发明名称
在硅衬底上生长 InGaP/GaAs/Ge 三结太阳能电池的方法

摘要
本发明提供一种在硅衬底上生长 InGaP/GaAs/Ge 三结太阳能电池的方法，首先在硅衬底上外延生长组分渐变的 Ge/Si, 应力过渡层，然后在应力过渡层上形成应力完全弛豫的 Ge 薄膜层，接着在上述 Ge/Si Si 模板上，外延生长形成包括底部 Ge 子电池、中部 GaAs 子电池和顶部 InGaP 子电池的 InGaP/GaAs/Ge 三结高效太阳能电池。本发明采用低价位的 Si 衬底取代了传统生长方法所必需使用的昂贵的 Ge 衬底，进行高效太阳能电池的生长，同时在 Si 衬底可以生长出更大面积、低缺陷密度的 InGaP/GaAs/Ge 三结高效太阳能电池，大大降低了 InGaP/GaAs/Ge 三结高效太阳能电池的生产成本。
1. 在硅衬底上生长 InGaP/GaAs/Ge 三结太阳能电池的方法，具体为：
 (1) 在硅衬底表面上生长 Ge 组分从零渐变到 1 的 Ge₅Si₁₋ₓ 应力过渡层, 0 ≤ x ≤ 1；
 (2) 在 Ge₅Si₁₋ₓ 应力过渡层上生长应力完全弛豫的 Ge 薄膜层；
 (3) 在 Ge 薄膜层上形成底部 Ge 子电池；
 (4) 在底部 Ge 子电池上外延生长形成中部 GaAs 子电池；
 (5) 在中部 GaAs 子电池上外延生长形成顶部 InGaP 子电池。

2. 如权利要求 1 所述的在硅衬底上生长 InGaP/GaAs/Ge 三结太阳能电池的方法，其特征在于所述步骤 (2) 中的生长方法采用高真空化学气相沉积法。

3. 如权利要求 1 或 2 所述的在硅衬底上生长 InGaP/GaAs/Ge 三结太阳能电池的方法，其特征在于所述步骤 (2) 中 Ge₅Si₁₋ₓ 应力过渡层中的 Ge 含量变化速率为 5 ~ 10% / μm。
在硅衬底上生长 InGaP/GaAs/Ge 三结太阳能电池的方法

技术领域
[0001] 本发明属于化合物半导体太阳能电池的外延生长领域，具体涉及在硅衬底上外延生长高质量 InGaP/GaAs/Ge 三结高效率太阳能电池的方法。

背景技术
[0002] 由于煤、石油等不可再生能源的逐渐枯竭及其不断造成的环境恶化，人类迫切需要使用绿色能源为人们解决所面临的巨大问题。利用光电转换技术制造的太阳能电池可将太阳能直接转换为电能，这在很大程度上减少了人们生产生活对煤炭、石油及天然气的依赖，成为绿色能源的最有效方式之一。
[0003] III-V 族化合物半导体多结太阳能电池是转换效率最高的一种太阳能电池，同时具有耐高温性能、抗辐射能力、温度特性好等优点，早已经成为对价格不敏感的商业光伏电源的主流技术。InGaP/GaAs/Ge 三结太阳能电池是目前最成熟也是最高效的 III-V 族化合物半导体多结太阳能电池，其效率已达到 41.8%。近年来，随着聚光光伏技术的发展，GaAs 及相关化合物 III-V 族太阳电池因其高光电转换效率而越来越受到关注。聚光光伏技术通过将一块面积较大的太阳光进行高倍率聚光，浓缩后照射到一个面积比较小的太阳能光伏电池上发电，从而大规模节约太阳能电池晶片。该装置利用大面积、便宜的聚光装置来代替昂贵而且供应紧张的电池芯片，从而达到大幅度降低太阳能光伏发电成本的目的，使太阳能光伏发电具有跟常规能源竞争的能力。因此基于 III-V 族化合物半导体多结太阳能电池的聚光光伏技术已经成为很有市场前景的光伏技术。III-V 族化合物半导体多结太阳能电池的最大问题就是它的昂贵价格，因此如何有效地降低成本是制备成本，是该技术是否能最终走向规模化的关键之一。
[0004] 对于本领域技术人员而言，在 Ge 衬底上外延生长 III-V 族化合物半导体多结太阳能电池是一项成熟的技术。这一成熟技术有一个很大的问题就是，地球上 Ge 的资源比较稀缺，并且十分昂贵，当大规模生产时，Ge 衬底稀缺及昂贵的问题将进一步凸显。另外，目前，全球高效率太阳能用锗晶片的生产主要集中在比利时的优可 (Umicore) 公司和美国的 AXT 公司，这严重威胁到了我国自主外延生长 InGaP/GaAs/Ge 三结太阳能电池的战略需求。
[0005] 在硅衬底上进行外延生长 InGaP/GaAs/Ge 三结太阳能电池，由于 Si 衬底的大面积，廉价和资源的充足性，可以大大降低成本的 InGaP/GaAs/Ge 三结太阳能电池制备成本，也可以减少对国外 Ge 衬底厂家的依赖，走一条独立自主的光伏技术道路。但是，在 Si 衬底上外延生长 InGaP/GaAs/Ge 三结太阳能电池并不是容易的事情，这是因为 Si 与 Ge 之间具有 4% 的晶格失配，如果 Ge 层直接生长在 Si 衬底上，4% 的晶格失配将引发 S-K 生长模式，即 Ge 刚开始以层状生长方式进行，但随着厚度的增加，积累的应力会诱发岛状生长模式，岛状生长模式将引发高密度的穿透位错，该类位错会贯穿整个 InGaP/GaAs/Ge 三结太阳能电池薄膜直至表面。由于位错是十分高效的光生载流子消失中心，会严重降低太阳能电池的效率。另外岛状生长的进行也会引起表面形貌的起伏，造成位错的进一步增加。
发明内容

[0006] 本发明的目的是提供一种在硅衬底上外延生长高效率 InGaP/GaAs/Ge 三结太阳能电池的方法, 在 Si 衬底上生长出更大面积, 低缺陷密度的 InGaP/GaAs/Ge 三结高效太阳能电池, 用价格低的 Si 衬底取代了传统方法所必需使用的昂贵 Ge 衬底, 大大降低了 InGaP/GaAs/Ge 三结高效太阳能电池的生产成本。

[0007] 在硅衬底上生长 InGaP/GaAs/Ge 三结太阳能电池的方法, 具体为:

[0008] 1. 在硅衬底一表面上生长 Ge 组分从零渐变到 1 的 Ge, Si_{1-x}, 应力过渡层, 0 ≤ x ≤ 1;

[0009] 2. 在 Ge, Si_{1-x} 应力过渡层上生长应力完全弛豫的 Ge 薄膜层;

[0010] 3. 在 Ge 薄膜层上形成本部 Ge 子电池;

[0011] 4. 在底部 Ge 子电池上外延生长形成中部 GaAs 子电池;

[0012] 5. 在中部 GaAs 子电池上外延生长形成顶部 InGaP 子电池。

[0013] 作为优选,所述步骤 (2) 中的生长方法采用高真空化学气相沉积法, Ge, Si_{1-x} 应力过渡层中 Ge 含量变化速率在为 5 ～ 10% / μm。

[0014] 本发明的技术效果体现在: 本发明提出先在 Si 衬底上生长 Ge 组分从 0 到 1 渐变的 Ge, Si_{1-x} 应力过渡层, 生长 Ge, Si_{1-x} 应力过渡层是指: 在生长过程中, 通过调节反应源的流量比, 把 Ge, Si_{1-x} 中的 Ge 含量逐渐地从零提高到 100%, 以图缓慢释放应力, 并将失配位错局限在这一过渡层中。Ge, Si_{1-x} 中的 Ge 含量的变化可以是连续线性变化、阶梯形变化或其它一切逐级地从零提高到 100% 的变化方式, 生长方法可采用高真空化学气相沉积法或者分子束外延法或者其它外延生长方法。接着在该过渡层上生长 Ge 薄膜层, 然后在 Ge 薄膜层上依次生长 Ge, GaAs, InGaP 三结太阳能电池。对于 Ge 组分渐变的 Ge, Si_{1-x} 应力过渡层, 其与硅下生长表面的晶格失配始终保持在较低的水平, 可以避免三维岛状生长, 而始终维持二维层状生长。失配位错也将主要的、均匀的分布在过渡层中, 使穿透位错易于传播至晶圆边缘而抑制, 降低穿透位错的密度。生产运行证明以本发明为基础的 InGaP/GaAs/Ge 三结太阳能电池外延工艺可控制性和重复性好, 说明生长工艺窗口宽, 适合规模化生产。

附图说明

[0015] 图 1 是本发明硅衬底上 InGaP/GaAs/Ge 三结高效率太阳能电池的侧面剖视图。

[0016] 图 2 是在硅衬底上生长了 Ge, Si_{1-x} 应力过渡层后, 衬底的侧面剖视图。

[0017] 图 3 是在 Ge, Si_{1-x} 应力过渡层上沉积了 Ge 薄膜层后的侧面剖视图。

[0018] 图 4 是在 Ge 薄膜层上形成底部 Ge 子电池后的侧面剖视图。

[0019] 图 5 是在底部 Ge 子电池上外延生长形成中部 GaAs 子电池后的侧面剖视图。

具体实施方式

[0020] 下面对本发明作进一步的详细说明。

[0021] 实施例一:

[0022] 1. 运用高真空化学气相沉积法生长 Ge, Si_{1-x} 应力过渡层, 选择 SiH₄ 和 GeH₄ 为反应源。将 (001) 面 Si 衬底 1 清洗干净, 并装入高真空化学气相沉积反应室, 首先在 1000°C 下
烘烤10分钟。然后，降温至600℃，生长Ge组分从0渐变到1的Ge$_2$Si$_{1-x}$应力过渡层2（如图2所示）。在生长过程中，把SiH$_4$的流量固定，然后缓慢的增加GeH$_4$的流量。生长温度为600℃，生长压力为50mTorr，Ge含量的变化率为5%/μm，变化方式为连续变化。

【0023】2) 在Ge$_2$Si$_{1-x}$应力过渡层上沉积2μm厚的Ge薄膜层3（如图3所示）。此时生长的Ge薄膜层3 所具有的位错密度为 5×106/cm2。

【0024】3) 在Ge薄膜层3上形成底部Ge子电池（如图4所示）：先生长以B作为掺杂剂的p型Ge基区4，再生长以P作为掺杂剂的n型Ge发射层5，最后生长GaInP窗口层6。

【0025】4) 在底部Ge子电池上外延生长形成中部GaAs子电池（如图5所示）：先生长AlGaAs或GaInP背景层7，再生长p型GaAs基区8，然后生长n型GaAs发射层9，最后生长AlGaAs或GaInP窗口层10。

【0026】5) 在中部GaAs子电池上外延生长形成顶部InGaP子电池（如图1所示）。

【0027】先生长InGaP背景层11，再生长p型InGaP基区12，然后生长n型InGaP发射层13，最后生长AlInP窗口层14。

【0028】实施例二：

【0029】1) 运用高真空化学气相沉积法生长Ge$_2$Si$_{1-x}$应力过渡层，选择SiH$_4$和GeH$_4$为反应源。将(001)面Si衬底1清洗干净，并装入高真空化学气相沉积反应室，首先在1000℃下烘烤10分钟。然后，降温至750℃，生长Ge组分从0渐变到1的Ge$_2$Si$_{1-x}$应力过渡层2（如图2所示）。在生长过程中，把SiH$_4$的流量固定，然后缓慢的增加GeH$_4$的流量。生长温度为750℃，生长压力为100mTorr，Ge含量的变化率为8%/μm，变化方式为阶梯型变化，且每生长0.5μm为一阶梯。

【0030】2) 在Ge$_2$Si$_{1-x}$应力过渡层上沉积2μm厚的Ge薄膜层3（如图3所示）。此时生长的Ge薄膜层3所具有的位错密度为 2×106/cm2。

【0031】3) 在Ge薄膜层3上形成底部Ge子电池（如图4所示）：先生长以B作为掺杂剂的p型Ge基区4，再生长以P作为掺杂剂的n型Ge发射层5，最后生长GaInP窗口层6。

【0032】4) 在底部Ge子电池上外延生长形成中部GaAs子电池（如图5所示）：先生长AlGaAs或GaInP背景层7，再生长p型GaAs基区8，然后生长n型GaAs发射层9，最后生长AlGaAs或GaInP窗口层10。

【0033】5) 在中部GaAs子电池上外延生长形成顶部InGaP子电池（如图1所示）。

【0034】先生长InGaP背景层11，再生长p型InGaP基区12，然后生长n型InGaP发射层13，最后生长AlInP窗口层14。

【0035】实施例三：

【0036】1) 运用高真空化学气相沉积法生长Ge$_2$Si$_{1-x}$应力过渡层，选择SiH$_4$和GeH$_4$为反应源。将(001)面Si衬底1清洗干净，并装入高真空化学气相沉积反应室，首先在1000℃下烘烤10分钟。然后，降温至800℃，生长Ge组分从0渐变到1的Ge$_2$Si$_{1-x}$应力过渡层2（如图2所示）。在生长过程中，把SiH$_4$的流量固定，然后缓慢的增加GeH$_4$的流量。生长温度为800℃，生长压力为300mTorr，Ge含量的变化率为10%/μm，变化方式为阶梯型变化，且每生长0.5μm为一阶梯。

【0037】2) 在Ge$_2$Si$_{1-x}$应力过渡层上沉积2μm厚的Ge薄膜层3（如图3所示）。此时生长的Ge薄膜层3所具有的位错密度为 2.5×106/cm2。
3) 在 Ge 薄膜层 3 上形成底部 Ge 子电池（如图 4 所示）：先生长以 B 作为掺杂剂的 p 型 Ge 基区 4，再生长以 P 作为掺杂剂的 n 型 Ge 发射层 5，最后生长 GaInP 窗口层 6。

4) 在底部 Ge 子电池上外延生长形成中部 GaAs 子电池（如图 5 所示）：先生长 AlGaAs 或 GaInP 背层 7，再生长 p 型 GaAs 基区 8，然后生长 n 型 GaAs 发射层 9，最后生长 AlGaAs 或 GaInP 窗口层 10。

5) 在中部 GaAs 子电池上外延生长形成顶部 InGaP 子电池（如图 1 所示）。}

6) 先生长 InGaP 背层 11，再生长 p 型 InGaP 基区 12，然后生长 n 型 InGaP 发射层 13，最后生长 AlInP 窗口层 14。

实施例四：

1) 运用高真空化学气相沉积法生长 Ge$_3$Si$_{1-x}$应力过渡层：选择 Si$_5$H$_6$和 GeH$_4$为反应源。将 (001) 面 Si 薄层 1 清洗干净，并装入高真空化学气相沉积反应室，首先在 1000°C 下烘烤 10 分钟。然后，降温至 800°C，生长 Ge 组分从 0 渐变到 1 的 Ge$_3$Si$_{1-x}$应力过渡层 2（如图 2 所示）。在生长过程中，把 Si$_5$H$_6$的流量固定，然后缓慢的增加 GeH$_4$的流量。生长温度为 800°C，生长压力为 200 mTorr，Ge 含量的变化率为 10% / μm，变化方式为阶梯型变化，且每生长 0.5 μm 为一阶梯。

2) 在 Ge$_3$Si$_{1-x}$应力过渡层上沉积 2 μm 厚的 Ge 薄膜层 3（如图 3 所示）。此时生长的 Ge 薄膜层 3 所具有的位错密度为 2.0 × 106 cm$^{-2}$。

3) 在 Ge 薄膜层 3 上形成底部 Ge 子电池（如图 4 所示）：先生长以 B 作为掺杂剂的 p 型 Ge 基区 4，再生长以 P 作为掺杂剂的 n 型 Ge 发射层 5，最后生长 GaInP 窗口层 6。

4) 在底部 Ge 子电池上外延生长形成中部 GaAs 子电池（如图 5 所示）：先生长 AlGaAs 或 GaInP 背层 7，再生长 p 型 GaAs 基区 8，然后生长 n 型 GaAs 发射层 9，最后生长 AlGaAs 或 GaInP 窗口层 10。

5) 在中部 GaAs 子电池上外延生长形成顶部 InGaP 子电池（如图 1 所示）。
[0055] 先生长 InGaP 背场层 11，再生长 p 型 InGaP 基区 12，然后生长 n 型 InGaP 发射层 13，最后生长 AlInP 窗口层 14。