

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2017/0292275 A1 **TAYLIA**

Oct. 12, 2017 (43) **Pub. Date:**

(54) FRICTION FIT COLUMN ASSEMBLY WITH INTERLOCKING JOINT SYSTEM AND METHODS OF USE

(71) Applicant: Kumar Arch Tech Pvt. Ltd., Udaipur

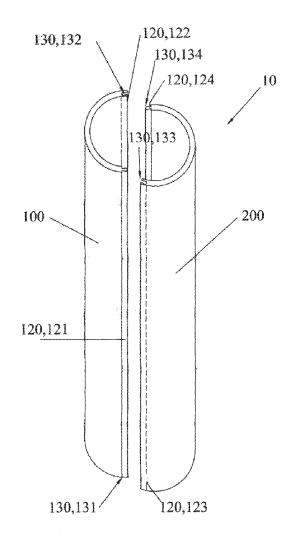
Jitendra Kumar TAYLIA, Udaipur (72) Inventor: (IN)

(21) Appl. No.: 15/481,309

(22) Filed: Apr. 6, 2017

Related U.S. Application Data

(60) Provisional application No. 62/318,812, filed on Apr. 6, 2016.


Publication Classification

(51) Int. Cl.

E04F 13/08 (2006.01)E04F 13/073 (2006.01) (52) U.S. Cl. CPC E04F 13/0889 (2013.01); E04F 13/0736 (2013.01); E04F 2201/02 (2013.01)

(57)**ABSTRACT**

A column assembly includes a two or more piece interlocking column assembly having at least a first linear section configured with an annular curve about a first short dimension, said at least first linear section having a first exterior surface, a first interior surface, and a first set of opposing edges, wherein said first set of opposing edges are configured with a first opposing male/female latch mechanism; and at least a second linear section configured with said annular curve about a second short dimension, said at least second linear section having a second exterior surface, a second interior surface, and a second set of opposing edges, wherein said second set of opposing edges are configured with a second opposing male/female latch mechanism, wherein said first opposing male/female latch mechanism and said second opposing male/female latch mechanism are configured to friction fit thereto each other.

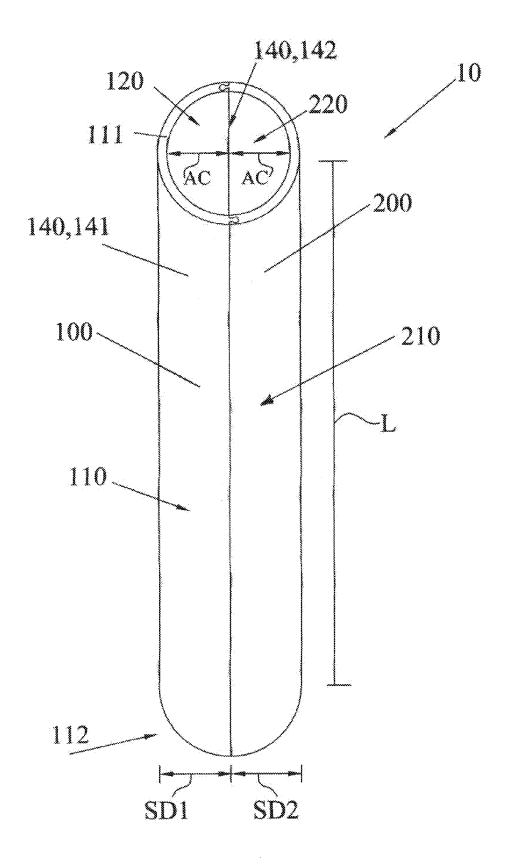


Fig. 1A

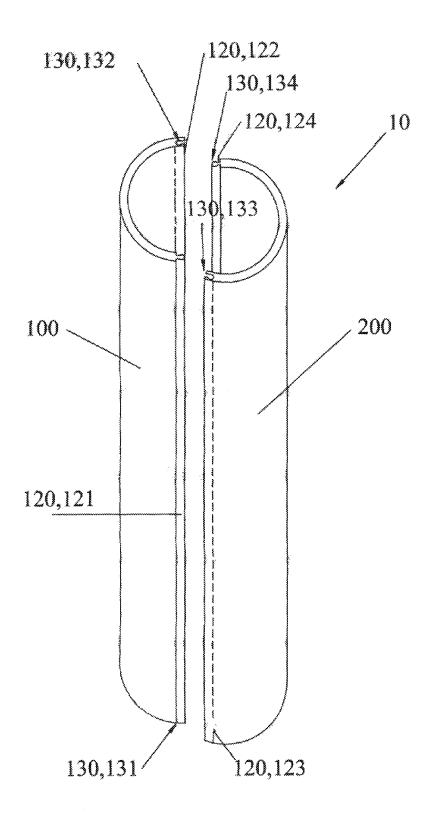


Fig. 1B

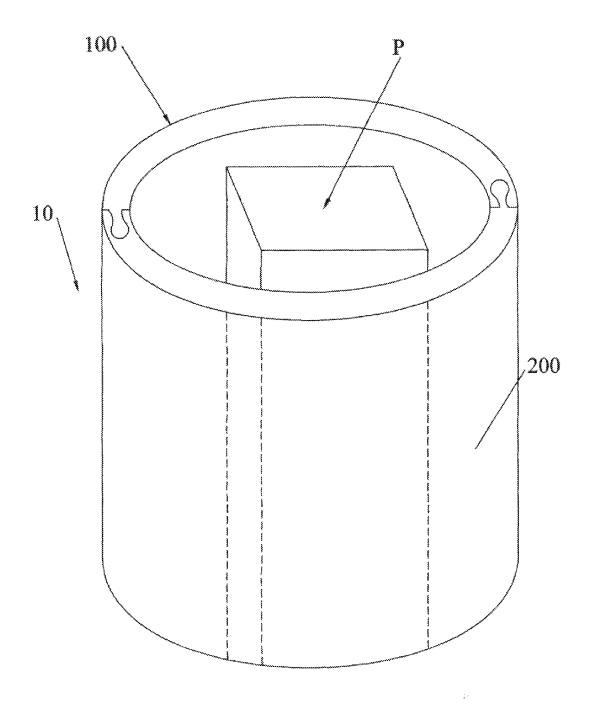
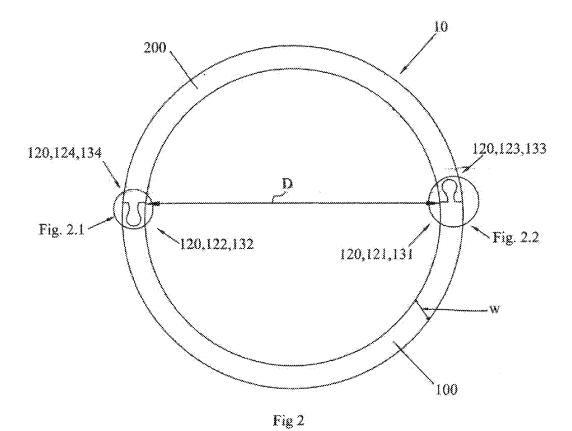
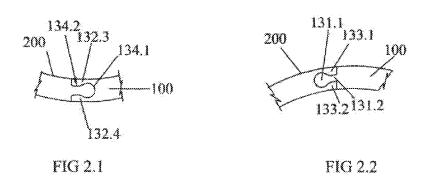




Fig. 1C

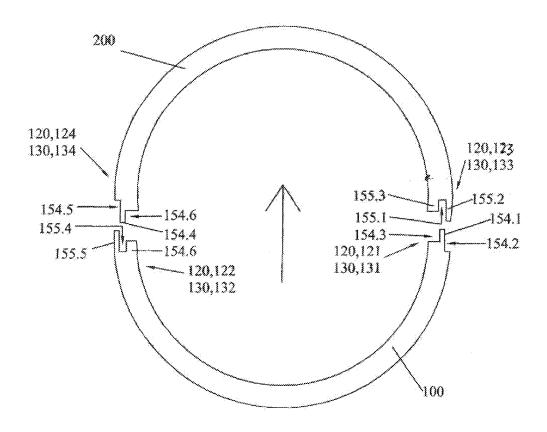


Fig 3

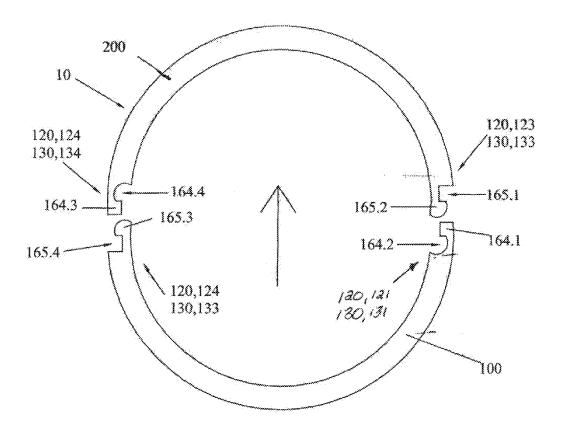


Fig 4

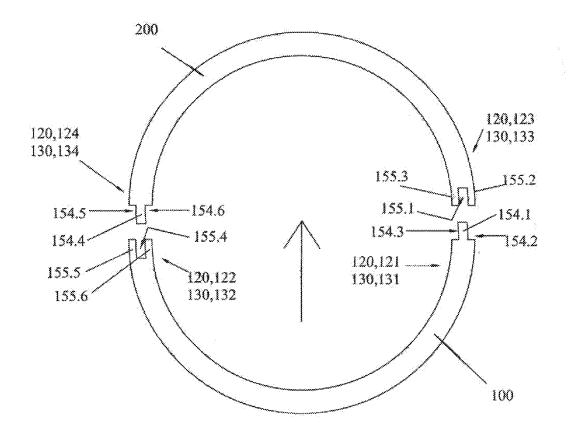


Fig 5

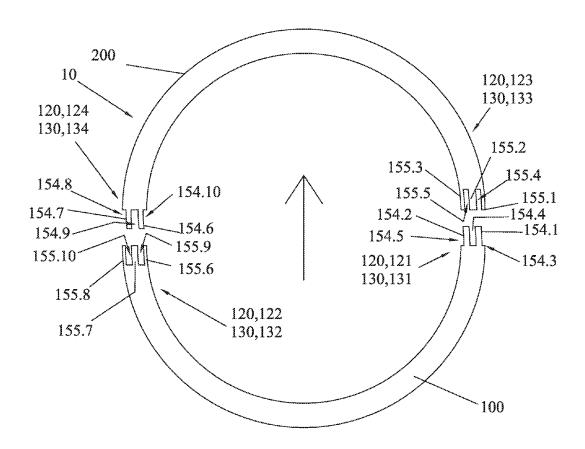


Fig. 6

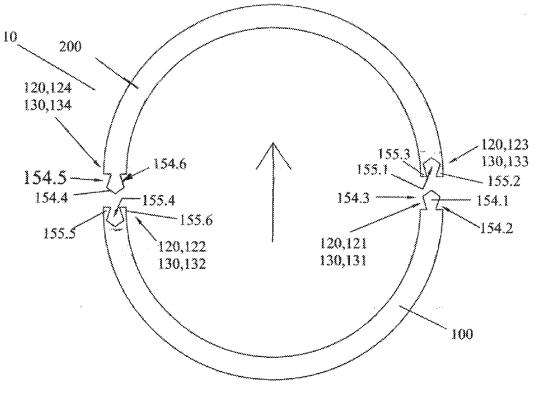


Fig. 7

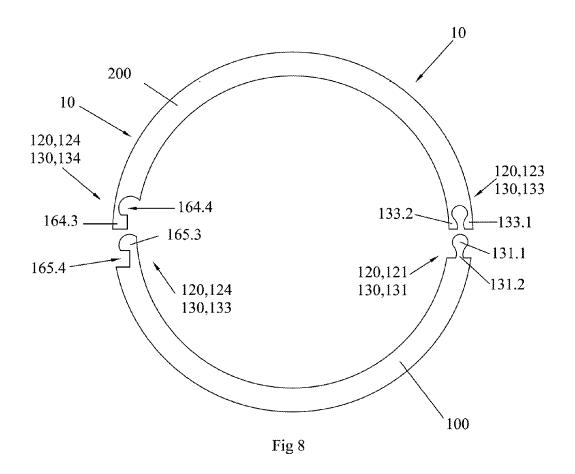


FIG. 9

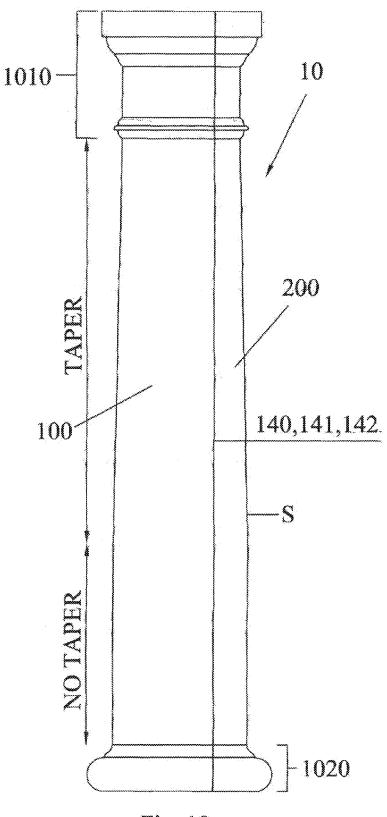


Fig. 10

FRICTION FIT COLUMN ASSEMBLY WITH INTERLOCKING JOINT SYSTEM AND METHODS OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] To the full extent permitted by law, the present United States Non-provisional patent application hereby claims priority to and the full benefit of United States Provisional Application entitled "TWO SEMI-ROUND SNAP FIT INTERLOCKING MEMBERS TO FORM A COLUMN," having assigned Ser. No. 62/318,812, filed on Apr. 6, 2016, incorporated herein by reference in its entirety.

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] None

PARTIES TO A JOINT RESEARCH AGREEMENT

[0003] None

REFERENCE TO A SEQUENCE LISTING

[0004] None

BACKGROUND OF THE INVENTION

Technical Field of the Invention

[0005] This disclosure relates generally to the home building industry, and, more specifically, a two or more piece decorative column assembly.

Description of the Related Art

[0006] The home building and construction industry has seen various vertical support devices for the purpose of supporting an overhead load whether composed of wood, steel, aluminum, alloys, stonework, plastics, composites or the like and such vertical support devices may include decorative fascia or exterior surfaces. Moreover, a number of single piece prefabricated vertical support devices whether for interior or exterior use are available in a variety widths, lengths, and load capabilities. One disadvantage of this approach of a one piece prefabricated vertical support devices is that they are difficult to ship since they are un-stackable, and this increases the shipping cost per unit and overall cost. Another disadvantage of this approach of a one piece prefabricated vertical support devices is that they are heavy in weight, and this heavier weight increases the shipping cost per unit and overall cost.

[0007] Another vertical support device includes a vertical support device having a cross-section of a circle, oval, square, or the like, and more specifically a post or PVC pipe having a decorative wrap that goes around and covers the post or PVC pipe. One disadvantage of this approach of a post or PVC pipe covered by a decorative wrap is that the decorative wrap is typically glued to the post or PVC pipe and over time glue may give way and allow water therein or corrosion of the vertical support device.

[0008] In an effort to reduce costs of vertical support devices and maintain a decorative fascia, less costly vertical support devices may be utilized and then covered with or enclosed by a decorative wrap or skin.

[0009] One such vertical support device includes a one piece vertical support device having a cross-section of a circle, oval, square, rectangle, or the like and a single piece rigid decorative sleeve, tube or conduit configured to cover the vertical support device. One disadvantage of this approach of a single piece rigid decorative sleeve, tube or conduit is that they are difficult to ship since they are un-stackable and have a large amount of "free-space" inside, and this increases the shipping cost per unit and overall cost. Another disadvantage of this approach of a single piece rigid decorative sleeve, tube or conduit is that they are heavy in weight due to fiberglass construction, and this heavier weight increases the shipping cost per unit and overall cost. Another disadvantage of this approach of a single piece rigid decorative sleeve, tube or conduit is that they can only be used during installation and construction and not as a remodel or refurbishing, such as to wrap around an existing vertical support device.

[0010] Another such vertical support device includes a vertical support device having a cross-section of a circle, oval, square, rectangle, or the like and a multi-piece decorative skin, wherein each piece of the decorative skin is nailed, glued, or screwed thereto the vertical support device together to make a lower cost decorative vertical support device. One disadvantage of this approach of a multi-piece decorative skin is that they are labor intensive to install and does not look as nice, can come apart, and will need further painting. Another disadvantage of this approach of a multi-piece decorative skin is that the decorative wrap is typically glued to the post or PVC pipe and over time the nail, glue, or screw may give way and allow water therein or corrosion of the vertical support device.

[0011] Therefore, it is readily apparent there is a recognizable unmet need for friction fit column assembly with interlocking joint system and methods of use that is configured to address at least some aspects of the problems discussed above common to the traditional vertical support device, which specifically functions to provide a lower cost vertical sleeve that is not glued to the exterior of the vertical support device, is not a single piece rigid sleeve, tube or conduit, is light weight and/or stackable to reduce shipping and handling cost, to provide a multi-piece sleeve system which may be used during installation and construction and during a remodel or refurbishing, such as to cover or enclose an existing vertical support device, to provide multi-piece sleeve system that does not require nails, glue, or screws to assemble, and thereby, provide a more efficient multi-piece column, sleeve device, system, and/or process.

SUMMARY

[0012] Briefly described, in an example embodiment, the present disclosure overcomes the above-mentioned disadvantages and meets the recognized need for a friction fit column assembly with interlocking joint system and methods of use, that generally includes a conduit apparatus that includes a two or more piece interlocking column assembly having at least a first linear section configured with an annular curve about a first short dimension, said at least first linear section having a first exterior surface, a first interior surface, and a first set of opposing edges, wherein said first set of opposing edges are configured with a first opposing male/female latch mechanism; and at least a second linear section configured with said annular curve about a second short dimension, said at least second linear section having a

second exterior surface, a second interior surface, and a second set of opposing edges, wherein said second set of opposing edges are configured with a second opposing male/female latch mechanism, wherein said first opposing male/female latch mechanism and said second opposing male/female latch mechanism are configured to friction fit thereto each other, and thus functions to facilitate a two or more piece interlocking column assembly for ease of assembly and shipping, to provide a lower cost vertical sleeve assembly that is not glued to the exterior of the vertical support device, is not a single piece rigid decorative sleeve, tube or conduit, is light weight and/or stackable to reduce shipping and handling cost, to provide a multi-piece sleeve system which may be used during installation and construction and during a remodel or refurbishing, such as to cover or enclose an existing vertical support device, to provide multi-piece sleeve system that does not require nails, router, glue, or screws to assemble, or other joinery work is required and thereby, provide a more efficient multi-piece sleeve device, system, and/or process.

[0013] According to its major aspects and broadly stated, the disclosure of the a friction fit column assembly with interlocking joint system and methods of use that generally includes multiple semi-round elongated members, each having a first opposing male/female latch mechanism or joint and a second opposing male/female latch mechanism or joint between sets of opposing edges (a male portion of a joint on one edge and a female portion of a joint on the other edge), wherein the opposing male/female latch mechanism include alternate variations to the configuration, shape, or style of the opposing male/female latch mechanism or joint to form a friction fit or snap together joint or seam that once interlocked or clicked together, is fixed together tightly forming an enclosed column.

[0014] In an exemplary embodiment, friction fit column assembly with interlocking joint system including at least a first linear section configured with an annular curve about a first short dimension, the at least first linear section having a first exterior surface, a first interior surface, and a first set of opposing edges, wherein the first set of opposing edges are configured with a first opposing male/female latch mechanism, at least a second linear section configured with the annular curve about a second short dimension, the at least second linear section having a second exterior surface, a second interior surface, and a second set of opposing edges, wherein the second set of opposing edges are configured with a second opposing male/female latch mechanism, wherein the first opposing male/female latch mechanism and the second opposing male/female latch mechanism are configured to friction fit thereto each other.

[0015] In an exemplary embodiment, friction fit column assembly with interlocking joint system including at least a first linear section configured with an annular curve about a first short dimension, the at least first linear section having a first exterior surface, a first interior surface, and a first set of opposing edges, wherein the first set of opposing edges are configured with a first opposing male/female latch mechanism, at least a second linear section configured with the annular curve about a second short dimension, the at least second linear section having a second exterior surface, a second interior surface, and a second set of opposing edges, wherein the second set of opposing edges are configured with a second opposing male/female latch mechanism, wherein the first opposing male/female latch mechanism, wherein the first opposing male/female latch mechanism, wherein the first opposing male/female latch mechanism.

nism and the second opposing male/female latch mechanism are configured to friction fit thereto each other, and a vertical support device, wherein the at least a first linear section and the at least a second linear section are configured to surround the vertical support device.

[0016] In still a further exemplary embodiment of a method of forming a friction fit column assembly includes the steps set forth in FIG. 9.

[0017] Accordingly, a feature of the friction fit column assembly with interlocking joint system and methods of use is the ability to provide a variety of opposing male/female latch mechanism configuration to form a friction fit or snap together thereon joint or seam of the two or more column assembly.

[0018] Another feature of the friction fit column assembly with interlocking joint system and methods of use is the ability to provide multiple semi round pieces with female and male joints on opposing edges, that interlock and click together when surrounding an existing post or weight bearing structure, creating a full circular enclosed column.

[0019] Still another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide two or more pieces, each having one female and one male joint on opposing edges, which will snap or click together with another counter piece's male and female joints, respectively. For example if there is total of two pieces, one part will have a male joint on one edge and a female joint on the other opposing edge, and will interconnect with other opposite mating configurations. For example, the male of part one will click with the female of part two. The female of part one will connect with the male joint of part two.

[0020] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide an interlocking male-female friction or snap joint for ease of assembly on site.

[0021] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide a two or more piece interlocking column assembly for ease of assembly and shipping enabling shipment of a smaller cross section two piece item.

[0022] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide a lower cost vertical sleeve assembly that is not glued to the exterior of the vertical support device.

[0023] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide a non-single piece rigid decorative sleeve, tube or conduit.

[0024] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide a light weight and/or stackable two or more piece assembly to reduce shipping and handling cost.

[0025] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide a multi-piece sleeve system which may be used during installation and construction and during a remodel or refurbishing, such as to cover or enclose an existing vertical support device.

[0026] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide a multi-piece sleeve system that does not require nails, glue, or screws to assemble.

[0027] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide an interlocking male-female friction or snap joint, wherein a preferred shape of the male joint is a round headed joint that becomes slightly smaller or thinner on the body or base and a matching reversed female indent or cutout.

[0028] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to manufacture the two or more short side curved pieces from elongated flat sheets via heat and rolling to reduce cost of manufacture. Simplified manufacturing to bend a flat stock into a half circle vs. formation of a continuous tube or conduit.

[0029] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide an enclosure for existing wooden, steel, or like post, to save it from corrosion, as well as provide a decorative column.

[0030] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide tapered, contoured, or straight length columns depending on the style and requirement.

[0031] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide at least a first linear section having a first exterior surface, a first interior surface, and a first set of opposing edges, wherein the first set of opposing edges are configured with a first opposing male latch mechanism and at least a second linear section having a second exterior surface, a second interior surface, and a second set of opposing edges, wherein said second set of opposing edges are configured with a first opposing female latch mechanism. One individual piece that can have either two males or two females and the other counter piece can have the opposite 2 joints to click them together. This is where one semi round piece can have 2 female slots and the other piece will have 2 male joints.

[0032] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide a round column made up of more than two curved pieces that use a female and male or male-male and female-female interlocking system to achieve a unified round column.

[0033] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to be easily surrounded or assembled around an existing post to create an enclosed column.

[0034] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is its ability to provide less man power to install and may be installed by one person in most cases.

[0035] Yet another feature of the friction fit column assembly with interlocking joint system and methods of use is that it does not require nails, router, glue, or screws to assemble, or other joinery work.

[0036] These and other features of the friction fit column assembly with interlocking joint system and methods of use will become more apparent to one skilled in the art from the prior Summary and following Brief Description of the Drawings, Detailed Description of exemplary embodiments thereof, and Claims when read in light of the accompanying Drawings or Figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0037] The present the friction fit column assembly with interlocking joint system and methods of use will be better understood by reading the Detailed Description of the Preferred and Selected Alternate Embodiments with reference to the accompanying drawing Figures, in which like reference numerals denote similar structure and refer to like elements throughout, and in which:

[0038] FIG. 1A is a perspective side view of an exemplary embodiment of the friction fit column assembly with exemplary interlocking joint system, shown assembled;

[0039] FIG. 1B is a perspective side view of an exemplary embodiment of the friction fit column assembly with exemplary interlocking joint system, shown unassembled;

[0040] FIG. 1C is a perspective side view of an exemplary embodiment of the friction fit column assembly with exemplary interlocking joint system, shown assembled around a nost:

[0041] FIG. 2 is an end view or cross-sectional of the friction fit column assembly of FIG. 1A, 1B, 1C;

[0042] FIG. 2.1 is a partial end view or cross-sectional of the friction fit column assembly of FIG. 2, showing detail of a first exemplary interlocking joint system;

[0043] FIG. 2.2 is a partial end view or cross-sectional of the friction fit column assembly of FIG. 2, showing detail of a second exemplary interlocking joint system;

[0044] FIG. 3 is a partial end view or cross-sectional of the friction fit column assembly of FIG. 1, showing detail of a third exemplary interlocking joint system;

[0045] FIG. 4 is a partial end view or cross-sectional of the friction fit column assembly of FIG. 1, showing detail of a fourth exemplary interlocking joint system;

[0046] FIG. 5 is a partial end view or cross-sectional of the friction fit column assembly of FIG. 1, showing detail of a fifth exemplary interlocking joint system;

[0047] FIG. 6 is a partial end view or cross-sectional of the friction fit column assembly of FIG. 1, showing detail of a sixth exemplary interlocking joint system;

[0048] FIG. 7 is a partial end view or cross-sectional of the friction fit column assembly of FIG. 1, showing detail of a seventh exemplary interlocking joint system;

[0049] FIG. 8 is a partial end view or cross-sectional of the friction fit column assembly of FIG. 1, showing detail of a combination exemplary interlocking joint system of FIG. 2 and FIG. 4;

[0050] FIG. 9 is a flow diagram of a method of use of one or more unhoused filtration devices to filter a portion of suspended substances from an effluent; and

[0051] FIG. 10 is a side view of an exemplary embodiment of the friction fit column assembly with exemplary interlocking joint system, shown as a decorative contoured column assembly.

DETAILED DESCRIPTION

[0052] In describing the exemplary embodiments of the present disclosure, as illustrated in FIGS. 1-10, specific terminology is employed for the sake of clarity. The present disclosure, however, is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish similar functions. Embodiments of the claims may, however, be embodied in many different forms and should not be con-

strued to be limited to the embodiments set forth herein. The examples set forth herein are non-limiting examples, and are merely examples among other possible examples.

[0053] Referring now to the FIGS. 1A, 1B, and 1C there is illustrated column assembly 10 preferably configured as a multi-piece assembled conduit, tube or the like having a plurality of curved, arcing, or angled linear sections, such as a two or more piece interlocking column assembly preferably includes first linear section 100 and second linear section 200 divided by or separable along seam 140, and includes first seam 141 and second seam 142. First linear section 100 may be configured having annular curve AC about first short dimension SD1 and having length L. Moreover, first linear section 100 may include first exterior surface 110, first interior surface 112, and first set of opposing edges 120. First set of opposing edges 120 of first linear section 100, may include first opposing edge 121 and second opposing edge 122, where first opposing edge 121 may further include, opposing friction fit mechanism 130, first opposing friction fit mechanism 131 and second opposing edge 122 may further include second opposing friction fit mechanism 132.

[0054] Second linear section 200 may be configured having annular curve AC about second short dimension SD2 and having length L. Moreover, second linear section 200 may include second exterior surface 210, second interior surface 220, and second set of opposing edges 120. Second set of opposing edges 120 of second linear section 200, may include third opposing edge 123 and fourth opposing edge 124, where third opposing edge 123 may further include another first or third opposing friction fit mechanism 133 and fourth opposing edge 124 may further include another second or fourth opposing friction fit mechanism 134.

[0055] It is contemplated herein that first linear section 100 and second linear section 200 divided by or separable along seam 140, may be positioned to interlock, snap, friction fit thereto each other, where first opposing friction fit mechanism 131 of first linear section 100 and third opposing friction fit mechanism 133 of second linear section 200 may be removeably affixed thereto each other and second opposing friction fit mechanism 132 of first linear section 100 and fourth opposing friction fit mechanism 134 of second linear section 200 may be removeably affixed thereto each other to form two or more piece interlocking column assembly 10.

[0056] Column assembly 10 may be formed of any light waight rigid material or composite material capable of

weight rigid material or composite material, capable of vertical enclosure of post P (existing post or other weight bearing structure formed of wooden, steel, aluminum, alloy, composite or the like), where flat sheets of first linear section 100 and second linear section 200 may be bent or bendable as annular curve AC or formed with annular curve AC to encircle, create a full enclosure therearound to provide a decorative column.

[0057] Moreover, column assembly 10 may preferably be constructed of plastic, fiberglass, polyvinyl carbonate (PVC) or composite materials that are available in a variety of natural and synthetic fiber, composites, laminated composite material, cast materials, polymers as these materials offers a variety of forms, shapes, strengths, and weights. It is contemplated herein that other suitable materials may be utilized or the like, whether formed of multiple layers with different materials, or the like, may be utilized, provided such material has sufficient strength, stackable, bendable, formable, durability, paintable, chemical resistance, offers

long service life, pH tolerance, small system footprint, light weight, and/or durable as would meet the purpose described herein.

[0058] Referring now to the FIGS. 2, 2.1, and 2.2 there is illustrated an end view or cross-sectional of column assembly 10 having first linear section 100 and second linear section 200 friction fit or snapped one to the other. Again, first linear section 100, may include first opposing edge 121 and second opposing edge 122, where first opposing edge 121 may further include first opposing friction fit mechanism 131 and second opposing edge 122 may further include second opposing friction fit mechanism 132. Second linear section 200 may include second exterior surface 210, second interior surface 220, and second set of opposing edges 120. Second set of opposing edges 120 of second linear section 200, may include third opposing edge 123 and fourth opposing edge 124, where third opposing edge 123 may further include third opposing friction fit mechanism 133 and fourth opposing edge 124 may further include fourth opposing friction fit mechanism 134.

[0059] As shown in FIG. 2.2, first opposing friction fit mechanism 131 may further include a stem, such as first stem 131.2 preferably connected thereto first opposing edge 121 and may further include a rounded bulb, such as first rounded bulb head 131.1 preferably connected thereto first stem 131.2. Again as shown in FIG. 2.2, third opposing friction fit mechanism 133 may further include a pair of gripper fingers, such as first gripper finger 133.1 preferably connected thereto third opposing edge 123 and may further include second gripper finger 133.2 preferably connected thereto third opposing edge 123.

[0060] It is contemplated herein that column assembly 10 having first linear section 100 having first rounded bulb head 131.1 and first stem 131.2 (that is slightly wider on its head and slightly thinner on the base of the joint) may be gripped or removeably affixed to second linear section 200 having first gripper finger 133.1 and second gripper finger 133.2 (beginning of the slot is narrow and the slot becomes wider or contours as it goes deeper into second linear section 200) to interlock, snap, friction fit one to the other, first linear section 100 to second linear section 200.

[0061] As shown in FIG. 2.1, fourth friction fit mechanism 134 may further include a stem, such as second stem 134.2 preferably connected thereto fourth opposing edge 124 and may further include a rounded bulb head, such as second rounded bulb head 134.1 preferably connected thereto first stem 134.2. Again as shown in FIG. 2.1, second opposing friction fit mechanism 132 may further include a pair of gripper fingers, such as third gripper finger 132.3 preferably connected thereto second opposing edge 122 and may further include fourth gripper finger 132.4 preferably connected thereto second opposing edge 122.

[0062] It is contemplated herein that column assembly 10 having second linear section 200 having second rounded bulb head 134.1 and second stem 134.2 (that is slightly wider on its head and slightly thinner on the base of the joint) may be gripped or removeably affixed to first linear section 100 having third gripper finger 132.3 (beginning of the slot is narrow and the slot becomes wider or contoured as it goes deeper into first linear section 100) and fourth gripper finger 132.4 to interlock, snap, friction fit one to the other, first linear section 100 to second linear section 200.

[0063] It is further contemplated herein that column assembly 10 having first linear section 100 may include both

male ends and second linear section 200 may include both female ends respectively vs. each having one of each.

[0064] It is further contemplated herein that column assembly 10 having first linear section 100 and second linear section 200 may have inside diameter D necessary to enclose or encase the dimensions of post P. Moreover, in a preferred embodiment of column assembly 10 inside diameter D may range from four inches (4") to eighteen inches (18") or more; however, other dimensions are included herein to accommodate the dimension requirements to configure or position column assembly 10 therearound post P. [0065] It is further contemplated herein that column assembly 10 having first linear section 100 and second linear section 200 may have a thickness, such as width W. Moreover, in a preferred embodiment of column assembly 10 width W may range from three-eighths of an inch (3/8") to one and a quarter inch (11/4") or more; however, other dimensions are included herein to provide sufficient strength, stackable, bendable, durability, paintable, chemical resistance, offers long service life, pH tolerance, small system footprint, and/or durability as would meet the purpose described herein.

[0066] Referring now to the FIG. 3, there is illustrated an end view or cross-sectional of column assembly 10 having first linear section 100 and second linear section 200 friction fit or snapped one to the other. Again, first linear section 100, may include first opposing edge 121 and second opposing edge 122, where first opposing edge 121 may further include first opposing friction fit mechanism 131 and second opposing edge 122 may further include second opposing friction fit mechanism 132. Second linear section 200 may include second exterior surface 210, second interior surface 220, and second set of opposing edges 120. Second set of opposing edges 120 of second linear section 200, may include third opposing edge 123 and fourth opposing edge 124, where third opposing edge 123 may further include third opposing friction fit mechanism 133 and fourth opposing edge 124 may further include fourth opposing friction fit mechanism

[0067] As shown in FIG. 3, first opposing friction fit mechanism 131 may further include an offset stepped finger, such as stepped first finger member 154.1 preferably connected thereto first opposing edge 121 and may further include first finger member notch 154.2 and second finger member notch 154.3 preferably connected thereto first opposing edge 121 and adjacent first finger member 154.1. Again as shown in FIG. 3, third opposing friction fit mechanism 133 may further include an offset stepped slot, such as first slot member 155.1 preferably connected thereto third opposing edge 123 and may include lengthened second finger member 155.2 and include third finger member 155.3 preferably connected thereto third opposing edge 123 and adjacent first slot member 155.1.

[0068] It is contemplated herein that column assembly 10 having first linear section 100 having first finger member 154.1, second finger member notch 154.2, and second third finger member notch 154.3 may be friction fit, gripped thereto second linear section 200 having first slot member 155.1, lengthened second finger member 155.2, and third finger member 155.3 to interlock, snap, friction fit one to the other.

[0069] As shown in FIG. 3, fourth friction fit mechanism 134 may further include first finger member 154.4 preferably connected thereto fourth opposing edge 124 and may

further include second finger member notch 154.5 and third finger member notch 154.6 preferably connected thereto fourth opposing edge 124 and adjacent first finger member 154.4. Again as shown in FIG. 3, second opposing friction fit mechanism 132 may further include first slot member 155.4 preferably connected thereto second opposing edge 122 and may include lengthened second finger member 155.5 and include third finger member 155.6 preferably connected thereto second opposing edge 122 and adjacent second slot member 155.4.

[0070] It is contemplated herein that column assembly 10 having second linear section 200 having first finger member 154.4, second finger member notch 154.5 and third finger member notch 154.6 may be friction fit, gripped thereto first linear section 100 having second slot member 155.4, lengthened second finger member 155.5 and include third finger member 155.6 to interlock, snap, friction fit one to the other. [0071] Referring now to the FIG. 4, there is illustrated an end view or cross-sectional of column assembly 10 having first linear section 100 and second linear section 200 friction fit or snapped one to the other. Again, first linear section 100, may include first opposing edge 121 and second opposing edge 122, where first opposing edge 121 may further include first opposing friction fit mechanism 131 and second opposing edge 122 may further include second opposing friction fit mechanism 132. Second linear section 200 may include second exterior surface 210, second interior surface 220, and second set of opposing edges 120. Second set of opposing edges 120 of second linear section 200, may include third opposing edge 123 and fourth opposing edge 124, where third opposing edge 123 may further include third opposing friction fit mechanism 133 and fourth opposing edge 124 may further include fourth opposing friction fit mechanism

[0072] As shown in FIG. 4, first opposing friction fit mechanism 131 may further include a first finger having a cutout, such as first finger member 164.1 (more specifically may be square or rectangle or the like) preferably connected thereto first opposing edge 121 and may further include a second finger having a cutout, such as first finger member cutout 164.2 (more specifically may be rounded or curved or the like) preferably connected thereto first opposing edge 121 and adjacent first finger member 164.1. Again as shown in FIG. 4, third opposing friction fit mechanism 133 may further include a second finger having an opposing cutout, such as second finger member cutout 165.1 (more specifically may be square or rectangle or the like) preferably connected thereto third opposing edge 123 and may include a second finger, such as second finger member 165.2 preferably connected thereto third opposing edge 123 and adjacent second finger member cutout 165.1.

[0073] It is contemplated herein that column assembly 10 having first linear section 100 having first finger member 164.1 and first finger member cutout 164.2 may be friction fit, gripped thereto second linear section 200 having second finger member cutout 165.1, and second finger member 165.2 to interlock, snap, friction fit one to the other.

[0074] As shown in FIG. 4, fourth opposing friction fit mechanism 134 may further include a first finger having a cutout, such as first finger member 164.3 (more specifically may be square or rectangle or the like) preferably connected thereto fourth opposing edge 124 and may further include first finger member cutout 164.4 (more specifically may be rounded or curved or the like) preferably connected thereto

fourth opposing edge 124 and adjacent first finger member 164.3. Again as shown in FIG. 4, second opposing friction fit mechanism 132 may further include second finger member cutout 165.2 (more specifically may be square or rectangle or the like) preferably connected thereto second opposing edge 122 and may include second finger member 165.4 preferably connected thereto second opposing edge 122 and adjacent second finger member cutout 165.2.

[0075] It is contemplated herein that column assembly 10 having second linear section 200 having first finger member 164.3 and first finger member cutout 164.4 may be friction fit, gripped thereto first linear section 100 having second finger member cutout 165.2 and second finger member 165.4 to interlock, snap, friction fit one to the other.

[0076] Referring now to the FIG. 5, there is illustrated an end view or cross-sectional of column assembly 10 having first linear section 100 and second linear section 200 friction fit or snapped one to the other. Again, first linear section 100, may include first opposing edge 121 and second opposing edge 122, where first opposing edge 121 may further include first opposing friction fit mechanism 131 and second opposing edge 122 may further include second opposing friction fit mechanism 132. Second linear section 200 may include second exterior surface 210, second interior surface 220, and second set of opposing edges 120. Second set of opposing edges 120 of second linear section 200, may include third opposing edge 123 and fourth opposing edge 124, where third opposing edge 123 may further include third opposing friction fit mechanism 133 and fourth opposing edge 124 may further include fourth opposing friction fit mechanism

[0077] As shown in FIG. 5, first opposing friction fit mechanism 131 may further include a stepped finger, such as first finger member 154.1 preferably connected thereto first opposing edge 121 and may further include finger member first notch 154.2 and finger member second notch 154.3 preferably connected thereto first opposing edge 121 and adjacent first finger member 154.1. Again as shown in FIG. 5, third opposing friction fit mechanism 133 may further include a stepped slot, such as first slot member 155.1 preferably connected thereto third opposing edge 123 and may include slot member first finger 155.2 and include slot member second finger 155.3 preferably connected thereto third opposing edge 123 and adjacent first slot member 155.1.

[0078] It is contemplated herein that column assembly 10 having first linear section 100 having first finger member 154.1, finger member first notch 154.2, and finger member second notch 154.3 may be friction fit, gripped thereto second linear section 200 having first slot member 155.1, slot member first finger 155.2, and slot member second finger 155.3 to interlock, snap, friction fit one to the other.

[0079] As shown in FIG. 5, fourth friction fit mechanism 134 may further include first finger member 154.4 preferably connected thereto fourth opposing edge 124 and may further include finger member first notch 154.5 and finger member second notch 154.6 preferably connected thereto fourth opposing edge 124 and adjacent first finger member 154.4. Again as shown in FIG. 5, second opposing friction fit mechanism 132 may further include first slot member 155.4 preferably connected thereto second opposing edge 122 and may include slot member first finger 155.5 and

include slot member second finger 155.6 preferably connected thereto second opposing edge 122 and adjacent first slot member 155.4.

[0080] It is contemplated herein that column assembly 10 having second linear section 200 having first finger member 154.4, finger member first notch 154.5 and finger member second notch 154.6 may be friction fit, gripped thereto first linear section 100 having first slot member 155.4, slot member first finger 155.5 and include slot member second finger 155.6 to interlock, snap, friction fit one to the other. [0081] Referring now to the FIG. 6, there is illustrated an end view or cross-sectional of column assembly 10 having first linear section 100 and second linear section 200 friction fit or snapped one to the other. Again, first linear section 100, may include first opposing edge 121 and second opposing edge 122, where first opposing edge 121 may further include first opposing friction fit mechanism 131 and second opposing edge 122 may further include second opposing friction fit mechanism 132. Second linear section 200 may include second exterior surface 210, second interior surface 220, and second set of opposing edges 120. Second set of opposing edges 120 of second linear section 200, may include third opposing edge 123 and fourth opposing edge 124, where third opposing edge 123 may further include third opposing friction fit mechanism 133 and fourth opposing edge 124 may further include fourth opposing friction fit mechanism

[0082] As shown in FIG. 6, first opposing friction fit mechanism 131 may further include two or more finger members, such as first finger member 154.1 and second finger member 154.2 preferably connected thereto first opposing edge 121, and may further include first finger member notch 154.3 and second finger member notch 154.5 preferably connected thereto first opposing edge 121 and proximate first finger member 154.1 and second finger member 154.2, respectively, and may further include first/ second finger cutout 154.4 preferably connected thereto first opposing edge 121 and preferably positioned therebetween first finger member 154.1 and second finger member 154.2. Again as shown in FIG. 6, third opposing friction fit mechanism 133 may further include two or more slots, such as first finger member 155.1, second finger member 155.2, and third finger member 155.3 preferably connected thereto third opposing edge 123 and may further include first/second finger member slot 155.4 preferably connected thereto third opposing edge 123 and preferably positioned therebetween first finger member 155.1 and second finger member 155.2, and may further include second/third finger member slot 155.5 preferably connected thereto third opposing edge 123 and preferably positioned therebetween second finger member 155.2 and third finger member 155.3.

[0083] It is contemplated herein that column assembly 10 having first linear section 100 having first finger member 154.1 and second finger member 154.2, first finger member notch 154.3 and second finger member notch 154.5, first/second finger cutout 154.4 may be friction fit, gripped thereto second linear section 200 having first finger member 155.1, second finger member 155.2, and third finger member 155.3, first/second finger member slot 155.4, and second/third finger member slot 155.5 to interlock, snap, friction fit one to the other.

[0084] As shown in FIG. 6, fourth friction fit mechanism 134 may further include two or more finger members, such as first finger member 154.6 and second finger member

154.7 preferably connected thereto fourth opposing edge 124, and may further include first finger member notch 154.8 and second finger member notch 154.10 preferably connected thereto fourth opposing edge 124 and proximate first finger member 154.6 and second finger member 154.7, respectively, and may further include first/second finger cutout 154.9 preferably connected thereto fourth opposing edge 124 and preferably positioned therebetween first finger member 154.6 and second finger member 154.7. Again as shown in FIG. 6, second opposing friction fit mechanism 132 may further include two or more slots, such as first finger member 155.6, second finger member 155.7, and third finger member 155.8 preferably connected thereto second opposing edge 122 and may further include first/second finger member slot 155.9 preferably connected thereto second opposing edge 122 and may preferably be positioned therebetween first finger member 155.6 and second finger member 155.7, and may further include second/third finger member slot 155.10 preferably connected thereto second opposing edge 122 and preferably positioned therebetween second finger member 155.7 and third finger member 155.8.

[0085] It is contemplated herein that column assembly 10 having second linear section 200 having first finger member 154.6 and second finger member 154.7, first finger member notch 154.8 and second finger member notch 154.10, first/second finger cutout 154.9 may be friction fit, gripped thereto first linear section 100 having first finger member 155.6, second finger member 155.7, and third finger member 155.8, first/second finger member slot 155.9, and second/third finger member slot 155.10 to interlock, snap, friction fit one to the other.

[0086] Referring now to the FIG. 7, there is illustrated an end view or cross-sectional of column assembly 10 having first linear section 100 and second linear section 200 friction fit or snapped one to the other. Again, first linear section 100, may include first opposing edge 121 and second opposing edge 122, where first opposing edge 121 may further include first opposing friction fit mechanism 131 and second opposing edge 122 may further include second opposing friction fit mechanism 132. Second linear section 200 may include second exterior surface 210, second interior surface 220, and second set of opposing edges 120. Second set of opposing edges 120 of second linear section 200, may include third opposing edge 123 and fourth opposing edge 124, where third opposing edge 123 may further include third opposing friction fit mechanism 133 and fourth opposing edge 124 may further include fourth opposing friction fit mechanism 134.

[0087] As shown in FIG. 7, first opposing friction fit mechanism 131 may further include a pointed finger member, such as pointed finger member 154.1 preferably connected thereto first opposing edge 121 and may further include pointed finger member first angled notch 154.2 and pointed finger member second angled notch 154.3 preferably connected thereto first opposing edge 121 and adjacent pointed finger member 154.1. Again as shown in FIG. 7, third opposing friction fit mechanism 133 may further include a pointed slot member, such as pointed slot member 155.1 preferably connected thereto third opposing edge 123 and may include pointed slot first inner angled finger 155.2 and include pointed slot second inner angled finger 155.3 preferably connected thereto third opposing edge 123 and adjacent pointed slot member 155.1.

[0088] It is contemplated herein that column assembly 10 having first linear section 100 having pointed finger member 154.1, pointed finger member first angled notch 154.2, and pointed finger member second angled notch 154.3 may be friction fit, gripped thereto second linear section 200 having pointed slot member 155.1, pointed slot member inner first angled finger 155.2, and pointed slot member second inner angled finger 155.3 to interlock, snap, friction fit one to the other.

[0089] As shown in FIG. 7, fourth friction fit mechanism 134 may further include pointed finger member 154.4 preferably connected thereto fourth opposing edge 124 and may further include pointed finger member first angled notch 154.5 and pointed finger member second inner angled notch 154.6 preferably connected thereto fourth opposing edge 124 and adjacent pointed finger member 154.4. Again as shown in FIG. 7, second opposing friction fit mechanism 132 may further include pointed slot member 155.4 preferably connected thereto second opposing edge 122 and may include pointed slot member first inner angled finger 155.5 and include pointed slot member second inner angled finger 155.6 preferably connected thereto second opposing edge 122 and adjacent pointed slot member 155.4.

[0090] It is contemplated herein that column assembly 10 having second linear section 200 having pointed finger member 154.4, pointed finger member first angled notch 154.5 and pointed finger member second angled notch 154.6 may be friction fit, gripped thereto first linear section 100 having pointed slot member 155.4, pointed slot member inner first angled finger 155.5 and include pointed slot member inner second angled finger 155.6 to interlock, snap, friction fit one to the other.

[0091] Referring now to the FIG. 8, there is illustrated an end view or cross-sectional of column assembly 10 having first linear section 100 and second linear section 200 friction fit or snapped one to the other. Again, first linear section 100, may include first opposing edge 121 and second opposing edge 122, where first opposing edge 121 may further include first opposing friction fit mechanism 131 and second opposing edge 122 may further include second opposing friction fit mechanism 132. Second linear section 200 may include second exterior surface 210, second interior surface 220, and second set of opposing edges 120. Second set of opposing edges 120 of second linear section 200, may include third opposing edge 123 and fourth opposing edge 124, where third opposing edge 123 may further include third opposing friction fit mechanism 133 and fourth opposing edge 124 may further include fourth opposing friction fit mechanism 134.

[0092] As shown in FIG. 8, first opposing friction fit mechanism 131 may further include a stem, such as stem 131.2 preferably connected thereto first opposing edge 121 and may further include a rounded bulb, such as rounded bulb head 131.1 preferably connected thereto first stem 131.2. Again as shown in FIG. 8, third opposing friction fit mechanism 133 may further include a pair of gripper fingers, such as first gripper finger 133.1 preferably connected thereto third opposing edge 123 and may further include second gripper finger 133.2 preferably connected thereto third opposing edge 123.

[0093] It is contemplated herein that column assembly 10 having first linear section 100 having first rounded bulb head 131.1 and first stem 131.2 (that is slightly wider on its head and slightly thinner on the base of the joint) may be gripped

or removeably affixed to second linear section 200 having first gripper finger 133.1 and second gripper finger 133.2 (beginning of the slot is narrow and the slot becomes wider as it goes deeper into second linear section 200) to interlock, snap, friction fit one to the other.

[0094] As shown in FIG. 8, fourth opposing friction fit mechanism 134 may further include a first finger having a cutout, such as first finger member 164.3 (more specifically may be square or rectangle or the like) preferably connected thereto fourth opposing edge 124 and may further include first finger member cutout 164.4 (more specifically may be rounded or curved or the like) preferably connected thereto fourth opposing edge 124 and adjacent first finger member 164.3. Again as shown in FIG. 4, second opposing friction fit mechanism 132 may further include a second finger having a cutout, such as second finger member cutout 165.2 (more specifically may be square or rectangle or the like) preferably connected thereto second opposing edge 122 and may include second finger member 165.4 preferably connected thereto second opposing edge 122 and adjacent second finger member cutout 165.2.

[0095] It is contemplated herein that column assembly 10 having second linear section 200 having first finger member 164.3 and first finger member cutout 164.4 may be friction fit, gripped thereto first linear section 100 having second finger member cutout 165.2 and second finger member 165.4 to interlock, snap, friction fit one to the other.

[0096] Furthermore, second linear section 200 may include second exterior surface 210, second interior surface 220, and second set of opposing edges 120. Second set of opposing edges 120 of second linear section 200, may include third opposing edge 123 and fourth opposing edge 124, where third opposing edge 123 may further include third opposing friction fit mechanism 133 and fourth opposing edge 124 may further include fourth opposing friction fit mechanism 134.

[0097] It is further contemplated herein that opposing friction fit mechanism 130 may be formed of any light weight semi-flexible material or composite material, capable of forming opposing male/female latch mechanism or joint to form a friction fit or snap together along joint or seam of opposing edges 120 that once interlocked or clicked together, is fixed together tightly forming an enclosed column

[0098] It is still further contemplated herein that opposing friction fit mechanism 130 may utilize any combination of configurations set forth herein or other known friction fit mechanisms known to one of ordinary skill in the art.

[0099] It is still further contemplated herein that column assembly 10 having at least one first linear section 100 and at least one second linear section 200.

[0100] Referring now to FIG. 9, there is illustrated a flow diagram 900 of a method of constructing column assembly 10. In block or step 910, providing at least one first linear section 100 and at least one second linear section 200. In block or step 915 heating the at least one first linear section 100 and at least one second linear section 200. In block or step 920 forming opposing friction fit mechanism 130 therearound at least one first linear section 100 and at least one second linear section 200, and more specifically machining first opposing friction fit mechanism 131 therearound first opposing edge 121 and machining second opposing friction fit mechanism 132 therearound second opposing edge 122, and machining third opposing friction fit

mechanism 133 therearound third opposing edge 123 and machining fourth opposing friction fit mechanism 134 therearound fourth opposing edge 124. In block or step 925, forming the at least one first linear section 100 to have annular curve AC about first short dimension SD1 and forming the at least one second linear section 200 to have annular curve AC about first short dimension SD2. In block or step 930, positioning opposing friction fit mechanism 130 of at least one first linear section 100 and at least one second linear section 200 adjacent one another, as shown in FIG. 1B or alternatively positioning opposing friction fit mechanism 130 of at least one first linear section 100 and at least one second linear section 200 adjacent one another and enclosing post P, as shown in FIG. 1C. In block or step 935, interlocking, snapping, or friction fitting opposing friction fit mechanism 130 of at least one first linear section 100 and at least one second linear section 200 one to the other, and more specifically interlocking first opposing friction fit mechanism 131 of first opposing edge 121 thereto third opposing friction fit mechanism 133 of third opposing edge 123, and interlocking second opposing friction fit mechanism 132 of second opposing edge 122 thereto fourth opposing friction fit mechanism 134 of fourth opposing edge 124, as shown in FIG. 1A.

[0101] Referring now to the FIG. 10, there is illustrated a side view of column assembly 10 having two or more piece interlocking column assembly preferably includes first linear section 100 and second linear section 200 divided by or separable along seam 140, and includes first seam 141 and second seam 142. Moreover, column assembly 10 may include one or more decorative sections, such as first contoured section 1010 and second contoured section 1020 configured to provide a decorative style to column assembly 10, such as Greek, Corinthian, Roman, Doric, Ionic, Composite, Tuscan, Bungalow, Solomonic, Egyptian, and the like. Column assembly 10 may include a taper along shaft S section wherein diameter A is greater than diameter B.

[0102] The foregoing description and drawings comprise illustrative embodiments of the present disclosure. Having thus described exemplary embodiments, it should be noted by those ordinarily skilled in the art that the within disclosures are exemplary only, and that various other alternatives, adaptations, and modifications may be made within the scope of the present disclosure. Merely listing or numbering the steps of a method in a certain order does not constitute any limitation on the order of the steps of that method. Many modifications and other embodiments of the disclosure will come to mind to one ordinarily skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Although specific terms may be employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation. Moreover, the present disclosure has been described in detail, it should be understood that various changes, substitutions and alterations can be made thereto without departing from the spirit and scope of the disclosure as defined by the appended claims. Accordingly, the present disclosure is not limited to the specific embodiments illustrated herein, but is limited only by the following

What is claimed is:

1. A friction fit column assembly, the column assembly comprising:

- at least a first linear section configured with an annular curve about a first short dimension, said first linear section having a first exterior surface, a first interior surface, and a first set of opposing edges, wherein said first set of opposing edges are configured with a first opposing male/female latch mechanism; and
- at least a second linear section configured with said annular curve about a second short dimension, said second linear section having a second exterior surface, a second interior surface, and a second set of opposing edges, wherein said second set of opposing edges are configured with a second opposing male/female latch mechanism, wherein said first opposing male/female latch mechanism and said second opposing male/female latch mechanism are configured to friction fit thereto each other.
- 2. The column assembly of claim 1, further comprising to vertical support device, wherein said first linear section and said second linear section are configured to surround said vertical support device.
- 3. The column assembly of claim 1, wherein said first linear section and said second linear section are configured as tapered.
- **4**. The column assembly of claim **1**, wherein said first linear section and said second linear section are configured as straight.
- 5. The column assembly of claim 1, wherein said first linear section and said second linear section are configured as contoured.
- 6. The column assembly of claim 1, wherein said first opposing male/female latch mechanism further comprises a stem and a rounded bulb connected thereto said stem, and said second opposing male/female latch mechanism further comprises a first gripper finger and a second gripper finger configured to grip said rounded bulb.
- 7. The column assembly of claim 1, wherein said first opposing male/female latch mechanism further comprises an offset stepped finger, and said second opposing male/female latch mechanism further comprises an offset stepped slot configured to grip said offset stepped finger.
- 8. The column assembly of claim 1, wherein said first opposing male/female latch mechanism further comprises a first finger with a cutout, and said second opposing male/female latch mechanism further comprises a second finger with an opposing cutout configured to grip said first finger with said cutout.
- 9. The column assembly of claim 1, wherein said first opposing male/female latch mechanism further comprises a stepped finger, and said second opposing male/female latch mechanism further comprises a stepped slot configured to grip said stepped finger.
- 10. The column assembly of claim 1, wherein said first opposing male/female latch mechanism further comprises two or more finger members, and said second opposing male/female latch mechanism further comprises two or more slots configured to grip said two or more finger members.
- 11. The column assembly of claim 1, wherein said first opposing male/female latch mechanism further comprises a pointed finger member, and said second opposing male/female latch mechanism further comprises a pointed slot configured to grip said pointed finger member.
- 12. The column assembly of claim 1, wherein said first opposing male/female latch mechanism further comprises a stem and a rounded bulb connected thereto said stem, and

- said second opposing male/female latch mechanism further comprises a first gripper finger and a second gripper finger configured to grip said rounded bulb; and another first opposing male/female latch mechanism further comprises a first finger with a cutout, and another second opposing male/female latch mechanism further comprises a second finger with an opposing cutout configured to grip said first finger with said cutout.
- 13. A friction fit column assembly, the column assembly comprising:
 - at least a first linear section configured with an annular curve about a first short dimension, said first linear section having a first exterior surface, a first interior surface, and a first set of opposing edges, wherein said first set of opposing edges are configured with a first opposing male/female latch mechanism;
 - at least a second linear section configured with said annular curve about a second short dimension, said second linear section having a second exterior surface, a second interior surface, and a second set of opposing edges, wherein said second set of opposing edges are configured with a second opposing male/female latch mechanism, wherein said first opposing male/female latch mechanism and said second opposing male/female latch mechanism are configured to friction fit thereto each other; and
 - a vertical support device, wherein said first linear section and said second linear section are configured to surround said vertical support device.
- 14. The column assembly of claim 13, wherein said first linear section and said second linear section are configured as tapered.
- 15. The column assembly of claim 13, wherein said first linear section and said second linear section are configured as straight.
- 16. The column assembly of claim 13, wherein said first linear section and said second linear section are configured as contoured.
- 17. The column assembly of claim 13, wherein said first opposing male/female latch mechanism further comprises a stem and a rounded bulb connected thereto said stem, and said second opposing male/female latch mechanism further comprises a first gripper finger and a second gripper finger configured to grip said rounded bulb.
- 18. The column assembly of claim 13, wherein said first opposing male/female latch mechanism further comprises an offset stepped finger, and said second opposing male/female latch mechanism further comprises an offset stepped slot configured to grip said offset stepped finger.
- 19. The column assembly of claim 13, wherein said first opposing male/female latch mechanism further comprises a first finger with a cutout, and said second opposing male/female latch mechanism further comprises a second finger with an opposing cutout configured to grip said first finger with said cutout.
- 20. The column assembly of claim 13, wherein said first opposing male/female latch mechanism further comprises a stepped finger, and said second opposing male/female latch mechanism further comprises a stepped slot configured to grip said stepped finger.
- 21. The column assembly of claim 13, wherein said first opposing male/female latch mechanism further comprises two or more finger members, and said second opposing

male/female latch mechanism further comprises two or more slots configured to grip said two or more finger members.

- 22. The column assembly of claim 13, wherein said first opposing male/female latch mechanism further comprises a pointed finger member, and said second opposing male/female latch mechanism further comprises a pointed slot configured to grip said pointed finger.
- 23. The column assembly of claim 13, wherein said first opposing male/female latch mechanism further comprises a stem and a rounded bulb connected thereto said stem, and said second opposing male/female latch mechanism further comprises a first gripper finger and a second gripper finger configured to grip said rounded bulb; and another first opposing male/female latch mechanism further comprises a first finger with a cutout, and another second opposing male/female latch mechanism further comprises a second finger with an opposing cutout configured to grip said first finger with said cutout.

* * * * *