(54) Title: COLD BOX AND CRYOGENIC PLANT INCLUDING A COLD BOX

(57) Abstract: This disclosure discusses providing safer and more accessible insulating cold boxes for cryogenic equipment. A cold box of the current invention includes a housing (13) partially extending out of the cold box jacket (7) wherein equipment that may need to be accessed can be located. The housing includes a breakaway barrier (17) between the main cold box and the external housing to allow overpressures to be relieved into the cold box. Cold boxes may contain cryogenic columns, sections of cryogenic columns, distillation columns, mixing columns, storage vessels, pressure vessels, heat exchangers, and combinations thereof. The housing (13) may contain auxiliary elements such as rotating equipment, pumps, turboexpanders, instrument devices, valves, and piping. Placing auxiliary elements in a housing outside the main cold box allows for safer access to cryogenic equipment.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:
- with international search report
COLD BOX AND CRYOGENIC PLANT INCLUDING A COLD BOX

The present invention relates to a cold box and a cryogenic plant including a cold box. It applies in particular to cold boxes containing cryogenic liquefiers and/or cryogenic distillation plants and especially applies to cold boxes located on ships. The cryogenic distillation plant may be an air separation unit for production of oxygen and/or nitrogen for off shore applications such as drilling platforms.

US Patent 6,101,840 describes a cold box having a protuberance containing part of an air separation unit. It is not possible to gain access to the contents of the protuberance without damaging the cold box.

US Patent 6,360,545 describes a cold box for shipboard use, wherein the cold box contains an air separation unit.

US Patent 6, 378, 331 describes a cold box for shipboard use wherein the cold box contains columns and main heat exchanger of an air separation unit. The cold box includes a double walled structure containing perlite between the walls and the elements of the air separation unit are housed within the inner wall of the structure without any perlite around them.

“Tonnage Nitrogen Generation for Oil and Gas Enhanced recovery in the North Sea” by Goldstone andRalston presented in the Annual Report, Session 6 of the 9th Continental Meeting of Gas Processors Association, 1992 describes an air separation unit for use on an oil platform.

It is an objective of the invention to provide a cold box with improved safety in particular for off shore applications, such as Fischer Tropsch conversion.

It is another objective of the invention to facilitate maintenance of elements of the cold box.

According to the invention, there is provided a cold box, which will allow for improved access to facilitate maintenance of elements within a cold box comprising:

(a) a cryogenic assembly comprising the main cryogenic elements and additional auxiliary elements, wherein each main cryogenic element is
selected from the group consisting of cryogenic columns, sections of such columns, storage vessels, heat exchangers and superposed combinations thereof;

(b) an outer jacket surrounding at least some of the main cryogenic elements of the cryogenic assembly, wherein the outer jacket has an outer wall and an inner wall, and

(c) a base; and

(d) a housing, wherein the housing contains at least one of the auxiliary elements and the auxiliary element extends at least partially outside the outer jacket, and that particular auxiliary element is connected to at least one of the main cryogenic elements within the outer jacket.

Typically, there is at least one thermal insulator filling at least part of the space between the inner and outer walls of the outer jacket. Other optional features may include one or more of the following:

- the auxiliary element is selected from the group comprising pumps, turboexpanders, valves and piping;

- each main cryogenic element is selected from the group consisting of distillation columns, mixing columns, storage vessels, heat exchangers and superposed combinations thereof;

- there is free space between the cryogenic assembly and the inner wall of the outer jacket;

- the housing is attached to the inner wall of the outer jacket;

- at least one thermal insulator is perlite;

- the housing is made a material chosen from the group comprising steel and aluminium;

- the auxiliary element is insulated from the cryogenic assembly within the outer jacket by a barrier;

- the barrier forms a weak seal, such as in the case of over pressure within the housing, the insulation barrier breaks;

- the barrier is made of material chosen from the group comprising perlite, vermiculite, rock wool and metal;
the housing is situated from about 1 to from about 5 meters above the base;
the base and inner walls are impermeable to liquid leaking from the cryogenic assembly;
the housing extends within the space between the inner and outer walls of the outer jacket; and
the base and inner wall of the outer jacket are impermeable to liquid.

According to additional embodiments of the invention, the cold box may be applied to cryogenic plant, an air distillation plant, or to a ship.
The main cryogenic elements are elements, which normally function at temperatures below −50°C.
The auxiliary element within the housing may also function at a temperature of below −50°C.

For a further understanding of the nature and objects for the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying drawings, in which like elements are given the same or analogous reference numbers and wherein:
- Figure 1 is an illustration of one embodiment of the invention; and
- Figure 2 is an illustration of a second embodiment.

According to the invention, there is provided a cold box, which will allow for improved access to facilitate maintenance of elements within a cold box comprising:
(a) a cryogenic assembly comprising the main cryogenic elements and additional auxiliary elements, wherein each main cryogenic element is selected from the group consisting of cryogenic columns, sections of such columns, storage vessels, heat exchangers and superposed combinations thereof;
(b) an outer jacket surrounding at least some of the main cryogenic elements of the cryogenic assembly, wherein the outer jacket has an outer wall and an inner wall, and
(c) a base; and
(d) a housing, wherein the housing contains at least one of the auxiliary elements and the auxiliary element extends at least partially outside the outer jacket, and that particular auxiliary element is connected to at least one of the main cryogenic elements within the outer jacket.

Typically, there is at least one thermal insulator filling at least part of the space between the inner and outer walls of the outer jacket. Other optional features may include one or more of the following:

- the auxiliary element is selected from the group comprising pumps, turboexpanders, valves and piping;
- each main cryogenic element is selected from the group consisting of distillation columns, mixing columns, storage vessels, heat exchangers and superposed combinations thereof;
- there is free space between the cryogenic assembly and the inner wall of the outer jacket;
- the housing is attached to the inner wall of the outer jacket;
- at least one thermal insulator is perlite;
- the housing is made a material chosen from the group comprising steel and aluminium;
- the auxiliary element is insulated from the cryogenic assembly within the outer jacket by a barrier;
- the barrier forms a weak seal, such as in the case of over pressure within the housing, the insulation barrier breaks;
- the barrier is made of material chosen from the group comprising perlite, vermiculite, rock wool and metal;
- the housing is situated from about 1 to from about 5 meters above the base;
- the base and inner walls are impermeable to liquid leaking from the cryogenic assembly;
- the housing extends within the space between the inner and outer walls of the outer jacket; and
- the base and inner wall of the outer jacket are impermeable to liquid.
According to additional embodiments of the invention, the cold box may be applied to cryogenic plant, an air distillation plant, or to a ship. The main cryogenic elements are elements, which normally function at temperatures below −50°C.

The auxiliary element within the housing may also function at a temperature of below −50°C.

Figure 1 illustrates a cut away view of an air distillation plant according to one embodiment of the invention. The invention and its corresponding embodiments, is described below in relation to cold boxes containing an air separation unit, but also applies to cold boxes containing additionally, or alternatively, at least one storage tank for cryogenic liquids.

The air distillation plant comprises a main cryogenic element, such as a high-pressure column 1 and a low-pressure column 3, which are thermally integrated. The two columns are placed within an outer jacket 7 having a circular cross section. The outer jacket 7, also referred to herein as the cold box, is made of resilient metal, such as stainless steel or aluminum, is placed on top of a metal framework, sometimes known as a “pancake”, which is fastened to the deck 27 of a ship or floating platform.

Cooled compressed air to be sent to the high-pressure column is sent to a heat exchanger (not shown) outside the cold box via piping duct 9. The piping duct also carries conduits containing product and waste steams from the columns. One of the products is a pressurised liquid oxygen stream, which is to be vaporised in the heat exchange line. The liquid oxygen is removed from the low-pressure column, pressurised by an auxiliary element 16, such as a pump, and sent to the piping duct 9 in a conduit. The pump is located in a housing 13, which extends through an opening in the outer jacket such that the housing is directly accessible from outside the outer jacket 7. The housing 13 is made of resilient metal, such as stainless steel or aluminium. The space between the cold box and the columns is filled at least partially with particulate insulation material, such as perlite.

The cold box illustrated has a circular cross-section, but any cross-section could be used.
The low-pressure column 3 is placed on a structure 11 so as to prevent cold migration to the ship or platform deck 27, which could cause the carbon steel structure of the ship to fracture. The high-pressure column 1 is similarly insulated from the deck.

As shown in Figure 2, the housing 13 is sealed into an opening in the outer jacket 7, preferably welded to the inner wall 31, such that the perlite cannot escape. The housing is insulated from the interior of the cold box using a rock wool layer 15 and a non-resilient metal wall 17, such as an expanded metal layer. These layers form a weak link, which will break in the case of over-pressure allowing the liquid oxygen to flow back into the cold box 7.

The housing 13 is in the form of a cuboid that has an inner space 14 and a base wall 29 which slopes downwards towards the deck 27 of the ship, to assist the flow of any leaking liquid oxygen back into the cold box 7 after breaking through the metal wall 17. The housing may have any suitable shape.

The base 12 of the cold box is insulated using a layer of foam glass 19 covered by a sealing plate 21. The bottom of both column structures 11 is partially filled with a layer of rock wool 23.

The cold box may also be opened via an access door 25.

The housing 13 is insulated using perlite or rock wool and as well as (or instead of) a pump or pumps and their associated piping may contain at least one turboexpander and/or at least one valve and/or other piping.

The outer jacket 7 has an inner wall 31 and an outer wall 33, at least part of the space between the two being filled with perlite 35 in loose form or in the form of bricks. If the insulant is in the form of bricks, the inner wall of the jacket may be formed by the sidewalls of the bricks or may be a separate panel.

The sealing plate 21 and inner walls 31 of the outer jacket are impervious to liquid, so that if any cryogenic liquid escapes from the air separation unit will collect in the bottom of the cold box and eventually evaporates or is vaporised using a vaporiser.
A relief valve may be provided so that vapors leaking from the cryogenic unit may escape from the outer jacket.

One skilled in the art will appreciate that the air separation unit may have any number of columns. For example, it may comprise a single column, a double column, or a triple column. Additionally, a mixing column or an argon production column may be used.

The invention has been described in relation to cold boxes containing an air separation unit, but also applies to cold boxes containing additionally or alternatively, at least one storage tank for cryogenic liquids. It also applies to cold boxes containing a liquefier for producing cryogenic liquids.

Similarly, the air separation unit could be replaced by any cryogenic distillation unit, such as a unit for separating a mixture having principal components in the group comprising hydrogen, helium, methane, nitrogen, and carbon monoxide. The methods to make such a replacement are well known to those skilled in the art.

The invention also relates to cold boxes in which cryogenic liquids other than oxygen is pumped, such as nitrogen. The skill to do such an application is well known to those skilled in the art.

Preferred processes and apparatus for practicing the present invention have been described. It will be understood and readily apparent to the skilled artisan that many changes and modifications may be made to the above-described embodiments without departing from the spirit and the scope of the present invention. The foregoing is illustrative only and that other embodiments of the integrated processes and apparatus may be employed without departing from the true scope of the invention defined in the following claims.
CLAIMS

1. A cold box apparatus comprising:
 (a) a cryogenic assembly comprising:
 (1) a main cryogenic element, and
 (2) an auxiliary element having a first part and a second part,
 wherein said first part is connected to said main cryogenic
 element,
 (b) an outer jacket comprising:
 (1) an outer wall,
 (2) an inner wall, and
 (3) a first space between said inner wall and said outer wall,
 wherein said outer jacket surrounds at least some of said main
 cryogenic element, and wherein there is a second space between
 said outer jacket and said main cryogenic element,
 (c) a base, and
 (d) a housing comprising an inner space, wherein said housing
 extends at least partially outside said outer jacket, and wherein said
 second part of said auxiliary element extends at least partially into said
 inner space of said housing.

2. The apparatus of Claim 1, wherein said auxiliary element is selected
 from the group consisting of rotating equipment, pumps,
 turboexpanders, instrument devices, valves, and piping.

3. The apparatus of Claim 1, wherein said main cryogenic element is
 selected from the group consisting of cryogenic columns, sections of
 cryogenic columns, distillation columns, mixing columns, storage
 vessels, pressure vessels, heat exchangers, and combinations thereof.

4. The apparatus of Claim 1, wherein said second space is at least
 partially filled with insulating material.
5. The apparatus of Claim 1, wherein said housing is attached to the inner wall of said outer jacket.

6. The apparatus of Claim 1, further comprising a thermal insulator filling at least part of said first space.

7. The apparatus of Claim 6, wherein said thermal insulator comprises perlite.

8. The apparatus of Claim 1, wherein said housing is made of a material selected from the group consisting of steel, stainless steel, aluminum, and alloys thereof.

9. The apparatus of Claim 1, wherein said auxiliary element is insulated from said main cryogenic element by a barrier.

10. The apparatus of Claim 9, wherein said barrier forms a weak seal between said inner space of said housing and said second space, such that in the case of over pressure within said inner space, said barrier breaks.

11. The apparatus of Claim 8, wherein said barrier is made of material selected from the group consisting of perlite, vermiculite, rock wool, and metal.

12. The apparatus of Claim 1, wherein said housing is situated from about 1 to about 5 meters above said base.

13. The apparatus of Claim 1, wherein said base and said inner wall are impermeable to liquid leaking from said cryogenic assembly.
14. The apparatus of Claim 1, wherein said housing extends within said first space.

15. The apparatus of Claim 1, further comprising a sealing plate, wherein said sealing plate and said inner wall are impermeable to liquid.

16. The apparatus of Claim 1, wherein said apparatus is bolted to the deck of a ship.

17. A cryogenic plant comprising the apparatus of Claim 1.

18. An air distillation plant apparatus comprising the apparatus of Claim 15.

19. A cold box apparatus, wherein said apparatus is bolted to the deck of a ship, said apparatus comprising:
 (a) a cryogenic assembly comprising:
 (1) a main cryogenic element, and
 (2) an auxiliary element having a first part and a second part, wherein said first part is connected to said main cryogenic element,
 (b) an outer jacket comprising:
 (1) an outer wall,
 (2) an inner wall, and
 (3) a first space between said inner wall and said outer wall,
 wherein said outer jacket surrounds at least some of said main cryogenic element, and wherein there is a second space between said outer jacket and said main cryogenic element,
 (c) a base, and
 (d) a housing comprising an inner space, wherein said housing extends at least partially outside said outer jacket, and wherein said second part of said auxiliary element extends at least partially into said inner space of said housing.
20. An air distillation plant, wherein said air distillation plant is bolted to the deck of a ship and comprises a cold box apparatus, said apparatus comprising:

(a) a cryogenic assembly comprising:
 (1) a main cryogenic element, and
 (2) an auxiliary element having a first part and a second part, wherein said first part is connected to said main cryogenic element,

(b) an outer jacket comprising:
 (1) an outer wall,
 (2) an inner wall, and
 (3) a first space between said inner wall and said outer wall, wherein said outer jacket surrounds at least some of said main cryogenic element, and wherein there is a second space between said outer jacket and said main cryogenic element,

(c) a base, and

(d) a housing comprising an inner space, wherein said housing extends at least partially outside said outer jacket, and wherein said second part of said auxiliary element extends at least partially into said inner space of said housing.
A. CLASSIFICATION OF SUBJECT MATTER

- F25J3/04
- E04B1/76
- F17C13/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

- F25J
- E04B
- F17C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic database consulted during the international search (name of database and, where practical, search terms used):

- EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 378 331 B1 (VANCAUWENBERGHE ROGER et al) 30 April 2002 (2002-04-30) cited in the application column 2, line 59 - column 3, line 44; figure 1</td>
<td>1-3, 5-9, 11-20</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 805 324 A (THE BOC GROUP, INC) 5 November 1997 (1997-11-05) figure</td>
<td>1-6, 8, 9, 11, 13-15, 17, 18</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 538 857 A (LINDE AKTIENGESellschaft) 28 April 1993 (1993-04-28) figure 3</td>
<td>1-3, 8, 9, 11-13, 17, 18</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

Extra Notes:

- "A" document defining the general state of the art which is not considered to be of particular relevance.
- "E" earlier document but published on or after the international filing date.
- "X" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
- "Q" document referring to an oral disclosure, use, exhibition or other means.
- "P" document published prior to the international filing date but later than the priority date claimed.
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "A" document member of the same patent family.

Date of the actual completion of the international search: 21 November 2005

Date of mailing of the international search report: 06/12/2005

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Lijnden
Tel: (+31-70) 340-2040, Tx: 31 651 eipo nl,
Fax: (+31-70) 340-3016

Authorized officer: Göritz, D
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 100 51 141 A1 (L'AIR LIQUIDE, S.A. POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGE) 19 April 2001 (2001-04-19) page 4, lines 18-22</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>page 4, lines 43-54 page 6, lines 11-15; figures</td>
<td>1-9, 11-15, 17,18</td>
</tr>
<tr>
<td>Y</td>
<td>US 3 167 417 A (SELLMAIER ALFONS) 26 January 1965 (1965-01-26) column 3, line 9 - line 54; figure</td>
<td>1-9, 11-15, 17,18</td>
</tr>
<tr>
<td>A</td>
<td>GOLDSTONE ET AL: "Tonnage nitrogen generation for oil and gas enhanced recovery" ANNUAL REPORT, SESSION 6 OF THE 9TH CONTINENTAL MEETING OF GAS PROCESSORS ASSOCIATION, 1992, pages 1-7, XP001207944 cited in the application page 4, paragraph 4; figure 4</td>
<td>2,6,7, 13,15, 16,19,20</td>
</tr>
<tr>
<td>A</td>
<td>US 5 412 954 A (GRENIER ET AL) 9 May 1995 (1995-05-09) column 2, lines 64-68 column 3, line 67 - column 4, line 8</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>DE 197 37 521 A1 (MESSER GRIESHEIM GMBH, 60314 FRANKFURT, DE) 4 March 1999 (1999-03-04) figure 3</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>US 6 360 545 B1 (GOLDSTONE PETER G ET AL) 26 March 2002 (2002-03-26) cited in the application the whole document</td>
<td>6,7,13, 15,16, 19,20</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1161099 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9812787 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2312022 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1282411 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69811269 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69811269 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2771160 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 9926033 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID 266856 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001525528 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20002532 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 423980 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1511297 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2199085 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1167245 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9700807 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ID 16654 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 120301 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10038457 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 249038 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 319717 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR 9700283 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5617742 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9702509 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 4135302 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 538857 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2142811 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3033134 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 538857 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2358909 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001165565 A</td>
</tr>
<tr>
<td>US 3167417</td>
<td>26-01-1965</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1085312 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9301922 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69311040 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69311040 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2695714 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3436394 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6194035 A</td>
</tr>
<tr>
<td>DE 19737521</td>
<td>04-03-1999</td>
<td>WO 9911990 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1015828 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4283799 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69926505 D1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9966154 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20006425 A</td>
</tr>
</tbody>
</table>