013 07-02-2008 15-02-2008 05-08-2009 15-04-2009 21-02-2008 17-06-2010 11-05-2009 10-09-2010 01-05-2008 11-03-2010 07-02-2008 30-06-2010
GB 2473264	Α	09-03-2011	NON	 E		
EP 2340730	A1	06-07-2011	AU CA CN CO EA EP JP KR NZ SG US	2010338615 2785890 102781266 6592048 201290581 2340730 2519122 2013516160 20120102131 600869 182312 2011155718 2011079933	A1 A2 A1 A1 A1 A A A A A1 A1	26-07-2012 07-07-2011 14-11-2012 02-01-2013 30-01-2013 06-07-2011 07-11-2012 13-05-2013 17-09-2012 28-06-2013 30-08-2012 30-06-2011 07-07-2011
EP 2394520	A1	14-12-2011	EP JP JP US WO	2394520 4739433 2010178730 2011290269 2010090338	B2 A A1	14-12-2011 03-08-2011 19-08-2010 01-12-2011 12-08-2010
US 4047536	A	13-09-1977	DE FR GB IT JP JP NL US	2526850 2275160 1509018 1045184 S521999 S5112999 7507320 4047536	A1 A B B2 A	08-01-1976 16-01-1976 26-04-1978 10-05-1980 19-01-1977 31-01-1976 23-12-1975 13-09-1977