Title: TECHNOLOGIES FOR DEFECATION POSTURES

Abstract: An apparatus is provided. The apparatus includes a U-shaped walker comprising a pair of laterally opposing legs, wherein each of said legs comprising a footrest pivot thereabout.
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))
TECHNOLOGIES FOR DEFECATION POSTURES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application is a continuation-in-part of United States Patent Application Serial Number 14/064,446, filed on October 28, 2013, which is herein fully incorporated by reference for all purposes.

TECHNICAL FIELD

[0002] Generally, the present disclosure relates to human health. More particularly, the present disclosure relates to defecation postures.

BACKGROUND

[0003] In the present disclosure, where a document, an act and/or an item of knowledge is referred to and/or discussed, then such reference and/or discussion is not an admission that the document, the act and/or the item of knowledge and/or any combination thereof was at the priority date, publicly available, known to the public, part of common general knowledge and/or otherwise constitutes prior art under the applicable statutory provisions; and/or is known to be relevant to an attempt to solve any problem with which the present disclosure may be concerned with.

[0004] People defecate to remove fecal matter. One way to defecate is via a squatting posture. Another way to defecate is via a sitting posture. The squatting posture is commonly believed to be healthier, and more natural than the sitting posture.

[0005] A typical toilet seat is structured to promote defecation in the sitting posture. Therefore, using the toilet seat to defecate in the squatting posture is bothersome. For example, one approach for achieving the squatting posture involves standing on the toilet seat in the squatting posture. However, such approach can make the toilet seat dirty and/or break the toilet seat. Further, sick, disabled, and/or frail people can have difficulty acting in accordance with such approach. Another approach for achieving the squatting posture involves placing a book stack, a stepping stool, and/or a platform...
below the toilet seat for feet raising, while conventionally sitting on the toilet seat. However, such approach can be cumbersome, time-consuming, and dangerous, especially for sick, disabled, and/or frail people. Further, such approach can complicate quick leg angle/lift customization, especially for users of varying body types.

[0006] While certain aspects of conventional technologies have been discussed to facilitate the present disclosure, no technical aspects are disclaimed. The claims may encompass at least one of the conventional technical aspects discussed herein.

BRIEF SUMMARY

[0007] The present disclosure may at least partially address at least one of the above. However, the present disclosure may prove useful to other technical areas. Therefore, the claims should not be construed as necessarily limited to addressing any of the above.

[0008] According to an example embodiment of the present disclosure an apparatus is provided. The apparatus includes a pair of side frames; a bridge spanning between said frames; a footrest extending from said bridge; and a lever extending from at least one of said bridge and said footrest.

[0009] According to an example embodiment of the present disclosure an apparatus is provided. The apparatus includes a U-shaped walker comprising a pair of laterally opposing legs, wherein each of said legs comprising a cantilevered member pivoting thereabout, a footrest extending from said member, and a lever extending from at least one of said member and said footrest.

[0010] According to an example embodiment of the present disclosure an apparatus is provided. The apparatus includes a U-shaped walker comprising a pair of laterally opposing legs, wherein each of said legs comprising a footrest pivoting thereabout.

[0011] The present disclosure may be embodied in the form illustrated in the accompanying drawings. However, attention is called to the fact that the drawings are illustrative. Variations are contemplated as being part of the disclosure, limited only by the scope of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS

[00012] The accompanying drawings illustrate example embodiments of the present disclosure. Such drawings are not to be construed as necessarily limiting the disclosure. Like numbers and/or similar numbering scheme can refer to like and/or similar elements throughout.

[00013] FIG. 1 shows an example embodiment of a defecation posture apparatus having a pair of independently controllable U-shaped footrests according to the present disclosure.

[00014] FIG. 2A shows an example embodiment of a defecation posture apparatus in a first preset defecation posture position according to the present disclosure.

[00015] FIG. 2B shows an example embodiment of a defecation posture apparatus in a second preset defecation posture position according to the present disclosure.

[00016] FIG. 3 shows an example embodiment of a defecation posture apparatus having a pair of dependency controllable U-shaped footrests according to the present disclosure.

[00017] FIG. 4 shows an example embodiment of a defecation posture apparatus having a pair of independently controllable L-shaped footrests according to the present disclosure.

[00018] FIG. 5 shows an example embodiment of a defecation posture apparatus having a case depending from the apparatus according to the present disclosure.

[00019] FIG. 6 shows an example embodiment of a defecation posture apparatus having a hook depending from the apparatus according to the present disclosure.

[00020] FIG. 7 shows an example embodiment of a defecation posture apparatus having a handgrip, a light source, and a cushion sleeve according to the present disclosure.

[00021] FIG. 8 shows an example embodiment of a wheeled defecation posture apparatus having a pair of movable cantilevered members uniquely associated with a pair of footrests according to the present disclosure.
FIG. 9A shows a top view of an example embodiment of an apparatus comprising a foot support positioned in a first position according to the present disclosure.

FIG. 9B shows a top view of an example embodiment of an apparatus comprising a foot support positioned in a second position according to the present disclosure.

FIG. 10A shows a side view of an example embodiment of a side frame leg defining a rectangular opening according to the present disclosure.

FIG. 10B shows a side view of an example embodiment of a side frame leg defining an L-shaped opening according to the present disclosure.

FIG. 10C shows a side view of an example embodiment of a side frame leg defining a U-shaped opening according to the present disclosure.

FIG. 11 shows a side view of an example embodiment of a foot support coupled to a side frame leg via a side frame leg opening according to the present disclosure.

FIG. 12 shows a top view of an example embodiment of a foot support according to the present disclosure.

FIG. 13A shows a side view of an example embodiment of a side frame leg having an inverted U-shape footrest coupled thereto according to the present disclosure.

FIG. 13B shows a side view of an example embodiment of a side frame leg having an upright U-shape footrest coupled thereto according to the present disclosure.

FIG. 14 shows a side view of an example embodiment of a side frame leg having a footrest coupled thereto via a collar according to the present disclosure.

FIG. 15 shows a side view of an example embodiment of a wheeled footrest according to the present disclosure.

FIG. 16 shows a side view of an example embodiment of a footrest according to the present disclosure.

FIG. 17 shows a side view of an example embodiment of a collar supported via a pin extending through a side frame leg according to the present disclosure.
FIG. 18A shows a side view of an example embodiment of a collar having an upper inner wall and a lower inner wall according to the present disclosure.

FIG. 18B shows a top view of an example embodiment of a collar having an upper inner wall according to the present disclosure.

FIG. 18C shows a top view of an example embodiment of a collar having a lower inner wall according to the present disclosure.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present disclosure is now described more fully with reference to the accompanying drawings, in which example embodiments of the present disclosure are shown. The present disclosure may, however, be embodied in many different forms and should not be construed as necessarily being limited to the example embodiments disclosed herein. Rather, these example embodiments are provided so that the present disclosure is thorough and complete, and fully conveys the concepts of the present disclosure to those skilled in the relevant art. In addition, features described with respect to certain example embodiments may be combined/sub-combined in and/or with various other example embodiments. Different aspects and/or elements of example embodiments, as disclosed herein, may be combined/sub-combined in a similar manner.

The terminology used herein can imply direct or indirect, full or partial, temporary or permanent, action or inaction. For example, when an element is referred to as being "on," "connected" or "coupled" to another element, then the element can be directly on, connected or coupled to the other element and/or intervening elements may be present, including indirect and/or direct variants. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present.

Although the terms first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not necessarily be limited by such terms. These terms are only used to distinguish one element, component, region, layer or section
from another element, component, region, layer or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the present disclosure.

[00041] The terminology used herein is for describing particular example embodiments only and is not intended to be necessarily limiting of the present disclosure. As used herein, the singular forms "a," "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms "comprises," "includes" and/or "comprising," "including" when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[00042] Example embodiments of the present disclosure are described herein with reference to illustrations of idealized embodiments (and intermediate structures) of the present disclosure. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, the example embodiments of the present disclosure should not be construed as necessarily limited to the particular shapes of regions illustrated herein, but are to include deviations in shapes that result, for example, from manufacturing.

[00043] Any and/or all elements, as disclosed herein, can be formed from a same, structurally continuous piece, such as being unitary, and/or be separately manufactured and/or connected, such as being an assembly and/or modules. Any and/or all elements, as disclosed herein, can be manufactured via any manufacturing processes, whether additive manufacturing, subtractive manufacturing, and/or other any other types of manufacturing. For example, some manufacturing processes include three dimensional (3D) printing, laser cutting, computer numerical control routing, milling, pressing, stamping, vacuum forming, hydroforming, injection molding, lithography, and so forth.

[00044] Any and/or all elements, as disclosed herein, can include, whether partially and/or fully, a solid, including a metal, a mineral, an amorphous material, a ceramic, a glass ceramic, an organic solid, such as wood and/or a polymer, such as rubber, a
composite material, a semiconductor, a nanomaterial, a biomaterial and/or any combinations thereof. Any and/or all elements, as disclosed herein, can include, whether partially and/or fully, a coating, including an informational coating, such as ink, an adhesive coating, a melt-adhesive coating, such as vacuum seal and/or heat seal, a release coating, such as tape liner, a low surface energy coating, an optical coating, such as for tint, color, hue, saturation, tone, shade, transparency, translucency, non-transparency, luminescence, reflection, anti-reflection and/or holography, a photosensitive coating, an electronic and/or thermal property coating, such as for passivity, insulation, resistance or conduction, a magnetic coating, a water-resistant and/or waterproof coating, a scent coating and/or any combinations thereof. Any and/or all elements, as disclosed herein, can be rigid, flexible, and/or any other combinations thereof. Any and/or all elements, as disclosed herein, can be identical and/or different from each other in material, shape, size, color and/or any measurable dimension, such as length, width, height, depth, area, orientation, perimeter, volume, breadth, density, temperature, resistance, and so forth.

[00045] Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an idealized and/or overly formal sense unless expressly so defined herein.

[00046] Furthermore, relative terms such as "below," "lower," "above," and "upper" may be used herein to describe one element's relationship to another element as illustrated in the accompanying drawings. Such relative terms are intended to encompass different orientations of illustrated technologies in addition to the orientation depicted in the accompanying drawings. For example, if a device in the accompanying drawings were turned over, then the elements described as being on the "lower" side of other elements would then be oriented on "upper" sides of the other elements. Similarly, if the device in one of the figures were turned over, elements described as "below" or "beneath" other elements would then be oriented "above" the other elements.
Therefore, the example terms "below" and "lower" can encompass both an orientation of above and below.

[00047] As used herein, the term "about" and/or "substantially" refers to a +/- 10% variation from the nominal value/term. Such variation is always included in any given value/term provided herein, whether or not such variation is specifically referred thereto.

[00048] If any disclosures are incorporated herein by reference and such disclosures conflict in part and/or in whole with the present disclosure, then to the extent of conflict, and/or broader disclosure, and/or broader definition of terms, the present disclosure controls. If such disclosures conflict in part and/or in whole with one another, then to the extent of conflict, the later-dated disclosure controls.

[00049] FIG. 1 shows an example embodiment of a defecation posture apparatus having a pair of independently controllable U-shaped footrests according to the present disclosure.

[00050] An apparatus 100 is for a user, such as a person, sitting on a toilet seat 102, which can be any type of toilet seat. Apparatus 100 is sufficiently light for user portability. Apparatus 100 is for placing onto a ground surface. As used herein, the ground surface includes indoors, outdoors, bathroom floors, toilet floors, carpeted floors, and/or any surface on which people can walk and/or stand on, whether stationary and/or moving. Note that any pairing elements of apparatus 100 can be identical to each other or different from each other in any way. Apparatus 100 includes a pair of U-shaped opposing side frames 104 coupled to each other via a front bridge 108 and a back bridge 118 opposing front bridge 108. Frames 104 are spaced apart such that at least seat 102 fits therebetween with the user sitting on seat 102.

[00051] Frames 104 are defined via a pair of opposing bases 124, a pair of opposing front legs 106 extending from bases 124, and a pair of opposing back legs 118 extending from bases 124. Note that legs 106 and legs 118 are front and back with respect to each other. Note that one of frames 104 can be identical to or different from the other of frames 104 in any manner, such as at least length, height, width, size, shape, weight, perimeter, area, volume, material, density, rigidity, and so forth. Frames 104 are sufficiently rigid to provide lift support to the user, such as a sick, disabled,
and/or frail person. Frames 104 are sufficiently stable such that the user can place the user's hands thereon during defecation.

[00052] Bases 124 are similarly sized, parallel, straight, metallic, and elliptically tubular hollow shafts. Bases 124 are sufficiently rigid/stable to provide lift support to the user. Note that whether partially or fully, bases 124 can be identical to or different from each other in length, height, width, size, shape, weight, perimeter, area, volume, material, density, rigidity, inclination angle, and so forth. Bases 124 can include plastic, wood, rubber, and so forth. Bases 124 can be hollow, such as via containing a fluid, like a liquid or air, or full, such as via being a solid. Bases 124 can be segmented internally and/or externally. Bases 124 can be wavy, arcuate, projecting toward or away from a ground surface, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Bases 124 can be surfaced smoothly, roughly, ruggedly, and so forth. Bases 124 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Bases 124 can also be oriented in a converging manner or a diverging manner with respect to each other. Bases 124 can also be plates, strips, sheets, and so forth. Bases 124 can be fixed or rotatable/movable/collapsible/foldable. Bases 124 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as molded or 3D printed. Bases 124 can have cross-sections of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Bases 124 can have a tube/strip/handle extending from bases 124 above, below, and/or lateral to bases 124

[00053] Legs 106 are similarly sized, parallel, straight, metallic, and elliptically tubular hollow shafts. Legs 106 are sufficiently rigid/stable to support to bases 124. Note that whether partially or fully, legs 106 can be identical to or different from each other in length, height, width, size, shape, weight, perimeter, area, volume, material, density, rigidity, inclination angle, and so forth. Legs 106 can include plastic, wood, rubber, and so forth. Legs 106 can be hollow, such as via containing a fluid, like a liquid or air, or full, such as via being a solid. Legs 106 can be segmented internally and/or externally.
Legs 106 can be in fluid communication with bases 124. Legs 106 can be wavy, arcuate, projecting toward or away from each other, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Legs 106 can be surfaced smoothly, roughly, ruggedly, and so forth. Legs 106 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Legs 106 can also be oriented in a converging manner or a diverging manner with respect to each other. Legs 106 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Legs 106 can also be plates, strips, sheets, and so forth. Legs 106 can be fixed or rotatable/movable/collapsible/foldable. Legs 106 can be an assembly with bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with bases 124, such as via molding or 30 printing. Legs 106 can have cross-sections of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Legs 106 are extending from bases 124 in a curved manner at an angle of about 95 degrees with respect bases 104. However, note that such extension can also be in an acute manner and/or such inclination can be less than about 95 degrees, such as about 90 degrees or about 85 degrees, or greater than about 95 degrees, such as about 100 degrees or about 105 degrees. Note that although legs 106 are foremost, in other example embodiments, legs 106 are not foremost. At least one of legs 106 can have a cap 126 thereon. Cap 126 is configured to prevent ground surface scratching. Cap 126 can include rubber, plastic, and so forth. Note that at least one of legs 106 can also function without cap 126.

Legs 118 are similarly sized, parallel, straight, metallic, and elliptically tubular hollow shafts. Legs 118 are sufficiently rigid/stable to support to bases 124. Note that whether partially or fully, legs 118 can be identical to or different from each other in length, height, width, size, shape, weight, perimeter, area, volume, material, density, rigidity, inclination angle, and so forth. Legs 118 can include plastic, wood, rubber, and so forth. Legs 118 can be hollow, such as via containing a fluid, like a liquid or air, or full, such as via being a solid. Legs 118 can be segmented internally and/or externally.
Legs 118 can be in fluid communication with bases 124 and/or legs 106. Legs 118 can be wavy, arcuate, projecting toward or away from each other, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Legs 118 can be surfaced smoothly, roughly, ruggedly, and so forth. Legs 118 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Legs 118 can also be oriented in a converging manner or a diverging manner with respect to each other. Legs 118 can also be plates, strips, sheets, and so forth. Legs 118 can be fixed or rotatable/movable/collapsible/foldable. Legs 118 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Legs 118 can be an assembly with bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with bases 124, such as via molding or 30 printing. Legs 118 can be an assembly with legs 106 and bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with legs 106 and bases 124, such as via molding or 30 printing. Legs 118 can have cross-sections of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Legs 118 are extending from bases 124 in a curved manner at an angle of about 95 degrees with respect to bases 124. However, note that such extension can also be in an acute manner and/or such inclination can be less than about 95 degrees, such as about 90 degrees or about 85 degrees, or greater than about 95 degrees, such as about 100 degrees or about 105 degrees. Note that although legs 118 are rearmost, in other example embodiments, legs 106 are not rearmost. At least one of legs 118 can have cap 126 thereon. Note that at least one of legs 118 can also function without cap 126.

[00056] Bridge 116 is spanning between legs 118. Bridge 116 is opposing bridge 108. Bridge 116 is parallel to bridge 108. Bridge 116 is straight, metallic, and elliptically tubular hollow shaft. Note that whether partially or fully, bridge 116 can include plastic, wood, rubber, and so forth. Bridge 116 can be hollow, such as via containing a fluid, like a liquid or air, or full, such as via being a solid. Bridge 116 can be segmented internally
and/or externally. Bridge 116 can be in fluid communication with legs 106, bases 124, and/or legs 118. Bridge 116 can be wavy, arcuate, projecting toward or away from the ground surface, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Bridge 118 can be surfaced smoothly, roughly, ruggedly, and so forth. Bridge 116 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Bridge 116 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Bridge 116 can be an assembly with at least one of bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with at least one of bases 124, such as via molding or 30 printing. Bridge 116 can also be a plate, a strip, a sheet, and so forth. Bridge 116 can be an assembly with at least one of legs 118 and at least one of bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with at least one of legs 118 and at least one of bases 124, such as via molding or 30 printing. Bridge 116 can have a cross-section of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Bridge 116 can be fixed or rotatable/movable/collapsible/foldable. Bridge 116 is sufficiently rigid/stable to provide support to the user, such as a sick, disabled, and/or frail person. At least at one point, bridge 116 spans above seat 102. At least at one point, bridge 116 is further from the ground surface than seat 102. Therefore, bridge 116 is further from the ground surface than seat 102 when frames 104 are standing on the ground surface with seat 102 between frames 104.

[00057] In some example embodiments, bridge 116 is lacking. Bridge 108 is spanning between legs 106. Bridge 108 is opposing bridge 116. Bridge 108 is straight, metallic, and elliptically tubular hollow shaft. Bridge 108 is parallel to bridge 116. Note that whether partially or fully, bridge 108 can include plastic, wood, rubber, and so forth. Bridge 108 can be hollow, such as via containing a fluid, like a liquid or air, or full, such as via being a solid. Bridge 108 can be segmented internally and/or externally. Bridge 108 can be in fluid communication with legs 106, bases 124, and/or legs 118. Bridge
108 can be wavy, arcuate, projecting toward or away from the ground surface, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Bridge 108 can be surfaced smoothly, roughly, ruggedly, and so forth. Bridge 108 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Bridge 108 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Bridge 108 can be an assembly with at least one of bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with at least one of bases 124, such as via molding or 30 printing. Bridge 108 can also be a plate, a strip, a sheet, and so forth. Bridge 108 can be an assembly with at least one of legs 106 and at least one of bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with at least one of legs 106 and at least one of bases 124, such as via molding or 30 printing. Bridge 108 can have a cross-section of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Bridge 108 can be fixed or rotatable/movable/collapsible/foldable. Bridge 108 is sufficiently rigid/stable to provide leg support to the user, such as a sick, disabled, and/or frail person. At least at one point, bridge 108 spans below seat 102, in front of seat 102. At least at one point, bridge 108 is closer to the ground surface than seat 102. Therefore, bridge 108 is closer to the ground surface than seat 102 when frames 104 are standing on the ground surface with seat 102 between frames 104. The user can seat on seat 102 between bridge 108 and bridge 116, while being between frames 104.

[00058] A pair of footrests 110 extends from bridge 108. Footrests 110 are U-shaped, metallic, and elliptically tubular hollow shafts. Footrests 110 are parallel to each other. Note that whether partially or fully, footrests 110 can include plastic, wood, rubber, and so forth. Footrests 110 can be hollow, such as via containing a fluid, like a liquid or air, or full, such as via being a solid. Footrests 110 can be segmented internally and/or externally. Footrests 110 can be in fluid communication with legs 106, bases 124, and/or legs 118. Footrests 110 can be wavy, arcuate, acute, projecting toward or away
from the ground surface, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Footrests 110 can be surfaced smoothly, roughly, ruggedly, and so forth. Footrests 110 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Footrests 110 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Footrests 110 can be an assembly with at least one of legs 106, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with at least one of legs 106, such as via molding or 30 printing. Footrests 110 can also be a plate, a strip, a sheet, and so forth. Footrests 110 can be an assembly with at least one of legs 106 and at least one of bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with at least one of legs 106 and at least one of bases 124, such as via molding or 30 printing. Footrests 110 can have a cross-section of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Footrests 110 can be fixed to bridge 108 with respect to at least one of legs 106 or rotatable/movable/collapsible/foldable/pivoting with respect to at least one of legs 106. Footrests 110 are sufficiently rigid/stable to provide leg support to the user, such as a sick, disabled, and/or frail person.

[00059] Each of footrests 110 includes a pair of metallic, elliptically tubular, footrest sleeves 110.1. Note, that each of footrests 110 can include only one sleeve 110.1 or at least three sleeves 110.1. Sleeves 110.1 are hollow therein for mounting onto bridge 108. Sleeves 110.1 are mounted on bridge 108. Although bridge 108 includes an area 108.1 intermediate to footrests 110, in other example embodiments, area 108.1 is lacking. Footrests 110 extend from sleeves 108.1. Note that whether partially or fully, sleeves 110.1 can include plastic, wood, rubber, and so forth. Sleeves 110.1 can be wavy, arcuate, acute, projecting toward or away from the ground surface, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Sleeves 110.1 can be surfaced smoothly, roughly, ruggedly, and so forth. Sleeves 110.1 can be fully continuous, partially continuous, perforated in any
manner/size/shape, and/or any combination thereof. Sleeves 110.1 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Footrests 110 can be an assembly with bridge 108, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with bridge 108, such as via molding or 30 printing. Sleeves 110.1 can have a cross-section of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Sleeves 110.1 can be fixed with respect to bridge 108 or rotatable/movable/collapsible/foldable/pivoting with respect to bridge 108. Sleeves 110.1 are sufficiently rigid/stable such that footrests 110 securely extend from sleeves 110.

[00061] In another example embodiment, at least one sleeve 110.1 is lacking for at least one leg element of footrest 110. Therefore, footrest 110.1 directly extends from bridge 108.

[00062] In yet another example embodiment, a single footrest 110 is present. Such footrest 110 is sufficiently elongated between legs 106 such that the user can place both fees next to each other on footrest 110. Further, such footrest can extend from sleeve 110.1 or lack sleeve 110.1 and extend from bridge 108 from at least one point. Moreover, such sleeve can be L-shaped, U-shaped, J-shaped, A-shaped, and so forth.

[00063] Footrests 110 are configured to move in an arcuate range of motion. The range of motion is sufficiently extensive to allow for placing the user sitting on seat 102 from a relatively sitting defecation posture into at least one squatting defecation posture. For example, such range can be between about 0 degrees, as coplanar with legs 106, to about 180 degrees clockwise toward seat 102 and bridge 116. Another example of such range can be between about 10 degrees, with respect to legs 106, to about 90 degrees with respect to legs 106. Note that footrests 110 and sleeves 110.1 can move via pivoting about bridge 108. Also, note that footrests 110, sleeves 110.1, and bridge 108 can pivot about legs 106. Further, note that, when sleeves 110.1 are lacking, then footrests 110 can move via pivoting about bridge 108 or move via pivoting with bridge 108 about legs 106. Footrests 110 are lockable at least in a plurality of preset
defecation posture positions within the range of motion. The presetting can be user set or manufacturer set.

[00064] A pair of locking plates 112 extends from legs 106. Plates 112 are proximal to bridge 108. Plates 112 extend toward legs 118 and face each other. Plates 112 are metallic and flat. Plates 112 are parallel to each other. Note that whether partially or fully, plates 112 can include plastic, wood, rubber, and so forth. Plates 112 can be hollow, such as via containing a fluid, like a liquid or air, or full, such as via being a solid. Plates 112 can be segmented internally and/or externally. Plates 112 can be in fluid communication with legs 106, bases 124, and/or legs 118. Plates 112 can be wavy, arcuate, projecting toward or away from the ground surface, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Plates 112 can be surfaced smoothly, roughly, ruggedly, and so forth. Plates 112 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Plates 112 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Plates 112 can be an assembly with legs 106, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with legs 116, such as via molding or 30 printing. Plates 112 can also be a strip, a sheet, a tube, and so forth. Plates 112 can be an assembly with at least one of legs 106 and at least one of bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with at least one of legs 106 and at least one of bases 124, such as via molding or 30 printing. Plates 112 can have a cross-section of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Plates 112 can be shaped in any manner, whether arcuate and/or acute, such as a triangle, a parallelogram, an ellipse, a polygon, and so forth. Plates 112 can be fixed or rotatable/movable/collapsible/foldable, with respect to legs 106, such as selectively pivoting about legs 106. Plates 112 are sufficiently rigid/stable to enable locking of footrests 110. Plates 112 extend below seat 102, in front of seat 102.
Plates 112 contain a plurality of holes 120 corresponding to a plurality of defecation postures, with at least one of holes 120 corresponding to a squatting posture. Holes 120 can be of any size, shape, depth, and so forth. Holes 120 extend fully through plates 112 in any manner. However, in other example embodiments, holes 120 do not fully extend through plates 112.

A pair of metallic pins 122 is sized for insertion into any of holes 120. Pins 122 can be of any type, size, shape, manner, material, and so forth, whether unitary or non-unitary. When pins 122 are inserted into respective holes 120, then footrests 110 are locked and therefore, relatively stationary/fixed within the range of movement, as described herein, for defecation. Note that such pin insertion can be manual or automatic. Also, note that the ranges of motion for footrests 110 can be identical or different from each other in any manner. Additionally, note that holes 120 for each plate 112 can be based on identical defecation postures for each of the user's feet or different defecation postures for each of the user's feet. For example, the user's feet can be in relatively identical defecation positions or different defecation positions.

A pair of levers 114 extends from footrests 110 via sleeves 110.1. Levers 114 include a pair of handles 114.1. Levers 114 independently control movement of footrests 110 within the range of motion. Levers 114 can be operated via pushing or pulling handles 114.1 by the user sitting on seat 102. Note that in example embodiments where sleeves 110.1 are lacking, then levers 114 can extend from footrests 110 and/or bridge 108. Levers 114 are between the ground surface and bases 124. Handles 114.1 are extending away from seat 102 and from each other.

Levers 114 are similarly sized, non-linear, metallic, and elliptically tubular hollow shafts. Levers 114 are sufficiently rigid/stable to move footrests 110 with the user's feet thereon. Note that whether partially or fully, levers 114 can be identical to or different from each other in length, height, width, size, shape, weight, perimeter, area, volume, material, density, rigidity, inclination angle, and so forth. Levers 114 can include plastic, wood, rubber, and so forth. Levers 114 can be hollow, such as via containing a fluid, like a liquid or air, or full, such as via being a solid. Levers 114 can be segmented internally and/or externally. Levers 114 can be in fluid communication with footrests
110. Levers 114 can be wavy, curved, acute, arcuate, projecting toward or away from each other, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Levers 114 can be surfaced smoothly, roughly, ruggedly, and so forth. Levers 114 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Levers 114 can also be oriented in a converging manner or a diverging manner with respect to each other. Levers 114 can also be plates, strips, sheets, and so forth. Levers 114 can be fixedly extending or rotatable/movable/collapsible/foldable. Levers 114 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Levers 114 can be an assembly with footrests 110 and/or sleeves 110.1, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with footrests 110 and/or sleeves 110.1, such as via molding or 30 printing. Levers 114 can be an assembly with footrests 110, sleeves 110.1, and bridge 108, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with footrests 110, sleeves 110.1, and bridge 108, such as via molding or 30 printing. Levers 114 can have cross-sections of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth.

[00069] Pins 122 extend through levers 114 into one of holes 120 to lock footrests 110 and therefore, relatively stationary/fixed within the range of movement, as described herein. Although levers 114 are configured for user pulling toward seat 102, in other example embodiments, levers 114 can be configured for user pulling/pushing/operating in any direction(s) from seat 102 in any manner.

[00070] Handles 114.1 are similarly sized, linear, rubberized, and elliptically tubular hollow shafts. Handles 114.1 are mounted on levers 114. Handles 114.1 are configured for user grasping, such as via a plurality of finger grooves or a fist groove. Note that whether partially or fully, handles 114.1 can be identical to or different from each other in length, height, width, size, shape, weight, perimeter, area, volume, material, density, rigidity, inclination angle, and so forth. Handles 114.1 can include metal, plastic, wood,
and so forth. Handles 114.1 can be wavy, arcuate, projecting toward or away from each other, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Handles 114.1 can be surfaced smoothly, roughly, ruggedly, and so forth. Handles 114.1 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Handles 114.1 can also be oriented in a converging manner or a diverging manner with respect to each other. Handles 114.1 can also be plates, strips, sheets, and so forth. Handles 114.1 can be fixedly extending or rotatable/movable/collapsible/foldable. Handles 114.1 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Handles 114.1 can be an assembly with levers 114, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with levers 114, such as via molding or 30 printing. Handles 114.1 can have cross-sections of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth.

[00071] In some example embodiments, frames 104 are foldable with respect to bridge 108. For example, frames 104 can be configured for moving/hinging/pivoting/swinging with respect to bridge 108 toward each other. One of frames 104 folds onto bridge 108. Then, the other of frames 104 folds onto bridge 108 over the already folded frame 104. Therefore, when folded, one of frames 104 is intermediate with respect to bridge 108 and the other frame 104. Another example of folding includes frames 104 folding with respect to bridge 108 in a N-manner with frames 104 being vertical N-elements and bridge 108 being a diagonal N-element. Such N-folding is via frames 104 moving/hinging/pivoting/swinging with respect to bridge 108 in different directions. Note that after unfolding for use, bridge 108 and frames 104 are sufficiently stable for use, such as via locking, mating, fastening, and so forth, by the user, as described herein. Note that for any folding, as described herein, back bridge 118 can be configured for accommodating such folding, such as via moving/hinging/pivoting/swinging with respect to one of legs 118 or be lacking.
In some example embodiments, at least one of frames 114 includes an element, such as a bridge, a shaft, a strip, a chain, and so forth. The element positioned within the at least one of frames 114 such that the at least one of the frames is shaped as a shape selected from a group consisting of an E-shape, a 0-shape, an A-shape, a seven-segment O-shape, and a seven-segment 8 shape. For example, when the element extends vertically toward the ground surface from one of bases 124, then one of frames 104 can become E-shaped. Also for example, when the element spans between one of legs 106 and one of legs 118, then one of frames 104 can be A-shaped when the element spans sufficiently above the ground or 0-shaped when the element spans proximal to caps 126. Further for example, when a first element spans between one of legs 106 and one of legs 118 intermediate between one of bases 124 and the ground surface, and a second element spans between the one of legs 106 and the one of legs 118 proximal to caps 126, then the one of frames 104 takes on a seven-segment 8 shape, like on a conventional calculator display. Note that caps 126 can also be lacking for such use with the element.

The element can be a straight, metallic, and an elliptically tubular hollow shaft. The element is sufficiently rigid/stable to provide support to one of bases 124 or one of legs 106 or legs 118. Note that whether partially or fully, the element is can include plastic, wood, rubber, and so forth. The element can be a solid internally. The element can be segmented internally and/or externally. The element can be in fluid communication with bases 124 and/or legs 106, legs 118. The element can be wavy, arcuate, projecting toward or away from each other, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. The element can be surfaced smoothly, roughly, ruggedly, and so forth. The element can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. The element can also be oriented in a converging manner or a diverging manner with respect to each other. The element can also be a plate, a strip, a chain, a sheet, and so forth. The element can be fixed in position or rotatable/movable/collapsible/foldable. The element can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating.
elements, and so forth, or be unitary, such as via molding or 3D printing. The element can be an assembly with legs 106, legs 118, and/or bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with legs 106, legs 118, and/or bases 124, such as via molding or 3D printing. The element can have cross-sections of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. The element can have cap 126 thereon. The element can also function without cap 126.

[00074] In some example embodiments, at least one of frames 104 includes a privacy shield for the user to defecate in privacy. The shield can at least partially span toward the ground surface from at least one of bases 124. The shield can also at least partially span from at least one of legs 106 toward at least one of legs 118. The shield can be selectively detachable and/or selectively attachable. The shield can fully cover an area between at least one of legs 106 and at least one of legs 118 underneath at least one of bases 124. The shield is waterproof. The shield can include cloth, plastic, metal, wood, rubber, glass, and so forth. The glass can be a one-way glass for the user to see through the glass, while remaining private. The shield can include at least one panel. The shield can include a screen. The shield can include a blind, which can be selectively raised and/or lowered.

[00075] In one example mode of operation, the user sits on seat 102. Apparatus 100 is placed over the user onto the ground surface with the user being between frames 104, while being between bridge 108 and bridge 116. The user places the user's legs onto footrests 110, while sitting on seat 102. Footrests 110 are locked via pins 122 extending through levers 114 into respective holes 120. Therefore, footrests 110 are relatively stationary/fixed within the range of movement in one of the defecation postures. The user removes pins 122. The user grasps handles 114.1, whether simultaneously or non-simultaneously. The user selectively pulls levers 114 toward the user and seat 102. Such pulling can be simultaneous or non-simultaneous. Resultantly, footrests 110 independently pivot about bridge 108 via sleeves 110.1. Footrests 110 move within the ranges of motion toward the defecation positions. When a desired defecation posture is reached, then the user inserts pins 122 into holes 120 on plates
112 according to the desired position. Consequently, the user can defecate in the
desired position with the user's feet resting on footrests 110 positioned accordingly.
Such positioning can improve the user's bowel movement, while providing support via
frames 104.

[00076] FIG. 2A shows an example embodiment of a defecation posture apparatus in
a first preset defecation posture position according to the present disclosure. Some
elements of this figure are described above. Thus, same reference characters identify
identical and/or like components described above and any repetitive detailed description
thereof will hereinafter be omitted or simplified in order to avoid complication.

[00077] A first defecation posture position entails the user sitting on seat 102 with the
user's feet resting on footrests 110. Note that openings 120 on plates 112 are not
locked via pins 122. Therefore, footrests 110 are movable within the ranges of motion.
The user grasps handles 114.1 for pulling toward seat 102. Note that handles 114.1 are
proximal to bases 124.

[00078] FIG. 2B shows an example embodiment of a defecation posture apparatus in
a second preset defecation posture position according to the present disclosure. Some
elements of this figure are described above. Thus, same reference characters identify
identical and/or like components described above and any repetitive detailed description
thereof will hereinafter be omitted or simplified in order to avoid complication.

[00079] A second defecation posture position is different from the first posture
position. The second posture position entails more squatting by the user than the first
posture position. In the second posture position, the user pulled handles 114.1 toward
seat 102 such that handles 114.1 are adjacent to seat 102 and footrests 110 moved
about 75-80 degrees in the ranges of motion from the first posture position to be
substantially coplanar with seat 102.

[00080] FIG. 3 shows an example embodiment of a defecation posture apparatus
having a pair of dependency controllable U-shaped footrests according to the present
disclosure. Some elements of this figure are described above. Thus, same reference
characters identify identical and/or like components described above and any repetitive
detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[00081] An apparatus 300 includes bridge 108 spanning between legs 106. A pair of footrests 310, which are similar to footrests 110, extends from a common sleeve 310.1, which is similar to sleeves 110.1. When lever 114 is operated, such as when handle 114.1 is pulled toward seat 102, then common sleeve 310.1 allows both footrests 310 to move concurrently. Also, note that common sleeve 310.1 also allows footrests 310 to be locked concurrently. Additionally, note that the ranges of motion of footrests 310 can be relatively identical to or relatively different from each other. Furthermore, note that lever 114 can be coupled to or extend from common sleeve 310.1. Moreover, note that common sleeve 310.1 can pivot about bridge 108 or pivot with bridge 108 about legs 106. In addition, note that lever 114 controls movement of both footrests 310 within their respective ranges. Also, note that another lever 114 different from lever 114 can be coupled to one of footrests 310, one of sleeves 110.1, and/or common sleeve 310.1. Therefore, a movement of one lever 114 can influence movement of the other lever 114 and/or both footrests 310 and/or common sleeve 310.1. Resultantly, one lever 114 moves the other lever 114. Further, note that footrests 310 can be dependency controlled without sleeve 310.1, such as via directly extending from bridge 108.

[00082] FIG. 4 shows an example embodiment of a defecation posture apparatus having a pair of independently controllable L-shaped footrests according to the present disclosure. Some elements of this figure are described above. Thus, same reference characters identify identical and/or like components described above and any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[00083] An apparatus 400 includes a pair of L-shaped footrests 410, which are similar to footrests 110 and/or footrests 310. Note that any footrests, as described herein, can be shaped identically or differently from each other. Therefore, any footrests described herein can be of an L-shape, a U-shape, a J-shape, aT-shape, a P-shape, an A-shape, and an F-shape. However, note that such listing is an example. Other shapes can also
be used. Also, note that a single footrest for both feet can also be used in any manner, as described herein.

[00084] FIG. 5 shows an example embodiment of a defecation posture apparatus having a case depending from the apparatus according to the present disclosure. Some elements of this figure are described above. Thus, same reference characters identify identical and/or like components described above and any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[00085] An apparatus 500 includes a case 530. Case 530 has a pair of loops 528 spaced apart from each other. Case 530 has an inner space accessible via an opening 532. Loops 528 can be of any type. Only one loop 528 can also be used. Loops 528 can be unitary or an assembly with case 530. Loops 528 can include metal, plastic, wood, cloth, rubber, and so forth. Loops 528 are mounted on one of bases 124. Loops 528 can fastened/coupled/joined in any manner, such as a hook-and-loop fastener, a male-female fastener, an interlocker, and so forth. Loops 528 can be configured to allow for sliding or prevent sliding along one of bases 124. Alternatively, loops 528 can be unitary with one of bases 124. The inner space is sufficiently large to contain at least a mobile phone and loops 528 are sufficiently durable such that when the phone is within the inner space, case 530 depends from one of bases 124. Opening 532 can be closable, such as via a zipper, a button, a hook-and-loop fastener, and so forth. Case 530 can be waterproof. More than one case 530 can be used.

[00086] FIG. 6 shows an example embodiment of a defecation posture apparatus having a hook depending from the apparatus according to the present disclosure. Some elements of this figure are described above. Thus, same reference characters identify identical and/or like components described above and any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[00087] An apparatus 600 includes a hook 634 depending from one of bases 124 via loop 628, which can be of any type. Loop 628 can be similar to loop 528. Hook 634 can be any type of hook, such as J-hook, and so forth. Hook 634 can include metal, plastic, wood, and so forth. Hook 634 is sufficiently durable to allow a bag or an article of clothing to hang thereon. Hook 634 can be unitary with or an assembly with loop 628.
FIG. 7 shows an example embodiment of a defecation posture apparatus having a handgrip, a light source, and a cushion sleeve according to the present disclosure. Some elements of this figure are described above. Thus, same reference characters identify identical and/or like components described above and any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

An apparatus 700 includes a gripping strip 736, a light source 738, and a cushion sleeve 740.

Strip 736 is rubberized and configured to enhance gripping by the user, while the user is sitting on seat 102. At least one of bases 124 can have strip 736 extending thereon. Strip 736 can include a plurality of finger grooves and/or a fist groove. Strip 736 can be fixed in place or detachable/removable from use position.

Source 738 can output light of any type/color in any direction, such as toward the user and/or seat 102 for reading and/or safety illumination. Source 738 can include a bulb, such as an incandescent bulb, a light emitting diode (LED) bulb, a fluorescent bulb, and so forth. Source 738 can be powered via an internal battery or mains electricity based source. Alternatively, the battery is internal to one of bases 124. The mains electricity based source can be internal to at least one of frames 104. Source 738 outputs light sufficiently bright for the user to be able to operate apparatus 700 at least partially. Source 738 is waterproof. Source 738 is fixed in place or removable from use position.

Sleeve 740 is mounted on bridge 108. Sleeve 740 extends along area 108.1 between footrests 110. Sleeve 740 is sufficiently cushioning such that when bridge 108 is proximal to seat 102, then sleeve 740 prevents bridge 108 from banging into seat 102 and damaging seat 102, such as via scratching. Sleeve 740 can include foam, polyurethane, and so forth.

FIG. 8 shows an example embodiment of a wheeled defecation posture apparatus having a pair of movable cantilevered members uniquely associated with a pair of footrests according to the present disclosure. Some elements of this figure are described above. Thus, same reference characters identify identical and/or like
components described above and any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[00094] An apparatus 800 includes a first cantilevered member 842, a second cantilevered member 844, a pair of wheels 846, and a ratchet plate 848.

[00095] Members 842, 844 extend toward each other between legs 106. Members 842, 844 are operable independent of each other. Members 842, 844 are opposing bridge 116 when extending toward each other. Members 842, 844 are straight, metallic, and elliptically tubular hollow shafts. Members 842, 844 are parallel to bridge 116. Note that whether partially or fully, members 842, 844 can include plastic, wood, rubber, and so forth. Members 842, 844 can be hollow, such as via containing a fluid, like a liquid or air, or full, such as via being a solid. Members 842, 844 can be segmented internally and/or externally. Members 842, 844 can be in fluid communication with legs 106, bases 124, and/or legs 118. Members 842, 844 can be wavy, arcuate, projecting toward or away from the ground surface, projecting toward seat 102 or away from seat 102, any diagonals thereof, and/or any combination thereof. Members 842, 844 can be surfaced smoothly, roughly, ruggedly, and so forth. Members 842, 844 can be fully continuous, partially continuous, perforated in any manner/size/shape, and/or any combination thereof. Members 842, 844 can be an assembly, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary, such as via molding or 30 printing. Members 842, 844 can be an assembly with at least one of bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with at least one of bases 124, such as via molding or 30 printing. Members 842, 844 can also be a plate, a strip, a sheet, and so forth. Members 842, 844 can be an assembly with at least one of legs 106 and at least one of bases 124, such as via a plurality of telescoping elements, a plurality of fastened pieces, a plurality of mating elements, and so forth, or be unitary with at least one of legs 106 and at least one of bases 124, such as via molding or 30 printing. Members 842, 844 can have a cross-section of any type, such as a parallelogram, a polygon, an ellipse, a triangle, and so forth. Members 842, 844 are sufficiently rigid/stable to provide leg support to the user,
such as a sick, disabled, and/or frail person. At least at one point, members 842, 844 span below seat 102, in front of seat 102 when extending toward each other. At least at one point, members 842, 844 are closer to the ground surface than seat 102 when extending toward each other. Therefore, members 842, 844 are closer to the ground surface than seat 102 when frames 104 are standing on the ground surface with seat 102 between frames 104. The user can seat on seat 102 between members 842, 844 and bridge 116, while being between frames 104.

[00096] Members 842, 844 can be rotatable/movable/collapsible/foldable, in an identical or different manner, to avoid walk interference between frames 104 from legs 106 to bridge 116. Such action can take place according to a pair of paths 850. Resultantly, via paths 850, members 842, 844 rotate/move/collapse/fold away from seat 102, such as to be parallel with bases 124. Note that lever 114 and/or handle 114.1 can have a different shape to facilitate such avoidance of walk interference. In another example embodiment, members 842, 844 rotate/move/collapse/fold toward seat 102, such as to be parallel with bases 124, underneath bases 124. Similarly, lever 114 and/or handle 114.1 can have a different shape to facilitate such avoidance of walk interference. In yet another example embodiment, members 842, 844 rotate/move/collapse/fold upward, away from the ground surface, toward legs 106, such as to be parallel with legs 106. Similarly, lever 114 and/or handle 114.1 can have a different shape to facilitate such avoidance of walk interference. Note that in all of such embodiments, footrests 110 are also positioned to avoid walk interference, whether manually or via such action. Note that, in some example embodiments, sleeves 110.1 are configured not to detach from members 842, 844, such as via sliding off from members 842, 844, however, in other example embodiments, members 842, 844 can be selectively detachable and securely re-attachable. Further, note that members 842, 844 can operate as bridge 108, as described herein. For example, footrests 110 can pivot about members 842, 844 via sleeves 110.1 as pulled via levers 114. Also for example, footrests 110 can pivot with members 842, 844 about legs 106. Further, for example, levers 114 can extend from members 842, 844, whether inclusive or exclusive of extending from sleeves 110.1.
Wheels 846 are present on legs 118. Wheels 846 can be inflatable, plastic, metallic, wooden, rubberized, and so forth. Wheels 846 allow apparatus 800 to function as a walker, at least for a sick, frail, disabled, injured, and/or elderly person. Therefore, when walking via apparatus 800, then members 842, 844 are rotated/moved/collapsed/folded to avoid walk interference for the user walking into apparatus 800 toward bridge 116 to be between frames 104 and grasping bases 104. If during walking with apparatus 800, the user desires to sit on seat 102 for defecation, then the user sits on seat 102 and then operates members 842, 844 from their rotated/moved/collapsed/folded positions to place members 842, 844 into positions as shown in FIG. 8.

Plates 848 include a plurality of toothed positions arranged according the defecation postures, as described herein. The toothed positions can be of any type. Levers 114 includes a pair of pawls configured for operation with plate 848. The pawls can include plastic, metal, wood, and so forth. The pawls can be of any type. Footrests 110 are lockable at the toothed positions via the pawls allowing unidirectional movement toward seat 102. The pawls are releasable from the toothed positions in any manner, such as via manual pulling toward seat 102, operation of levers 114, and so forth. Such release functionality can be identical for both of the pawls or different for both of the pawls. The pawl operates based on operation of levers 114, as pulled via handles 114.1. In another example embodiment, one of legs 106 has a single ratchet plate 848 and the other of legs 106 has a single holed plate 112. In yet another example embodiment, members 842, 844 are associated with plates 112, as described herein. In yet still another example embodiment, at least one of plates 848 is holed, like plate 112. In yet further example embodiment, at least one of plates 112 is ratcheted, like plate 848.

FIG. 9A shows a top view of an example embodiment of an apparatus comprising a foot support positioned in a first position according to the present disclosure. FIG. 9B shows a top view of an example embodiment of an apparatus comprising a foot support positioned in a second position according to the present disclosure. Some elements of this figure are described above. Thus, any repetitive
detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[000100] A U-shaped walker 900 comprises a pair of side frames 902 and a bridge 904 spanning therebetween. Each of the side frames 902 comprises a hand rail 906, as described herein. Each of the side frames 902 also comprises a pair of legs, as described herein. A foot support 908 is pivotally coupled to at least one of such legs. In FIG. 9A, the foot support 908 is in a first position, which is a retracted position, such as for use during walking with the walker 900. The hand rail 906 substantially overlays the foot support 908. When the hand rail 906 is opaque/non-perforated, then the foot support 908 is not visible from above the hand rail 906. However, when the hand rail 906 is transparent/perforated, then the foot support 908 is visible from above the hand rail 906. Further, the foot support 908 is visible in the first position when the foot support 908 laterally protrudes beyond the hand rail 906 on at least one side of the hand rail 906. In FIG. 9B, the foot support 908 is in a second position, which is a deployed position, such as for use during defecation with the walker 900 being in toilet seat proximity.

[000101] FIG. 10A shows a side view of an example embodiment of a side frame leg defining a rectangular opening according to the present disclosure. Some elements of this figure are described above. Thus, any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication. A leg 1000A, as described herein, defines an opening 1002A, such as a slot. The opening 1002A is rectangular, but can shaped differently, such as an oval, an arch, V-shape, and so forth.

[000102] FIG. 10B shows a side view of an example embodiment of a side frame leg defining an L-shaped opening according to the present disclosure. Some elements of this figure are described above. Thus, any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication. A leg 1000B, as described herein, defines an opening 1002B, such as a slot. The opening 1002B is L-shaped, as defined via a travel portion 1004B and a rest portion 1006B, which corresponds to a fixed position of the footrest 908.
FIG. 10C shows a side view of an example embodiment of a side frame leg defining a U-shaped opening according to the present disclosure. Some elements of this figure are described above. Thus, any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication. A leg 1000C, as described herein, defines an opening 1002C, such as a slot. The opening 1002C is U-shaped, as defined via a travel portion 1004C and a plurality of rest portions 1006C, which correspond to a plurality of fixed positions of the footrest 908.

FIG. 11 shows a side view of an example embodiment of a foot support coupled to a side frame leg via a side frame leg opening according to the present disclosure. FIG. 12 shows a top view of an example embodiment of a foot support according to the present disclosure. Some elements of this figure are described above. Thus, same reference characters identify identical and/or like components described above and any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

A foot support 1100 comprises a bridge 1102, a footrest 1104, a leg 1106, a base 1108, and a bar/rod/shaft 1110, any one of which can comprise at least one of metal, plastic, wood, glass and rubber, or any combinations thereof. The leg 1000B includes the L-shaped opening 1002B, as defined via the travel portion 1004B and the rest portion 1006B. The leg 100B further defines an interior chamber 1008B having a ceiling 1010B and a floor 1012B, whether unitary and/or assembled with the leg 1000B. Alternatively, the interior chamber 1008B is part of a segment within the leg 1000B which rotates with respect to the leg 1000B, such as via ball bearings. In other embodiments, at least one of the bridge 1102, the footrest 1104, the leg 1106, and the base 1108 is telescopic.

The bar/rod/shaft 1110 is housed within the interior chamber 1008B between the ceiling 1010B and the floor 1012B such that the bar/rod/shaft 1110 can rotate about a vertical axis. For example, the bar/rod/shaft 1110 can be mounted onto the ceiling 1010B and the floor 1012B and rotate about a vertical axis with respect to the ceiling 1010B and the floor 1012B. The bar/rod/shaft 1110 is coupled to the bridge 1102 and positioned within the leg 1000B longitudinally and parallel to the leg 1106 such that the
bar/rod/shaft 1110 is perpendicular to the bridge 1102, such as in a T-shaped relationship, as described further below. The bar/rod/shaft 1110 can be coupled to the bridge 1102 such that the bridge 1102 is unable to rotate or pivot about the bar/rod/shaft 1110 i.e. fixed. Such coupling can be via an adhesive, clamping, locking, fastening, mating, interlocking, or via unitary assembly. However, in other embodiments, the bar/rod/shaft 1110 can be coupled to the bridge 1102 such that the bridge 1102 is able to rotate or pivot about the bar/rod/shaft 1110. Such coupling can be via mounting, fastening or mating.

[000107] The bridge 1102 and the footrest 1104 can be coupled such that the footrest 1104 is unable to rotate or pivot about the bridge 1102 i.e. fixed. Such coupling can be via an adhesive, clamping, locking, fastening, mating, interlocking, or via unitary assembly. However, in other embodiments, the footrest 1104 can be coupled to the bridge 1102 such that the footrest 1104 is able to rotate or pivot about the bridge 1102, whether laterally, upwardly or downwardly. Such coupling can be via mounting, fastening or mating. At least one of the bridge 1102 and the footrest 1104 can perforated. The footrest 1104 is cuboid, but can be of any shape, such an inverse pyramid, a hemisphere, and so forth. The footrest 1104 can have a rugged surface, such as to increase foot friction.

[000108] The footrest 1104 and the leg 1106 can be coupled such that the footrest 1104 is unable to rotate or pivot about the leg 1106 i.e. fixed. Such coupling can be via an adhesive, clamping, locking, fastening, mating, interlocking, or via unitary assembly. However, in other embodiments, the footrest 1104 can be coupled to the leg 1106 such that the footrest 1104 is able to rotate or pivot about the leg 1106, whether laterally, upwardly or downwardly. Such coupling can be via mounting, fastening or mating. At least one of the leg 1106 and the footrest 1104 can perforated.

[000109] The leg 1106 and the base 1108 can be coupled such that the leg 1106 is unable to rotate or pivot about the base 1108 i.e. fixed. Such coupling can be via an adhesive, clamping, locking, fastening, mating, interlocking, or via unitary assembly. However, in other embodiments, the leg 1106 can be coupled to the base 1108 such that the leg 1106 is able to rotate or pivot about the base 1108, whether laterally,
upwardly or downwardly. Such coupling can be via mounting, fastening or mating. At least one of the leg 1106 and the base 1108 can perforated. The base 1108 is cuboid, but can be of any shape, such a pyramid, a hemisphere, and so forth. The base 1108 can have a rugged bottom surface, such as to increase ground friction.

[0001 10] In one mode of operation, in accordance with FIG. 9A and FIG. 9B, the bar/rod/shaft 1110 rotates about the vertical axis within the chamber 1008B, such as via manual force application onto at least one of the bridge 1102, the footrest 1104, the leg 1106, and the base 1108. Such rotation causes the bridge 1102 to travel along the travel portion 1004B. Such travel moves the footrest 1104 between the first position, such as the retracted position, and the second position, such as the deployed position, as described herein. Upon traveling along the travel portion 1004B and reaching at least one of the first position and the second position, the bridge 1102 drops into the rest portion 1006B such that the bridge 1102 is unable to travel further unless lifted. When desired, the bridge 1102 can be lifted from the rest portion 1006B for further travel along the travel portion 1004B.

[0001 11] In other embodiments, the bar/rod/shaft 1110 is rotated about the vertical axis within the chamber 1008B via a motor, such as an electric motor, housed within the leg 1000B or in other portion of the walker 900. Such motor can be powered via a power source, such as a rechargeable battery housed within the leg 1000B or in other portion of the walker 900. The motor can be activated via a user interface, such as a button, on the walker 900. Alternatively, the motor can be activated via a mobile phone or a tablet computer in proximity of the walker 900, such as via short-range network communication, for instance a Bluetooth protocol and/or an infrared protocol.

[0001 12] FIG. 13A shows a side view of an example embodiment of a side frame leg having an inverted U-shape footrest coupled thereto according to the present invention. Some elements of this figure are described above. Thus, any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[0001 13] A side frame leg 1300A is coupled to a hinge 1302A, which can comprise at least one of metal, plastic, wood, glass, and rubber, or any combinations thereof. Such
coupling can be via fastening, clamping, adhering, bolting, mating, interlocking, or other securing technologies. An inverted U-shape footrest 1304A, which can comprise at least one of metal, plastic, wood, glass, and rubber, or any combinations thereof, is defined via a base 1306A and a pair of vertical members 1308A extending therefrom. The base 1306A and at least one member of the pair of vertical members 1308A can be unitary and/or be an assembly, such as via fastening, clamping, adhering, bolting, mating, interlocking, or other securing technologies. The hinge 1302A is coupled to the footrest 1304A via fastening, clamping, adhering, bolting, mating, interlocking, or other securing technologies. Resultantly, in accordance with FIG. 9A and FIG. 9B, the footrest 1304A moves between the first position, such as the retracted position, and the second position, such as the deployed position, as described herein. Note that, in each of the positions, the footrest 1304A can be locked via a J-hook hooking onto an O-shaped eyelet. The J-hook can be coupled, such as via fastening, clamping, adhering, bolting, mating, interlocking, or other securing technologies, to the footrest 1304A and the eyelet can be coupled, such as via fastening, clamping, adhering, bolting, mating, interlocking, or other securing technologies, to the leg 1300A, or vice versa. Note that the footrest 1304A can also be O-shaped or D-shaped.

FIG. 13B shows a side view of an example embodiment of a side frame leg having an upright U-shape footrest coupled thereto according to the present invention. Some elements of this figure are described above. Thus, any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

A side frame leg 1300B is coupled to a hinge 1302B, which can comprise at least one of metal, plastic, wood, glass, and rubber, or any combinations thereof. Such coupling can be via fastening, clamping, adhering, bolting, mating, interlocking, or other securing technologies. An upright U-shape footrest 1304B, which can comprise at least one of metal, plastic, wood, glass, and rubber, or any combinations thereof, is defined via a base 1306B and a pair of vertical members 1308B extending therefrom. The base 1306B and at least one member of the pair of vertical members 1308B can be unitary and/or be an assembly, such as via fastening, clamping, adhering, bolting, mating,
interlocking, or other securing technologies. The hinge 1302B is coupled to the footrest 1304B via fastening, clamping, adhering, bolting, mating, interlocking, or other securing technologies. Resultantly, in accordance with FIG. 9A and FIG. 9B, the footrest 1304B moves between the first position, such as the retracted position, and the second position, such as the deployed position, as described herein. Note that, in each of the positions, the footrest 1304B can be locked via a J-hook hooking onto an O-shaped eyelet. The J-hook can be coupled, such as via fastening, clamping, adhering, bolting, mating, interlocking, or other securing technologies, to the footrest 1304B and the eyelet can be coupled, such as via fastening, clamping, adhering, bolting, mating, interlocking, or other securing technologies, to the leg 1300B, or vice versa. Note that the footrest 1304B can also be O-shaped or D-shaped. Further, note that the hinge 1302B is positioned lower on the leg 1300B than the hinge 1302A on the leg 1300A. Such positioning can be stationary, such as to enable a foot to fit within the footrest 1308B properly when dealing with elderly/frail/sick individuals, but higher when dealing with individuals, such as under 5 feet tall. Alternatively, the hinge 1302A or the hinge 1302B can be configured to travel vertically along a height of the leg 1300A or the leg 1300B, such as along a path, similar to what is disclosed with respect to FIGS. 10A-10C.

FIG. 14 shows a side view of an example embodiment of a side frame leg having a footrest coupled thereto via a collar according to the present disclosure. Some elements of this figure are described above. Thus, any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

An assembly 1400 comprises a circular collar 1402 extending around a side frame leg 1408. The collar 1402 can comprise at least one of metal, plastic, wood, glass and rubber, or any combinations thereof. The collar 1402 is coupled to the bridge 1102 such that the collar 1402 is perpendicular to the bridge 1102, such as in a T-shaped relationship, as described herein. The collar 1402 can be coupled to the bridge 1102 such that the bridge 1102 is unable to rotate or pivot about the collar 1402 i.e. fixed. Such coupling can be via an adhesive, clamping, locking, fastening, mating, interlocking, or via unitary assembly. However, in other embodiments, the collar 1402
can be coupled to the bridge 1102 such that the bridge 1102 is able to rotate or pivot about the collar 1402. Such coupling can be via mounting, fastening or mating.

[0001 18] The assembly 1400 further comprises a lower ledge 1404 and an upper ledge 1406, with the collar 1402 positioned therebetween. At least one of the lower ledge 104 and the upper ledge 1406 comprise at least one of metal, plastic, wood, glass and rubber, or any combinations thereof. Such configuration supports the collar 1404, keeping the collar 1404 raised along a height of the leg 1408, while effectively preventing the collar 1404 from sliding upward along the height of the leg 1408. Note that at least one of the lower ledge 1404 and the upper ledge 1406 can be fully continuous/circular around the leg 1408 or be segmented along a perimeter of the leg 1408. Alternatively, the leg 1408 comprises a plurality of hemispherical protrusions/bumps extending circumferentially around the leg 1408 immediately below the collar 1402 and optionally above the collar 1402. Such configuration supports the collar 1404, keeping the collar 1404 raised along a height of the leg 1408, while effectively preventing the collar 1404 from sliding upward along the height of the leg 1408.

[0001 19] In one mode of operation, in accordance with FIG. 9A and FIG. 9B, the collar is rotated about the leg 1408 such that the footrest 1104 moves between the first position, such as the retracted position, and the second position, such as the deployed position, as described herein.

[000120] FIG. 15 shows a side view of an example embodiment of a wheeled footrest according to the present disclosure. Some elements of this figure are described above. Thus, any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication. An assembly 1500 comprises a footrest leg 1502 and a wheel 1504 operably coupled thereto, such as via a shaft/axle/pin. Note that more than one wheel 1504 can be used. Further, note that the wheel 1504 can be configured to swivel 360 degrees about the footrest leg 1502. The wheel 1504 can comprise rubber, plastic, metal, wood, glass or any combinations thereof.

[000121] FIG. 16 shows a side view of an example embodiment of a footrest according to the present disclosure. Some elements of this figure are described above. Thus, any
repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[000122] As described with reference to FIG. 11, the foot support 1100 comprises the bridge 1102, the footrest 1104, the leg 1106, the base 1108, and the bar/rod/shaft 1110, any one of which can comprise at least one of metal, plastic, wood, and rubber, or any combinations thereof.

[000123] FIG. 17 shows a side view of an example embodiment of a collar supported via a pin extending through a side frame leg according to the present disclosure. Some elements of this figure are described above. Thus, any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[000124] An assembly 1700 comprises a pin 1702, a circular collar 1704, and a side frame leg 1706. The pin 1702 can comprise at least one of metal, plastic, wood, glass, and rubber, or any combinations thereof. The pin 1702 is L-shaped, but can be S-shaped, Z-shaped, N-shaped, or J-shaped in other embodiments. The pin 1702 extends through the side frame leg 1706 and protrudes out of the side frame leg 1702 on both sides. The pin 1702 supports the collar 1704 as the collar 1704 rests on the side frame leg 1706 and rotates thereabout. Note that more than one pin 1702 can be used, such as in an X-configuration or H-configuration.

[000125] FIG. 18A shows a side view of an example embodiment of a collar having an upper inner wall and a lower inner wall according to the present disclosure. FIG. 18B shows a top view of an example embodiment of a collar having an upper inner wall according to the present disclosure. FIG. 18C shows a top view of an example embodiment of a collar having a lower inner wall according to the present disclosure. Some elements of this figure are described above. Thus, any repetitive detailed description thereof will hereinafter be omitted or simplified in order to avoid complication.

[000126] An assembly 1800 comprises a circular collar 1802 having an upper inner wall 1804, which can be circular, and a lower inner wall 1806, which can be circular, perpendicularly extending from an inner edge of the collar 1802 in opposite directions, enclosing a central opening of the collar 1802 and creating a central collar channel
thereby. Such configuration allows the collar 1802 to be used in conjunction with the opening 1002A, as shown in FIG. 10A. More particularly, the assembly 1800 is operably coupled to the leg 1000A such that the upper wall 1804 and the lower wall 1806 are positioned within the leg 1000A and the collar 1802 protrudes out of the opening 1002A to which the bridge 1102 is coupled, as described herein. At least one of the wall 1804 and the wall 1806 can comprise at least one of metal, plastic, wood, glass, and rubber, or any combinations thereof. The wall 1804 and the wall 1806 can be identically sized or differently sized.

[000127] The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be fully exhaustive and/or limited to the disclosure in the form disclosed. Many modifications and variations in techniques and structures will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure as set forth in the claims that follow. Accordingly, such modifications and variations are contemplated as being a part of the present disclosure. The scope of the present disclosure is defined by the claims, which includes known equivalents and unforeseeable equivalents at the time of filing of the present disclosure.
CLAIMS

Claim 1. An apparatus comprising:
 a pair of side frames;
 a bridge spanning between said frames;
 a footrest extending from said bridge;
 a lever extending from at least one of said bridge and said footrest.

Claim 2. The apparatus of claim 1, further comprising:
 a plate extending from one of said frames, wherein said plate defining a plurality
 of openings;
 a pin extending from said lever and engaging one of said openings such that said
 footrest is unable to pivot.

Claim 3. The apparatus of claim 1, further comprising:
 a plate extending from one of said frames, wherein said plate including a plurality
 of teeth;
 a pawl extending from said lever and engaging said teeth such that said footrest
 is unable to pivot.

Claim 4. The apparatus of claim 1, wherein said lever extending from said footrest such
that said footrest pivoting about said bridge.

Claim 5. The apparatus of claim 1, wherein said lever extending from said bridge such
that said bridge rotates about said frames and said footrest moves thereby.

Claim 6. The apparatus of claim 1, wherein said footrest has a shape selected from a
 group consisting of an L-shape, a U-shape, a J-shape, a T-shape, a P-shape, an A-
 shape, and a F-shape.
Claim 7. The apparatus of claim 1, further comprising:
 a second footrest extending from said bridge, wherein said footrest is a first
footrest, wherein said first footrest and said second footrest pivot independently of each
other.

Claim 8. The apparatus of claim 7, further comprising:
 a second lever extending from at least one of said bridge and said second
footrest.

Claim 9. The apparatus of claim 1, further comprising:
 a second footrest extending from said bridge, wherein said footrest is a first
footrest, wherein said first footrest and said second footrest pivot simultaneously via
said lever.

Claim 10. The apparatus of claim 1, further comprising:
 a second footrest extending from said bridge, wherein said footrest is a first
footrest;
 a cushion sleeve mounted onto said bridge, wherein said sleeve extending along
said bridge between said first footrest and said second footrest.

Claim 11. An apparatus comprising:
 a U-shaped walker comprising a pair of laterally opposing legs, wherein each of
said legs comprising a cantilevered member pivoting thereabout, a footrest extending
from said member, and a lever extending from at least one of said member and said
footrest.
Claim 12. The apparatus of claim 11, wherein at least one of said legs further comprising:
 a plate extending from said at least one of said legs, wherein said plate defining a plurality of openings;
 a pin extending from said lever and engaging one of said openings such that said footrest is unable to pivot.

Claim 13. The apparatus of claim 11, wherein at least one of said legs further comprising:
 a plate extending from said at least one of said legs, wherein said plate including a plurality of teeth;
 a pawl extending from said lever and engaging said teeth such that said footrest is unable to pivot.

Claim 14. The apparatus of claim 11, wherein said lever extending from said footrest such that said footrest pivoting about said member.

Claim 15. The apparatus of claim 11, wherein said lever extending from said member such that said member rotates about the each of said legs and said footrest moves thereby.

Claim 16. The apparatus of claim 11, wherein said footrest has a shape selected from a group consisting of an L-shape, a U-shape, a J-shape, a T-shape, a P-shape, an A-shape, and a F-shape.

Claim 17. An apparatus comprising:
 a U-shaped walker comprising a pair of laterally opposing legs, wherein each of said legs comprising a footrest pivoting thereabout.
Claim 18. The apparatus of claim 17, wherein said each of said legs defining an opening therein, wherein said footrest comprising a foot platform, a bar extending within said each of said legs longitudinally, and a bridge spanning between the platform and the bar through the opening.

Claim 19. The apparatus of claim 17, wherein said each of said legs comprising a collar rotating thereabout, wherein said footrest comprising a foot platform and a bridge spanning between the platform and collar.

Claim 20. The apparatus of claim 19, wherein at least one of:

- said collar is supported via at least one of a pin extending through said one of said legs and a ledge extending from said one of said legs; and
- said collar includes an upper inner edge and a lower inner edge, wherein said collar comprising an upper wall extending from said upper edge perpendicularly and a lower wall extending from said lower edge perpendicularly such that said upper wall and said lower wall define a channel thereby.
FIG. 3
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 14/62708

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) ... Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201
Form PCT/ISA/210 (second sheet) (July 2009)

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8): A47K 17/, A47K 13/24, A47K 13/00, E03D 11/00 (2015.01)
CPC: A47K 17/1, A47K 13/24, A47K 13/00, E03D 11/00 USPC: 4/254, 4/667

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
IPC(8): A47K 17/, A47K 13/00, E03D 11/00 (2015.01)
CPC: A47K 17/1, A47K 13/00, E03D 11/00 USPC: 4/254, 4/667

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PatBase, Google Patents, Google Web
Keywords: seat, footrest, foot, feet, lever, handle, u-shaped, saddle, bar, pivot, swing, flip, rotate, left, right, individual, walker, teeth, ratchet, pawl, toilet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 1,067,767 A (SIMONSON) 15 July 1913 (15.07.1913), entire document</td>
<td>17</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,920,917 A (LANDSBERGER) 13 July 1999 (13.07.1999), entire document</td>
<td>1, 4-6, 17-18</td>
</tr>
<tr>
<td>A</td>
<td>US 2,120,481 A (BENZT) 14 June 1938 (14.06.1938), entire document</td>
<td>2-3, 14-20</td>
</tr>
<tr>
<td>A</td>
<td>US 2,629,882 A (BLUMENSHINE) 03 March 1953 (03.03.1953), entire document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 4,155,126 A (CLASSEN) 22 May 1979 (22.05.1979), entire document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 6,076,893 A (BROTHERSTON) 20 June 2000 (20.06.2000), entire document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 4,466,140 A (SAKAMOTO) 21 August 1984 (21.08.1984), entire document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>GB 2427207 B2 (BUCKINGHAM) 29 September 2010 (29.09.2010), entire document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed
 “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 “Z” document member of the same patent family

Date of the actual completion of the international search
09 January 2015 (09.01.2015)

Date of mailing of the international search report
06 FEB 2015

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer: Lee W. Young
PCT Helpdesk 571-272-4200
PCT OSP 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)