(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

(10) International Publication Number WO 01/36639 A2

(51) International Patent Classification7: C12N 15/12, 15/62, 5/10, C07K 14/705, 16/28, G01N 33/50

(21) International Application Number: PCT/US00/31674

(22) International Filing Date:

17 November 2000 (17.11.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

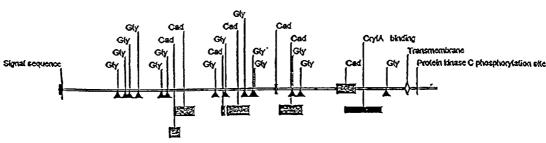
60/166,285 US 18 November 1999 (18.11.1999) 60/234,099 21 September 2000 (21.09.2000)

(71) Applicant: PIONEER HI-BRED INTERNATIONAL, INC. [US/US]; 800 Capital Square, 400 Locust Street, Des Moines, IA 50309 (US).

(72) Inventors: FLANNAGAN, Ronald, D.; 512 N.W. Norton Circle, Grimes, IA 50111 (US). MATHIS, John, P.; 3808 6th Street, Apt. 15, Des Moines, IA 50313 (US). MEYER, Terry, EuClaire; 4338 - 101st Street, Urbandale, IA 50322 (US).

(74) Agents: SPRUILL, Murray, W. et al.; Alston & Bird LLP, P.O. Drawer 34009, Charlotte, NC 28234-4009 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), DM, DZ, EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.


(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL BT TOXIN RECEPTORS FROM LEPIDOPTERAN INSECTS AND METHODS OF USE

(57) Abstract: The invention relates to Bt toxin resistance management. The invention particularly relates to the isolation and characterization of nucleic acid and polypeptides for a novel Bt toxin receptor. The nucleic acid and polypeptides are useful in identifying and designing novel Bt toxin receptor ligands including novel insecticidal toxins.

7O 01/36639 A2

NOVEL BT TOXIN RECEPTORS FROM LEPIDOPTERAN INSECTS AND METHODS OF USE

FIELD OF THE INVENTION

The field of the invention is manipulating *Bt* toxin susceptibility in plant pests. The field of the invention relates to the isolation and characterization of nucleic acid and polypeptides for a novel *Bt* toxin receptor. The nucleic acid and polypeptides are useful in developing new insecticides.

5

10

15

20

25

BACKGROUND OF THE INVENTION

Traditionally, growers used chemical pesticides as a means to control agronomically important pests. The introduction of transgenic plants carrying the delta-endotoxin from *Bacillus thuringiensis* (*Bt*) afforded a non-chemical method of control. *Bt* toxins have traditionally been categorized by their specific toxicity towards specific insect categories. For example, the Cryl group of toxins are toxic to Lepidoptera. The Cryl group includes, but is not limited to, CrylA(a), CrylA(b) and CrylA(c). See Hofte *et al* (1989) *Microbiol Rev* 53: 242-255.

Lepidopteran insects cause considerable damage to maize crops throughout North America and the world. One of the leading pests is *Ostrinia nubilalis*, commonly called the European Corn Borer (ECB). Genes encoding the crystal proteins CrylA(b) and CrylA(c) from *Bt* have been introduced into maize as a means of ECB control. These transgenic maize hybrids have been effective in control of ECB. However, developed resistance to *Bt* toxins presents a challenge in pest control. See McGaughey *et al.* (1998) *Nature Biotechnology 16*: 144-146; Estruch *et al.* (1997) *Nature Biotechnology 15*:137-141; Roush *et al.* (1997) *Nature Biotechnology 15* 816-817; and Hofte *et al.* (1989) *Microbiol Rev* 53: 242-255.

The primary site of action of Cry1 toxins is in the brush border membranes of the midgut epithelia of susceptible insect larvae such as lepidopteran insects. Cry1A toxin binding polypeptides have been characterized from a variety of *Lepidopteran* species. A Cry1A(c) binding polypeptide with homology to an aminopeptidase N has been reported from *Manduca sexta*, *Lymantria dispar*, *Helicoverpa zea* and *Heliothis virescens*. See Knight et al (1994) *Mol Micro 11*: 429-436; Lee *et al.* (1996) *Appl*

Environ Micro 63: 2845-2849; Gill et al. (1995) J Biol. Chem 270: 27277-27282; and Garczynski et al. (1991) Appl Environ Microbiol 10: 2816-2820.

Another *Bt* toxin binding polypeptide (BTR1) cloned from *M. sexta* has homology to the cadherin polypeptide superfamily and binds CrylA(a), CrylA(b) and CrylA(c). See Vadlamudi *et al.* (1995) *J Biol Chem 270(10)*:5490-4, Keeton *et al.* (1998) *Appl Environ Microbiol 64(6)*:2158-2165; Keeton *et al.* (1997) *Appl Environ Microbiol 63(9)*:3419-3425 and U.S. Patent Patent No: 5,693,491.

5

10

15

20

25

30

A subsequently cloned homologue to BTR1 demonstrated binding to CrylA(a) from *Bombyx mori* as described in Ihara *et al.* (1998) *Comparative Biochemistry and Physiology*, *Part B 120*:197-204 and Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem. 62(4)*:727-734.

Identification of the plant pest binding polypeptides for *Bt* toxins are useful for investigating *Bt* toxin-*Bt* toxin receptor interactions, selecting and designing improved toxins, developing novel insecticides, and new *Bt* toxin resistance management strategies.

SUMMARY OF THE INVENTION

Compositions and methods for modulating susceptibility of a cell to *Bt* toxins are provided. The compositions include *Bt* toxin receptor polypeptides, and fragments and variants thereof, from the lepidopteran insects European corn borer(ECB, *Ostrinia nubilalis*), corn earworm (CEW, *Heliothis Zea*), and fall armyworm (FAW, *Spodoptera frugiperda*). The polypeptides bind Cry1A toxins, more particularly Cry1A(b). Nucleic acids encoding the polypeptides, antibodies specific to the polypeptides, as well as nucleic acid constructs for expressing the polypeptides in cells of interest are also provided.

The methods are useful for investigating the structure-function relationships of *Bt* toxin receptors; investigating the toxin-receptor interactions; elucidating the mode of action of *Bt* toxins; screening and identifying novel *Bt* toxin receptor ligands including novel insecticidal toxins; and designing and developing novel *Bt* toxin receptor ligands.

The methods are useful for managing *Bt* toxin resistance in plant pests, and protecting plants against damage by plant pests.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 schematically depicts the location of the signal sequence, putative glycosilation sites, cadherin-like domains, transmembrane segment, CrylA binding region and protein kinase C phosphorylation site of the *Bt* toxin receptor from *Ostrinia nubilalis*; the nucleotide sequence of the receptor set forth in SEQ ID NO:1 and the corresponding deduced amino acid sequence in SEQ ID NO:2.

5

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

The invention is directed to novel receptor polypeptides that bind *Bt* toxin, the receptor being derived from the order *lepidoptera*. The receptors of the invention include those receptor polypeptides that bind *Bt* toxin and are derived from the *lepidopteran* superfamily *Pyraloidea* and particularly from the species *Ostrinia*, specifically *Ostrinia nubilalis*; those derived from *Spodoptera frugiperda* (*S. frugiperda*); and those derived from *Heliothus Zea* (*H. Zea*). The polypeptides have homology to members of the cadherin superfamily of proteins.

Accordingly, compositions of the invention include isolated polypeptides that are involved in *Bt* toxin binding. In particular, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequences shown in SEQ ID NOs: 2, 4, and 6; or the nucleotide sequences having the DNA sequences deposited in a plasmid in a bacterial host as Patent Deposit No. PTA-278, PTA-1760, and PTA-2222. Further provided are polypeptides having an amino acid sequence encoded by a nucleic acid molecule described herein, for example those set forth in SEQ ID NOs: 1, 3, and 5; those deposited in a plasmid in a bacterial host as Patent Deposit Nos. PTA-278, PTA-1760, and PTA-2222; and fragments and variants thereof.

Plasmids containing the nucleotide sequences of the invention were deposited with the Patent Depository of the American Type Culture Collection (ATCC), Manassas, Virginia on June 25, 1999; April 25, 2000; and July 11, 2000; and assigned Patent Deposit Nos. PTA-278, PTA-1760, and PTA-2222. These deposits will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. These deposits

were made merely as a convenience for those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. §112.

5

10

15

20

25

30

The term "nucleic acid" refers to all forms of DNA such as cDNA or genomic DNA and RNA such as mRNA, as well as analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecules can be single stranded or double stranded. Strands can include the coding or non-coding strand.

The invention encompasses isolated or substantially purified nucleic acid or polypeptide compositions. An "isolated" or "purified" nucleic acid molecule or polypeptide, or biologically active portion thereof, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Preferably, an "isolated" nucleic acid is free of sequences (preferably polypeptide encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. A polypeptide that is substantially free of cellular material includes preparations of polypeptide having less than about 30%, 20%, 10%, 5%, (by dry weight) of contaminating polypeptide. When the polypeptide of the invention or biologically active portion thereof is recombinantly produced, preferably culture medium represents less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or non-polypeptide-of-interest chemicals.

It is understood, however, that there are embodiments in which preparations that do not contain the substantially pure polypeptide may also be useful. Thus, less pure preparations can be useful where the contaminating material does not interfere with the specific desired use of the peptide. The compositions of the invention also encompass fragments and variants of the disclosed nucleotide sequences and the polypeptides encoded thereby.

The compositions of the invention are useful for, among other uses, expressing the receptor polypeptides in cells of interest to produce cellular or isolated preparations of the polypeptides for investigating the structure-function relationships of

5

10

15

20

25

30

Bt toxin receptors; investigating the toxin-receptor interactions; elucidating the mode of action of Bt toxins; screening and identifying novel Bt toxin receptor ligands including novel insecticidal toxins; and designing and developing novel Bt toxin receptor ligands including novel insecticidal toxins.

The isolated nucleotide sequences encoding the receptor polypeptides of the invention are expressed in a cell of interest; and the *Bt* toxin receptor polypeptides produced by the expression is utilized in intact cell or *in-vitro* receptor binding assays, and/or intact cell toxicity assays. Methods and conditions for *Bt* toxin binding and toxicity assays are known in the art and include but are not limited to those described in United States Patent NO: 5,693,491; T.P. Keeton *et al.* (1998) *Appl. Environ. Microbiol.* 64(6):2158-2165; B.R. Francis *et al.* (1997) *Insect Biochem. Mol. Biol.* 27(6):541-550; T.P. Keeton *et al.* (1997) *Appl. Environ. Microbiol.* 63(9):3419-3425; R.K. Vadlamudi *et al.* (1995) *J. Biol. Chem.* 270(10):5490-5494; Ihara *et al.* (1998) *Comparative Biochem. Physiol. B* 120:197-204; Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem.* 62(4):727-734, herein incorporated by reference. Such methods could be modified by one of ordinary skill in the art to develop assays utilizing the polypeptides of the invention.

By "cell of interest" is intended any cell in which expression of the polypeptides of the invention is desired. Cells of interest include, but are not limited to mammalian, avian, insect, plant, bacteria, fungi and yeast cells. Cells of interest include but are not limited to cultured cell lines, primary cell cultures, cells *in vivo*, and cells of transgenic organisms.

The methods of the invention encompass using the polypeptides encoded by the nucleotide sequences of the invention in receptor binding and/or toxicity assays to screen candidate ligands and identify novel *Bt* toxin receptor ligands, including receptor agonists and antagonists. Candidate ligands include molecules available from diverse libraries of small molecules created by combinatorial synthetic methods. Candidate ligands also include, but are not limited to antibodies, peptides, and other small molecules designed or deduced to interact with the receptor polypeptides of the invention. Candidate ligands include but are not limited to peptide fragments of the receptor, anti-receptor antibodies, antiidiotypic antibodies mimicking one or more receptor binding domains of a toxin, fusion proteins produced by combining two or more toxins or fragments thereof, and the like. Ligands identified by the screening

5

10

15

20

25

30

methods of the invention include potential novel insecticidal toxins, the insecticidal activity of which can be determined by known methods; for example, as described in U.S. Patent No: 5,407,454; U.S. Application NO: 09/218,942; U.S. Application No: 09/003,217.

The invention provides methods for screening for ligands that bind to the polypeptides described herein. Both the polypeptides and relevant fragments thereof (for example, the toxin binding domain) can be used to screen by assay for compounds that bind to the receptor and exhibit desired binding characteristics. Desired binding characteristics include, but are not limited to binding affinity, binding site specificity, association and dissociation rates, and the like. The screening assays could be intact cell or *in vitro* assays which include exposing a ligand binding domain to a sample ligand and detecting the formation of a ligand-binding polypeptide complex. The assays could be direct ligand-receptor binding assays or ligand competition assays.

In one embodiment, the methods comprise providing at least one Bt toxin receptor polypeptide of the invention, contacting the polypeptide with a sample and a control ligand under conditions promoting binding; and determining binding characteristics of sample ligands, relative to control ligands. The methods encompass any method known to the skilled artisan which can be used to provide the polypeptides of the invention in a binding assay. For in vitro binding assays, the polypeptide may be provided as isolated, lysed, or homogenized cellular preparations. Isolated polypeptides may be provided in solution, or immobilized to a matrix. Methods for immobilizing polypeptides are well known in the art, and include but are not limited to construction and use of fusion polypeptides with commercially available high affinity ligands. For example, GST fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates. The polypeptides can also be immobilized utilizing well techniques in the art utilizing conjugation of biotin and streptavidin. The polypeptides can also be immobilized utilizing well known techniques in the art utilizing chemical conjugation (linking) of polypeptides to a matrix. Alternatively, the polypeptides may be provided in intact cell binding assays in which the polypeptides are generally expressed as cell surface Bt toxin receptors.

The invention provides methods utilizing intact cell toxicity assays to screen for ligands that bind to the receptor polypeptides described herein and confer toxicity upon a

5

10

15

20

25

30

cell of interest expressing the polypeptide. A ligand selected by this screening is a potential insecticidal toxin to insects expressing the receptor polypeptides, particularly enterally. This deduction is premised on theories that insect specificity of a particular Bt toxin is determined by the presence of the receptor in specific insect species, or that binding of the toxins is specific for the receptor of some insect species and is bind is insignificant or nonspecific for other variant receptors. See, for example Hofte *et al* (1989) *Microbiol Rev* 53: 242-255. The toxicity assays include exposing, in intact cells expressing a polypeptide of the invention, the toxin binding domain of the polypeptide to a sample ligand and detecting the toxicity effected in the cell expressing the polypeptide. By "toxicity" is intended the decreased viability of a cell. By "viability" is intended the ability of a cell to proliferate and/or differentiate and/or maintain its biological characteristics in a manner characteristic of that cell in the absence of a particular cytotoxic agent.

In one embodiment, the methods of the present invention comprise providing at least one cell surface *Bt* toxin receptor polypeptide of the invention comprising an extracellular toxin binding domain, contacting the polypeptide with a sample and a control ligand under conditions promoting binding, and determining the viability of the cell expressing the cell surface *Bt* toxin receptor polypeptide, relative to the control ligand.

By "contacting" is intended that the sample and control agents are presented to the intended ligand binding site of the polypeptides of the invention.

By "conditions promoting binding" is intended any combination of physical and biochemical conditions that enables a ligand of the polypeptides of the invention to determinably bind the intended polypeptide over background levels. Examples of such conditions for binding of Cry1 toxins to *Bt* toxin receptors, as well as methods for assessing the binding, are known in the art and include but are not limited to those described in Keeton *et al.* (1998) *Appl Environ Microbiol 64(6)*: 2158-2165; Francis *et al.* (1997) *Insect Biochem Mol Biol 27(6)*:541-550; Keeton *et al.* (1997) *Appl Environ Microbiol 63(9)*:3419-3425; Vadlamudi *et al.* (1995) *J Biol Chem 270(10)*:5490-5494; Ihara *et al.* (1998) *Comparative Biochemistry and Physiology, Part B 120*:197-204; and Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem. 62(4)*:727-734, the contents of which are herein incorporated by reference. In this aspect of the present invention, known and commercially available methods for

studying protein-protein interactions, such as yeast and/or bacterial two-hybrid systems could also be used. Two-hybrid systems are available from, for example, CLONTECH (Palo Alto, Ca) or Display Systems Biotech Inc. (Vista, Ca).

5

10

15

20

25

30

The compositions and screening methods of the invention are useful for designing and developing novel *Bt* toxin receptor ligands including novel insecticidal toxins. Various candidate ligands; ligands screened and characterized for binding, toxicity, and species specificity; and/or ligands having known characteristics and specificities, could be linked or modified to produce novel ligands having particularly desired characteristics and specificities. The methods described herein for assessing binding, toxicity and insecticidal activity could be used to screen and characterize the novel ligands.

In one embodiment of the present invention, the sequences encoding the receptors of the invention, and variants and fragments thereof, are used with yeast and bacterial two-hybrid systems to screen for *Bt* toxins of interest (for example, more specific and/or more potent toxins), or for insect molecules that bind the receptor and can be used in developing novel insecticides.

By "linked" is intended that a covalent bond is produced between two or more molecules. Known methods that can be used for modification and/or linking of polypeptide ligands such as toxins, include but are not limited to mutagenic and recombinogenic approaches including but not limited to site-directed mutagenesis, chimeric polypeptide construction and DNA shuffling. Such methods are described in further detail below. Known polypeptide modification methods also include methods for covalent modification of polypeptides. "Operably linked" means that the linked molecules carry out the function intended by the linkage.

The compositions and screening methods of the present invention are useful for targeting ligands to cells expressing the receptor polypeptides of the invention. For targeting, secondary polyeptides, and/or small molecules which do not bind the receptor polypeptides of the invention are linked with one or more primary ligands which bind the receptor polypeptides; including but not limited to Cry1A toxin; more particularly Cry1 A(b) toxin or a fragment thereof. By this linkage, any polypeptide and/or small molecule linked to a primary ligand could be targeted to the receptor polypeptide, and thereby to a cell expressing the receptor polypeptide; wherein the ligand binding site is available at the extracellular surface of the cell.

In one embodiment of the invention, at least one secondary polypeptide toxin is linked with a primary Cry1 A toxin capable of binding the receptor polypeptides of the invention to produce a combination toxin which is targeted and toxic to insects expressing the receptor for the primary toxin. Such insects include those of the order lepidoptera, superfamily Pyraloidea and particularly from the species Ostrinia, specifically Ostrinia nubilalis. Such insects include the lepidopterans S. frugiperda and H. Zea. Such a combination toxin is particularly useful for eradicating or reducing crop damage by insects which have developed resistance to the primary toxin.

5

10

15

20

25

30

For expression of the *Bt* toxin receptor polypeptides of the invention in a cell of interest, the *Bt* toxin receptor sequences are provided in expression cassettes. The cassette will include 5' and 3' regulatory sequences operably linked to a *Bt* toxin receptor sequence of the invention. In this aspect of the present invention, by "operably linked" is intended a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. In reference to nucleic acids, generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two polypeptide coding regions, contiguous and in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes.

Such an expression cassette is provided with a plurality of restriction sites for insertion of the *Bt* toxin receptor sequence to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.

The expression cassette will include in the 5'-3' direction of transcription, a transcriptional and translational initiation region, a *Bt* toxin receptor nucleotide sequence of the invention, and a transcriptional and translational termination region functional in host cells. The transcriptional initiation region, the promoter, may be native or analogous, or foreign or heterologous to the plant host. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. By "foreign" is intended that the transcriptional initiation region is not found in the native host cells into which the transcriptional initiation region is introduced. As used

herein, a chimeric gene comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence.

While it may be preferable to express the sequences using heterologous promoters, the native promoter sequences may be used. Such constructs would change expression levels of *Bt* toxin receptor in the cell of interest. Thus, the phenotype of the cell is altered.

5

10

15

20

25

30

The termination region may be native with the transcriptional initiation region, may be native with the operably linked DNA sequence of interest, or may be derived from another source.

Where appropriate, the gene(s) may be optimized for increased expression in a particular transformed cell of interest. That is, the genes can be synthesized using host cell-preferred codons for improved expression.

Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.

The expression cassettes may additionally contain 5' leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein et al. (1989) PNAS USA 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al. (1986); MDMV leader (Maize Dwarf Mosaic Virus); Virology 154:9-20), and human immunoglobulin heavy-chain binding polypeptide (BiP), (Macejak et al. (1991) Nature 353:90-94); untranslated leader from the coat polypeptide mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al. (1987) Nature 325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al. (1989) in Molecular Biology of RNA, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) Virology 81:382-385).

5

10

15

20

25

30

See also, Della-Cioppa *et al.* (1987) *Plant Physiol.* 84:965-968. Other methods known to enhance translation can also be utilized, for example, introns, and the like.

In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, *in vitro* mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.

Using the nucleic acids of the present invention, the polypeptides of the invention could be expressed in any cell of interest, the particular choice of the cell depending on factors such as the level of expression and/or receptor activity desired. Cells of interest include, but are not limited to conveniently available mammalian, plant, insect, bacteria, and yeast host cells. The choice of promoter, terminator, and other expression vector components will also depend on the cell chosen. The cells produce the protein in a non-natural condition (e.g., in quantity, composition, location, and/or time), because they have been genetically altered through human intervention to do so.

It is expected that those of skill in the art are knowledgeable in the numerous expression systems available for expression of a nucleic acid encoding a protein of the present invention. No attempt to describe in detail the various methods known for the expression of proteins in prokaryotes or eukaryotes will be made.

In brief summary, the expression of isolated nucleic acids encoding a protein of the present invention will typically be achieved by operably linking, for example, the DNA or cDNA to a promoter, followed by incorporation into an expression vector. The vectors can be suitable for replication and integration in either prokaryotes or eukaryotes. Typical expression vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the DNA encoding a protein of the present invention. To obtain high level expression of a cloned gene, it is desirable to construct expression vectors which contain, at the minimum, a strong promoter to direct transcription, a ribosome binding site for translational initiation, and a transcription/translation terminator. One

of skill would recognize that modifications can be made to a protein of the present invention without diminishing its biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids (e.g., poly His) placed on either terminus to create conveniently located restriction sites or termination codons or purification sequences.

10

15

20

25

30

Prokaryotic cells may be used as hosts for expression. Prokaryotes most frequently are represented by various strains of *E. coli*; however, other microbial strains may also be used. Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta lactamase (penicillinase) and lactose (lac) promoter systems (Chang *et al.* (1977) *Nature 198*:1056), the tryptophan (trp) promoter system (Goeddel *et al.* (1980) *Nucleic Acids Res. 8*:4057) and the lambda-derived P L promoter and N-gene ribosome binding site (Shimatake *et al.* (1981) *Nature 292*:128). The inclusion of selection markers in DNA vectors transfected in *E. coli* is also useful. Examples of such markers include genes specifying resistance to ampicillin, tetracycline, or chloramphenicol.

The vector is selected to allow introduction into the appropriate host cell. Bacterial vectors are typically of plasmid or phage origin. Appropriate bacterial cells are infected with phage vector particles or transfected with naked phage vector DNA. If a plasmid vector is used, the bacterial cells are transfected with the plasmid vector DNA. Expression systems for expressing a protein of the present invention are available using *Bacillus sp.* and *Salmonella* (Palva *et al.* (1983) *Gene 22*:229-235; Mosbach *et al.* (1983) *Nature 302*:543-545).

A variety of eukaryotic expression systems such as yeast, insect cell lines, plant and mammalian cells, are known to those of skill in the art. The sequences of the present invention can be expressed in these eukaryotic systems. In some embodiments, transformed/transfected plant cells are employed as expression systems for production of the proteins of the instant invention.

Synthesis of heterologous proteins in yeast is well known. Sherman, F. et al. (1982) Methods in Yeast Genetics, Cold Spring Harbor Laboratory is a well recognized work describing the various methods available to produce the protein in yeast. Two widely utilized yeast for production of eukaryotic proteins are Saccharomyces cerevisia and Pichia pastoris. Vectors, strains, and protocols for expression in Saccharomyces and Pichia are known in the art and available from commercial suppliers (e.g., Invitrogen). Suitable vectors usually have expression control sequences, such as promoters, including 3-phosphoglycerate kinase or alcohol oxidase, and an origin of replication, termination sequences and the like as desired.

5

10

15

20

25

30

A protein of the present invention, once expressed, can be isolated from yeast by lysing the cells and applying standard protein isolation techniques to the lysates. The monitoring of the purification process can be accomplished by using Western blot techniques or radioimmunoassay or other standard immunoassay techniques.

The sequences encoding proteins of the present invention can also be ligated to various expression vectors for use in transfecting cell cultures of, for instance, mammalian, insect, or plant origin. Illustrative of cell cultures useful for the production of the peptides are mammalian cells. Mammalian cell systems often will be in the form of monolayers of cells although mammalian cell suspensions may also be used. A number of suitable host cell lines capable of expressing intact proteins have been developed in the art, and include the COS, HEK293, BHK21, and CHO cell lines. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter (e.g., the CMV promoter, a HSV tk promoter or pgk (phosphoglycerate kinase promoter)), an enhancer (Queen et al. (1986) Immunol. Rev. 89:49), and necessary processing information sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites (e.g., an SV40 large T Ag poly A addition site), and transcriptional terminator sequences. Other animal cells useful for production of proteins of the present invention are available, for instance, from the American Type Culture Collection Catalogue of Cell Lines and Hybridomas (7th edition, 1992). A particular example of mammalian cells for expression of a Bt toxin receptor and assessing Bt toxin cytotoxicity mediated by the receptor, includes embryonic 293 cells. See U.S. Patent NO. 5,693,491, herein incorporated by reference.

Appropriate vectors for expressing proteins of the present invention in insect cells are usually derived from the SF9 baculovirus. Suitable insect cell lines include mosquito larvae, silkworm, armyworm, moth and *Drosophila* cell lines such as a Schneider cell line (See Schneider et al. (1987) *J. Embryol. Exp. Morphol.* 27: 353-365).

5

10

15

20

25

30

As with yeast, when higher animal or plant host cells are employed, polyadenylation or transcription terminator sequences are typically incorporated into the vector. An example of a terminator sequence is the polyadenylation sequence from the bovine growth hormone gene. Sequences for accurate splicing of the transcript may also be included. An example of a splicing sequence is the VP1 intron from SV40 (Sprague *et al.* (1983) *J. Virol.* 45:773-781). Additionally, gene sequences to control replication in the host cell may be incorporated into the vector such as those found in bovine papilloma virus-type vectors. Saveria-Campo, M., Bovine Papilloma Virus DNA a Eukaryotic Cloning Vector in *DNA Cloning Vol. II a Practical Approach*, D.M. Glover, ed., IRL Pres, Arlington, Virginia pp. 213-238 (1985).

In a particular embodiment of the invention, it may be desirable to negatively control receptor binding; particularly, when toxicity to a cell is no longer desired or if it is desired to reduce toxicity to a lower level. In this case, ligand-receptor polypeptide binding assays can be used to screen for compounds which bind to the receptor but do not confer toxicity to a cell expressing the receptor. The examples of a molecule that can be used to block ligand binding include an antibody that specifically recognizes the ligand binding domain of the receptor such that ligand binding is decreased or prevented as desired.

In another embodiment, receptor polypeptide expression could be blocked by the use of antisense molecules directed against receptor RNA or ribozymes specifically targeted to this receptor RNA. It is recognized that with the provided nucleotide sequences, antisense constructions, complementary to at least a portion of the messenger RNA (mRNA) for the *Bt* toxin receptor sequences can be constructed. Antisense nucleotides are constructed to hybridize with the corresponding mRNA. Modifications of the antisense sequences may be made as long as the sequences hybridize to and interfere with expression of the corresponding mRNA. In this manner, antisense constructions having 70%, preferably 80%, more preferably 85%

sequence similarity to the corresponding antisensed sequences may be used. Furthermore, portions of the antisense nucleotides may be used to disrupt the expression of the target gene. Generally, sequences of at least 50 nucleotides, 100 nucleotides, 200 nucleotides, or greater may be used.

5

10

15

20

25

30

Fragments and variants of the disclosed nucleotide sequences and polypeptides encoded thereby are encompassed by the present invention. By "fragment" is intended a portion of the nucleotide sequence, or a portion of the amino acid sequence, and hence a portion of the polypeptide encoded thereby. Fragments of a nucleotide sequence may encode polypeptide fragments that retain the biological activity of the native polypeptide and, for example, bind *Bt* toxins. Alternatively, fragments of a nucleotide sequence that are useful as hybridization probes generally do not encode fragment polypeptides retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length nucleotide sequence encoding the polypeptides of the invention.

A fragment of a *Bt* toxin receptor nucleotide sequence that encodes a biologically active portion of a *Bt* toxin receptor polypeptide of the invention will encode at least 15, 25, 30, 50, 100, 150, 200 or 250 contiguous amino acids, or up to the total number of amino acids present in a full-length *Bt* toxin receptor polypeptide of the invention (for example, 1717, 1730, and 1734 amino acids for SEQ ID NOs:2, 4, and 6, respectively. Fragments of a *Bt* toxin receptor nucleotide sequence that are useful as hybridization probes for PCR primers generally need not encode a biologically active portion of a *Bt* toxin receptor polypeptide.

Thus, a fragment of a *Bt* toxin receptor nucleotide sequence may encode a biologically active portion of a *Bt* toxin receptor polypeptide, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. A biologically active portion of a *Bt* toxin receptor polypeptide can be prepared by isolating a portion of one of the *Bt* toxin receptor nucleotide sequences of the invention, expressing the encoded portion of the *Bt* toxin receptor polypeptide (e.g., by recombinant expression *in vitro*), and assessing the activity of the encoded portion of the *Bt* toxin receptor polypeptide. Nucleic acid molecules that are fragments of a *Bt* toxin receptor nucleotide sequence comprise at least 16, 20, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 1,000,

1,100, 1,200, 1,300, or 1,400 nucleotides, or up to the number of nucleotides present in a full-length *Bt* toxin receptor nucleotide sequence disclosed herein (for example, 5498, 5527, and 5614 nucleotides for SEQ ID NOs: 1, 3, and 5, respectively).

By "variants" is intended substantially similar sequences. For nucleotide sequences, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the *Bt* toxin receptor polypeptides of the invention. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis, but which still encode a *Bt* toxin receptor protein of the invention. Generally, variants of a particular nucleotide sequence of the invention will have at least about 40%, 50%, 60%, 65%, 70%, generally at least about 75%, 80%, 85%, preferably at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, and more preferably at least about 98%, 99% or more sequence identity to that particular nucleotide sequence as determined by sequence alignment programs described elsewhere herein using default parameters.

By "variant" protein is intended a protein derived from the native protein by deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C-terminal end of the native protein; deletion or addition of one or more amino acids at one or more sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Variant proteins encompassed by the present invention are biologically active, that is they continue to possess the desired biological activity of the native protein, that is, activity as described herein (for example, *Bt* toxin binding activity). Such variants may result from, for example, genetic polymorphism or from human manipulation. Biologically active variants of a native *Bt* toxin receptor protein of the invention will have at least about 40%, 50%, 60%, 65%, 70%, generally at least about 75%, 80%, 85%, preferably at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, and more preferably at least about 98%, 99% or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs described elsewhere herein using default parameters. A biologically active variant of a

5

10

15

20

25

30

protein of the invention may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.

The polypeptides of the invention may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of the *Bt* toxin receptor polypeptides can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985) *Proc. Natl. Acad. Sci. USA* 82:488-492; Kunkel *et al.* (1987) *Methods in Enzymol.* 154:367-382; US Patent No. 4,873,192; Walker and Gaastra, eds. (1983) *Techniques in Molecular Biology* (MacMillan Publishing Company, New York) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff *et al.* (1978) *Atlas of Protein Sequence and Structure* (Natl. Biomed. Res. Found., Washington, D.C.), herein incorporated by reference. Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be preferable.

Thus, the genes and nucleotide sequences of the invention include both the naturally occurring sequences as well as mutant forms. Likewise, the proteins of the invention encompass both naturally occurring proteins as well as variations and modified forms thereof. Such variants will continue to possess the desired toxin binding activity. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See, EP Patent Application Publication No. 75,444.

The deletions, insertions, and substitutions of the protein sequences encompassed herein are not expected to produce radical changes in the characteristics of the protein.

For example, it is recognized that at least about 10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, and up to 960 amino acids may be deleted from the N-terminus of a polypeptide that has the amino acid sequence set forth in SEQ ID NO:2, and still retain binding function. It is further recognized that at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and up to

5

10

15

20

25

30

119 amino acids may be deleted from the C-terminus of a polypeptide that has the amino acid sequence set forth in SEQ ID NO:2, and still retain binding function. Deletion variants of the invention that encompass polypeptides having these deletions. It is recognized that deletion variants of the invention that retain binding function encompass polypeptides having these N-terminal or C-terminal deletions, or having any deletion combination thereof at both the C- and the N-termini.

However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays. That is, the activity can be evaluated by receptor binding and/or toxicity assays. See, for example, United States Patent NO: 5,693,491; T.P. Keeton et al. (1998) Appl. Environ. Microbiol. 64(6):2158-2165; B.R. Francis et al. (1997) Insect Biochem. Mol. Biol. 27(6):541-550; T.P. Keeton et al. (1997) Appl. Environ. Microbiol. 63(9):3419-3425; R.K. Vadlamudi et al. (1995) J. Biol. Chem. 270(10):5490-5494; Ihara et al. (1998) Comparative Biochem. Physiol. B 120:197-204; Nagamatsu et al. (1998) Biosci. Biotechnol. Biochem. 62(4):727-734, herein incorporated by reference.

Variant nucleotide sequences and polypeptides also encompass sequences and polypeptides derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, one or more different toxin receptor coding sequences can be manipulated to create a new toxin receptor, including but not limited to a new Bt toxin receptor, possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between the Bt toxin receptor gene of the invention and other known Bt toxin receptor genes to obtain a new gene coding for a polypeptide with an improved property of interest, such as an increased ligand affinity in the case of a receptor. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Patent Nos. 5,605,793 and 5,837,448.

Where the receptor polypeptides of the invention are expressed in a cell and associated with the cell membrane (for example, by a transmembrane segment), in order for the receptor of the invention to bind a desired ligand, for example a Cry 1 A toxin, the receptor's ligand binding domain must be available to the ligand. In this aspect, it is recognized that the native *Bt* toxin receptor of the invention is oriented such that the toxin binding site is available extracellularly.

5

10

15

20

25

30

Accordingly, in methods comprising use of intact cells, the invention provides cell surface Bt-toxin receptors. By a "cell surface Bt toxin receptor" is intended a membrane-bound receptor polypeptide comprising at least one extracellular Bt toxin binding site. A cell surface receptor of the invention comprises an appropriate combination of signal sequences and transmembrane segments for guiding and retaining the receptor at the cell membrane such that that toxin binding site is available extracellularly. Where native Bt toxin receptors are used for expression, deduction of the composition and configuration of the signal sequences and transmembrane segments is not necessary to ensure the appropriate topology of the polypeptide for displaying the toxin binding site extracellularly. As an alternative to native signal and transmembrane sequences, heterologous signal and transmembrane sequences could be utilized to produce a cell surface receptor polypeptide of the invention.

It is recognized that it may be of interest to generate *Bt* toxin receptors that are capable of interacting with the receptor's ligands intracellularly in the cytoplasm, in the nucleus or other organelles, in other subcellular spaces; or in the extracellular space. Accordingly, the invention encompasses variants of the receptors of the invention, wherein one or more of the segments of the receptor polypeptide is modified to target the polypeptide to a desired intra- or extracellular location.

Also encompassed by the invention are receptor fragments and variants that are useful, among other things, as binding antagonists that will compete with a cell surface receptor of the invention. Such a fragment or variant can, for example, bind a toxin but not be able to confer toxicity to a particular cell. In this aspect, the invention provides secreted receptors, more particularly secreted *Bt* toxin receptors; or receptors that are not membrane bound. The secreted receptors of the invention can contain a heterologous or homologous signal sequence facilitating its secretion from the cell expressing the receptors; and further comprise a secretion variation in the region corresponding to transmembrane segments. By "secretion variation" is intended that amino acids

corresponding to a transmembrne segment of a membrane bound receptor comprise one or more deletions, substitutions, insertions, or any combination thereof; such that the region no longer retains the requisite hydrophobicity to serve as a transmembrane segment. Sequence alterations to create a secretion variation can be tested by confirming secretion of the polypeptide comprising the variation from the cell expressing the polypeptide.

5

10

15

20

25

30

The polypeptides of the invention can be purified from cells that naturally express it, purified from cells that have been altered to express it (i. e. recombinant) or synthesized using polypeptide synthesis techniques that are well known in the art. In one embodiment, the polypeptide is produced by recombinant DNA methods. In such methods a nucleic acid molecule encoding the polypeptide is cloned into an expression vector as described more fully herein and expressed in an appropriate host cell according to known methods in the art. The polypeptide is then isolated from cells using polypeptide purification techniques well known to those of ordinary skill in the art. Alternatively, the polypeptide or fragment can be synthesized using peptide synthesis methods well known to those of ordinary skill in the art.

The invention also encompasses fusion polypeptides in which one or more polypeptides of the invention are fused with at least one polypeptide of interest. In one embodiment, the invention encompasses fusion polypeptides in which a heterologous polypeptide of interest has an amino acid sequence that is not substantially homologous to the polypeptide of the invention. In this embodiment, the polypeptide of the invention and the polypeptide of interest may or may not be operatively linked. An example of operative linkage is fusion in-frame so that a single polypeptide is produced upon translation. Such fusion polypeptides can, for example, facilitate the purification of a recombinant polypeptide.

In another embodiment, the fused polypeptide of interest may contain a heterologous signal sequence at the N-terminus facilitating its secretion from specific host cells. The expression and secretion of the polypeptide can thereby be increased by use of the heterologous signal sequence.

The invention is also directed to polypeptides in which one or more domains in the polypeptide described herein are operatively linked to heterologous domains having homologous functions. Thus, the toxin binding domain can be replaced with a toxin binding domain for other toxins. Thereby, the toxin specificity of the receptor is based

5

10

15

20

25

30

on a toxin binding domain other than the domain encoded by *Bt* toxin receptor but other characteristics of the polypeptide, for example, membrane localization and topology is based on *Bt* toxin receptor.

Alternatively, the native *Bt* toxin binding domain may be retained while additional heterologous ligand binding domains, including but not limited to heterologous toxin binding domains are comprised by the receptor. Thus, the invention also encompasses fusion polypeptides in which a polypeptide of interest is a heterologous polypeptide comprising a heterologous toxin binding domains. Examples of heterologous polypeptides comprising Cry1 toxin binding domains include, but are not limited to Knight et al (1994) *Mol Micro 11*: 429-436; Lee *et al.* (1996) *Appl Environ Micro 63*: 2845-2849; Gill *et al.* (1995) *J Biol Chem 270*: 27277-27282; Garczynski *et al.* (1991) *Appl Environ Microbiol 10*: 2816-2820; Vadlamudi *et al.* (1995) *J Biol Chem 270(10)*:5490-4, U.S. Patent No5,693,491.

The *Bt* toxin receptor peptide of the invention may also be fused with other members of the cadherin superfamily. Such fusion polypeptides could provide an important reflection of the binding properties of the members of the superfamily. Such combinations could be further used to extend the range of applicability of these molecules in a wide range of systems or species that might not otherwise be amenable to native or relatively homologous polypeptides. The fusion constructs could be substituted into systems in which a native construct would not be functional because of species specific constraints. Hybrid constructs may further exhibit desirable or unusual characteristics otherwise unavailable with the combinations of native polypeptides.

Polypeptide variants encompassed by the present invention include those that contain mutations that either enhance or decrease one or more domain functions. For example, in the toxin binding domain, a mutation may be introduced that increases or decreases the sensitivity of the domain to a specific toxin.

As an alternative to the introduction of mutations, increase in function may be provided by increasing the copy number of ligand binding domains. Thus, the invention also encompasses receptor polypeptides in which the toxin binding domain is provided in more than one copy.

The invention further encompasses cells containing receptor expression vectors comprising the *Bt* toxin receptor sequences, and fragments and variants thereof. The expression vector can contain one or more expression cassettes used to transform a cell

of interest. Transcription of these genes can be placed under the control of a constitutive or inducible promoter (for example, tissue - or cell cycle-preferred).

Where more than one expression cassette utilized, the cassette that is additional to the cassette comprising at least one receptor sequence of the invention, can comprise either a receptor sequence of the invention or any other desired sequences.

5

10

15

20

25

30

The nucleotide sequences of the invention can be used to isolate homologous sequences in insect species other than *ostrinia*, particularly other lepidopteran species, more particularly other *Pyraloidea* species.

The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: (a) "reference sequence", (b) "comparison window", (c) "sequence identity", (d) "percentage of sequence identity", and (e) "substantial identity".

- (a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.
- (b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.

Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) *CABIOS 4*:11-17; the local homology algorithm of Smith *et al.* (1981) *Adv. Appl. Math. 2*:482; the homology alignment algorithm of Needleman *and Wunsch* (1970) *J. Mol. Biol. 48*:443-453; the search-for-similarity-method of Pearson *and Lipman* (1988) *Proc. Natl. Acad. Sci. 85*:2444-2448; the algorithm of Karlin and Altschul (1990) *Proc.*

Natl. Acad. Sci. USA 872264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877.

Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations 5 include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0); the ALIGN PLUS program (version 3.0, copyright 1997); and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8 (available from Genetics Computer Group (GCG), 575 Science Drive, Madison, 10 Wisconsin, USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237-244 (1988); Higgins et al. (1989) CABIOS 5:151-153; Corpet et al. (1988) Nucleic Acids Res. 16:10881-90; Huang et al. (1992) CABIOS 8:155-65; and Pearson et al. (1994) Meth. Mol. Biol. 24:307-331. The ALIGN and the ALIGN PLUS programs are based on the algorithm of Myers and Miller (1988) supra. A 15 PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul et al (1990) J. Mol. Biol. 215:403 are based on the algorithm of Karlin and Altschul (1990) supra. BLAST nucleotide searches can be performed with the BLASTN program, score = 100, wordlength = 12, to obtain 20 nucleotide sequences homologous to a nucleotide sequence encoding a protein of the invention. BLAST protein searches can be performed with the BLASTX program, score = 50, wordlength = 3, to obtain amino acid sequences homologous to a protein or polypeptide of the invention. To obtain gapped alignments for comparison 25 purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See 30 http://www.ncbi.hlm.nih.gov. Alignment may also be performed manually by inspection.

Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: % identity using GAP Weight of 50 and Length Weight of 3; % similarity using Gap Weight of 12 and Length Weight of 4, or any equivalent program. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by the preferred program.

5

10

15

20

25

30

GAP uses the algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48: 443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.

GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the

5

10

15

20

25

30

Wisconsin Genetics Software Package is BLOSUM62 (see Henikoff and Henikoff (1989) *Proc. Natl. Acad. Sci. USA* 89:10915).

- As used herein, "sequence identity" or "identity" in the context of two nucleic acid or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have "sequence similarity" or "similarity". Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California).
- determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
- (e)(i) The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70% sequence identity,

preferably at least 80%, more preferably at least 90%, and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 60%, more preferably at least 70%, 80%, 90%, and most preferably at least 95%.

Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. However, stringent conditions encompass temperatures in the range of about 1°C to about 20°C lower than the T_m, depending upon the desired degree of stringency as otherwise qualified herein. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is when the polypeptide encoded by the first nucleic acid sequence is immunologically cross reactive with the polypeptide encoded by the second nucleic acid sequence.

(e)(ii) The term "substantial identity" in the context of a peptide indicates that a peptide comprises a sequence with at least 70% sequence identity to a reference sequence, preferably 80%, more preferably 85%, most preferably at least 90% or 95% sequence identity to the reference sequence over a specified comparison window. Preferably, optimal alignment is conducted using the homology alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol. 48*:443-453. An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution. Peptides that are "substantially similar" share sequences as noted above except that residue positions that are not identical may differ by conservative amino acid changes.

5

10

30

The nucleotide sequences of the invention can be used to isolate corresponding sequences from other organisms, particularly other insects, more particularly other lepidopteran species. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein. Sequences isolated based on their sequence identity to the entire *Bt* toxin receptor sequences set forth herein or to fragments thereof are encompassed by the present invention. Such sequences include sequences that are orthologs of the disclosed sequences. By "orthologs" is intended genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share substantial identity as defined elsewhere herein. Functions of orthologs are often highly conserved among species.

In a PCR approach, oligonucleotide primers can be designed for use in PCR
reactions to amplify corresponding DNA sequences from cDNA or genomic DNA
extracted from any organism of interest. Methods for designing PCR primers and
PCR cloning are generally known in the art and are disclosed in Sambrook et al.
(1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor
Laboratory Press, Plainview, New York). See also Innis et al., eds. (1990) PCR
Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis
and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and
Gelfand, eds. (1999) PCR Methods Manual (Academic Press, New York). Known
methods of PCR include, but are not limited to, methods using paired primers, nested
primers, single specific primers, degenerate primers, gene-specific primers, vectorspecific primers, partially-mismatched primers, and the like.

In hybridization techniques, all or part of a known nucleotide sequence is used as a probe that selectively hybridizes to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as ³²P, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the *Bt* toxin receptor sequences of the

5

10

15

20

25

30

invention. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

For example, the entire *Bt* toxin receptor sequence disclosed herein, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding *Bt* toxin receptor sequences and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among *Bt* toxin receptor sequences and are preferably at least about 10 nucleotides in length, and most preferably at least about 20 nucleotides in length. Such probes may be used to amplify corresponding *Bt* toxin receptor sequences from a chosen plant organism by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

Hybridization of such sequences may be carried out under stringent conditions. By "stringent conditions" or "stringent hybridization conditions" is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, preferably less than 500 nucleotides in length.

Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of

destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37°C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37°C, and a wash in 0.5X to 1X SSC at 55 to 60°C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 0.1X SSC at 60 to 65°C. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours.

5

10

15

20

25

30

Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T_m can be approximated from the equation of Meinkoth and Wahl (1984) Anal. Biochem. 138:267-284: $T_m = 81.5^{\circ}C + 16.6 (\log M) + 0.41 (\%GC)$ -0.61 (% form) - 500/L; where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T_m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T_m is reduced by about 1°C for each 1% of mismatching; thus, T_m, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90% identity are sought, the T_m can be decreased 10°C. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4°C lower than the thermal melting point (T_m); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10°C lower than the thermal melting point (T_m); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20°C lower than the thermal melting point (T_m). Using the equation, hybridization and wash compositions, and desired T_m, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T_m of less than 45°C (aqueous solution) or 32°C (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature

can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes, Part I, Chapter 2 (Elsevier, New York); and Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

5

10

15

20

25

30

Thus, isolated sequences that encode for a *Bt* toxin receptor protein and which hybridize under stringent conditions to the *Bt* toxin receptor sequences disclosed herein, or to fragments thereof, are encompassed by the present invention. Such sequences will be at least about 40% to 50% homologous, about 60%, 65%, or 70% homologous, and even at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more homologous with the disclosed sequences. That is, the sequence identity of sequences may range, sharing at least about 40% to 50%, about 60%, 65%, or 70%, and even at least about 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity.

The compositions and screening methods of the invention are useful for identifying cells expressing the BT toxin receptors of the invention, and variants and homologues thereof. Such identification could utilize detection methods at the protein level, such as ligand-receptor binding; or at the nucleotide level. Detection of the polypeptide could be *in situ* by means of *in situ* hybridization of tissue sections but may also be analyzed by bulk polypeptide purification and subsequent analysis by Western blot or immunological assay of a bulk preparation. Alternatively, receptor gene expression can be detected at the nucleic acid level by techniques well known to those of ordinary skill in any art using complimentary polynucleotides to assess the levels of genomic DNA, mRNA, and the like. As an example, PCR primers complimentary to the nucleic acid of interest can be used to identify the level of expression. Tissues and cells identified as expressing the receptor sequences of the invention are determined to be susceptible to toxins which bind the receptor polypeptides.

Where the source of the cells identified to express the receptor polypeptides of the invention is an organism, for example an insect plant pest, the organism is determined to be susceptible to toxins capable of binding the polypeptides. In a

particular embodiment, identification is in a lepidopteran plant pesr expressing the *Bt* toxin receptor of the invention.

The invention encompasses antibody preparations with specificity against the polypeptides of the invention. In further embodiments of the invention, the antibodies are used to detect receptor expression in a cell.

In one aspect, the invention is particularly drawn to compositions and methods for modulating susceptibility of plant pests to *Bt* toxins. However, it is recognized that the methods and compositions could be used for modulating susceptibility of any cell or organism to the toxins. By "modulating" is intended that the susceptibility of a cell or organism to the cytotoxic effects of the toxin is increased or decreased. By "suceptibility" is intended that the viability of a cell contacted with the toxin is decreased. Thus the invention encompasses expressing the cell surface receptor polypeptides of the invention to increase susceptibility of a target cell or organ to *Bt* toxins. Such increases in toxin susceptibility are useful for medical and veterinary purposes in which eradication or reduction of viability of a group of cells is desired. Such increases in susceptibility are also useful for agricultural applications in which eradication or reduction of population of particular plant pests is desired.

Plant pests of interest include, but are not limited to insects, nematodes, and the like. Nematodes include parasitic nematodes such as root-knot, cyst, lesion, and renniform nematodes, etc.

The following examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL

25 EXAMPLE 1: Isolation of EC Bt toxin receptor

5

10

15

20

30

Standard recombinant methods well known to those of ordinary skill in the art were carried out. For library construction, total RNA was isolated from the midgut of European corn borer (ECB), *Ostrinia nubilalis*. Corn borer larvae (for example, a mix of stage 2, 3, and 4, equal weight) can be pulverized in liquid nitrogen, homogenized, and total RNA extracted by standard procedures. PolyA RNA can be isolated from the total RNA with standard PolyA isolation procedures, such as the PolyATact system from Promega Corporation, Madison, WI. cDNA synthesis can then be performed and, for example, unidirectional cDNA libraries can be constructed according to known and

5

10

15

20

25

30

commercial procedures, such as the ZAP Express cDNA synthesis kit from Stratagene, La Jolla, CA. cDNA can be amplified by PCR, sized and properly digested with restriction fragments to be ligated into a vector. Subcloned cDNA can be sequenced to identify sequences with the proper peptide to identity corresponding to published sequences. These fragments can be used to probe genomic or cDNA libraries corresponding to a specific host, such as *Ostrinia nubilalis*, to obtain a full length coding sequence. Probes can also be made based on Applicants disclosed sequences. The coding sequence can then be ligated into a desired expression cassette and used to transform a host cell according to standard transformation procedures. Such an expression cassette can be part of a commercially available vector and expression system; for example, the pET system from Novagen Inc. (Madison, WI). Additional vectors that can be used for expression include pBKCMV, pBKRSV, pPbac and pMbac (Stratagene Inc.), pFASTBac1 (Gibco BRL) and other common bacterial, baculovirus, mammalian, and yeast expression vectors.

All vectors were constructed using standard molecular biology techniques as described for example in Sambrook *et al.*, (1989) *Molecular Cloning: A Laboratory Manual* (2nd ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y.).

Expression is tested by ligand blotting and testing for *Bt* toxin binding. Ligand blotting, binding, and toxicity are tested by known methods; for example, as described in Martinez-Ramirez (1994) *Biochem. Biophys. Res. Comm. 201*: 782-787; Vadlamudi *et al.* (1995) *J Biol Chem 270(10)*:5490-4, Keeton *et al.* (1998) *Appl Environ Microbiol 64(6)*:2158-2165; Keeton *et al.* (1997) *Appl Environ Microbiol 63(9)*:3419-3425; Ihara *et al.* (1998) *Comparative Biochemistry and Physiology, Part B 120*:197-204; Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem. 62(4)*:718-726 and Nagamatsu *et al.* (1998) *Biosci. Biotechnol. Biochem. 62(4)*:727-734.

Identifying the CrylA(b) binding polypeptide in ECB was done by ligand blotting brush border membrane vesicle polypeptides and probing those polypeptides for binding with CrylA(b) toxin. Two polypeptides, approximately 210 and 205 kDa, were found to bind to CrylA(b). Blotting and binding were done essentially as described in the preceding paragraph.

Degenerate primers for RT-PCR were designed based on known Cry1 toxin binding polypeptide sequences from *Manducca sexta* and *Bombyx mori*. The primers are shown below. cDNA was constructed from total midgut RNA (cDNA synthesis

kit GibcoBrL). Degenerate primers were used to amplify products of the expected size. The annealing temperature used was 53°C in generation of the 280 bp fragment and 55°C when generating the 1.6 kb fragment.

A 280bp fragment was obtained from ECB midgut RNA. Upon cloning and sequencing, the fragment was identified as having homology with the *Bt* toxin receptor 1 polypeptide (BTR1) described in Vadlamudi *et al.* (1995) *J Biol Chem* 270(10):5490-4.

5

20

30

A similar approach was used to generate a 1.6 kilobase pair clone. The sequence of primers used to generate the 280 base pair fragment were:

Primer BTRD1S: 5'GTTAMYGTGAGAGAGGCAGAYCC3' (SEQ ID NO:8), and Primer BTRD5A: 5'GGATRTTAAGMGTCAGYACWCCG3' (SEQ ID NO:9).

The sequence of primers used to generate the 1.6 kb fragment were:

Primer BTRD6S: 5'TCCGAATTCTTCTTYAACCTCATCGAYAACTT3' (SEQ ID NO:10), and

15 Primer BTRD7A: 5'CGCAAGCTTACTTGGTCGATGTTRCASGTCAT3' (SEQ ID NO:11)

The 1.6 kb fragment clone was ligated in an *E. coli* expression vector, pET-28a-c(+), and expressed using the pET system (Novagen Inc., Madison, WI). Purified polypeptide encoded by this 1.6kb fragment demonstrated binding to CrylA(b) in ligand blots. An ECB midgut cDNA library was generated and screened using this 1.6kb clone, generating 120 positive plaques. Thirty of these plaques were chosen for secondary screening and fifteen of those plaques were purified and sent for DNA sequencing.

The obtained nucleotide sequence of the selected *Bt* toxin receptor clone from ECB is set forth in SEQ ID NO: 1. The total length of the clone is 5498 base pairs. The coding sequences are residues 162-5312. The Cry1A binding site is encoded by residues 4038-4547. The predicted transmembrane domain is encoded by residues 4872-4928. The corresponding deduced amino acid sequence for this *Bt* toxin receptor clone from ECB is set forth in SEQ ID NO: 2.

The purified polypeptide generated from the 1.6kb fragment set forth in SEQ ID NO:7 was used to inoculate rabbits for the production of polyclonal antibodies. On zoo western blots prepared from brush border membrane vesicles from various insect species, this set of antibodies specifically recognized ECB *Bt* toxin receptor

polypeptides, in comparison to *Bt* toxin receptor homologues polypeptides from other insect species. Rabbit polyclonal antibodies were also raised from a purified polypeptide corresponding to amino acids 1293-1462 of SEQ ID NO:2.

5 Example 2: Isolation of CEW and FAW *Bt* toxin receptor orthologues:

10

25

30

cDNA encoding a full-length *Bt* toxin receptor from corn earworm (CEW, *Heliothis Zea*) was isolated. The nucleotide sequence for this cDNA is set forth in SEQ ID NO: 3. Nucleotides 171-5360 correspond to the open reading frame. Nucleotides 4917-4973 correspond to the transmembrane region. Nucleotides 4083-4589 correspond to the CrylA binding site. The deduced corresponding amino acid sequence for the CEW *Bt* toxin receptor is set forth in SEQ ID NO: 4.

cDNA encoding a full-length *Bt* toxin receptor from fall armyworm (FAW, *Spodoptera frugiperda*) was isolated. The nucleotide sequence for this cDNA is set forth in SEQ ID NO: 5. Nucleotides 162-5363 correspond to the open reading frame.

Nucleotides 4110-4616 correspond to the CrylA binding site. Nucleotides 4941-4997 correspond to the transmembrane region. Nucleotides 162-227 correspond to a signal peptide. The deduced corresponding amino acid sequence for the FAW *Bt* toxin receptor is set forth in SEQ ID NO: 6.

20 Example 3: Binding and cell death in *lepidopteran* insect cells expressing the *Bt* toxin receptors of the invention:

An *in vitro* system is developed to demonstrate the functionality of a *Bt* toxin receptor of the invention. The results disclosed in this example demonstrate that the ECB *Bt* toxin receptor of the invention (SEQ ID NOs:1 and 2) is specifically involved in the binding and killing action of Cry1Ab toxin.

Well known molecular biological methods are used in cloning and expressing the ECB *Bt* toxin receptor in Sf9 cells. A baculovirus expression system (Gibco BRL Catalogue No. 10359-016) is used according to the manufacturer's provided protocols and as described below. *S. frugiperda* (Sf9) cells obtained from ATCC (ATCC-CRL 1711) are grown at 27°C in Sf-900 II serum free medium (Gibco BRL, Catalogue No. 10902-088). These cells, which are not susceptible to Cry1Ab toxin, are transfected with an expression construct (pFastBac1 bacmid, Gibco BRL catalogue NO. 10360-014) comprising an operably linked *Bt* toxin receptor of the invention (SEQ ID NO:1)

5

10

15

20

25

30

downstream of a polyhedrin promoter. Transfected Sf9 cells express the ECB Bt toxin receptor and are lysed in the presence of CrylAb toxin. Toxin specificities, binding parameters, such as Kd values, and half maximal doses for cellular death and/or toxicity are also determined.

For generating expression constructs, the ECB $_{Bt}$ toxin receptor cDNA (SEQ ID NO:1) is subjected to appropriate restriction digestion, and the resulting cDNA comprising the full-length coding region is ligated into the donor plasmid pFastBac1 multiple cloning site. Following transformation and subsequent transposition, recombinant bacmid DNA comprising the ECB $_{Bt}$ toxin receptor (RBECB1) is isolated. As a control, recombinant bacmid DNA comprising the reporter gene $_{g}$ -glucuronidase (RBGUS) is similarly constructed and isolated.

For transfection, $2_{\mu}g$ each RBECB1 or RBGUS DNA is mixed with 6 $_{\mu}l$ of CellFectin (GibcoBRL catalogue NO. 10362-010) in 100 $_{\mu}l$ of Sf900 medium, and incubated at room temperature for 30 minutes. The mixture is then diluted with 0.8 ml Sf-900 medium. Sf9 cells ($10^6/ml$ per 35 mm well) are washed once with Sf-900 medium, mixed with the DNA/CellFectin mixture, added to the well, and incubated at room temperature for 5 hours. The medium is removed and 2 ml of Sf-900 medium containing penicillin and streptomycin is added to the well. 3-5 days after transfection, Western blotting is used to examine protein expression.

For Western blotting,100 μ l of cell lysis buffer (50 mM Tris, pH7.8, 150mM NaCl, 1% Nonidet P-40) is added to the well. The cells are scraped and subjected to 16,000xg centrifugation. Pellet and supernatant are separated and subjected to Western blotting. An antibody preparation against ECB B_t toxin receptor (Example 1) is used as first antibody. Alkaline phosphatase-labelled anti-rabbit IgG is used as secondary antibody. Western blot results indicate that the full length ECB B_t toxin receptor of the invention (SEQ ID NOs:1 and 2) is expressed in the cell membrane of these cells.

For determining GUS activity, the medium of the cells transfected with RBGUS is removed. The cells and the medium are separately mixed with GUS substrate and assayed for the well known enzymatic activity. GUS activity assays indicate that this reporter gene is actively expressed in the transfected cells.

For determining toxin susceptibility, Cry toxins including but not limited to CrylA, CrylB, CrylC, CrylD, CrylE, CrylF, CrylI, Cry2, Cry3, and Cry9 toxins

5

10

15

20

25

30

(Schnepf E. et al. (1998) Microbiology and Molecular Biology Reviews 62(3): 775-806) are prepared by methods known in the art. Crystals are dissolved in pH 10.0, 50 mM carbonate buffer and treated with trypsin. Active fragments of Cry proteins are purified by chromatography. Three to five days after transfection, cells are washed with phosphate buffered saline (PBS). Different concentrations of active fragments of Cry toxins are applied to the cells. At different time intervals, the cells are examined under the microscope to readily determine susceptibility to the toxins. Alternatively, cell death, viability and/or toxicity is quantified by methods well known in the art. See, for example, In Situ Cell Death Detection Kits available from Roche Biochemicals (Catalogue Nos. 2 156 792, 1 684 809, and 1 684 817), and LIVE/DEAD® Viability/Cytotoxicity Kit available from Molecular Probes (catalogue No. L-3224).

A dose-dependent response of RBECB1-transfected cells to Cry1Ab is readily observed, with determined Kd values well within the range for many receptors.

Control cells, e.g. those transfected with pFastBac1 bacmid without an insert or those transfected with RBGus are not significantly affected by Cry1Ab. Interaction with other Cry toxins are similarly characterized.

This *in vitro* system is not only be used to verify the functionality of putative *Bt*-toxin receptors, but also used as a tool to determine the active site(s) and other functional domains of the toxin and the receptor. Furthermore, the system is used as a cell-based high throughput screen. For example, methods for distinguishing live versus dead cells by differential dyes are known in the art. This allows for aliquots of transfected cells to be treated with various toxin samples and to serve as a means for screening the toxin samples for desired specificity or binding characteristics. Since the system is used to identify the specificity of Cry protein receptors, it is a useful tool in insect resistance management.

Example 4: Expression of the ECB *Bt* toxin receptor in toxin susceptible stages of the insect's life cycle:

Total RNA was isolated from the eggs, pupae, adults, and the 1st through the 5th instar developmental stages, using TRIzol Reagent (Gibco BRL) essentially as instructed by the manufacturer.(Gibco BRL). The RNA was quantitated and 20 ug of each sample was loaded onto a formaldehyde agarose gel and electrophoresed at

constant voltage. The RNA was then transferred to a nylon membrane via neutral capillary transfer and cross-linked to the membrane using ultraviolet light. For hybridization, a 460 base pair ECB *Bt* toxin receptor DNA probe (bases 3682 to 4141 in SEQ ID NO:1) was constructed from a 460 base pair fragment prepared according to the manufacturer's protocol for Amersham Rediprime II random prime labeling system. The denatured probe was added to the membrane that had been prehybridized for at least 3 hours at 65°C and allowed to incubate with gentle agitation for at least 12 hours at 65°C. Following hybridization, the membranes were washed at 65°C for 1 hour with 1/4X 0.5M NaCl, 0.1M NaPO4 (ph 7.0), 6mM EDTA and 1% SDS solution followed by two 1 hour washes in the above solution without SDS. The membrane was air dried briefly, wrapped in Saran Wrap and exposed to X-ray film.

An ECB *Bt* toxin receptor transcript of 5.5 kilobase was expressed strongly in the larval instars with much reduced expression in the pupal stage. The expression levels appeared to be fairly consistent from first to fifth instar, while decreasing markedly in the pupal stage. There were no detectable transcripts in either the egg or adult stages. These results indicate that the ECB *Bt* toxin transcript is being produced in the susceptible stages of the insects life cycle, while not being produced in stages resistant to the toxic effects of CrylAb.

20 Example 5: Tissue and subcellular expression of the ECB *Bt* toxin receptor:

10

15

25

30

Fifth instar ECB were dissected to isolate the following tissues: fat body (FB), malpighian tubules (MT), hind gut (HG), anterior midgut (AM) and posterior midgut (PM). Midguts from fifth instar larvae were also isolated for brush border membrane vesicle (BBMV) preparation using the well known protocol by Wolfersberger *et al.*(1987) *Comp. Biochem. Physiol. 86A*:301-308. Tissues were homogenized in Tris buffered saline, 0.1 % tween-20, centrifuged to pellet insoluble material, and transferred to a fresh tube. 50 ug of protein from each preparation was added to SDS sample buffer and B-mercaptoethanol, heated to 100°C for 10 minutes and loaded onto a 4-12% Bis-Tris gel (Novex). After electrophoresis, the proteins were transferred to a nitrocellulose membrane using a semi-dry apparatus. The membrane was blocked in 5% nonfat dry milk buffer for 1 hour at room temperature with gentle agitation. The primary antibody (Example 1) was added to a final dilution of 1:5000 and allowed to hybridize for 1 hour. The blot was then washed three times for 20

5

10

15

20

minutes each in nonfat milk buffer. The blot was then hybridized with the secondary antibody (goat anti-rabbit with alkaline phosphatase conjugate) at a dilution of 1:10000 for 1 hour at room temperature. Washes were performed as before. The bands were visualized by using the standard chemiluminescent protocol (Tropix western light protein detection kit).

The ECB *Bt* toxin receptor protein was only visible in the BBMV enriched lane, and not detected in any of the other ECB tissues types. This result indicates that the expression of the ECB *Bt* toxin receptor protein is at very low levels, since the BBMV preparation is a 20-30 fold enriched fraction of the midgut brush border. The result supports propositions that the ECB *Bt* toxin receptor is an integral membrane protein uniquely associated with the brush border. It also demonstrates that the ECB *Bt* toxin receptor is expressed in the envisioned target tissue for CrylAb toxins. However, the result does not necessarily rule out expression in other tissue types, albeit the expression of this protein in those tissues may be lower than in the BBMV enriched fraction.

All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Applicant's or agent's		International application No.	
file reference	35718/204291		

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)

A. The indications made below relate to the deposited microorganism 23, 26 and 31	n or other biological material referred to in the description on page 3, lines
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depository institution	
American Type Culture Collection	n
Address of depositary institution (including postal code and country)	
10801 University Blvd.	
Manassas, VA 20110-2209 US	
Date of deposit	Accession Number
25 June 1999 (25.06.99)	PTA-278
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE	(if the indicators are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not ap	nlicable
The indications listed below will be submitted to the International Burea	· · · · · · · · · · · · · · · · · · ·
Number of Deposit")	a tale (epoch) are government of the material origin, it is consistent.
·	
For receiving Office use only	For International Bureau use only
To receiving office use only	_
This sheat was received with the international application	This sheet was received with the International Bureau on:
KINDA TUNOASA	Authorized officer
Authorities Harrod	Authorized officer
PCT/Internat'l Appl Processing DIV.	
(703) 305-3670 NN	

Form PCT/RO/134 (July 1998)

file reference 35718/204291	International application No.		Applicant's or agent's
		35718/204291	file reference

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)

23, 26 and 31	
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depository institution American Type Culture Collection	n
Address of depositary institution (including postal code and country)	
10801 University Blvd. Manassas, VA 20110-2209 US	
Date of deposit	Accession Number
25 April 2000 (25.04.00)	PTA-1760
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE	(if the indicators are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not app	vlicable)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not app. The indications listed below will be submitted to the International Bureau Number of Deposit")	
The indications listed below will be submitted to the International Bureau	

Form PCT/RO/134 (July 1998)

Applicant's or agent's		International application No.	
file reference	35718/204291		_

INDICATIONS RELATING TO DEPOSITED MICROORGANISM OR OTHER BIOLOGICAL MATERIAL

(PCT Rule 13bis)

A. The indications made below relate to the deposited microorganism 23, 26 and 31	or other biological material referred to in the description on page 3, lines
B. IDENTIFICATION OF DEPOSIT	Further deposits are identified on an additional sheet
Name of depository institution American Type Culture Collection	n
Address of depositary institution (including postal code and country) 10801 University Blvd. Manassas, VA 20110-2209 US	
Date of deposit 11 July 2000 (11.07.00)	Accession Number PTA-2222
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE	(if the indicators are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not app	nlicable)
The indications listed below will be submitted to the International Bureau Number of Deposit")	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application Authorized officer Volanda Harrod PCT/internat'l Appl Processing Div. (703) 305-3670	This sheet was received with the International Bureau on: Authorized officer

THAT WHICH IS CLAIMED:

1. An isolated nucleic acid molecule having a nucleotide sequence encoding a *Bt* toxin receptor, said sequence selected from the group consisting of:

- a) a nucleotide sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3
 or SEQ ID NO: 5;
- b) a nucleotide sequence having at least about 60 % identity to the nucleotide sequence of a);
 - c) a nucleotide sequence having at least about 70 % identity to the nucleotide sequence of a);
- d) a nucleotide sequence having at least about 75 % identity to the nucleotide sequence of a);
 - e) a nucleotide sequence having at least about 85 % identity to the nucleotide sequence of a);
 - f) a nucleotide sequence having at least about 95 % identity to the nucleotide sequence of a);
- g) a nucleotide sequence consisting of at least 22 contiguous nucleotides of the nucleotide sequence set forth in SEQ ID NO:1;
 - h) a nucleotide sequence consisting of at least about 15 contiguous nucleotides of the nucleotide sequence set forth in SEQ ID NO:3, or SEQ ID NO:5;
- i) a nucleotide sequence that hybridizes under stringent
 20 conditions to the nucleotide sequence of a); and
 - 2. The nucleic acid molecule of claim 1, wherein said toxin is a Cry1A toxin.
- 25 The nucleic acid of claim 2, wherein said Cry1A toxin is a Cry1A(b) toxin.
 - 4. An isolated polypeptide having the amino acid sequence selected from the group consisting of:
- a) an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO:4, or SEQ ID NO: 6;
 - b) an amino acid sequence having at least about 52% identity to

the amino acid sequence set forth in SEQ ID NO: 2;

c) an amino acid sequence having at least about 60 % identity to the amino acid sequence of a);

- d) an amino acid sequence having at least about 70 % identity to the amino acid sequence of a);
 - e) an amino acid sequence having at least about 75 % identity to an amino acid sequence of a);
 - f) an amino acid sequence having at least about 85 % identity to an amino acid sequence of a);
- g) an amino acid sequence having at least about 95 % identity to an amino acid sequence of a);
 - h) an amino acid comprising at least about 15 contiguous residues of the amino acid nucleotide sequence of a);
- i) an amino acid sequence encoded by a nucleotide sequence
 according to claim 1;
 - j) a variant of the amino acid sequence of a);
 - k) a fragment of the amino acid sequence of a); and
 - 1) a fragment of the amino acid sequence of a) that binds Bt toxin.
- 5. A fusion polypeptide comprising the polypeptide of claim 4, and at least one polypeptide of interest.
 - 6. The fusion polypeptide of claim 5, wherein said polypeptide of interest is a toxin receptor.

- 7. An expression cassette comprising a nucleotide sequence encoding the fusion polypeptide of claim 5, wherein said nucleotide sequence is operably linked to a promoter that drives expression in a cell of interest.
- 30 8. The expression cassette of claim 7 wherein said polypeptide of interest is a toxin receptor.
 - 9. An antibody preparation specific for the polypeptide of claim 4.

10. An expression cassette comprising at least one nucleotide sequence according to claim 1, wherein said nucleotide sequence is operably linked to a promoter that drives expression in a cell of interest.

5

- 11. The expression cassette of claim 10, wherein said cell of interest is an insect or mammalian cell.
- 12. The expression cassette of claim 10 wherein said cell of interest is a microorganism.
 - 13. The expression cassette of claim 12 wherein said microorganism is yeast or bacteria.
- 15 14. A vector for delivery of a nucleotide sequence to a cell of interest, the vector comprising at least one nucleotide sequence according to claim 1.
 - 15. A cell containing the vector of claim 14.
- 20 16. A transformed cell of interest having stably incorporated within its genome a nucleotide sequence selected from the group consisting of:
 - a) a nucleotide sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5;
- b) a nucleotide sequence having at least about 60 % identity to the nucleotide sequence of a);
 - c) a nucleotide sequence having at least about 70 % identity to the nucleotide sequence of a);
 - d) a nucleotide sequence having at least about 75 % identity to the nucleotide sequence of a);
 - e) a nucleotide sequence having at least about 85 % identity to the nucleotide sequence of a);
 - f) a nucleotide sequence having at least about 95 % identity to the nucleotide sequence of a);

g) a nucleotide sequence consisting of at least 22 contiguous nucleotides of the nucleotide sequence set forth in SEQ ID NO:1;

- h) a nucleotide sequence consisting of at least about 15 contiguous 5 nucleotides of the nucleotide sequence set forth in SEQ ID NO:3, or SEQ ID NO:5;
 - i) a nucleotide sequence that hybridizes under stringent conditions to the nucleotide sequence of a); and
 - 17. The transformed cell of claim 16, wherein said cell is a plant cell.

- 18. The transformed cell of claim 17, wherein said plant cell is monocotyledonous.
- 19. A method for screening for ligands that bind *Bt* toxin receptor, said method comprising:
 - i) providing at least one *Bt* toxin receptor polypeptide according to claim 4;
 - ii) contacting said polypeptide with a sample and a control ligand under conditions promoting binding; and
- 20 iii) determining binding characteristics of said sample ligand, relative to said control ligand.
 - 20. A method for screening for ligands that bind *Bt* toxin receptor, said method comprising:
- i) providing at least one *Bt* toxin receptor polypeptide having the amino acid sequence selected from the group consisting of a, b, c, d, e, f, g, h, i, and j of claim 4 in cells expressing said polypeptide wherein said polypyptide comprises a toxin binding domain;
- ii) contacting said cells with a sample and a control ligand under30 conditions promoting binding; and
 - iii) determining binding characteristics of said sample ligand, relative to said control ligand.
 - 21. The method of claim 20 wherein said toxin is a Cry1A toxin.

22. A method for screening for toxins that bind Bt toxin receptor, said method comprising the steps of claim 20; further comprising determining viability of said cells contacted with a sample ligand relative to said cells contacted with a control ligand.

23. The method of claim 20, wherein said sample ligand is a chimeric polypeptide comprising at least one primary polypeptide that binds a polypeptide having the amino acid sequence selected from the group consisting of:

5

10

15

20

25

30

- a) an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO: 4, or SEQ ID NO: 6;
 - b) an amino acid sequence having at least about 52% identity to the amino acid sequence set forth in SEQ ID NO: 2;
- c) an amino acid sequence having at least about 60 % identity to the amino acid sequence of a);
 - d) an amino acid sequence having at least about 70 % identity to the amino acid sequence of a);
 - e) an amino acid sequence having at least about 75 % identity to an amino acid sequence of a);
 - f) an amino acid sequence having at least about 85 % identity to an amino acid sequence of a);
 - g) an amino acid sequence having at least about 95 % identity to an amino acid sequence of a);
- h) an amino acid comprising at least about 15 contiguous residues of the amino acid nucleotide sequence of a);
 - i) an amino acid sequence encoded by a nucleotide sequence having at least about 60 % identity to the nucleotide sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5; and
 - j) a variant of the amino acid sequence of a).

24. The method of claims 21, wherein said sample ligand is a chimeric polypeptide comprising at least one primary polypeptide that binds a polypeptide having the amino acid sequence selected from the group consisting of:

a) an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO: 4, or SEQ ID NO: 6;

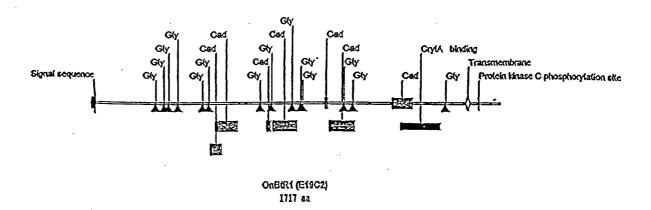
- b) an amino acid sequence having at least about 52% identity to the amino acid sequence set forth in SEQ ID NO: 2;
- c) an amino acid sequence having at least about 60 % identity to the amino acid sequence of a);

5

10

15

20


25

- d) an amino acid sequence having at least about 70 % identity to the amino acid sequence of a);
 - e) an amino acid sequence having at least about 75 % identity to an amino acid sequence of a);
- f) an amino acid sequence having at least about 85 % identity to an amino acid sequence of a);
- g) an amino acid sequence having at least about 95 % identity to an amino acid sequence of a);
- h) an amino acid comprising at least about 15 contiguous residues of the amino acid nucleotide sequence of a);
 - i) an amino acid sequence encoded by a nucleotide sequence having at least about 60 % identity to the nucleotide sequence set forth in SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5; and
 - j) a variant of the amino acid sequence of a).
 - 25. The method of claims 22, wherein said sample ligand is a chimeric polypeptide comprising at least one primary polypeptide that binds a polypeptide having the amino acid sequence selected from the group consisting of:
 - a) an amino acid sequence set forth in SEQ ID NO: 2, SEQ ID NO: 4, or SEQ ID NO: 6;
 - b) an amino acid sequence having at least about 52% identity to the amino acid sequence set forth in SEQ ID NO: 2;
- c) an amino acid sequence having at least about 60 % identity to the amino acid sequence of a);
 - d) an amino acid sequence having at least about 70 % identity to the amino acid sequence of a);

e) an amino acid sequence having at least about 75 % identity to an amino acid sequence of a);

- f) an amino acid sequence having at least about 85 % identity to an amino acid sequence of a);
- g) an amino acid sequence having at least about 95 % identity to an amino acid sequence of a);

- h) an amino acid comprising at least about 15 contiguous residues of the amino acid nucleotide sequence of a);
- i) an amino acid sequence encoded by a nucleotide sequence having at
 10 least about 60 % identity to the nucleotide sequence set forth in SEQ ID NO: 1, SEQ
 ID NO: 3 or SEQ ID NO: 5; and
 - j) a variant of the amino acid sequence of a).

Gly = putative glycosilation sites

Cad = cadherin-like domain

FIGURE 1

SEQUENCE LISTING

<110> Flannagan, Ronald D. Mathis, John P. Meyer, Terry E. <120> Novel Bt Toxin Receptors From Lepidopteran Insects and Methods of Use <130> 35718/204291 <150> 60/166,285 <151> 1999-11-18 <160> 11 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 5498 <212> DNA <213> Ostrinia nubilalis <220> <221> CDS <222> (162)...(5312) <400> 1 cataataaca ataaagagga agtgtgtgtg aaaaacgaag aagttaataa acctggataa 60 ttaaacctga aaaaaaccgg tgtttaagtg gaatttttgc tgaaggacaa ccgtgggata 120 gctcaaatat taaaattcta cataactaag gatcatgcaa a atg ggg gtt gag agg 176 Met Gly Val Glu Arg ttc ttc cca gca gtg cta ctg gtc tct tta gcc tct gcc gca cta gcc 224 Phe Phe Pro Ala Val Leu Leu Val Ser Leu Ala Ser Ala Ala Leu Ala 10 15 aac caa cga tgt tcg tac att atc gca ata cca aga ccg gag act ccg 272 Asn Gln Arg Cys Ser Tyr Ile Ile Ala Ile Pro Arg Pro Glu Thr Pro gaa ctg ccg cct att gat tac gaa gga aaa tca tgg agt gaa cag cct 320 Glu Leu Pro Pro Ile Asp Tyr Glu Gly Lys Ser Trp Ser Glu Gln Pro cta ata ccc ggc ccg acc cga gag gaa gta tgt atg gag aac ttc tta 368 Leu Ile Pro Gly Pro Thr Arg Glu Glu Val Cys Met Glu Asn Phe Leu ccg gat caa atg att cag gtc ata tac atg gag gaa gaa atc gaa gga 416 Pro Asp Gln Met Ile Gln Val Ile Tyr Met Glu Glu Glu Ile Glu Gly 70

gac gtc atc att gcg aag ctt aac tat caa ggg tcc aac acg ccg gtg

Asp Val Ile Ile Ala Lys Leu Asn Tyr Gln Gly Ser Asn Thr Pro Val

ctg tcg att atg tca ggc cag ccc aga gcc cag ctg ggc cct gag ttt

90

80

464

Leu	Ser	Ile	Met 105	Ser	Gly	Gln	Pro	Arg 110	Ala	Gln	Leu	Gly	Pro 115	Glu	Phe	
														caa Gln		560
														atc Ile		608
gtg Val 150	gag Glu	ggt Gly	gaa Glu	tca Ser	cag Gln 155	gcc Ala	gta Val	ctg Leu	gtg Val	gcg Ala 160	ctg Leu	gag Glu	ata Ile	gtc Val	aac Asn 165	656
														gta Val 180		704
														gtg Val		752
														gtc Val		800
														gaa Glu		848
														aat Asn		896
														aca Thr 260		944
														caa Gln		992
														tca Ser		1040
														gcg Ala		1088
														atc Ile		1136
														gga Gly 340		1184
														gag Glu		1232

			acc Thr		-	-					_	_	_		-	1280
		-	cac His					-		_	-		_	_	-	1328
			ctg Leu													1376
	_		cta Leu				-	_					_	-	-	1424
_		_	aac Asn 425	_					-			-			-	1472
		-	gcg Ala		-					_		-			_	1520
	-		ttc Phe		-							-	_	-		1568
-	-		att Ile		-					-	-		-		_	1616
_			gct Ala	_		-									_	. 1664
			aac Asn 505													1712
	_		aag Lys			-		-			-	-				1760
			gac Asp													1808
			gtt Val													1856
			atg Met													1904
			gtg Val 585													1952
aca	gtg	acc	acc	cag	ctg	gtg	ata	gaa	ctg	gag	gat	gtc	aac	aac	act	2000

Thr	Val	Thr 600	Thr	Gln	Leu	Val	Ile 605	Glu	Leu	Glu	Asp	Val 610	Asn	Asn	Thr	
						ccc Pro 620										2048
						ata Ile										2096
						tgg Trp										2144
-		_	_		-	gag Glu					-		-		-	2192
	_		-	_		tac Tyr									-	2240
		_				caa Gln 700				-		-			-	2288
		-			_	ctt Leu				-	-			-		2336
						gac Asp										2384
						aac Asn										2432
_	_	_	-	-		cgc Arg		-		-	-		-			2480
						gac Asp 780										2528
						aga Arg										2576
						caa Gln										2624
						cgc Arg										2672
-	-		_		_	gaa Glu		_	-	-	-			-		2720

aac	tac	ttc	gaa	gtt	cca	ggc	gat	atc	gaa	ata	gaa	atc	atc	gac	aca	2768
						Gly 860										
						ccg Pro										2816
						acg Thr										2864
						gac Asp										2912
						ccc Pro										2960
_	_			_		gag Glu 940				_		_	_		_	3008
gac Asp 950	cgc Arg	gat Asp	ggg Gly	gat Asp	gag Glu 955	cct Pro	aca Thr	cat His	act Thr	atc Ile 960	ttt Phe	gta Val	aat Asn	ttc Phe	atc Ile 965	3056
_					_	ggt Gly	_			_		-	-	-	_	3104
_			_	Val		ttg Leu	-		Asn	-		-		Glu	_	3152
			Asp			cgg Arg		Asp					Ala			3200
	_	Arg	_			gaa Glu 1020	Ile		-	-	-	Arg	-	-		3248
	Thr					gtc Val					Leu					3296
					Glu	gtg Val				Phe					Ile	3344
				Gly		ctt Leu			Ala					Gly		3392
			Tyr	_		ttc Phe		Glu	-				Gly			3440
cag	cag	agg	tcc	aac	gag	acg	tac	acc	_	gtc	atc	cgc	ccc	tac	aac	3488

Gln	Gln 1095	_	Ser	Asn	Glu	Thr 1100	_	Thr	Leu	Val	Ile 110	_	Pro	Tyr	Asn	
	His					Val					Asp			att Ile		3536
			-	_	Ala		-			Val	_		_	gct Ala 1140	Ala	3584
				Glu					Thr					ctc Leu 5		3632
		-	Val	_			-	Gln					Ala	gtt Val	-	3680
		Asp			_		Gly	_		-		Ser		cag Gln		3728
	Leu	_	_			Pro	_			-	Gln			atc Ile	-	3776
					Gly					Gly				acc Thr 1220	Asp	3824
				Val					Thr					gtg Val		3872
_	-		Ala					Phe					Glu	ggc Gly		3920
-		Ser			-	_	Gln	_	_	-		Lys		cac His		3968
	Ğlu					Asp					Phe			ggc Gly		4016
					Val					Ser				tcc Ser 1300	Leu	4064
	-		_	Asp	-			-	Thr			-	-	cac His		4112
			Asn					Thr					Gln	act Thr		4160
		Val	_	_	-		Val	_	_			Pro		cca Pro		4208

		Ala Gly Ile	tcg acg ttg gac Ser Thr Leu Asp 1360	
ggc cgg gaa ttg Gly Arg Glu Leu	ctt act gtc Leu Thr Val 1370	agg gcg agc Arg Ala Ser 1375	cac aca gaa gac His Thr Glu Asp	gac acc 4304 Asp Thr 1380
	Ile Asp Arg		cag ctg gac agc Gln Leu Asp Ser 1395	Ser Leu
			cat gcg acc acc His Ala Thr Thr 1410	
		Thr Ala Ser	atg cac ggc atg Met His Gly Met 1425	
, ,		Thr Ala Ser	gca atc gac aca Ala Ile Asp Thr 1440	-
			cgc gtg acc ttc Arg Val Thr Phe	
-	Glu Thr Val		aga aat ttc ata Arg Asn Phe Ile 1475	Ala Ala
	Gly Phe Asn		aac atc gac cag Asn Ile Asp Gln 1490	
		Val Ala Gln .	gac gac acc acc Asp Asp Thr Thr 1505	
		Asn Val Pro	gtg cag gca caa Val Gln Ala Gln 1520	
			cgc acc atc cag Arg Thr Ile Gln	
	Ser Leu Val		ctg gtg acg ggt Leu Val Thr Gly 1555	Asp Thr
	Glu Glu Ser		gcc gtc tac gca Ala Val Tyr Ala 1570	
2 2		Phe Leu Cys	ctc gta ctg ctt Leu Val Leu Leu 1585	_
ttg ttc tgt agg	aca aga gca	ctg aac cgg	cag ctg caa gca	ctc tcc 4976

1590	Cys Arg	Thr	Arg 1595		Leu	Asn	Arg	Gln 1600		Gln	Ala	Leu	Ser 1605	
atg acg a			Ser					Leu					Leu	5024
gcg ccg (Ala Pro (Asn					Glu					Met		5072
aac gag g Asn Glu A						Phe					Asp			5120
ggc gac t Gly Asp S 1655	_	_			Ile		_	-	_	Gln		_	-	5168
gac tac t Asp Tyr I 1670				Asp					Ser					5216
cac atg o			Thr					Val					Asn	5264
aac ttc o		Lys					Leu					Pro		5312
taactocca	ag ggta	taaco	ct at	ccac	aatc	r cct	2000		~~~	a t				C 2 7 2 0
tatcatcgc tattttat ctcgag		attag	gc āt	gaag	gatac	cta	itgta	acat	atto	gtaaa	att c	gtaac	catatc	5372 5432 5492 5498
tatcatcgg tattttat	ta caaa 17	atta <u>c</u> tatat	gc at	gaag attt	gatac	cta	itgta	acat	atto	gtaaa	att c	gtaac	catatc	5432 5492
tatcatcgg tatttttat ctcgag <210> 2 <211> 171 <212> PR1	ta caaa 17	atta <u>c</u> tatat	gc at	gaag attt	gatac	cta	itgta	acat	atto	gtaaa	att c	gtaac	catatc	5432 5492
tatcatcgg tatttttat ctcgag <210> 2 <211> 171 <212> PR0 <213> Ost <400> 2 Met Gly V	ta caaa 17 F trinia Val Glu	attag tatat nubil Arg 5	gc at	gaag attt	gatac catat	c cta	val	Leu	atto	ytaaa aaaaa Val	ser	gtaac aaaaa Leu 15	catato aaaaaa Ala	5432 5492
tatcatcgg tatttttat ctcgag <210> 2 <211> 171 <212> PR1 <213> Ost <400> 2 Met Gly V	ta caaa 17 F trinia Val Glu	attag tatat nubil Arg 5	gc at	gaag attt	gatac catat	c cta	val	Leu	atto	ytaaa aaaaa Val	ser	gtaac aaaaa Leu 15	catato aaaaaa Ala	5432 5492
tatcatcgg tatttttat ctcgag <210> 2 <211> 171 <212> PR1 <213> Ost <400> 2 Met Gly V 1 Ser Ala A Arg Pro C	ta caaa 17 T trinia Val Glu Ala Leu 20	attag tatat nubil Arg 5 Ala	gc at to tall a labeled a	gaag attt	Pro Arg	Ala Cys 25	val 10 Ser	Leu Tyr	Leu Ile	ytaaa aaaaa Val Ile	Ser Ala	Leu 15 Ile	catato aaaaaa Ala Pro	5432 5492
tatcatcgg tatttttat ctcgag <210> 2 <211> 171 <212> PR1 <213> Ost <400> 2 Met Gly V 1 Ser Ala A Arg Pro G Trp Ser G	ta caaa 17 T trinia Val Glu Ala Leu 20 Glu Thr 35	nubil Arg 5 Ala Pro	gc at tt tt Lalis Phe Asn Glu	Phe Gln Leu	Pro Arg Pro 40	Ala Cys 25 Pro	Val 10 Ser	Leu Tyr	Leu Ile	Val Ile Glu 45	Ser Ala Gly	Leu 15 Ile	Ala Pro Ser	5432 5492
tatcatcgg tattttat ctcgag <210> 2 <211> 171 <212> PR1 <213> Ost <400> 2 Met Gly V 1 Ser Ala A Arg Pro G 50 Met Glu A	ta caaa 17 T trinia Val Glu Ala Leu 20 Glu Thr 35 Glu Gln	nubil Arg 5 Ala Pro	gc at talis Phe Asn Glu Leu Pro	Phe Gln Leu	Pro Arg Pro 40 Pro	Ala Cys 25 Pro	Val 10 Ser Ile	Leu Tyr Asp	Leu Ile Tyr Arg	Val Ile Glu 45 Glu	Ser Ala 30 Gly	Leu 15 Ile Lys	Ala Pro Ser Cys	5432 5492
tatcatcgg tatttttat ctcgag <210> 2 <211> 171 <212> PR0 <213> Ost <400> 2 Met Gly V 1 Ser Ala A Arg Pro G 50	ta caaa 17 T trinia Val Glu Ala Leu 20 Glu Thr 35 Glu Gln Asn Phe	nubil Arg 5 Ala Pro Pro Leu Gly	Pro	Phe Gln Leu Ile 55 Asp	Pro Arg Pro 40 Pro Gln	Ala Cys 25 Pro Gly Met	Val 10 Ser Ile Pro Ile	Leu Tyr Asp Thr Gln	Leu Ile Tyr Arg 60 Val	Val Ile Glu 45 Glu Ile	Ser Ala 30 Gly Glu	Leu 15 Ile Lys Val Met	Ala Pro Ser Cys Glu 80	5432 5492
tatcatcgg tatttttat ctcgag <210> 2 <211> 171 <212> PR0 <213> Ost <400> 2 Met Gly V 1 Ser Ala A Arg Pro 0 50 Met Glu A 65	ta caaa 17 T trinia Val Glu Ala Leu 20 Glu Thr 35 Glu Gln Asn Phe Ile Glu	nubil Arg 5 Ala Pro Pro Leu Gly 85 Val	Phe Asn Glu Leu Pro 70 Asp	Phe Gln Leu Ile 55 Asp	Pro Arg Pro 40 Pro Gln	Ala Cys 25 Pro Gly Met Ile	Val 10 Ser Ile Pro Ile Ala 90	Leu Tyr Asp Thr Gln 75 Lys	Leu Ile Tyr Arg 60 Val	Val Ile Glu 45 Glu Ile Asn	Ser Ala 30 Gly Tyr Tyr	Leu 15 Ile Lys Val Met Gln 95	Ala Pro Ser Cys Glu 80 Gly	5432 5492
tatcatcgg tatttttat ctcgag <210> 2 <211> 171 <212> PR0 <213> Ost <400> 2 Met Gly V 1 Ser Ala A Arg Pro 0 50 Met Glu A 65 Glu Glu I Ser Asn T Leu Gly I	ta caaa 17 T trinia Val Glu Ala Leu 20 Glu Thr 35 Glu Gln Asn Phe Ile Glu Ihr Pro 100 Pro Glu	nubil Arg 5 Ala Pro Pro Leu Gly 85 Val	Phe Asn Glu Leu Pro 70 Asp Leu	Phe Gln Leu Ile 55 Asp Val	Pro Arg Pro 40 Pro Gln Ile Ile	Ala Cys 25 Pro Gly Met Ile Met 105	Val 10 Ser Ile Pro Ile Ala 90 Ser	Leu Tyr Asp Thr Gln 75 Lys	Leu Ile Tyr Arg 60 Val Leu Gln	Val Ile Glu 45 Glu Ile Asn Pro	Ser Ala 30 Gly Tyr Tyr Arg 110	Leu 15 Ile Lys Val Met Gln 95 Ala	Ala Pro Ser Cys Glu 80 Gly Gln	5432 5492
tatcatcgg tatttttat ctcgag <210> 2 <211> 171 <212> PR0 <213> Ost <400> 2 Met Gly V 1 Ser Ala A Arg Pro 0 50 Met Glu A 65 Glu Glu I Ser Asn T Leu Gly I	ta caaa 17 Trinia Val Glu Ala Leu 20 Glu Thr 35 Glu Gln Asn Phe Ile Glu Ihr Pro 100 Pro Glu	nubil Arg 5 Ala Pro Leu Gly 85 Val	Phe Asn Glu Leu Pro 70 Asp Leu Arg	Phe Gln Leu Ile 55 Asp Val Ser Gln	Pro Arg Pro 40 Pro Gln Ile Ile Asn 120	Ala Cys 25 Pro Gly Met Ile Met 105 Glu	Val 10 Ser Ile Pro Ile Ala 90 Ser Ala	Leu Tyr Asp Thr Gln 75 Lys	Leu Ile Tyr Arg 60 Val Leu Gln	Val Ile Glu 45 Glu Ile Asn Pro Gln 125	Ser Ala 30 Gly Tyr Tyr Arg 110 Trp	Leu 15 1le Lys Val Met Gln 95 Ala	Ala Pro Cys Glu 80 Gly Gln Leu	5432 5492

Leu	Glu	Ile	Val	Asn 165	Ile	Asp	Asp	Asn	Pro 170	Pro	Ile	Leu	Gln	Val 175	Val
Ser	Ala	Cys	Val 180		Pro	Glu	His	Gly 185		Ala	Arg	Leu	Thr 190		Cys
Val	Tyr	Gln 195	Val	Ser	Asp	Arg	Asp 200		Glu	Ile	Ser	Thr 205		Phe	Met
Thr	Phe 210		Val	Asp	Ser	Ser 215		Ala	Ala	Asp	Glu 220		Ile	Phe	Tyr
Met 225		Gly	Glu	Tyr	Asp 230		Ser	Asp	Trp	Phe 235		Met	Lys	Met	Thr 240
	Gly	Ile	Asn	Ser 245	Pro	Leu	Asn	Phe	Glu 250	Thr	Thr	Gln	Leu	His 255	Ile
Phe	Ser	Val	Thr 260	Ala	Ser	Asp	Ser	Leu 265	Pro	Asn	Asn	His	Thr 270	Val	Thr
		275	Gln				280			-		285	_	-	
	290		Ser			295					300				
305			Ala		310					315					320
-			Ile	325	_	_		_	330					335	
		-	Gly 340					345				_	350	_	_
		355	Glu				360					365			
-	370		Phe			375					380				-
385		_	Gln	_	390					395					400
			Glu	405					410					415	_
		_	Arg 420	_				425					430		
	•	435	Phe			-	440					445			
-	450	-	Tyr		_	455					460				
465			Asp	_	470	_				475					480
	_		Val	485					490					495	
	_		Asn 500				_	505	_				510		
		515	Tyr				520					525			
	530		Thr			535		_		_	540	_			
545			Leu		550				_	555				_	560
		-	Glu	565					570	-			_	575	
_			Thr 580					585	_			_	590		
		595	His				600					605			
•	610		Asn			615			_		620	_			
625			Glu		630			_	_	635			_		640
Thr	Ala	Thr	Asp	Pro 645	Asp	Thr	Ser	Ala	Tyr 650	Leu	Trp	Rue	GIU	11e 655	Asp

Trp Asp Ser Thr Trp Ala Thr Lys Gln Gly Arg Glu Thr Asn Pro Thr 665 Glu Tyr Val Gly Cys Ile Val Ile Glu Thr Ile Tyr Pro Thr Glu Gly 680 Asn Arg Gly Ser Ala Ile Gly Arg Leu Val Val Gln Glu Ile Arg Asp 695 Asn Val Thr Ile Asp Phe Glu Glu Phe Glu Met Leu Tyr Leu Thr Val 710 715 720 Arg Val Arg Asp Leu Asn Thr Val Ile Gly Asp Asp Tyr Asp Glu Ala 725 730 735 Thr Phe Thr Ile Thr Ile Ile Asp Met Asn Asp Asn Ala Pro Ile Phe 745 750 740 Ala Asn Gly Thr Leu Thr Gln Thr Met Arg Val Arg Glu Leu Ala Ala 755 760 765 Ser Gly Thr Leu Ile Gly Ser Val Leu Ala Thr Asp Ile Asp Gly Pro 770 775 Leu Tyr Asn Gln Val Arg Tyr Thr Ile Gln Pro Arg Asn Asn Thr Pro 790 795 Glu Gly Leu Val Lys Ile Asp Phe Thr Thr Gly Gln Ile Glu Val Asp 805 810 Ala Asn Glu Ala Ile Asp Ala Asp Glu Pro Trp Arg Phe Tyr Leu Tyr 825 820 Tyr Thr Val Ile Ala Ser Asp Glu Cys Ser Leu Glu Asn Arg Thr Glu 835 840 845 Cys Pro Pro Asp Ser Asn Tyr Phe Glu Val Pro Gly Asp Ile Glu Ile 850 855 860 Glu Ile Ile Asp Thr Asn Asn Lys Val Pro Glu Pro Leu Thr Glu Lys 870 875 Phe Asn Thr Thr Val Tyr Val Trp Glu Asn Ala Thr Ser Gly Asp Glu 890 885 Val Val Gln Leu Tyr Ser His Asp Arg Asp Arg Asp Glu Leu Tyr His 905 Thr Val Arg Tyr Thr Met Asn Phe Ala Val Asn Pro Arg Leu Arg Asp 920 Phe Phe Glu Val Asp Leu Asp Thr Gly Arg Leu Glu Val His Tyr Pro 935 Gly Asp Glu Lys Leu Asp Arg Asp Gly Asp Glu Pro Thr His Thr Ile 945 950 955 960 Phe Val Asn Phe Ile Asp Asn Phe Phe Ser Asp Gly Asp Gly Arg Arg 965 970 Asn Gln Asp Glu Val Glu Ile Phe Val Val Leu Leu Asp Val Asn Asp 980 985 990 Asn Ala Pro Glu Met Pro Leu Pro Asp Glu Leu Arg Phe Asp Val Ser 995 1000 Glu Gly Ala Val Ala Gly Val Arg Val Leu Pro Glu Ile Tyr Ala Pro 1010 1015 1020 Asp Arg Asp Glu Pro Asp Thr Asp Asn Ser Arg Val Gly Tyr Gly Ile 1030 1035 Leu Asp Leu Thr Ile Thr Asp Arg Asp Ile Glu Val Pro Asp Leu Phe 1045 1050 1055 Thr Met Ile Ser Ile Glu Asn Lys Thr Gly Glu Leu Glu Thr Ala Met 1060 1065 1070 Asp Leu Arg Gly Tyr Trp Gly Thr Tyr Glu Ile Phe Ile Glu Ala Phe 1075 1080 1085 Asp His Gly Tyr Pro Gln Gln Arg Ser Asn Glu Thr Tyr Thr Leu Val 1090 1095 1100 Ile Arg Pro Tyr Asn Phe His His Pro Val Phe Val Phe Pro Gln Pro 1105 1110 1115 1120 Asp Ser Val Ile Arg Leu Ser Arg Glu Arg Ala Thr Glu Gly Gly Val 1125 1130 1135 Leu Ala Thr Ala Ala Asn Glu Phe Leu Glu Pro Ile Tyr Ala Thr Asp 1145

Glu Asp Gly Leu His Ala Gly Ser Val Thr Phe His Val Gln Gly Asn 1155 1160 Glu Glu Ala Val Gln Tyr Phe Asp Ile Thr Glu Val Gly Ala Gly Glu 1175 1180 1170 Asn Ser Gly Gln Leu Ile Leu Arg Gln Leu Phe Pro Glu Gln Ile Arg 1190 1195 Gln Phe Arg Ile Thr Ile Arg Ala Thr Asp Gly Gly Thr Glu Pro Gly 1205 1210 1215 Pro Leu Trp Thr Asp Val Thr Phe Ser Val Val Phe Val Pro Thr Gln 1220 1225 Gly Asp Pro Val Phe Ser Glu Asn Ala Ala Thr Val Ala Phe Phe Glu 1235 1240 1245 Gly Glu Glu Gly Leu Arg Glu Ser Phe Glu Leu Pro Gln Ala Glu Asp 1250 1255 1260 Leu Lys Asn His Leu Cys Glu Asp Asp Cys Gln Asp Ile Tyr Tyr Arg 1270 1275 1280 Phe Ile Asp Gly Asn Asn Glu Gly Leu Phe Val Leu Asp Gln Ser Ser 1285 1290 1295 Asn Val Ile Ser Leu Ala Gln Glu Leu Asp Arg Glu Val Ala Thr Ser 1300 1305 1310 Tyr Thr Leu His Ile Ala Ala Ser Asn Ser Pro Asp Ala Thr Gly Ile 1315 1320 1325 Pro Leu Gln Thr Ser Ile Leu Val Val Thr Val Asn Val Arg Glu Ala 1330 1335 1340 Asn Pro Arg Pro Ile Phe Glu Gln Asp Leu Tyr Thr Ala Gly Ile Ser 1350 1355 Thr Leu Asp Ser Ile Gly Arg Glu Leu Leu Thr Val Arg Ala Ser His 1365 1370 1375 Thr Glu Asp Asp Thr Ile Thr Tyr Thr Ile Asp Arg Ala Ser Met Gln 1380 1385 1390 Leu Asp Ser Ser Leu Glu Ala Val Arg Asp Ser Ala Phe Ala Leu His 1395 1400 1405 Ala Thr Thr Gly Val Leu Ser Leu Asn Met Gln Pro Thr Ala Ser Met 1410 1415 1420 His Gly Met Phe Glu Phe Asp Val Ile Ala Thr Asp Thr Ala Ser Ala 1430 1435 1440 Ile Asp Thr Ala Arg Val Lys Val Tyr Leu Ile Ser Ser Gln Asn Arg 1445 1450 1455 Val Thr Phe Ile Phe Asp Asn Gln Leu Glu Thr Val Glu Gln Asn Arg 1460 1465 1470 Asn Phe Ile Ala Ala Thr Phe Ser Thr Gly Phe Asn Met Thr Cys Asn 1475 1480 1485 Ile Asp Gln Val Val Pro Phe Ser Asp Ser Ser Gly Val Ala Gln Asp 1495 1500 Asp Thr Thr Glu Val Arg Ala His Phe Ile Arg Asp Asn Val Pro Val 1510 1515 Gln Ala Gln Glu Val Glu Ala Val Arg Ser Asp Thr Val Leu Leu Arg 1525 1530 1535 Thr Ile Gln Leu Met Leu Ser Thr Asn Ser Leu Val Leu Gln Asp Leu 1540 1545 1550 Val Thr Gly Asp Thr Pro Thr Leu Gly Glu Glu Ser Met Gln Ile Ala 1555 1560 1565 Val Tyr Ala Leu Ala Ala Leu Ser Ala Val Leu Gly Phe Leu Cys Leu 1570 1575 1580 Val Leu Leu Ala Leu Phe Cys Arg Thr Arg Ala Leu Asn Arg Gln 1585 1590 1595 Leu Gln Ala Leu Ser Met Thr Lys Tyr Gly Ser Val Asp Ser Gly Leu 1610 1605 Asn Arg Ala Gly Leu Ala Pro Gly Thr Asn Lys His Ala Val Glu Gly 1620 1625 1630 Ser Asn Pro Met Trp Asn Glu Ala Ile Arg Ala Pro Asp Phe Asp Ala 1645 1640

Ile Ser Asp Ala Ser Gly Asp Ser Asp Leu Ile Gly Ile Glu Asp Met 1650 1655 1660	
Pro Gln Phe Arg Asp Asp Tyr Phe Pro Pro Gly Asp Thr Asp Ser Ser 1665 1670 1675 1680	
Ser Gly Ile Val Leu His Met Gly Glu Ala Thr Asp Asn Lys Pro Val 1685 1690 1695	
Thr Thr His Gly Asn Asn Phe Gly Phe Lys Ser Thr Pro Tyr Leu Pro 1700 1705 1710	
Gln Pro His Pro Lys 1715	
<210> 3 <211> 5527 <212> DNA <213> Heliothis zea	
<220> <221> CDS <222> (171)(5360)	
<400> 3 gtggattgtt gttctaaaaa cagaaaaaaa acgcagtttg aaaaaagtta tttttgtgat	60
atttgtgtaa agtgtagtgt taaataattt ggcattgctg taaaggatta aagagtgttc caattgatca cccagaggtg gatcgaccag actagacaca gaactatgag atg gca	120 176
Met Ala 1	
gtc gac gtg aga ata ttg acg gca gcg gtt ttc att atc gct gct cac Val Asp Val Arg Ile Leu Thr Ala Ala Val Phe Ile Ile Ala Ala His 5 10 15	224
ttg act ttc gcg caa gat tgt agc tac atg gta gca ata ccc aga cca Leu Thr Phe Ala Gln Asp Cys Ser Tyr Met Val Ala Ile Pro Arg Pro 20 25 30	272
gag cga cca gat ttt cca agt cta aat ttc gat gga ata cca tgg agt Glu Arg Pro Asp Phe Pro Ser Leu Asn Phe Asp Gly Ile Pro Trp Ser 35 40 45 50	320
cgg tat ccc ctg ata cca gtg gag ggt aga gat gtg tgc atg aac Arg Tyr Pro Leu Ile Pro Val Glu Gly Arg Glu Asp Val Cys Met Asn 55 . 60 65	368
gaa ttc cag cca gat gcc ttg aac cca gtt acc gtc atc ttc atg gag Glu Phe Gln Pro Asp Ala Leu Asn Pro Val Thr Val Ile Phe Met Glu 70 75 80	416
gag gag ata gaa ggg gat gtg gct atc gcg agg ctt aac tac cga ggt Glu Glu Ile Glu Gly Asp Val Ala Ile Ala Arg Leu Asn Tyr Arg Gly 85 90 95	464
acc aat act ccg acc att gta tct cca ttt agc ttt ggt act ttt aac Thr Asn Thr Pro Thr Ile Val Ser Pro Phe Ser Phe Gly Thr Phe Asn 100 105 110	512
atg ttg ggg ccg gtc ata cgt aga ata cct gag aat ggt ggc gac tgg Met Leu Gly Pro Val Ile Arg Arg Ile Pro Glu Asn Gly Gl \bar{y} Asp Trp 115 120 125 130	560
cat ctc gtc att aca cag aga cag gac tac gag acg cca ggt atg cag His Leu Val Ile Thr Gln Arg Gln Asp Tyr Glu Thr Pro Gly Met Gln 135 140 145	608

-	tac Tyr			-			-	_	_	_	_			_	-	656
	atg Met	-			-			-	-		_				_	704
	ttt Phe 180															752
	tgc Cys															800
	atg Met			-		_	-	-	-	-	_	-	-			848
_	ctc Leu	-	-	-							_		-		-	896
-	gtt Val		-					-			_		_			944
-	ttt Phe 260	-	-		-		-									992
_	atg Met	_			-						-	_	_	_		1040
	gag Glu															1088
	agg Arg	_		-		-		-				-				1136
	tat Tyr															1184
caa Gln	acg Thr 340	ata Ile	gaa Glu	ggt Gly	ggt Gly	cga Arg 345	gaa Glu	ggc Gly	gct Ala	tgg Trp	ttt Phe 350	aac Asn	gtc Val	gct Ala	cca Pro	1232
	gac Asp															1280
	tac Tyr				_		-		-		-	_			-	1328
tcg	aaa	acc	gat	gtg	gtc	atc	atc	gtg		gat	gtc	aat	gat	cag	gcg	1376

Ser	Lys	Thr	Asp 390	Val	Val	Ile	Ile	Val 395	Asn	Asp	Val	Asn	Asp 400	Gln	Ala	
_					-	gag Glu				_		_		-		1424
						gaa Glu 425										1472
			_			aca Thr	-				-					1520
_	-					tac Tyr		-	_		_			_	_	1568
_				_		acg Thr	_				_	_	-		-	1616
						ata Ile										1664
						ggt Gly 505										1712
			-		_	ccg Pro	_			-	-				-	1760
						ggc Gly										1808
						ggt Gly										1856
aac Asn	gca Ala	gta Val 565	agc Ser	tac Tyr	ctg Leu	agg Arg	atc Ile 570	gac Asp	aag Lys	gaa Glu	acc Thr	ggc Gly 575	gag Glu	ata Ile	ttc Phe	1904
						ttc Phe 585										1952
						gac Asp										2000
		_	_			aag Lys	_		-							2048
_			_		-	gcc Ala										2096

						acg Thr	_	-		-		-		-		21	44
	-		_	-		gag Glu 665		_				-		-		21	92
						gac Asp										22	40
						aat Asn										22	88
_	-	-		-		atc Ile		-		-			-			23:	36
_		_	_			ctc Leu		-		-		-				23	34
						gat Asp 745										243	32
						ccc Pro										248	30
						gtg Val										252	28
						gac Asp										25	76
				-		gac Asp			-	-			-		_	262	24
		_		_		tcc Ser 825	_	_			_	-				26	72
						aac Asn										272	20
						gtc Val										276	58
						att Ile										281	16
aag	gtg	cct	caa	gtg	gaa	gac	gac	aag	ttc	gag	gcg	acg	gtg	tac	atc	286	54

Lys	Val	Pro 885	Gln	Val	Glu	Asp	Asp 890	Lys	Phe	Glu	Ala	Thr 895	Val	Tyr	Ile	
	gag Glu 900															2912
	ctg Leu															2960
	gcg Ala				-		_	_				-	-	-		3008
tcc Ser	ggc Gly	ctc Leu	gtg Val 950	tac Tyr	gtc Val	aac Asn	aac Asn	acc Thr 955	gcc Ala	ggc Gly	gag Glu	ctg Leu	ctg Leu 960	gac Asp	agg Arg	3056
_	ggc Gly	-					_					-		-		3104
	tat Tyr 980															3152
	gta Val					Ile					Pro					3200
	atc Ile				Ile					Glu					Val	3248
	cca Pro	_		Phe	_		•	-	Asp	-				Asp		3296
	cgc Arg	-	Āla		-			Gly		_	_		Asp			3344
	caa Gln 1060	Val					Asn					Glu				3392
	att Ile					Ile					Met					3440
	tgg Trp				Gln					Ala					Ile	3488
	caa Gln			Ser		_	_		Pro	_				Pro		3536
	ttc Phe		Āsp					Phe					Ser		_	3584

_	_	Ala	_		-	-	Val	-		ggt Gly		Leu	-		-	3632
-	Ğly	_		_	-	Arg		_	_	acc Thr 1169	Asp		-			3680
-	-			-	Thr				-	gga Gly)	-	-	-	-	Ala	3728
-			_	Val	_		-		Val	aac Asn			-	Leu		3776
			Leu					Phe		gag Glu			Val			3824
_	_	Thr	_				Glu			cca Pro		Ser	-	-	_	3872
-	Val		-			Val		-	_	gga Gly 1245	Glu					3920
					Val					aaa Lys)					Leu	3968
			_	Leu		-	-		Asp	cca Pro				Met	-	4016
_	_	-	Cys		-			Tyr	-	att Ile	-		Gly		-	4064
	-	His			-	_	Pro	-		aac Asn		Leu		_		4112
_	Pro	_	_	-		Glu	_			cac His 1325	Thr					4160
					Asn					ctg Leu					Leu	4208
				Asn					Asn	ccg Pro				Phe		4256
_	-		Tyr		-			Ser	-	ggc Gly	-		Ile	-	-	4304
aat	ctg	ctg	act	tta	gta	gcg	aca	cat		gaa 7	gat	ctg	ccc	atc	act	4352

Asn	Leu 138		Thr	Leu	Val	Ala 138		His	Ser	Glu	Asp 139		Pro	Ile	Thr	
	Thr					Ser					ccc Pro 5					4400
-	-,			_	Phe					Glu	act Thr		-	_	Ser	4448
			_	Pro		-		_	His		atg Met		, ,	Phe	_	4496
-		-	Thr	-				Glu		-	cgc Arg	_	Glu		-	4544
, ,		Leu			_	_	Asn	_			ttc Phe 1470	Thr				4592
	Leu		-	-		Pro	_	-	-		ata Ile			_		4640
-	-				Met	_	_			Asp	cag Gln	_			Ala	4688
_	_		_	Thr		-		_	Āsp	-	cag Gln		_	Val		4736
-			Ile		-	-		Pro			gct Ala		Glu		-	4784
		Arg					Leu				atc Ile 1550	Gln				4832
	Ğlu	-		_	_	Leu	-	-	-		acg Thr			_		4880
					Ala					Leu	tac Tyr				Ala	4928
				Leu					Val		ctg Leu			Val		4976
	_		Thr			_		Arg	-	_	caa Gln	-	Leu		-	5024
		Tyr	-	-		-	Ser		-		cgc Arg 1630	Val		-		5072

	Pro	ggc Gly				His					Ser					5120
		acg Thr			Ala					Ala					Ser	5168
		tca Ser		Leu					Asp					Arg		5216
gac Asp	tac Tyr	ttc Phe 1685	Pro	cct Pro	gag Glu	gag Glu	ggc Gly 1690	Ser	tcc Ser	atg Met	cga Arg	gga Gly 1695	Val	gtc Val	aat Asn	5264
		gtg Val)					Ala					Asn				5312
	Ser	act Thr			_	Pro					Thr					5360
ttad	cctaa		ıtata	ttaa	aa gt	gaga	attaa	a gta	agat	act	cgta	ittaa			tatat gcattt	5420 5480 5527
	0> 4 L> 17 2> PF								•							
	3> He	eliot	his	zea												
<213)> 4	eliot Val		Val	Arg	Ile	Leu	Thr		Ala	Val	Phe	Ile		Ala	
<213 <400 Met 1)> 4 Ala		Asp Thr	Val 5				Cys	10				Ala	15		
<213 <400 Met 1 Ala)> 4 Ala His	Val Leu Glu	Asp Thr 20	Val 5 Phe	Ala	Gln	Asp Pro	Cys 25	10 Ser	Tyr	Met	Val Asp	Ala 30	15 Ile	Pro	
<213 <400 Met 1 Ala Arg)> 4 Ala His Pro	Val Leu	Asp Thr 20 Arg	Val 5 Phe Pro	Ala Asp	Gln Phe Ile	Asp Pro 40	Cys 25 Ser	10 Ser Leu	Tyr Asn	Met Phe Arg	Val Asp 45	Ala 30 Gly	15 Ile Ile	Pro Pro	
<213 <400 Met 1 Ala Arg Trp Met)> 4 Ala His Pro Ser 50	Val Leu Glu 35	Asp Thr 20 Arg	Val 5 Phe Pro	Ala Asp Leu Pro	Gln Phe Ile 55	Asp Pro 40 Pro	Cys 25 Ser Val	10 Ser Leu Glu	Tyr Asn Gly Pro	Met Phe Arg 60	Val Asp 45 Glu	Ala 30 Gly Asp	15 Ile Ile Val	Pro Pro Cys Phe	
<21: <400 Met 1 Ala Arg Trp Met 65)> 4 Ala His Pro Ser 50 Asn	Val Leu Glu 35 Arg	Asp Thr 20 Arg Tyr Phe	Val 5 Phe Pro Pro Gln Ile	Ala Asp Leu Pro 70	Gln Phe Ile 55 Asp	Asp Pro 40 Pro Ala	Cys 25 Ser Val Leu	10 Ser Leu Glu Asn Ala	Tyr Asn Gly Pro	Met Phe Arg 60 Val	Val Asp 45 Glu Thr	Ala 30 Gly Asp Val	15 Ile Ile Val Ile Asn	Pro Pro Cys Phe 80	
<21: <400 Met 1 Ala Arg Trp Met .65 Met)> 4 Ala His Pro Ser 50 Asn	Val Leu Glu 35 Arg	Asp Thr 20 Arg Tyr Phe Glu Asn	Val 5 Phe Pro Pro Gln Ile 85	Ala Asp Leu Pro 70 Glu	Gln Phe Ile 55 Asp Gly	Asp Pro 40 Pro Ala Asp	Cys 25 Ser Val Leu Val	10 Ser Leu Glu Asn Ala 90	Tyr Asn Gly Pro 75 Ile	Met Phe Arg 60 Val	Val Asp 45 Glu Thr	Ala 30 Gly Asp Val Leu Phe	15 Ile Ile Val Ile Asn 95	Pro Pro Cys Phe 80 Tyr	
<213 <400 Met 1 Ala Arg Trp Met 65 Met Arg)> 4 Ala His Pro Ser 50 Asn Glu	Val Leu Glu 35 Arg Glu Glu Thr	Asp Thr 20 Arg Tyr Phe Glu Asn 100	Val 5 Phe Pro Pro Gln Ile 85 Thr	Ala Asp Leu Pro 70 Glu Pro	Gln Phe Ile 55 Asp Gly Thr	Asp Pro 40 Pro Ala Asp Ile Ile	Cys 25 Ser Val Leu Val Val 105	10 Ser Leu Glu Asn Ala 90 Ser	Tyr Asn Gly Pro 75 Ile Pro	Met Phe Arg 60 Val Ala Phe	Val Asp 45 Glu Thr Arg Ser Glu	Ala 30 Gly Asp Val Leu Phe 110	15 Ile Ile Val Ile Asn 95 Gly	Pro Pro Cys Phe 80 Tyr Thr	
<21: <400 Met 1 Ala Arg Trp Met .65 Met Arg	His Pro Ser 50 Asn Glu Gly Asn Trp	Val Leu Glu 35 Arg Glu Glu	Asp Thr 20 Arg Tyr Phe Glu Asn 100 Leu	Val 5 Phe Pro Pro Gln Ile 85 Thr	Ala Asp Leu Pro 70 Glu Pro	Gln Phe Ile 55 Asp Gly Thr Val	Asp Pro 40 Pro Ala Asp Ile Ile 120	Cys 25 Ser Val Leu Val Val 105 Arg	10 Ser Leu Glu Asn Ala 90 Ser Arg	Tyr Asn Gly Pro 75 Ile Pro Ile	Met Phe Arg 60 Val Ala Phe Pro	Val Asp 45 Glu Thr Arg Ser Glu 125	Ala 30 Gly Asp Val Leu Phe 110 Asn	15 Ile Val Ile Asn 95 Gly	Pro Pro Cys Phe 80 Tyr Thr	
<21: <400 Met 1 Ala Arg Trp Met 65 Met Arg Phe Asp	His Pro Ser 50 Asn Glu Gly Asn Trp	Val Leu Glu 35 Arg Glu Glu Thr Met 115	Asp Thr 20 Arg Tyr Phe Glu Asn 100 Leu Leu	Val 5 Phe Pro Gln Ile 85 Thr Gly	Ala Asp Leu Pro 70 Glu Pro Pro Ile Phe	Gln Phe Ile 55 Asp Gly Thr Val Thr 135	Asp Pro 40 Pro Ala Asp Ile 120 Gln	Cys 25 Ser Val Leu Val 105 Arg	10 Ser Leu Glu Asn Ala 90 Ser Arg	Tyr Asn Gly Pro 75 Ile Pro Ile Asp Asp	Met Phe Arg 60 Val Ala Phe Pro Tyr 140	Val Asp 45 Glu Thr Arg Ser Glu 125 Glu	Ala 30 Gly Asp Val Leu Phe 110 Asn	15 Ile Val Ile Asn 95 Gly Gly Pro	Pro Pro Cys Phe 80 Tyr Thr Gly Gly Val	
<21: <400 Met 1 Ala Arg Trp Met 65 Met Arg Phe Asp Met 145	His Pro Ser 50 Asn Glu Gly Asn Trp 130 Gln	Val Leu Glu 35 Arg Glu Glu Thr Met 115 His	Asp Thr 20 Arg Tyr Phe Glu Asn 100 Leu Leu Tyr	Val 5 Phe Pro Gln Ile 85 Thr Gly Val Ile Leu	Ala Asp Leu Pro 70 Glu Pro Ile Phe 150	Gln Phe Ile 55 Asp Gly Thr Val Thr 135 Asp	Asp Pro 40 Pro Ala Asp Ile 120 Gln Val	Cys 25 Ser Val Leu Val 105 Arg Arg	10 Ser Leu Glu Asn Ala 90 Ser Arg Gln Val	Tyr Asn Gly Pro 75 Ile Pro Ile Asp Asp 155	Met Phe Arg 60 Val Ala Phe Pro Tyr 140 Asp	Val Asp 45 Glu Thr Arg Ser Glu 125 Glu Glu	Ala 30 Gly Asp Val Leu Phe 110 Asn Thr	15 Ile Ile Val Ile Asn 95 Gly Gly Pro Leu Pro	Pro Pro Cys Phe 80 Tyr Thr Gly Gly Val 160	
<21: <400 Met 1 Ala Arg Trp Met 65 Met Arg Phe Asp Met 145 Ala	His Pro Ser 50 Asn Glu Gly Asn Trp 130 Gln Thr	Val Leu Glu 35 Arg Glu Glu Thr Met 115 His	Asp Thr 20 Arg Tyr Phe Glu Asn 100 Leu Tyr Met	Val 5 Phe Pro Gln Ile 85 Thr Gly Val Ile Leu 165	Ala Asp Leu Pro 70 Glu Pro Ile Phe 150 Leu	Gln Phe Ile 55 Asp Gly Thr Val Thr 135 Asp	Asp Pro 40 Pro Ala Asp Ile 120 Gln Val	Cys 25 Ser Val Leu Val 105 Arg Arg Asn	10 Ser Leu Glu Asn Ala 90 Ser Arg Gln Val Ile 170	Tyr Asn Gly Pro 75 Ile Pro Ile Asp Asp 155 Asp	Met Phe Arg 60 Val Ala Phe Pro Tyr 140 Asp Asp	Val Asp 45 Glu Thr Arg Ser Glu 125 Glu Glu Asn	Ala 30 Gly Asp Val Leu Phe 110 Asn Thr Pro Asp	15 Ile Val Ile Asn 95 Gly Pro Leu Pro 175	Pro Pro Cys Phe 80 Tyr Thr Gly Gly Val 160 Ile	
<21: <400 Met 1 Ala Arg Trp Met 65 Met Arg Phe Asp Met 145 Ala Ile	His Pro Ser 50 Asn Glu Gly Asn Trp 130 Gln Thr	Val Leu Glu 35 Arg Glu Glu Thr Met 115 His Gln Val	Asp Thr 20 Arg Tyr Phe Glu Asn 100 Leu Tyr Met Phe 180	Val 5 Phe Pro Gln Ile 85 Thr Gly Val Ile Leu 165 Glu	Ala Asp Leu Pro 70 Glu Pro Ile Phe 150 Leu Pro	Gln Phe Ile 55 Asp Gly Thr Val Thr 135 Asp Ile Cys	Asp Pro 40 Pro Ala Asp Ile 120 Gln Val Val	Cys 25 Ser Val Leu Val 105 Arg Arg Asn Ile 185	10 Ser Leu Glu Asn Ala 90 Ser Arg Gln Val Ile 170 Pro	Tyr Asn Gly Pro 75 Ile Pro Ile Asp Asp 155 Asp Glu	Met Phe Arg 60 Val Ala Phe Pro Tyr 140 Asp Asp	Val Asp 45 Glu Thr Arg Ser Glu 125 Glu Glu Asn Gly	Ala 30 Gly Asp Val Leu Phe 110 Asn Thr Pro Asp Glu 190	15 Ile Val Ile Asn 95 Gly Pro Leu Pro 175 Thr	Pro Pro Cys Phe 80 Tyr Thr Gly Gly Val 160 Ile Gly	

	210					215					220				_
225					Arg 230					235					240
His	Met	Arg	Val	His 245	Val	Lys	Lys	Pro	Leu 250	Asp	Tyr	Glu	Glu	Asn 255	Pro
Leu	His	Leu	Phe 260		Val	Thr	Ala	Tyr 265	Asp	Ser	Leu	Pro	Asn 270	Thr	His
Thr	Val			Met	Val	Gln			Asn	Val	Glu			Pro	Pro
Arg	Trp 290	275 Met	Glu	Ile	Phe	Ala 295	280 Val	Gln	Gln	Phe	Asp	285 Glu	Lys	Thr	Glu
Gln 305		Phe	Arg	Val	Arg 310	-	Ile	Asp	Gly	Asp 315		Gly	Ile	Asp	Lys 320
	Ile	Phe	Tyr	Arg 325	Ile	Glu	Thr	Glu	Lys 330		Glu	Glu	Asp	Leu 335	
Ser	Ile	Gln	Thr 340		Glu	Gly	Gly	Arg 345		Gly	Ala	Trp	Phe 350		Val
Ala	Pro	Ile 355		Arg	Asp	Thr	Leu 360		Lys	Glu	Val	Phe 365		Val	Ser
Ile	Ile 370		Tyr	Lys	Tyr	Gly 375		Asn	Asp	Val	Glu 380		Ser	Ser	Ser
Phe		Ser	Lys	Thr	Asp 390		Val	Ile	Ile	Val 395		Asp	Val	Asn	Asp
	Ala	Pro	Leu	Pro 405	Phe	Arg	Glu	Glu	Tyr 410		Ile	Glu	Ile	Met 415	
Glu	Thr	Ala	Met 420		Leu	Asn	Leu	Glu 425		Phe	Gly	Phe	His 430		Arg
Asp	Leu	Gly 435		His	Ala	Gln	Tyr 440		Val	His	Leu	Glu 445		Ile	His
Pro	Pro 450		Ala	His	Glu	Ala 455		Tyr	Ile	Ala	Pro 460		Val	Gly	Tyr
Gln 465		Gln	Ser	Phe	Ile 470		Gly	Thr	Gln	Asn 475	His	His	Met	Leu	Asp 480
Phe	Glu	Val	Pro	Glu 485	Phe	Gln	Asn	Ile	Gln 490	Leu	Arg	Ala	Val	Ala 495	Ile
Asp	Met	Asp	Asp 500	Pro	Lys	Trp	Val	Gly 505	Ile	Ala	Ile	Ile	Asn 510	Ile	Lys
Leu	Ile	Asn 515	Trp	Asn	Asp	Glu	Leu 520	Pro	Met	Phe	Glu	Ser 525	Asp	Val	Gln
Thr	Val 530	Ser	Phe	Asp	Glu	Thr 535	Glu	Gly	Ala	Gly	Phe 540	Tyr	Val	Ala	Thr
Val 545	Val	Ala	Lys	Asp	Arg 550	Asp	Val	Gly	Asp	Lys 555	Val	Glu	His	Ser	Leu 560
Met	Gly	Asn	Ala	Val 565	Ser	Tyr	Leu	Arg	Ile 570		Lys	Glu	Thr	Gly 575	
Ile	Phe	Val	Thr 580	Glu	Asn	Glu	Ala	Phe 585	Asn	Tyr	His	Arg	Gln 590	Asn	Glu
Leu	Phe	Val 595	Gln	Ile	Pro	Ala	Asp 600	Asp	Thr	Leu	Gly	Glu 605	Pro	Tyr	Asn
Thr	Asn 610	Thr	Thr	Gln	Leu	Val 615	Ile	Lys	Leu	Arg	Asp 620	Ile	Asn	Asn	Thr
Pro 625	Pro	Thr	Leu	Arg	Leu 630	Pro	Arg	Ala	Thr	Pro 635	Ser	Val	Glu	Glu	Asn 640
Val	Pro	Asp	Gly	Phe 645	Val	Ile	Pro	Thr	Gln 650	Leu	His	Ala	Thr	Asp 655	Pro
Asp	Thr	Thr	Ala 660	Glu	Leu	Arg	Phe	Glu 665	Ile	Asp	Trp	Gln	Asn 670	Ser	Tyr
Ala	Thr	Lys 675		Gly	Arg	Asn	Thr 680	Asp	Ser	Lys	Glu	Tyr 685	Ile	Gly	Cys
Ile	Glu 690		Glu	Thr	Ile	Tyr 695	Pro	Asn	Ile	Asn	Gln 700	Arg	Gly	Asn	Ala
Ile	Gly	Arg	Val	Val	Val	Arg	Glu	Ile	_	Asp	Gly	Val	Thr	Ile	Asp

705					710					715					720
	Glu	Met	Phe	Glu 725		Leu	Tyr	Leu	Thr 730		Ile	Val	Arg	Asp 735	
Asn	Thr	Val	Ile 740		Glu	Asp	His	Asp 745		Ser	Thr	Phe	Thr 750		Thr
Ile	Ile	Asp 755		Asn	Asp	Asn	Pro 760		Leu	Trp	Val	Glu 765		Thr	Leu
Thr	Gln 770	Glu	Phe	Arg	Val	Arg 775	Glu	Val	Ala	Ala	Ser 780	Gly	Val	Val	Ile
Gly 785	Ser	Val	Leu	Ala	Thr 790	Asp	Ile	Asp	Gly	Pro 795	Leu	Tyr	Asn	Gln	Val 800
Arg	Tyr	Thr	Ile	Thr 805	Pro	Arg	Leu	Asp	Thr 810	Pro	Glu	Asp	Leu	Val 815	Asp
Ile	Asp	Phe	Asn 820	Thr	Gly	Gln	Ile	Ser 825	Val	Lys	Leu	His	Gln 830	Ala	Ile
Asp	Ala	Asp 835	Glu	Pro	Pro	Arg	Gln 840	Asn	Leu	Tyr	Tyr	Thr 845	Val	Ile	Ala
Ser	Asp 850	Lys	Cys	Asp	Leu	Leu 855	Thr	Val	Thr	Glu	Cys 860	Pro	Pro	Asp	Pro
865	-				870	-				875		Ile		-	880
				885				_	890			Glu		895	
			900					905				Val	910		
		915		_	-	•	920		_		-	Val 925		_	
	930	_				935	=		_	_	940	Phe			_
945			_		950	-				955		Gly			960
_	_		_	965					970			Phe		975	
_			980	_		_	_	985		_		Gln	990		
		995					1000) -				Tyr 1005	5		
	1010)			-	1015	5				1020			_	
1025	5				1030)		_	-	1035	5	Glu		_	1040
Asp	Asn	ser	Arg	val 1045		Tyr	Ата	TTE	1050		ьeu	Ala	ser	1055	
Arg	Asp		Gln 1060		Pro	Asn		Phe 1065		Met	Ile	Thr	Ile 1070		Arg
Asp	Arg	Gly 1075		Asp	Gln	Thr	Gly 1080		Leu	Glu	Ala	Ala 1085		Asp	Leu
_	1090)	_	_		1095	5		_		1100		_	_	
Gly 1105		Pro	Gln	Arg	Ile 1110		Asn	Gln	Lys	Tyr 1115		Leu	Val	Ile	Arg 1120
Pro	Tyr	Asn	Phe	His 1125	-	Pro	Val	Phe	Val 1130		Pro	Gln	Pro	Gly 1135	
Thr	Ile	Arg	Leu 1140		Lys	Glu	Arg	Ala 1145		Val	Asn	Gly	Ile 1150		Ala
Thr	Val	Asp 1155		Glu	Phe	Leu	Asp 1160		Ile	<u>V</u> al	Ala	Thr 1165		Glu	Asp
Gly	Leu 1170		Ala	Gly	Leu	Val 1175		Phe	Ser	Ile	Ala 1180	Gly)	Asp	Asp	Glu
1185	<u> </u>				1190)				1195	·	Asn			1200
Leu	Thr	Leu	Thr	Arg	Leu	Phe	Pro	Glu	Glu	Phe	Arg	Glu	Phe	Gln	Val

	1205		1210		1215
Thr Ile Arg Ala		Gly Thr 1225		Pro Arg 123	
Asp Cys Leu Val 1235		Phe Val 1240	Pro Thr Glr	Gly Glu 1245	Pro Val
Phe Glu Asp Arg 1250	Thr Tyr Thr 1255		Phe Val Glu 126		Glu Gly
Met Leu Glu Glu 1265	Ala Glu Leu 1270	Pro Arg	Ala Ser Asp 1275	Pro Arg	Asn Ile 1280
Met Cys Glu Asp	1285		1290		1295
Asn Ser Gly Glu 130	0	1305		131	0
Leu Val Lys Pro 1315		1320		1325	
Ile Gly Ala Ser 1330	1335		134	0	
Thr Leu Thr Val	1350		1355		1360
Phe Gln Arg Ala	1365		1370		1375
Glu Arg Asn Leu 1380	0	1385		139	0
Ile Thr Tyr Thr		1400		1405	
Glu Ala Val Gln 1410	1415		142	0	
Leu Ser Leu Asn 1425	1430		1435		1440
Phe Glu Val Lys	1445		1450		1455
Val Lys Val Tyr 146	0	1465		147	0
Asn Asn Pro Leu 1475		1480	_	1485	
Thr Phe Thr Ala 1490	1495		150	0	
Trp Ala Ser Asp	1510		1515		1520
Val Arg Ala His	1525		1530		1535
Ile Glu Gln Leu 1540	0	1545		155	0
Ala Leu Glu Glu 1555		1560		1565	
Thr Pro Ile Leu 1570	1575		158	0	
Ala Ala Val Ala 1585	1590		1595		1600
Val Phe Phe Val	1605		1610		1615
Ser Met Thr Lys 1620	0	1625		163	0
Leu Ala Ala Pro 1635		1640		1645	
Ile Trp Asn Glu 1650	1655		166	0	
Gln Ser Tyr Asp 1665	1670		1675		1680
Arg Asn Asp Tyr	Phe Pro Pro 1685		Gly Ser Ser 1690	Met Arg	Gly Val 1695
Val Asn Glu His	Val Pro Glu	Ser Ile	Ala Asn His	Asn Asn	Asn Phe

Gly Phe Asn Ser 1715 Arg Arg 1730		1705 Ser Pro Glu Ph 1720	1710 e Ala Asn Thr G 1725	In Phe							
<210> 5 <211> 5592 <212> DNA <213> Spodoptera frugiperda											
<220> <221> CDS <222> (162)(5363)											
<400> 5 gacattctgt ggtga taaacatttt ggaat ctgtaacatc actag	attgt taaag	t taaagtattg ac	agataaag 120 gat gtg 176								
cga ata ctg aca Arg Ile Leu Thr			r Thr Ala Thr A								
cga gat cga tgt Arg Asp Arg Cys 25											
gac ttc cca cct Asp Phe Pro Pro 40											
cta tta cca gct Leu Leu Pro Ala 55			_	=							
cct gat ccc tgg Pro Asp Pro Trp 70		His Gly Asp Gl									
gag gag atc gaa Glu Glu Ile Glu			s Ile Asn Tyr G								
aac acc cct cct Asn Thr Pro Pro 105											
atg ctt gga gca Met Leu Gly Ala 120											
tat ctt gta att Tyr Leu Val Ile 135			_	= =							
aga tac acg ttc Arg Tyr Thr Phe 150			n Ser Leu Val V								

		-	-					gac Asp	-						704
								gaa Glu 190							752
								gca Ala							800
_	_	_				-	-	gag Glu	-		-	-		-	848
-	_		-		-		_	ggc Gly	-			_			896
_		-	-					gat Asp		-					944
								tcc Ser 270							992
								gtg Val							1040
_				-				ttt Phe	-						1088
	Thr							gac Asp							1136
		-		_		-	-	gaa Glu	-					-	1184
								ggt Gly 350							1232
	-	-	-		-			gat Asp	_						1280
								aaa Lys							1328
								att Ile							1376
	_							acg Thr	Ile			_	_	-	1424

	410	415	420
	Asp Leu Gln Glu I	ttt ggt ttc cat gac co Phe Gly Phe His Asp A: 430 4:	
		cac tta gag agt ata ca His Leu Glu Ser Ile G 450	
		gcc cct gaa gaa ggt ta Ala Pro Glu Glu Gly T 465	
-		atc cat aac atg ttg ga Ile His Asn Met Leu As 480	
, , ,	, ,,	aag cta aag gca gta go Lys Leu Lys Ala Val Ai 495	-
= =	Asn His Ile Gly G	gaa gca att att aac at Glu Ala Ile Ile Asn II 510 51	le Asn Leu
• •		ata ttc gac gag gac go Ile Phe Asp Glu Asp Ai 530	
		gat ggc ttc cac att gg Asp Gly Phe His Ile Gl 545	
		gac ata gtc gag cac to Asp Ile Val Glu His Se 560	-
		att gac ata gat act go Ile Asp Ile Asp Thr Gl 575	
	Asp Asp Tyr Phe A	gat tat caa aga cag as Asp Tyr Gln Arg Gln As 590 59	sn Glu Ile
•		aca cta ggt tta cct ca Thr Leu Gly Leu Pro Gl 610	
-	-	itg gaa gac atc aac aa Leu Glu Asp Ile Asn As 625	
		agt cca agt gta gaa ga Ser Pro Ser Val Glu Gl 640	· .
		ggg cta acg gcg aca ga Gly Leu Thr Ala Thr As 655	-

						ttc Phe										21	92
						gga Gly										22	40
						tac Tyr 700										. 228	88
						cgt Arg										23:	36
						ctg Leu										238	84
						gat Asp										243	32
						aac Asn										248	80
						cgc Arg 780										252	28
		_		-		gac Asp	_	-								25	76
						atc Ile										262	24
						cag Gln										267	72
						cgc Arg										272	20
						gac Asp 860										276	68
ccc Pro 870	act Thr	tac Tyr	tgg Trp	aat Asn	acc Thr 875	gag Glu	gga Gly	gag Glu	ata Ile	gcg Ala 880	atc Ile	gcg Ala	ata Ile	acc Thr	gat Asp 885	281	16
						cgc Arg										286	54
aag Lys	cgc Arg	atc Ile	tat Tyr	gag Glu	aac Asn	aca Thr	ccc Pro	aat Asn	Gly	acc Thr	aag Lys	atc Ile	acg Thr	acg Thr	atc Ile	291	12

905		910	915	
atc gct agt gac ca Ile Ala Ser Asp Gl 920		Arg Pro Asn		
aga atc aac tac gca Arg Ile Asn Tyr Ala 935				
gac cct gat act ggr Asp Pro Asp Thr Gl 950	-	-		
ttg gac aga gac gga Leu Asp Arg Asp Gl 970	y Glu Glu Pro		Ile Ile Phe T	
gtc gat aac ttg gaa Val Asp Asn Leu Glu 985				
acg gag gtg cgt gt Thr Glu Val Arg Va 1000	_	Asp Ile Asn	-	
cta cca att cct gat Leu Pro Ile Pro Asp 1015				
gag gga aaa cgc att Glu Gly Lys Arg Ild 1030		-	His Asp Arg A	· -
cca ttc aac gac aac Pro Phe Asn Asp Asn 105	n Ser Arg Val		Ile Arg Ser I	
ttg atc aat aga gad Leu Ile Asn Arg Asp 1065				
acg att gat gat cto Thr Ile Asp Asp Leo 1080		Lys Phe Val		-
acc atg gac ctt aga Thr Met Asp Leu Arg 1095				_
gcg ttt gac cac ggt Ala Phe Asp His Gly 1110			Phe Glu Thr T	
cta acc gtc agg cca Leu Thr Val Arg Pro 113	Tyr Asn Phe	-	Val Phe Val P	
act cct ggc tca acc Thr Pro Gly Ser Thr 1145				

ggt atg ctg gct Gly Met Leu Ala 1160	Leu Ala Asn I			-
ctc tct gcc act Leu Ser Ala Thr 1175				
tcc ata gct gga Ser Ile Ala Gly 1190			Phe Asn Val Leu	
gac ggt gac aac Asp Gly Asp Asn				Ala
ggc gtc cag cag Gly Val Gln Gln 122	Phe Glu Leu V			-
gag ccg gga cct Glu Pro Gly Pro 1240	Arg Ser Thr A			
atg acg cag gga Met Thr Gln Gly 1255				-
ttc gtt gaa aag Phe Val Glu Lys 1270			Phe Gln Leu Pro	
gcc gat gac ccc Ala Asp Asp Pro				Ile
tac tac tct atc Tyr Tyr Ser Ile 130	Val Asp Gly A			
ccg gag act aac Pro Glu Thr Asn 1320	Val Ile Tyr L			
cag gag cag tac Gln Glu Gln Tyr 1335				
acc tcc acc ttg Thr Ser Thr Leu 1350		-	Thr Ile Gly Val	_
gaa gca aac cct Glu Ala Asn Pro	-		-	Gly
gtc tta cac acc Val Leu His Thr 138	Asp Ser Ile H			
aaa cat tca gaa Lys His Ser Glu		-	•	

1400		1405	1410	
-	gac gag tcg ttg Asp Glu Ser Leu 142	Gln Thr Val Va		
	gca acc gga gtc Ala Thr Gly Val 1435	Ile Ser Leu As		
	ggc agt ttc gac Gly Ser Phe Asp 1450		al Ala Ser Asp	
Gly Ala Ser A	gat cga gca aaa Asp Arg Ala Lys 1465			
	gcc ttc ctg ttc Ala Phe Leu Phe			
	ctc att gca caa Phe Ile Ala Gln 150	Thr Phe Ala As		-
	gac agc gtg ctg Asp Ser Val Leu 1515	Pro Ala Thr As		
	cac aca gaa ctc Tyr Thr Glu Leu 1530		e Ile Arg Asp .	
Pro Val Pro A	gcc gac tat att Ala Asp Tyr Ile 1545			
	atc aga gag gta Ile Arg Glu Val			-
gac ttt gcg g Asp Phe Ala A 1575	gcg gga ggg tcg Ala Gly Gly Ser 158	Ala Val Leu Pr	c ggc gga gag o Gly Gly Glu ' 1585	tac gcg 4928 Fyr Ala
	tac atc ctc gcc Tyr Ile Leu Ala 1595	Gly Ile Ala Al	-	
	ctc ctc atc gct Leu Leu Ile Ala 1610		g Asn Arg Thr	
Arg Arg Ile G	gaa gcc ctc aca Glu Ala Leu <u>T</u> hr 1625			
-	gcg tca gta gca Ala Ser Val Ala		-	_

		Ser	aat Asn				Asn					Thr				5168
gac Asp 1670	Thr		_	-	-	Ser	-	-	_		Asp	-	_	_	-	5216
gaa Glu					Asp					Glu					Ser	5264
ctg Leu i			_	Arg					Thr					Phe		5312
gta . Val .			Ser					Glu					Gln		-	5360
agt Ser	taaa	actaa	aat a	acact	ttta	at ca	actt	gcata	a gad	ctta	tgta	ttta	aata	att		5413
gtaa	caat	ca a	acata	agcto	gt to	gtag	gttc	g taa	aataa	acat	acto	cgtaa	atg :	tataa	atgtac agtgtt aaaaa	5473 5533 5592
<210 <211 <212 <213	> 17 > PF	RΤ	otera	a fru	ıgipe	erda										
<4002 Met 2		Val	Asp		Arg		Leu	Thr		Thr	Leu	Leu	Val		Thr	
	Ala		Ala	5	_	Ile		Cys	10				Glu	15		
Met 1	Ala Ala	Thr	Ala 20	5 Gln	Arg	Ile Asp	Arg	Cys 25	10 Gly	Tyr	Met	Val	Glu 30	15 Ile	Pro	
Met 2 1 Thr 2 Arg 2	Ala Ala Pro	Thr Asp 35	Ala 20 Arg	5 Gln Pro	Arg Asp	Ile Asp Phe	Arg Pro 40	Cys 25 Pro	10 Gly Gln	Tyr Asn	Met Phe	Val Asp 45	Glu 30 Gly	15 Ile Leu	Pro Thr	
Met 2 1 Thr 2 Arg 2	Ala Ala Pro Ala 50	Thr Asp 35 Gln	Ala 20 Arg Gln	5 Gln Pro Pro	Arg Asp Leu	Ile Asp Phe Leu 55	Arg Pro 40 Pro	Cys 25 Pro Ala	10 Gly Gln Glu	Tyr Asn Asp	Met Phe Arg 60	Val Asp 45 Glu	Glu 30 Gly Glu	15 Ile Leu Val	Pro Thr Cys	
Met 2 1 Thr 2 Arg 2 Trp 2	Ala Pro Ala 50 Asn	Thr Asp 35 Gln Asp	Ala 20 Arg Gln Tyr	5 Gln Pro Pro Glu	Arg Asp Leu Pro 70	Ile Asp Phe Leu 55 Asp	Arg Pro 40 Pro	Cys 25 Pro Ala Trp	10 Gly Gln Glu Ser	Tyr Asn Asp Asn 75	Met Phe Arg 60 Asn	Val Asp 45 Glu His	Glu 30 Gly Glu Gly	15 Ile Leu Val Asp	Pro Thr Cys Gln 80	
Met 2 1 Thr 2 Arg 2 Trp 2 Leu 2 65	Ala Pro Ala 50 Asn	Thr Asp 35 Gln Asp Tyr	Ala 20 Arg Gln Tyr	5 Gln Pro Pro Glu Glu 85	Arg Asp Leu Pro 70 Glu	Ile Asp Phe Leu 55 Asp Glu	Arg Pro 40 Pro Pro	Cys 25 Pro Ala Trp Glu	10 Gly Gln Glu Ser Gly 90	Tyr Asn Asp Asn 75 Pro	Met Phe Arg 60 Asn Val	Val Asp 45 Glu His	Glu 30 Gly Glu Gly Ile	15 Ile Leu Val Asp Ala 95	Pro Thr Cys Gln 80 Lys	
Met 1 Thr 2 Arg 1 Trp 2 Leu 2 65 Arg 1	Ala Pro Ala 50 Asn Ile Asn	Thr Asp 35 Gln Asp Tyr	Ala 20 Arg Gln Tyr Met Gln 100	5 Gln Pro Pro Glu Glu 85 Gly	Arg Asp Leu Pro 70 Glu Asn	Ile Asp Phe Leu 55 Asp Glu Thr	Arg Pro 40 Pro Pro Ile Pro	Cys 25 Pro Ala Trp Glu Pro 105	Gly Glu Ser Gly 90 Gln	Tyr Asn Asp Asn 75 Pro	Met Phe Arg 60 Asn Val Arg	Val Asp 45 Glu His Val Leu	Glu 30 Gly Glu Gly Ile Pro 110	15 Ile Leu Val Asp Ala 95 Phe	Pro Thr Cys Gln 80 Lys Arg	
Met in the interest of the int	Ala Pro Ala 50 Asn Ile Asn Gly	Thr Asp 35 Gln Asp Tyr Tyr Ala 115	Ala 20 Arg Gln Tyr Met Gln 100 Ala	5 Gln Pro Pro Glu Glu 85 Gly His	Arg Asp Leu Pro 70 Glu Asn Met	Ile Asp Phe Leu 55 Asp Glu Thr	Arg Pro 40 Pro Pro Ile Pro Gly 120	Cys 25 Pro Ala Trp Glu Pro 105 Ala	10 Gly Gln Glu Ser Gly 90 Gln	Tyr Asn Asp Asn 75 Pro Ile Ile	Met Phe Arg 60 Asn Val Arg Arg	Val Asp 45 Glu His Val Leu Glu 125	Glu 30 Gly Glu Gly Ile Pro 110 Tyr	15 Ile Leu Val Asp Ala 95 Phe	Pro Thr Cys Gln 80 Lys Arg	
Met in the interest of the int	Ala Ala Pro Ala 50 Asn Ile Gly Thr	Thr Asp 35 Gln Asp Tyr Tyr Ala 115 Gly	Ala 20 Arg Gln Tyr Met Gln 100 Ala Asp	5 Gln Pro Pro Glu Glu 85 Gly His	Arg Asp Leu Pro 70 Glu Asn Met	Ile Asp Phe Leu 55 Asp Glu Thr Leu Leu 135	Pro 40 Pro Pro Ile Pro Gly 120 Val	Cys 25 Pro Ala Trp Glu Pro 105 Ala Ile	10 Gly Gln Glu Ser Gly 90 Gln Glu Thr	Tyr Asn Asp Asn 75 Pro Ile Ile Gln	Met Phe Arg 60 Asn Val Arg Arg Arg	Val Asp 45 Glu His Val Leu Glu 125 Gln	Glu 30 Gly Glu Gly Ile Pro 110 Tyr	15 Ile Leu Val Asp Ala 95 Phe Pro	Pro Thr Cys Gln 80 Lys Arg Asp	
Met 1 Thr 2 Arg 2 Trp 2 Leu 2 65 Arg 3 Ile 2 Val 0 Ala 3 Thr 1	Ala Ala Pro Ala 50 Asn Ile Asn Gly Thr 130 Pro	Thr Asp 35 Gln Asp Tyr Tyr Ala 115 Gly Asp	Ala 20 Arg Gln Tyr Met Gln 100 Ala Asp	5 Gln Pro Pro Glu 85 Gly His Trp	Arg Asp Leu Pro 70 Glu Asn Met Tyr Arg 150	Ile Asp Phe Leu 55 Asp Glu Thr Leu 135 Tyr	Arg Pro 40 Pro Ile Pro Gly 120 Val	Cys 25 Pro Ala Trp Glu Pro 105 Ala Ile	10 Gly Gln Glu Ser Gly 90 Gln Glu Thr	Tyr Asn Asp Asn 75 Pro Ile Gln Val 155	Met Phe Arg 60 Asn Val Arg Arg 140 Ser	Val Asp 45 Glu His Val Leu Glu 125 Gln Val	Glu 30 Gly Glu Gly Ile Pro 110 Tyr Asp Glu	15 Ile Leu Val Asp Ala 95 Phe Pro Tyr	Pro Thr Cys Gln 80 Lys Arg Asp Glu Gln 160	
Met in the interest of the int	Ala Ala Pro Ala 50 Asn Ile Asn Gly Thr 130 Pro	Thr Asp 35 Gln Asp Tyr Tyr Ala 115 Gly Asp Val	Ala 20 Arg Gln Tyr Met Gln 100 Ala Asp Met Val	5 Gln Pro Pro Glu 85 Gly His Trp Gln Thr 165	Arg Asp Leu Pro 70 Glu Asn Met Tyr Arg 150 Val	Ile Asp Phe Leu 55 Asp Glu Thr Leu 135 Tyr Arg	Arg Pro 40 Pro Ile Pro Gly 120 Val Thr	Cys 25 Pro Ala Trp Glu Pro 105 Ala Ile Phe Asp	10 Gly Gln Glu Ser Gly 90 Gln Thr Asp Ile 170	Tyr Asn Asp Asn 75 Pro Ile Gln Val 155 Val	Met Phe Arg 60 Asn Val Arg Arg 140 Ser Asn	Val Asp 45 Glu His Val Leu Glu 125 Gln Val Ile	Glu 30 Gly Glu Gly Ile Pro 110 Tyr Asp Glu Asp	15 Ile Leu Val Asp Ala 95 Phe Pro Tyr Gly Asp 175	Pro Thr Cys Gln 80 Lys Arg Asp Glu Gln 160 Asn	
Met 1 Thr 2 Thr 2 Trp 2 Leu 2 65 Arg 3 Ile 2 Val 0 Ala 3 Thr 1 145 Ser 1	Ala Ala Pro Ala 50 Asn Ile Asn Gly Thr 130 Pro Leu Pro	Thr Asp 35 Gln Asp Tyr Tyr Ala 115 Gly Asp Val	Ala 20 Arg Gln Tyr Met Gln 100 Ala Asp Met Val Ile 180	5 Gln Pro Pro Glu 85 Gly His Trp Gln Thr 165 Glu	Arg Asp Leu Pro 70 Glu Asn Met Tyr Arg 150 Val	Ile Asp Phe Leu 55 Asp Glu Thr Leu 135 Tyr Arg Leu	Arg Pro 40 Pro Ile Pro Gly 120 Val Thr Leu Glu	Cys 25 Pro Ala Trp Glu Pro 105 Ala Ile Phe Asp	10 Gly Gln Glu Ser Gly 90 Gln Glu Thr Asp Ile 170 Cys	Tyr Asn Asp Asn 75 Pro Ile Gln Val 155 Val Asn	Met Phe Arg 60 Asn Val Arg Arg 140 Ser Asn Leu	Val Asp 45 Glu His Val Leu Glu 125 Gln Val Ile Pro	Glu 30 Gly Glu Gly Ile Pro 110 Tyr Asp Glu Asp	15 Ile Leu Val Asp Ala 95 Phe Pro Tyr Gly Asp 175 Leu	Pro Thr Cys Gln 80 Lys Arg Asp Glu Gln 160 Asn	

Asp Glu Lys Val Phe Glu Leu Ile Arg Lys Asp Tyr Pro Gly Asp Trp 225 230 235 Thr Lys Val Tyr Met Val Leu Glu Leu Lys Lys Ser Leu Asp Tyr Glu 245 250 255 Glu Asn Pro Leu His Ile Phe Arg Val Thr Ala Ser Asp Ser Leu Pro 260 265 270 Asn Asn Arg Thr Val Val Met Met Val Glu Val Glu Asn Val Glu His 275 280 285 Arg Asn Pro Arg Trp Met Glu Ile Phe Ala Val Gln Gln Phe Asp Glu 295 300 Lys Gln Ala Lys Ser Phe Thr Val Arg Ala Ile Asp Gly Asp Thr Gly 310 315 Ile Asn Lys Pro Ile Phe Tyr Arg Ile Glu Thr Glu Asp Glu Asp Lys 325 335 330 Glu Phe Phe Ser Ile Glu Asn Ile Gly Glu Gly Arg Asp Gly Ala Arg 340 345 350 Phe His Val Ala Pro Ile Asp Arg Asp Tyr Leu Lys Arg Asp Met Phe 365 355 360 His Ile Arg Ile Ile Ala Tyr Lys Gln Gly Asp Asn Asp Lys Glu Gly 375 380 Glu Ser Ser Phe Glu Thr Ser Ala Asn Val Thr Ile Ile Ile Asn Asp 395 390 Ile Asn Asp Gln Arg Pro Glu Pro Phe His Lys Glu Tyr Thr Ile Ser 405 410 415 Ile Met Glu Glu Thr Ala Met Thr Leu Asp Leu Gln Glu Phe Gly Phe 425 His Asp Arg Asp Ile Gly Pro His Ala Gln Tyr Asp Val His Leu Glu 435 440 Ser Ile Gln Pro Glu Gly Ala His Thr Ala Phe Tyr Ile Ala Pro Glu 450 455 460 Glu Gly Tyr Gln Ala Gln Ser Phe Thr Ile Gly Thr Arg Ile His Asn 470 475 Met Leu Asp Tyr Glu Asp Asp Asp Tyr Arg Pro Gly Ile Lys Leu Lys 485 490 495 Ala Val Ala Ile Asp Arg His Asp Asn Asn His Ile Gly Glu Ala Ile 500 505 510 Ile Asn Ile Asn Leu Ile Asn Trp Asn Asp Glu Leu Pro Ile Phe Asp 515 520 525 Glu Asp Ala Tyr Asn Val Thr Phe Glu Glu Thr Val Gly Asp Gly Phe 540 530 535 His Ile Gly Lys Tyr Arg Ala Lys Asp Arg Asp Ile Gly Asp Ile Val 550 555 Glu His Ser Ile Leu Gly Asn Ala Ala Asn Phe Leu Arg Ile Asp Ile 565 570 Asp Thr Gly Asp Val Tyr Val Ser Arg Asp Asp Tyr Phe Asp Tyr Gln 585 Arg Gln Asn Glu Ile Ile Val Gln Ile Leu Ala Val Asp Thr Leu Gly 600 605 Leu Pro Gln Asn Arg Ala Thr Thr Gln Leu Thr Ile Phe Leu Glu Asp 610 615 620 Ile Asn Asn Thr Pro Pro Ile Leu Arg Leu Pro Arg Ser Ser Pro Ser 625 630 635 640 Val Glu Glu Asn Val Glu Val Gly His Pro Ile Thr Glu Gly Leu Thr 645 650 655 Ala Thr Asp Pro Asp Thr Thr Ala Asp Leu His Phe Glu Ile Asp Trp 660 665 Asp Asn Ser Tyr Ala Thr Lys Gln Gly Thr Asn Gly Pro Asn Thr Ala 680 Asp Tyr His Gly Cys Val Glu Ile Leu Thr Val Tyr Pro Asp Pro Asp 695 Asn His Gly Arg Ala Glu Gly His Leu Val Ala Arg Glu Val Ser Asp 710 715

Gly	Val	Thr	Ile	Asp 725	Tyr	Glu	Lys	Phe	Glu 730		Leu	Tyr	Leu	Val 735	Val
Arg	Val	Ile	Asp		Asn	Thr	Val	Ile 745			Asp	Tyr	Asp 750		Ala
Met	Leu	Thr 755	-	Thr	Ile	Ile	Asp 760		Asn	Asp	Asn	Trp 765		Ile	Trp
Ala	Asp 770		Thr	Leu	Gln	Gln 775		Leu	Arg	Val	Arg 780		Met	Ala	Asp
Glu 785		Val	Ile	Val	Gly 790		Leu	Leu	Ala	Thr 795		Leu	Asp	Gly	Pro 800
	Tyr	Asn	Arg	Val 805	Arg	Tyr	Thr	Met	Val 810		Ile	Lys	Asp	Thr 815	
Asp	Asp	Leu	Ile 820		Ile	Asn	Tyr	Val 825		Gly	Gln	Leu	Thr 830		Asn
Lys	Gly	Gln 835		Ile	Asp	Ala	Asp 840		Pro	Pro	Arg	Phe 845		Leu	Tyr
Tyr	Lys 850		Thr	Ala	Ser	Asp 855		Суѕ	Ser	Leu	Asp 860		Phe	Phe	Pro
Val 865		Pro	Pro	Asp	Pro 870		Tyr	Trp	Asn	Thr 875		Gly	Glu	Ile	Ala 880
	Ala	Ile	Thr	Asp 885	Thr	Asn	Asn	Lys	Ile 890		Arg	Ala	Glu	Thr 895	
Met	Phe	Pro	Ser 900	Glu	Lys	Arg	Ile	Tyr 905	Glu	Asn	Thr	Pro	Asn 910	Gly	Thr
Lys	Ile	Thr 915	Thr	Ile	Ile	Ala	Ser 920	Asp	Gln	Asp	Arg	Asp 925	Arg	Pro	Asn
Asn	Ala 930	Leu	Thr	Tyr	Arg	Ile 935	Asn	Tyr	Ala	Phe	Asn 940	His	Arg	Leu	Glu
Asn 945	Phe	Phe	Ala	Val	Asp 950	Pro	Asp	Thr	Gly	Glu 955	Leu	Phe	Val	His	Phe 960
Thr	Thr	Ser	Glu	Val 965	Leu	Asp	Arg	Asp	Gly 970	Glu	Glu	Pro	Glu	His 975	Arg
			980		Val			985					990		
		995			Thr		1000)				1005	5		
	1010)			Leu	1015	5				1020)			
Ser 1025		Gly	Glu	Val	Glu 1030	_	Lys	Arg	Ile	Pro 1035		Glu	Ile	His	Ala 1040
His	Asp	Arg	Asp	Glu 1045	Pro	Phe	Asn	Asp	Asn 1050		Arg	Val	Gly	Tyr 1055	
	_		1060)	Leu			1065	5				1070)	-
Pro	Phe	Lys 1075		Ile	Thr	Ile	Asp 1080		Leu	Asp	Thr	Trp 1085		Phe	Val
Gly	Glu 1090		Glu	Thr	Thr	Met 1095	-	Leu	Arg	Gly	Tyr 1100	-	Gly	Thr	Tyr
Asp 1105		Glu	Ile	Arg	Ala 1110		Asp	His	Gly	Phe 1115		Met	Leu	Asp	Ser 1120
		Thr	Tyr	Gln 1125	Leu		Val	Arg	Pro 1130	Tyr		Phe	His	Ser 1135	Pro
Val	Phe	Val	Phe 1140	Pro	Thr	Pro	Gly	Ser 1145	Thr		Arg	Leu	Ser 1150	Arg	
Arg	Ala	Ile 1155		Asn	Gly	Met	Leu 1160		Leu	Ala	Asn	Ile 1165		Ser	Gly
Glu	Phe 1170	Leu		Arg	Leu	Ser 1175	Ala		Asp	Glu	Asp 1180		Leu	His	Ala
Gly 1185	-	Val	Thr	Phe	Ser 1190		Ala	Gly	Asn	Asp 1195		Ala	Ala	Glu	Tyr 1200
Phe	Asn	Val	Leu	Asn 1205	Asp	Gly	Asp	Asn	Ser 1210		Met	Leu	Thr	Leu 1215	
									_	_					

Gln Ala Leu Pro Ala Gly Val Gln Gln Phe Glu Leu Val Ile Arg Ala 1225 1220 Thr Asp Gly Gly Thr Glu Pro Gly Pro Arg Ser Thr Asp Cys Ser Val 1235 1240 1245 Thr Val Val Phe Val Met Thr Gln Gly Asp Pro Val Phe Asp Asp Asn 1250 1255 1260 Ala Ala Ser Val Arg Phe Val Glu Lys Glu Ala Gly Met Ser Glu Lys 1265 1270 1275 1280 Phe Gln Leu Pro Gln Ala Asp Asp Pro Lys Asn Tyr Arg Cys Met Asp 1285 1290 1295 Asp Cys His Thr Ile Tyr Tyr Ser Ile Val Asp Gly Asn Asp Gly Asp 1300 1305 1310 His Phe Ala Val Glu Pro Glu Thr Asn Val Ile Tyr Leu Leu Lys Pro 1315 1320 1325 Leu Asp Arg Ser Gln Gln Glu Gln Tyr Arg Val Val Ala Ala Ser 1330 1335 1340 Asn Thr Pro Gly Gly Thr Ser Thr Leu Ser Ser Ser Leu Leu Thr Val 1345 1350 1355 Thr Ile Gly Val Arg Glu Ala Asn Pro Arg Pro Ile Phe Glu Ser Glu 1365 1370 1375 Phe Tyr Thr Ala Gly Val Leu His Thr Asp Ser Ile His Lys Glu Leu 1380 1385 1390 Val Tyr Leu Ala Ala Lys His Ser Glu Gly Leu Pro Ile Val Tyr Ser 1395 1400 1405 Ile Asp Gln Glu Thr Met Lys Ile Asp Glu Ser Leu Gln Thr Val Val 1410 1415 1420 Glu Asp Ala Phe Asp Ile Asn Ser Ala Thr Gly Val Ile Ser Leu Asn 1425 1430 1435 Phe Gln Pro Thr Ser Val Met His Gly Ser Phe Asp Phe Glu Val Val 1445 1450 Ala Ser Asp Thr Arg Gly Ala Ser Asp Arg Ala Lys Val Ser Ile Tyr 1460 1465 1470 Met Ile Ser Thr Arg Val Arg Val Ala Phe Leu Phe Tyr Asn Thr Glu 1475 1480 1485 Ala Glu Val Asn Glu Arg Arg Asn Phe Ile Ala Gln Thr Phe Ala Asn 1490 1495 1500 Ala Phe Gly Met Thr Cys Asn Ile Asp Ser Val Leu Pro Ala Thr Asp 1510 1515 Ala Asn Gly Val Ile Arg Glu Gly Tyr Thr Glu Leu Gln Ala His Phe 1525 1530 1535 Ile Arg Asp Asp Gln Pro Val Pro Ala Asp Tyr Ile Glu Gly Leu Phe 1540 1545 1550 Thr Glu Leu Asn Thr Leu Arg Asp Ile Arg Glu Val Leu Ser Thr Gln 1555 1560 1565 Gln Leu Thr Leu Leu Asp Phe Ala Ala Gly Gly Ser Ala Val Leu Pro 1570 1575 1580 Gly Gly Glu Tyr Ala Leu Ala Val Tyr Ile Leu Ala Gly Ile Ala Ala 1590 1595 Leu Leu Ala Val Ile Cys Leu Ala Leu Leu Ile Ala Phe Phe Ile Arg 1605 1610 1615 Asn Arg Thr Leu Asn Arg Arg Ile Glu Ala Leu Thr Ile Lys Asp Val 1620 1630Pro Thr Asp Ile Glu Pro Asn His Ala Ser Val Ala Val Leu Asn Ile 1635 1640 1645 Asn Lys His Thr Glu Pro Gly Ser Asn Pro Phe Tyr Asn Pro Asp Val 1650 1655 1660 Lys Thr Pro Asn Phe Asp Thr Ile Ser Glu Val Ser Asp Asp Leu Leu 1665 1670 1675 1680 Asp Val Glu Asp Leu Glu Gln Phe Gly Lys Asp Tyr Phe Pro Pro Glu 1685 1690 1695 Asn Glu Ile Glu Ser Leu Asn Phe Ala Arg Asn Pro Ile Ala Thr His 1705 1700 1710

```
Gly Asn Asn Phe Gly Val Asn Ser Ser Pro Ser Asn Pro Glu Phe Ser
                           1720
                                               1725
       1715
Asn Ser Gln Phe Arg Ser
   1730
<210> 7
<211> 1604
<212> DNA
<213> Ostrinia nubilalis
<400> 7
tccgaattct tcttcaacct catcgacaac ttctttctg acggtgacgg taggagaaac
                                                                     60
caqqacqaag ttgaaatatt tgtcgttcta ttggatgtga acgacaacgc tcctgagatg
                                                                     120
ccatcgcctg atgaactccg gtttgatgtt tccgaaggag cagttgctgg tgtccgtgta
                                                                     180
                                                                     240
ctcccagaaa tctacgcacc tgacagggat gaaccagaca cggacaactc gcgtgtcggt
tacqqaatcc tggacctcac gatcaccgac cgagacatcg aggtgccgga tctcttcacc
                                                                     300
atgatctcga ttgaaaacaa aactggggaa cttgagaccg ctatggactt gagggggtat
                                                                    360
tggggcactt acqaaatatt cattgaggcc ttcgaccacg gctacccgca gcagaggtcc
                                                                     420
                                                                     480
aacgggacgt acacactggt cattcgcccc tacaacttcc accaccctgt gttcgtgttc
ccgcaacccg actccgtcat tcggctctct agggagcgcg caacagaagg cggggtcctg
                                                                     540
qcqacqqctq ccaacqaqtt cctgqaqccq atctacqcca ccqacqaqqa cgqcctccac
                                                                     600
qcqqqcaqcq tcacqttcca cgtccaggga aatgaggagg ccgttcagta ctttgatata
                                                                    660
actgaagtgg gagcaggaga aaatagcggg cagcttatat tacgccagct tttcccagag
                                                                    720
                                                                    780
ctttgqaccg acqtcacgtt ttcggtggtc ttcgtaccca cgcagggcga cccagtgttc
                                                                    840
                                                                    900
agcgaaaatg cagctactgt tgccttcttc gagggtgaag aaggcctcca tgagagtttt
qaqctqccqc aaqcaqaaqa ccttaaaaac cacctctqcq aaqatqactq ccaaqatatc
                                                                    960
                                                                   1020
tactacaggt ttattgacgg caacaacgag ggtctgttcg tgctggacca gtcgagcaac
gtcatctccc ttgcgcagga gttggaccgc gaggttgcca cgtcttacac gctgcacatc
                                                                   1080
                                                                   1140
geggegagea actegeeega egecaetggg atecetetge agaetteeat cetegttgte
acggtcaatg taagagaagc gaacccgcgc ccaattttcg agcaggacct ttacacagcg
                                                                   1200
qqcatttcqa cqttqqacaq cattqqccqq gaattqctta ccqtcaggqc gagccacaca
                                                                   1260
gaagacgaca ccatcacgta catcatagac cgtgcgagca tgcagctgga cagcagccta
                                                                   1320
gaageegtge gegactegge etteaegetg catgegacea eeggegtget ttegeteaat
                                                                   1380
atgcagccca ccgcttccat gcacggcatg ttcgagttcg acgtcatcgc tacggataca
                                                                   1440
qcatctqcaa tcqacacaqc tcqtqtqaaa qtctacctca tctcatcqca aaaccqcqtq
                                                                   1500
                                                                   1560
teetteattt tegataacca aettgagace gttgageaga aeagaaattt catageggee
acqttcaqca ccgggttcaa catgacgtgt aacatcgacc aagt
                                                                   1604
<210> 8
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide
<400> 8
                                                                     23
gttamygtga gagaggcaga ycc
<210> 9
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide
<400> 9
                                                                     23
ggatrttaag mgtcagyacw ccg
<210> 10
```

<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide	
<400> 10	
tccgaattct tcttyaacct catcgayaac tt	32
.010. 44	
<210> 11	
<211> 32	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic oligonucleotide	
400. 11	
<400> 11	
cgcaagetta cttggtcgat gttrcasgtc at	32