(54) Titre : ANTICORPS ANTI-IL-6 ET UTILISATION DESDITS
(55) Title: ANTIBODIES TO IL-6 AND USE THEREOF

(57) Abrégé/Abstract:
Disclosed are therapeutic methods using IL-6 antagonists such as an Ab 1 antibody or antibody fragment having binding specificity for IL-6 to prevent or treat disease or to improve survivability or quality of life of a patient in need thereof. Patients will preferably comprise those exhibiting (or at risk of developing) an elevated serum C-reactive protein level, reduced serum albumin level, elevated D-dimer or other coagulation cascade related prote|m(s), cachexia, fever, weakness and/or fatigue prior to treatment. The subject therapies also may include the administration of other actives such as chemotherapeutics, anti-coagulants, statins, and others.

Title: ANTIBODIES TO IL-6 AND USE THEREOF

Abstract: Disclosed are therapeutic methods using IL-6 antagonists such as an Ab 1 antibody or antibody fragment having binding specificity for IL-6 to prevent or treat disease or to improve survivability or quality of life of a patient in need thereof. Patients will preferably comprise those exhibiting (or at risk of developing) an elevated serum C-reactive protein level, reduced serum albumin level, elevated D-dimer or other coagulation cascade related protein(s), cachexia, fever, weakness and/or fatigue prior to treatment. The subject therapies also may include the administration of other actives such as chemotherapeutics, anti-coagulants, statins, and others.
ANTIBODIES TO IL-6 AND USE THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

[0002] The sequence listing in the file named “67858o706002.txt” having a size of 332,081 bytes that was created November 24, 2009 is hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

[0003] This invention is an extension of Applicants’ prior invention disclosed in the above-referenced patent applications relating to novel anti-IL-6 antibodies, novel therapies and therapeutic protocols utilizing anti-IL-6 antibodies, and pharmaceutical formulations containing anti-IL-6 antibodies. In preferred embodiments, an anti-IL-6 antibody is Ab1, which includes rabbit or humanized forms thereof, as well as heavy chains, light chains, fragments, variants, and CDRs thereof, or an antibody or antibody fragment that specifically binds to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide fragment thereof as Ab1. The subject application pertains in particular to preferred formulations and therapeutic uses of an exemplary humanized antibody referred to herein as Ab1 and variants thereof. In preferred embodiments, the anti-IL-6 antibody has an in vivo half-life of at least about 25 days, an in vivo effect of raising albumin, has an in vivo effect of lowering C-reactive protein, has an in vivo effect of restoring a normal coagulation profile, possesses a binding affinity (Kd) for IL-6 of less than about 50 picomolar, and/or has a rate of dissociation (K_{off}) from IL-6 of less than or equal to 10^4 S^{-1}.
The invention also pertains to methods of screening for diseases and disorders associated with IL-6, and methods of preventing or treating diseases or disorders associated with IL-6 by administering said antibody or a fragment or a variant thereof.

In one aspect, this invention pertains to methods of improving survivability or quality of life of a patient in need thereof, comprising administering to the patient an anti-IL-6 antibody, such as Ab1 or a fragment or variant thereof, whereby the patient’s C-reactive protein (“CRP”) level is lowered, and/or the patient’s albumin level is raised, and optionally monitoring the patient to determine the patient’s CRP and/or albumin level.

In another aspect, this invention relates to methods of lowering the C-reactive protein level in a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient’s CRP level is lowered, and monitoring the patient to assess the CRP level. In another aspect, this invention relates to methods of raising the albumin level in a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient’s serum albumin level is raised, and monitoring the patient to assess the albumin level.

In another aspect, this invention pertains to methods of preventing or treating cachexia, weakness, fatigue, and/or fever in a patient in need thereof, e.g., a patient showing elevated CRP levels, comprising administering to the patient an anti-IL-6 antibody or antibody fragment or variant thereof, whereby the patient’s cachexia, weakness, fatigue, and/or fever is improved or restored to a normal condition, and optionally monitoring the patient to assess cachexia, weakness, fatigue, and/or fever.

In another embodiment, this invention pertains to methods of preventing or treating thrombosis in a patient in a state of hypercoagulation, comprising administering to the patient an anti-IL-6 antibody, such as Ab1 or a fragment or variant thereof, whereby the patient’s coagulation profile is improved or restored to a normal condition, and optionally monitoring the patient to assess coagulation profile.

In another aspect the invention provides novel pharmaceutical compositions and their use in novel combination therapies and comprising administration of an anti-IL-6 antibody, such as Ab1 or a fragment or variant thereof, and at least one other therapeutic compound such as a statin, anti-coagulant, anti-emetic, anti-nausea agent, anti-cachexia agent, chemotherapy agent, anti-cytokine agent, etc.
[0010] Weight loss, fatigue, and muscular weakness are very common symptoms of patients with advanced forms of cancer, and these symptoms can worsen as the cancer continues to progress. Fatigue, weight loss and muscular weakness can have significant negative effects on the recovery of patients with advanced forms of cancer, for example by disrupting lifestyles and relationships and affecting the willingness or ability of patients to continue cancer treatments. Known methods of addressing fatigue, weight loss and muscular weakness include regular routines of fitness and exercise, methods of conserving the patient’s energy, and treatments that address anemia-induced fatigue and muscular weakness. Nevertheless, there remains a need in the art for methods and/or treatments that improve fatigue, weight loss and muscular weakness in cancer patients.

[0011] Thrombosis is a significant cause of mortality in cancer patients. Bick, N Engl J Med 349:109-111 (2003). For example, serious, life-threatening thrombotic events occur in approximately 6% of lung cancer patients. Alguire et al., J Clin Oncol 2004 Vol 22 (July 15th Supplement) No. 14S: 8082. Cancer patients often exhibit hypercoagulation, in which the coagulation system has an increased clotting tendency. Rickles and Edwards, Blood 62:14-31 (1983). Markers of hypercoagulation correlate with poor patient outcome for at least some cancers. Bick, Semin Thromb Hemostat 18:353-372 (1992); Buccheri et al., Cancer 97:3044-3052 (2003); Wojtukiewicz, Blood Coagul Fibrinolysis 3:429-437 (1992). Causes of hypercoagulation include the cancer itself and the cancer treatments (e.g., chemotherapy). Hypercoagulation results in an increased risk of thrombotic events, which can be further exacerbated when patients become bed-ridden. When not contraindicated, anticoagulant therapy has conferred survival benefit in some cancers. Lebeau et al., Cancer 74:38-45 (1994); Chahinian et al., J Clin Oncol 7:993-1002 (1989). However, therapeutic options are often limited because many cancer patients are at an elevated risk of major bleeding, precluding administration of anticoagulants that could otherwise be given prophylactically to reduce the risk of thrombosis. In summary, the available methods for prevention of thrombosis in cancer patients are unsatisfactory, and thus there is a need for new therapies. Such therapies would enhance cancer patient survival and promote better quality of life.

[0012] Thrombosis can also be a significant cause of adverse events and mortality in other patient groups, including those with chronic illness or chronic inflammation, surgical patients, bed-ridden individuals, and orthopedic patients. When they are not otherwise contraindicated, preventative methods include calf compression and anticoagulants (e.g. low molecular weight heparin). These preventative methods can reduce — but not eliminate —
the risk of thrombosis. Because these preventative methods are not always effective and are contraindicated for some patients, and because anticoagulants can cause potentially lethal side-effects such as major bleeding, there is a need for alternative methods to prevent thrombosis in these patients. Such methods should improve patient outcomes.

[0013] Interleukin-6 (hereinafter “IL-6”) (also known as interferon-β2; B-cell differentiation factor; B-cell stimulatory factor-2; hepatocyte stimulatory factor; hybridoma growth factor; and plasmacytoma growth factor) is a multifunctional cytokine involved in numerous biological processes such as the regulation of the acute inflammatory response, the modulation of specific immune responses including B- and T-cell differentiation, bone metabolism, thrombopoiesis, epidermal proliferation, menses, neuronal cell differentiation, neuroprotection, aging, cancer, and the inflammatory reaction occurring in Alzheimer’s disease. See A. Papassotiropoulos et al, Neurobiology of Aging, 22:863-871 (2001).

[0014] IL-6 is a member of a family of cytokines that promote cellular responses through a receptor complex consisting of at least one subunit of the signal-transducing glycoprotein gp130 and the IL-6 receptor (“IL-6R”) (also known as gp80). The IL-6R may also be present in a soluble form (“sIL-6R”). IL-6 binds to IL-6R, which then dimerizes the signal-transducing receptor gp130. See Jones, SA, J. Immunology, 175:3463-3468 (2005).

[0015] In humans, the gene encoding IL-6 is organized in five exons and four introns, and maps to the short arm of chromosome 7 at 7p21. Translation of IL-6 RNA and post-translational processing result in the formation of a 21 to 28 kDa protein with 184 amino acids in its mature form. See A. Papassotiropoulos, et al, Neurobiology of Aging, 22:863-871 (2001).

[0016] As set forth in greater detail herein IL-6 is believed to play a role in the development of a multitude of diseases and disorders, including but not limited to fatigue, cachexia, autoimmune diseases, diseases of the skeletal system, cancer, heart disease, obesity, diabetes, asthma, Alzheimer’s disease and multiple sclerosis. Due to the perceived involvement of IL-6 in a wide range of diseases and disorders, there remains a need in the art for compositions and methods useful for preventing or treating diseases associated with IL-6, as well as methods of screening to identify patients having diseases or disorders associated with IL-6. Particularly preferred anti-IL-6 compositions are those having minimal or minimizing adverse reactions when administered to the patient. Compositions or methods
that reduce or inhibit diseases or disorders associated with IL-6 are beneficial to the patient in need thereof.

[0017] The function of IL-6 is not restricted to the immune response as it acts in hematopoiesis, thrombopoiesis, osteoclast formation, elicitation of hepatic acute phase response resulting in the elevation of C-reactive protein (CRP) and serum amyloid A (SAA) protein. It is known to be a growth factor for epidermal keratinocytes, renal mesangial cells, myeloma and plasmacytoma cells (Grossman et al., 1989 Prot Natl Acad Sci., 86, (16) 6367-6371; Horii et al., 1989, J Immunol, 143, 12, 3949-3955; Kawano et al., 1988, Nature 332, 6159, 83-85). IL-6 is produced by a wide range of cell types including monocytes/macrophages, fibroblasts, epidermal keratinocytes, vascular endothelial cells, renal mesangial cells, glial cells, condrocytes, T and B-cells and some tumor cells (Akira et al, 1990, FASEB J., 4, 11, 2860-2867). Except for tumor cells that constitutively produce IL-6, normal cells do not express IL-6 unless appropriately stimulated.

[0018] Elevated IL-6 levels have been observed in many types of cancer, including breast cancer, leukemia, ovarian cancer, prostate cancer, pancreatic cancer, lymphoma, lung cancer, renal cell carcinoma, colorectal cancer, and multiple myeloma (e.g., Chopra et al., 2004, MJAFI 60:45-49; Songur et al., 2004, Tumori 90:196-200; Blay et al., 1992, Cancer Research 52:3317-3322; Nikiteas et al., 2005, World J. Gasterenterol. 11:1639-1643; reviewed in Heikkila et al., 2008, Eur J Cancer, 44:937-945). As noted above, IL-6 is known or suspected to play a role in promoting proliferation or survival of at least some types of cancer. Moreover, some of these studies have demonstrated correlation between IL-6 levels and patient outcome. Together, these results suggest the possibility that inhibition of IL-6 can be therapeutically beneficial. Indeed, clinical studies (reviewed in Trikha et al., 2003, Clinical Cancer Research 9:4653-4665) have shown some improvement in patient outcomes due to administration of various anti-IL-6 antibodies, particularly in those cancers in which IL-6 plays a direct role promoting cancer cell proliferation or survival.

[0019] As noted above, IL-6 stimulates the hepatic acute phase response, resulting in increased production of CRP and elevated serum CRP levels. For this reason, C-reactive protein (CRP) has been reported to comprise a surrogate marker of IL-6 activity. Thus, elevated IL-6 activity can be detected through measurement of serum CRP. Conversely, effective suppression of IL-6 activity, e.g., through administration of a neutralizing anti-IL-6 antibody, can be detected by the resulting decrease in serum CRP levels.
[0020] A recent clinical trial demonstrated that administration of rosuvastatin to apparently healthy individuals having elevated CRP (greater than 2.0 mg/l) reduced their CRP levels by 37% and greatly decreased the incidence of myocardial infarction, stroke, arterial revascularization, hospitalization for unstable angina, or death from cardiovascular causes. Ridker et al., N Engl J Med. 2008 Nov 9 [Epub ahead of print].

[0021] In addition to its direct role in pathogenesis of some cancers and other diseases, chronically elevated IL-6 levels appear to adversely affect patient well-being and quality of life. For example, elevated IL-6 levels have been reported to be associated with cachexia and fever, and reduced serum albumin. Gauldie et al., 1987, PNAS 84:7251-7253; Heinric et al., 1990, 265:621-636; Zamir et al., 1993, Metabolism 42:204-208; Zamir et al., 1992, Arch Surg, 127:170-174. Inhibition of IL-6 by a neutralizing antibody has been reported to ameliorate fever and cachexia in cancer patients, though improvement in these patients’ serum albumin level has not been reported (Emille et al., 1994, Blood, 84:2472-2479; Blay et al., 1992, Cancer Research 52:3317-3322; Bataille et al., 1995, Blood, 86: 685-691).

[0023] The Glasgow Prognostic Score (GPS) is an inflammation-based prognostic score that combines levels of albumin (< 35 mg/L = 1 point) and CRP (> 10 mg/L = 1 point) (Forrest et al., Br J Cancer, 2004 May 4;90(9):1704-6). Since its introduction in 2004, the Glasgow Prognostic Score has already been shown to have prognostic value as a predictor of mortality in numerous cancers, including gastro-esophageal cancer, non-small-cell lung cancer, colorectal cancer, breast cancer, ovarian cancer, bronchogenic cancer, and metastatic renal cancer (Forrest et al., Br J Cancer, 2004 May 4;90(9):1704-6; Sharma et al., Clin Colorectal Cancer, 2008 Sep;7(5):331-7; Sharma et al., Eur J Cancer, 2008 Jan;44(2):251-6; McMillan et al., Nutr Cancer, 2001;41(1-2):64-9; McMillan, Proc Nutr Soc, 2008 Aug;67(3):257-62; Ramsey et al., Cancer, 2007 Jan 15;109(2):205-12).

[0024] U.S. patent application publication no. 20080081041 (relating to treatment of cancer using an anti-IL-6 antibody) discloses that since IL-6 is associated with disease activity and since CRP is a surrogate marker of IL-6 activity, sustained suppression of CRP by neutralization of IL-6 by their anti-IL-6 antibody (CNTO 328, Zaki et al., Int J Cancer, 2004 Sep 10;111(4):592-5) may be assumed necessary to achieve biological activity. The same patent application indicates that the relationship between IL-6 and CRP in patients with benign and malignant prostate disease was previously examined by McArdle (McArdle et al. 2004 Br J Cancer 91(10):1755-1757). McArdle reportedly found no significant differences between the concentrations of IL-6 and CRP in the patients with benign disease compared with prostate cancer patients, in the cancer patients there was a significant increase in both IL-6 and CRP concentration with increasing tumor grade. The median serum CRP value for the 86 subjects with prostate cancer was 1.8 mg/L. Based thereon the inventors in the above-referenced patent application postulate a proposed dose and schedule wherein 6 mg/kg of an anti-IL-6 antibody (CNTO 328) is administered every 2 weeks and allege that this is likely to achieve sustained suppression of CRP in subjects with metastatic HRPC.

[0025] IL-6 signaling is mediated by the Jak-Tyk family of cytoplasmic tyrosine kinases, including JAK1, JAK2, and JAK3 (reviewed in Murray J Immunol. 2007 Mar 1;178(5):2623-9). Sivash et al. report abrogation of IL-6-mediated JAK signaling by the cyclopentenone prostaglandin 15d-PGJ2 in oral squamous carcinoma cells. British Journal of Cancer (2004) 91, 1074–1080. These results suggest that inhibitors of JAK1, JAK2, or JAK3 could be employed as antagonists of IL-6.

[0026] Ulanova et al. report that inhibition of the nonreceptor protein tyrosine kinase Syk (using siRNA) decreased production of IL-6 by epithelial cells. Am J Physiol Lung Cell Mol
Physiol. 2005 Mar;288(3):L497-507. These results suggest that an inhibitor of Syk could be employed as an antagonist of IL-6.

[0027] Kedar et al. report that treatment with thalidomide significantly reduced serum levels of CRP and IL-6 to normal or near normal levels in a substantial fraction of renal cell carcinoma patients. Int J Cancer. 2004 Jun 10;110(2):260-5. These results suggest that thalidomide, and possibly derivatives thereof, such as lenalidomide, may be useful antagonists of IL-6.

[0028] In addition, another published patent application, US 20070292420 teaches a Phase I dose escalating study using an anti-IL-6 (cCLB-8) antibody for treating refractory patients with advanced stage multiple myeloma (N=12) and indicate that this study demonstrated that some patients had disease stabilization. The application also reports that after discontinuation of treatment there was acceleration in the increase of M protein levels, suggesting disease rebound after the withdrawal of therapy. Anti-IL-6 cCLB-8 antibody inhibited free circulating IL-6.

[0029] The application also indicates that this antibody trial resulted in no toxicity (except transient thrombocytopenia in two heavily pretreated patients) or allergic reactions were observed and that C-reactive protein (CRP) decreased below detection level in all patients. Their antibody (cCLB-8 antibody) reportedly possessed a circulating half-life of 17.8 days, and that there was no human anti-chimeric antibody (HACA) immune response observed (van Zaanen et al. 1998). They allege that the administration of CNTO 328 did not cause changes in blood pressure, pulse rate, temperature, hemoglobin, liver functions and renal functions. Except for transient thrombocytopenia in two heavily pretreated patients, no toxicity or allergic reactions allegedly were observed, and there was no human anti-chimeric antibody (HACA) immune response observed. Three patients in their study reportedly developed infection-related complications during therapy, however, a possible relation with anti-IL-6 cCLB-8 antibody was concluded by the inventors to be unlikely because infectious complications are reportedly common in end stage multiple myeloma and are a major cause of death. They conclude based on their results that this anti-IL-6 cCLB-8 antibody was safe in multiple myeloma patients.

[0030] Certain of the anti-IL-6 antibodies disclosed herein have also been disclosed in the following published and unpublished patent applications, which are co-owned by the assignee of the present application: U.S. 2009/0028784, WO 2008/144763, U.S. Ser. No. 12/391,717

[0031] Other anti-IL-6 antibodies have been disclosed in the following U.S. patents and published patent applications: 7,482,436; 7,291,721; 6,121,423; 2008/0075726; 2007/0178098; 2007/0154481; 2006/0257407; and 2006/0188502.

[0033] Diseases and disorders associated with cachexia include, but are not limited to, cancer-related cachexia, cardiac-related cachexia, respiratory-related cachexia, renal-related cachexia and age-related cachexia. See, for example, Barton, BE., Interleukin-6 and new strategies for the treatment of cancer, hyperproliferative diseases and paraneoplastic syndromes, Expert Opin Ther Targets, 2005 Aug;9(4):737-52; Zaki MH, et al, CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice, Int J Cancer, 2004 Sep 10;111(4):592-5; Trikha M, et al, Targeted anti-interleukin-6 monoclonal

[0034] Another cachexia-related disease is failure to thrive, also known as faltering growth, in which a child exhibits a rate of weight gain less than expected. Failure to thrive is typically defined as weight below the third percentile or a decrease in the percentile rank of 2 major growth parameters in a short period. Failure to thrive results from heterogeneous medical and psychosocial causes, and the cause sometimes eludes diagnosis. One recent study (totaling 34 patients) reported a statistically significant elevation in IL-6 levels in patients diagnosed with failure to thrive. Shaoul et al. J Pediatr Gastroenterol Nutr., 2003 Oct;37(4):487-91.

BRIEF SUMMARY OF THE INVENTION

[0035] The present invention is an extension of Applicants' previous invention which is directed to specific antibodies, humanized or chimeric or single chain antibodies and fragments and variants thereof having binding specificity for IL-6, in particular antibodies
having specific epitopic specificity and/or functional properties and novel therapies using these and other anti-IL-6 antibodies. One embodiment of the invention encompasses specific humanized antibodies and fragments and variants thereof capable of binding to IL-6 and/or the IL-6/IL-6R complex. These antibodies may bind soluble IL-6 or cell surface expressed IL-6. Also, these antibodies may inhibit the formation or the biological effects of one or more of IL-6, IL-6/IL-6R complexes, IL-6/IL-6R/gp130 complexes and/or multimers of IL-6/IL-6R/gp130. The present invention relates to novel therapies and therapeutic protocols using anti-IL-6 antibodies, preferably those described herein. In particular, the present invention pertains to methods of preventing or treating thrombosis in a patient in need thereof, e.g., a patient showing elevated D-dimer and/or CRP levels prior to treatment, comprising administering to the patient an IL-6 antagonist, such as those identified infra, e.g., an anti-IL-6 antibody (such as Ab1) or antibody fragment or variant thereof, whereby the patient's coagulation profile is improved or restored to a normal condition. In some embodiments these methods may further include the administration of other actives such as statins that may further help (synergize) with the IL-6 antagonist such as Ab1 and thereby more effectively treat or prevent thrombosis.

[0036] The present invention also pertains to methods of improving survivability or quality of life of a patient in need thereof, e.g., a patient showing elevated CRP levels and/or lowered albumin levels, comprising administering to the patient an IL-6 antagonist, such as those identified infra, e.g., an anti-IL-6 antibody (e.g., Ab1) or antibody fragment or variant thereof, whereby the patient's C-reactive protein ("CRP") level is lowered, and/or the patient's albumin level is raised. In some embodiments these methods may further include the administration of other actives such as statins that may further help (synergize) with the IL-6 antagonist such as Ab1 and thereby more effectively treat the patient.

[0037] Another embodiment of the invention relates to Ab1, including rabbit and humanized forms thereof, as well as heavy chains, light chains, fragments, variants, and CDRs thereof. In the human clinical trial data presented, a humanized form of Ab1 was administered.

[0038] In a preferred embodiment this is effected by the administration of the antibodies described herein, comprising the sequences of the V\(_h\), V\(_l\) and CDR polypeptides described herein, or humanized or chimeric or single chain versions thereof containing one or more of the CDRs of the exemplified anti-IL-6 antibody sequences and the polynucleotides encoding them. Preferably these antibodies will be aglycosylated. In more specific embodiments of
the invention these antibodies will block gp130 activation and/or possess binding affinities (Kds) less than 50 picomolar and/or K_{off} values less than or equal to 10^{-4} S⁻¹.

[0039] In another embodiment of the invention these antibodies and humanized versions will be derived from rabbit immune cells (B lymphocytes) and may be selected based on their homology (sequence identity) to human germ line sequences. These antibodies may require minimal or no sequence modifications, thereby facilitating retention of functional properties after humanization. In exemplary embodiments these humanized antibodies will comprise human frameworks which are highly homologous (possess high level of sequence identity) to that of a parent (e.g. rabbit) antibody as described infra.

[0040] In another embodiment of the invention the subject antibodies may be selected based on their activity in functional assays such as IL-6 driven T1165 proliferation assays, IL-6 simulated HepG2 haptoglobin production assays, and the like. A further embodiment of the invention is directed to fragments from anti-IL-6 antibodies encompassing V_H, V_L and CDR polypeptides or variants or fragments thereof, e.g., derived from rabbit immune cells and the polynucleotides encoding the same, as well as the use of these antibody fragments and the polynucleotides encoding them in the creation of novel antibodies and polypeptide compositions capable of recognizing IL-6 and/or IL-6/IL-6R complexes or IL-6/IL-6R/gp130 complexes and/or multimers thereof.

[0041] The invention also contemplates the administration of conjugates of anti-IL-6 antibodies and humanized, chimeric or single chain versions thereof and other binding fragments and variants thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making said humanized anti-IL-6 or anti-IL-6/IL-6R complex antibodies and binding fragments and variants thereof. In one embodiment, binding fragments include, but are not limited to, Fab, Fab', F(ab')₂, Fv and scFv fragments.

[0042] Embodiments of the invention pertain to the use of anti-IL-6 antibodies for the diagnosis, assessment and treatment of diseases and disorders associated with IL-6 or aberrant expression thereof. The invention also contemplates the use of fragments or variants of anti-IL-6 antibodies for the diagnosis, assessment and treatment of diseases and disorders associated with IL-6 or aberrant expression thereof. Preferred usages of the subject antibodies, especially humanized, chimeric and single chain antibodies are the treatment and prevention of cancer associated fatigue, and/or cachexia and rheumatoid arthritis.
[0043] Other embodiments of the invention relate to the production of anti-IL-6 antibodies in recombinant host cells, preferably diploid yeast such as diploid Pichia and other yeast strains.

[0044] Another embodiment of the invention relates to methods of improving survivability or quality of life of a patient diagnosed with cancer, comprising administering to the patient an anti-IL-6 antibody or antibody fragment or variant thereof, whereby the patient’s serum C-reactive protein (“CRP”) level is stabilized and preferably reduced, and monitoring the patient to assess the reduction in the patient’s serum CRP level, wherein the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or antibody fragment or variant thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated.

[0045] Another embodiment of the invention relates to methods of improving muscular strength in a patient diagnosed with cancer, comprising administering to the patient an anti-IL-6 antibody or antibody fragment or variant thereof, whereby the patient’s muscular strength is improved, and monitoring the patient to assess muscular strength, wherein the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated. In such methods preferably the patient’s muscular strength is improved by at least about 15% within approximately 4 weeks of administering the anti-IL-6 antibody or antibody fragment or variant thereof, as measured by the Hand Grip Strength test and more preferably the patient’s muscular strength is improved by at least about 20% within approximately 4 weeks of administering the anti-IL-6 antibody or antibody fragment or variant thereof, as measured by the Hand Grip Strength test.

[0046] Another embodiment of the invention relates to methods of increasing serum albumin in a patient in need thereof, comprising administering to the patient an anti-IL-6 antibody or antibody fragment or variant thereof, whereby the patient’s serum albumin level is improved, and monitoring the patient to assess serum albumin level, wherein the anti-IL-6
antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or antibody fragment or variant thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated. Preferably, these methods are effected under conditions whereby the patient's survivability is improved, and/or under conditions wherein the serum albumin level is increased by about 5-10 g/L, preferably 7-8 g/L, within approximately 6 weeks of administering the anti-IL-6 antibody or antibody fragment or variant thereof. These patients will include, without limitation thereto, those diagnosed with rheumatoid arthritis, cancer, advanced cancer, liver disease, renal disease, inflammatory bowel disease, celiac's disease, trauma, burns, other diseases associated with reduced serum albumin, or any combination thereof.

[0047] In an embodiment of the invention, the patient may have been diagnosed with rheumatoid arthritis, juvenile rheumatoid arthritis, psoriasis, psoriatic arthropathy, ankylosing spondylitis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, pemphigus, dermatomyositis, polymyositis, polymyalgia rheumatica, giant cell arteritis, vasculitis, polyarteritis nodosa, Wegener's granulomatosis, Kawasaki disease, isolated CNS vasculitis, Churg-Strauss arteritis, microscopic polyarteritis, microscopic polyangiitis, Henoch-Schonlein purpura, essential cryoglobulinemic vasculitis, rheumatoid vasculitis, cryoglobulinemia, relapsing polychondritis, Behcet's disease, Takayasu's arteritis, ischemic heart disease, stroke, multiple sclerosis, sepsis, vasculitis secondary to viral infection (e.g., hepatitis B, hepatitis C, HIV, cytomegalovirus, Epstein-Barr virus, Parvo B19 virus, etc.), Buerger's Disease, cancer, advanced cancer, Osteoarthritis, systemic sclerosis, CREST syndrome, Reiter's disease, Paget's disease of bone, Sjogran's syndrome, diabetes type 1, diabetes type 2, familial Mediterranean fever, autoimmune thrombocytopenia, autoimmune hemolytic anemia, autoimmune thyroid diseases, pernicious anemia, vitiligo, alopecia areata, primary biliary cirrhosis, autoimmune chronic active hepatitis, alcoholic cirrhosis, viral hepatitis including hepatitis B and C, other organ specific autoimmune diseases, burns, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, allergic asthma, other allergic conditions or any combination thereof.

[0048] In an embodiment of the invention, the patient may have an elevated C-reactive protein (CRP) level prior to treatment.
[0049] Another embodiment of the invention relates to methods of improving survivability or quality of life of a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient’s serum C-reactive protein ("CRP") level is reduced, and monitoring the patient to assess the reduction in the patient’s serum CRP level.

[0050] Another embodiment of the invention relates to methods of improving survivability or quality of life of a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient’s serum albumin level is increased, and monitoring the patient to assess the increase in the patient’s serum albumin level.

[0051] Another embodiment of the invention relates to methods of improving survivability or quality of life of a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient’s serum CRP level is reduced and the patient’s serum albumin level is increased, and monitoring the patient to assess the reduction in the patient’s serum CRP level and the increase in the patient’s serum albumin level.

[0052] Another embodiment of the invention relates to methods of preventing or treating thrombosis in a patient in a state of hypercoagulation, comprising administering to the patient an IL-6 antagonist, e.g. an anti-IL-6 antibody (e.g., Ab1) and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated, whereby the patient’s coagulation profile is improved or restored to a normal condition, and monitoring the patient to assess coagulation profile. As discussed infra in a preferred exemplary embodiment the anti-IL-6 antibody will comprise a humanized antibody containing the CDRs of Ab1 and more preferably will comprise the variable heavy and light chain in SEQ ID NO: 657 and SEQ ID NO: 709 respectively and the constant regions in SEQ ID NO: 588 and 586 respectively or variants thereof wherein one or more amino acids are modified by substitution or deletion without substantially disrupting IL-6 binding affinity.

[0053] In such methods if the IL-6 antagonist is an anti-IL-6 antibody or antibody fragment or variant thereof preferably this antibody may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody.
comprising Ab1 and fragments and variants thereof. In the inventive methods of preventing or treating thrombosis, the patient’s coagulation profile is assessed by measurement of the patient’s serum level of one or more of D-dimer, Factor II, Factor V, Factor VIII, Factor IX, Factor XI, Factor XII, F/fibrin degradation products, thrombin-antithrombin III complex, fibrinogen, plasminogen, prothrombin, and von Willebrand factor and preferably by a method including measuring the patient’s serum D-dimer level prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient’s serum D-dimer level is elevated. In addition, the levels of C reactive protein may also be assessed in the patient prior to treatment and, if elevated, this may be used as a further indicator as to an increased risk of thrombosis in the patient.

[0054] An embodiment of the invention relates to methods of treating a patient having a disease or condition associated with hypercoagulation, which may comprise administering to the patient an IL-6 antagonist such as Ab1, whereby the patient’s coagulation profile is improved or restored to normal, and monitoring the patient to assess coagulation profile.

[0055] In an embodiment of the invention, the patient may have elevated serum D-dimer levels prior to treatment.

[0056] In an embodiment of the invention, the patient may have a reduced serum albumin level prior to treatment.

[0057] In an embodiment of the invention, the patient’s Glasgow Prognostic Score (GPS) may be improved following the treatment.

[0058] In an embodiment of the invention, the patient may have an elevated serum CRP level prior to treatment.

[0059] In an embodiment of the invention, the method may further comprise the administration of at least one statin.

[0060] In an embodiment of the invention, the IL-6 antagonist may target IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, SYK, or any combination thereof.

[0061] In an embodiment of the invention, the IL-6 antagonist may comprise an antibody, an antibody fragment, a peptide, a glycoalkoid, an antisense nucleic acid, a ribozyme, a retinoid, an avemir, a small molecule, or any combination thereof.
[0062] In an embodiment of the invention, the IL-6 antagonist may comprise an anti-IL-6R, anti-gp130, anti-p38 MAP kinase, anti-JAK1, anti-JAK2, anti-JAK3, or anti-SYK antibody or antibody fragment.

[0063] In one embodiment of the invention, the IL-6 antagonist may comprise a small molecule comprising thalidomide, lenalidomide, or any combination thereof.

[0064] In an embodiment of the invention, the antagonist may comprise an anti-IL-6 antibody (e.g., Ab1) or antibody fragment or variant thereof.

[0065] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated.

[0066] In an embodiment of the invention, the anti-IL-6 antibody may bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or a fragment thereof as Ab1.

[0067] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated.

[0068] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or a fragment thereof as Ab1.

[0069] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitopes on an intact IL-6 polypeptide or fragment thereof that is (are) specifically bound by Ab1 and wherein said epitope(s) when ascertained by epitopic mapping using overlapping linear peptide fragments which span the full length of the native human IL-6 polypeptide includes one or more residues comprised in IL-6 fragments selected from those respectively
encompassing amino acid residues 37-51, amino acid residues 70-84, amino acid residues 169-183, amino acid residues 31-45 and/or amino acid residues 58-72.

[0070] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may comprise at least 2 complementarity determining regions (CDRs) in each the variable light and the variable heavy regions which are identical to those contained in an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated. In certain embodiments, antibodies containing these CDRs may be constructed using appropriate human frameworks based on the humanization methods disclosed herein.

[0071] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may comprise at least 2 complementarity determining regions (CDRs) in each the variable light and the variable heavy regions which are identical to those contained in Ab1.

[0072] In an embodiment of the invention, all of the CDRs in the anti-IL-6 antibody or antibody fragment or variant thereof may be identical to the CDRs contained in an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated.

[0073] In an embodiment of the invention, all of the CDRs in the anti-IL-6 antibody or antibody fragment or variant thereof may be identical to one or more of the CDRs contained in Ab1.

[0074] In a preferred exemplary embodiment, the anti-IL-6 antibody will comprise all the CDRs in Ab1. In a more preferred embodiment the anti-IL-6 antibody will comprise the variable heavy and light chain sequences in SEQ ID NO: 657 and SEQ ID NO: 709, or variants thereof.

[0075] In a preferred embodiment the humanized anti-IL-6 antibody will comprise the variable heavy and variable light chain sequences respectively contained in SEQ ID NO: 657 and SEQ ID NO: 709, and preferably further comprising the heavy chain and light chain constant regions respectively contained in SEQ ID NO: 588 and SEQ ID NO: 586, and variants thereof comprising one or more amino acid substitutions or deletions that do not substantially affect IL-6 binding and/or desired effector function. This embodiment also
contemplates polynucleotides comprising, or alternatively consisting of, one or more of the nucleic acids encoding the variable heavy chain (SEQ ID NO: 700) and variable light chain (SEQ ID NO: 723) sequences and the constant region heavy chain (SEQ ID NO: 589) and constant region light chain (SEQ ID NO: 587) sequences. This embodiment further contemplates nucleic acids encoding variants comprising one or more amino acid substitutions or deletions to the variable heavy and variable light chain sequences respectively contained in SEQ ID NO: 657 and SEQ ID NO: 709 and the heavy chain and light chain constant regions respectively contained in SEQ ID NO: 588 and SEQ ID NO: 586, that do not substantially affect IL-6 binding and/or desired effector function.

[0076] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be aglycosylated.

[0077] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may contain an Fc region that has been modified to alter effector function, half-life, proteolysis, and/or glycosylation. Preferably the Fc region is modified to eliminate glycosylation.

[0078] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be a human, humanized, single chain or chimeric antibody.

[0079] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be a humanized antibody derived from a rabbit (parent) anti-IL-6 antibody.

[0080] In an embodiment of the invention, the framework regions (FRs) in the variable light region and the variable heavy regions of said anti-IL-6 antibody or antibody fragment or variant thereof respectively may be human FRs which are unmodified or which have been modified by the substitution of at most 2 or 3 human FR residues in the variable light or heavy chain region with the corresponding FR residues of the parent rabbit antibody, and the human FRs may have been derived from human variable heavy and light chain antibody sequences which have been selected from a library of human germline antibody sequences based on their high level of homology to the corresponding rabbit variable heavy or light chain regions relative to other human germline antibody sequences contained in the library. As disclosed in detail infra in a preferred embodiment the antibody will comprise human FRs which are selected based on their high level of homology (degree of sequence identity) to that of the parent antibody that is humanized.
[0081] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be administered to the patient with a frequency at most once per period of approximately four weeks, approximately eight weeks, approximately twelve weeks, approximately sixteen weeks, approximately twenty weeks, or approximately twenty-four weeks.

[0082] In an embodiment of the invention, the patient’s coagulation profile may remain improved for an entire period intervening two consecutive anti-IL-6 antibody administrations.

[0083] In an embodiment of the invention, the patient’s serum CRP level may remain decreased and/or serum albumin level may remain raised for an entire period intervening two consecutive anti-IL-6 antibody administrations.

[0084] In an embodiment of the invention, the patient’s cachexia, weakness, fatigue, and/or fever may remain improved for an entire period intervening two consecutive anti-IL-6 antibody administrations.

[0086] In an embodiment of the invention, the patient may have been diagnosed with a cancer selected from Colorectal Cancer, Non-Small Cell Lung Cancer, Cholangiocarcinoma, Mesothelioma, Castleman's disease, Renal Cell Carcinoma, or any combination thereof.

[0087] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may comprise a heavy chain polypeptide sequence comprising: SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708; and may further comprise a VL polypeptide sequence comprising: SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709 or a variant thereof wherein one or more of the framework residues (FR residues) in said VH or VL polypeptide may have been substituted with another amino acid residue resulting in an anti-IL-6 antibody or antibody fragment or variant thereof that specifically binds human IL-6, or may comprise a polypeptide wherein the CDRs therein are incorporated into a human framework homologous to said sequence. Preferably the variable heavy and light sequences comprise those in SEQ ID NO: 657 and 709.

[0088] In an embodiment of the invention, one or more of said FR residues may be substituted with an amino acid present at the corresponding site in a parent rabbit anti-IL-6 antibody from which the complementarity determining regions (CDRs) contained in said VH or VL polypeptides have been derived or by a conservative amino acid substitution.

[0089] In an embodiment of the invention, said anti-IL-6 antibody or antibody fragment or variant thereof may be humanized.

[0090] In an embodiment of the invention, said anti-IL-6 antibody or antibody fragment or variant thereof may be chimeric.

[0091] In an embodiment of the invention, said anti-IL-6 antibody or antibody fragment or variant thereof further may comprise a human Fc, e.g., an Fc region comprised of the variable heavy and light chain constant regions contained in SEQ ID NO: 704 and 702.

[0092] In an embodiment of the invention, said human Fc may be derived from IgG1, IgG2, IgG3, IgG4, IgG5, IgG6, IgG7, IgG8, IgG9, IgG10, IgG11, IgG12, IgG13, IgG14, IgG15, IgG16, IgG17, IgG18 or IgG19.
[0093] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may comprise a polypeptide having at least 90% sequence homology to one or more of the polypeptide sequences of SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, 708, 2, 20, 647, 651, 660, 666, 699, 702, 706, and 709.

[0094] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may have an elimination half-life of at least about 22 days, at least about 25 days, or at least about 30 days.

[0095] In an embodiment of the invention, the IL-6 antagonist such as Ab1 may be co-administered with a chemotherapy agent. In an embodiment of the invention, the chemotherapy agent include without limitation thereto: VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcytabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids (e.g., vinblastine, vincristine, vindesine and vinorelbine), mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1 antagonists, interleukins (e.g. IL-12 or IL-2), IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux™, Avastin™, Pertuzumab, anti-CD20 antibodies, Rituxan®, ocrelizumab, ofatumumab, DXL625, Herceptin®, or any combination thereof.

[0096] In an embodiment of the invention, the another therapeutic compound may be a statin.

[0097] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be directly or indirectly attached to a detectable label or therapeutic agent.

[0098] In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment may be Ab1 or a humanized, chimeric, single chain or fragment thereof comprising all or most of the CDRs of Ab1.

[0099] In an embodiment of the invention, the disease or condition may be selected from acute venous thrombosis, pulmonary embolism, thrombosis during pregnancy, hemorrhagic skin necrosis, acute or chronic disseminated intravascular coagulation (DIC), clot formation from surgery, long bed rest, long periods of immobilization, venous thrombosis, fulminant meningococcemia, acute thrombotic stroke, acute coronary occlusion, acute peripheral arterial occlusion, massive pulmonary embolism, axillary vein thrombosis, massive
iliofemoral vein thrombosis, occluded arterial cannulae, occluded venous cannulae, cardiomyopathy, venoocclusive disease of the liver, hypotension, decreased cardiac output, decreased vascular resistance, pulmonary hypertension, diminished lung compliance, leukopenia, thrombocytopenia, heparin-induced thrombocytopenia (HIT), heparin-induced thrombocytopenia and thrombosis (HITT), atrial fibrillation, implantation of a prosthetic heart valve, genetic susceptibility to thrombosis, factor V Leiden, prothrombin gene mutation, methylenetetrahydrofolate reductase (MTHFR) polymorphism, platelet-receptor polymorphism, trauma, fractures, burns, or any combination thereof.

[00100] In an embodiment of the invention, the disease or condition may be selected from cancer, rheumatoid arthritis, AIDS, heart disease, dehydration, malnutrition, lead exposure, malaria, respiratory disease, old age, hypothyroidism, tuberculosis, hypopituitarism, neurasthenia, hypernatremia, hyponatremia, renal disease, splenica, ankylosing spondylitis, failure to thrive (faltering growth), or any combination thereof.

[00101] In an embodiment of the invention, the method may include administration of an antagonist of a cachexia-associated factor, weakness-associated factor, fatigue-associated factor, and/or fever-associated factor. The cachexia-associated factor, weakness-associated factor, fatigue-associated factor, and/or fever-associated factor may be selected from tumor necrosis factor-alpha, Interferon gamma, Interleukin 1 alpha, Interleukin 1 beta, Interleukin 6, proteolysis inducing factor, leukemia-inhibitory factor, or any combination thereof.

[00102] In an embodiment of the invention, the method may include administration of an anti-cachexia agent selected from cannabis, dronabinol (Marinol™), nabilone (Cesamet), cannabidiol, cannabinomere, tetrahydrocannabinol, Sativex, megestrol acetate, or any combination thereof.

[0100] In an embodiment of the invention, the method may include administration of an anti-nausea or antiemetic agent selected from 5-HT3 receptor antagonists, ajwain, alizapride, anticholinergics, antihistamines, aprepitant, benzodiazepines, cannabinomere, cannabidiol, cannabinoids, cannabis, casopitant, chlorpromazine, cyclizine, dexamethasone, dexamethasone, dimenhydrinate (Gravol™), diphenhydramine, dolasetron, domperidone, dopamine antagonists, doxylamine, dronabinol (Marinol™), droperidol, emetrol, ginger, granisetron, haloperidol, hydroxyzine, hyoscine, lorazepam, meclizine, metoclopramide, midazolam, muscimol, nabilone (Cesamet), nK1 receptor antagonists, ondansetron, palonosetron, peppermint, Phenergan, prochlorperazine, Promacot, promethazine, Pentazine,
propofol, sativex, tetrahydrocannabinol, trimethobenzamide, tropisetron, nandrolone, stilbestrol, thalidomide, lenalidomide, ghrelin agonists, myostatin antagonists, anti-myostatin antibodies, selective androgen receptor modulators, selective estrogen receptor modulators, angiotensin II antagonists, beta two adrenergic receptor agonists, beta three adrenergic receptor agonists, or any combination thereof.

[0101] In an embodiment of the invention, the method may include administration of an anti-nausea or antiemetic agent selected from 5-HT3 receptor antagonists, ajwain, alizapride, anticholinergics, antihistamines, aprepitant, benzodiazepines, cannabichromene, cannabidiol, cannabinoids, cannabis, casopitant, chlorpromazine, cyclizine, dexamethasone, dexamethasone, dimenhydrinate (Gravol™), diphenhydramine, dolasetron, domperidone, dopamine antagonists, doxylamine, dronabinol (Marinol™), droperidol, emetrol, ginger, granisetron, haloperidol, hydroxyzine, hyoscine, lorazepam, meclizine, metoclopramide, midazolam, muscimol, nabilone (Cesamet), NK1 receptor antagonists, ondansetron, palonosetron, peppermint, Phenergan, prochlorperazine, Promacot, promethazine, Pentazine, propofol, sativex, tetrahydrocannabinol, trimethobenzamide, tropisetron, nandrolone, stilbestrol, thalidomide, lenalidomide, ghrelin agonists, myostatin antagonists, anti-myostatin antibodies, selective androgen receptor modulators, selective estrogen receptor modulators, angiotensin II antagonists, beta two adrenergic receptor agonists, beta three adrenergic receptor agonists, or any combination thereof.

[0102] In an embodiment of the invention, the patient’s fever may be assessed by measurement of patient’s body temperature.

[0103] In an embodiment of the invention, the method may include measuring the patient’s body temperature prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient’s body temperature is higher than about 38 °C.

[0104] In an embodiment of the invention, the method may include measuring the patient’s body temperature within 24 hours prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient’s body temperature measurement indicates that a fever was present.

[0105] In an embodiment of the invention, the method may further include measuring the patient’s body weight prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient’s weight has declined
by greater than approximately 5% within approximately 30 days, or if the patient's lean body mass index is less than about 17 kg / m² (male patient) or less than about 14 kg / m² (female patient).

[0106] In an embodiment of the invention, the method may include measuring the patient's muscular strength prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient's muscular strength has declined by greater than approximately 20% within approximately 30 days.

[0107] In an embodiment of the invention, the method may result in a prolonged improvement in cachexia, weakness, fatigue, and/or fever in the patient.

[0108] In an embodiment of the invention, the patient's body mass may be raised by approximately 1 kilogram within approximately 4 weeks of administration of the anti-IL-6 antibody or antibody fragment or variant thereof.

[0109] In an embodiment of the invention, the patient's cachexia may be measurably improved within about 4 weeks of anti-IL-6 antibody administration.

[0110] In an embodiment of the invention, the patient's cachexia may be assessed by measurement of the patient's total body mass, lean body mass, lean body mass index, and/or appendicular lean body mass.

[0111] In an embodiment of the invention, the measurement of the patient's body mass may discount (subtract) the estimated weight of the patient's tumor(s) and/or extravascular fluid collection(s).

[0112] In an embodiment of the invention, the patient's cachexia may remain measurably improved approximately 8 weeks after anti-IL-6 antibody administration.

[0113] In an embodiment of the invention, the patient's weakness may be measurably improved within about 4 weeks of anti-IL-6 antibody administration.

[0114] In an embodiment of the invention, the patient's weakness may be measured by the hand grip strength test.

[0115] In an embodiment of the invention, the patient's hand grip strength may be improved by at least about 15%, or at least about 20%.
[0116] In an embodiment of the invention, the patient’s weakness may remain measurably improved approximately 8 weeks after anti-IL-6 antibody administration.

[0117] In an embodiment of the invention, the patient’s fatigue may be measurably improved within about 1 week of anti-IL-6 antibody administration.

[0118] In an embodiment of the invention, the patient’s fatigue may be measured by the FACIT-F FS test.

[0119] In an embodiment of the invention, the patient’s FACIT-F FS score may be improved by at least about 10 points.

[0120] In an embodiment of the invention, the patient’s fatigue may remain measurably improved approximately 8 weeks after anti-IL-6 antibody administration.

[0121] In an embodiment of the invention, the patient’s fever may be measurably improved within about 1 week of anti-IL-6 antibody administration.

[0122] In an embodiment of the invention, the patient’s fever may remain measurably improved approximately 8 weeks after anti-IL-6 antibody administration.

[0123] In an embodiment of the invention, the patient’s quality of life may be improved.

[0124] In an embodiment of the invention, may include administration of one or more anti-coagulants or statins.

[0125] In an embodiment of the invention, the one or more anti-coagulants may be selected from abciximab (ReoPro™), acenocoumarol, antithrombin III, argatroban, aspirin, bivalirudin (Angiomax™), clopidogrel, dabigatran, dabigatran etexilate (Pradaxa™/Pradax™), desirudin (Revasc™/Ipivask™), dipyridamole, eptifibatide (Integrilin™), fondaparinux, heparin, hirudin, idraparinux, lepirudin (Refludan™), low molecular weight heparin, melagatran, phenindione, phenprocoumon, ticlopidine, tirofiban (Aggrastat™), warfarin, ximelagatran, ximelagatran (Exanta™/Exarta™), or any combination thereof.

[0126] In an embodiment of the invention, the one or more statins may be selected from atorvastatin, cerivastatin, fluvastatin, lovastatin, mevastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, or any combination thereof.

[0127] In an embodiment of the invention, the patient’s coagulation profile may be assessed by measurement of the patient’s serum level of one or more of D-dimer, Factor II,

[0128] In an embodiment of the invention, the patient’s coagulation profile may be assessed by a functional measurement of clotting ability.

[0129] In an embodiment of the invention, the functional measurement of clotting ability may be selected from prothrombin time (PT), prothrombin ratio (PR), international normalized ratio (INR), or any combination thereof.

[0130] In an embodiment of the invention, the method may include measuring the patient’s international normalized ratio (INR) prior to administration of the IL-6 antagonist, and administering to the patient an IL-6 antagonist such as Ab1 if the patient’s INR is less than about 0.9.

[0131] In an embodiment of the invention, the invention may include measuring the patient’s international normalized ratio (INR) prior to administration of the IL-6 antagonist, and administering to the patient an IL-6 antagonist such as Ab1 if the patient’s INR is less than about 0.5.

54.) In an embodiment of the invention, the patient’s INR may be raised to more than approximately 0.9 within 4 weeks of administering to the patient an IL-6 antagonist.

[0132] In an embodiment of the invention, the method may include measuring the patient’s serum D-dimer level prior to administration of the IL-6 antagonist, and administering the IL-6 antagonist such as Ab1 if the patient’s serum D-dimer level is above the normal reference range.

[0133] In an embodiment of the invention, the patient’s serum D-dimer level may be lowered to less than the upper limit of the normal reference range within 4 weeks of administering to the patient an IL-6 antagonist.

[0134] In an embodiment of the invention, the method may result in a prolonged improvement in the patient’s coagulation profile.

[0135] In an embodiment of the invention, the patient’s coagulation profile may be measurably improved within about 2 weeks of administration of the IL-6 antagonist.
[0136] In an embodiment of the invention, the patient's coagulation profile may remain measurably improved approximately 12 weeks after administering to the patient an IL-6 antagonist.

[0137] In an embodiment of the invention, the patient's survivability may be improved.

[0138] In an embodiment of the invention, the IL-6 antagonist may be an antisense nucleic acid.

[0139] In an embodiment of the invention, the IL-6 antagonist may be an antisense nucleic acid, for example comprising at least approximately 10 nucleotides of a sequence encoding IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, or SYK.

[0140] In an embodiment of the invention, the antisense nucleic acid may comprise DNA, RNA, peptide nucleic acid, locked nucleic acid, morpholino (phosphorodiamidate morpholino oligo), glycerol nucleic acid, threose nucleic acid, or any combination thereof.

[0141] In an embodiment of the invention, the IL-6 antagonist may comprise Actemra™ (Tocilizumab), Remicade®, Zenapax™ (daclizumab), or any combination thereof.

[0142] In an embodiment of the invention, the IL-6 antagonist may comprise a polypeptide having a sequence comprising a fragment of IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, SYK, or any combination thereof, such as a fragment or full-length polypeptide that is at least 40 amino acids in length.

[0143] In an embodiment of the invention, the IL-6 antagonist may comprise a soluble IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, SYK, or any combination thereof.

[0144] In an embodiment of the invention, the IL-6 antagonist may be coupled to a half-life increasing moiety.

[0145] In an embodiment of the invention, the method may include measuring the patient's serum CRP level prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient's serum CRP level is at least approximately 5 mg/L.

[0146] In an embodiment of the invention, the patient's serum CRP level may be reduced to less than approximately 5 mg/L within 1 week of administration of the IL-6 antagonist.
[0147] In an embodiment of the invention, the patient’s serum CRP level may be reduced to below 1 mg/L within 1 week of administration of the IL-6 antagonist.

[0148] In an embodiment of the invention, treatment may result in a prolonged reduction in serum CRP level of the patient.

[0149] In an embodiment of the invention, the patient’s serum CRP level may be reduced to below 10 mg/L within about 1 week of IL-6 antagonist administration.

[0150] In an embodiment of the invention, 14 days after IL-6 antagonist administration the patient’s serum CRP level may remain below 10 mg/L.

[0151] In an embodiment of the invention, 21 days after IL-6 antagonist administration the patient’s serum CRP level may remain below 10 mg/L.

[0152] In an embodiment of the invention, 28 days after IL-6 antagonist administration the patient’s serum CRP level may remain below 10 mg/L.

[0153] In an embodiment of the invention, 35 days after IL-6 antagonist administration the patient’s serum CRP level may remain below 10 mg/L.

[0154] In an embodiment of the invention, 42 days after IL-6 antagonist administration the patient’s serum CRP level may remain below 10 mg/L.

[0155] In an embodiment of the invention, 49 days after IL-6 antagonist administration the patient’s serum CRP level may remain below 10 mg/L.

[0156] In an embodiment of the invention, 56 days after IL-6 antagonist administration the patient’s serum CRP level may remain below 10 mg/L.

[0157] In an embodiment of the invention, the patient’s survivability is improved.

[0158] In an embodiment of the invention, the method may include measuring the patient’s serum albumin level prior to administration of the IL-6 antagonist, and administering the IL-6 antagonist such as Ab1 if the patient’s serum albumin level is less than approximately 35 g/L.

[0159] In an embodiment of the invention, the patient’s serum albumin level may be increased to more than approximately 35 g/L within about 5 weeks of administration of the IL-6 antagonist.

[0160] In an embodiment of the invention, treatment may result in a prolonged increase in serum albumin level of the patient.
[0161] In an embodiment of the invention, 42 days after IL-6 antagonist administration the patient’s serum albumin level may remain above 35 g/L.

[0162] In an embodiment of the invention, 49 days after IL-6 antagonist administration the patient’s serum albumin level may remain above 35 g/L.

[0163] In an embodiment of the invention, 56 days after IL-6 antagonist administration the patient’s serum albumin level may remain above 35 g/L.

[0164] In an embodiment of the invention, the patient’s serum albumin level may be increased by about 5 g/L within approximately 5 weeks of administering the IL-6 antagonist.

[0165] In an embodiment of the invention, the patient may have been diagnosed with rheumatoid arthritis, cancer, advanced cancer, liver disease, renal disease, inflammatory bowel disease, celiac’s disease, trauma, burns, other diseases associated with reduced serum albumin, or any combination thereof.

[0166] In an embodiment of the invention, the method may further comprise administration of one or more statins to the patient, including without limitation thereto atorvastatin, cerivastatin, fluvastatin, lovastatin, mevastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, or any combination thereof.

[0167] Another embodiment of the invention relates to a composition comprising an IL-6 antagonist such as Ab1, and an anti-coagulant. In an embodiment of the invention, the one or more anti-coagulants may be selected from abciximab (Reopro™), acenocoumarol, antithrombin III, argatroban, aspirin, bivalirudin (Angiomax™), clopidogrel, dabigatran, dabigatran etexilate (Pradaxa™/Pradax™), desirudin (Revasc™/Iprivask™), dipyridamole, eptifibatide (Integrillin™), fondaparinux, heparin, hirudin, idraparinux, lepirudin (Refludan™), low molecular weight heparin, melagatran, phenindione, phenprocoumon, ticlopidine, tirofiban (Aggrastat™), warfarin, ximelagatran, ximelagatran (Exanta™/Exarta™), or any combination thereof.

[0168] Another embodiment of the invention relates to a composition comprising an IL-6 antagonist such as Ab1, and a chemotherapy agent. In an embodiment of the invention, the chemotherapy agent may be selected from VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcitabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids (e.g., vinblastine, vincristine, vindesine and vinorelbine), mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists,
TNF antagonists, IL-1 antagonists, interleukins (e.g. IL-12 or IL-2), IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux™, Avastin™, Pertuzumab, anti-CD20 antibodies, Rituxan®, ocrelizumab, ofatumumab, DXL625, Herceptin®, or any combination thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

[0169] FIG. 1 shows that a variety of unique epitopes were recognized by the collection of anti-IL-6 antibodies prepared by the antibody selection protocol. Epitope variability was confirmed by antibody-IL-6 binding competition studies (ForteBio Octet).

[0170] FIG. 2 shows alignments of variable light and variable heavy sequences between a rabbit antibody variable light and variable heavy sequences and homologous human sequences and the humanized sequences. Framework regions are identified FR1-FR4. Complementarity determining regions are identified as CDR1-CDR3. Amino acid residues are numbered as shown. The initial rabbit sequences are called RbtVL and RbtVH for the variable light and variable heavy sequences respectively. Three of the most similar human germline antibody sequences, spanning from Framework 1 through to the end of Framework 3, are aligned below the rabbit sequences. The human sequence that is considered the most similar to the rabbit sequence is shown first. In this example those most similar sequences are L12A for the light chain and 3-64-04 for the heavy chain. Human CDR3 sequences are not shown. The closest human Framework 4 sequence is aligned below the rabbit Framework 4 sequence. The vertical dashes indicate a residue where the rabbit residue is identical with one or more of the human residues at the same position. The bold residues indicate that the human residue at that position is identical to the rabbit residue at the same position. The final humanized sequences are called VLh and VHh for the variable light and variable heavy sequences respectively. The underlined residues indicate that the residue is the same as the rabbit residue at that position but different than the human residues at that position in the three aligned human sequences.

[0171] FIG. 3 demonstrates the high correlation between the IgG produced and antigen specificity for an exemplary IL-6 protocol. 9 of 11 wells showed specific IgG correlation with antigen recognition.

[0172] FIG. 4 provides the alpha-2-macroglobulin (A2M) dose response curve for antibody Ab1 administered intravenously at different doses one hour after a 100μg/kg s.c. dose of human IL-6.
[0173] FIG. 5 provides survival data for the antibody Ab1 progression groups versus control groups.

[0174] FIG. 6 provides additional survival data for the antibody Ab1 regression groups versus control groups.

[0175] FIG. 7 provides survival data for polyclonal human IgG at 10 mg/kg i.v. every three days (270-320 mg tumor size) versus antibody Ab1 at 10 mg/kg i.v. every three days (270-320 mg tumor size).

[0176] FIG. 8 provides survival data for polyclonal human IgG at 10 mg/kg i.v. every three days (400-527 mg tumor size) versus antibody Ab1 at 10 mg/kg i.v. every three days (400-527 mg tumor size).

[0177] FIG. 9 provides a pharmacokinetic profile of antibody Ab1 in cynomolgus monkey. Plasma levels of antibody Ab1 were quantitated through antigen capture ELISA. This protein displays a half life of between 12 and 17 days consistent with other full length humanized antibodies.

[0178] FIG. 10 (A-D) provides binding data for antibodies Ab4, Ab3, Ab8 and Ab2, respectively. FIG. 10 E provides binding data for antibodies Ab1, Ab6 and Ab7.

[0179] FIG. 11 summarizes the binding data of FIG. 10 (A-E) in tabular form.

[0180] FIG. 12 presents the sequences of the 15 amino acid peptides used in the peptide mapping experiment of Example 14.

[0181] FIG. 13 presents the results of the blots prepared in Example 14.

[0182] FIG. 14 presents the results of the blots prepared in Example 14.

[0183] FIG. 15A shows affinity and binding kinetics of Ab1 for IL-6 of various species.

[0184] FIG. 15B demonstrates inhibition of IL-6 by Ab1 in the T1165 cell proliferation assay.

[0185] FIG. 16 shows the mean plasma concentration of Ab1 resulting from a single administration of Ab1 to healthy male subjects in several dosage groups.

[0186] FIG. 17 shows mean area under the plasma Ab1 concentration time curve (AUC) for the dosage groups shown in FIG. 16.
[0187] FIG. 18 shows mean peak plasma Ab1 concentration (C_{max}) for the dosage groups shown in FIG. 16.

[0188] FIG. 19 summarizes Ab1 pharmacokinetic measurements of the dosage groups shown in FIG. 16.

[0189] FIG. 20 shows the mean plasma concentration of Ab1 resulting from a single administration of Ab1 to patients with advanced cancer.

[0190] FIG. 21 illustrates the unprecedented elimination half-life of Ab1 compared with other anti-IL-6 antibodies.

[0191] FIG. 22 shows increased hemoglobin concentration following administration of Ab1 to patients with advanced cancer.

[0192] FIG. 23 shows mean plasma lipid concentrations following administration of Ab1 to patients with advanced cancer.

[0193] FIG. 24 shows mean neutrophil counts following administration of Ab1 to patients with advanced cancer.

[0194] FIG. 25 demonstrates suppression of serum CRP levels in healthy individuals.

[0195] FIG. 26 (A-B) demonstrates suppression of serum CRP levels in advanced cancer patients.

[0196] FIG. 27 shows prevention of weight loss by Ab1 in a mouse cancer cachexia model.

[0197] FIG. 28 shows the physical appearance of representative Ab1-treated and control mice in a cancer cachexia model.

[0198] FIG. 29 demonstrates that Ab1 promotes weight gain in advanced cancer patients.

[0199] FIG. 30 demonstrates that Ab1 reduces fatigue in advanced cancer patients.

[0200] FIG. 31 demonstrates that Ab1 promotes hand grip strength in advanced cancer patients.

[0201] FIG. 32 demonstrates that Ab1 suppresses an acute phase protein (Serum Amyloid A) in mice.

[0202] FIG. 33 demonstrates that Ab1 increase plasma albumin concentration in advanced cancer patients.
Figs. 34 and 35 show alignments between a rabbit antibody light and variable heavy sequences and homologous human sequences and the humanized sequences. Framework regions are identified as FR1-FR4. Complementarity determining regions are identified as CDR1-CDR3.

FIGS. 36 and 37 show alignments between light and variable heavy sequences, respectively, of different forms of Ab1. Framework regions are identified as FR1-FR4. Complementarity determining regions are identified as CDR1-CDR3. Sequence differences within the CDR regions highlighted.

Fig. 38 shows the mean CRP values for each dosage concentrations (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody.

Fig. 39 shows the change in median values of CRP from each dosage concentration group corresponding to Fig. 38.

Fig. 40 shows a reduction in serum CRP levels in patients with various cancers after dosing at 80, 160 or 320 mg for 12 weeks.

Fig. 41 shows a reduction in serum CRP levels in the patient population with rheumatoid arthritis after dosing at 80, 160 and 320 mg for 12 weeks.

Fig. 42 demonstrates that Ab1 increases mean hemoglobin at 80, 160 and 320 mg after 12 weeks of dosing.

Figure 43 demonstrates mean change from baseline hemoglobin for the data presented in Figure 42.

Figure 44 demonstrates that Ab1 increases mean hemoglobin at 160 and 320 mg after 12 weeks of dosing in patients having baseline hemoglobin below 11 g/l.

Figure 45 demonstrates that Ab1 increases mean hemoglobin at 80, 160 and 320 mg after 16 weeks of dosing.

Figure 46 demonstrates that Ab1 increases mean albumin concentration at 80, 160 and 320 mg after 12 weeks of dosing.

Figure 47 demonstrates the change from baseline for mean albumin concentration from each dosage concentration group corresponding to Figure 46.
[0215] Figure 48 demonstrates that Ab1 provides sustained increases in mean albumin concentration at 160 and 320 mg after 12 weeks of dosing in patients having baseline albumin below 35 g/l.

[0216] Figure 49 demonstrates the averaged weight change data from each dosage concentration group (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody over 12 weeks.

[0217] Fig. 50 demonstrates the averaged percent change in body weight from each dosage concentration group corresponding to Fig. 49.

[0218] Figure 51 demonstrates the change in averaged lean body mass data for the dosage concentration groups corresponding to Figure 49.

[0219] Figure 52 demonstrates increases in the mean Facit-F FS subscale score for some of the dosage concentration groups in the patient population after dosing at 80, 160 and 320 mg after 8 weeks.

[0220] Fig. 53 demonstrates the change from baseline Facit-F FS subscale score corresponding to Fig. 52.

[0221] Figure 54 demonstrates that Ab1 drops D-dimer levels over placebo at 80, 160 and 320 mg after 16 weeks of dosing.

[0222] Figure 55 demonstrates the percent change from baseline in D-dimer concentration from each dosage concentration group corresponding to Figure 54.

[0223] Figure 56 demonstrating that treatment of patients with rheumatoid arthritis produced significant improvement over placebo based upon ACR metrics.

[0224] Figure 57 demonstrates patients achieving ACR 20 over placebo at 80, 160, and 320 mg after 16 weeks of dosing.

[0225] Figure 58 demonstrates patients achieving ACR 50 over placebo at 80, 160, and 320 mg after 16 weeks of dosing.

[0226] Figure 59 demonstrates patients achieving ACR 70 over placebo at 80, 160, and 320 mg after 16 weeks of dosing.

[0227] Figure 60 demonstrates the change from baseline for the components of the ACR metric for placebo, 80, 160, and 320 mg dosage concentration groups.
[0228] Figure 61 demonstrates the change in HAQ-DI scores for placebo, 80, 160, and 320 mg dosage concentration groups.

[0229] Figure 62 demonstrates the change in DAS28 scores for placebo, 80, 160, and 320 mg dosage concentration groups.

[0230] Figure 63 demonstrates the change in percentage of patients achieving EULAR good or moderate responses for placebo, 80, 160, and 320 mg dosage concentration groups.

DETAILED DESCRIPTION

[0231] Definitions

[0232] It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, animal species or genera, and reagents described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

[0233] The term "variants" (as applied to antibodies including Ab1) includes single-chain antibodies, dimers, multimers, sequence variants, domain substitution variants, etc. Single-chain antibodies such as SMIPs, shark antibodies, nanobodies (e.g., Camelidiae antibodies). Sequence variants can be specified by percentage identity (or similarity) e.g., 99%, 95%, 90%, 85%, 80%, 70%, 60%, etc. or by numbers of permitted conservative or non-conservative substitutions. Domain substitution variants include replacement of a domain of one protein with a similar domain of a related protein. A similar domain may be identified by similarity of sequence, structure (actual or predicted), or function. For example, domain substitution variants include the substitution of one or more CDRs and/or framework regions.

[0234] As used herein the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a cell" includes a plurality of such cells and reference to "the protein" includes reference to one or more proteins and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs unless clearly indicated otherwise.

[0235] Interleukin-6 (IL-6): As used herein, interleukin-6 (IL-6) encompasses not only the following 212 amino acid sequence available as GenBank Protein Accession No.
NP_000591: MNSFSTSAFGPVAFLGLLLVLPAAPAPVPPGDSDKVAAPHRQLTSERIDKQIRY ILDGISALKETCNKSNMCESSKEALAEVNLLNPKMAEKDGCFQSFQNEETCLVKIIT GLLEEFEVYLELYQNRFESSEQARAVQMSTKVLQFLQKKAKNLDAITTPDPTTNASL LTKLQAQNQLQXHHLILRSEKFHQLQQLRSLRALRQM (SEQ ID NO: 1), but also any pre-pro, pro- and mature forms of this IL-6 amino acid sequence, as well as mutants and variants including allelic variants of this sequence.

[0236] IL-6 antagonist: As used herein, the terms "IL-6 antagonist," and grammatical variants thereof include any composition that prevents, inhibits, or lessens the effect(s) of IL-6 signaling. Generally, such antagonists may reduce the levels or activity of IL-6, IL-6 receptor alpha, gp130, or a molecule involved in IL-6 signal transduction, or may reduce the levels or activity complexes between the foregoing (e.g., reducing the activity of an IL-6 / IL-6 receptor complex). Antagonists include antisense nucleic acids, including DNA, RNA, or a nucleic acid analogue such as a peptide nucleic acid, locked nucleic acid, morpholino (phosphorodiamidate morpholino oligo), glycerol nucleic acid, or threose nucleic acid. See Heasman, Dev Biol. 2002 Mar 15;243(2):209-14; Hannon and Rossi, Nature. 2004 Sep 16;431(7006):371-8; Paul et al., Nat Biotechnol. 2002 May;20(5):505-8; Zhang et al., J Am Chem Soc. 2005 Mar 30;127(12):4174-5; Wahlestedt et al., Proc Natl Acad Sci U S A. 2000 May 9;97(10):5633-8; Hanvey et al., 1992 Nov 27;258(5087):1481-5; Braasch et al., Biochemistry. 2002 Apr 9;41(14):4503-10; Schoning et al., Science. 2000 Nov 17;290(5495):1347-51. In addition IL-6 antagonists specifically include peptides that block IL-6 signaling such as those described in any of US Patent No. 6,599,875; 6,172,042; 6,838,433; 6,841,533; 5,210,075 et al. Also, IL-6 antagonists according to the invention may include p38 MAP kinase inhibitors such as those reported in US20070010529 et al. given this kinase’s role in cytokine production and more particularly IL-6 production. Further, IL-6 antagonists according to the invention include the glycoalkaloid compounds reported in US20050090453 as well as other IL-6 antagonist compounds isolatable using the IL-6 antagonist screening assays reported therein. Other IL-6 antagonists include antibodies, such as anti-IL-6 antibodies, anti-IL-6 receptor alpha antibodies, anti-gp130 antibodies, and anti-p38 MAP kinase antibodies including (but not limited to) the anti-IL-6 antibodies disclosed herein, Actemra™ (Tocilizumab), Remicade®, Zenapax™ (daclizumab), or any combination thereof. Other IL-6 antagonists include portions or fragments of molecules involved in IL-6 signaling, such as IL-6, IL-6 receptor alpha, and gp130, which may be native, mutant, or
variant sequence, and may optionally be coupled to other moieties (such as half-life-increasing moieties, e.g. an Fc domain). For example, an IL-6 antagonist may be a soluble IL-6 receptor or fragment, a soluble IL-6 receptor:Fc fusion protein, a small molecule inhibitor of IL-6, an anti-IL-6 receptor antibody or antibody fragment or variant thereof, antisense nucleic acid, etc. Other IL-6 antagonists include vemurs, such as C326 (Silverman et al., Nat Biotechnol. 2005 Dec;23(12):1556-61) and small molecules, such as synthetic retinoid AM80 (tamibarotene) (Takeda et al., Arterioscler Thromb Vasc Biol. 2006 May;26(5):1177-83). Such IL-6 antagonists may be administered by any means known in the art, including contacting a subject with nucleic acids which encode or cause to be expressed any of the foregoing polypeptides or antisense sequences.

[0237] Thrombosis: As used herein, thrombosis refers to a thrombus (blood clot) inside a blood vessel. The term encompasses, without limitation, arterial and venous thrombosis, including deep vein thrombosis, portal vein thrombosis, jugular vein thrombosis, renal vein thrombosis, stroke, myocardial infarction, Budd-Chiari syndrome, Paget-Schroetter disease, and cerebral venous sinus thrombosis. Diseases and conditions associated with thrombosis include, without limitation, acute venous thrombosis, pulmonary embolism, thrombosis during pregnancy, hemorrhagic skin necrosis, acute or chronic disseminated intravascular coagulation (DIC), clot formation from surgery, long bed rest, long periods of immobilization, venous thrombosis, fulminant meningococcemia, acute thrombotic stroke, acute coronary occlusion, acute peripheral arterial occlusion, massive pulmonary embolism, axillary vein thrombosis, massive iliofemoral vein thrombosis, occluded arterial cannulae, occluded venous cannulae, cardiomyopathy, venoocclusive disease of the liver, hypotension, decreased cardiac output, decreased vascular resistance, pulmonary hypertension, diminished lung compliance, leukopenia, and thrombocytopenia.

[0238] D-Dimer: As used herein, D-dimer refers to a fibrin degradation product produced during the break down of blood clots by the enzyme plasmin. Monoclonal antibodies specifically reactive against D-dimer are readily available, e.g. DD-3B6/22 (Elms et al., 1986, Am J Clin Pathol. 85:360-4). Clinical measurements of D-dimer levels are routinely performed, e.g., using a red blood cell agglutination test, ELISA, etc. (reviewed in Dempfle, Semin Vasc Med, 2005 Nov;5(4):315-20). Measurements of D-dimer may vary depending on the measurement method and testing lab; nonetheless, a normal “reference range” may be readily established for any particular method and testing lab, e.g. by taking measurements from healthy individuals. Accordingly, an elevated D-dimer level is understood by persons
skilled in the art to refer to a D-dimer level that is above the reference range for the particular method and testing lab.

[0239] Coagulation profile: As used herein, coagulation profile refers generally to the functioning of the coagulation system. Both the tissue factor (extrinsic) and contact activation (intrinsic) pathways of clotting are components of the coagulation profile. A normal coagulation profile refers to coagulation functioning as in a normal, healthy individual, i.e., maintaining balance between ability to control bleeding and tendency towards excessive clotting (thrombotic tendency). An abnormal coagulation profile may be a decrease or an increase in coagulation tendency. One particularly abnormal coagulation profile is hypercoagulation, which refers to a greatly increased risk of excessive clot formation, resulting in high risk of thrombosis. Coagulation profile may be assessed by various tests and assays known in the art, such as: the activated partial thromboplastin time (aPTT) test; prothrombin time (PT) test (typical reference range of 12 to 15 second); measurements derived from the PT test, such as prothrombin ratio (PR) and international normalized ratio (INR) (typical reference range 0.8 to 1.2); fibrinogen testing (e.g. the Clauss method (Clauss A, "Rapid Physiological Coagulation Method for the Determination of Fibrinogen [German]," Acta Haematol, 1957, 17:237-46) or the Ellis method (Ellis BC and Stransky A, "A Quick and Accurate Method for the Determination of Fibrinogen in Plasma," J Lab Clin Med, 1961, 58:477-88); assays for activated protein C resistance, protein C, protein S, and antithrombin; assays for antiphospholipid antibodies (lupus anticoagulant and anticardiolipin antibodies); elevated homocysteine; assays for plasminogen, dysfibrinogenemia, heparin cofactor II, or platelet hyperaggregability. Other assays useful to assess coagulation profile include measurement of clotting factors and/or indicators of clotting, such as serum levels of D-dimer, Factor II, Factor V, Factor VIII, Factor IX, Factor XI, Factor XII, F/fibrin degradation products, thrombin-antithrombin III complex, thrombocytosis, fibrinogen, plasminogen, prothrombin, and von Willebrand factor. Worsening in coagulation profile refers to a measureable change in an indicator of coagulation, e.g., any of the aforementioned assays, that reflects a deterioration of the normal coagulation tendency, such that the measured value becomes abnormal or deviates farther from the normal range than previously. Improvement in coagulation profile refers to a measureable change in an indicator of coagulation, e.g., any of the aforementioned assays, that reflects a partial or full restoration of the normal coagulation tendency, i.e., after a
therapeutic intervention, such as administration of an anti-IL-6 antibody, the measured value is in the normal range or closer to the normal range than prior to the therapeutic intervention.

[0240] Disease or condition: As used herein, “disease or condition” refers to a disease or condition that a patient has been diagnosed with or is suspected of having, particularly a disease or condition associated with elevated IL-6. A disease or condition encompasses, without limitation thereto, the side-effects of medications or treatments (such as radiation therapy), as well as idiopathic conditions characterized by symptoms that include elevated IL-6.

[0241] Cachexia: As used herein, cachexia, also known as wasting disease, refers to any disease marked especially by progressive emaciation, weakness, general ill health, malnutrition, loss of body mass, loss of muscle mass, or an accelerated loss of skeletal muscle in the context of a chronic inflammatory response (reviewed in Kotler, Ann Intern Med. 2000 Oct 17;133(8):622-34). Diseases and conditions in which cachexia is frequently observed include cancer, rheumatoid arthritis, AIDS, heart disease, dehydration, malnutrition, lead exposure, malaria, respiratory disease, old age, hypothyroidism, tuberculosis, hypopituitarism, neurasthenia, hypernatremia, hyponatremia, renal disease, splenica, ankylosing spondylitis, failure to thrive (faltering growth) and other diseases, particularly chronic diseases. Cachexia may also be idiopathic (arising from an uncertain cause). Weight assessment in a patient is understood to exclude growths or fluid accumulations, e.g. tumor weight, extravascular fluid accumulation, etc. Cachexia may be assessed by measurement of a patient's total body mass (exclusive of growths or fluid accumulations), total lean (fat-free) body mass, lean mass of the arms and legs (appendicular lean mass, e.g. measured using dual-energy x-ray absorptiometry or bioelectric impedance spectroscopy), and/or lean body mass index (lean body mass divided by the square of the patient's height). See Kotler, Ann Intern Med. 2000 Oct 17;133(8):622-34; Marcara et al., Rheumatology (Oxford). 2006 Nov;45(11):1385-8.

[0242] Weakness: As used herein, weakness refers physical fatigue, which typically manifests as a loss of muscle strength and/or endurance. Weakness may be central (affecting most or all of the muscles in the body) or peripheral (affecting a subset of muscles). Weakness includes “true weakness,” in which a patient's muscles have a decrease in some measure of peak and/or sustained force output, and “perceived weakness,” in which a patient perceives that a greater effort is required for performance of a task even though objectively measured strength remains nearly the same, and may be objectively measured or self-reported.
by the patient. For example, weakness may be objectively measured using the hand grip strength test (a medically recognized test for evaluating muscle strength), typically employing a handgrip dynamometer.

[0244] Fever: As used herein, “fever” refers to a body temperature set-point that is elevated by at least 1 to 2 degrees Celsius. Fever is often associated with a subjective feeling of hypothermia exhibited as a cold sensation, shivering, increased heart rate and respiration rate by which the individual’s body reaches the increased set-point. As is well understood in the medical arts, normal body temperature typically varies with activity level and time of day, with highest temperatures observed in the afternoon and early evening hours, and lowest temperatures observed during the second half of the sleep cycle, and temperature measurements may be influenced by external factors such as mouth breathing, consumption of food or beverage, smoking, or ambient temperature (depending on the type of measurement). Moreover, the normal temperature set point for individuals may vary by up to about 0.5 degrees Celsius, thus a medical professional may interpret an individual’s temperature in view of these factors to diagnose whether a fever is present. Generally speaking, a fever is typically diagnosed by a core body temperature above 38.0 degrees Celsius, an oral temperature above 37.5 degrees Celsius, or an axillary temperature above 37.2 degrees Celsius.

[0245] Improved: As used herein, “improved,” “improvement,” and other grammatical variants, includes any beneficial change resulting from a treatment. A beneficial change is any way in which a patient’s condition is better than it would have been in the absence of the treatment. “Improved” includes prevention of an undesired condition, slowing the rate at which a condition worsens, delaying the development of an undesired condition, and restoration to an essentially normal condition. For example, improvement in cachexia
encompasses any increase in patient’s mass, such as total body mass (excluding weight normally excluded during assessment of cachexia, e.g. tumor weight, extravascular fluid accumulation, etc.), lean body mass, and/or appendicular lean mass, as well as any delay or slowing in the rate of loss of mass, or prevention or slowing of loss of mass associated with a disease or condition with which the patient has been diagnosed. For another example, improvement in weakness encompasses any increase in patient’s strength, as well as any delay or slowing in the rate of loss of strength, or prevention or slowing of loss of strength associated with a disease or condition with which the patient has been diagnosed. For yet another example, improvement in fatigue encompasses any decrease in patient’s fatigue, as well as any delay or slowing in the rate of increase of fatigue, or prevention or slowing of increase in fatigue associated with a disease or condition with which the patient has been diagnosed. For still another example, improvement in fever encompasses any decrease in patient’s fever, as well as any delay or slowing in the rate of increase in fever, or prevention or slowing of increase in fever associated with a disease or condition with which the patient has been diagnosed.

[0246] C-Reactive Protein (CRP): As used herein, C-Reactive Protein (CRP) encompasses not only the following 224 amino acid sequence available as GenBank Protein Accession No. NP_000558:

[0247] MEKLLCFLVLTSLSHAFGQTDMSRKAIVFPKESDTSYVSLKAPLTKPLKAFTVCLHFYTELSSTRGYSIFSYATKRODNEILIFWSKDIGYSFTVGGSEILFDEVPEVTVPAPHICTSWESASGIVEFWVDGKPRVRKSLKKGYTVGAESIILGQE0DSFGGNGFSQS LVGDIGNVNMWDVFVLSPDEINTIYLGGFPSPNVNLWRALKYEVQGEVFMTKQLWLP (SEQ ID NO: 726), but also any pre-pro, pro- and mature forms of this CRP amino acid sequence, as well as mutants and variants including allelic variants of this sequence. CRP levels, e.g. in the serum, liver, tumor, or elsewhere in the body, can be readily measured using routine methods and commercially available reagents, e.g. ELISA, antibody test strip, immunoturbidimetry, rapid immunodiffusion, visual agglutination, Western blot, Northern blot, etc. As mentioned above CRP levels may in addition be measured in patients having or at risk of developing thrombosis according to the invention.

[0248] Interleukin-6 receptor (IL-6R); also called IL-6 receptor alpha (IL-6RA): As used herein, “interleukin-6 receptor” (“IL-6R”; also “IL-6 receptor alpha” or “IL-6RA”) encompasses not only the following 468 amino acid sequence available as Swiss-Prot Protein Accession No. P08887:
MLAVGCALLAALLAAPGAALAPRCRPAQEVARVLTSGLPDSVTLTTPGVEPEDNA
TVHWVLKPAAGSHPSRWAGMGRRLLRRSRLVQHDSGNYSYRCYAPAGTVCHELVD
VPPPEPPQLSCFRKPSLNSNVCEWPGRSTPSLTTKAVLLRKFQNPSPAEDFQEPQYSQ
ESQKFSCQLAVPEGDSSFYIVSMCASSVGSKFSKTQTFQGCILQPDPNNANTVAT
ARNPRWLSVTWQDPHSWNSSFYRFLERYAERSKTFTTWVMKDLQHCVIHDA
WSGLRHRVQLRAEQQEGGQGEWSEWSEAPAMGTPWTESRSPAENEVSTPQMALT
KDDDDNILFRDSANATLPSVQQSSVPLPTFLVAGGSLAFGLCIAVLRFKKTWKL
RALKEKGTSMHPPYSLQLVPERPRPTPVLPISPPVPSLSLGDNTSSIHNPDDPR
SPYDISNTDYFFPR (SEQ ID NO: 727), but also any pre-pro, pro- and mature forms of this amino acid sequence, as well as mutants and variants including allelic variants of this sequence.

[0249] gp130: As used herein, gp130 (also called Interleukin-6 receptor subunit beta) encompasses not only the following 918 precursor amino acid sequence available as Swiss-Prot Protein Accession No. P40189:
MLTLQTVWQQALFIIIFLTTTESTGELLDPCGYISPESPVQLHSENFTAVCLVKEKCMDY
FHVNANYIVWKTNHFTIPKEQYTIINTASSVTFTIDIASLNIQLTCDILTQGQLQNYVY
GITIISGLPEEPKKNLSCIVNEKMKRMCEWDDGGRETHLETNFTLKSEWATHKFADC
AKRDTPTSTCVDYSTVYFVNEIVWVEAEANLQKVTSDHINFDPVYKYVKNPPPHNL
INSELNSSILKLTWTNPSIKSVILKYNQYRTKDASTWSQIPPEDTASTRSSFTVQLKP
FTEYVFRICMKEDGKGYWSDWSEASAGITYEDRPSKAPSFWYKIDPSHTQGYRTVQ
LVWKTLPPFEANSTITKLDYTEVTLTRWKSLLQNYTVNATKLTVERNLTNDRLATLTVRN
LGVKSDAAVLTIPACDFQATHPVMDLKAFPDKDNMLWVEWTTPRESVKKYILEWCV
LSDKACPCTDWWQEDGTVVHRTYLRGNLAESKCYLITVTPVYADPGPESIKAYLKQ
APPSKGTPTVRTKKVGKNEAVALWEDQLPVDQVNGFIRNYTIFYRTIIGAETNAVNVDS
HTEYTLSSLDTMLYRMAMAAYTEDDEGGKDGEFTFTTPKFAQEIEAIVVPCVLACL
LTTLLGVLFCFNRKDLIKHIWPVPNVPDSPSHIAQWSPHTPRHNFSNKDQMYSGDGNF
TDSVVEIEANDKKPFPEDLKSLDFKKEKINTEGRHSSGGSSCMSSRSSPSISSSDENE
SSQNTSSTVQYSTVHSYRGHPVSQPQVFSRSESTQPLDsemblerLVDHVDG
DGILPRQQYFQKNCSQHESSPDISHFERSKQVSVNENEKFVRLLKKQSQSIDHSQSCGSGQ
MKMFQEVSAADAFGPFGTEGQVERFTVGMEAATDEGMPKSYLPQVTRQGGYMPQ
(SEQ ID NO: 728), but also any pre-pro, pro- and mature forms of this amino acid sequence, as well as mutants and variants including allelic variants of this sequence.
Glasgow Prognostic Score (GPS): As used herein, Glasgow Prognostic Score (GPS) refers to an inflammation-based prognostic score that awards one point for a serum albumin level less than < 35 mg/L and one point for a CRP level above 10 mg/L. Thus, a GPS of 0 indicates normal albumin and CRP, a GPS of 1 indicates reduced albumin or elevated CRP, and a GPS of 2 indicates both reduced albumin and elevated CRP.

Effective amount: As used herein, “effective amount,” “amount effective to,” “amount of X effective to” and the like, refer to an amount of an active ingredient that is effective to relieve or reduce to some extent one or more of the symptoms of the disease in need of treatment, or to retard initiation of clinical markers or symptoms of a disease in need of prevention, when the compound is administered. Thus, an effective amount refers to an amount of the active ingredient which exhibit effects such as (i) reversing the rate of progress of a disease; (ii) inhibiting to some extent further progress of the disease; and/or, (iii) relieving to some extent (or, preferably, eliminating) one or more symptoms associated with the disease. The effective amount may be empirically determined by experimenting with the compounds concerned in known in vivo and in vitro model systems for a disease in need of treatment. The context in which the phrase “effective amount” is used may indicate a particular desired effect. For example, “an amount of an anti-IL-6 antibody effective to prevent or treat a hypercoagulable state” and similar phrases refer to an amount of anti-IL-6 antibody that, when administered to a subject, will cause a measurable improvement in the subject’s coagulation profile, or prevent, slow, delay, or arrest, a worsening of the coagulation profile for which the subject is at risk. Similarly, “an amount of an anti-IL-6 antibody effective to reduce serum CRP levels” and similar phrases refer to an amount of anti-IL-6 antibody that, when administered to a subject, will cause a measurable decrease in serum CRP levels, or prevent, slow, delay, or arrest, an increase in serum CRP levels for which the subject is at risk. Similarly, “an amount of an anti-IL-6 antibody effective to increase serum albumin levels” and similar phrases refer to an amount of anti-IL-6 antibody that, when administered to a subject, will cause a measurable increase in serum albumin levels, or prevent, slow, delay, or arrest, a decrease in serum albumin levels for which the subject is at risk. Similarly, “an amount of an anti-IL-6 antibody effective to reduce weakness” and similar phrases refer to an amount of anti-IL-6 antibody that, when administered to a subject, will cause a measurable decrease in weakness as determined by the hand grip strength test. Similarly, “an amount of an anti-IL-6 antibody effective to increase weight” and similar phrases refer to an amount of anti-IL-6 antibody that, when administered...
to a subject, will cause a measurable increase in a patient's weight. An effective amount will vary according to the weight, sex, age and medical history of the individual, as well as the severity of the patient's condition(s), the type of disease(s), mode of administration, and the like. An effective amount may be readily determined using routine experimentation, e.g., by titration (administration of increasing dosages until an effective dosage is found) and/or by reference to amounts that were effective for prior patients. Generally, the anti-IL-6 antibodies of the present invention will be administered in dosages ranging between about 0.1 mg/kg and about 20 mg/kg of the patient's body-weight.

[0252] **Prolonged improvement in coagulation profile:** As used herein, "prolonged improvement in coagulation profile" and similar phrases refer to a measurable improvement in the subject's coagulation profile relative to the initial coagulation profile (i.e. the coagulation profile at a time before treatment begins) that is detectable within about a week from when treatment begins (e.g. administration of an IL-6 antagonist such as Ab1) and remains improved for a prolonged duration, e.g., at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

[0253] **Prolonged reduction in serum CRP:** As used herein, "prolonged reduction in serum CRP" and similar phrases refer to a measurable decrease in serum CRP level relative to the initial serum CRP level (i.e. the serum CRP level at a time before treatment begins) that is detectable within about a week from when a treatment begins (e.g. administration of an anti-IL-6 antibody) and remains below the initial serum CRP level for an prolonged duration, e.g. at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

[0254] **Prolonged increase in serum albumin:** As used herein, "prolonged increase in serum albumin" and similar phrases refer to a measurable decrease in serum albumin level relative to the initial serum albumin level (i.e. the serum albumin level at a time before treatment begins) that is detectable within about a week from when a treatment begins (e.g. administration of an anti-IL-6 antibody) and remains above the initial serum albumin level for an prolonged duration, e.g. at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60
days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

[0255] **Prolonged improvement in cachexia:** As used herein, “prolonged improvement in cachexia” refers to a measureable improvement patient’s body mass, lean body mass, appendicular lean body mass, and/or lean body mass index, relative to the initial level (i.e. the level at a time before treatment begins) that is detectable within about 4 weeks and remains improved for a prolonged duration, e.g. at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

[0256] **Prolonged improvement in weakness:** As used herein, “prolonged improvement in weakness” refers to a measureable improvement in muscular strength, relative to the initial level (i.e. the level at a time before treatment begins) that is detectable within about 2 weeks and remains improved for a prolonged duration, e.g. at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

[0257] **Prolonged improvement in fatigue:** As used herein, “prolonged improvement in fatigue” refers to a measureable improvement in fatigue, relative to the initial level (i.e. the level at a time before treatment begins) that is detectable within about 1 week and remains improved for a prolonged duration, e.g. at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

[0258] **Prolonged improvement in fever:** As used herein, “prolonged improvement in fever” refers to a measureable decrease in fever (e.g. peak temperature or amount of time that temperature is elevated), relative to the initial level (i.e. the level at a time before treatment begins) that is detectable within about 1 week and remains improved for a prolonged duration, e.g. at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.
[0259] **Mating competent yeast species:** In the present invention this is intended to broadly encompass any diploid or tetraploid yeast which can be grown in culture. Such species of yeast may exist in a haploid, diploid, or tetraploid form. The cells of a given ploidy may, under appropriate conditions, proliferate for indefinite number of generations in that form. Diploid cells can also sporulate to form haploid cells. Sequential mating can result in tetraploid strains through further mating or fusion of diploid strains. In the present invention the diploid or polyploidal yeast cells are preferably produced by mating or spheroplast fusion.

[0260] In one embodiment of the invention, the mating competent yeast is a member of the **Saccharomycetaceae** family, which includes the genera **Arxiozyma; Ascobotryozyma; Citeromyces; Debaryomyces; Dekkera; Eremothecium; Issatchenkia; Kazachstania; Kluyveromyces; Kodamaea; Lodderomyces; Pachysolen; Pichia; Saccharomyces; Saturnispora; Tetrapisispora; Torulaspora; Williopsis; and Zygossaccharomyces.** Other types of yeast potentially useful in the invention include **Yarrowia, Rhodosporidium, Candida, Hansenula, Filobasium, Filobasidella, Sporidiobolus, Bullera, Leucosporidium** and **Filobasidella.**

[0261] In a preferred embodiment of the invention, the mating competent yeast is a member of the genus **Pichia.** In a further preferred embodiment of the invention, the mating competent yeast of the genus **Pichia** is one of the following species: **Pichia pastoris, Pichia methanolica,** and **Hansenula polymorpha (Pichia angusta).** In a particularly preferred embodiment of the invention, the mating competent yeast of the genus **Pichia** is the species **Pichia pastoris.**

[0262] **Haploid Yeast Cell:** A cell having a single copy of each gene of its normal genomic (chromosomal) complement.

[0263] **Polyploid Yeast Cell:** A cell having more than one copy of its normal genomic (chromosomal) complement.

[0264] **Diploid Yeast Cell:** A cell having two copies (alleles) of essentially every gene of its normal genomic complement, typically formed by the process of fusion (mating) of two haploid cells.

[0265] **Tetraploid Yeast Cell:** A cell having four copies (alleles) of essentially every gene of its normal genomic complement, typically formed by the process of fusion (mating) of two haploid cells. Tetraploids may carry two, three, four, or more different expression cassettes. Such tetraploids might be obtained in **S. cerevisiae** by selective mating homozygotically.
heterothallic a/a and alpha/alpha diploids and in *Pichia* by sequential mating of haploids to obtain auxotrophic diploids. For example, a [met his] haploid can be mated with [ade his] haploid to obtain diploid [his]; and a [met arg] haploid can be mated with [ade arg] haploid to obtain diploid [arg]; then the diploid [his] x diploid [arg] to obtain a tetraploid prototroph. It will be understood by those of skill in the art that reference to the benefits and uses of diploid cells may also apply to tetraploid cells.

[0266] *Yeast Mating:* The process by which two haploid yeast cells naturally fuse to form one diploid yeast cell.

[0267] *Meiosis:* The process by which a diploid yeast cell undergoes reductive division to form four haploid spore products. Each spore may then germinate and form a haploid vegetatively growing cell line.

[0268] *Selectable Marker:* A selectable marker is a gene or gene fragment that confers a growth phenotype (physical growth characteristic) on a cell receiving that gene as, for example through a transformation event. The selectable marker allows that cell to survive and grow in a selective growth medium under conditions in which cells that do not receive that selectable marker gene cannot grow. Selectable marker genes generally fall into several types, including positive selectable marker genes such as a gene that confers on a cell resistance to an antibiotic or other drug, temperature when two ts mutants are crossed or a ts mutant is transformed; negative selectable marker genes such as a biosynthetic gene that confers on a cell the ability to grow in a medium without a specific nutrient needed by all cells that do not have that biosynthetic gene, or a mutagenized biosynthetic gene that confers on a cell inability to grow by cells that do not have the wild type gene; and the like. Suitable markers include but are not limited to: ZEO; G418; LYS3; MET1; MET3a; ADE1; ADE3; URA3; and the like.

[0269] *Expression Vector:* These DNA vectors contain elements that facilitate manipulation for the expression of a foreign protein within the target host cell. Conveniently, manipulation of sequences and production of DNA for transformation is first performed in a bacterial host, *e.g.* *E. coli*, and usually vectors will include sequences to facilitate such manipulations, including a bacterial origin of replication and appropriate bacterial selection marker. Selection markers encode proteins necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical
selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media. Exemplary vectors and methods for transformation of yeast are described, for example, in Burke, D., Dawson, D., & Stearns, T. (2000). Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Plainview, N.Y.: Cold Spring Harbor Laboratory Press.

[0270] Expression vectors for use in the methods of the invention will further include yeast specific sequences, including a selectable auxotrophic or drug marker for identifying transformed yeast strains. A drug marker may further be used to amplify copy number of the vector in a yeast host cell.

[0271] The polypeptide coding sequence of interest is operably linked to transcriptional and translational regulatory sequences that provide for expression of the polypeptide in yeast cells. These vector components may include, but are not limited to, one or more of the following: an enhancer element, a promoter, and a transcription termination sequence. Sequences for the secretion of the polypeptide may also be included, e.g. a signal sequence, and the like. A yeast origin of replication is optional, as expression vectors are often integrated into the yeast genome.

[0272] In one embodiment of the invention, the polypeptide of interest is operably linked, or fused, to sequences providing for optimized secretion of the polypeptide from yeast diploid cells.

[0273] Nucleic acids are "operably linked" when placed into a functional relationship with another nucleic acid sequence. For example, DNA for a signal sequence is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading frame. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites or alternatively via a PCR/recombination method familiar to those skilled in the art (Gateway® Technology; Invitrogen, Carlsbad California). If such sites do not exist, the synthetic oligonucleotide adapters or linkers are used in accordance with conventional practice.
Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequences to which they are operably linked. Such promoters fall into several classes: inducible, constitutive, and repressible promoters (that increase levels of transcription in response to absence of a repressor). Inducible promoters may initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature.

The yeast promoter fragment may also serve as the site for homologous recombination and integration of the expression vector into the same site in the yeast genome; alternatively a selectable marker is used as the site for homologous recombination. *Pichia* transformation is described in Cregg *et al.* (1985) *Mol. Cell. Biol.* 5:3376-3385.

Other yeast promoters include ADH1, alcohol dehydrogenase II, GAL4, PHO3, PHO5, Pyk, and chimeric promoters derived therefrom. Additionally, non-yeast promoters may be used in the invention such as mammalian, insect, plant, reptile, amphibian, viral, and avian promoters. Most typically the promoter will comprise a mammalian promoter (potentially endogenous to the expressed genes) or will comprise a yeast or viral promoter that provides for efficient transcription in yeast systems.

The polypeptides of interest may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, e.g. a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the polypeptide coding sequence that is inserted into the vector. The heterologous signal sequence selected preferably is one that is recognized and processed through one of the standard pathways available within the host cell. The *S. cerevisiae* alpha factor pre-pro signal has proven effective in the secretion of a variety of recombinant proteins from *P. pastoris*.
Other yeast signal sequences include the alpha mating factor signal sequence, the invertase signal sequence, and signal sequences derived from other secreted yeast polypeptides. Additionally, these signal peptide sequences may be engineered to provide for enhanced secretion in diploid yeast expression systems. Other secretion signals of interest also include mammalian signal sequences, which may be heterologous to the protein being secreted, or may be a native sequence for the protein being secreted. Signal sequences include prepeptide sequences, and in some instances may include propeptide sequences. Many such signal sequences are known in the art, including the signal sequences found on immunoglobulin chains, e.g., K28 preprotoxin sequence, PHA-E, FACE, human MCP-1, human serum albumin signal sequences, human Ig heavy chain, human Ig light chain, and the like. For example, see Hashimoto et al. Protein Eng 11(2) 75 (1998); and Kobayashi et al. Therapeutic Apheresis 2(4) 257 (1998).

[0279] Transcription may be increased by inserting a transcriptional activator sequence into the vector. These activators are cis-acting elements of DNA, usually about from 10 to 300 bp, which act on a promoter to increase its transcription. Transcriptional enhancers are relatively orientation and position independent, having been found 5' and 3' to the transcription unit, within an intron, as well as within the coding sequence itself. The enhancer may be spliced into the expression vector at a position 5' or 3' to the coding sequence, but is preferably located at a site 5' from the promoter.

[0280] Expression vectors used in eukaryotic host cells may also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from 3' to the translation termination codon, in untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA.

[0281] Construction of suitable vectors containing one or more of the above-listed components employs standard ligation techniques or PCR/recombination methods. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required or via recombination methods. For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform host cells, and successful transformants selected by antibiotic resistance (e.g. ampicillin or Zeocin™ (phleomycin)) where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion and/or sequenced.
As an alternative to restriction and ligation of fragments, recombination methods based on att sites and recombination enzymes may be used to insert DNA sequences into a vector. Such methods are described, for example, by Landy (1989) Ann.Rev.Biochem. 58:913-949; and are known to those of skill in the art. Such methods utilize intermolecular DNA recombination that is mediated by a mixture of lambda and E.coli-encoded recombination proteins. Recombination occurs between specific attachment (att) sites on the interacting DNA molecules. For a description of att sites see Weisberg and Landy (1983) Site-Specific Recombination in Phage Lambda, in Lambda II, Weisberg, ed.(Cold Spring Harbor, NY:Cold Spring Harbor Press), pp.211-250. The DNA segments flanking the recombination sites are switched, such that after recombination, the att sites are hybrid sequences comprised of sequences donated by each parental vector. The recombination can occur between DNAs of any topology.

Att sites may be introduced into a sequence of interest by ligating the sequence of interest into an appropriate vector; generating a PCR product containing att B sites through the use of specific primers; generating a cDNA library cloned into an appropriate vector containing att sites; and the like.

Folding, as used herein, refers to the three-dimensional structure of polypeptides and proteins, where interactions between amino acid residues act to stabilize the structure. While non-covalent interactions are important in determining structure, usually the proteins of interest will have intra- and/or intermolecular covalent disulfide bonds formed by two cysteine residues. For naturally occurring proteins and polypeptides or derivatives and variants thereof, the proper folding is typically the arrangement that results in optimal biological activity, and can conveniently be monitored by assays for activity, e.g. ligand binding, enzymatic activity, etc.

In some instances, for example where the desired product is of synthetic origin, assays based on biological activity will be less meaningful. The proper folding of such molecules may be determined on the basis of physical properties, energetic considerations, modeling studies, and the like.

The expression host may be further modified by the introduction of sequences encoding one or more enzymes that enhance folding and disulfide bond formation, i.e. foldases, chaperonins, etc. Such sequences may be constitutively or inducibly expressed in the yeast host cell, using vectors, markers, etc. as known in the art. Preferably the sequences,
including transcriptional regulatory elements sufficient for the desired pattern of expression, are stably integrated in the yeast genome through a targeted methodology.

[0287] For example, the eukaryotic PDI is not only an efficient catalyst of protein cysteine oxidation and disulfide bond isomerization, but also exhibits chaperone activity. Co-expression of PDI can facilitate the production of active proteins having multiple disulfide bonds. Also of interest is the expression of BIP (immunoglobulin heavy chain binding protein); cyclophilin; and the like. In one embodiment of the invention, each of the haploid parental strains expresses a distinct folding enzyme, e.g. one strain may express BIP, and the other strain may express PDI or combinations thereof.

[0288] The terms "desired protein" or "target protein" are used interchangeably and refer generally to a humanized antibody or a binding portion thereof described herein. The term "antibody" is intended to include any polypeptide chain-containing molecular structure with a specific shape that fits to and recognizes an epitope, where one or more non-covalent binding interactions stabilize the complex between the molecular structure and the epitope. The archetypal antibody molecule is the immunoglobulin, and all types of immunoglobulins, IgG, IgM, IgA, IgE, IgD, etc., from all sources, e.g. human, rodent, rabbit, cow, sheep, pig, dog, other mammals, chicken, other avians, etc., are considered to be "antibodies." A preferred source for producing antibodies useful as starting material according to the invention is rabbits. Numerous antibody coding sequences have been described; and others may be raised by methods well-known in the art. Examples thereof include chimeric antibodies, human antibodies and other non-human mammalian antibodies, humanized antibodies, single chain antibodies such as scFvs, camelbodies, nanobodies, IgNAR (single-chain antibodies derived from sharks), small-modular immunopharmaceuticals (SMIPs), and antibody fragments such as Fabs, Fab', F(ab')2 and the like. See Streitsov VA, et al., Structure of a shark IgNAR antibody variable domain and modeling of an early-developmental isotype, Protein Sci. 2005 Nov;14(11):2901-9. Epub 2005 Sep 30; Greenberg AS, et al., A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks, Nature. 1995 Mar 9;374(6518):168-73; Nuttall SD, et al., Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries, Mol Immunol. 2001 Aug;38(4):313-26; Hamers-Casterman C, et al., Naturally occurring antibodies devoid of light chains, Nature. 1993 Jun 3;363(6428):446-8; Gill DS, et al., Biopharmaceutical drug discovery using novel protein scaffolds, Curr Opin Biotechnol. 2006 Dec;17(6):653-8. Epub 2006 Oct 19.
[0289] For example, antibodies or antigen binding fragments or variants thereof may be produced by genetic engineering. In this technique, as with other methods, antibody-producing cells are sensitized to the desired antigen or immunogen. The messenger RNA isolated from antibody producing cells is used as a template to make cDNA using PCR amplification. A library of vectors, each containing one heavy chain gene and one light chain gene retaining the initial antigen specificity, is produced by insertion of appropriate sections of the amplified immunoglobulin cDNA into the expression vectors. A combinatorial library is constructed by combining the heavy chain gene library with the light chain gene library. This results in a library of clones which co-express a heavy and light chain (resembling the Fab fragment or antigen binding fragment of an antibody molecule). The vectors that carry these genes are co-transfected into a host cell. When antibody gene synthesis is induced in the transfected host, the heavy and light chain proteins self-assemble to produce active antibodies that can be detected by screening with the antigen or immunogen.

[0290] Antibody coding sequences of interest include those encoded by native sequences, as well as nucleic acids that, by virtue of the degeneracy of the genetic code, are not identical in sequence to the disclosed nucleic acids, and variants thereof. Variant polypeptides can include amino acid (aa) substitutions, additions or deletions. The amino acid substitutions can be conservative amino acid substitutions or substitutions to eliminate non-essential amino acids, such as to alter a glycosylation site, or to minimize misfolding by substitution or deletion of one or more cysteine residues that are not necessary for function. Variants can be designed so as to retain or have enhanced biological activity of a particular region of the protein (e.g., a functional domain, catalytic amino acid residues, etc). Variants also include fragments of the polypeptides disclosed herein, particularly biologically active fragments and/or fragments corresponding to functional domains. Techniques for in vitro mutagenesis of cloned genes are known. Also included in the subject invention are polypeptides that have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent.

[0291] Chimeric antibodies may be made by recombinant means by combining the variable light and heavy chain regions (VL and VH), obtained from antibody producing cells of one species with the constant light and heavy chain regions from another. Typically chimeric antibodies utilize rodent or rabbit variable regions and human constant regions, in order to produce an antibody with predominantly human domains. The production of such
chimeric antibodies is well known in the art, and may be achieved by standard means (as described, e.g., in U.S. Patent No. 5,624,659, incorporated herein by reference in its entirety). It is further contemplated that the human constant regions of chimeric antibodies of the invention may be selected from IgG1, IgG2, IgG3, IgG4, IgG5, IgG6, IgG7, IgG8, IgG9, IgG10, IgG11, IgG12, IgG13, IgG14, IgG15, IgG16, IgG17, IgG18 or IgG19 constant regions.

[0292] Humanized antibodies are engineered to contain even more human-like immunoglobulin domains, and incorporate only the complementarity-determining regions of the animal-derived antibody. This is accomplished by carefully examining the sequence of the hyper-variable loops of the variable regions of the monoclonal antibody, and fitting them to the structure of the human antibody chains. Although facially complex, the process is straightforward in practice. See, e.g., U.S. Patent No. 6,187,287, incorporated fully herein by reference. In a preferred embodiment, humanization may be effected as disclosed in detail infra. This scheme grafts CDRs onto human FRs highly homologous to the parent antibody that is being humanized.

[0293] In addition to entire immunoglobulins (or their recombinant counterparts), immunoglobulin fragments comprising the epitope binding site (e.g., Fab’, F(ab’)2, or other fragments) may be synthesized. “Fragment,” or minimal immunoglobulins may be designed utilizing recombinant immunoglobulin techniques. For instance “Fv” immunoglobulins for use in the present invention may be produced by synthesizing a fused variable light chain region and a variable heavy chain region. Combinations of antibodies are also of interest, e.g. diabodies, which comprise two distinct Fv specificities. In another embodiment of the invention, SMIPs (small molecule immunopharmaceuticals), camelbodies, nanobodies, and IgNAR are encompassed by immunoglobulin fragments.

[0294] Immunoglobulins and fragments thereof may be modified post-translationally, e.g. to add effector moieties such as chemical linkers, detectable moieties, such as fluorescent dyes, enzymes, toxins, substrates, bioluminescent materials, radioactive materials, chemiluminescent moieties and the like, or specific binding moieties, such as streptavidin, avidin, or biotin, and the like may be utilized in the methods and compositions of the present invention. Examples of additional effector molecules are provided infra.

[0295] The term “polyploid yeast that stably expresses or expresses a desired secreted heterologous polypeptide for prolonged time” refers to a yeast culture that secretes said
polypeptide for at least several days to a week, more preferably at least a month, still more preferably at least 1-6 months, and even more preferably for more than a year at threshold expression levels, typically at least 10-25 mg/liter and preferably substantially greater.

[0296] The term "polyploidial yeast culture that secretes desired amounts of recombinant polypeptide" refers to cultures that stably or for prolonged periods secrete at least 10-25 mg/liter of heterologous polypeptide, more preferably at least 50-500 mg/liter, and most preferably 500-1000 mg/liter or more.

[0297] A polynucleotide sequence "corresponds" to a polypeptide sequence if translation of the polynucleotide sequence in accordance with the genetic code yields the polypeptide sequence (i.e., the polynucleotide sequence "encodes" the polypeptide sequence), one polynucleotide sequence "corresponds" to another polynucleotide sequence if the two sequences encode the same polypeptide sequence.

[0298] A "heterologous" region or domain of a DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. Another example of a heterologous region is a construct where the coding sequence itself is not found in nature (e.g., a cDNA where the genomic coding sequence contains introns, or synthetic sequences having codons different than the native gene). Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

[0299] A "coding sequence" is an in-frame sequence of codons that (in view of the genetic code) correspond to or encode a protein or peptide sequence. Two coding sequences correspond to each other if the sequences or their complementary sequences encode the same amino acid sequences. A coding sequence in association with appropriate regulatory sequences may be transcribed and translated into a polypeptide. A polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence. A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. Promoter sequences typically contain additional sites for binding of regulatory molecules (e.g., transcription factors) which affect the transcription of the coding sequence. A coding sequence is "under the control" of the promoter sequence or "operatively linked" to the
promoter when RNA polymerase binds the promoter sequence in a cell and transcribes the coding sequence into mRNA, which is then in turn translated into the protein encoded by the coding sequence.

[0300] Vectors are used to introduce a foreign substance, such as DNA, RNA or protein, into an organism or host cell. Typical vectors include recombinant viruses (for polynucleotides) and liposomes or other lipid aggregates (for polypeptides and/or polynucleotides). A "DNA vector" is a replicon, such as plasmid, phage or cosmid, to which another polynucleotide segment may be attached so as to bring about the replication of the attached segment. An "expression vector" is a DNA vector which contains regulatory sequences which will direct polypeptide synthesis by an appropriate host cell. This usually means a promoter to bind RNA polymerase and initiate transcription of mRNA, as well as ribosome binding sites and initiation signals to direct translation of the mRNA into a polypeptide(s). Incorporation of a polynucleotide sequence into an expression vector at the proper site and in correct reading frame, followed by transformation of an appropriate host cell by the vector, enables the production of a polypeptide encoded by said polynucleotide sequence. Exemplary expression vectors and techniques for their use are described in the following publications: Old et al., Principles of Gene Manipulation: An Introduction to Genetic Engineering, Blackwell Scientific Publications, 4th edition, 1989; Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989; Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory Press, 2001; Gorman, "High Efficiency Gene Transfer into Mammalian Cells," in DNA Cloning, Volume II, Glover, D. M., Ed., IRL Press, Washington, D.C., pp. 143 190 (1985).

[0301] For example, a liposomes or other lipid aggregate may comprise a lipid such as phosphatidylcholines (lecithins) (PC), phosphatidylethanolamines (PE), lysolecithins, lysophosphatidylethanolamines, phosphatidylerines (PS), phosphatidylglycerols (PG), phosphatidylinositol (PI), sphingomyelins, cardiolipin, phosphatidic acids (PA), fatty acids, gangliosides, glucolipids, glycolipids, mono-, di or triglycerides, ceramides, cerebrosides and combinations thereof; a cationic lipid (or other cationic amphiphile) such as 1,2-dioleoyloxy-3-(trimethylamino) propane (DOTAP); N-cholesteryloxyarbaryl-3,7,12-triazapentadecane-1,15-diamine (CTAP); N-[1-(2,3, -ditetradecyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE); N-[1-(2,3,-dioleoyloxy)propyl]-N,N-dimethyl-N-hydroxy ethylammonium bromide (DORIE); N-[1-(2,3-dioleoyloxy) propyl]-N,N,
trimethylammonium chloride (DOTMA); 3 beta [N-(N',N'-dimethylaminoethane)carbamoly] cholesterol (DC-Choi); and dimethyldioctadecylammonium (DDAB); dioleoylphosphatidyl ethanolamine (DOPE), cholesterol-containing DOPC; and combinations thereof; and/or a hydrophilic polymer such as polyvinylpyrrolidone, polyvinylmethylether, polymethoxyxazoline, polyethoxazoline, polylhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxyethylacrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyethylene glycol, polyaspartamide and combinations thereof. Other suitable cationic lipids are described in Miller, Angew. Chem. Int. Ed. 37:1768 1785 (1998), and Cooper et al., Chem. Eur. J. 4(1): 137 151 (1998). Liposomes can be crosslinked, partially crosslinked, or free from crosslinking. Crosslinked liposomes can include crosslinked as well as non-crosslinked components. Suitable cationic liposomes or cytofectins are commercially available and can also be prepared as described in Sipkins et al., Nature Medicine, 1998, 4(5):(1998), 623 626 or as described in Miller, supra. Exemplary liposomes include a polymerizable zwitterionic or neutral lipid, a polymerizable integrin targeting lipid and a polymerizable cationic lipid suitable for binding a nucleic acid. Liposomes can optionally include peptides that provide increased efficiency, for example as described in U.S. Pat. No. 7,297,759. Additional exemplary liposomes and other lipid aggregates are described in U.S. Pat. No. 7,166,298.

[0302] "Amplification" of polynucleotide sequences is the in vitro production of multiple copies of a particular nucleic acid sequence. The amplified sequence is usually in the form of DNA. A variety of techniques for carrying out such amplification are described in a review article by Van Brunt (1990, Bio/Technol., 8(4):291-294). Polymerase chain reaction or PCR is a prototype of nucleic acid amplification, and use of PCR herein should be considered exemplary of other suitable amplification techniques.

[0303] The general structure of antibodies in vertebrates now is well understood (Edelman, G. M., Ann. N.Y. Acad. Sci., 190: 5 (1971)). Antibodies consist of two identical light polypeptide chains of molecular weight approximately 23,000 daltons (the "light chain"), and two identical heavy chains of molecular weight 53,000-70,000 (the "heavy chain"). The four chains are joined by disulfide bonds in a "Y" configuration wherein the light chains bracket the heavy chains starting at the mouth of the "Y" configuration. The "branch" portion of the "Y" configuration is designated the Fab region; the stem portion of the "Y" configuration is designated the Fc region. The amino acid sequence orientation runs
from the N-terminal end at the top of the “Y” configuration to the C-terminal end at the bottom of each chain. The N-terminal end possesses the variable region having specificity for the antigen that elicited it, and is approximately 100 amino acids in length, there being slight variations between light and heavy chain and from antibody to antibody.

[0304] The variable region is linked in each chain to a constant region that extends the remaining length of the chain and that within a particular class of antibody does not vary with the specificity of the antibody (i.e., the antigen eliciting it). There are five known major classes of constant regions that determine the class of the immunoglobulin molecule (IgG, IgM, IgA, IgD, and IgE corresponding to γ, μ, α, δ, and ε (gamma, mu, alpha, delta, or epsilon) heavy chain constant regions). The constant region or class determines subsequent effector function of the antibody, including activation of complement (Kabat, E. A., Structural Concepts in Immunology and Immunochemistry, 2nd Ed., p. 413-436, Holt, Rinehart, Winston (1976)), and other cellular responses (Andrews, D. W., et al., Clinical Immunobiology, pp 1-18, W. B. Sanders (1980); Kohl, S., et al., Immunology, 48: 187 (1983)); while the variable region determines the antigen with which it will react. Light chains are classified as either κ (kappa) or λ (lambda). Each heavy chain class can be paired with either kappa or lambda light chain. The light and heavy chains are covalently bonded to each other, and the “tail” portions of the two heavy chains are bonded to each other by covalent disulfide linkages when the immunoglobulins are generated either by hybridomas or by B cells.

[0305] The expression “variable region” or “VR” refers to the domains within each pair of light and heavy chains in an antibody that are involved directly in binding the antibody to the antigen. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain (VL) at one end and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.

[0306] The expressions “complementarity determining region,” “hypervariable region,” or “CDR” refer to one or more of the hyper-variable or complementarity determining regions (CDRs) found in the variable regions of light or heavy chains of an antibody (See Kabat, E. A. et al., Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., (1987)). These expressions include the hypervariable regions as defined by Kabat et al. (“Sequences of Proteins of Immunological Interest,” Kabat E., et al., US Dept. of
Health and Human Services, 1983) or the hypervariable loops in 3-dimensional structures of antibodies (Chothia and Lesk, J Mol. Biol. 196 901-917 (1987)). The CDRs in each chain are held in close proximity by framework regions and, with the CDRs from the other chain, contribute to the formation of the antigen binding site. Within the CDRs there are select amino acids that have been described as the selectivity determining regions (SDRs) which represent the critical contact residues used by the CDR in the antibody-antigen interaction (Kashmiri, S., Methods, 36:25-34 (2005)). CDRs for exemplary anti-IL-6 antibodies are provided herein.

[0307] The expressions “framework region” or “FR” refer to one or more of the framework regions within the variable regions of the light and heavy chains of an antibody (See Kabat, E. A. et al., Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., (1987)). These expressions include those amino acid sequence regions interposed between the CDRs within the variable regions of the light and heavy chains of an antibody. As mentioned in the preferred embodiments, the FRs will comprise human FRs highly homologous to the parent antibody (e.g., rabbit antibody).

[0308] Ab1 Anti-IL-6 Antibodies and Binding Fragments Thereof

[0309] The invention includes antibodies having binding specificity to IL-6 and possessing a variable light chain sequence comprising the sequence set forth below:

MDTRAPTQLGLLWLWLGARCAYDMTQTPASVSAAVGGTVTICKQASQINNELS
WYQQKPGQPRLLIYRSTALSVGSSRFKGSSTETFILTVSLCDATAYYQCQQG
YSLRNIDNAGGGTEVVKKRTVAAVPSVIFPPSDEQLKSGTASVCLLNN (SEQ ID NO: 2)

or

AIQMTQSPSSLASVGDRVTITCQASQINELSWYQQKPGAPKLLLRYRSTALSVG
PSRFSGSGSTDFLTLISLQPDDFATYYCQQGSYSLRNIDNAGGGTKVEIKR (SEQ ID NO: 709) and humanized versions and variants thereof including those set forth in FIGS. 2 and 34-37, and those identified in Table 1.

[0310] The invention also includes antibodies having binding specificity to IL-6 and possessing a variable heavy chain sequence comprising the sequence set forth below:

METGLRWWLVAVLKGVCQQSCLEESGGRLLVTPGTPLLTLCTASGFLSNNYYVTVVR
QAPGKGLEWIGIYGSDETAAYATWAIGRTSTSTTVLDKMTSLAATDVATYFCARD
DSSDWDAKFLWQGTLVTSSASTKGPSVFPLAPSSKSTSGTAAAGCLVK (SEQ
ID NO: 3) or EVQLVESGGGLVQPGGLSLRLSCAASGFSLNSYYVTWVRQAPGKGLEWVGIIYGSDE TAYATSAGRTFISRDNSKNTLYLQMNLARADTAAYYCARDDSDWDSDKLFNYLWQ GTLTVVSS (SEQ ID NO: 657) and humanized versions and variants thereof including those set forth in FIGS. 2 and 34-37, and those identified in Table 1.

[0311] The invention further includes antibodies having binding specificity to IL-6 and possessing a variable heavy chain sequence which is a modified version of SEQ ID NO: 3 wherein the tryptophan residue in CDR2 is changed to a serine as set forth below: METGLRLLVAVLKGQCQSCSESGGRLVTPGTLTLTCTASGFSLSNYYVTWVR QAPGKGLEWGIIGYSGDEATAYATSAGRTFISKTSTTVNLKTMLSLTAADTYFCARD DSSDWDASKFNWQQTLTVVSSASITAGPSVFPLAPSSSTSGTALGCLVK (SEQ ID NO: 658) and humanized versions and variants thereof including those set forth in FIGS. 2 and 34-37, and those identified in Table 1.

[0312] The invention further contemplates antibodies comprising one or more of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable light chain sequence of SEQ ID NO: 2, and/or one or more of the polypeptide sequences of SEQ ID NO: 7; SEQ ID NO: 8 or 120; and SEQ ID NO: 9 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable heavy chain sequence of SEQ ID NO: 3 or 19, or combinations of these polypeptide sequences. In another embodiment of the invention, the antibodies of the invention include combinations of the CDRs and the variable heavy and light chain sequences set forth above.

[0313] In another embodiment, the invention contemplates other antibodies, such as for example chimeric antibodies, comprising one or more of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable light chain sequence of SEQ ID NO: 2, and/or one or more of the polypeptide sequences of SEQ ID NO: 7; SEQ ID NO: 8 or 120; and SEQ ID NO: 9 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable heavy chain sequence of SEQ ID NO: 3 or 19, or combinations of these polypeptide sequences. In another embodiment of the invention, the antibodies of the invention include combinations of the CDRs and humanized versions of the variable heavy and light chain sequences set forth above.
[0314] The invention also contemplates fragments of the antibody having binding specificity to IL-6. In one embodiment of the invention, antibody fragments of the invention comprise, or alternatively consist of, humanized versions of the polypeptide sequence of SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709. In another embodiment of the invention, antibody fragments of the invention comprise, or alternatively consist of, humanized versions of the polypeptide sequence of SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708.

[0315] In a further embodiment of the invention, fragments of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one or more of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable light chain sequence of SEQ ID NO: 2 or SEQ ID NO: 709.

[0316] In a further embodiment of the invention, fragments of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one or more of the polypeptide sequences of SEQ ID NO: 7; SEQ ID NO: 8 or SEQ ID NO: 120; and SEQ ID NO: 9 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable heavy chain sequence of SEQ ID NO: 3 and 657 or 19.

[0317] The invention also contemplates antibody fragments which include one or more of the antibody fragments described herein. In one embodiment of the invention, fragments of the antibodies having binding specificity to IL-6 comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable light chain region of SEQ ID NO: 2; the variable heavy chain region of SEQ ID NO: 3; the complementarity-determining regions (SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6) of the variable light chain region of SEQ ID NO: 2; and the complementarity-determining regions (SEQ ID NO: 7; SEQ ID NO: 8 or SEQ ID NO: 120; and SEQ ID NO: 9) of the variable heavy chain region of SEQ ID NO: 3 and 657 or 19.

[0318] The invention also contemplates variants wherein either of the heavy chain polypeptide sequences of SEQ ID NO: 18 or SEQ ID NO: 19 is substituted for the heavy chain polypeptide sequence of SEQ ID NO: 3 or 657; the light chain polypeptide sequence of SEQ ID NO: 20 is substituted for the light chain polypeptide sequence of SEQ ID NO: 2 or SEQ ID NO: 709; and the heavy chain CDR sequence of SEQ ID NO: 120 is substituted for the heavy chain CDR sequence of SEQ ID NO: 8.
[0319] In a preferred embodiment of the invention, the anti-IL-6 antibody is Ab1, comprising SEQ ID NO: 2 and SEQ ID NO: 3, or more particularly an antibody comprising SEQ ID NO: 657 and SEQ ID NO: 709 (which are respectively encoded by the nucleic acid sequences in SEQ ID NO: 700 and SEQ ID NO: 723) or one comprised of the alternative SEQ ID NOs set forth in the preceding paragraph, and having at least one of the biological activities set forth herein. In a preferred embodiment the anti-IL-6 antibody will comprise a humanized sequence as shown in Figures 34-37.

[0320] Sequences of anti-IL-6 antibodies of the present invention are shown in Table 1. Exemplary sequence variants other alternative forms of the heavy and light chains of Ab1 through Ab7 are shown. The antibodies of the present invention encompass additional sequence variants, including conservative substitutions, substitution of one or more CDR sequences and/or FR sequences, etc.

[0321] Exemplary Ab1 embodiments include an antibody comprising a variant of the light chain and/or heavy chain. Exemplary variants of the light chain of Ab1 include the sequence of any of the Ab1 light chains shown (i.e., any of SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709) wherein the entire CDR1 sequence is replaced or wherein one or more residues in the CDR1 sequence is substituted by the residue in the corresponding position of any of the other light chain CDR1 sequences set forth (i.e., any of SEQ ID NO: 23, 39, 55, 71, 87, 103, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 380, 396, 412, 428, 444, 460, 476, 492, 508, 524, 540, 556, or 572); and/or wherein the entire CDR2 sequence is replaced or wherein one or more residues in the CDR2 sequence is substituted by the residue in the corresponding position of any of the other light chain CDR2 sequences set forth (i.e., any of SEQ ID NO: 24, 40, 56, 72, 88, 104, 125, 141, 157, 173, 189, 205, 221, 237, 253, 269, 285, 301, 317, 333, 349, 365, 381, 397, 413, 429, 445, 461, 477, 493, 509, 525, 541, 557, or 573); and/or wherein the entire CDR3 sequence is replaced or wherein one or more residues in the CDR3 sequence is substituted by the residue in the corresponding position of any of the other light chain CDR3 sequences set forth (i.e., any of SEQ ID NO: 25, 41, 57, 73, 89, 105, 126, 142, 158, 174, 190, 206, 222, 238, 254, 270, 286, 302, 318, 334, 350, 366, 382, 398, 414, 430, 446, 462, 478, 494, 510, 526, 542, 558, or 574).

[0322] Exemplary variants of the heavy chain of Ab1 include the sequence of any of the Ab1 heavy chains shown (i.e., any of SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708) wherein the entire CDR1 sequence is replaced or wherein one or more residues in the CDR1 sequence is substituted by the residue in the corresponding position of
any of the other heavy chain CDR1 sequences set forth (i.e., any of SEQ ID NO: 26, 42, 58, 74, 90, 106, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511, 527, 543, 559, or 575); and/or wherein the entire CDR2 sequence is replaced or wherein one or more residues in the CDR2 sequence is substituted by the residue in the corresponding position of an Ab1 heavy chain CDR2, such as those set forth in Table 1 (i.e., any of SEQ ID NO: 8, or 120) or any of the other heavy chain CDR2 sequences set forth (i.e., any of SEQ ID NO: 27, 43, 59, 75, 91, 107, 121, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 384, 400, 416, 432, 448, 464, 480, 496, 512, 528, 544, 560, or 576); and/or wherein the entire CDR3 sequence is replaced or wherein one or more residues in the CDR3 sequence is substituted by the residue in the corresponding position of any of the other heavy chain CDR3 sequences set forth (i.e., any of SEQ ID NO: 28, 44, 60, 76, 92, 108, 129, 145, 161, 177, 193, 209, 225, 241, 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 417, 433, 449, 465, 481, 497, 513, 529, 545, 561, or 577).

[0323] In another embodiment, the invention contemplates other antibodies, such as for example chimeric or humanized antibodies, comprising one or more of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable light chain sequence of SEQ ID NO: 2, and/or one or more of the polypeptide sequences of SEQ ID NO: 7 (CDR1); SEQ ID NO: 8 (CDR2); SEQ ID NO: 120 (CDR2); and SEQ ID NO: 9 (CDR3) which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable heavy chain sequence of SEQ ID NO: 3 or SEQ ID NO: 19, or combinations of these polypeptide sequences. In another embodiment of the invention, the antibodies of the invention include combinations of the CDRs and the variable heavy and light chain sequences set forth above including those set forth in FIGS. 2 and 34-37, and those identified in Table 1.

[0324] In another embodiment the anti-IL-6 antibody of the invention is one comprising at least one of the following: a CDR1 light chain encoded by the sequence in SEQ ID NO: 12 or SEQ ID NO: 694; a light chain CDR2 encoded by the sequence in SEQ ID NO: 13; a light chain CDR3 encoded by the sequence in SEQ ID NO: 14 or SEQ ID NO: 695; a heavy chain CDR1 encoded by the sequence in SEQ ID NO: 15, a heavy chain CDR2 encoded by SEQ ID NO: 16 or SEQ ID NO: 696 and a heavy chain CDR3 encoded by SEQ ID NO: 17 or
SEQ ID NO: 697. In addition the invention embraces such nucleic acid sequences and variants thereof.

[0325] In another embodiment the invention is directed to amino acid sequences corresponding to the CDRs of said anti-IL-6 antibody which are selected from SEQ ID NO: 4 (CDR1), SEQ ID NO: 5 (CDR2), SEQ ID NO: 6 (CDR3), SEQ ID NO: 7, SEQ ID NO: 120 and SEQ ID NO: 9.

[0326] In another embodiment the anti-IL-6 antibody of the invention comprises a light chain nucleic acid sequence of SEQ ID NO: 10, 662, 698, 701, 705, 720, 721, 722, or 723; and/or a heavy chain nucleic acid sequence of SEQ ID NO: 11, 663, 700, 703, 707, 724, or 725. In addition the invention is directed to the corresponding polypeptides encoded by any of the foregoing nucleic acid sequences and combinations thereof.

[0327] In a specific embodiment of the invention the anti-IL-6 antibodies or a portion thereof will be encoded by a nucleic acid sequence selected from those comprised in SEQ ID NO: 10, 12, 13, 14, 662, 694, 695, 698, 701, 705, 720, 721, 722, 723, 11, 15, 16, 17, 663, 696, 697, 700, 703, 707, 724, and 725. For example the CDR1 in the light chain may be encoded by SEQ ID NO: 12 or 694, the CDR2 in the light chain may be encoded by SEQ ID NO: 13, the CDR3 in the light chain may be encoded by SEQ ID NO: 14 or 695; the CDR1 in the heavy chain may be encoded by SEQ ID NO: 15, the CDR2 in the heavy chain may be encoded by SEQ ID NO: 16 or 696, the CDR3 in the heavy chain may be encoded by SEQ ID NO: 17 or 697. As discussed infra antibodies containing these CDRs may be constructed using appropriate human frameworks based on the humanization methods disclosed herein.

[0328] In another specific embodiment of the invention the variable light chain will be encoded by SEQ ID NO: 10, 662, 698, 701, 705, 720, 721, 722, or 723 and the variable heavy chain of the anti-IL-6 antibodies will be encoded by SEQ ID NO: 11, 663, 700, 703, 707, 724, or 725.

[0329] In a more specific embodiment variable light and heavy chains of the anti-IL-6 antibody respectively will be encoded by SEQ ID NO: 10 and 11, or SEQ ID NO: 698 and SEQ ID NO: 700, or SEQ ID NO: 701 and SEQ ID NO: 703 or SEQ ID NO: 705 and SEQ ID NO: 707.

[0330] In another specific embodiment the invention covers nucleic acid constructs containing any of the foregoing nucleic acid sequences and combinations thereof as well as recombinant cells containing these nucleic acid sequences and constructs containing wherein
these nucleic acid sequences or constructs may be extrachromosomal or integrated into the host cell genome.

[0331] In another specific embodiment the invention covers polypeptides containing any of the CDRs or combinations thereof recited in SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 120, SEQ ID NO: 9 or polypeptides comprising any of the variable light polypeptides comprised in SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709 and/or the variable heavy polypeptides comprised in SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708. These polypeptides optionally may be attached directly or indirectly to other immunoglobulin polypeptides or effector moieties such as therapeutic or detectable entities.

[0332] In another embodiment the anti-IL-6 antibody is one comprising at least one of the following: a variable light chain encoded by the sequence in SEQ ID NO: 10 or SEQ ID NO: 698 or SEQ ID NO: 701 or SEQ ID NO: 705 and a variable chain encoded by the sequence in SEQ ID NO: 11 or SEQ ID NO: 700 or SEQ ID NO: 703 or SEQ ID NO: 707.

[0333] In another embodiment the anti-IL-6 antibody is a variant of the foregoing sequences that includes one or more substitution in the framework and/or CDR sequences and which has one or more of the properties of Ab1 in vitro and/or upon in vivo administration.

[0334] These in vitro and in vivo properties are described in more detail in the examples below and include: competing with Ab1 for binding to IL-6 and/or peptides thereof; having a binding affinity (Kd) for IL-6 of less than about 50 picomolar, and/or a rate of dissociation (Koff) from IL-6 of less than or equal to 10^-4 S^-1; having an in-vivo half-life of at least about 22 days in a healthy human subject; ability to prevent or treat hypoalbuminemia; ability to prevent or treat elevated CRP; ability to prevent or treat abnormal coagulation; and/or ability to decrease the risk of thrombosis in an individual having a disease or condition associated with increased risk of thrombosis. Additional non-limiting examples of anti-IL-6 activity are set forth herein, for example, under the heading "Anti-IL-6 Activity."

[0335] In another embodiment the anti-IL-6 antibody includes one or more of the Ab1 light-chain and/or heavy chain CDR sequences (see Table 1) or variant(s) thereof which has one or more of the properties of Ab1 in vitro and/or upon in vivo administration (examples of such properties are discussed in the preceding paragraph). One of skill in the art would understand how to combine these CDR sequences to form an antigen-binding surface, e.g. by
linkage to one or more scaffold which may comprise human or other mammalian framework sequences, or their functional orthologs derived from a SMIP, camelbody, nanobody, IgNAR or other immunoglobulin or other engineered antibody. For example, embodiments may specifically bind to human IL-6 and include one, two, three, four, five, six, or more of the following CDR sequences or variants thereof:

[0336] a polypeptide having at least 72.7% (i.e., 8 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4;

[0337] a polypeptide having at least 81.8% (i.e., 9 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4;

[0338] a polypeptide having at least 90.9% (i.e., 10 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4;

[0339] a polypeptide having 100% (i.e., 11 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4;

[0340] a polypeptide having at least 85.7% (i.e., 6 out of 7 amino acids) identity to the light chain CDR2 of SEQ ID NO: 5;

[0341] a polypeptide having 100% (i.e., 7 out of 7 amino acids) identity to the light chain CDR2 of SEQ ID NO: 5;

[0342] a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0343] a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0344] a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0345] a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0346] a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0347] a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;
[0348] a polypeptide having 100% (i.e., 12 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0349] a polypeptide having at least 80% (i.e., 4 out of 5 amino acids) identity to the heavy chain CDR1 of SEQ ID NO: 7;

[0350] a polypeptide having 100% (i.e., 5 out of 5 amino acids) identity to the heavy chain CDR1 of SEQ ID NO: 7;

[0351] a polypeptide having at least 50% (i.e., 8 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0352] a polypeptide having at least 56.2% (i.e., 9 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0353] a polypeptide having at least 62.5% (i.e., 10 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0354] a polypeptide having at least 68.7% (i.e., 11 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0355] a polypeptide having at least 75% (i.e., 12 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0356] a polypeptide having at least 81.2% (i.e., 13 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0357] a polypeptide having at least 87.5% (i.e., 14 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0358] a polypeptide having at least 93.7% (i.e., 15 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0359] a polypeptide having 100% (i.e., 16 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0360] a polypeptide having at least 33.3% (i.e., 4 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0361] a polypeptide having at least 41.6% (i.e., 5 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;
a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

a polypeptide having 100% (i.e., 12 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

a polypeptide having at least 90.9% (i.e., 10 out of 11 amino acids) similarity to the light chain CDR1 of SEQ ID NO: 4;

a polypeptide having 100% (i.e., 11 out of 11 amino acids) similarity to the light chain CDR1 of SEQ ID NO: 4;

a polypeptide having at least 85.7% (i.e., 6 out of 7 amino acids) similarity to the light chain CDR2 of SEQ ID NO: 5;

a polypeptide having 100% (i.e., 7 out of 7 amino acids) similarity to the light chain CDR2 of SEQ ID NO: 5;

a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;

a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;

a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;
[0376] a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;

[0377] a polypeptide having 100% (i.e., 12 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;

[0378] a polypeptide having at least 80% (i.e., 4 out of 5 amino acids) similarity to the heavy chain CDR1 of SEQ ID NO: 7;

[0379] a polypeptide having 100% (i.e., 5 out of 5 amino acids) similarity to the heavy chain CDR1 of SEQ ID NO: 7;

[0380] a polypeptide having at least 56.2% (i.e., 9 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0381] a polypeptide having at least 62.5% (i.e., 10 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0382] a polypeptide having at least 68.7% (i.e., 11 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0383] a polypeptide having at least 75% (i.e., 12 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0384] a polypeptide having at least 81.2% (i.e., 13 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0385] a polypeptide having at least 87.5% (i.e., 14 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0386] a polypeptide having at least 93.7% (i.e., 15 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0387] a polypeptide having 100% (i.e., 16 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0388] a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0389] a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;
[0390] a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0391] a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0392] a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0393] a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0394] a polypeptide having 100% (i.e., 12 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9.

[0395] Other exemplary embodiments include one or more polynucleotides encoding any of the foregoing, e.g., a polynucleotide encoding a polypeptide that specifically binds to human IL-6 and includes one, two, three, four, five, six, or more of the following CDRs or variants thereof:

[0396] a polynucleotide encoding a polypeptide having at least 72.7% (i.e., 8 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4;

[0397] a polynucleotide encoding a polypeptide having at least 81.8% (i.e., 9 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4;

[0398] a polynucleotide encoding a polypeptide having at least 90.9% (i.e., 10 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4;

[0399] a polynucleotide encoding a polypeptide having 100% (i.e., 11 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4;

[0400] a polynucleotide encoding a polypeptide having at least 85.7% (i.e., 6 out of 7 amino acids) identity to the light chain CDR2 of SEQ ID NO: 5;

[0401] a polynucleotide encoding a polypeptide having 100% (i.e., 7 out of 7 amino acids) identity to the light chain CDR2 of SEQ ID NO: 5;

[0402] a polynucleotide encoding a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0403] a polynucleotide encoding a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;
[0404] a polynucleotide encoding a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0405] a polynucleotide encoding a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0406] a polynucleotide encoding a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0407] a polynucleotide encoding a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0408] a polynucleotide encoding a polypeptide having 100% (i.e., 12 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6;

[0409] a polynucleotide encoding a polypeptide having at least 80% (i.e., 4 out of 5 amino acids) identity to the heavy chain CDR1 of SEQ ID NO: 7;

[0410] a polynucleotide encoding a polypeptide having 100% (i.e., 5 out of 5 amino acids) identity to the heavy chain CDR1 of SEQ ID NO: 7;

[0411] a polynucleotide encoding a polypeptide having at least 50% (i.e., 8 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0412] a polynucleotide encoding a polypeptide having at least 56.2% (i.e., 9 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0413] a polynucleotide encoding a polypeptide having at least 62.5% (i.e., 10 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0414] a polynucleotide encoding a polypeptide having at least 68.7% (i.e., 11 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0415] a polynucleotide encoding a polypeptide having at least 75% (i.e., 12 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0416] a polynucleotide encoding a polypeptide having at least 81.2% (i.e., 13 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0417] a polynucleotide encoding a polypeptide having at least 87.5% (i.e., 14 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;
[0418] a polynucleotide encoding a polypeptide having at least 93.7% (i.e., 15 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0419] a polynucleotide encoding a polypeptide having 100% (i.e., 16 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120;

[0420] a polynucleotide encoding a polypeptide having at least 33.3% (i.e., 4 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0421] a polynucleotide encoding a polypeptide having at least 41.6% (i.e., 5 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0422] a polynucleotide encoding a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0423] a polynucleotide encoding a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0424] a polynucleotide encoding a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0425] a polynucleotide encoding a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0426] a polynucleotide encoding a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0427] a polynucleotide encoding a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0428] a polynucleotide encoding a polypeptide having 100% (i.e., 12 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9;

[0429] a polynucleotide encoding a polypeptide having at least 90.9% (i.e., 10 out of 11 amino acids) similarity to the light chain CDR1 of SEQ ID NO: 4;

[0430] a polynucleotide encoding a polypeptide having 100% (i.e., 11 out of 11 amino acids) similarity to the light chain CDR1 of SEQ ID NO: 4;

[0431] a polynucleotide encoding a polypeptide having at least 85.7% (i.e., 6 out of 7 amino acids) similarity to the light chain CDR2 of SEQ ID NO: 5;
[0432] a polynucleotide encoding a polypeptide having 100% (i.e., 7 out of 7 amino acids) similarity to the light chain CDR2 of SEQ ID NO: 5;

[0433] a polynucleotide encoding a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;

[0434] a polynucleotide encoding a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;

[0435] a polynucleotide encoding a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;

[0436] a polynucleotide encoding a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;

[0437] a polynucleotide encoding a polypeptide having 100% (i.e., 12 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6;

[0438] a polynucleotide encoding a polypeptide having at least 80% (i.e., 4 out of 5 amino acids) similarity to the heavy chain CDR1 of SEQ ID NO: 7;

[0439] a polynucleotide encoding a polypeptide having 100% (i.e., 5 out of 5 amino acids) similarity to the heavy chain CDR1 of SEQ ID NO: 7;

[0440] a polynucleotide encoding a polypeptide having at least 56.2% (i.e., 9 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0441] a polynucleotide encoding a polypeptide having at least 62.5% (i.e., 10 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0442] a polynucleotide encoding a polypeptide having at least 68.7% (i.e., 11 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0443] a polynucleotide encoding a polypeptide having at least 75% (i.e., 12 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0444] a polynucleotide encoding a polypeptide having at least 81.2% (i.e., 13 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0445] a polynucleotide encoding a polypeptide having at least 87.5% (i.e., 14 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;
[0446] a polynucleotide encoding a polypeptide having at least 93.7% (i.e., 15 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0447] a polynucleotide encoding a polypeptide having 100% (i.e., 16 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120;

[0448] a polynucleotide encoding a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0449] a polynucleotide encoding a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0450] a polynucleotide encoding a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0451] a polynucleotide encoding a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0452] a polynucleotide encoding a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0453] a polynucleotide encoding a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9;

[0454] a polynucleotide encoding a polypeptide having 100% (i.e., 12 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9.

[0455] Table 1. Sequences of exemplary anti-IL-6 antibodies.

<table>
<thead>
<tr>
<th></th>
<th>Antibody chains</th>
<th>CDR1</th>
<th>CDR2</th>
<th>CDR3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRT.</td>
<td>Nuc.</td>
<td>PRT.</td>
<td>Nuc.</td>
</tr>
<tr>
<td>Ab1 light chains *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>647</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>651</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>660</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>666</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>699</td>
<td>4</td>
<td>694</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>702</td>
<td>701</td>
<td>4</td>
<td>694</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>706</td>
<td>4</td>
<td>694</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>709</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Human light</td>
<td>648</td>
<td>710</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chains used in</td>
<td>649</td>
<td>711</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab1 humanization</td>
<td>650</td>
<td>712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>651</td>
<td>713</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>652</td>
<td>714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>653</td>
<td>715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab1 heavy</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>chains</td>
<td>18</td>
<td>7</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>19</td>
<td>724</td>
<td>7</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>652</td>
<td>725</td>
<td>7</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>656</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>657</td>
<td>700</td>
<td>7</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>658</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>659</td>
<td>700</td>
<td>7</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>661</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>662</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>663</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>664</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>665</td>
<td>7</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>704</td>
<td>703</td>
<td>7</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>708</td>
<td>707</td>
<td>7</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>Human heavy</td>
<td>653</td>
<td>716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chains used in</td>
<td>654</td>
<td>716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab1 humanization</td>
<td>655</td>
<td>74</td>
<td>82</td>
<td>718</td>
</tr>
<tr>
<td>Ab2 light</td>
<td>21</td>
<td>29</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>chains</td>
<td>667</td>
<td>669</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>Ab2 heavy</td>
<td>22</td>
<td>30</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>chains</td>
<td>668</td>
<td>670</td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td>Ab3 light</td>
<td>37</td>
<td>45</td>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td>chains</td>
<td>671</td>
<td>673</td>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td>Ab3 heavy</td>
<td>38</td>
<td>46</td>
<td>42</td>
<td>50</td>
</tr>
<tr>
<td>chains</td>
<td>672</td>
<td>674</td>
<td>42</td>
<td>50</td>
</tr>
<tr>
<td>Ab4 light</td>
<td>53</td>
<td>61</td>
<td>55</td>
<td>63</td>
</tr>
<tr>
<td>chains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>675</td>
<td>677</td>
<td>55</td>
<td>63</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Ab4 heavy chains</td>
<td>54</td>
<td>62</td>
<td>58</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>676</td>
<td>678</td>
<td>58</td>
<td>66</td>
</tr>
<tr>
<td>Ab5 light chains</td>
<td>69</td>
<td>77</td>
<td>71</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>679</td>
<td>681</td>
<td>71</td>
<td>79</td>
</tr>
<tr>
<td>Ab5 heavy chains</td>
<td>70</td>
<td>78</td>
<td>74</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>680</td>
<td>682</td>
<td>74</td>
<td>82</td>
</tr>
<tr>
<td>Ab6 light chains</td>
<td>85</td>
<td>93</td>
<td>87</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>683</td>
<td>685</td>
<td>87</td>
<td>95</td>
</tr>
<tr>
<td>Ab6 heavy chains</td>
<td>86</td>
<td>94</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>684</td>
<td>686</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>Ab7 light chains</td>
<td>101</td>
<td>109</td>
<td>103</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>103</td>
<td>111</td>
<td>104</td>
</tr>
<tr>
<td>Ab7 heavy chains</td>
<td>687</td>
<td>689</td>
<td>103</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>693</td>
<td>103</td>
<td>111</td>
<td>104</td>
</tr>
<tr>
<td>Ab8 light chain</td>
<td>102</td>
<td>110</td>
<td>106</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td>106</td>
<td>114</td>
<td>107</td>
</tr>
<tr>
<td>Ab8 heavy chain</td>
<td>118</td>
<td>106</td>
<td>114</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>688</td>
<td>690</td>
<td>106</td>
<td>114</td>
</tr>
<tr>
<td>Ab9 light chain</td>
<td>691</td>
<td>106</td>
<td>114</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>692</td>
<td>106</td>
<td>114</td>
<td>121</td>
</tr>
<tr>
<td>Ab9 heavy chain</td>
<td>122</td>
<td>130</td>
<td>124</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>123</td>
<td>131</td>
<td>127</td>
<td>135</td>
</tr>
<tr>
<td>Ab10 light chain</td>
<td>138</td>
<td>146</td>
<td>140</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>139</td>
<td>147</td>
<td>143</td>
<td>151</td>
</tr>
<tr>
<td>Ab10 heavy chain</td>
<td>154</td>
<td>162</td>
<td>156</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>163</td>
<td>159</td>
<td>167</td>
</tr>
<tr>
<td>Ab11 light chain</td>
<td>170</td>
<td>178</td>
<td>172</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>171</td>
<td>179</td>
<td>175</td>
<td>183</td>
</tr>
<tr>
<td>Ab11 heavy chain</td>
<td>186</td>
<td>194</td>
<td>188</td>
<td>196</td>
</tr>
<tr>
<td>Ab12 light chain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab12 heavy chain</td>
<td>187</td>
<td>195</td>
<td>191</td>
<td>199</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Ab13 light chain</td>
<td>202</td>
<td>210</td>
<td>204</td>
<td>212</td>
</tr>
<tr>
<td>Ab13 heavy chain</td>
<td>203</td>
<td>211</td>
<td>207</td>
<td>215</td>
</tr>
<tr>
<td>Ab14 light chain</td>
<td>218</td>
<td>226</td>
<td>220</td>
<td>228</td>
</tr>
<tr>
<td>Ab14 heavy chain</td>
<td>219</td>
<td>227</td>
<td>223</td>
<td>231</td>
</tr>
<tr>
<td>Ab15 light chain</td>
<td>234</td>
<td>242</td>
<td>236</td>
<td>244</td>
</tr>
<tr>
<td>Ab15 heavy chain</td>
<td>235</td>
<td>243</td>
<td>239</td>
<td>247</td>
</tr>
<tr>
<td>Ab16 light chain</td>
<td>250</td>
<td>258</td>
<td>252</td>
<td>260</td>
</tr>
<tr>
<td>Ab16 heavy chain</td>
<td>251</td>
<td>259</td>
<td>255</td>
<td>263</td>
</tr>
<tr>
<td>Ab17 light chain</td>
<td>266</td>
<td>274</td>
<td>268</td>
<td>276</td>
</tr>
<tr>
<td>Ab17 heavy chain</td>
<td>267</td>
<td>275</td>
<td>271</td>
<td>279</td>
</tr>
<tr>
<td>Ab18 light chain</td>
<td>282</td>
<td>290</td>
<td>284</td>
<td>292</td>
</tr>
<tr>
<td>Ab18 heavy chain</td>
<td>283</td>
<td>291</td>
<td>287</td>
<td>295</td>
</tr>
<tr>
<td>Ab19 light chain</td>
<td>298</td>
<td>306</td>
<td>300</td>
<td>308</td>
</tr>
<tr>
<td>Ab19 heavy chain</td>
<td>299</td>
<td>307</td>
<td>303</td>
<td>311</td>
</tr>
<tr>
<td>Ab20 light chain</td>
<td>314</td>
<td>322</td>
<td>316</td>
<td>324</td>
</tr>
<tr>
<td>Ab20 heavy chain</td>
<td>315</td>
<td>323</td>
<td>319</td>
<td>327</td>
</tr>
<tr>
<td>Ab21 light chain</td>
<td>330</td>
<td>338</td>
<td>332</td>
<td>340</td>
</tr>
<tr>
<td>Ab21 heavy chain</td>
<td>331</td>
<td>339</td>
<td>335</td>
<td>343</td>
</tr>
<tr>
<td>Ab22 light chain</td>
<td>346</td>
<td>354</td>
<td>348</td>
<td>356</td>
</tr>
<tr>
<td>Ab22 heavy chain</td>
<td>347</td>
<td>355</td>
<td>351</td>
<td>359</td>
</tr>
<tr>
<td>Ab23 light chain</td>
<td>362</td>
<td>370</td>
<td>364</td>
<td>372</td>
</tr>
<tr>
<td>Ab23 heavy chain</td>
<td>363</td>
<td>371</td>
<td>367</td>
<td>375</td>
</tr>
<tr>
<td>Ab24 light chain</td>
<td>378</td>
<td>386</td>
<td>380</td>
<td>388</td>
</tr>
<tr>
<td>Ab24 heavy chain</td>
<td>379</td>
<td>387</td>
<td>383</td>
<td>391</td>
</tr>
<tr>
<td>Ab25 light chain</td>
<td>394</td>
<td>402</td>
<td>396</td>
<td>404</td>
</tr>
<tr>
<td>Ab25 heavy chain</td>
<td>395</td>
<td>403</td>
<td>399</td>
<td>407</td>
</tr>
<tr>
<td>Ab26 light chain</td>
<td>410</td>
<td>418</td>
<td>412</td>
<td>420</td>
</tr>
<tr>
<td>Ab26 heavy chain</td>
<td>411</td>
<td>419</td>
<td>415</td>
<td>423</td>
</tr>
<tr>
<td>Ab27 light chain</td>
<td>426</td>
<td>434</td>
<td>428</td>
<td>436</td>
</tr>
<tr>
<td>Sequence</td>
<td>427</td>
<td>435</td>
<td>431</td>
<td>439</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Ab27 heavy chain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab28 light chain</td>
<td>442</td>
<td>450</td>
<td>444</td>
<td>452</td>
</tr>
<tr>
<td>Ab28 heavy chain</td>
<td>443</td>
<td>451</td>
<td>447</td>
<td>455</td>
</tr>
<tr>
<td>Ab29 light chain</td>
<td>458</td>
<td>466</td>
<td>460</td>
<td>468</td>
</tr>
<tr>
<td>Ab29 heavy chain</td>
<td>459</td>
<td>467</td>
<td>463</td>
<td>471</td>
</tr>
<tr>
<td>Ab30 light chain</td>
<td>474</td>
<td>482</td>
<td>476</td>
<td>484</td>
</tr>
<tr>
<td>Ab30 heavy chain</td>
<td>475</td>
<td>483</td>
<td>479</td>
<td>487</td>
</tr>
<tr>
<td>Ab31 light chain</td>
<td>490</td>
<td>498</td>
<td>492</td>
<td>500</td>
</tr>
<tr>
<td>Ab31 heavy chain</td>
<td>491</td>
<td>499</td>
<td>495</td>
<td>503</td>
</tr>
<tr>
<td>Ab32 light chain</td>
<td>506</td>
<td>514</td>
<td>508</td>
<td>516</td>
</tr>
<tr>
<td>Ab32 heavy chain</td>
<td>507</td>
<td>515</td>
<td>511</td>
<td>519</td>
</tr>
<tr>
<td>Ab33 light chain</td>
<td>522</td>
<td>530</td>
<td>524</td>
<td>532</td>
</tr>
<tr>
<td>Ab33 heavy chain</td>
<td>523</td>
<td>531</td>
<td>527</td>
<td>535</td>
</tr>
<tr>
<td>Ab34 light chain</td>
<td>538</td>
<td>546</td>
<td>540</td>
<td>548</td>
</tr>
<tr>
<td>Ab34 heavy chain</td>
<td>539</td>
<td>547</td>
<td>543</td>
<td>551</td>
</tr>
<tr>
<td>Ab35 light chain</td>
<td>554</td>
<td>562</td>
<td>556</td>
<td>564</td>
</tr>
<tr>
<td>Ab35 heavy chain</td>
<td>555</td>
<td>563</td>
<td>559</td>
<td>567</td>
</tr>
<tr>
<td>Ab36 light chain</td>
<td>570</td>
<td>578</td>
<td>572</td>
<td>580</td>
</tr>
<tr>
<td>Ab36 heavy chain</td>
<td>571</td>
<td>579</td>
<td>575</td>
<td>583</td>
</tr>
</tbody>
</table>

* Exemplary sequence variant forms of heavy and light chains are shown on separate lines.

PRT. Polypeptide sequence.

Nuc. Exemplary coding sequence.

[0456] For reference, sequence identifiers other than those included in Table 1 are summarized in Table 2.

[0457] **Table 2.** Summary of sequence identifiers in this application.

<table>
<thead>
<tr>
<th>SEQ ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human IL-6</td>
</tr>
<tr>
<td>586</td>
<td>kappa constant light chain polypeptide sequence</td>
</tr>
<tr>
<td>587</td>
<td>kappa constant light chain polynucleotide sequence</td>
</tr>
<tr>
<td>588</td>
<td>gamma-1 constant heavy chain polypeptide sequence</td>
</tr>
</tbody>
</table>
[0458] Such antibody fragments or variants thereof may be present in one or more of the following non-limiting forms: Fab, Fab', F(ab')₂, Fv and single chain Fv antibody forms. In a preferred embodiment, the anti-IL-6 antibodies described herein further comprises the kappa constant light chain sequence comprising the sequence set forth below:

\[
\text{VAAPSVFIFPPSDEQLKGS}
\]
\[
\text{TASVVC_LLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSDSTYLSLSTLTLKADYEKHKVAYACEVTHQGLSSPVTKSFNRGEC}
\]

(SEQ ID NO: 586).

[0459] In another preferred embodiment, the anti-IL-6 antibodies described herein further comprises the gamma-1 constant heavy chain polypeptide sequence comprising one of the sequences set forth below:

\[
\text{ASTKGPSVFPLAPSSKSTSGTGTAALGC}
\]
\[
\text{LVKDYFPEPVTVSWNSGALTSGVH}
\]
\[
\text{TFPAVLQQLSGLSSVTVSSSLGTQT}_\text{ICNVNHKPSNTKVDRVEPKSCKTHTC}
\]
\[
\text{PPCPAPELLGGPSVFLLKPKDTLMSRTPEVTCSVVDVSHEDEPVKFNWYDGVEVHNAKTKPREEQYASTYRVVS}_\text{QLVHQDWDLNGKEYKCKVSNKALPAPIEKTISAKG}
\]
\[
\text{KGQPREPQVYTLPPSRDELTQNQVSLTCLVKGFYSIAVEWESNGQPENNYKTTPPVLDSG}
\]
\[
\text{DSFFLYSKLTVDKSRWQQQN}_\text{VFCSCVMHEALHNHYTQKSLSGK}
\]

(SEQ ID NO: 588)

[0460] and

\[
\text{ASTKGPSVFPLAPSSKSTSGTGTAALGC}
\]
\[
\text{LVKDYFPEPVTVSWNSGALTSGVH}
\]
\[
\text{TFPAVLQQLSGLSSVTVSSSLGTQT}_\text{ICNVNHKPSNTKVDRVEPKSCKTHTC}
\]
\[
\text{PPCPAPELLGGPSVFLLKPKDTLMSRTPEVTCSVVDVSHEDEPVKFNWYDGVEVHNAKTKPREEQYASTYRVVS}_\text{QLVHQDWDLNGKEYKCKVSNKALPAPIEKTISAKG}
\]
\[
\text{KGQPREPQVYTLPPSRDELTQNQVSLTCLVKGFYSIAVEWESNGQPENNYKTTPPVLDSG}
\]
\[
\text{DSFFLYSKLTVDKSRWQQQN}_\text{VFCSCVMHEALHNHYTQKSLSGK}
\]

(SEQ ID NO: 719).
[0464] Embodiments of antibodies described herein may include a leader sequence, such as a rabbit Ig leader, albumin pre-peptide, a yeast mating factor pre pro secretion leader sequence (such as P. pastoris or Saccharomyces cerevisiae a or alpha factor), or human HAS leader. Exemplary leader sequences are shown offset from FR1 at the N-terminus of polypeptides shown in Figs. 36A and 37A as follows: rabbit Ig leader sequences in SEQ ID NOs: 2 and 660 (MD. . .) and SEQ ID NOs: 3 and 661 (ME. . .); and an albumin pre-peptide in SEQ ID NOs: 706 and 708, which facilitates secretion. Other leader sequences known in the art to confer desired properties, such as secretion, improved stability or half-life, etc. may also be used, either alone or in combinations with one another, on the heavy and/or light chains, which may optionally be cleaved prior to administration to a subject. For example, a polypeptide may be expressed in a cell or cell-free expression system that also expresses or includes (or is modified to express or include) a protease, e.g., a membrane-bound signal peptidase, that cleaves a leader sequence.

[0465] In another embodiment, the invention contemplates an isolated anti-IL-6 antibody comprising a V_H polypeptide sequence comprising: SEQ ID NO: 3, 18, 19, 22, 38, 54, 70, 86, 102, 117, 118, 123, 139, 155, 171, 187, 203, 219, 235, 251, 267, 283, 299, 315, 331, 347, 363, 379, 395, 411, 427, 443, 459, 475, 491, 507, 523, 539, 555, 571, 652, 656, 657, 658, 661, 664, 665, 668, 672, 676, 680, 684, 688, 691, 692, 704, or 708; and further comprising a V_L polypeptide sequence comprising: SEQ ID NO: 2, 20, 21, 37, 53, 69, 85, 101, 119, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 378, 394, 410, 426, 442, 458, 474, 490, 506, 522, 538, 554, 570, 647, 651, 660, 666, 667, 671, 675, 679, 683, 687, 693, 699, 702, 706, or 709 or a variant thereof wherein one or more of the framework residues (FR residues) or CDR residues in said V_H or V_L polypeptide has been substituted with another amino acid residue resulting in an anti-IL-6 antibody that specifically binds IL-6. The invention contemplates humanized and chimeric forms of these antibodies wherein preferably the FR will comprise human FRs highly homologous to the parent antibody. The chimeric antibodies may include an Fc derived from IgG1, IgG2, IgG3, IgG4, IgG5, IgG6, IgG7, IgG8, IgG9, IgG10, IgG11, IgG12, IgG13, IgG14, IgG15, IgG16, IgG17, IgG18 or IgG19 constant regions and in particular a variable heavy and light chain constant region as contained in SEQ ID NO: 588 and SEQ ID NO: 586.

[0466] In one embodiment of the invention, the antibodies or V_H or V_L polypeptides originate or are selected from one or more rabbit B cell populations prior to initiation of the humanization process referenced herein.
In another embodiment of the invention, the anti-IL-6 antibodies and fragments and variants thereof have binding specificity for primate homologs of the human IL-6 protein. Non-limiting examples of primate homologs of the human IL-6 protein are IL-6 obtained from *Macaca fascicularis* (also known as the cynomolgus monkey) and the Rhesus monkey. In another embodiment of the invention, the anti-IL-6 antibodies and fragments and variants thereof inhibits the association of IL-6 with IL-6R, and/or the production of IL-6/IL-6R/gp130 complexes and/or the production of IL-6/IL-6R/gp130 multimers and/or antagonizes the biological effects of one or more of the foregoing.

As stated above, antibodies and fragments and variants thereof may be modified post-translationally to add effector moieties such as chemical linkers, detectable moieties such as for example fluorescent dyes, enzymes, substrates, bioluminescent materials, radioactive materials, and chemiluminescent moieties, or functional moieties such as for example streptavidin, avidin, biotin, a cytotoxin, a cytotoxic agent, and radioactive materials.

Regarding detectable moieties, further exemplary enzymes include, but are not limited to, horseradish peroxidase, acetylcholinesterase, alkaline phosphatase, beta-galactosidase and luciferase. Further exemplary fluorescent materials include, but are not limited to, rhodamine, fluorescein, fluorescein isothiocyanate, umbelliferone, dichlorotriazinylamine, phycoerythrin and dansyl chloride. Further exemplary chemiluminescent moieties include, but are not limited to, luminol. Further exemplary bioluminescent materials include, but are not limited to, luciferin and aequorin. Further exemplary radioactive materials include, but are not limited to, Iodine 125 (I\(^{125}\)), Carbon 14 (C\(^{14}\)), Sulfur 35 (S\(^{35}\)), Tritium (H\(^{3}\)) and Phosphorus 32 (P\(^{32}\)).

Regarding functional moieties, exemplary cytotoxic agents include, but are not limited to, methotrexate, aminopterin, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine; alkylating agents such as mechloethamine, thioepa chlorambucil, melphalan, carmustine (BSNU), mitomycin C, lomustine (CCNU), 1-methylnitrosourea, cyclothosphamide, mechloethamine, busulfan, dibromomannitol, streptozotocin, mitomycin C, cis-dichlorodiamine platinum (II) (DDP) cisplatin and carboplatin (paraplatin); anthracyclines include daunorubicin (formerly daunomycin), doxorubicin (adriamycin), detorubicin, carminomycin, idarubicin, epirubicin, mitoxantrone and bisantrene; antibiotics include dactinomycin (actinomycin D), bleomycin, calicheamicin, mithramycin, and anthramycin (AMC); and antimytoyic agents such as the vinca alkaloids, vincristine and vinblastine. Other cytotoxic agents include paclitaxel (taxol), ricin, pseudomonas exotoxin,
gemcitabine, cytochalasin B, gramicidin D, ethidium bromide, emetine, etoposide, tenoposide, colchicine, dihydroxy anthracin dione, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, procarbazine, hydroxyurea, asparaginase, corticosteroids, myototane (O.P'-(DDD)), interferons, and mixtures of these cytotoxic agents.

Further cytotoxic agents include, but are not limited to, chemotherapeutic agents such as carboplatin, cisplatin, paclitaxel, gemcitabine, calicheamicin, doxorubicin, 5-fluorouracil, mitomycin C, actinomycin D, cyclophosphamide, vincristine, bleomycin, VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcytabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids (e.g., vinblastine, vincristine, vindesine and vinorelbine), mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1 antagonists, interleukins (e.g. IL-12 or IL-2), IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux™, Avastin™, Pertuzumab, anti-CD20 antibodies, Rituxan®, ocrelizumab, ofatumumab, DXL625, Herceptin®, or any combination thereof. Toxic enzymes from plants and bacteria such as ricin, diphtheria toxin and *Pseudomonas* toxin may be conjugated to the humanized antibodies, or binding fragments thereof, to generate cell-type-specific-killing reagents (Youle, et al., Proc. Nat'l Acad. Sci. USA 77:5483 (1980); Gilliland, et al., Proc. Nat'l Acad. Sci. USA 77:4539 (1980); Krollick, et al., Proc. Nat'l Acad. Sci. USA 77:5419 (1980)).

Other cytotoxic agents include cytotoxic ribonucleases as described by Goldenberg in U.S. Pat. No. 6,653,104. Embodiments of the invention also relate to radioimmunoconjugates where a radionuclide that emits alpha or beta particles is stably coupled to the antibody, or binding fragments thereof, with or without the use of a complex-forming agent. Such radionuclides include beta-emitters such as Phosphorus-32 (32P), Scandium-47 (47Sc), Copper-67 (67Cu), Gallium-67 (67Ga), Yttrium-88 (88Y), Yttrium-90 (90Y), Iodine-125 (125I), Iodine-131 (131I), Samarium-153 (153Sm), Lutetium-177 (177Lu), Rhenium-186 (186Re) or Rhenium-188 (188Re), and alpha-emitters such as Astatine-211 (211At), Lead-212 (212Pb), Bismuth-212 (212Bi) or -213 (213Bi) or Actinium-225 (225Ac).

Methods are known in the art for conjugating an antibody or binding fragment thereof to a detectable moiety and the like, such as for example those methods described by

[0474] Embodiments described herein further include variants and equivalents that are substantially homologous to the antibodies, antibody fragments, diabodies, SMIPs, camelodies, nanobodies, IgNAR, polypeptides, variable regions and CDRs set forth herein. These may contain, e.g., conservative substitution mutations, (i.e., the substitution of one or more amino acids by similar amino acids). For example, conservative substitution refers to the substitution of an amino acid with another within the same general class, e.g., one acidic amino acid with another acidic amino acid, one basic amino acid with another basic amino acid, or one neutral amino acid by another neutral amino acid. What is intended by a conservative amino acid substitution is well known in the art.

[0475] In another embodiment, the invention contemplates polypeptide sequences having at least 90% or greater sequence homology to any one or more of the polypeptide sequences of antibody fragments, variable regions and CDRs set forth herein. More preferably, the invention contemplates polypeptide sequences having at least 95% or greater sequence homology, even more preferably at least 98% or greater sequence homology, and still more preferably at least 99% or greater sequence homology to any one or more of the polypeptide sequences of antibody fragments, variable regions and CDRs set forth herein. Methods for determining homology between nucleic acid and amino acid sequences are well known to those of ordinary skill in the art.

[0476] In another embodiment, the invention further contemplates the above-mentioned polypeptide homologs of the antibody fragments, variable regions and CDRs set forth herein further having anti-IL-6 activity. Non-limiting examples of anti-IL-6 activity are set forth herein, for example, under the heading “Anti-IL-6 Activity,” infra.

[0477] In another embodiment, the invention further contemplates the generation and use of anti-idiotypic antibodies that bind any of the foregoing sequences. In an exemplary embodiment, such an anti-idiotypic antibody could be administered to a subject who has received an anti-IL-6 antibody to modulate, reduce, or neutralize, the effect of the anti-IL-6 antibody. Such anti-idiotypic antibodies could also be useful for treatment of an autoimmune disease characterized by the presence of anti-IL-6 antibodies. A further exemplary use of such anti-idiotypic antibodies is for detection of the anti-IL-6 antibodies of the present
invention, for example to monitor the levels of the anti-IL-6 antibodies present in a subject’s blood or other bodily fluids.

[0478] The present invention also contemplates anti-IL-6 antibodies comprising any of the polypeptide or polynucleotide sequences described herein substituted for any of the other polynucleotide sequences described herein. For example, without limitation thereto, the present invention contemplates antibodies comprising the combination of any of the variable light chain and variable heavy chain sequences described herein, and further contemplates antibodies resulting from substitution of any of the CDR sequences described herein for any of the other CDR sequences described herein. As noted preferred anti-IL-6 antibodies or fragments or variants thereof may contain a variable heavy and/or light sequence as shown in FIG. 34 or 35, such as SEQ ID NO: 651, 657, 709 or variants thereof wherein one or more CDR or FR residues are modified without adversely affecting antibody binding to IL-6 or other desired functional activity.

[0479] Polynucleotides Encoding Anti-IL-6 Antibody Polypeptides

[0480] The invention is further directed to polynucleotides encoding polypeptides of the antibodies having binding specificity to IL-6. In one embodiment of the invention, polynucleotides of the invention comprise, or alternatively consist of, the following polynucleotide sequence encoding the variable light chain polypeptide sequence of SEQ ID NO: 2:

[0481] ATGGACACGAGGGCCCGCCACTCAGCTGCTGGGCTCTCGTCTGTCTGGC TCCCATCGGCAAGGCTACTGCTATGCTATGACCCAGACTTCCACGCCAGCTGCAG CTGTGGAGGGCCACTCACTCAATCGCCAGGGCCAGTCAGAGCATTACAA TGAATTATCCTGTTATCACGCAAGAACCCAGGCGATCCCGATGCTCTGATCTAT AGGGCATCCACTCTGCGCATCTGGGTCTCTGCTAGGTGTTCAAGGAGCTGGATCTG GGACAGAGTTCACTCTCCACCATCAGGACAGGAGGTGAGTGAGGCTGCACTTTA CTACTGTCAACAGGGTTATAGTCTGAGGAATATTGATAATGCTTTCCGGGAGGG ACCGAGGCTGTTGTCAACGATCGTGAGCAGGCCCCATCTGCTCTTCCCGCATC TGTAGAGCGAGTGTTAAAATCTGGAACTGCTCCTGTTGCTGCTGCTGAATAA CTT (SEQ ID NO: 10) or the polynucleotide sequence of SEQ ID NO: 662, 698, 701, or 705.
[0482] In another embodiment of the invention, polynucleotides of the invention comprise, or alternatively consist of, the following polynucleotide sequence encoding the variable heavy chain polypeptide sequence of SEQ ID NO: 3:

ATGGAGACTGGGGCTGCAGTTCTCTTTCTTGGTCGCTGCTGCTCAAGGTG
TCCAGTGTCAGTCGCTGAGAGTCGCCGGGCTGTCACGCCTGGGACAC
CCCTGACACTCACTGCAAGAGCTCTGTGATTCTCCCTCAGATACCTACTAGTGAC
CTGGGGTCCGCCAGGCCTCAAGGGAAGGCTGGAAATGGATCGGAAATCATTATGG
TAGTGATGAAACCGGGCGCTACCGGATCGGCCAGGGGATTCACCCTCTCCAA
AACCTGCACCGCTGCTGGATCTGAAATGACCAGTGTCAGACAGCCGGACAGGC
CACATTTTTCTGTGGAGATAGATGATGTGACTGGATGCAAAAAATTATACTTG
TGGGGCCAAGGCAACCCTGTGCTACCGTCTCGAGCGCTCTCCACCAAGGCCCCATCG
GTCTTCCCTGCGCACCCTCTCCAGAAGCAACCCTCTGGGGGACAGCCGGCCCTGG
GCTGCGCTGGTCAGAG (SEQ ID NO: 11) or the polynucleotide sequence of SEQ ID NO: 663, 700, 703, or 707.

[0484] In a further embodiment of the invention, polynucleotides encoding fragments or variants of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one or more of the polynucleotide sequences of SEQ ID NO: 12 or 694; SEQ ID NO: 13; and SEQ ID NO: 14 or 695 which correspond to polynucleotides encoding the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain variable sequence of SEQ ID NO: 2.

[0485] In a further embodiment of the invention, polynucleotides encoding fragments or variants of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one or more of the polynucleotide sequences of SEQ ID NO: 15; SEQ ID NO: 16 or 696; and SEQ ID NO: 17 or 697 which correspond to polynucleotides encoding the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain variable sequence of SEQ ID NO: 3 or SEQ ID NO: 661 or SEQ ID NO: 657 or others depicted in Figs. 34 or 35.

[0486] The invention also contemplates polynucleotide sequences including one or more of the polynucleotide sequences encoding antibody fragments or variants described herein. In one embodiment of the invention, polynucleotides encoding fragments or variants of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one, two, three or more, including all of the following polynucleotides encoding antibody fragments:
the polynucleotide SEQ ID NO: 10 encoding the light chain variable region of SEQ ID NO: 2; the polynucleotide SEQ ID NO: 11 encoding the heavy chain variable region of SEQ ID NO: 3; the polynucleotide SEQ ID NO: 720 encoding the light chain polypeptide of SEQ ID NO: 647; the polynucleotide SEQ ID NO: 721 encoding the light chain polypeptide of SEQ ID NO: 660; the polynucleotide SEQ ID NO: 722 encoding the light chain polypeptide of SEQ ID NO: 666; the polynucleotide SEQ ID NO: 698 encoding the light chain polypeptide of SEQ ID NO: 699; the polynucleotide SEQ ID NO: 701 encoding the light chain polypeptide of SEQ ID NO: 702; the polynucleotide SEQ ID NO: 705 encoding the light chain polypeptide of SEQ ID NO: 706; the polynucleotide SEQ ID NO: 723 encoding the light chain polypeptide of SEQ ID NO: 709; the polynucleotide SEQ ID NO: 724 encoding the heavy chain polypeptide of SEQ ID NO: 19; the polynucleotide SEQ ID NO: 725 encoding the heavy chain polypeptide of SEQ ID NO: 652; the polynucleotide SEQ ID NO: 700 encoding the heavy chain polypeptide of SEQ ID NO: 657; the polynucleotide SEQ ID NO: 663 encoding the heavy chain polypeptide of SEQ ID NO: 661; the polynucleotide SEQ ID NO: 703 encoding the heavy chain polypeptide of SEQ ID NO: 704; the polynucleotide SEQ ID NO: 707 encoding the heavy chain polypeptide of SEQ ID NO: 708; the polynucleotides of SEQ ID NO: 12, 13, 14, 694 and 695 encoding the complementarity-determining regions of the aforementioned light chain polypeptides; and the polynucleotides of SEQ ID NO: 15, 16, 17, 696 and 697 encoding the complementarity-determining regions of the aforementioned heavy chain polypeptides, and polynucleotides encoding the variable heavy and light chain sequences in SEQ ID NO: 657 and SEQ ID NO: 709 respectively, e.g., the nucleic acid sequences in SEQ ID NO: 700 and SEQ ID NO: 723 and fragments or variants thereof, e.g., based on codon degeneracy. These nucleic acid sequences encoding variable heavy and light chain sequences may be expressed alone or in combination and these sequences preferably are fused to suitable variable constant sequences, e.g., those in SEQ ID NO: 589 and SEQ ID NO: 587.

[0487] Exemplary nucleotide sequences encoding anti-IL-6 antibodies of the present invention are identified in Table 1, above. The polynucleotide sequences shown are to be understood to be illustrative, rather than limiting. One of skill in the art can readily determine the polynucleotide sequences that would encode a given polypeptide and can readily generate coding sequences suitable for expression in a given expression system, such as by adapting the polynucleotide sequences provided and/or by generating them de novo, and can readily
produce codon-optimized expression sequences, for example as described in published U.S. Patent Application no. 2008/0120732 or using other methods known in the art.

[0488] In another embodiment of the invention, polynucleotides of the invention further comprise, the following polynucleotide sequence encoding the kappa constant light chain sequence of SEQ ID NO: 586:

GTGGCTGCAACCATCTGTCTTCATCTTCCCCGACCATCTGTGAGCAGTGTTGAAATCTG
GAACTGCTCTGTTTGTGCTGCTGTAATAACTCTTATC CCCAGAGAAGGCAAAGT
ACAGTGGAAGTGGATAACGCCTCTCATAACCTACCAGGAGACTGCACT
AGAGCAGAACAGCAAGCAGCACTCAAGCCTAGCAGACACCCCTGAGAG
CAGATCTACAGTCTCTCGAGACTCTACTACTCTACTCCCTAGCAGCTGAGT
AGCAGCTTGGCACCACAGACACTTACATCTGCAACGTGAAATCAAGGCCAGCAAC
ACAAAGGTGGACACAGAGATGGAGGCAACAATCTTGAGCAAAAAACTCACACATGC
CCACCGTGCCCAGCACCCTGAACTCTGCTGGGGGAGCAGTCACGCTTCTCTCTCCCC
CAAAAACCAAGGACACCCCTCAGATCTCTCCGAGACCCCTGAGGTCACATCGTGTT
GCTGGAGCAGTGAGCAGACAAGACCTCTGAAGTTAATCTTGATGAGTACG
CGTGGAGGTGACATAATGCAACAGCAAGCCCGCGGAGGAGCAGTACGCGCACAG
CGTACCCGTGTGGTACGCGTCTCCACCCGCTCGGATGGCTGAAATGGCA
GGAGTACAAGTGAAGGGTCTCAAAACAGCCCTCCAGCCCCCATCGAGAAAAAC
CATCTCACAAGCGCAAAGGGCAACCAGCAAGTGTACACCTTGCCACC
ATCCCGGAGAGATGACAAAGAACAGGAGTCAGCCTGACCTGGCTGTTCAAGAG
CTTCTATCCACGGCACATCGCCGTGGAGTTGGGAGAGCAATGGGCAGGCCAGAA
CAACTACAAGACCAGCCTCTCCGCTGCTGGACACGCGCTCTCTCTCTCAC
AGCAAGCTCACGTTGGCACAGAGCAGGTGGCAGCAGGGAGAAGCTCTCTATGC

Page 90 of 297
TCCGTGATGCATGAGGCTCTGCAACAACCACACTACACGCAGAGCCCTCTCCCTGTCTCCGGGTAA (SEQ ID NO: 589).

[0490] In one embodiment, the invention is directed to an isolated polynucleotide comprising a polynucleotide encoding an anti-IL-6 V_h antibody amino acid sequence selected from SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, and 708 or encoding a variant thereof wherein at least one framework residue (FR residue) has been substituted with an amino acid present at the corresponding position in a rabbit anti-IL-6 antibody V_h polypeptide or a conservative amino acid substitution. In addition, the invention specifically encompasses humanized anti-IL-6 antibodies or humanized antibody binding fragments or variants thereof and nucleic acid sequences encoding the foregoing comprising the humanized variable heavy chain and/or light chain polypeptides depicted in the sequences contained in FIG. 2 or 34-37, or those identified in Table 1, or variants thereof wherein one or more framework or CDR residues may be modified. Preferably, if any modifications are introduced they will not affect adversely the binding affinity of the resulting anti-IL-6 antibody or fragment or variant thereof.

[0491] In another embodiment, the invention is directed to an isolated polynucleotide comprising the polynucleotide sequence encoding an anti-IL-6 V_l antibody amino acid sequence selected from SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, and 709 or encoding a variant thereof wherein at least one framework residue (FR residue) has been substituted with an amino acid present at the corresponding position in a rabbit anti-IL-6 antibody V_l polypeptide or a conservative amino acid substitution.

[0492] In yet another embodiment, the invention is directed to one or more heterologous polynucleotides comprising a sequence encoding the polypeptides contained in SEQ ID NO: 2 and SEQ ID NO: 3; SEQ ID NO: 2 and SEQ ID NO: 18; SEQ ID NO: 2 and SEQ ID NO: 19; SEQ ID NO: 20 and SEQ ID NO: 3; SEQ ID NO: 20 and SEQ ID NO: 18; or SEQ ID NO: 20 and SEQ ID NO: 19.

[0493] In another embodiment, the invention is directed to an isolated polynucleotide that expresses a polypeptide containing at least one CDR polypeptide derived from an anti-IL-6 antibody wherein said expressed polypeptide alone specifically binds IL-6 or specifically binds IL-6 when expressed in association with another polynucleotide sequence that expresses a polypeptide containing at least one CDR polypeptide derived from an anti-IL-6 antibody wherein said at least one CDR is selected from those contained in the V_l or V_h

[0494] Host cells and vectors comprising said polynucleotides are also contemplated.

[0495] In another specific embodiment the invention covers nucleic acid constructs containing any of the foregoing nucleic acid sequences and combinations thereof as well as recombinant cells containing these nucleic acid sequences and constructs containing wherein these nucleic acid sequences or constructs may be extrachromosomal or integrated into the host cell genome.

[0496] The invention further contemplates vectors comprising the polynucleotide sequences encoding the variable heavy and light chain polypeptide sequences, as well as the individual complementarity determining regions (CDRs, or hypervariable regions) set forth herein, as well as host cells comprising said sequences. In one embodiment of the invention, the host cell is a yeast cell. In another embodiment of the invention, the yeast host cell belongs to the genus \textit{Pichia}.

[0497] In some instances, more than one exemplary polynucleotide encoding a given polypeptide sequence is provided, as summarized in Table 3.

[0498] Table 3. Multiple exemplary polynucleotides encoding particular polypeptides.

<table>
<thead>
<tr>
<th>Polypeptide SEQ ID NO</th>
<th>Exemplary coding SEQ ID NOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>12, 111, 694</td>
</tr>
<tr>
<td>5</td>
<td>13, 112, 389, 501</td>
</tr>
<tr>
<td>6</td>
<td>14, 113, 695</td>
</tr>
<tr>
<td>9</td>
<td>17, 116, 697</td>
</tr>
<tr>
<td>39</td>
<td>47, 260</td>
</tr>
<tr>
<td>40</td>
<td>48, 261</td>
</tr>
<tr>
<td>60</td>
<td>68, 265</td>
</tr>
<tr>
<td>72</td>
<td>80, 325, 565, 581</td>
</tr>
<tr>
<td>89</td>
<td>97, 134, 166</td>
</tr>
<tr>
<td>103</td>
<td>12, 111, 694</td>
</tr>
<tr>
<td>104</td>
<td>13, 112, 389, 501</td>
</tr>
<tr>
<td>105</td>
<td>14, 113, 695</td>
</tr>
<tr>
<td>108</td>
<td>17, 116, 697</td>
</tr>
<tr>
<td>126</td>
<td>97, 134, 166</td>
</tr>
<tr>
<td>158</td>
<td>97, 134, 166</td>
</tr>
<tr>
<td>190</td>
<td>198, 214</td>
</tr>
<tr>
<td>191</td>
<td>199, 215</td>
</tr>
<tr>
<td>205</td>
<td>213, 469, 485</td>
</tr>
<tr>
<td>206</td>
<td>198, 214</td>
</tr>
<tr>
<td>207</td>
<td>199, 215</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>252</td>
<td>47, 260</td>
</tr>
<tr>
<td>253</td>
<td>48, 261</td>
</tr>
<tr>
<td>257</td>
<td>68, 265</td>
</tr>
<tr>
<td>317</td>
<td>80, 325, 565, 581</td>
</tr>
<tr>
<td>333</td>
<td>341, 533</td>
</tr>
<tr>
<td>381</td>
<td>13, 112, 389, 501</td>
</tr>
<tr>
<td>415</td>
<td>423, 439</td>
</tr>
<tr>
<td>431</td>
<td>423, 439</td>
</tr>
<tr>
<td>461</td>
<td>213, 469, 485</td>
</tr>
<tr>
<td>475</td>
<td>483, 499</td>
</tr>
<tr>
<td>476</td>
<td>484, 500</td>
</tr>
<tr>
<td>477</td>
<td>213, 469, 485</td>
</tr>
<tr>
<td>478</td>
<td>486, 502</td>
</tr>
<tr>
<td>479</td>
<td>487, 503</td>
</tr>
<tr>
<td>480</td>
<td>488, 504</td>
</tr>
<tr>
<td>481</td>
<td>489, 505</td>
</tr>
<tr>
<td>491</td>
<td>483, 499</td>
</tr>
<tr>
<td>492</td>
<td>484, 500</td>
</tr>
<tr>
<td>493</td>
<td>13, 112, 389, 501</td>
</tr>
<tr>
<td>494</td>
<td>486, 502</td>
</tr>
<tr>
<td>495</td>
<td>487, 503</td>
</tr>
<tr>
<td>496</td>
<td>488, 504</td>
</tr>
<tr>
<td>497</td>
<td>489, 505</td>
</tr>
<tr>
<td>525</td>
<td>341, 533</td>
</tr>
<tr>
<td>545</td>
<td>553, 585</td>
</tr>
<tr>
<td>554</td>
<td>562, 578</td>
</tr>
<tr>
<td>556</td>
<td>564, 580</td>
</tr>
<tr>
<td>557</td>
<td>80, 325, 565, 581</td>
</tr>
<tr>
<td>558</td>
<td>566, 582</td>
</tr>
<tr>
<td>570</td>
<td>562, 578</td>
</tr>
<tr>
<td>572</td>
<td>564, 580</td>
</tr>
<tr>
<td>573</td>
<td>80, 325, 565, 581</td>
</tr>
<tr>
<td>574</td>
<td>566, 582</td>
</tr>
<tr>
<td>577</td>
<td>553, 585</td>
</tr>
</tbody>
</table>

[0499] In some instances, multiple sequence identifiers refer to the same polypeptide or polynucleotide sequence, as summarized in Table 4. References to these sequence identifiers are understood to be interchangeable, except where context indicates otherwise.

[0500] Table 4. Repeated sequences. Each cell lists a group of repeated sequences included in the sequence listing.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 103</td>
<td>5, 104</td>
<td>381,</td>
<td>493</td>
<td></td>
</tr>
<tr>
<td>6, 105</td>
<td>9, 108</td>
<td>12,</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>13,</td>
<td>14,</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17,</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39,</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40,</td>
<td>253</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48,</td>
<td>261</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60,</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68,</td>
<td>265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72,</td>
<td>317,</td>
<td>557,</td>
<td>573</td>
<td></td>
</tr>
<tr>
<td>80,</td>
<td>325,</td>
<td>565,</td>
<td>581</td>
<td></td>
</tr>
<tr>
<td>89,</td>
<td>126,</td>
<td>158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97,</td>
<td>134,</td>
<td>166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120,</td>
<td>659</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190,</td>
<td>206</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191,</td>
<td>207</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198,</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199,</td>
<td>215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205,</td>
<td>461,</td>
<td>477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213,</td>
<td>469</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333,</td>
<td>525</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415,</td>
<td>431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>423,</td>
<td>439</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>475,</td>
<td>491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>476,</td>
<td>492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>478,</td>
<td>494</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>479,</td>
<td>495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480,</td>
<td>496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>481,</td>
<td>497</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>483,</td>
<td>499</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>484,</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>486,</td>
<td>502</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>487,</td>
<td>503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>488,</td>
<td>504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>489,</td>
<td>505</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>545,</td>
<td>577</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>554,</td>
<td>570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>556,</td>
<td>572</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>558,</td>
<td>574</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>562,</td>
<td>578</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>564,</td>
<td>580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>566,</td>
<td>582</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 94 of 297
[0501] Certain exemplary embodiments include polynucleotides that hybridize under moderately or highly stringent hybridization conditions to a polynucleotide having one of the exemplary coding sequences recited in Table 1, and also include polynucleotides that hybridize under moderately or highly stringent hybridization conditions to a polynucleotide encoding the same polypeptide as a polynucleotide having one of the exemplary coding sequences recited in Table 1, or polypeptide encoded by any of the foregoing polynucleotides.

[0502] The phrase "high stringency hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but to no other sequences. High stringency conditions are sequence dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, high stringency conditions are selected to be about 5-10 °C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). High stringency conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 °C for short probes (e.g., 10 to 50 nucleotides) and at least about 60 °C for long probes (e.g., greater than 50 nucleotides). High stringency conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, optionally 10 times background hybridization. Exemplary high stringency hybridization conditions can be as following: 50% formamide, 5×SSC, and 1% SDS, incubating at 42 °C, or, 5×SSC, 1% SDS, incubating at 65 °C, with wash in 0.2×SSC, and 0.1% SDS at 65 °C. Such hybridizations and wash steps can be carried out for, e.g., 1, 2, 5, 10, 15, 30, 60; or more minutes.

[0503] Nucleic acids that do not hybridize to each other under high stringency conditions are still substantially related if the polypeptides that they encode are substantially related. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon
degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderate stringency hybridization conditions. Exemplary "moderate stringency hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37 °C., and a wash in 1×SSC at 45 °C. Such hybridizations and wash steps can be carried out for, e.g., 1, 2, 5, 10, 15, 30, 60, or more minutes. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency.

[0504] Additional Exemplary Embodiments of the Invention

[0505] In another embodiment, the invention contemplates one or more anti-IL-6 antibodies or antibody fragments or variants thereof which may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated. In a preferred embodiment, the anti-IL-6 antibody or fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or a fragment thereof as Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-mentioned antibody) that specifically bind IL-6, which preferably are aglycosylated.

[0506] In another embodiment of the invention, the anti-IL-6 antibody which may specifically bind to the same linear or conformational epitopes on an intact IL-6 polypeptide or fragment thereof that is (are) specifically bound by Ab1 may bind to an IL-6 epitope(s) ascertained by epitopic mapping using overlapping linear peptide fragments which span the full length of the native human IL-6 polypeptide. In one embodiment of the invention, the IL-6 epitope comprises, or alternatively consists of, one or more residues comprised in IL-6 fragments selected from those respectively encompassing amino acid residues 37-51, amino acid residues 70-84, amino acid residues 169-183, amino acid residues 31-45 and/or amino acid residues 58-72.

[0507] The invention is also directed to an anti-IL-6 antibody that binds with the same IL-6 epitope and/or competes with an anti-IL-6 antibody for binding to IL-6 as an antibody or
antibody fragment disclosed herein, including but not limited to an anti-IL-6 antibody selected from Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-mentioned antibody) that specifically bind IL-6, which preferably are aglycosylated.

[0508] In another embodiment, the invention is also directed to an isolated anti-IL-6 antibody or antibody fragment or variant thereof comprising one or more of the CDRs contained in the V_{H} polypeptide sequences comprising: SEQ ID NO: 3, 18, 19, 22, 38, 54, 70, 86, 102, 117, 118, 123, 139, 155, 171, 187, 203, 219, 235, 251, 267, 283, 299, 315, 331, 347, 363, 379, 395, 411, 427, 443, 459, 475, 491, 507, 523, 539, 555, 571, 652, 656, 657, 658, 661, 664, 665, 668, 672, 676, 680, 684, 688, 691, 692, 704, or 708 and/or one or more of the CDRs contained in the V_{L} polypeptide sequence consisting of: 2, 20, 21, 37, 53, 69, 85, 101, 119, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 378, 394, 410, 426, 442, 458, 474, 490, 506, 522, 538, 554, 570, 647, 651, 660, 666, 667, 671, 675, 679, 683, 687, 693, 699, 702, 706, or 709 and the VH and VL sequences depicted in the antibody alignments comprised in Figures 34-37 of this application.

[0509] In one embodiment of the invention, the anti-IL-6 antibody discussed in the two prior paragraphs comprises at least 2 complementarity determining regions (CDRs) in each the variable light and the variable heavy regions which are identical to those contained in an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-mentioned antibody) that specifically bind IL-6, which preferably are aglycosylated.

[0510] In a preferred embodiment, the anti-IL-6 antibody discussed above comprises at least 2 complementarity determining regions (CDRs) in each the variable light and the variable heavy regions which are identical to those contained in Ab1. In another embodiment, all of the CDRs of the anti-IL-6 antibody discussed above are identical to the CDRs contained in an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-mentioned antibody) that specifically bind IL-6, which preferably are aglycosylated. In a preferred embodiment of the invention, all of the CDRs of the anti-IL-6 antibody discussed above are identical to the CDRs contained in Ab1, e.g., an antibody comprised of the VH and VL sequences comprised in SEQ ID NO: 657 and SEQ ID NO: 709 respectively.
The invention further contemplates that the one or more anti-IL-6 antibodies discussed above are aglycosylated; that contain an Fc region that has been modified to alter effector function, half-life, proteolysis, and/or glycosylation; are human, humanized, single chain or chimeric; and are a humanized antibody derived from a rabbit (parent) anti-IL-6 antibody. Exemplary constant regions that provide for the production of aglycosylated antibodies in Pichia are comprised in SEQ ID NO: 588 and SEQ ID NO: 586 which respectively are encoded by the nucleic acid sequences in SEQ ID NO: 589 and SEQ ID NO: 587.

The invention further contemplates one or more anti-IL-6 antibodies wherein the framework regions (FRs) in the variable light region and the variable heavy regions of said antibody respectively are human FRs which are unmodified or which have been modified by the substitution of at most 2 or 3 human FR residues in the variable light or heavy chain region with the corresponding FR residues of the parent rabbit antibody, and wherein said human FRs have been derived from human variable heavy and light chain antibody sequences which have been selected from a library of human germline antibody sequences based on their high level of homology to the corresponding rabbit variable heavy or light chain regions relative to other human germline antibody sequences contained in the library.

In one embodiment of the invention, the anti-IL-6 antibody or fragment or variant thereof may specifically bind to IL-6 expressing human cells and/or to circulating soluble IL-6 molecules in vivo, including IL-6 expressed on or by human cells in a patient with a disease associated with cells that express IL-6.

In another embodiment, the disease is selected from general fatigue, exercise-induced fatigue, cancer-related fatigue, inflammatory disease-related fatigue, chronic fatigue syndrome, fibromyalgia, cancer-related cachexia, cardiac-related cachexia, respiratory-related cachexia, renal-related cachexia, age-related cachexia, rheumatoid arthritis, systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis, psoriasis, psoriatic arthropathy, ankylosing spondylitis, inflammatory bowel disease (IBD), polymyalgia rheumatica, giant cell arteritis, autoimmune vasculitis, graft versus host disease (GVHD), Sjogren’s syndrome, adult onset Still’s disease, rheumatoid arthritis, systemic juvenile idiopathic arthritis, osteoarthritis, osteoporosis, Paget’s disease of bone, osteoarthritis, multiple myeloma, Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, prostate cancer, leukemia, renal cell cancer, multicentric Castleman’s disease, ovarian cancer, drug resistance in cancer chemotherapy, cancer chemotherapy toxicity, ischemic heart disease, atherosclerosis, obesity,
diabetes, asthma, multiple sclerosis, Alzheimer's disease, cerebrovascular disease, fever, acute phase response, allergies, anemia, anemia of inflammation (anemia of chronic disease), hypertension, depression, depression associated with a chronic illness, thrombosis, thrombocytosis, acute heart failure, metabolic syndrome, miscarriage, obesity, chronic prostatitis, glomerulonephritis, pelvic inflammatory disease, reperfusion injury, transplant rejection, graft versus host disease (GVHD), avian influenza, smallpox, pandemic influenza, adult respiratory distress syndrome (ARDS), severe acute respiratory syndrome (SARS), sepsis, and systemic inflammatory response syndrome (SIRS). In a preferred embodiment, the disease is selected from a cancer, inflammatory disorder, viral disorder, or autoimmune disorder. In a particularly preferred embodiment, the disease is arthritis, cachexia, and wasting syndrome.

[0515] The invention further contemplates anti-IL-6 antibodies or fragments or variants thereof directly or indirectly attached to a detectable label or therapeutic agent.

[0516] The invention also contemplates one or more nucleic acid sequences which result in the expression of an anti-IL-6 antibody or antibody fragment or variant thereof as set forth above, including those comprising, or alternatively consisting of, yeast or human preferred codons. The invention also contemplates vectors (including plasmids or recombinant viral vectors) comprising said nucleic acid sequence(s). The invention also contemplates host cells or recombinant host cells expressing at least one of the antibodies set forth above, including a mammalian, yeast, bacterial, and insect cells. In a preferred embodiment, the host cell is a yeast cell. In a further preferred embodiment, the yeast cell is a diploid yeast cell. In a more preferred embodiment, the yeast cell is a Pichia yeast.

[0517] The invention also contemplates a method of treatment comprising administering to a patient with a disease or condition associated with IL-6 expressing cells a therapeutically effective amount of at least one anti-IL-6 antibody or fragment or variant thereof. The diseases that may be treated are presented in the non-limiting list set forth above. In a preferred embodiment, the disease is selected from a cancer, autoimmune disease, or inflammatory condition. In a particularly preferred embodiment, the disease is cancer or viral infection. In another embodiment the treatment further includes the administration of another therapeutic agent or regimen selected from chemotherapy, radiotherapy, cytokine administration or gene therapy.
[0518] The invention further contemplates a method of in vivo imaging which detects the presence of cells which express IL-6 comprising administering a diagnostically effective amount of at least one anti-IL-6 antibody. In one embodiment, said administration further includes the administration of a radionuclide or fluorophore that facilitates detection of the antibody at IL-6 expressing disease sites. In another embodiment of the invention, the method of in vivo imaging is used to detect IL-6 expressing tumors or metastases or is used to detect the presence of sites of autoimmune disorders associated with IL-6 expressing cells. In a further embodiment, the results of said in vivo imaging method are used to facilitate design of an appropriate therapeutic regimen, including therapeutic regimens including radiotherapy, chemotherapy or a combination thereof.

[0519] **Anti-IL-6 Activity**

[0520] As stated previously, IL-6 is a member of a family of cytokines that promote cellular responses through a receptor complex consisting of at least one subunit of the signal-transducing glycoprotein gp130 and the IL-6 receptor (IL-6R). The IL-6R may also be present in a soluble form (sIL-6R). IL-6 binds to IL-6R, which then dimerizes the signal-transducing receptor gp130.

[0521] It is believed that the anti-IL-6 antibodies of the invention, or IL-6 binding fragments or variants thereof, are useful by exhibiting anti-IL-6 activity. In one non-limiting embodiment of the invention, the anti-IL-6 antibodies of the invention, or IL-6 binding fragments or variants thereof, exhibit anti-IL-6 activity by binding to IL-6 which may be soluble IL-6 or cell surface expressed IL-6 and/or may prevent or inhibit the binding of IL-6 to IL-6R and/or activation (dimerization) of the gp130 signal-transducing glycoprotein and the formation of IL-6/IL-6R/gp130 multimers and the biological effects of any of the foregoing. The subject anti-IL-6 antibodies may possess different antagonistic activities based on where (i.e., epitope) the particular antibody binds IL-6 and/or how it affects the formation of the foregoing IL-6 complexes and/or multimers and the biological effects thereof. Consequently, different anti-IL-6 antibodies according to the invention e.g., may be better suited for preventing or treating conditions involving the formation and accumulation of substantial soluble IL-6 such as rheumatoid arthritis whereas other antibodies may be favored in treatments wherein the prevention of IL-6/IL-6R/gp130 or IL-6/IL-6R/gp130...
multimers is a desired therapeutic outcome. This can be determined in binding and other assays.

[0522] The anti-IL-6 activity of the anti-IL-6 antibody of the present invention, and fragments and variants thereof having binding specificity to IL-6, may also be described by their strength of binding or their affinity for IL-6. This also may affect their therapeutic properties. In one embodiment of the invention, the anti-IL-6 antibodies of the present invention, and fragments thereof having binding specificity to IL-6, bind to IL-6 with a dissociation constant \((K_d) \) of less than or equal to \(5 \times 10^{-7}, 10^{-7}, 5 \times 10^{-8}, 10^{-8}, 5 \times 10^{-9}, 10^{-9}, 5 \times 10^{-10}, 10^{-10}, 5 \times 10^{-11}, 10^{-11}, 5 \times 10^{-12}, 10^{-12}, 5 \times 10^{-13}, 10^{-13}, 5 \times 10^{-14}, 10^{-14}, 5 \times 10^{-15} \) or \(10^{-15} \). Preferably, the anti-IL-6 antibodies and fragments and variants thereof bind IL-6 with a dissociation constant of less than or equal to \(5 \times 10^{-10} \).

[0523] In another embodiment of the invention, the anti-IL-6 activity of the anti-IL-6 antibodies of the present invention, and fragments and variants thereof having binding specificity to IL-6, bind to IL-6 with an off-rate of less than or equal to \(10^{-4} \) S\(^{-1}\), \(5 \times 10^{-5} \) S\(^{-1}\), \(10^{-5} \) S\(^{-1}\), \(5 \times 10^{-6} \) S\(^{-1}\), \(10^{-6} \) S\(^{-1}\), \(5 \times 10^{-7} \) S\(^{-1}\), or \(10^{-7} \) S\(^{-1}\). In one embodiment of the invention, the anti-IL-6 antibodies of the invention, and fragments and variants thereof having binding specificity to IL-6, bind to a linear or conformational IL-6 epitope.

[0524] In a further embodiment of the invention, the anti-IL-6 activity of the anti-IL-6 antibodies of the present invention, and fragments and variants thereof having binding specificity to IL-6, exhibit anti-IL-6 activity by ameliorating or reducing the symptoms of, or alternatively treating, or preventing, diseases and disorders associated with IL-6. Non-limiting examples of diseases and disorders associated with IL-6 are set forth infra. As noted cancer-related fatigue, cachexia and rheumatoid arthritis are preferred indications for the subject anti-IL-6 antibodies.

[0525] In another embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments and variants thereof, do not have binding specificity for IL-6R or the gp-130 signal-transducing glycoprotein.

[0526] **B-cell Screening and Isolation**

[0527] In one embodiment, the present invention provides methods of isolating a clonal population of antigen-specific B cells that may be used for isolating at least one antigen-specific cell. As described and exemplified infra, these methods contain a series of culture
and selection steps that can be used separately, in combination, sequentially, repetitively, or periodically. Preferably, these methods are used for isolating at least one antigen-specific cell, which can be used to produce a monoclonal antibody, which is specific to a desired antigen, or a nucleic acid sequence corresponding to such an antibody.

[0528] In one embodiment, the present invention provides a method comprising the steps of:

[0529] a. preparing a cell population comprising at least one antigen-specific B cell;
[0530] b. enriching the cell population, e.g., by chromatography, to form an enriched cell population comprising at least one antigen-specific B cell;
[0531] c. isolating a single B cell from the enriched B cell population; and
[0532] d. determining whether the single B cell produces an antibody specific to the antigen.

[0533] In another embodiment, the present invention provides an improvement to a method of isolating a single, antibody-producing B cell, the improvement comprising enriching a B cell population obtained from a host that has been immunized or naturally exposed to an antigen, wherein the enriching step precedes any selection steps, comprises at least one culturing step, and results in a clonal population of B cells that produces a single monoclonal antibody specific to said antigen.

[0534] Throughout this application, a “clonal population of B cells” refers to a population of B cells that only secrete a single antibody specific to a desired antigen. That is to say that these cells produce only one type of monoclonal antibody specific to the desired antigen.

[0535] In the present application, “enriching” a cell population cells means increasing the frequency of desired cells, typically antigen-specific cells, contained in a mixed cell population, e.g., a B cell-containing isolate derived from a host that is immunized against a desired antigen. Thus, an enriched cell population encompasses a cell population having a higher frequency of antigen-specific cells as a result of an enrichment step, but this population of cells may contain and produce different antibodies.

[0536] The general term “cell population” encompasses pre- and a post-enrichment cell populations, keeping in mind that when multiple enrichment steps are performed, a cell population can be both pre- and post-enrichment. For example, in one embodiment, the present invention provides a method:
[0537] a. harvesting a cell population from an immunized host to obtain a harvested cell population;

[0538] b. creating at least one single cell suspension from the harvested cell population;

[0539] c. enriching at least one single cell suspension to form a first enriched cell population;

[0540] d. enriching the first enriched cell population to form a second enriched cell population;

[0541] e. enriching the second enriched cell population to form a third enriched cell population; and

[0542] f. selecting an antibody produced by an antigen-specific cell of the third enriched cell population.

[0543] Each cell population may be used directly in the next step, or it can be partially or wholly frozen for long- or short- term storage or for later steps. Also, cells from a cell population can be individually suspended to yield single cell suspensions. The single cell suspension can be enriched, such that a single cell suspension serves as the pre-enrichment cell population. Then, one or more antigen-specific single cell suspensions together form the enriched cell population; the antigen-specific single cell suspensions can be grouped together, e.g., re-plated for further analysis and/or antibody production.

[0544] In one embodiment, the present invention provides a method of enriching a cell population to yield an enriched cell population having an antigen-specific cell frequency that is about 50% to about 100%, or increments therein. Preferably, the enriched cell population has an antigen-specific cell frequency greater than or equal to about 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%, or 100%.

[0545] In another embodiment, the present invention provides a method of enriching a cell population whereby the frequency of antigen-specific cells is increased by at least about 2-fold, 5-fold, 10-fold, 20-fold, 50-fold, 100-fold, or increments therein.

[0546] Throughout this application, the term "increment" is used to define a numerical value in varying degrees of precision, e.g., to the nearest 10, 1, 0.1, 0.01, etc. The increment can be rounded to any measurable degree of precision, and the increment need not be rounded to the same degree of precision on both sides of a range. For example, the range 1 to 100 or increments therein includes ranges such as 20 to 80, 5 to 50, and 0.4 to 98. When a range is
open-ended, e.g., a range of less than 100, increments therein means increments between 100 and the measurable limit. For example, less than 100 or increments therein means 0 to 100 or increments therein unless the feature, e.g., temperature, is not limited by 0.

[0547] Antigen-specificity can be measured with respect to any antigen. The antigen can be any substance to which an antibody can bind including, but not limited to, peptides, proteins or fragments thereof; carbohydrates; organic and inorganic molecules; receptors produced by animal cells, bacterial cells, and viruses; enzymes; agonists and antagonists of biological pathways; hormones; and cytokines. Exemplary antigens include, but are not limited to, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-18, IFN-alpha, IFN-gamma, BAFF, CXCL13, IP-10, VEGF, EPO, EGF, HRG, Hepatocyte Growth Factor (HGF) and Hepcidin. Preferred antigens include IL-6, IL-13, TNF-alpha, VEGF-alpha, Hepatocyte Growth Factor (HGF) and Hepcidin. In a method utilizing more than one enrichment step, the antigen used in each enrichment step can be the same as or different from one another. Multiple enrichment steps with the same antigen may yield a large and/or diverse population of antigen-specific cells; multiple enrichment steps with different antigens may yield an enriched cell population with cross-specificity to the different antigens.

[0548] Enriching a cell population can be performed by any cell-selection means known in the art for isolating antigen-specific cells. For example, a cell population can be enriched by chromatographic techniques, e.g., Miltenyi bead or magnetic bead technology. The beads can be directly or indirectly attached to the antigen of interest. In a preferred embodiment, the method of enriching a cell population includes at least one chromatographic enrichment step.

[0549] A cell population can also be enriched by performed by any antigen-specificity assay technique known in the art, e.g., an ELISA assay or a halo assay. ELISA assays include, but are not limited to, selective antigen immobilization (e.g., biotinylated antigen capture by streptavidin, avidin, or neutravidin coated plate), non-specific antigen plate coating, and through an antigen build-up strategy (e.g., selective antigen capture followed by binding partner addition to generate a heteromeric protein-antigen complex). The antigen can be directly or indirectly attached to a solid matrix or support, e.g., a column. A halo assay comprises contacting the cells with antigen-loaded beads and labeled anti-host antibody specific to the host used to harvest the B cells. The label can be, e.g., a fluorophore. In one embodiment, at least one assay enrichment step is performed on at least one single cell
suspension. In another embodiment, the method of enriching a cell population includes at least one chromatographic enrichment step and at least one assay enrichment step.

[0550] Methods of “enriching” a cell population by size or density are known in the art. See, e.g., U.S. Patent 5,627,052. These steps can be used in the present method in addition to enriching the cell population by antigen-specificity.

[0551] The cell populations of the present invention contain at least one cell capable of recognizing an antigen. Antigen-recognizing cells include, but are not limited to, B cells, plasma cells, and progeny thereof. In one embodiment, the present invention provides a clonal cell population containing a single type of antigen-specific B-cell, i.e., the cell population produces a single monoclonal antibody specific to a desired antigen.

[0552] In such embodiment, it is believed that the clonal antigen-specific population of B cells consists predominantly of antigen-specific, antibody-secreting cells, which are obtained by the novel culture and selection protocol provided herein. Accordingly, the present invention also provides methods for obtaining an enriched cell population containing at least one antigen-specific, antibody-secreting cell. In one embodiment, the present invention provides an enriched cell population containing about 50% to about 100%, or increments therein, or greater than or equal to about 60%, 70%, 80%, 90%, or 100% of antigen-specific, antibody-secreting cells.

[0553] In one embodiment, the present invention provides a method of isolating a single B cell by enriching a cell population obtained from a host before any selection steps, e.g., selecting a particular B cell from a cell population and/or selecting an antibody produced by a particular cell. The enrichment step can be performed as one, two, three, or more steps. In one embodiment, a single B cell is isolated from an enriched cell population before confirming whether the single B cell secretes an antibody with antigen-specificity and/or a desired property.

[0554] In one embodiment, a method of enriching a cell population is used in a method for antibody production and/or selection. Thus, the present invention provides a method comprising enriching a cell population before selecting an antibody. The method can include the steps of: preparing a cell population comprising at least one antigen-specific cell, enriching the cell population by isolating at least one antigen-specific cell to form an enriched cell population, and inducing antibody production from at least one antigen-specific cell. In a preferred embodiment, the enriched cell population contains more than one antigen-specific
cell. In one embodiment, each antigen-specific cell of the enriched population is cultured under conditions that yield a clonal antigen-specific B cell population before isolating an antibody producing cell therefrom and/or producing an antibody using said B cell, or a nucleic acid sequence corresponding to such an antibody. In contrast to prior techniques where antibodies are produced from a cell population with a low frequency of antigen-specific cells, the present invention allows antibody selection from among a high frequency of antigen-specific cells. Because an enrichment step is used prior to antibody selection, the majority of the cells, preferably virtually all of the cells, used for antibody production are antigen-specific. By producing antibodies from a population of cells with an increased frequency of antigen specificity, the quantity and variety of antibodies are increased.

[0555] In the antibody selection methods of the present invention, an antibody is preferably selected after an enrichment step and a culture step that results in a clonal population of antigen-specific B cells. The methods can further comprise a step of sequencing a selected antibody or portions thereof from one or more isolated, antigen-specific cells. Any method known in the art for sequencing can be employed and can include sequencing the heavy chain, light chain, variable region(s), and/or complementarity determining region(s) (CDR).

[0556] In addition to the enrichment step, the method for antibody selection can also include one or more steps of screening a cell population for antigen recognition and/or antibody functionality. For example, the desired antibodies may have specific structural features, such as binding to a particular epitope or mimicry of a particular structure; antagonist or agonist activity; or neutralizing activity, e.g., inhibiting binding between the antigen and a ligand. In one embodiment, the antibody functionality screen is ligand-dependent. Screening for antibody functionality includes, but is not limited to, an in vitro protein-protein interaction assay that recreates the natural interaction of the antigen ligand with recombinant receptor protein; and a cell-based response that is ligand dependent and easily monitored (e.g., proliferation response). In one embodiment, the method for antibody selection includes a step of screening the cell population for antibody functionality by measuring the inhibitory concentration (IC50). In one embodiment, at least one of the isolated, antigen-specific cells produces an antibody having an IC50 of less than about 100, 50, 30, 25, 10 μg/mL, or increments therein.

[0557] In addition to the enrichment step, the method for antibody selection can also include one or more steps of screening a cell population for antibody binding strength.
Antibody binding strength can be measured by any method known in the art (e.g., Biacore™). In one embodiment, at least one of the isolated, antigen-specific cells produces an antibody having a high antigen affinity, e.g., a dissociation constant (Kd) of less than about 5x10⁻¹⁰ M⁻¹, preferably about 1x10⁻¹³ to 5x10⁻¹⁰, 1x10⁻¹² to 1x10⁻¹⁰, 1x10⁻¹² to 7.5x10⁻¹¹, 1x10⁻¹¹ to 2x10⁻¹¹, about 1.5x10⁻¹¹ or less, or increments therein. In this embodiment, the antibodies are said to be affinity mature. In a preferred embodiment, the affinity of the antibodies is comparable to or higher than the affinity of any one of Panorex® (edrecolomab), Rituxan® (rituximab), Herceptin® (traztuzumab), Mylotarg® (gentuzumab), Campath® (alemzumab), Zevalin™ (ibritumomab), Erbitux™ (cetuximab), Avastin™ (bevicizumab), Raptiva™ (efalizumab), Remicade® (infliximab), Humira™ (adalimumab), and Xolair™ (omalizumab). Preferably, the affinity of the antibodies is comparable to or higher than the affinity of Humira™. The affinity of an antibody can also be increased by known affinity maturation techniques. In one embodiment, at least one cell population is screened for at least one of, preferably both, antibody functionality and antibody binding strength.

[0558] In addition to the enrichment step, the method for antibody selection can also include one or more steps of screening a cell population for antibody sequence homology, especially human homology. In one embodiment, at least one of the isolated, antigen-specific cells produces an antibody that has a homology to a human antibody of about 50% to about 100%, or increments therein, or greater than about 60%, 70%, 80%, 85%, 90%, or 95% homologous. The antibodies can be humanized to increase the homology to a human sequence by techniques known in the art such as CDR grafting or selectivity determining residue grafting (SDR).

[0559] In another embodiment, the present invention also provides the antibodies themselves according to any of the embodiments described above in terms of IC50, Kd, and/or homology.

[0560] The B cell selection protocol disclosed herein has a number of intrinsic advantages versus other methods for obtaining antibody-secreting B cells and monoclonal antibodies specific to desired target antigens. These advantages include, but are not restricted to, the following:

[0561] First, it has been found that when these selection procedures are utilized with a desired antigen such as IL-6 or TNF-alpha, the methods reproducibly result in antigen-
specific B cells capable of generating what appears to be a substantially comprehensive complement of antibodies, i.e., antibodies that bind to the various different epitopes of the antigen. Without being bound by theory, it is hypothesized that the comprehensive complement is attributable to the antigen enrichment step that is performed prior to initial B cell recovery. Moreover, this advantage allows for the isolation and selection of antibodies with different properties as these properties may vary depending on the epitopic specificity of the particular antibody.

[0562] Second, it has been found that the B cell selection protocol reproducibly yields a clonal B cell culture containing a single B cell, or its progeny, secreting a single monoclonal antibody that generally binds to the desired antigen with a relatively high binding affinity, i.e. picomolar or better antigen binding affinities. By contrast, prior antibody selection methods tend to yield relatively few high affinity antibodies and therefore require extensive screening procedures to isolate an antibody with therapeutic potential. Without being bound by theory, it is hypothesized that the protocol results in both in vivo B cell immunization of the host (primary immunization) followed by a second in vitro B cell stimulation (secondary antigen priming step) that may enhance the ability and propensity of the recovered clonal B cells to secrete a single high affinity monoclonal antibody specific to the antigen target.

[0563] Third, it has been observed (as shown herein with IL-6 specific B cells) that the B cell selection protocol reproducibly yields enriched B cells producing IgG's that are, on average, highly selective (antigen specific) to the desired target. Antigen-enriched B cells recovered by these methods are believed to contain B cells capable of yielding the desired full complement of epitopic specificities as discussed above.

[0564] Fourth, it has been observed that the B cell selection protocols, even when used with small antigens, i.e., peptides of 100 amino acids or less, e.g., 5-50 amino acids long, reproducibly give rise to a clonal B cell culture that secretes a single high affinity antibody to the small antigen, e.g., a peptide. This is highly surprising as it is generally quite difficult, labor intensive, and sometimes not even feasible to produce high affinity antibodies to small peptides. Accordingly, the invention can be used to produce therapeutic antibodies to desired peptide targets, e.g., viral, bacterial or autoantigen peptides, thereby allowing for the production of monoclonal antibodies with very discrete binding properties or even the production of a cocktail of monoclonal antibodies to different peptide targets, e.g., different viral strains. This advantage may especially be useful in the context of the production of a
therapeutic or prophylactic vaccine having a desired valency, such as an HPV vaccine that induces protective immunity to different HPV strains.

[0565] Fifth, the B cell selection protocol, particularly when used with B cells derived from rabbits, tends to reproducibly yield antigen-specific antibody sequences that are very similar to endogenous human immunoglobulins (around 90% similar at the amino acid level) and that contain CDRs that possess a length very analogous to human immunoglobulins and therefore require little or no sequence modification (typically at most only a few CDR residues may be modified in the parent antibody sequence and no framework exogenous residues introduced) in order to eliminate potential immunogenicity concerns. In particular, preferably the recombinant antibody will contain only the host (rabbit) CDR1 and CDR2 residues required for antigen recognition and the entire CDR3. Thereby, the high antigen binding affinity of the recovered antibody sequences produced according to the B cell and antibody selection protocol remains intact or substantially intact even with humanization.

[0566] In sum, these methods can be used to produce antibodies exhibiting higher binding affinities to more distinct epitopes by the use of a more efficient protocol than was previously known.

[0567] In a specific embodiment, the present invention provides a method for identifying a single B cell that secretes an antibody specific to a desired antigen and that optionally possesses at least one desired functional property such as affinity, avidity, cytolytic activity, and the like by a process including the following steps:

[0568] a. immunizing a host against an antigen;

[0569] b. harvesting B cells from the host;

[0570] c. enriching the harvested B cells to increase the frequency of antigen-specific cells;

[0571] d. creating at least one single cell suspension;

[0572] e. culturing a sub-population from the single cell suspension under conditions that favor the survival of a single antigen-specific B cell per culture well;

[0573] f. isolating B cells from the sub-population; and

[0574] g. determining whether the single B cell produces an antibody specific to the antigen.
[0575] Typically, these methods will further comprise an additional step of isolating and sequencing, in whole or in part, the polypeptide and nucleic acid sequences encoding the desired antibody. These sequences or modified versions or portions thereof can be expressed in desired host cells in order to produce recombinant antibodies to a desired antigen.

[0576] As noted previously, it is believed that the clonal population of B cells predominantly comprises antibody-secreting B cells producing antibody against the desired antigen. It is also believed based on experimental results obtained with several antigens and with different B cell populations that the clonally produced B cells and the isolated antigen-specific B cells derived therefrom produced according to the invention secrete a monoclonal antibody that is typically of relatively high affinity and moreover is capable of efficiently and reproducibly producing a selection of monoclonal antibodies of greater epitopic variability as compared to other methods of deriving monoclonal antibodies from cultured antigen-specific B cells. In an exemplary embodiment the population of immune cells used in such B cell selection methods will be derived from a rabbit. However, other hosts that produce antibodies, including non-human and human hosts, can alternatively be used as a source of immune B cells. It is believed that the use of rabbits as a source of B cells may enhance the diversity of monoclonal antibodies that may be derived by the methods. Also, the antibody sequences derived from rabbits according to the invention typically possess sequences having a high degree of sequence identity to human antibody sequences making them favored for use in humans since they should possess little antigenicity. In the course of humanization, the final humanized antibody contains a much lower foreign/host residue content, usually restricted to a subset of the host CDR residues that differ dramatically due to their nature versus the human target sequence used in the grafting. This enhances the probability of complete activity recovery in the humanized antibody protein.

[0577] The methods of antibody selection using an enrichment step disclosed herein include a step of obtaining an immune cell-containing cell population from an immunized host. Methods of obtaining an immune cell-containing cell population from an immunized host are known in the art and generally include inducing an immune response in a host and harvesting cells from the host to obtain one or more cell populations. The response can be elicited by immunizing the host against a desired antigen. Alternatively, the host used as a source of such immune cells can be naturally exposed to the desired antigen such as an individual who has been infected with a particular pathogen such as a bacterium or virus or
alternatively has mounted a specific antibody response to a cancer that the individual is afflicted with.

[0578] Host animals are well-known in the art and include, but are not limited to, guinea pig, rabbit, mouse, rat, non-human primate, human, as well as other mammals and rodents, chicken, cow, pig, goat, and sheep. Preferably the host is a mammal, more preferably, rabbit, mouse, rat, or human. When exposed to an antigen, the host produces antibodies as part of the native immune response to the antigen. As mentioned, the immune response can occur naturally, as a result of disease, or it can be induced by immunization with the antigen. Immunization can be performed by any method known in the art, such as, by one or more injections of the antigen with or without an agent to enhance immune response, such as complete or incomplete Freund's adjuvant. In another embodiment, the invention also contemplates intrasplenic immunization. As an alternative to immunizing a host animal in vivo, the method can comprise immunizing a host cell culture in vitro.

[0579] After allowing time for the immune response (e.g., as measured by serum antibody detection), host animal cells are harvested to obtain one or more cell populations. In a preferred embodiment, a harvested cell population is screened for antibody binding strength and/or antibody functionality. A harvested cell population is preferably from at least one of the spleen, lymph nodes, bone marrow, and/or peripheral blood mononuclear cells (PBMCs). The cells can be harvested from more than one source and pooled. Certain sources may be preferred for certain antigens. For example, the spleen, lymph nodes, and PBMCs are preferred for IL-6; and the lymph nodes are preferred for TNF. The cell population is harvested about 20 to about 90 days or increments therein after immunization, preferably about 50 to about 60 days. A harvested cell population and/or a single cell suspension therefrom can be enriched, screened, and/or cultured for antibody selection. The frequency of antigen-specific cells within a harvested cell population is usually about 1% to about 5%, or increments therein.

[0580] In one embodiment, a single cell suspension from a harvested cell population is enriched, preferably by using Miltenyi beads. From the harvested cell population having a frequency of antigen-specific cells of about 1% to about 5%, an enriched cell population is thus derived having a frequency of antigen-specific cells approaching 100%.

[0581] The method of antibody selection using an enrichment step includes a step of producing antibodies from at least one antigen-specific cell from an enriched cell population.
Methods of producing antibodies in vitro are well known in the art, and any suitable method can be employed. In one embodiment, an enriched cell population, such as an antigen-specific single cell suspension from a harvested cell population, is plated at various cell densities, such as 50, 100, 250, 500, or other increments between 1 and 1000 cells per well. Preferably, the sub-population comprises no more than about 10,000 antigen-specific, antibody-secreting cells, more preferably about 50-10,000, about 50-5,000, about 50-1,000, about 50-500, about 50-250 antigen-specific, antibody-secreting cells, or increments therein. Then, these sub-populations are cultured with suitable medium (e.g., an activated T cell conditioned medium, particularly 1-5% activated rabbit T cell conditioned medium) on a feeder layer, preferably under conditions that favor the survival of a single proliferating antibody-secreting cell per culture well. The feeder layer, generally comprised of irradiated cell matter, e.g., EL4B cells, does not constitute part of the cell population. The cells are cultured in a suitable media for a time sufficient for antibody production, for example about 1 day to about 2 weeks, about 1 day to about 10 days, at least about 3 days, about 3 to about 5 days, about 5 days to about 7 days, at least about 7 days, or other increments therein. In one embodiment, more than one sub-population is cultured simultaneously. Preferably, a single antibody-producing cell and progeny thereof survives in each well, thereby providing a clonal population of antigen-specific B cells in each well. At this stage, the immunoglobulin G (IgG) produced by the clonal population is highly correlative with antigen specificity. In a preferred embodiment, the IgGs exhibit a correlation with antigen specificity that is greater than about 50%, more preferably greater than 70%, 85%, 90%, 95%, 99%, or increments therein. See Fig. 3, which demonstrates an exemplary correlation for IL-6. The correlations were demonstrated by setting up B cell cultures under limiting conditions to establish single antigen-specific antibody products per well. Antigen-specific versus general IgG synthesis was compared. Three populations were observed: IgG that recognized a single format of antigen (biotinylated and direct coating), detectable IgG and antigen recognition irrespective of immobilization, and IgG production alone. IgG production was highly correlated with antigen-specificity.

[0582] A supernatant containing the antibodies is optionally collected, which can be enriched, screened, and/or cultured for antibody selection according to the steps described above. In one embodiment, the supernatant is enriched (preferably by an antigen-specificity assay, especially an ELISA assay) and/or screened for antibody functionality.
[0583] In another embodiment, the enriched, preferably clonal, antigen-specific B cell population from which a supernatant described above is optionally screened in order to detect the presence of the desired secreted monoclonal antibody is used for the isolation of a few B cells, preferably a single B cell, which is then tested in an appropriate assay in order to confirm the presence of a single antibody-producing B cell in the clonal B cell population. In one embodiment about 1 to about 20 cells are isolated from the clonal B cell population, preferably less than about 15, 12, 10, 5, or 3 cells, or increments therein, most preferably a single cell. The screen is preferably effected by an antigen-specificity assay, especially a halo assay. The halo assay can be performed with the full length protein, or a fragment thereof. The antibody-containing supernatant can also be screened for at least one of: antigen binding affinity; agonism or antagonism of antigen-ligand binding, induction or inhibition of the proliferation of a specific target cell type; induction or inhibition of lysis of a target cell, and induction or inhibition of a biological pathway involving the antigen.

[0584] The identified antigen-specific cell can be used to derive the corresponding nucleic acid sequences encoding the desired monoclonal antibody. (An AluI digest can confirm that only a single monoclonal antibody type is produced per well.) As mentioned above, these sequences can be mutated, such as by humanization, in order to render them suitable for use in human medicaments.

[0585] As mentioned, the enriched B cell population used in the process can also be further enriched, screened, and/or cultured for antibody selection according to the steps described above which can be repeated or performed in a different order. In a preferred embodiment, at least one cell of an enriched, preferably clonal, antigen-specific cell population is isolated, cultured, and used for antibody selection.

[0586] Thus, in one embodiment, the present invention provides a method comprising:

[0587] a. harvesting a cell population from an immunized host to obtain a harvested cell population;

[0588] b. creating at least one single cell suspension from a harvested cell population;

[0589] c. enriching at least one single cell suspension, preferably by chromatography, to form a first enriched cell population;

[0590] d. enriching the first enriched cell population, preferably by ELISA assay, to form a second enriched cell population which preferably is clonal, i.e., it contains only a single type of antigen-specific B cell.
e. enriching the second enriched cell population, preferably by halo assay, to form a third enriched cell population containing a single or a few number of B cells that produce an antibody specific to a desired antigen; and

f. selecting an antibody produced by an antigen-specific cell isolated from the third enriched cell population.

The method can further include one or more steps of screening the harvested cell population for antibody binding strength (affinity, avidity) and/or antibody functionality. Suitable screening steps include, but are not limited to, assay methods that detect: whether the antibody produced by the identified antigen-specific B cell produces an antibody possessing a minimal antigen binding affinity, whether the antibody agonizes or antagonizes the binding of a desired antigen to a ligand; whether the antibody induces or inhibits the proliferation of a specific cell type; whether the antibody induces or elicits a cytolytic reaction against target cells; whether the antibody binds to a specific epitope; and whether the antibody modulates (inhibits or agonizes) a specific biological pathway or pathways involving the antigen.

Similarly, the method can include one or more steps of screening the second enriched cell population for antibody binding strength and/or antibody functionality.

The method can further include a step of sequencing the polypeptide sequence or the corresponding nucleic acid sequence of the selected antibody. The method can also include a step of producing a recombinant antibody using the sequence, a fragment thereof, or a genetically modified version of the selected antibody. Methods for mutating antibody sequences in order to retain desired properties are well known to those skilled in the art and include humanization, chimerisation, production of single chain antibodies; these mutation methods can yield recombinant antibodies possessing desired effector function, immunogenicity, stability, removal or addition of glycosylation, and the like. The recombinant antibody can be produced by any suitable recombinant cell, including, but not limited to mammalian cells such as CHO, COS, BHK, HEK-293, bacterial cells, yeast cells, plant cells, insect cells, and amphibian cells. In one embodiment, the antibodies are expressed in polyploid yeast cells, i.e., diploid yeast cells, particularly Pichia.

In one embodiment, the method comprises:

a. immunizing a host against an antigen to yield host antibodies;

b. screening the host antibodies for antigen specificity and neutralization;
[0599] c. harvesting B cells from the host;

[0600] d. enriching the harvested B cells to create an enriched cell population having an increased frequency of antigen-specific cells;

[0601] e. culturing one or more sub-populations from the enriched cell population under conditions that favor the survival of a single B cell to produce a clonal population in at least one culture well;

[0602] f. determining whether the clonal population produces an antibody specific to the antigen;

[0603] g. isolating a single B cell; and

[0604] h. sequencing the nucleic acid sequence of the antibody produced by the single B cell.

[0605] Methods of Humanizing Antibodies

[0606] In another embodiment of the invention, there is provided a method for humanizing antibody heavy and light chains. In this embodiment, the following method is followed for the humanization of the heavy and light chains:

[0607] Light Chain

[0608] 1. Identify the amino acid that is the first one following the signal peptide sequence. This is the start of Framework 1. The signal peptide starts at the first initiation methionine and is typically, but not necessarily 22 amino acids in length for rabbit light chain protein sequences. The start of the mature polypeptide can also be determined experimentally by N-terminal protein sequencing, or can be predicted using a prediction algorithm. This is also the start of Framework 1 as classically defined by those in the field.

[0609] Example: RbtVL Amino acid residue 1 in Fig. 2, starting ‘AYDM…’

[0610] 2. Identify the end of Framework 3. This is typically 86-90 amino acids following the start of Framework 1 and is typically a cysteine residue preceded by two tyrosine residues. This is the end of the Framework 3 as classically defined by those in the field.

[0611] Example: RbtVL amino acid residue 88 in Fig. 2, ending as ‘TYYC’
3. Use the rabbit light chain sequence of the polypeptide starting from the beginning of Framework 1 to the end of Framework 3 as defined above and perform a sequence homology search for the most similar human antibody protein sequences. This will typically be a search against human germline sequences prior to antibody maturation in order to reduce the possibility of immunogenicity, however any human sequences can be used. Typically a program like BLAST can be used to search a database of sequences for the most homologous. Databases of human antibody sequences can be found from various sources such as NCBI (National Center for Biotechnology Information).

Example: RbtVL amino acid sequence from residues numbered 1 through 88 in Fig. 2 is BLASTed against a human antibody germline database. The top three unique returned sequences are shown in Fig. 2 as L12A, V1 and Vx02.

4. Generally the most homologous human germline variable light chain sequence is then used as the basis for humanization. However those skilled in the art may decide to use another sequence that wasn’t the highest homology as determined by the homology algorithm, based on other factors including sequence gaps and framework similarities.

Example: In Fig. 2, L12A was the most homologous human germline variable light chain sequence and is used as the basis for the humanization of RbtVL.

5. Determine the framework and CDR arrangement (FR1, FR2, FR3, CDR1 & CDR2) for the human homolog being used for the light chain humanization. This is using the traditional layout as described in the field. Align the rabbit variable light chain sequence with the human homolog, while maintaining the layout of the framework and CDR regions.

Example: In Fig. 2, the RbtVL sequence is aligned with the human homologous sequence L12A, and the framework and CDR domains are indicated.

6. Replace the human homologous light chain sequence CDR1 and CDR2 regions with the CDR1 and CDR2 sequences from the rabbit sequence. If there are differences in length between the rabbit and human CDR sequences then use the entire rabbit CDR sequences and their lengths. It is possible that the specificity, affinity and/or immunogenicity of the resulting humanized antibody may be unaltered if smaller or larger sequence exchanges are performed, or if specific residue(s) are altered, however the exchanges as described have been used successfully, but do not exclude the possibility that other changes may be permitted.
Example: In Fig. 2, the CDR1 and CDR2 amino acid residues of the human homologous variable light chain L12A are replaced with the CDR1 and CDR2 amino acid sequences from the RbtVL rabbit antibody light chain sequence. The human L12A frameworks 1, 2 and 3 are unaltered. The resulting humanized sequence is shown below as VLh from residues numbered 1 through 88. Note that the only residues that are different from the L12A human sequence are underlined, and are thus rabbit-derived amino acid residues. In this example only 8 of the 88 residues are different than the human sequence.

7. After framework 3 of the new hybrid sequence created in Step 6, attach the entire CDR3 of the rabbit light chain antibody sequence. The CDR3 sequence can be of various lengths, but is typically 9 to 15 amino acid residues in length. The CDR3 region and the beginning of the following framework 4 region are defined classically and identifiable by those skilled in the art. Typically the beginning of Framework 4, and thus after the end of CDR3 consists of the sequence ‘FGGG…’, however some variation may exist in these residues.

Example: In Fig. 2, the CDR3 of RbtVL (amino acid residues numbered 89-100) is added after the end of framework 3 in the humanized sequence indicated as VLh.

8. The rabbit light chain framework 4, which is typically the final 11 amino acid residues of the variable light chain and begins as indicated in Step 7 above and typically ends with the amino acid sequence ‘…VVKR’ is replaced with the nearest human light chain framework 4 homolog, usually from germline sequence. Frequently this human light chain framework 4 is of the sequence ‘FGGGTKVEIKR’. It is possible that other human light chain framework 4 sequences that are not the most homologous or otherwise different may be used without affecting the specificity, affinity and/or immunogenicity of the resulting humanized antibody. This human light chain framework 4 sequence is added to the end of the variable light chain humanized sequence immediately following the CDR3 sequence from Step 7 above. This is now the end of the variable light chain humanized amino acid sequence.

Example: In Fig. 2, Framework 4 (FR4) of the RbtVL rabbit light chain sequence is shown above a homologous human FR4 sequence. The human FR4 sequence is added to the humanized variable light chain sequence (VLh) right after the end of the CDR3 region added in Step 7 above.
In addition, Figs. 34 and 35 depict preferred humanized anti-IL-6 variable heavy and variable light chain sequences humanized from the variable heavy and light regions in Ab1 according to the invention. These humanized light and heavy chain regions are respectively contained in the polypeptides contained in SEQ ID NO: 647, or 651 and in SEQ ID NO: 652, 656, 657 or 658. The CDR2 of the humanized variable heavy region in SEQ ID NO: 657 (containing a serine substitution in CDR2) is contained in SEQ ID NO: 658. Alignments illustrating variants of the light and heavy chains are shown in Figs. 36 and 37, respectively, with sequence differences within the CDR regions highlighted. Sequence identifiers of CDR sequences and of exemplary coding sequences are summarized in Table 1, above.

Heavy Chain

1. Identify the amino acid that is the first one following the signal peptide sequence. This is the start of Framework 1. The signal peptide starts at the first initiation methionine and is typically 19 amino acids in length for rabbit heavy chain protein sequences. Typically, but not necessarily always, the final 3 amino acid residues of a rabbit heavy chain signal peptide are ‘...VQC’, followed by the start of Framework 1. The start of the mature polypeptide can also be determined experimentally by N-terminal protein sequencing, or can be predicted using a prediction algorithm. This is also the start of Framework 1 as classically defined by those in the field.

Example: RbtVH Amino acid residue 1 in Fig. 2, starting ‘QEQL...’

2. Identify the end of Framework 3. This is typically 95-100 amino acids following the start of Framework 1 and typically has the final sequence of ‘...CAR’ (although the alanine can also be a valine). This is the end of the Framework 3 as classically defined by those in the field.

Example: RbtVH amino acid residue 98 in Fig. 2, ending as ‘...FCVR’.

3. Use the rabbit heavy chain sequence of the polypeptide starting from the beginning of Framework 1 to the end of Framework 3 as defined above and perform a sequence homology search for the most similar human antibody protein sequences. This will typically be against a database of human germline sequences prior to antibody maturation in order to reduce the possibility of immunogenicity, however any human sequences can be used. Typically a program like BLAST can be used to search a database of sequences for the
most homologous. Databases of human antibody sequences can be found from various sources such as NCBI (National Center for Biotechnology Information).

[0631] Example: RbtVH amino acid sequence from residues numbered 1 through 98 in Fig. 2 is BLASTed against a human antibody germline database. The top three unique returned sequences are shown in Fig. 2 as 3-64-04, 3-66-04, and 3-53-02.

[0632] 4. Generally the most homologous human germline variable heavy chain sequence is then used as the basis for humanization. However those skilled in the art may decide to use another sequence that wasn’t the most homologous as determined by the homology algorithm, based on other factors including sequence gaps and framework similarities.

[0633] Example: 3-64-04 in Fig. 2 was the most homologous human germline variable heavy chain sequence and is used as the basis for the humanization of RbtVH.

[0634] 5. Determine the framework and CDR arrangement (FR1, FR2, FR3, CDR1 & CDR2) for the human homolog being used for the heavy chain humanization. This is using the traditional layout as described in the field. Align the rabbit variable heavy chain sequence with the human homolog, while maintaining the layout of the framework and CDR regions.

[0635] Example: In Fig. 2, the RbtVH sequence is aligned with the human homologous sequence 3-64-04, and the framework and CDR domains are indicated.

[0636] 6. Replace the human homologous heavy chain sequence CDR1 and CDR2 regions with the CDR1 and CDR2 sequences from the rabbit sequence. If there are differences in length between the rabbit and human CDR sequences then use the entire rabbit CDR sequences and their lengths. In addition, it may be necessary to replace the final three amino acids of the human heavy chain Framework 1 region with the final three amino acids of the rabbit heavy chain Framework 1. Typically but not always, in rabbit heavy chain Framework 1 these three residues follow a Glycine residue preceded by a Serine residue. In addition, it may be necessary replace the final amino acid of the human heavy chain Framework 2 region with the final amino acid of the rabbit heavy chain Framework 2. Typically, but not necessarily always, this is a Glycine residue preceded by an Isoleucine residue in the rabbit heavy chain Framework 2. It is possible that the specificity, affinity and/or immunogenicity of the resulting humanized antibody may be unaltered if smaller or larger sequence exchanges are performed, or if specific residue(s) are altered, however the exchanges as described have been used successfully, but do not exclude the possibility that other changes may be permitted. For example, a tryptophan amino acid residue typically
occurs four residues prior to the end of the rabbit heavy chain CDR2 region, whereas in human heavy chain CDR2 this residue is typically a Serine residue. Changing this rabbit tryptophan residue to a the human Serine residue at this position has been demonstrated to have minimal to no effect on the humanized antibody’s specificity or affinity, and thus further minimizes the content of rabbit sequence-derived amino acid residues in the humanized sequence.

[0637] Example: In Fig. 2, The CDR1 and CDR2 amino acid residues of the human homologous variable heavy chain are replaced with the CDR1 and CDR2 amino acid sequences from the RbtVH rabbit antibody light chain sequence, except for the boxed residue, which is tryptophan in the rabbit sequence (position number 63) and Serine at the same position in the human sequence, and is kept as the human Serine residue. In addition to the CDR1 and CDR2 changes, the final three amino acids of Framework 1 (positions 28-30) as well as the final residue of Framework 2 (position 49) are retained as rabbit amino acid residues instead of human. The resulting humanized sequence is shown below as VHh from residues numbered 1 through 98. Note that the only residues that are different from the 3-64-04 human sequence are underlined, and are thus rabbit-derived amino acid residues. In this example only 15 of the 98 residues are different than the human sequence.

[0638] 7. After framework 3 of the new hybrid sequence created in Step 6, attach the entire CDR3 of the rabbit heavy chain antibody sequence. The CDR3 sequence can be of various lengths, but is typically 5 to 19 amino acid residues in length. The CDR3 region and the beginning of the following framework 4 region are defined classically and are identifiable by those skilled in the art. Typically the beginning of framework 4, and thus after the end of CDR3 consists of the sequence WGXG...(where X is usually Q or P), however some variation may exist in these residues.

[0639] Example: The CDR3 of RbtVH (amino acid residues numbered 99-110) is added after the end of framework 3 in the humanized sequence indicated as VHh.

[0640] 8. The rabbit heavy chain framework 4, which is typically the final 11 amino acid residues of the variable heavy chain and begins as indicated in Step 7 above and typically ends with the amino acid sequence ‘...TVSS’ is replaced with the nearest human heavy chain framework 4 homolog, usually from germline sequence. Frequently this human heavy chain framework 4 is of the sequence ‘WGQGTLVTVSS’. It is possible that other human heavy chain framework 4 sequences that are not the most homologous or otherwise different may be
used without affecting the specificity, affinity and/or immunogenicity of the resulting humanized antibody. This human heavy chain framework 4 sequence is added to the end of the variable heavy chain humanized sequence immediately following the CDR3 sequence from Step 7 above. This is now the end of the variable heavy chain humanized amino acid sequence.

[0641] Example: In Fig. 2, framework 4 (FR4) of the RbtVH rabbit heavy chain sequence is shown above a homologous human heavy FR4 sequence. The human FR4 sequence is added to the humanized variable heavy chain sequence (VHh) right after the end of the CD3 region added in Step 7 above.

[0642] Methods of Producing Antibodies and Fragments thereof

[0643] The invention is also directed to the production of the antibodies described herein or fragments thereof. Recombinant polypeptides corresponding to the antibodies described herein or fragments thereof are secreted from polyploidal, preferably diploid or tetraploid strains of mating competent yeast. In an exemplary embodiment, the invention is directed to methods for producing these recombinant polypeptides in secreted form for prolonged periods using cultures comprising polyploid yeast, i.e., at least several days to a week, more preferably at least a month or several months, and even more preferably at least 6 months to a year or longer. These polyploid yeast cultures will express at least 10-25 mg/liter of the polypeptide, more preferably at least 50-250 mg/liter, still more preferably at least 500-1000 mg/liter, and most preferably a gram per liter or more of the recombinant polypeptide(s).

[0644] In one embodiment of the invention a pair of genetically marked yeast haploid cells are transformed with expression vectors comprising subunits of a desired heteromultimeric protein. One haploid cell comprises a first expression vector, and a second haploid cell comprises a second expression vector. In another embodiment diploid yeast cells will be transformed with one or more expression vectors that provide for the expression and secretion of one or more of the recombinant polypeptides. In still another embodiment a single haploid cell may be transformed with one or more vectors and used to produce a polyploidal yeast by fusion or mating strategies. In yet another embodiment a diploid yeast culture may be transformed with one or more vectors providing for the expression and secretion of a desired polypeptide or polypeptides. These vectors may comprise vectors e.g., linearized plasmids or other linear DNA products that integrate into the yeast cell’s genome
randomly, through homologous recombination, or using a recombinase such as Cre/Lox or Flp/Frt. Optionally, additional expression vectors may be introduced into the haploid or diploid cells; or the first or second expression vectors may comprise additional coding sequences; for the synthesis of heterotrimers; heterotetramers; etc. The expression levels of the non-identical polypeptides may be individually calibrated, and adjusted through appropriate selection, vector copy number, promoter strength and/or induction and the like. The transformed haploid cells are genetically crossed or fused. The resulting diploid or tetraploid strains are utilized to produce and secrete fully assembled and biologically functional proteins, humanized antibodies described herein or fragments thereof.

[0645] The use of diploid or tetraploid cells for protein production provides for unexpected benefits. The cells can be grown for production purposes, i.e. scaled up, and for extended periods of time, in conditions that can be deleterious to the growth of haploid cells, which conditions may include high cell density; growth in minimal media; growth at low temperatures; stable growth in the absence of selective pressure; and which may provide for maintenance of heterologous gene sequence integrity and maintenance of high level expression over time. Without wishing to be bound thereby, the inventors theorize that these benefits may arise, at least in part, from the creation of diploid strains from two distinct parental haploid strains. Such haploid strains can comprise numerous minor autotrophic mutations, which mutations are complemented in the diploid or tetraploid, enabling growth and enhanced production under highly selective conditions.

[0646] Transformed mating competent haploid yeast cells provide a genetic method that enables subunit pairing of a desired protein. Haploid yeast strains are transformed with each of two expression vectors, a first vector to direct the synthesis of one polypeptide chain and a second vector to direct the synthesis of a second, non-identical polypeptide chain. The two haploid strains are mated to provide a diploid host where optimized target protein production can be obtained.

[0647] Optionally, additional non-identical coding sequence(s) are provided. Such sequences may be present on additional expression vectors or in the first or the second expression vectors. As is known in the art, multiple coding sequences may be independently expressed from individual promoters; or may be coordinately expressed through the inclusion of an “internal ribosome entry site” or “IRES”, which is an element that promotes direct internal ribosome entry to the initiation codon, such as ATG, of a cistron (a protein encoding
region), thereby leading to the cap-independent translation of the gene. IRES elements functional in yeast are described by Thompson et al. (2001) P.N.A.S. 98:12866-12868.

[0648] In one embodiment of the invention, antibody sequences are produced in combination with a secretory J chain, which provides for enhanced stability of IgA (see U.S. Patent Nos. 5,959,177; and 5,202,422).

[0649] In a preferred embodiment the two haploid yeast strains are each auxotrophic, and require supplementation of media for growth of the haploid cells. The pair of auxotrophs are complementary, such that the diploid product will grow in the absence of the supplements required for the haploid cells. Many such genetic markers are known in yeast, including requirements for amino acids (e.g. met, lys, his, arg, etc.), nucleosides (e.g. ura3, ade1, etc.); and the like. Amino acid markers may be preferred for the methods of the invention. Alternatively diploid cells which contain the desired vectors can be selected by other means, e.g., by use of other markers, such as green fluorescent protein, antibiotic resistance genes, various dominant selectable markers, and the like.

[0650] Two transformed haploid cells may be genetically crossed and diploid strains arising from this mating event selected by their hybrid nutritional requirements and/or antibiotic resistance spectra. Alternatively, populations of the two transformed haploid strains are spheroplasted and fused, and diploid progeny regenerated and selected. By either method, diploid strains can be identified and selectively grown based on their ability to grow in different media than their parents. For example, the diploid cells may be grown in minimal medium that may include antibiotics. The diploid synthesis strategy has certain advantages. Diploid strains have the potential to produce enhanced levels of heterologous protein through broader complementation to underlying mutations, which may impact the production and/or secretion of recombinant protein. Furthermore, once stable strains have been obtained, any antibiotics used to select those strains do not necessarily need to be continuously present in the growth media.

[0651] As noted above, in some embodiments a haploid yeast may be transformed with a single or multiple vectors and mated or fused with a non-transformed cell to produce a diploid cell containing the vector or vectors. In other embodiments, a diploid yeast cell may be transformed with one or more vectors that provide for the expression and secretion of a desired heterologous polypeptide by the diploid yeast cell.
[0652] In one embodiment of the invention, two haploid strains are transformed with a library of polypeptides, e.g. a library of antibody heavy or light chains. Transformed haploid cells that synthesize the polypeptides are mated with the complementary haploid cells. The resulting diploid cells are screened for functional protein. The diploid cells provide a means of rapidly, conveniently and inexpensively bringing together a large number of combinations of polypeptides for functional testing. This technology is especially applicable for the generation of heterodimeric protein products, where optimized subunit synthesis levels are critical for functional protein expression and secretion.

[0653] In another embodiment of the invention, the expression level ratio of the two subunits is regulated in order to maximize product generation. Heterodimer subunit protein levels have been shown previously to impact the final product generation (Simmons LC, J Immunol Methods. 2002 May 1;263(1-2):133-47). Regulation can be achieved prior to the mating step by selection for a marker present on the expression vector. By stably increasing the copy number of the vector, the expression level can be increased. In some cases, it may be desirable to increase the level of one chain relative to the other, so as to reach a balanced proportion between the subunits of the polypeptide. Antibiotic resistance markers are useful for this purpose, e.g. Zeocin™ (phleomycin) resistance marker, G418 resistance, etc. and provide a means of enrichment for strains that contain multiple integrated copies of an expression vector in a strain by selecting for transformants that are resistant to higher levels of Zeocin™ (phleomycin) or G418. The proper ratio, e.g. 1:1; 1:2; etc. of the subunit genes may be important for efficient protein production. Even when the same promoter is used to transcribe both subunits, many other factors contribute to the final level of protein expressed and therefore, it can be useful to increase the number of copies of one encoded gene relative to the other. Alternatively, diploid strains that produce higher levels of a polypeptide, relative to single copy vector strains, are created by mating two haploid strains, both of which have multiple copies of the expression vectors.

[0654] Host cells are transformed with the above-described expression vectors, mated to form diploid strains, and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants or amplifying the genes encoding the desired sequences. A number of minimal media suitable for the growth of yeast are known in the art. Any of these media may be supplemented as necessary with salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as phosphate, HEPES), nucleosides (such as adenosine and thymidine), antibiotics, trace elements, and glucose or an equivalent energy
source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

[0655] Secreted proteins are recovered from the culture medium. A protease inhibitor, such as phenyl methyl sulfonyl fluoride (PMSF) may be useful to inhibit proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants. The composition may be concentrated, filtered, dialyzed, etc., using methods known in the art.

[0656] The diploid cells of the invention are grown for production purposes. Such production purposes desirably include growth in minimal media, which media lacks pre-formed amino acids and other complex biomolecules, e.g., media comprising ammonia as a nitrogen source, and glucose as an energy and carbon source, and salts as a source of phosphate, calcium and the like. Preferably such production media lacks selective agents such as antibiotics, amino acids, purines, pyrimidines, etc. The diploid cells can be grown to high cell density, for example at least about 50 g/L; more usually at least about 100 g/L; and may be at least about 300, about 400, about 500 g/L or more.

[0657] In one embodiment of the invention, the growth of the subject cells for production purposes is performed at low temperatures, which temperatures may be lowered during log phase, during stationary phase, or both. The term “low temperature” refers to temperatures of at least about 15 °C, more usually at least about 17 °C, and may be about 20 °C, and is usually not more than about 25 °C, more usually not more than about 22 °C. In another embodiment of the invention, the low temperature is usually not more than about 28 °C. Growth temperature can impact the production of full-length secreted proteins in production cultures, and decreasing the culture growth temperature can strongly enhance the intact product yield. The decreased temperature appears to assist intracellular trafficking through the folding and post-translational processing pathways used by the host to generate the target product, along with reduction of cellular protease degradation.

[0658] The methods of the invention provide for expression of secreted, active protein, preferably a mammalian protein. In one embodiment, secreted, “active antibodies”, as used herein, refers to a correctly folded multimer of at least two properly paired chains, which accurately binds to its cognate antigen. Expression levels of active protein are usually at least
about 10-50 mg/liter culture, more usually at least about 100 mg/liter, preferably at least about 500 mg/liter, and may be 1000 mg/liter or more.

[0659] The methods of the invention can provide for increased stability of the host and heterologous coding sequences during production. The stability is evidenced, for example, by maintenance of high levels of expression of time, where the starting level of expression is decreased by not more than about 20%, usually not more than 10%, and may be decreased by not more than about 5% over about 20 doublings, 50 doublings, 100 doublings, or more.

[0660] The strain stability also provides for maintenance of heterologous gene sequence integrity over time, where the sequence of the active coding sequence and requisite transcriptional regulatory elements are maintained in at least about 99% of the diploid cells, usually in at least about 99.9% of the diploid cells, and preferably in at least about 99.99% of the diploid cells over about 20 doublings, 50 doublings, 100 doublings, or more. Preferably, substantially all of the diploid cells maintain the sequence of the active coding sequence and requisite transcriptional regulatory elements.

[0661] Other methods of producing antibodies are well known to those of ordinary skill in the art. For example, methods of producing chimeric antibodies are now well known in the art (See, for example, U.S. Patent No. 4,816,567 to Cabilly et al.; Morrison et al., P.N.A.S. USA, 81:8651-55 (1984); Neuberger, M.S. et al., Nature, 314:268-270 (1985); Boulianne, G.L. et al., Nature, 312:643-46 (1984), the disclosures of each of which are herein incorporated by reference in their entireties).

[0663] Antibody polypeptides of the invention having IL-6 binding specificity may also be produced by constructing, using conventional techniques well known to those of ordinary skill in the art, an expression vector containing an operon and a DNA sequence encoding an antibody heavy chain in which the DNA sequence encoding the CDRs required for antibody specificity is derived from a non-human cell source, preferably a rabbit B-cell source, while
the DNA sequence encoding the remaining parts of the antibody chain is derived from a human cell source.

[0664] A second expression vector is produced using the same conventional means well known to those of ordinary skill in the art, said expression vector containing an operon and a DNA sequence encoding an antibody light chain in which the DNA sequence encoding the CDRs required for antibody specificity is derived from a non-human cell source, preferably a rabbit B-cell source, while the DNA sequence encoding the remaining parts of the antibody chain is derived from a human cell source.

[0665] The expression vectors are transfected into a host cell by convention techniques well known to those of ordinary skill in the art to produce a transfected host cell, said transfected host cell cultured by conventional techniques well known to those of ordinary skill in the art to produce said antibody polypeptides.

[0666] The host cell may be co-transfected with the two expression vectors described above, the first expression vector containing DNA encoding an operon and a light chain-derived polypeptide and the second vector containing DNA encoding an operon and a heavy chain-derived polypeptide. The two vectors contain different selectable markers, but preferably achieve substantially equal expression of the heavy and light chain polypeptides. Alternatively, a single vector may be used, the vector including DNA encoding both the heavy and light chain polypeptides. The coding sequences for the heavy and light chains may comprise cDNA.

[0667] The host cells used to express the antibody polypeptides may be either a bacterial cell such as E. coli, or a eukaryotic cell. In a particularly preferred embodiment of the invention, a mammalian cell of a well-defined type for this purpose, such as a myeloma cell or a Chinese hamster ovary (CHO) cell line may be used.

[0668] The general methods by which the vectors may be constructed, transfection methods required to produce the host cell and culturing methods required to produce the antibody polypeptides from said host cells all include conventional techniques. Although preferably the cell line used to produce the antibody is a mammalian cell line, any other suitable cell line, such as a bacterial cell line such as an E. coli-derived bacterial strain, or a yeast cell line, may alternatively be used.
Similarly, once produced the antibody polypeptides may be purified according to standard procedures in the art, such as for example cross-flow filtration, ammonium sulphate precipitation, affinity column chromatography and the like.

The antibody polypeptides described herein may also be used for the design and synthesis of either peptide or non-peptide mimetics that would be useful for the same therapeutic applications as the antibody polypeptides of the invention. See, for example, Saragobi et al, Science, 253:792-795 (1991), the contents of which are herein incorporated by reference in its entirety.

Exemplary Embodiments of Heavy and Light Chain Polypeptides and Polynucleotides

This section recites exemplary embodiments of heavy and light chain polypeptides, as well as exemplary polynucleotides encoding such polypeptides. These exemplary polynucleotides are suitable for expression in the disclosed Pichia expression system.

In certain embodiments, the present invention encompasses polynucleotides having at least 70%, such as at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the polynucleotides recited in this application or that encode polypeptides recited in this application, or that hybridize to said polynucleotides under conditions of low-stringency, moderate-stringency, or high-stringency conditions, preferably those that encode polypeptides (e.g. an immunoglobulin heavy and light chain, a single-chain antibody, an antibody fragment, etc.) that have at least one of the biological activities set forth herein, including without limitation thereto specific binding to an IL-6 polypeptide. In another aspect, the invention encompasses a composition comprising such a polynucleotide and/or a polypeptide encoded by such a polynucleotide. In yet another aspect, the invention encompasses a method of treatment of a disease or condition associated with IL-6 or that may be prevented, treated, or ameliorated with an IL-6 antagonist such as Ab1 (e.g. cachexia, cancer fatigue, arthritis, etc.) comprising administration of a composition comprising such a polynucleotide and/or polypeptide.

In certain preferred embodiments, a heavy chain polypeptide will comprise one or more of the CDR sequences of the heavy and/or light chain polypeptides recited herein (including those contained in the heavy and light chain polypeptides recited herein) and one
or more of the framework region polypeptides recited herein, including those depicted in Figs. 2 and 34-37 or Table 1, and contained in the heavy and light chain polypeptide sequences recited herein. In certain preferred embodiments, a heavy chain polypeptide will comprise one or more Framework 4 region sequences as depicted in Figs. 2 and 34-37 or Table 1, or as contained in a heavy or light chain polypeptide recited herein.

[0675] In certain preferred embodiments, a light chain polypeptide will comprise one or more of the CDR sequences of the heavy and/or light chain polypeptides recited herein (including those contained in the heavy and light chain polypeptides recited herein) and one or more of the Framework region polypeptides recited herein, including those depicted in Figs. 2 and 34-37 or Table 1, and contained in the heavy and light chain polypeptide sequences recited herein. In certain preferred embodiments, a light chain polypeptide will comprise one or more Framework 4 region sequences as depicted in Figs. 2 and 34-37 or Table 1, or as contained in a heavy or light chain polypeptide recited herein.

[0676] In any of the embodiments recited herein, certain of the sequences recited may be substituted for each other, unless the context indicates otherwise. The recitation that particular sequences may be substituted for one another, where such recitations are made, are understood to be illustrative rather than limiting, and it is also understood that such substitutions are encompassed even when no illustrative examples of substitutions are recited. For example, wherever one or more of the Ab1 light chain polypeptides is recited, e.g. any of SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709, another Ab1 light chain polypeptide may be substituted unless the context indicates otherwise. Similarly, wherever one of the Ab1 heavy chain polypeptides is recited, e.g. any of SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708, another Ab1 heavy chain polypeptide may be substituted unless the context indicates otherwise. Likewise, wherever one of the Ab1 light chain polynucleotides is recited, e.g. any of SEQ ID NO: 10, 662, 698, 701, or 705, another Ab1 light chain polynucleotide may be substituted unless the context indicates otherwise. Similarly, wherever one of the Ab1 heavy chain polynucleotides is recited, e.g. any of SEQ ID NO: 11, 663, 700, 703, or 707, another Ab1 heavy chain polynucleotide may be substituted unless the context indicates otherwise. Additionally, recitation of any member of any of the following groups is understood to encompass substitution by any other member of the group, as follows: Ab2 Light chain polypeptides (SEQ ID NO: 21 and 667); Ab2 Light chain polynucleotides (SEQ ID NO: 29 and 669); Ab2 Heavy chain polypeptides (SEQ ID NO: 22 and 668); Ab2 Heavy chain polynucleotides (SEQ ID NO: 30 and 670); Ab3 Light
chain polypeptides (SEQ ID NO: 37 and 671); Ab3 Light chain polynucleotides (SEQ ID NO: 45 and 673); Ab3 Heavy chain polypeptides (SEQ ID NO: 38 and 672); Ab3 Heavy chain polynucleotides (SEQ ID NO: 46 and 674); Ab4 Light chain polypeptides (SEQ ID NO: 53 and 675); Ab4 Light chain polynucleotides (SEQ ID NO: 61 and 677); Ab4 Heavy chain polypeptides (SEQ ID NO: 54 and 676); Ab4 Heavy chain polynucleotides (SEQ ID NO: 62 and 678); Ab5 Light chain polypeptides (SEQ ID NO: 69 and 679); Ab5 Light chain polynucleotides (SEQ ID NO: 77 and 681); Ab5 Heavy chain polypeptides (SEQ ID NO: 70 and 680); Ab5 Heavy chain polynucleotides (SEQ ID NO: 78 and 682); Ab6 Light chain polypeptides (SEQ ID NO: 85 and 683); Ab6 Light chain polynucleotides (SEQ ID NO: 93 and 685); Ab6 Heavy chain polypeptides (SEQ ID NO: 86 and 684); Ab6 Heavy chain polynucleotides (SEQ ID NO: 94 and 686); Ab7 Light chain polypeptides (SEQ ID NO: 101, 119, 687, 693); Ab7 Light chain polynucleotides (SEQ ID NO: 109 and 689); Ab7 Heavy chain polypeptides (SEQ ID NO: 102, 117, 118, 688, 691, and 692); Ab7 Heavy chain polynucleotides (SEQ ID NO: 110 and 690); Ab1 Light Chain CDR1 polynucleotides (SEQ ID NO: 12 and 694); Ab1 Light Chain CDR3 polynucleotides (SEQ ID NO: 14 and 695); Ab1 Heavy Chain CDR2 polynucleotides (SEQ ID NO: 16 and 696) and Ab1 Heavy Chain CDR3 polynucleotides (SEQ ID NO: 17 and 697).

[0677] Exemplary Ab1-encoding polynucleotide sequences are recited as follows:

[0678] SEQ ID NO: 662:
ATGGACACGAGGCCCCCCTCATCAGCCTCCTGGGCTCCTGCTCTGGGCTCCAG
GTGCCAGATGTGGCCTATGTATATGACCCAGACTCCAGCTGGGTGTCTGCAGCTGT
GGGAGGCACAGTCACCACATCAAGTGCCAGGCCAGTCAGAGCATTAAACAAATGAATT
ATCCTGGTATCAGAGAAAACAGGGGAGCCTCCTCAGACCTGATCTTATAGGGGC
ATCCACTCTGGCATCGGGGTCTCATCGCGGTTCAAGGGGACTGGATCGTGAGCA
GAGTTCACTCTCCACCACAGCAGCTGGAGTGTGCGGATGTGCGACCATCTACTACT
GTCAACAGGGTATATGCTGAGGAATATTGATAATGCT

[0679] SEQ ID NO: 663:
ATGGAGACTGCGGCTCGGCTCGGCTTCTCCTCGGTGCGGTCTGCTCTGCTCAAAGGTGTCAGT
GTCAGTCCGCAGGAGCTCAGGAGGTGCCTGCTCACCCAGCTGGGACACCCGTCGA
CACCTACCTGCAGACCTCTGCGATTCTCCCTCAGTAACTACTACGTGACCCCGGT
CCGCCAGGCTCCAGGGAAAGGCTGGAATGGGATCGGAATTTATGATCGTAGA
TGAAACGGCCTACCGGACCTGGGAGTAGGGCCGATTACCATCTCCAAAACCTC

Page 130 of 297
GACCAGGGGATCTGAAAAATGACCAGTCTGACAGCCCGGGAGCAGAGGCGCCACCTA
TTTCTGTCGCCAGAGATGATAGTATAGTAGTACTGGGATGCAAATTTAATTG

[0680] SEQ ID NO: 698:
GCTATCCAGATGACCCCCAGTCTCTCTTCCTCCCTGTCATCTGTAGGAGACAGAG
TCACCATCACTGGCCAGGCGATCGAGACATTAACGATTAGTTATCCTGTGCTACA
GCAGAAACCAGGGAGAACCCCTAAGCTCCTGATCTATAAGGGCATTACACTCTGCG
ATCTGGGGTCCCATCAAGGTTCGACGGGCGAGTGGTCTGAGGACAGATCTTCACTTCTC
ACCACACAGCAGCTGAGCTGATGATATATGCTGGAACACTCTTACG
ATAGTTACTGCTAGAGATGATAGTATGAGCTGGATGCAAATTTAATTG
GGGGCCAGGGACCCTCCTGTCACGCCTCGAG

[0681] SEQ ID NO: 700:
GAGGTGACGCTGGTGGAGTCTGGGGAGGCTTGGTCGACGCTTGAGGCTTGCCCTG
AGACTCTCTGTGACGCGCTCTGGATTTCCCTCACAACTACTACGTGACCTGG
TCCGTCAGGCTCCCAGGAAGGGCTTGAGGCTGGTGCCATCATCTATGGTAGTG
ATGAAACCGCCTACGCTACCTCCGCCTAGGCGGATTTACACCATCTCCAGAGACAA
TTCCAAGAAGACCCCTGTATCTCTCAAAATGAAAGCCTGAGGCTGAGACACTGCT
GTGATTACTGCTAGAGATGATAGTATGAGCTGGATGCAAATTTAATTG
GGGGCCAGGGACCCTCCTGTCACGCCTCGAG

[0682] SEQ ID NO: 701:
GCTATCCAGATGACCCCCAGTCTCTCTTCCTCCCTGTCATCTGTAGGAGACAGAG
TCACCATCACTGGCCAGGCGATCGAGACATTAACGATTAGTTATCCTGTGCTACA
GCAGAAACCAGGGAGAACCCCTAAGCTCCTGATCTATAAGGGCATTACACTCTGCG
ATCTGGGGTCCCATCAAGGTTCGACGGGCGAGTGGTCTGAGGACAGATCTTCACTTCTC
ACCACACAGCAGCTGAGCTGATGATATATGCTGGAACACTCTTACG
ATAGTTACTGCTAGAGATGATAGTATGAGCTGGATGCAAATTTAATTG
GGGGCCAGGGACCCTCCTGTCACGCCTCGAG
AGTGCACAGAGCAGAGCAAGGGAGAGGACACTACGCTCAGGAGCAGACCTTG
ACGCTGAGCAGAAAGCAGACTAGCAGAAACACAAAGTCTACGCTCGAGAAGTCACT
CATCAGGGCCTGAGCTCGCCCGTCACAAGAGACCTTCACAGGGAGAGTGT
GAGGTCAGCAGCTGGTGGAGATCTTGCCGGAGGCTTTGATCCAGCCTGGGAGGTCCCTG
AGACCTCCTGCTGAGCAGCTCTGGATCTCTCCTCTGAGTACTAACCTTGACCTGAGG
TCGACAGCCGACCTGGCTATGGGGCAGTACCATTCTCCAGAGAGACAA
TCCGAAGAACACCCCTGTATCTCCCAATGAGGACGCTGAGCTGAGAGGACACTGCT
GTGATTACGTGCTAGAAGTGAAGTGAAGTCGAGGGAGTAGCCCACATTGT
GGGGCCAGGGCGACCCCTGTTACCGCATCGGCGGCTGCTCGAGCGCTACCACACCCGA
TGCTGCTGTCAGGAGTACACTTCCCGGAACCGGCTGACGGTGTCTGAGAACTCAGG
GCCCTGACCGCCCGTGCAACACCTCCGGCTGCTCTACAGTCCTCTCAGGACTGC
ACTCCCTCAGCAGCGTGTTGAGCCGTGCTCCTCCAGAGCTTTGGGCACCCAGACCTA
CATCTGCAAGTGAATCACAAGCCGCAACACACAGAAGGTCAGAAGAGAGTTGAG
GCCCAAAATCTTTGTGACAAAAACTCACACATGCCCCACGGTGCACAGCAACCTCA
CTGCGGGGACCGTCAGCT
TCTCCCCGCCACCGTCAATGCAGTGCTGTGCTGTCAGTGAGCGCAGCAAGACC
CTGAGGTCAAGTCACTGAGTTAGGACGGCAGCTGAGGTTGCAATGAGTACGAA
CAAGAGCCGGGAGAGCAGTACAGCCAGCACAGCTGCTGTGTCAGCCTCGCTC
CCGTCCTGCAACAGGACTGGTGAATGGAGGTAAGTACAGGCTGGAGTCTCCCA
ACAACGCCCCTCAGCAGCAGCAGTACACCTGGGCCACCTGGGAGGAGTAGACCAAG
CACAGGTCAGCCCTGCACTGGCTAAGGCTTCTATCCAGAGCAGATCGCGGT
GGATGGAGAGCAATGGGACGCGGAGAACAACATCAAGACACGCCTCCCGTG
GCTGGACTCCCGACGGCTCTCTCTCTCTCTCTCTCTCATACAGGAGTCCCGGTAGAA
AGGTGGCAGCAGGGAAGCTCTCTCTATGTCTCTCCAGTGAGGCTCTGCACA
ACCACATACACGAGAGAGCAGCCTCTCCTGTCACCGGGTAAA

ATGAAAGTGGGTAAAGGGCTTATTTATTTATTTATTTATTTATTTATGCAACGCGCTTATTTCCGC
TATCCAGATGACCGTCTTCTTTCTCTTTCTCTTTCTCTTTCTCTTACGTCAAAGGCTTATCCGC
ACCACATCTTGGCCAGGGCAGTCAGAGCATAATCAATAGGTTATCCTGCTGTAC
AGAAACAGGGAAAGCCCTAAAGCCTCAGCAGGAATCTTCTCAGGACACTCGCCATC
CTGCGGGTCACATCAAGGGTCAGGCAGCTTGGAGATCTGGGGGACAGAAGCTCCACT
CATCACGCAGCCTGGCTAGTTTCTTGTCAACTTATAGTGGCAGCCTCCACACTCTCGCAT

Page 132 of 297
AGTCTGAGGAACATTTGATAATGTCTTTCGCGGAGGGAACAGAAGTGAGGAAATCAA
CGTACGGTGCTGCACCATCTGTCTTCTATCTTCCGCCACATCTGATGAGCAGTTGA
AATCTGGAACTGCTCTGGTTGGTCTGCTGAATAACTTCTATCCAGAGAGGC
CAAAAGTACAGTGGAAGGGGATAACCGGCCCTCAAATCGGGTAAACTCCCCAGGAGAG
TGTCACAGAGCACAGCAAGAGAGCAGACCACCTACAGCTACGACGACCCCTGAC
GCTGACGCAAAGCAGACTACGAGAAGAACAAAGTCTACGCTGCGAAGTGACCCCCA
TCAGGGCCGAGCTGCGCCGCCTCAAAAGAGGCTTTCAACAGGGGAGAGTGT

[0685] SEQ ID NO: 707:
ATGAAGTGCGTTCACCTATTTATTTCCGTCTTTGTCTTTCTTTCTGAGCAGCGTTTATTCCGA
GGTGCAAGCTGGGAGTTGTCTGGGGAGGGTGTTGGTGCCGCTGCTGGGCTGAGGCT
ACCTCTCCTGTGACGCGCTTTGACAGTTCCACGTAAACTACTAGTCGACCTGGGTCC
GTCAGGCGTCCAGGGAAAGGGCTTGAGGCTGGGCGCATCATCATCTATGTTAGTAGTG
AAACCCGCTACGTACCTCCGGCCTATAGGCGGATTCACCACCTCCTAGAGAGAATTAC
CAAGAACACCCCCTGTATCTTTCAATGAAACAGGCTGAGGCTTAGGAGAAGACTGT
GTATTACGTGCTAGGATGATGATGACTGGGATGCAAGTCAACTTGGTG
GGGCCAAGGGGACCCCTCGTACCAGTGCTCAGGCGCCCTCACCAAGGGGCCACCCGCTG
CCTGCGTCAAAGGACTACTTTCCCGGAACCCGGTTAGTGCTTGGAATCGAGCCGC
CTGACCCAGCGCGTGACACCTTCCCCGGCTGCTCTACAGTCTCTCAGGACTCTACT
CCCTCAGCGCTGTTAGGACCTGCGCTCCCTCCACGACGCTTTGGGCACCCAGACACCAT
CTGCAACAGTGAAATCAACAGGCCAAGGCCAAGTGGAAGAGGAGTGTAGCAGCC
CAAATCTTTGTGACAAACACTCACACATGGCCACCGTGCCGACACCTGACTCTCG
GGGGGACCCGTCGCTTCTTCTTCTTCTCCCACAAACCCCAAGGCACCACCTGACTGATCT
CCCGGACCCCTGAGGTCACTTGCGTGTGTTGGGAGCGTGACGAGGACGCTTG
AGGTCAAGTCTCACTGGTGACGGCAGCCTGAGGCTGATATAATGCAAGAACA
AGCCCGGGGAGGAGCACTGCCGACAGCAGTACCAGCTGCTGTTAAGCTACGCTCCACGG
TCCTGCACAGGACTGTCGAATGGCAAGAGGTAGTCAAGTGCAAGGCGTTCTCAACCA
AAGGCCCTCAGCAGCCCCATCGAGAAACCCACCTCCAAAGGCGAAAGGCAGCCC
GAGAACCACAGGTGTACACTCTGGCCCATCCGGGAGGAGATGACCAAAGAAC
AGGTCAAGCCTGCCTCTGGCTAAAGGCTTCTATCCAGCGACATCGCCGCTGGA
GTGGGAGAGCAATGGGGCAAGCCGGGAGAAACAACACTACAAGACCAACGCCTCCCGTGCT
GGACTCCGACGGCTTCTTCTTCTCTACAGCAAGGCTACCCGTGGAACAGAGCAGG

Page 133 of 297
TGCCACGGGGACACGTCTTTCTCATTGCTCCTGGATGATGCATGAGGTCTCTGCAACACC
ACTACACGCGAAGAGGCCTCTCCCTGTCCTCCGGGTAA

[0686] SEQ ID NO: 720:
ATCCAGATGACCCAGTCCTCCTCCTCCTCCTGTCTGCACTCTGTAGGAGACAGAAGTCA
CCATCCTTTGCGCCAGGCTAGCAGACATTAACAATGAGGTTATCTCTGATTCAGCA
GAAACCAGGGAAAGCCCCAACAGTCTCACCTGATCTATAGGGACATCCTGCTTCTG
GACAGCACGGCAGGCTTAGATCTGGGACAGACTTCATTCCTCAACCA
TCACGGAGCTGAGTTTCTGCAACTGAGCTTTTCTGGGACAGAGGGTTATAG
TCTGAGGAAACATGGAATGTCTCTTCTGCCGAGGGAGGATCAAGGAACTACACAC
TACGGTGGCTGACCCATCTGTTTTCTCTTCTCCGACAGCTGATAGAGGAGGGAA
TCTGGAACAGGTTGCTATCTGACTCTTCCCAGCTGACTGATTACATCCAGAGCGCA
AAAGTACAGTGAGGTGATGAAACCCTTCAATCGGGTAACTTTATCCAGAGAGAG
TCACAGAGGGACAGCAAGACAGACGCTACCAAGGGGGGCTGAGCACCCAT
TGAGCAAAACAGACTACGAAACAAAAAGTCTACTGCGAGGATCAGGACAGAGG
AGGCTGAGCTCCCGGTCACAAGAGAGCTGAGGAGAGAG

[0687] SEQ ID NO: 721:
GCCTATGATATGACCCAGACTCCAGCCTGGGTCTGTCAGCTTGAGGAGGACAG
TCACCATCAAGTGCCAGGCAAGTCAGAGCAATAAACATGAAATATCCTGTGATTA
GCAGAAGCCAGGGGACGGCTGACGATCTGTTATAGGGCATCCACTCTGCGC
ATCTGGGGTCTCTATGCGGGTTCAAGGGCAGTGGATCTGGGAGACAGATTCAA
ACTCAGCAGCCTTTGGAGTTGCTGCGGATGTCGTCCACTAATCTGTCAACAGGTT
ATAGTCTGAGGAAATATTGGATAATGCTTTCGGCGGAGGGACCAGAGGTGTTGTC
AACGT

[0688] SEQ ID NO: 722:
ATCCAGATGACCCAGTCCTCCTCCTCCTCCTGTCCTGCACTCTGTAGGAGACAGAAGTCA
CCATCCTTTGCGCCAGGCTAGCAGACATTAACAATGAGGTTATCTCTGATTCAGCA
GAAACCAGGGAAAGCCCCAACAGTCTCACCTGATCTATAGGGACATCCTGCTTCTG
GACAGCACGGCAGGCTTAGATCTGGGACAGACTTCATTCCTCAACCA
TCACGGAGCTGAGTTTCTGCAACTGAGCTTTTCTGGGACAGAGGGTTATAG
TCTGAGGAAACATGGAATGTCTCTTCTGCCGAGGGAGGATCAAGGAACTACACAC
TACGGTGGCTGACCCATCTGTTTTCTCTTCTCCGACAGCTGATAGAGGAGGGAA
TCTGGAACAGGTTGCTATCTGACTCTTCCCAGCTGACTGATTACATCCAGAGCGCA
AAAGTACAGTGAGGTGATGAAACCCTTCAATCGGGTAACTTTATCCAGAGAGAG
TCACAGAGGGACAGCAAGACAGACGCTACCAAGGGGGGCTGAGCACCCAT
TGAGCAAAACAGACTACGAAACAAAAAGTCTACTGCGAGGATCAGGACAGAGG
AGGCTGAGCTCCCGGTCACAAGAGAGCTGAGGAGAGAG

[0689] SEQ ID NO: 723:
GCTATCCAGATGACCCAGTCCTCCTCCTCCTCCTGTCCTGCACTCTGTAGGAGACAGAG
TCACCATCCTTTGCCAGGCAGCTACAGACATTAACATGAGTTATCCTGGTATCA
GCAGAAGCCAGGGAAACCCCTAAGCTCCTGTATCTATAGGGCATCACTCTCTC
ATCTGGGGTTCCCTATCAAGGTCAGCGCAGTTGATCTGGGACAGACTTCCACTTC
ACCATCAGCAGCCTGGCAGCTGATGATTGCTCTTTGCCCAACTTATATTACTG
CATGCTAGGAAACATTGATAATGCTTTCCGGCGGAGGACCAAGTGGGAAATCA
AACGT

[0690] SEQ ID NO: 724:
GAGGTGCAGCTTGGAGTCTGCTGGGAGGGGCTTAGTCCAGCCTGGGAGGGGTCCCTG
AGACTCTCCTGTGCAGCCCTCTGGATTCTCTCCCTCAGTAACTACTACGTCACCTGG
TCCGTCAAGGCTCCAGGGAAGGGGCTGAGTGCGGCATCATCTATGTAGTG
ATGAACCCCCTACGTACCTGCTCTCCGCTATAGGCCGATTCCACTCCATCTCCAGAACAA
TTCCAAGAAACACCTGTATCTTCAATGAACAGCCTGAGAGCTGAGGACACTGCT
GTGTATTACTGTGCTTAGAGATGATAGTAGTAGTACTGGGATGCAAAAGTTCAACTTG

[0691] SEQ ID NO: 725:
CAGTCGCTGGAGGAGTGCAGGGGCTGGTCCACGGCTTGGGACACCCCTGACA
CTCCTGTCAGACCCCTCTGGAGTCTCTCCTGTAACCTACGTACCTGGGTCC
GCCAGGCTCCAGGGGAGGGCTTGAATGGATCGGAATCTATTTATGTAGTGATG
AAACGGCCTACCGGACCTGGGCGATAGGCCGATTCCACATCTCCAAACCTCGA
CCACGGTGGATCTGAATAATGGACAGCTGTACGACGGCGACACGCCACCTATT
TCTGTGCCAGAGATGATAGTAGTGACTGAGGATGCAAAATTTAATCTGTTGGGCA
AGGCACCCCTGGTCACCGTCTCGAGC

[0692] **Screening Assays**

[0693] The invention also includes screening assays designed to assist in the identification of diseases and disorders associated with IL-6 in patients exhibiting symptoms of an IL-6 associated disease or disorder.

[0694] In one embodiment of the invention, the anti-IL-6 antibodies of the invention, or IL-6 binding fragments or variants thereof, are used to detect the presence of IL-6 in a biological sample obtained from a patient exhibiting symptoms of a disease or disorder associated with IL-6. The presence of IL-6, or elevated levels thereof when compared to predisease levels of IL-6 in a comparable biological sample, may be beneficial in diagnosing a disease or disorder associated with IL-6.
Another embodiment of the invention provides a diagnostic or screening assay to assist in diagnosis of diseases or disorders associated with IL-6 in patients exhibiting symptoms of an IL-6 associated disease or disorder identified herein, comprising assaying the level of IL-6 expression in a biological sample from said patient using a post-translationally modified anti-IL-6 antibody or binding fragment or variant thereof. The anti-IL-6 antibody or binding fragment or variant thereof may be post-translationally modified to include a detectable moiety such as set forth previously in the disclosure.

The IL-6 level in the biological sample is determined using a modified anti-IL-6 antibody or binding fragment or variant thereof as set forth herein, and comparing the level of IL-6 in the biological sample against a standard level of IL-6 (e.g., the level in normal biological samples). The skilled clinician would understand that some variability may exist between normal biological samples, and would take that into consideration when evaluating results.

The above-recited assay may also be useful in monitoring a disease or disorder, where the level of IL-6 obtained in a biological sample from a patient believed to have an IL-6 associated disease or disorder is compared with the level of IL-6 in prior biological samples from the same patient, in order to ascertain whether the IL-6 level in said patient has changed with, for example, a treatment regimen.

The invention is also directed to a method of in vivo imaging which detects the presence of cells which express IL-6 comprising administering a diagnostically effective amount of a diagnostic composition. Said in vivo imaging is useful for the detection and imaging of IL-6 expressing tumors or metastases and IL-6 expressing inflammatory sites, for example, and can be used as part of a planning regimen for design of an effective cancer or arthritis treatment protocol. The treatment protocol may include, for example, one or more of radiation, chemotherapy, cytokine therapy, gene therapy, and antibody therapy, as well as an anti-IL-6 antibody or fragment or variant thereof.

A skilled clinician would understand that a biological sample includes, but is not limited to, sera, plasma, urine, saliva, mucous, pleural fluid, synovial fluid and spinal fluid.

Methods of Ameliorating or Reducing Symptoms of, or Treating, or Preventing, Diseases and Disorders Associated with, IL-6
[0701] In an embodiment of the invention, IL-6 antagonists such as Ab1 described herein are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with IL-6. IL-6 antagonists described herein (e.g., Ab1) can also be administered in a therapeutically effective amount to patients in need of treatment of diseases and disorders associated with IL-6 in the form of a pharmaceutical composition as described in greater detail below.

[0702] In one embodiment of the invention, IL-6 antagonists described herein (e.g., Ab1) are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with elevated C-reactive protein (CRP). Such diseases include any disease that exhibits chronic inflammation, e.g., rheumatoid arthritis, juvenile rheumatoid arthritis, psoriasis, psoriatic arthropathy, ankylosing spondylitis, systemic lupus erythematosus, Crohn’s disease, ulcerative colitis, pemphigus, dermatomyositis, polymyositis, polymyalgia rheumatica, giant cell arteritis, vasculitis, polyarteritis nodosa, Wegener’s granulomatosis, Kawasaki disease, isolated CNS vasculitis, Churg-Strauss arteritis, microscopic polyarteritis, microscopic polyangiitis, Henoch-Schönlein purpura, essential cryoglobulinemic vasculitis, rheumatoid vasculitis, cryoglobulinemia, relapsing polychondritis, Behçet’s disease, Takayasu’s arteritis, ischemic heart disease, stroke, multiple sclerosis, sepsis, vasculitis secondary to viral infection (e.g., hepatitis B, hepatitis C, HIV, cytomegalovirus, Epstein-Barr virus, Parvo B19 virus, etc.), Buerger’s Disease, cancer, advanced cancer, Osteoarthritis, systemic sclerosis, CREST syndrome, Reiter’s disease, Paget’s disease of bone, Sjogren’s syndrome, diabetes type 1, diabetes type 2, familial Mediterranean fever, autoimmune thrombocytopenia, autoimmune hemolytic anemia, autoimmune thyroid diseases, pernicious anemia, vitiligo, alopecia areata, primary biliary cirrhosis, autoimmune chronic active hepatitis, alcoholic cirrhosis, viral hepatitis including hepatitis B and C, other organ specific autoimmune diseases, burns, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, allergic asthma, other allergic conditions or any combination thereof.

[0703] In one embodiment of the invention, IL-6 antagonists described herein, such as anti-IL-6 antibodies (e.g., Ab1), variants thereof, or fragments thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with reduced serum albumin, e.g. rheumatoid arthritis, cancer, advanced cancer, liver disease, renal disease, inflammatory bowel disease, celiac’s disease, trauma, burns, other diseases associated with reduced serum albumin, or any combination thereof.
[0704] In another embodiment of the invention, IL-6 antagonists described herein are administered to a patient in combination with another active agent. For example, an IL-6 antagonist such as Ab1 may be co-administered with one or more chemotherapy agents, such as VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcytabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids (e.g., vinblastine, vincristine, vindesine and vinorelbine), mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1 antagonists, interleukins (e.g. IL-12 or IL-2), IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux™, Avastin™, Pertuzumab, anti-CD20 antibodies, Rituxan®, ocrelizumab, ofatumumab, DXL625, Herceptin®, or any combination thereof.

men, J Clin Endocrinol Metab., 1998 May;83(5):1573-9; the disclosures of each of which are herein incorporated by reference in their entireties.

[0707] In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or

[0708] In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with the skeletal system. Diseases and disorders associated with the skeletal system include, but are not limited to, osteoarthritis, osteoporosis and Paget’s disease of bone. In a preferred embodiment of the invention, humanized anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, osteoarthritis. See, for example, Malemud CJ., Cytokines as therapeutic targets for osteoarthritis, BioDrugs, 2004;18(1):23-35; Westacott CI, et al, Cytokines in osteoarthritis: mediators or markers of joint destruction?, Semin Arthritis Rheum., 1996 Feb;25(4):254-72; Sugiyama T., Involvement of interleukin-6 and prostaglandin E2 in particular osteoporosis of postmenopausal women with rheumatoid arthritis, J Bone Miner Metab., 2001;19(2):89-96; Abrahamsen B, et al, Cytokines and bone loss in a 5-year longitudinal study - hormone replacement therapy suppresses serum soluble interleukin-6 receptor and increases interleukin-1-receptor antagonist: the Danish Osteoporosis Prevention Study, J Bone Miner Res., 2000 Aug;15(8):1545-54; Straub RH, et al, Hormone replacement therapy and interrelation between serum interleukin-6 and body mass index in postmenopausal women: a

[0709] In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with cancer. Diseases and disorders associated with cancer include, but are not limited to, Acanthoma, Acinic cell carcinoma, Acoustic neuroma, Acrile lentiginous melanoma, Acrospiroma, Acute eosinophilic leukemia, Acute lymphoblastic leukemia, Acute megakaryoblastic leukemia, Acute monocytic leukemia, Acute myeloblastic leukemia with maturation, Acute myeloid dendritic cell leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adamantinoma, Adenocarcinoma, Adenoid cystic carcinoma, Adenoma, Adenomatoid odontogenic tumor, Adrenocortical carcinoma, Adult T-cell leukemia, Aggressive NK-cell leukemia, AIDS-Related Cancers, AIDS-related lymphoma, Alveolar soft part sarcoma, Ameloblastic fibroma, Anal cancer, Anaplastic large cell lymphoma, Anaplastic thyroid cancer, Angioimmunoblastic T-cell lymphoma, Angiomyolipoma, Angiosarcoma, Appendix cancer, Astrocytoma, Atypical teratoid rhabdoid tumor, Basal cell carcinoma, Basal-like carcinoma, B-cell leukemia, B-cell lymphoma, Bellini duct carcinoma, Biliary tract cancer, Bladder cancer, Blastoma, Bone Cancer, Bone tumor, Brain Stem Glioma, Brain Tumor, Breast Cancer, Brenner tumor, Bronchial Tumor, Bronchioloalveolar carcinoma, Brown tumor, Burkitt's lymphoma, Cancer of Unknown Primary Site, Carcinoid Tumor, Carcinoma, Carcinoma in situ, Carcinoma of the penis, Carcinoma of Unknown Primary Site,

[0712] In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful as a wakefulness aid.

[0713] Administration

[0714] In one embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, are administered to a subject at a concentration of between about 0.1 and 20 mg/kg, such as about 0.4 mg/kg, about 0.8 mg/kg, about 1.6 mg/kg, or about 4 mg/kg, of body weight of recipient subject. In a preferred embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, are administered to a subject at a concentration of about 0.4 mg/kg of body weight of recipient subject. In a preferred
embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, are administered to a recipient subject with a frequency of once every twenty-six weeks or less, such as once every sixteen weeks or less, once every eight weeks or less, or once every four weeks, or less. In another preferred embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations thereof, are administered to a recipient subject with a frequency at most once per period of approximately one week, such as at most once per period of approximately two weeks, such as at most once per period of approximately four weeks, such as at most once per period of approximately eight weeks, such as at most once per period of approximately twelve weeks, such as at most once per period of approximately sixteen weeks, such as at most once per period of approximately twenty-four weeks.

[0715] It is understood that the effective dosage may depend on recipient subject attributes, such as, for example, age, gender, pregnancy status, body mass index, lean body mass, condition or conditions for which the composition is given, other health conditions of the recipient subject that may affect metabolism or tolerance of the composition, levels of IL-6 in the recipient subject, and resistance to the composition (for example, arising from the patient developing antibodies against the composition). A person of skill in the art would be able to determine an effective dosage and frequency of administration through routine experimentation, for example guided by the disclosure herein and the teachings in Goodman, L. S., Gilman, A., Brunton, L. L., Lazo, J. S., & Parker, K. L. (2006). Goodman & Gilman's the pharmacological basis of therapeutics. New York: McGraw-Hill; Howland, R. D., Myceck, M. J., Harvey, R. A., Champe, P. C., & Myceck, M. J. (2006). Pharmacology. Lippincott's illustrated reviews. Philadelphia: Lippincott Williams & Wilkins; and Golan, D. E. (2008). Principles of pharmacology: the pathophysiologic basis of drug therapy. Philadelphia, Pa., [etc.]: Lippincott Williams & Wilkins.

[0716] In another embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, are administered to a subject in a pharmaceutical formulation.

[0717] A "pharmaceutical composition" refers to a chemical or biological composition suitable for administration to a mammal. Such compositions may be specifically formulated for administration via one or more of a number of routes, including but not limited to buccal, epicutaneous, epidural, inhalation, intraarterial, intracardial, intracerebroventricular,
intradermal, intramuscular, intranasal, intraocular, intraperitoneal, intraspinal, intrathecal, intravenous, oral, parenteral, rectally via an enema or suppository, subcutaneous, subdermal, sublingual, transdermal, and transmucosal. In addition, administration can occur by means of injection, powder, liquid, gel, drops, or other means of administration.

In one embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, may be optionally administered in combination with one or more active agents. Such active agents include analgesic, antipyretic, anti-inflammatory, antibiotic, antiviral, and anti-cytokine agents. Active agents include agonists, antagonists, and modulators of TNF-alpha, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-18, IFN-alpha, IFN-gamma, BAFF, CXCL13, IP-10, VEGF, EPO, EGF, HRG, Hepatocyte Growth Factor (HGF), Hepcidin, including antibodies reactive against any of the foregoing, and antibodies reactive against any of their receptors. Active agents also include 2-Arylpropionic acids, Aceclofenac, Acemetacin, Acetylsalicylic acid (Aspirin), Alclofenac, Alminoprofen, Amoxiprin, Ampyrone, Arynalkanoic acids, Azapropazone, Benorylate/Benorilate, Benoxaprofen, Bromfenac, Carprofen, Celecoxib, Choline magnesium salicylate, Clofezone, COX-2 inhibitors, Dexibuprofen, Dextekoprofen, Diclofenac, Diflunisal, Droxicam, Ethenzamide, Etodolac, Etoricoxib, Faislamine, fenamic acids, Fenbufen, Fenoprofen, Flufenamic acid, Flunoxaprofen, Flurbiprofen, Ibuprofen, Ibuproaxam, Indometacin, Indoprofen, Kebuzone, Ketoprofen, Ketorolac, Lornoxicam, Loxoprofen, Lumiracoxib, Magnesium salicylate, Meclomenfamic acid, Mefenamic acid, Meloxicam, Metamizole, Methyl salicylate, Mofebutazone, Nabumetone, Naproxen, N-Arylanthranilic acids, OXametacin, Oxaprozin, Oxicams, Oxyphenbutazone, Parecoxib, Phenazone, Phenylbutazone, Phenylbutazone, Piroxicam, Pirprofen, profens, Proglumetacin, Pyrazolidine derivatives, Rofecoxib, Salicyl salicylate, Salicylamide, Salicylates, Sulfinpyrazone, Sulindac, Suprofen, Tenoxicam, Tiaprofenic acid, Tolfenamic acid, Tolmetin, and Valdecoxib. Antibiotics include Amikacin, Aminoglycosides, Amoxicillin, Ampicillin, Ansamycins, Arphenamine, Azithromycin, Azlocillin, Aztreonam, Bacitracin, Carbacephem, Carbapenems, Carbenicillin, Cefaclor, Cefadroxil, Cefalexin, Cefalothin, Cefalotin, Cefamandole, Cefazolin, Cefdinir, Cefditoren, Cefepime, Cefixime, Cefoperazone, Cefotaxime, Cefoxitin, Cefpodoxime, Cefprozil, Ceftazidime, Ceftibuten, Ceftizoxime, Cefotibiprole, Ceftriaxone, Cefuroxime, Cephalosporins, Chloramphenicol, Cilastatin, Ciprofloxacin, Clarithromycin; Clindamycin, Cloxacillin, Colistin, Co-trimoxazole,
Dalfopristin, Demeclocycline, Dicloxacillin, Dirithromycin, Doripenem, Doxycycline, Enoxacin, Ertapenem, Erythromycin, Ethambutol, Flucloxacinill, Fosfomycin, Furazolidone, Fusidic acid, Gatifloxacin, Geldanamycin, Gentamicin, Glycopeptides, Herbimycin, Imipenem, Isoniazid, Kanamycin, Levofloxacine, Lincomycin, Linezolid, Lomefloxacin, Loracarbef, Macrolides, Mafenide, Meropenem, Meticillin, Metronidazole, Mezlocillin, Minocycline, Monobactams, Moxifloxacin, Mupirocin, Nafcillin, Neomycin, Netilmicin, Nitrofurantoin, Norfloxacin, Ofloxacin, Oxacillin, Oxytetracycline, Paromomycin, Penicillin, Penicillins, Piperacillin, Platensimycin, Polymyxin B, Polypeptides, Prontosil, Pyrazinamide, Quinolones, Quinupristin, Rifampicin, Rifampin, Roxithromycin, Spectinomycin, Streptomycin, Sulfacetamide, Sulfamethizole, Sulfanilimide, Sulfasalazine, Sulfoisoxazole, Sulfonamides, Teicoplanin, Telithromycin, Tetracycline, Tetracyclines, Ticarcillin, Tinidazole, Tobramycin, Trimethoprim, Trimethoprim-Sulfamethoxazole, Troleandomycin, Trovanoflaxin, and Vancomycin. Active agents also include Aldosterone, Beclometasone, Betamethasone, Corticosteroids, Cortisol, Cortisone acetate, Dexamethasone, Fludrocortisone acetate, Glucocorticoids, Hydrocortisone, Methylprednisolone, Prednisolone, Prednisone, Steroids, and Triamcinolone. Antiviral agents include abacavir, aciclovir, acyclovir, adefovir, amantadine, ampranavir, an antiretroviral fixed dose combination, an antiretroviral synergistic enhancer, arbidol, atazanavir, atripla, brivudine, cidofovir, combivir, darunavir, delavirdine, didanosine, docosanol, edoxudine, efavirenz, emtricitabine, enfuvirtide, entecavir, entry inhibitors, famciclovir, fomivirsen, fosamprenavir, foscarnet, fosfonet, fusion inhibitor, ganciclovir, gardsil, ibacitabine, idoxuridine, imiquimod, imunovir, indinavir, inosine, integrase inhibitor, interferon, interferon type I, interferon type II, interferon type III, lamivudine, lopinavir, loviride, maraviroc, MK-0518, moroxydine, nelfinavir, nevirapine, nexavir, nucleoside analogues, oseltamivir, penciclovir, peramivir, pleconaril, podophyllotoxin, protease inhibitor, reverse transcriptase inhibitor, ribavirin, rimantadine, ritonavir, saquinavir, stavudine, tenofovir, tenofovir disoproxil, tipranavir, trifluridine, trizivir, tromantadine, truvada, valaciclovir, valganciclovir, vicriviroc, vidarabine, viramidine, zalcitabine, zanamivir, and zidovudine. Any suitable combination of these active agents is also contemplated.

[0719] A “pharmaceutical excipient” or a “pharmaceutically acceptable excipient” is a carrier, usually a liquid, in which an active therapeutic agent is formulated. In one embodiment of the invention, the active therapeutic agent is a humanized antibody described
herein, or one or more fragments or variants thereof. The excipient generally does not provide any pharmacological activity to the formulation, though it may provide chemical and/or biological stability, and release characteristics. Exemplary formulations can be found, for example, in Remington's Pharmaceutical Sciences, 19th Ed., Grennaro, A., Ed., 1995 which is incorporated by reference.

[0720] As used herein "pharmaceutically acceptable carrier" or "excipient" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents that are physiologically compatible. In one embodiment, the carrier is suitable for parenteral administration. Alternatively, the carrier can be suitable for intravenous, intraperitoneal, intramuscular, or sublingual administration. Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions.

[0721] In one embodiment of the invention that may be used to intravenously administer antibodies of the invention, including Ab1, for cancer indications, the administration formulation comprises, or alternatively consists of, about 10.5 mg/mL of antibody, 25 mM Histidine base, Phosphoric acid q.s. to pH 6, and 250 mM sorbitol.

[0722] In another embodiment of the invention that may be used to intravenously administer antibodies of the invention, including Ab1, for cancer indications, the administration formulation comprises, or alternatively consists of, about 10.5 mg/mL of antibody, 12.5 mM Histidine base, 12.5 mM Histidine HCl (or 25 mM Histidine base and Hydrochloric acid q.s. to pH 6), 250 mM sorbitol, and 0.015% (w/w) Polysorbate 80.

[0723] In one embodiment of the invention that may be used to subcutaneously administer antibodies of the invention, including Ab1, for rheumatoid arthritis indications, the administration formulation comprises, or alternatively consists of, about 50 or 100 mg/mL of antibody, about 5 mM Histidine base, about 5 mM Histidine HCl to make final pH 6, 250 mM sorbitol, and 0.015% (w/w) Polysorbate 80.

[0724] In another embodiment of the invention that may be used to subcutaneously administer antibodies of the invention, including Ab1, for rheumatoid arthritis indications, the
administration formulation comprises, or alternatively consists of, about 20 or 100 mg/mL of antibody, about 5 mM Histidine base, about 5 mM Histidine HCl to make final pH 6, 250 to 280 mM sorbitol (or sorbitol in combination with sucrose), and 0.015% (w/w) Polysorbate 80, said formulation having a nitrogen headspace in the shipping vials.

[0725] Pharmaceutical compositions typically must be sterile and stable under the conditions of manufacture and storage. The invention contemplates that the pharmaceutical composition is present in lyophilized form. The composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol), and suitable mixtures thereof. The invention further contemplates the inclusion of a stabilizer in the pharmaceutical composition.

[0726] In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin. Moreover, the alkaline polypeptide can be formulated in a time release formulation, for example in a composition which includes a slow release polymer. The active compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, polylactic acid and polylactic, polyglycolic copolymers (PLG). Many methods for the preparation of such formulations are known to those skilled in the art.

[0727] For each of the recited embodiments, the compounds can be administered by a variety of dosage forms. Any biologically-acceptable dosage form known to persons of ordinary skill in the art, and combinations thereof, are contemplated. Examples of such dosage forms include, without limitation, reconstitutable powders, elixirs, liquids, solutions, suspensions, emulsions, powders, granules, particles, microparticles, dispersible granules, cachets, inhalants, aerosol inhalants, patches, particle inhalants, implants, depot implants, injectables (including subcutaneous, intramuscular, intravenous, and intradermal), infusions, and combinations thereof.
[0728] The above description of various illustrated embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. The teachings provided herein of the invention can be applied to other purposes, other than the examples described above.

[0729] These and other changes can be made to the invention in light of the above detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims. Accordingly, the invention is not limited by the disclosure, but instead the scope of the invention is to be determined entirely by the following claims.

[0730] The invention may be practiced in ways other than those particularly described in the foregoing description and examples. Numerous modifications and variations of the invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

[0731] Certain teachings related to methods for obtaining a clonal population of antigen-specific B cells were disclosed in U.S. Provisional patent application no. 60/801,412, filed May 19, 2006, the disclosure of which is herein incorporated by reference in its entirety.

[0732] Certain teachings related to humanization of rabbit-derived monoclonal antibodies and preferred sequence modifications to maintain antigen binding affinity were disclosed in International Application No. 12/124,723, corresponding to Attorney Docket No. 67858.704001, entitled “Novel Rabbit Antibody Humanization Method and Humanized Rabbit Antibodies”, filed May 21, 2008, the disclosure of which is herein incorporated by reference in its entirety.

[0733] Certain teachings related to producing antibodies or fragments thereof using mating competent yeast and corresponding methods were disclosed in U.S. Patent application no. 11/429,053, filed May 8, 2006, (U.S. Patent Application Publication No. US2006/0270045), the disclosure of which is herein incorporated by reference in its entirety.

[0734] Certain teachings related to anti-IL-6 antibodies, methods of producing antibodies or fragments thereof using mating competent yeast and corresponding methods were disclosed in U.S. provisional patent application no. 60/924,550, filed May 21, 2007, the disclosure of which is herein incorporated by reference in its entirety.
[0735] Certain teachings related to anti-IL-6 antibodies and methods of using those antibodies or fragments thereof to address certain diseases and/or disorders were disclosed in U.S. provisional patent application nos. 61/117,839, 61/117,861, and 61/117,811, all filed on November 25, 2008, the disclosures of each of which are herein incorporated by reference in their entireties.

[0736] Certain anti-IL-6 antibody polynucleotides and polypeptides are disclosed in the sequence listing accompanying this patent application filing, and the disclosure of said sequence listing is herein incorporated by reference in its entirety.

[0737] The entire disclosure of each document cited herein (including patents, patent applications, journal articles, abstracts, manuals, books, or other disclosures) is herein incorporated by reference in its entirety.

[0738] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.

EXAMPLES

[0739] In the following examples, the term “Ab1” refers to an antibody containing the light chain sequence of SEQ ID NO: 702 and the heavy chain sequence of SEQ ID NO: 704, except where the context indicates otherwise.

Example 1 Production of Enriched Antigen-Specific B Cell Antibody Culture

[0740] Panels of antibodies are derived by immunizing traditional antibody host animals to exploit the native immune response to a target antigen of interest. Typically, the host used for immunization is a rabbit or other host that produces antibodies using a similar maturation process and provides for a population of antigen-specific B cells producing antibodies of comparable diversity, e.g., epitopic diversity. The initial antigen immunization can be conducted using complete Freund’s adjuvant (CFA), and the subsequent boosts effected with incomplete adjuvant. At about 50-60 days after immunization, preferably at day 55, antibody titers are tested, and the Antibody Selection (ABS) process is initiated if appropriate titers are
established. The two key criteria for ABS initiation are potent antigen recognition and function-modifying activity in the polyclonal sera.

[0741] At the time positive antibody titers are established, animals are sacrificed and B cell sources isolated. These sources include: the spleen, lymph nodes, bone marrow, and peripheral blood mononuclear cells (PBMCs). Single cell suspensions are generated, and the cell suspensions are washed to make them compatible for low temperature long term storage. The cells are then typically frozen.

[0742] To initiate the antibody identification process, a small fraction of the frozen cell suspensions are thawed, washed, and placed in tissue culture media. These suspensions are then mixed with a biotinylated form of the antigen that was used to generate the animal immune response, and antigen-specific cells are recovered using the Miltenyi magnetic bead cell selection methodology. Specific enrichment is conducted using streptavidin beads. The enriched population is recovered and progressed in the next phase of specific B cell isolation.

Example 2 Production of Clonal, Antigen-Specific B Cell-Containing Culture

[0743] Enriched B cells produced according to Example 1 are then plated at varying cell densities per well in a 96 well microtiter plate. Generally, this is at 50, 100, 250, or 500 cells per well with 10 plates per group. The media is supplemented with 4% activated rabbit T cell conditioned media along with 50K frozen irradiated EL4B feeder cells. These cultures are left undisturbed for 5-7 days at which time supernatant-containing secreted antibody is collected and evaluated for target properties in a separate assay setting. The remaining supernatant is left intact, and the plate is frozen at −70 °C. Under these conditions, the culture process typically results in wells containing a mixed cell population that comprises a clonal population of antigen-specific B cells, i.e., a single well will only contain a single monoclonal antibody specific to the desired antigen.

Example 3 Screening of Antibody Supernatants for Monoclonal Antibody of Desired Specificity and/or Functional Properties

[0744] Antibody-containing supernatants derived from the well containing a clonal antigen-specific B cell population produced according to Example 2 are initially screened for antigen recognition using ELISA methods. This includes selective antigen immobilization
(e.g., biotinylated antigen capture by streptavidin coated plate), non-specific antigen plate coating, or alternatively, through an antigen build-up strategy (e.g., selective antigen capture followed by binding partner addition to generate a heteromeric protein-antigen complex). Antigen-positive well supernatants are then optionally tested in a function-modifying assay that is strictly dependant on the ligand. One such example is an in vitro protein-protein interaction assay that recreates the natural interaction of the antigen ligand with recombinant receptor protein. Alternatively, a cell-based response that is ligand dependent and easily monitored (e.g., proliferation response) is utilized. Supernatant that displays significant antigen recognition and potency is deemed a positive well. Cells derived from the original positive well are then transitioned to the antibody recovery phase.

Example 4 Recovery of Single, Antibody-Producing B Cell of Desired Antigen Specificity

[0745] Cells are isolated from a well that contains a clonal population of antigen-specific B cells (produced according to Example 2 or 3), which secrete a single antibody sequence. The isolated cells are then assayed to isolate a single, antibody-secreting cell. Dynal streptavidin beads are coated with biotinylated target antigen under buffered medium to prepare antigen-containing microbeads compatible with cell viability. Next antigen-loaded beads, antibody-producing cells from the positive well, and a fluorescein isothiocyanate (FITC)-labeled anti-host H&L IgG antibody (as noted, the host can be any mammalian host, e.g., rabbit, mouse, rat, etc.) are incubated together at 37 °C. This mixture is then re-pipetted in aliquots onto a glass slide such that each aliquot has on average a single, antibody-producing B-cell. The antigen-specific, antibody-secreting cells are then detected through fluorescence microscopy. Secreted antibody is locally concentrated onto the adjacent beads due to the bound antigen and provides localization information based on the strong fluorescent signal. Antibody-secreting cells are identified via FITC detection of antibody-antigen complexes formed adjacent to the secreting cell. The single cell found in the center of this complex is then recovered using a micromanipulator. The cell is snap-frozen in an eppendorf PCR tube for storage at -80 °C until antibody sequence recovery is initiated.

Example 5 Isolation of Antibody Sequences From Antigen-Specific B Cell
[0746] Antibody sequences are recovered using a combined RT-PCR based method from a single isolated B-cell produced according to Example 4 or an antigenic specific B cell isolated from the clonal B cell population obtained according to Example 2. Primers are designed to anneal in conserved and constant regions of the target immunoglobulin genes (heavy and light), such as rabbit immunoglobulin sequences, and a two-step nested PCR recovery step is used to obtain the antibody sequence. Amplicons from each well are analyzed for recovery and size integrity. The resulting fragments are then digested with AluI to fingerprint the sequence clonality. Identical sequences display a common fragmentation pattern in their electrophoretic analysis. Significantly, this common fragmentation pattern which proves cell clonality is generally observed even in the wells originally plated up to 1000 cells/well. The original heavy and light chain amplicon fragments are then restriction enzyme digested with HindIII and XhoI or HindIII and BsiWI to prepare the respective pieces of DNA for cloning. The resulting digestions are then ligated into an expression vector and transformed into bacteria for plasmid propagation and production. Colonies are selected for sequence characterization.

Example 6 Recombinant Production of Monoclonal Antibody of Desired Antigen Specificity and/or Functional Properties

[0747] Correct full-length antibody sequences for each well containing a single monoclonal antibody is established and miniprep DNA is prepared using Qiagen solid-phase methodology. This DNA is then used to transfect mammalian cells to produce recombinant full-length antibody. Crude antibody product is tested for antigen recognition and functional properties to confirm the original characteristics are found in the recombinant antibody protein. Where appropriate, large-scale transient mammalian transfections are completed, and antibody is purified through Protein A affinity chromatography. Kd is assessed using standard methods (e.g., Biacore™) as well as IC50 in a potency assay.

Example 7 Preparation of Antibodies that Bind Human IL-6

[0748] By using the antibody selection protocol described herein, one can generate an extensive panel of antibodies. The antibodies have high affinity towards IL-6 (single to double digit pM Kd) and demonstrate potent antagonism of IL-6 in multiple cell-based
screening systems (T1165 and HepG2). Furthermore, the collection of antibodies displays distinct modes of antagonism toward IL-6-driven processes.

[0749] Immunization Strategy

[0750] Rabbits were immunized with huIL-6 (R&R). Immunization consisted of a first subcutaneous (sc) injection of 100 µg in complete Freund’s adjuvant (CFA) (Sigma) followed by two boosts, two weeks apart, of 50 µg each in incomplete Freund’s adjuvant (IFA) (Sigma). Animals were bled on day 55, and serum titers were determined by ELISA (antigen recognition) and by non-radioactive proliferation assay (Promega) using the T1165 cell line.

[0751] Antibody Selection Titer Assessment

[0752] Antigen recognition was determined by coating Immulon 4 plates (Thermo) with 1 µg/mL of huIL-6 (50 µL/well) in phosphate buffered saline (PBS, Hyclone) overnight at 4 °C. On the day of the assay, plates were washed 3 times with PBS /Tween 20 (PBST tablets, Calbiochem). Plates were then blocked with 200 µL/well of 0.5% fish skin gelatin (FSG, Sigma) in PBS for 30 minutes at 37 °C. Blocking solution was removed, and plates were blotted. Serum samples were made (bleeds and pre-bleeds) at a starting dilution of 1:100 (all dilutions were made in FSG 50 µL/well) followed by 1:10 dilutions across the plate (column 12 was left blank for background control). Plates were incubated for 30 minutes at 37 °C. Plates were washed 3 times with PBS/Tween 20. Goat anti-rabbit Fc-HRP (Pierce) diluted 1:5000 was added to all wells (50 µL/well), and plates were incubated for 30 minutes at 37 °C. Plates were washed as described above. 50 µL/well of TMB-Stable stop (Fitzgerald Industries) was added to plates, and color was allowed to develop, generally for 3 to 5 minutes. The development reaction was stopped with 50 µL/well 0.5 M HCl. Plates were read at 450 nm. Optical density (OD) versus dilution was plotted using Graph Pad Prizm software, and titers were determined.

[0753] Functional Titer Assessment

[0754] The functional activity of the samples was determined by a T1165 proliferation assay. T1165 cells were routinely maintained in modified RPMI medium (Hyclone) supplemented with HEPES, sodium pyruvate, sodium bicarbonate, L-glutamine, high glucose, penicillin/streptomycin, 10% heat inactivated fetal bovine serum (FBS) (all supplements from Hyclone), 2-mercaptoethanol (Sigma), and 10 ng/mL of huIL-6 (R&D). On the day of the assay, cell viability was determined by trypan blue (Invitrogen), and cells were seeded at a fixed density of 20,000 cells/well. Prior to seeding, cells were washed twice
in the medium described above without human-IL-6 (by centrifuging at 13000 rpm for 5 minutes and discarding the supernatant). After the last wash, cells were resuspended in the same medium used for washing in a volume equivalent to 50 μL/well. Cells were set aside at room temperature.

[0755] In a round-bottom, 96-well plate (Costar), serum samples were added starting at 1:100, followed by a 1:10 dilution across the plate (columns 2 to 10) at 30 μL/well in replicates of 5 (rows B to F: dilution made in the medium described above with no huIL-6). Column 11 was medium only for IL-6 control. 30 μL/well of huIL-6 at 4x concentration of the final EC50 (concentration previously determined) were added to all wells (huIL-6 was diluted in the medium described above). Wells were incubated for 1 hour at 37 °C to allow antibody binding to occur. After 1 hour, 50 μL/well of antibody-antigen (Ab-Ag) complex were transferred to a flat-bottom, 96-well plate (Costar) following the plate map format laid out in the round-bottom plate. On Row G, 50 μL/well of medium were added to all wells (columns 2 to 11) for background control. 50 μL/well of the cell suspension set aside were added to all wells (columns 2 to 11, rows B to G). On Columns 1 and 12 and on rows A and H, 200 μL/well of medium was added to prevent evaporation of test wells and to minimize edge effect. Plates were incubated for 72 h at 37 °C in 4% CO2. At 72 h, 20 μL/well of CellTiter96 (Promega) reagents was added to all test wells per manufacturer protocol, and plates were incubated for 2 h at 37 °C. At 2 h, plates were gently mixed on an orbital shaker to disperse cells and to allow homogeneity in the test wells. Plates were read at 490 nm wavelength. Optical density (OD) versus dilution was plotted using Graph Pad Prizm software, and functional titer was determined. A positive assay control plate was conducted as described above using MAB2061 (R&D Systems) at a starting concentration of 1 μg/mL (final concentration) followed by 1:3 dilutions across the plate.

[0756] Tissue Harvesting

[0757] Once acceptable titers were established, the rabbit(s) were sacrificed. Spleen, lymph nodes, and whole blood were harvested and processed as follows:

[0758] Spleen and lymph nodes were processed into a single cell suspension by disassociating the tissue and pushing through sterile wire mesh at 70 μm (Fisher) with a plunger of a 20 cc syringe. Cells were collected in the modified RPMI medium described above without huIL-6, but with low glucose. Cells were washed twice by centrifugation. After the last wash, cell density was determined by trypan blue. Cells were centrifuged at
1500 rpm for 10 minutes; the supernatant was discarded. Cells were resuspended in the appropriate volume of 10% dimethyl sulfoxide (DMSO, Sigma) in FBS (Hyclone) and dispensed at 1 mL/vial. Vials were then stored at -70 °C for 24 h prior to being placed in a liquid nitrogen (LN2) tank for long-term storage.

[0759] Peripheral blood mononuclear cells (PBMCs) were isolated by mixing whole blood with equal parts of the low glucose medium described above without FBS. 35 mL of the whole blood mixture was carefully layered onto 8 mL of Lympholyte Rabbit (Cedarlane) into a 45 mL conical tube (Corning) and centrifuged 30 minutes at 2500 rpm at room temperature without brakes. After centrifugation, the PBMC layers were carefully removed using a glass Pasteur pipette (VWR), combined, and placed into a clean 50 mL vial. Cells were washed twice with the modified medium described above by centrifugation at 1500 rpm for 10 minutes at room temperature, and cell density was determined by trypan blue staining. After the last wash, cells were resuspended in an appropriate volume of 10% DMSO/FBS medium and frozen as described above.

[0760] B cell culture

[0761] On the day of setting up B cell culture, PBMC, splenocyte, or lymph node vials were thawed for use. Vials were removed from LN2 tank and placed in a 37 °C water bath until thawed. Contents of vials were transferred into 15 mL conical centrifuge tube (Corning) and 10 mL of modified RPMI described above was slowly added to the tube. Cells were centrifuged for 5 minutes at 1.5K rpm, and the supernatant was discarded. Cells were resuspended in 10 mL of fresh media. Cell density and viability was determined by trypan blue. Cells were washed again and resuspended at 1E07 cells/80 µL medium. Biotinylated huIL-6 (B huIL-6) was added to the cell suspension at the final concentration of 3 µg/mL and incubated for 30 minutes at 4 °C. Unbound B huIL-6 was removed with two 10 mL washes of phosphate-buffered (PBF):Ca/Mg free PBS (Hyclone), 2 mM ethylenediamine tetraacetic acid (EDTA), 0.5% bovine serum albumin (BSA) (Sigma-biotin free). After the second wash, cells were resuspended at 1E07 cells/80 µL PBF. 20 µL of MACS® streptavidin beads (Milteni)/10E7 cells were added to the cell suspension. Cells were incubated at 4 °C for 15 minutes. Cells were washed once with 2 mL of PBF/10E7 cells. After washing, the cells were resuspended at 1E08 cells/500 µL of PBF and set aside. A MACS® MS column (Milteni) was pre-rinsed with 500 mL of PBF on a magnetic stand (Milteni). Cell suspension was applied to the column through a pre-filter, and unbound fraction was collected. The column was washed with 1.5 mL of PBF buffer. The column was removed from the magnet.
stand and placed onto a clean, sterile 5 mL Polypropylene Falcon tube. 1 mL of PBF buffer was added to the top of the column, and positive selected cells were collected. The yield and viability of positive and negative cell fraction was determined by trypan blue staining. Positive selection yielded an average of 1% of the starting cell concentration.

[0762] A pilot cell screen was established to provide information on seeding levels for the culture. Three 10-plate groups (a total of 30 plates) were seeded at 50, 100, and 200 enriched B cells/well. In addition, each well contained 50K cells/well of irradiated EL-4.B5 cells (5,000 Rads) and an appropriate level of T cell supernatant (ranging from 1-5% depending on preparation) in high glucose modified RPMI medium at a final volume of 250 µL/well. Cultures were incubated for 5 to 7 days at 37 °C in 4% CO₂.

[0763] Identification of Selective Antibody Secreting B Cells

[0764] Cultures were tested for antigen recognition and functional activity between days 5 and 7.

[0765] Antigen Recognition Screening

[0766] The ELISA format used is as described above except 50 µL of supernatant from the B cell cultures (BCC) wells (all 30 plates) was used as the source of the antibody. The conditioned medium was transferred to antigen-coated plates. After positive wells were identified, the supernatant was removed and transferred to a 96-well master plate(s). The original culture plates were then frozen by removing all the supernatant except 40 µL/well and adding 60 µL/well of 16% DMSO in FBS. Plates were wrapped in paper towels to slow freezing and placed at −70 °C.

[0767] Functional Activity Screening

[0768] Master plates were then screened for functional activity in the T1165 proliferation assay as described before, except row B was media only for background control, row C was media + IL-6 for positive proliferation control, and rows D-G and columns 2-11 were the wells from the BCC (50 µL/well, single points). 40 µL of IL-6 was added to all wells except the media row at 2.5 times the EC50 concentration determined for the assay. After 1 h incubation, the Ab/Ag complex was transferred to a tissue culture (TC) treated, 96-well, flat-bottom plate. 20 µL of cell suspension in modified RPMI medium without huIL-6 (T1165 at 20,000 cells/well) was added to all wells (100 µL final volume per well). Background was subtracted, and observed OD values were transformed into % of inhibition.
B cell recovery

Plates containing wells of interest were removed from −70 °C, and the cells from each well were recovered with 5-200 μL washes of medium/well. The washes were pooled in a 1.5 mL sterile centrifuge tube, and cells were pelleted for 2 minutes at 1500 rpm.

The tube was inverted, the spin repeated, and the supernatant carefully removed. Cells were resuspended in 100 μL/tube of medium. 100 μL biotinylated IL-6 coated streptavidin M280 dynabeads (Invitrogen) and 16 μL of goat anti-rabbit H&L IgG-FITC diluted 1:100 in medium was added to the cell suspension.

20 μL of cell/beads/FITC suspension was removed, and 5 μL droplets were prepared on a glass slide (Corning) previously treated with Sigmacote (Sigma), 35 to 40 droplets/slide. An impermeable barrier of paraffin oil (JT Baker) was added to submerge the droplets, and the slide was incubated for 90 minutes at 37 °C, 4% CO₂ in the dark.

Specific B cells that produce antibody can be identified by the fluorescent ring around them due to antibody secretion, recognition of the bead-associated biotinylated antigen, and subsequent detection by the fluorescent-IgG detection reagent. Once a cell of interest was identified, the cell in the center of the fluorescent ring was recovered via a micromanipulator (Eppendorf). The single cell synthesizing and exporting the antibody was transferred into a 250 μL microcentrifuge tube and placed in dry ice. After recovering all cells of interest, these were transferred to −70 °C for long-term storage.

Example 8 Yeast Cell Expression

Antibody genes: Genes were cloned and constructed that directed the synthesis of a chimeric humanized rabbit monoclonal antibody.

Expression vector: The vector contains the following functional components: 1) a mutant ColE1 origin of replication, which facilitates the replication of the plasmid vector in cells of the bacterium Escherichia coli; 2) a bacterial Sh ble gene, which confers resistance to the antibiotic Zeocin™ (phleomycin) and serves as the selectable marker for transformations of both E. coli and P. pastoris; 3) an expression cassette composed of the glyceraldehyde dehydrogenase gene (GAP gene) promoter, fused to sequences encoding the Saccharomyces cerevisiae alpha mating factor pre pro secretion leader sequence, followed by sequences encoding a P. pastoris transcriptional termination signal from the P. pastoris alcohol oxidase
I gene (AOXI). The Zeocin™ (phleomycin) resistance marker gene provides a means of enrichment for strains that contain multiple integrated copies of an expression vector in a strain by selecting for transformants that are resistant to higher levels of Zeocin™ (phleomycin).

[0776] *P. pastoris* strains: *P. pastoris* strains *met1*, *lys3*, *ura3* and *ade1* may be used. Although any two complementing sets of auxotrophic strains could be used for the construction and maintenance of diploid strains, these two strains are especially suited for this method for two reasons. First, they grow more slowly than diploid strains that are the result of their mating or fusion. Thus, if a small number of haploid *ade1* or *ura3* cells remain present in a culture or arise through meiosis or other mechanism, the diploid strain should outgrow them in culture.

[0777] The second is that it is easy to monitor the sexual state of these strains since diploid Ade+ colonies arising from their mating are a normal white or cream color, whereas cells of any strains that are haploid *ade1* mutants will form a colony with a distinct pink color. In addition, any strains that are haploid *ura3* mutants are resistant to the drug 5-fluoroorotic acid (FOA) and can be sensitively identified by plating samples of a culture on minimal medium + uracil plates with FOA. On these plates, only uracil-requiring *ura3* mutant (presumably haploid) strains can grow and form colonies. Thus, with haploid parent strains marked with *ade1* and *ura3*, one can readily monitor the sexual state of the resulting antibody-producing diploid strains (haploid versus diploid).

[0778] Methods

[0779] Construction of pgAPZ-alpha expression vectors for transcription of light and heavy chain antibody genes. The humanized light and heavy chain fragments were cloned into the pgAPZ expression vectors through a PCR directed process. The recovered humanized constructs were subjected to amplification under standard KOD polymerase (Novagen) kit conditions (1) 94 °C, 2 minutes; (2) 94 °C, 30 seconds (3) 55 °C, 30 seconds; (4) 72 °C, 30 seconds-cycling through steps 2-4 for 35 times; (5) 72 °C 2 minutes) employing the following primers (1) light chain forward AGCGCTTATTCGCTATCCAGATGACCCAGTC-the Avel site is single underlined. The end of the HSA signal sequence is double underlined, followed by the sequence for the mature variable light chain (not underlined); the reverse CGTACGTTTGATTCCACCTTG.
Variable light chain reverse primer. BsiWI site is underlined, followed by the reverse complement for the 3' end of the variable light chain. Upon restriction enzyme digest with AfeI and BsiWI this enable insertion in-frame with the pGAPZ vector using the human HAS leader sequence in frame with the human kapp light chain constant region for export. (2) A similar strategy is performed for the heavy chain. The forward primer employed is AGCGCTTATTGCCAGGTGCTGACGGTGGAGTC. The AfeI site is single underlined. The end of the HSA signal sequence is double underlined, followed by the sequence for the mature variable heavy chain (not underlined). The reverse heavy chain primer is CTGAGACGCGTGACGAGGGT. The XhoI site is underlined, followed by the reverse complement for the 3' end of the variable heavy chain. This enables cloning of the heavy chain in-frame with IgG-γ1 CH1-CH2-CH3 region previous inserted within pGAPZ using a comparable directional cloning strategy.

Prior to transformation, each expression vector is linearized within the GAP promoter sequences with AvrII to direct the integration of the vectors into the GAP promoter locus of the P. pastoris genome. Samples of each vector are then individually transformed into electrocompeent cultures of the ade1, ura3, met1 and lys3 strains by electroporation and successful transformants are selected on YPD Zeocin™ (phleomycin) plates by their resistance to this antibiotic. Resulting colonies are selected, streaked for single colonies on YPD Zeocin™ (phleomycin) plates and then examined for the presence of the antibody gene insert by a PCR assay on genomic DNA extracted from each strain for the proper antibody gene insert and/or by the ability of each strain to synthesize an antibody chain by a colony lift/immunoblot method (Wung et al. Biotechniques 21 808-812 (1996). Haploid ade1, met1 and lys3 strains expressing one of the three heavy chain constructs are collected for diploid constructions along with haploid ura3 strain expressing light chain gene. The haploid expressing heavy chain genes are mated with the appropriate light chain haploid ura3 to generate diploid secreting protein.

Mating of haploid strains synthesizing a single antibody chain and selection of diploid derivatives synthesizing tetrameric functional antibodies. To mate P. pastoris haploid
strains, each ade1 (or met1 or lys3) heavy chain producing strain to be crossed is streaked across a rich YPD plate and the ura3 light chain producing strain is streaked across a second YPD plate (~10 streaks per plate). After one or two days incubation at 30 °C, cells from one plate containing heavy chain strains and one plate containing ura3 light chain strains are transferred to a sterile velvet cloth on a replica-plating block in a cross hatched pattern so that each heavy chain strain contain a patch of cells mixed with each light chain strain. The cross-streaked replica plated cells are then transferred to a mating plate and incubated at 25 °C to stimulate the initiation of mating between strains. After two days, the cells on the mating plates are transferred again to a sterile velvet on a replica-plating block and then transferred to minimal medium plates. These plates are incubated at 30 °C for three days to allow for the selective growth of colonies of prototrophic diploid strains. Colonies that arose are picked and streaked onto a second minimal medium plate to single colony isolate and purify each diploid strain. The resulting diploid cell lines are then examined for antibody production.

[0784] Putative diploid strains are tested to demonstrate that they are diploid and contain both expression vectors for antibody production. For diploidy, samples of a strain are spread on mating plates to stimulate them to go through meiosis and form spores. Haploid spore products are collected and tested for phenotype. If a significant percentage of the resulting spore products are single or double auxotrophs it may be concluded that the original strain must have been diploid. Diploid strains are examined for the presence of both antibody genes by extracting genomic DNA from each and utilizing this DNA in PCR reactions specific for each gene.

[0785] Fusion of haploid strains synthesizing a single antibody chain and selection of diploid derivatives synthesizing tetrameric functional antibodies. As an alternative to the mating procedure described above, individual cultures of single-chain antibody producing haploid ade1 and ura3 strains are spheroplasted and their resulting spheroplasts fused using polyethylene glycol/CaCl₂. The fused haploid strains are then embedded in agar containing 1 M sorbitol and minimal medium to allow diploid strains to regenerate their cell wall and grow into visible colonies. Resulting colonies are picked from the agar, streaked onto a minimal medium plate, and the plates are incubated for two days at 30 °C to generate colonies from single cells of diploid cell lines. The resulting putative diploid cell lines are then examined for diploidy and antibody production as described above.

[0786] Purification and analysis of antibodies. A diploid strain for the production of full length antibody is derived through the mating of met1 light chain and lys3 heavy chain using
the methods described above. Culture media from shake-flask or fermenter cultures of
diploid P. pastoris expression strains are collected and examined for the presence of antibody
protein via SDS-PAGE and immunoblotting using antibodies directed against heavy and light
chains of human IgG, or specifically against the heavy chain of IgG.

[0787] To purify the yeast secreted antibodies, clarified media from antibody producing
cultures are passed through a protein A column and after washing with 20 mM sodium
phosphate, pH 7.0, binding buffer, protein A bound protein is eluted using 0.1 M glycine HCl
buffer, pH 3.0. Fractions containing the most total protein are examined by Coomassie blue
strained SDS-PAGE and immunoblotting for antibody protein. Antibody is characterized
using the ELISA described above for IL-6 recognition.

[0788] Assay for antibody activity. The recombinant yeast-derived humanized antibody is
evaluated for functional activity through the IL-6 driven T1165 cell proliferation assay and
IL-6 stimulated HepG2 haptoglobin assay described above.

**Example 9 Acute Phase Response Neutralization by Intravenous Administration of
Anti-IL-6 Antibody Ab1.**

[0789] Human IL-6 can provoke an acute phase response in rats, and one of the major
acute phase proteins that is stimulated in the rat is alpha-2 macroglobulin (A2M). A study
was designed to assess the dose of antibody Ab1 required to ablate the A2M response to a
single s.c. injection of 100 μg of human IL-6 given one hour after different doses (0.03, 0.1,
0.3, 1, and 3 mg/kg) of antibody Ab1 administered intravenously (n=10 rats/dose level) or
polyclonal human IgG1 as the control (n=10 rats). Plasma was recovered and the A2M was
quantitated via a commercial sandwich ELISA kit (ICL Inc., Newberg OR; cat. no.- E-
25A2M). The endpoint was the difference in the plasma concentration of A2M at the 24 hour
time point (post-Ab1). The results are presented in Fig. 4.

[0790] The ID50 for antibody Ab1 was 0.1 mg/kg with complete suppression of the A2M
response at the 0.3 mg/kg. This firmly establishes in vivo neutralization of human IL-6 can
be accomplished by antibody Ab1.

Example 10 RXF393 Cachexia Model Study 1.

[0791] Introduction
The human renal cell cancer cell line, RXF393 produces profound weight loss when transplanted into athymic nude mice. Weight loss begins around day 15 after transplantation with 80% of all animals losing at least 30% of their total body weight by day 18 - 20 after transplantation. RXF393 secretes human IL-6 and the plasma concentration of human IL-6 in these animals is very high at around 10 ng/mL. Human IL-6 can bind murine soluble IL-6 receptor and activate IL-6 responses in the mouse. Human IL-6 is approximately 10 times less potent than murine IL-6 at activating IL-6 responses in the mouse. The objectives of this study were to determine the effect of antibody Ab1, on survival, body weight, serum amyloid A protein, hematology parameters, and tumor growth in athymic nude mice transplanted with the human renal cell cancer cell line, RXF393.

Methods

Eighty, 6 week old, male athymic nude mice were implanted with RXF393 tumor fragments (30-40 mg) subcutaneously in the right flank. Animals were then divided into eight groups of ten mice. Three groups were given either antibody Ab1 at 3 mg/kg, 10 mg/kg, or 30 mg/kg intravenously weekly on day 1, day 8, day 15 and day 22 after transplantation (progression groups). Another three groups were given either antibody Ab1 at 3 mg/kg, or 10 mg/kg, or 30 mg/kg intravenously weekly on day 8, day 15 and day 22 after transplantation (regression groups). Finally, one control group was given polyclonal human IgG 30 mg/kg and a second control group was given phosphate buffered saline intravenously weekly on day 1, day 8, day 15 and day 22 after transplantation.

Animals were euthanized at either day 28, when the tumor reached 4,000 mm³ or if they became debilitated (>30% loss of body weight). Animals were weighed on days 1, 6 and then daily from days 9 to 28 after transplantation. Mean Percent Body Weight (MPBW) was used as the primary parameter to monitor weight loss during the study. It was calculated as follows: (Body Weight – Tumor Weight)/Baseline Body Weight x 100. Tumor weight was measured on days 1, 6, 9, 12, 15, 18, 22, 25 and 28 after transplantation. Blood was taken under anesthesia from five mice in each group on days 5 and 13 and all ten mice in each group when euthanized (day 28 in most cases). Blood was analyzed for hematology and serum amyloid A protein (SAA) concentration. An additional group of 10 non-tumor bearing 6 week old, athymic nude male mice had blood samples taken for hematology and SAA concentration estimation to act as a baseline set of values.

Results - Survival
[0797] No animals were euthanized or died in any of the antibody Ab1 groups prior to the study termination date of day 28. In the two control groups, 15 animals (7/9 in the polyclonal human IgG group and 8/10 in the phosphate buffered saline group) were found dead or were euthanized because they were very debilitated (>30% loss of body weight). Median survival time in both control groups was 20 days.

[0798] The survival curves for the two control groups and the antibody Ab1 progression (dosed from day 1 of the study) groups are presented in Fig. 5.

[0799] The survival curves for the two control groups and the antibody Ab1 regression (dosed from day 8 of the study) groups are presented in Fig. 6.

[0800] There was a statistically significant difference between the survival curves for the polyclonal human IgG (p=0.0038) and phosphate buffered saline (p=0.0003) control groups and the survival curve for the six antibody Ab1 groups. There was no statistically significant difference between the two control groups (p=0.97).

[0801] Results – Tumor Size

[0802] Tumor size in surviving mice was estimated by palpation. For the first 15 days of the study, none of the mice in any group were found dead or were euthanized, and so comparison of tumor sizes between groups on these days was free from sampling bias. No difference in tumor size was observed between the antibody Ab1 progression or regression groups and the control groups through day 15. Comparison of the tumor size between surviving mice in the control and treatment groups subsequent to the onset of mortality in the controls (on day 15) was not undertaken because tumor size the surviving control mice was presumed to be biased and accordingly the results of such comparison would not be meaningful.

[0803] As administration of antibody Ab1 promoted survival without any apparent reduction in tumor size, elevated serum IL-6 may contribute to mortality through mechanisms independent of tumor growth. These observations support the hypothesis that antibody Ab1 can promote cancer patient survivability without directly affecting tumor growth, possibly by enhancing general patient well-being.

[0804] Results – Weight Loss

[0805] Mean Percent Body Weight (MPBW) (± SEM) versus time is shown in Fig. 27. Compared to controls, mice dosed with Ab1 were protected from weight loss. On day 18,
MPBW in control mice was 75%, corresponding to an average weight loss of 25%. In contrast, on the same day, MPBW in Ab1 treatment groups was minimally changed (between 97% and 103%). There was a statistically significant difference between the MPBW curves for the controls (receiving polyclonal human IgG or PBS) and the 10 mg/kg dosage group (p<0.0001) or 3 mg/kg and 30 mg/kg dosage groups (p<0.0005). There was no statistically significant difference between the two control groups.

[0806] Representative photographs of control and Ab1-treated mice (Fig. 28) illustrate the emaciated condition of the control mice, compared to the normal appearance of the Ab1-treated mouse, at the end of the study (note externally visible tumor sites in right flank).

[0807] These results suggest that Ab1 may be useful to prevent or treat cachexia caused by elevated IL-6 in humans.

[0808] Results – Plasma Serum Amyloid A

[0809] The mean (± SEM) plasma serum amyloid A concentration versus time for the two control groups and the antibody Ab1 progression (dosed from day 1 of the study) and regression (dosed from day 8 of the study) groups are presented in Table 5 and graphically in Fig. 32.

Table 5: Mean Plasma SAA - antibody Ab1, all groups versus control groups

<table>
<thead>
<tr>
<th></th>
<th>Mean Plasma SAA±SEM Day 5 (µg/mL)</th>
<th>Mean Plasma SAA±SEM Day 13 (µg/mL)</th>
<th>Mean Plasma SAA±SEM Terminal Bleed (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyclonal IgG iv weekly from day 1</td>
<td>675 ± 240 (n=5)</td>
<td>3198 ± 628 (n=4)</td>
<td>13371 ± 2413 (n=4)</td>
</tr>
<tr>
<td>PBS iv weekly from day 1</td>
<td>355 ± 207 (n=5)</td>
<td>4844 ± 1126 (n=5)</td>
<td>15826 ± 802 (n=3)</td>
</tr>
<tr>
<td>Ab1 30 mg/kg iv weekly from day 1</td>
<td>246 ± 100 (n=5)</td>
<td>2979 ± 170 (n=5)</td>
<td>841 ± 469 (n=10)</td>
</tr>
<tr>
<td>Ab1 10 mg/kg iv weekly from day 1</td>
<td>3629 ± 624 (n=5)</td>
<td>3096 ± 690 (n=5)</td>
<td>996 ± 348 (n=10)</td>
</tr>
<tr>
<td>Ab1 3 mg/kg iv weekly from day 1</td>
<td>106 ± 9 (n=5)</td>
<td>1623 ± 595 (n=4)</td>
<td>435 ± 70 (n=9)</td>
</tr>
<tr>
<td>Ab1 30 mg/kg iv weekly from day 8</td>
<td>375 ± 177 (n=5)</td>
<td>1492 ± 418 (n=4)</td>
<td>498 ± 83 (n=9)</td>
</tr>
<tr>
<td>Ab1 10 mg/kg iv weekly from day 8</td>
<td>487 ± 170 (n=5)</td>
<td>1403 ± 187 (n=5)</td>
<td>396 ± 58 (n=10)</td>
</tr>
<tr>
<td>Ab1 3 mg/kg iv weekly from day 8</td>
<td>1255 ± 516 (n=5)</td>
<td>466 ± 157 (n=5)</td>
<td>685 ± 350 (n=5)</td>
</tr>
</tbody>
</table>
SAA is up-regulated via the stimulation of hIL-6 and this response is directly correlated with circulating levels of hIL-6 derived from the implanted tumor. The surrogate marker provides an indirect readout for active hIL-6. Thus in the two treatment groups described above there are significantly decreased levels of SAA due to the neutralization of tumor-derived hIL-6. This further supports the contention that antibody Ab1 displays \textit{in vivo} efficacy.

\textbf{Example 11} \hspace{1em} RXF393 Cachexia Model Study 2.

\textbf{Introduction}

A second study was performed in the RXF-393 cachexia model where treatment with antibody Ab1 was started at a later stage (days 10 and 13 post-transplantation) and with a more prolonged treatment phase (out to 49 days post transplantation). The dosing interval with antibody Ab1 was shortened to 3 days from 7 and also daily food consumption was measured. There was also an attempt to standardize the tumor sizes at the time of initiating dosing with antibody Ab1.

\textbf{Methods}

Eighty, 6 week old, male athymic nude mice were implanted with RXF393 tumor fragments (30-40 mg) subcutaneously in the right flank. 20 mice were selected whose tumors had reached between 270 – 320 mg in size and divided into two groups. One group received antibody Ab1 at 10 mg/kg i.v. every three days and the other group received polyclonal human IgG 10 mg/kg every 3 days from that time-point (day 10 after transplantation). Another 20 mice were selected when their tumor size had reached 400 – 527 mg in size and divided into two groups. One group received antibody Ab1 at 10 mg/kg i.v. every three days and the other group received polyclonal human IgG 10 mg/kg every 3 days from that time-point (day 13 after transplantation). The remaining 40 mice took no further part in the study and were euthanized at either day 49, when the tumor reached 4,000 mm3 or if they became very debilitated (>30% loss of body weight).

Animals were weighed every 3-4 days from day 1 to day 49 after transplantation. Mean Percent Body Weight (MPBW) was used as the primary parameter to monitor weight loss during the study. It was calculated as follows: $(\text{Body Weight} - \text{Tumor Weight}) / \text{Body Weight}$.
Weight)/Baseline Body Weight) x 100. Tumor weight was measured every 3-4 days from day 5 to day 49 after transplantation. Food consumption was measured (amount consumed in 24 hours by weight (g) by each treatment group) every day from day 10 for the 270-320 mg tumor groups and day 13 for the 400-527 mg tumor groups.

[0816] Results -survival

[0817] The survival curves for antibody Ab1 at 10 mg/kg i.v. every three days (270-320 mg tumor size) and for the polyclonal human IgG 10 mg/kg i.v. every three days (270-320 mg tumor size) are presented in Fig. 7.

[0818] Median survival for the antibody Ab1 at 10 mg/kg i.v. every three days (270-320 mg tumor size) was 46 days and for the polyclonal human IgG at 10 mg/kg i.v. every three days (270-320 mg tumor size) was 32.5 days (p=0.0071).

[0819] The survival curves for the antibody Ab1 at 10 mg/kg i.v. every three days (400-527 mg tumor size) and for the polyclonal human IgG at 10 mg/kg i.v. every three days (400-527 mg tumor size) are presented in Fig. 8. Median survival for the antibody Ab1 at 10 mg/kg i.v. every three days (400-527 mg tumor size) was 46.5 days and for the polyclonal human IgG at 10 mg/kg i.v. every three days (400-527 mg tumor size) was 27 days (p=0.0481).

[0820] Antibody Ab1 was dosed in a single bolus infusion to a single male and single female cynomologus monkey in phosphate buffered saline. Plasma samples were removed at fixed time intervals and the level of antibody Ab1 was quantitated through of the use of an antigen capture ELISA assay. Biotinylated IL-6 (50 μl of 3 μg/mL) was captured on Streptavidin coated 96 well microtiter plates. The plates were washed and blocked with 0.5% Fish skin gelatin. Appropriately diluted plasma samples were added and incubated for 1 hour at room temperature. The supernatants removed and an anti-hFc-HRP conjugated secondary antibody applied and left at room temperature.

[0821] The plates were then aspirated and TMB added to visualize the amount of antibody. The specific levels were then determined through the use of a standard curve. A second dose of antibody Ab1 was administered at day 35 to the same two cynomologus
monkeys and the experiment replicated using an identical sampling plan. The resulting concentrations are then plot vs. time as show in Fig. 9.

[0822] This humanized full length aglycosylated antibody expressed and purified *Pichia pastoris* displays comparable characteristics to mammalian expressed protein. In addition, multiple doses of this product display reproducible half-lives inferring that this production platform does not generate products that display enhanced immunogenicity.

Example 13 Octet Mechanistic Characterization of Antibody Proteins.

[0823] IL-6 signaling is dependent upon interactions between IL-6 and two receptors, IL-6R1 (CD126) and gp130 (IL-6 signal transducer). To determine the antibody mechanism of action, mechanistic studies were performed using bio-layer interferometry with an Octet QK instrument (ForteBio; Menlo Park, CA). Studies were performed in two different configurations. In the first orientation, biotinylated IL-6 (R&D systems part number 206-IL-001MG/CF, biotinylated using Pierce EZ-link sulfo-NHS-LC-LC-biotin product number 21338 according to manufacturer’s protocols) was initially bound to a streptavidin coated biosensor (ForteBio part number 18-5006). Binding is monitored as an increase in signal.

[0824] The IL-6 bound to the sensor was then incubated either with the antibody in question or diluent solution alone. The sensor was then incubated with soluble IL-6R1 (R&D systems product number 227-SR-025/CF) molecule. If the IL-6R1 molecule failed to bind, the antibody was deemed to block IL-6/IL-6R1 interactions. These complexes were incubated with gp130 (R&D systems 228-GP-010/CF) in the presence of IL-6R1 for stability purposes. If gp130 did not bind, it was concluded that the antibody blocked gp130 interactions with IL-6.

[0825] In the second orientation, the antibody was bound to a biosensor coated with an anti-human IgG1 Fc-specific reagent (ForteBio part number 18-5001). The IL-6 was bound to the immobilized antibody and the sensor was incubated with IL-6R1. If the IL-6R1 did not interact with the IL-6, then it was concluded that the IL-6 binding antibody blocked IL-6/IL-6R1 interactions. In those situations where antibody/IL-6/IL-6R1 was observed, the complex was incubated with gp130 in the presence of IL-6R1. If gp130 did not interact, then it was concluded that the antibody blocked IL-6/gp130 interactions. All studies were performed in a 200 μL final volume, at 30C and 1000 rpm. For these studies, all proteins were diluted using ForteBio’s sample diluent buffer (part number 18-5028).
[0826] Results are presented in Fig. 10 (A-E) and Fig. 11.

Example 14 Peptide Mapping.

[0827] In order to determine the epitope recognized by Ab1 on human IL-6, the antibody was employed in a western-blot based assay. The form of human IL-6 utilized in this example had a sequence of 183 amino acids in length (shown below). A 57-member library of overlapping 15 amino acid peptides encompassing this sequence was commercially synthesized and covalently bound to a PepSpots nitrocellulose membrane (JPT Peptide technologies, Berlin, Germany). The sequences of the overlapping 15 amino acid peptides is shown in Fig. 12 and correspond to SEQ ID NOs: 590-646. Blots were prepared and probed according to the manufacturer’s recommendations.

[0828] Briefly, blots were pre-wet in methanol, rinsed in PBS, and blocked for over 2 hours in 10% non-fat milk in PBS/0.05% Tween (Blocking Solution). The Ab1 antibody was used at 1 mg/mL final dilution, and the HRP-conjugated Mouse Anti-Human-Kappa secondary antibody (Southern BioTech #9220-05) was used at a 1:5000 dilution. Antibody dilutions/incubations were performed in blocking solution. Blots were developed using Amersham ECL advance reagents (GE# RPN2135) and chemiluminescent signal documented using a CCD camera (AlphaInnotech). The results of the blots is shown in Fig. 13 and Fig. 14.

[0829] The sequence of the form of human IL-6 utilized to generate peptide library is set forth:

\[
\text{VPPGEDSKDVAAPHRQPLTSSERIDKQIRYILDGISALRKECNKSNMCESS KELAENNKNLPKMAEKGDFQSFNEETCLVKIITGLLEFEVYLEYLQNFESSEEQ ARAVQMSTKVLQFLQKKAKNLDAITTPDPTTNASLLTLKQAQNQWQLQDMTHHLIL RSFKEFLQSSLRLRQM (SEQ ID NO: 1).}
\]

Example 15 Ab1 has high affinity for IL-6.

[0831] Surface plasmon resonance was used to measure association rate (K_a), dissociation rate (K_d) and dissociation constant (K_D) for Ab1 to IL-6 from rat, mouse, dog, human, and cynomolgus monkey at 25 °C (Fig. 15A). The dissociation constant for human IL-6 was 4 pM, indicating very high affinity. As expected, affinity generally decreased with phylogenetic distance from human. The dissociation constants of Ab1 for IL-6 of
cynomolgus monkey, rat, and mouse were 31 pM, 1.4 nM, and 0.4 nM, respectively. Ab1 affinity for dog IL-6 below the limit of quantitation of the experiment.

[0832] The high affinity of Ab1 for mouse, rat, and cynomolgus monkey IL-6 suggest that Ab1 may be used to inhibit IL-6 of these species. This hypothesis was tested using a cell proliferation assay. In brief, each species’s IL-6 was used to stimulate proliferation of T1165 cells, and the concentration at which Ab1 could inhibit 50% of proliferation (IC50) was measured. Inhibition was consistent with the measured dissociation constants (Fig. 15B). These results demonstrate that Ab1 can inhibit the native IL-6 of these species, and suggest the use of these organisms for in vitro or in vivo modeling of IL-6 inhibition by Ab1.

Example 16 Multi-dose Pharmacokinetic Evaluation of Antibody Ab1 in Healthy Human Volunteers.

[0833] Antibody Ab1 was dosed in a single bolus infusion in histidine and sorbitol to healthy human volunteers. Dosages of 1 mg, 3 mg, 10 mg, 30 mg or 100 mg were administered to each individual in dosage groups containing five to six individuals. Plasma samples were removed at fixed time intervals for up to twelve weeks. Human plasma was collected via venipuncture into a vacuum collection tube containing EDTA. Plasma was separated and used to assess the circulating levels of Ab1 using a monoclonal antibody specific for Ab1, as follows. A 96 well microtiter plate was coated overnight with the monoclonal antibody specific for Ab1 in 1X PBS overnight at 4 °C. The remaining steps were conducted at room temperature. The wells were aspirated and subsequently blocked using 0.5% Fish Skin Gelatin (FSG) (Sigma) in 1X PBS for 60 minutes. Human plasma samples were then added and incubated for 60 minutes, then aspirated, then 50 μL of 1 μg/mL biotinylated IL-6 was then added to each well and incubated for 60 minutes. The wells were aspirated, and 50 μL streptavidin-HRP (Pharmingen), diluted 1:5,000 in 0.5% FSG/PBS, was added and incubated for 45 minutes. Development was conducted using standard methods employing TMB for detection. Levels were then determined via comparison to a standard curve prepared in a comparable format.

[0834] Average plasma concentration of Ab1 for each dosage group versus time is shown in Fig. 16. Mean AUC and C_max increased linearly with dosage (Fig. 17 and Fig. 18, respectively). For dosages of 30 mg and above, the average Ab1 half-life in each dosage group was between approximately 25 and 30 days (Fig. 19).
Example 17 Pharmacokinetics of Ab1 in patients with advanced cancer.

[0835] Antibody Ab1 was dosed in a single bolus infusion in phosphate buffered saline to five individuals with advanced cancer. Each individual received a dosage of 80 mg (n=2) or 160 mg (n=3) of Ab1. Plasma samples were drawn weekly, and the level of antibody Ab1 was quantitated as in Example 16.

[0836] Average plasma concentration of Ab1 in these individuals as a function of time is shown in Fig. 20. The average Ab1 half-life was approximately 31 days.

Example 18 Unprecedented half-life of Ab1.

[0837] Overall, the average half-life of Ab1 was approximately 31 days in humans (for dosages of 10 mg and above), and approximately 15-21 days in cynomolgus monkey. The Ab1 half-life in humans and cynomolgus monkeys are unprecedented when compared with the half-lives of other anti-IL-6 antibodies (Fig. 21). As described above, Ab1 was derived from humanization of a rabbit antibody, and is produced from Pichia pastoris in an aglycosylated form. These characteristics results in an antibody with very low immunogenicity in humans. Moreover, the lack of glycosylation prevents Ab1 from interacting with the Fc receptor or complement. Without intent to be limited by theory, it is believed that the unprecedented half-life of Ab1 is at least partially attributable to the humanization and/or the lack of glycosylation. The particular sequence and/or structure of the antigen binding surfaces may also contribute to Ab1’s half-life.

Example 19 Ab1 Effect on Hemoglobin Concentration, Plasma Lipid Concentration, and Neutrophil Counts in Patients with Advanced Cancer.

[0838] Antibody Ab1 was dosed in a single bolus infusion in phosphate buffered saline to eight individuals with advanced cancer (NSCLC, colorectal cancer, cholangiocarcinoma, or mesothelioma). Each individual received a dosage of 80 mg, 160 mg, or 320 mg of Ab1. Blood samples were removed just prior to infusion and at fixed time intervals for six weeks, and the hemoglobin concentration, plasma lipid concentration, and neutrophil counts were determined. Average hemoglobin concentration rose slightly (Fig. 22), as did total cholesterol and triglycerides (Fig. 23), while mean neutrophil counts fell slightly (Fig. 24).
These results further demonstrate some of the beneficial effects of administration of Ab1 to chronically ill individuals. Because IL-6 is the main cytokine responsible for the anemia of chronic disease (including cancer-related anemia), neutralization of IL-6 by Ab1 increases hemoglobin concentration in these individuals. Similarly, as IL-6 is centrally important in increasing neutrophil counts in inflammation, the observed slight reduction in neutrophil counts further confirms that Ab1 inhibits IL-6. Finally, IL-6 causes anorexia as well as cachexia in these patients; neutralization of IL-6 by Ab1 results in the return of appetite and reversal of cachexia. The increase in plasma lipid concentrations reflect the improved nutritional status of the patients. Taken together, these results further demonstrate that Ab1 effectively reverses these adverse consequences of IL-6 in these patients.

Example 20 Ab1 Suppresses Serum CRP in Healthy Volunteers and in Patients with Advanced Cancer.

Introduction

Serum CRP concentrations have been identified as a strong prognostic indicator in patients with certain forms of cancer. For example, Hashimoto et al. performed univariate and multivariate analysis of preoperative serum CRP concentrations in patients with hepatocellular carcinoma in order to identify factors affecting survival and disease recurrence (Hashimoto, K., et al., Cancer, 103(9):1856-1864 (2005)). Patients were classified into two groups, those with serum CRP levels > 1.0 mg/dL ("the CRP positive group") and those with serum CRP levels < 1.0 mg/dL ("the CRP negative group"). The authors identified "a significant correlation between preoperative serum CRP level and tumor size." *Id.* Furthermore, the authors found that "[t]he overall survival and recurrence-free survival rates in the CRP-positive group were significantly lower compared with the rates in the CRP-negative group." *Id.* The authors concluded that the preoperative CRP level of patients is an independent and significant predictive indicator or poor prognosis and early recurrence in patients with hepatocellular carcinoma.

Similar correlations have been identified by other investigators. For example, Karakiewicz et al. determined that serum CRP was an independent and informative predictor of renal cell carcinoma-specific mortality (Karakiewicz, P.I., et al., Cancer, 110(6):1241-1247 (2007)). Accordingly, there remains a need in the art for methods and/or treatments that
reduce serum C-Reactive Protein (CRP) concentrations in cancer patients, and particularly those with advanced cancers.

[0843] Methods

[0844] Healthy volunteers received a single 1-hour intravenous (IV) infusion of either 100 mg (5 patients), 30 mg (5 patients), 10 mg (6 patients), 3 mg (6 patients) or 1 mg (6 patients) of the Ab1 monoclonal antibody, while another 14 healthy volunteers received intravenous placebo. Comparatively, 2 patients with advanced forms of colorectal cancer received a single 1-hour intravenous (IV) infusion of 80 mg of the Ab1 monoclonal antibody. No further dosages of the Ab1 monoclonal antibody were administered to the test population.

[0845] Patients were evaluated prior to administration of the dosage, and thereafter on a weekly basis for at least 5 weeks post dose. At the time of each evaluation, patients were screened for serum CRP concentration.

[0846] Results

[0847] Healthy Volunteers

[0848] As noted above, serum CRP levels are a marker of inflammation; accordingly, baseline CRP levels are typically low in healthy individuals. The low baseline CRP levels can make a further reduction in CRP levels difficult to detect. Nonetheless, a substantial reduction in serum CRP concentrations was detectable in healthy volunteers receiving all concentrations of the Ab1 monoclonal antibody, compared to controls (Fig. 25). The reduction in serum CRP levels was rapid, occurring within one week of antibody administration, and prolonged, continuing at least through the final measurement was taken (8 or 12 weeks from antibody administration).

[0849] Cancer Patients

[0850] Five advanced cancer patients (colorectal cancer, cholangiocarcinoma, or NSCLC) having elevated serum CRP levels were dosed with 80 mg or 160 mg of Ab1. Serum CRP levels were greatly reduced in these patients (Fig. 26A). The reduction in serum CRP levels was rapid, with 90% of the decrease occurring within one week of Ab1 administration, and prolonged, continuing at least until the final measurement was taken (up to twelve weeks). The CRP levels of two representative individuals are shown in Fig. 26B. In those individuals, the CRP levels were lowered to below the normal reference range (less than 5 - 6
mg/l) within one week. Thus, administration of Ab1 to advanced cancer patients can cause a rapid and sustained suppression of serum CRP levels.

Example 21 Ab1 Improved Muscular Strength, Improved Weight, and Reduced Fatigue in Patients with Advanced Cancer

[0851] Introduction

[0852] Weight loss and fatigue (and accompanying muscular weakness) are very common symptoms of patients with advanced forms of cancer, and these symptoms can worsen as the cancer continues to progress. Fatigue, weight loss and muscular weakness can have significant negative effects on the recovery of patients with advanced forms of cancer, for example by disrupting lifestyles and relationships and affecting the willingness or ability of patients to continue cancer treatments. Known methods of addressing fatigue, weight loss and muscular weakness include regular routines of fitness and exercise, methods of conserving the patient’s energy, and treatments that address anemia-induced fatigue and muscular weakness. Nevertheless, there remains a need in the art for methods and/or treatments that improve fatigue, weight loss and muscular weakness in cancer patients.

[0853] Methods

[0854] Four patients with advanced forms of cancer (colorectal cancer (2), NSCLC (1), cholangiocarcinoma (1) received a single 1-hour intravenous (IV) infusion of either 80 mg or 160 mg of the Ab1 monoclonal antibody. No further dosages of the Ab1 monoclonal antibody were administered to the test population.

[0855] Patients were evaluated prior to administration of the dosage, and thereafter for at least 6 weeks post dose. At the time of each evaluation, patients were screened for the following: a.) any change in weight; b.) fatigue as measured using the Facit-F Fatigue Subscale questionnaire a medically recognized test for evaluating fatigue (See, e.g., Cella, D., Lai, J.S., Chang, C.H., Peterman, A., & Slavin, M. (2002). Fatigue in cancer patients compared with fatigue in the general population. Cancer, 94(2), 528-538; Cella, D., Eton, D.T., Lai,F J-S., Peterman, A.H & Merkel, D.E. (2002). Combining anchor and distribution based methods to derive minimal clinically important differences on the Functional Assessment of Cancer Therapy anemia and fatigue scales. Journal of Pain & Symptom Management, 24 (6) 547-561.); and hand-grip strength (a medically recognized test for evaluating muscle strength, typically employing a handgrip dynamometer).
Results

Weight Change

The averaged data for both dosage concentrations (80 mg and 160 mg) of the Ab1 monoclonal antibody demonstrated an increase of about 2 kilograms of weight per patient over the period of 6 weeks (Fig. 29).

Fatigue

The averaged data for both dosage concentrations (80 mg and 160 mg) of the Ab1 monoclonal antibody demonstrated an increase in the mean Facit-F FS subscale score of at least about 10 points in the patient population over the period of 6 weeks (Fig. 30).

Hand-Grip Strength

The averaged data for both dosage concentrations (80 mg and 160 mg) of the Ab1 monoclonal antibody demonstrated an increase in the mean hand-grip strength of at least about 10 percent in the patient population over the period of 6 weeks (Fig. 31).

Example 22 Ab1 For Prevention of Thrombosis

Prior studies have shown that administration of an anti-IL-6 antibody can cause decreased platelet counts. Emilie, D. et al., Blood, 84(8):2472-9 (1994); Blay et al., Int J Cancer, 72(3):424-30 (1997). These results have apparently been viewed as an indicator of potential danger, because further decreases in platelet counts could cause complications such as bleeding. However, Applicants have now discerned that inhibiting IL-6 restores a normal coagulation profile, which Applicants predict will prevent thrombosis. Decreased platelet counts resulting from inhibition of IL-6 is not a sign of potential danger but rather reflects the beneficial restoration of normal coagulation.

The mechanism by which normal coagulation is restored is believed to result from the interplay between IL-6 and the acute phase reaction. In response to elevated IL-6 levels, as for example in a cancer patient, the liver produces acute phase proteins. These acute phase proteins include coagulation factors, such as Factor II, Factor V, Factor VIII, Factor IX, Factor XI, Factor XII, F/fibrin degradation products, thrombin-antithrombin III complex, fibrinogen, plasminogen, prothrombin, and von Willebrand factor. This increase in coagulation factors may be measured directly, or may be inferred from functional measurements of clotting ability. Antagonists of IL-6, such as Ab1, suppresses acute phase
proteins, e.g., Serum Amyloid A (see Fig. 32 and Example 10). Applicants now predict that this suppression of acute phase proteins will restore the normal coagulation profile, and thereby prevent thrombosis. The restoration of normal coagulation may cause a slight drop in platelet counts, but the patient will nonetheless retain normal coagulation ability and thus will not have an increased risk of bleeding. Such a treatment will represent a vast improvement over the available anticoagulation therapies whose usefulness is limited by the risk of adverse side-effects, such as major bleeding.

[0865] Applicants contemplate that the same beneficial effects of inhibiting IL-6 will be obtained regardless of the method of inhibition. Suitable methods of inhibiting IL-6 include administration of anti-IL-6 antibodies, antisense therapy, soluble IL-6 receptor, etc. either individually or in combinations.

Example 23 Ab1 Increases Plasma Albumin Concentration in Patients with Advanced Cancer

[0866] Introduction

[0867] Serum albumin concentrations are recognized as predictive indicators of survival and/or recovery success of cancer patients. Hypoalbuminemia correlates strongly with poor patient performance in numerous forms of cancer. For example, in one study no patients undergoing systemic chemotherapy for metastatic pancreatic adenocarcinoma and having serum albumin levels less than 3.5 g/dL successfully responded to systemic chemotherapy (Fujishiro, M., et al., Hepatogastroenterology, 47(36):1744-46 (2000)). The authors conclude that “[p]atients with ... hypoalbuminemia ... might be inappropriate candidates for systemic chemotherapy and might be treated with other experimental approaches or supportive care.” *Id.*

[0868] Similarly, Senior and Maroni state that “[t]he recent appreciation that hypoalbuminemia is the most powerful predictor of mortality in end-stage renal disease highlights the critical importance of ensuring adequate protein intake in this patient population.” (J.R. Senior and B.J. Maroni, Am. Soc. Nutr. Sci., 129:313S-314S (1999)).

[0869] In at least one study, attempts to rectify hypoalbuminemia in 27 patients with metastatic cancer by daily intravenous albumin infusion of 20 g until normal serum albumin levels (>3.5 g/dL) were achieved had little success. The authors note that “[a]lbumin infusion for the advanced stage cancer patients has limited value in clinical practice. Patients with PS

Accordingly, there remains a need in the art for methods and/or treatments that improve serum albumin concentrations in cancer patients and address hypoalbuminemic states in cancer patients, particularly those with advanced cancers.

Methods

Four patients with advanced forms of cancer (colorectal cancer (2), NSCLC (1), cholangiocarcinoma (1)) received a single 1-hour intravenous (IV) infusion of either 80 mg or 160 mg of the Ab1 monoclonal antibody. No further dosages of the Ab1 monoclonal antibody were administered to the test population.

Patients were evaluated prior to administration of the dosage, and thereafter for at least 6 weeks post dose. At the time of each evaluation, patients were screened for plasma albumin concentration.

Results

The averaged data for both dosage concentrations (80 mg and 160 mg) of the Ab1 monoclonal antibody demonstrated an increase of about 5 g/L of plasma albumin concentration per patient over the period of 6 weeks (Fig. 33).

Example 24 Ab1 Suppresses Serum CRP in Patients with Advanced Cancer.

Introduction

Serum CRP concentrations have been identified as a strong prognostic indicator in patients with certain forms of cancer. For example, Hashimoto et al. performed univariate and multivariate analysis of preoperative serum CRP concentrations in patients with hepatocellular carcinoma in order to identify factors affecting survival and disease recurrence (Hashimoto, K., et al., Cancer, 103(9):1856-1864 (2005)). Patients were classified into two groups, those with serum CRP levels > 1.0 mg/dL (“the CRP positive group”) and those with serum CRP levels < 1.0 mg/dL (“the CRP negative group”). The authors identified “a significant correlation between preoperative serum CRP level and tumor size.” Id. Furthermore, the authors found that “[t]he overall survival and recurrence-free survival rates in the CRP-positive group were significantly lower compared with the rates in the CRP-negative group.” Id. The authors concluded that the preoperative CRP level of patients is an
independent and significant predictive indicator of poor prognosis and early recurrence in patients with hepatocellular carcinoma.

[0878] Similar correlations have been identified by other investigators. For example, Karakiewicz et al. determined that serum CRP was an independent and informative predictor of renal cell carcinoma-specific mortality (Karakiewicz, P.I., et al., Cancer, 110(6):1241-1247 (2007)). Accordingly, there remains a need in the art for methods and/or treatments that reduce serum C-Reactive Protein (CRP) concentrations in cancer patients, and particularly those with advanced cancers.

[0879] Methods

[0880] One-hundred twenty-four patients with non-small cell lung cancer (NSCLC) were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=31), 80 mg (n=29), 160 mg (n=32), or 320 mg (n=32) of the Ab1 monoclonal antibody every 8 weeks over a 24 week duration for a total of 3 doses. CRP concentration was quantitated by a C-reactive protein particle-enhanced immunoturbidimetric assay using latex-attached anti-CRP antibodies (i.e. Roche CRP Tinaquant®). Briefly, about 1.0 mL of patient sample serum was collected and stored in a plastic collection tube. Sample was placed into appropriate buffer, and anti-CRP antibody coupled to latex microparticles was added to the sample to start the reaction. These anti-CRP antibodies with conjugated latex microparticles react with antigen in the sample to form an antigen/antibody complex. Following agglutination, this was measured turbidimetrically using a Roche/Hitachi Modular P analyzer.

[0881] Patients were evaluated prior to administration of the dosage, and thereafter at weeks 2, 4, 8, and 12. At the time of each evaluation, patients were screened for serum CRP concentration.

[0882] Results

[0883] The averaged data for each dosage concentrations (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody are plotted in Figure 38. All dosage levels of Ab1 antibody demonstrated an immediate drop in CRP concentrations relative to placebo over the period of 12 weeks. CRP levels displayed breakthrough at 8 weeks post-dosing. The CRP levels fell below 5 mg/L by week 12. Median values of CRP demonstrated rapid and sustained decreases for all dosage concentrations relative to placebo (Fig. 39). Thus,
administration of Ab1 to advanced cancer patients can cause a rapid and sustained suppression of serum CRP levels.

Example 25 Ab1 Suppresses Serum CRP in Patients with Advanced Cancers.

[0884] Introduction

[0885] Serum CRP concentrations have been identified as a strong prognostic indicator in patients with certain forms of cancer. For example, Hashimoto *et al.* performed univariate and multivariate analysis of preoperative serum CRP concentrations in patients with hepatocellular carcinoma in order to identify factors affecting survival and disease recurrence (Hashimoto, K., *et al.*, Cancer, 103(9):1856-1864 (2005)). Patients were classified into two groups, those with serum CRP levels > 1.0 mg/dL (“the CRP positive group”) and those with serum CRP levels < 1.0 mg/dL (“the CRP negative group”). The authors identified “a significant correlation between preoperative serum CRP level and tumor size.” *Id.* Furthermore, the authors found that “[t]he overall survival and recurrence-free survival rates in the CRP-positive group were significantly lower compared with the rates in the CRP-negative group.” *Id.* The authors concluded that the preoperative CRP level of patients is an independent and significant predictive indicator of poor prognosis and early recurrence in patients with hepatocellular carcinoma.

[0886] Similar correlations have been identified by other investigators. For example, Karakiewicz *et al.* determined that serum CRP was an independent and informative predictor of renal cell carcinoma-specific mortality (Karakiewicz, P.I., *et al.*, Cancer, 110(6):1241-1247 (2007)). Accordingly, there remains a need in the art for methods and/or treatments that reduce serum C-Reactive Protein (CRP) concentrations in cancer patients, and particularly those with advanced cancers.

[0887] Methods

[0888] Eight patients with various forms of advanced cancer (colorectal (3), NSCLC (1), cholangio (1), and mesothelioma (2)) received a single 1-hour intravenous infusion of either 80 mg (2 patients), 160 mg (3 patients) or 320 mg (3 patients) of the Ab1 monoclonal antibody. No further dosages of the Ab1 monoclonal antibody were administered to the test population.
Patients were evaluated prior to administration of the dosage and thereafter on a weekly basis for at least 8 weeks post dose. At the time of each evaluation, patients were screened for serum CRP concentration. CRP concentration was quantitated by a C-reactive protein particle-enhanced immunoturbidimetric assay using latex-attached anti-CRP antibodies (i.e. Roche CRP Tinaquant®). Briefly, about 1.0 mL of patient sample serum was collected and stored in a plastic collection tube. Sample was placed into appropriate buffer, and anti-CRP antibody coupled to latex microparticles was added to the sample to start the reaction. These anti-CRP antibodies with conjugated latex microparticles react with antigen in the sample to form an antigen/antibody complex. Following agglutination, this was measured turbidimetrically using a Roche/Hitachi Modular P analyzer.

Results

Serum CRP levels were greatly reduced in all patients studied (Fig. 40). The reduction in serum CRP levels was rapid, with approximately 90% of the decrease occurring within one week of Ab1 administration, and prolonged diminished levels continued at least until the final measurement was taken (up to twelve weeks). In all cases except one patient with colorectal cancer, CRP levels fell to at or below the normal reference range (less than 5–6 mg/L) within one week. The colorectal cancer patient achieved similar normal levels by week 4 of the study. Thus, administration of Ab1 to advanced cancer patients can cause a rapid and sustained suppression of serum CRP levels.

Example 26 Ab1 Suppresses Serum CRP in Patients with Rheumatoid Arthritis.

Introduction

Serum CRP concentrations have been identified as a strong prognostic indicator in patients with rheumatoid arthritis. Patients suffering from rheumatoid arthritis with high levels of CRP demonstrated almost universal deterioration. Amos et al., 1 Br. Med. J. 195-97 (1977). Conversely, patients with low CRP levels showed no disease progression, suggesting that sustaining low levels of CRP is necessary for effectively treating rheumatoid arthritis. Ild. Tracking of CRP during rheumatoid arthritis treatment regimes of gold, D-penicillamine, chloroquine, or dapsone indicated that radiological deterioration was impeded after the first 6 months of treatment when CRP levels were consistently controlled. Dawes et al., 25 Rheumatology 44-49 (1986). A highly significant correlation between CRP production and radiological progression was identified. van Leeuwen et al., 32 (Supp. 3) Rheumatology 9-
13 (1997). Another study revealed that for patients with active rheumatoid arthritis, suppression of abnormally elevated CRP led to improvement in functional testing metrics, whereas sustained CRP elevation associated with deterioration in the same metrics. Devlin et al., 24 J. Rheumatol. 9-13 (1997). No further deterioration was observed without CRP re-elevation, indicating CRP suppression as a viable candidate for rheumatoid arthritis treatment. Id. Accordingly, there remains a need in the art for methods and/or treatments that reduce serum C-Reactive Protein (CRP) concentrations in rheumatoid arthritis patients.

Methods

One-hundred twenty-seven patients with active rheumatoid arthritis and CRP ≥10 mg/L were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=33), 80 mg (n=32), 160 mg (n=34), or 320 mg (n=28) of the Ab1 monoclonal antibody, once at the start of the 16 week trial and again at week 8. CRP concentration was quantitated by a C-reactive protein particle-enhanced immunoturbidimetric assay using latex-attached anti-CRP antibodies (i.e. Roche CRP Tinaquant®). Briefly, about 1.0 mL of patient sample serum was collected and stored in a plastic collection tube. Sample was placed into appropriate buffer, and anti-CRP antibody coupled to latex microparticles was added to the sample to start the reaction. These anti-CRP antibodies with conjugated latex microparticles react with antigen in the sample to form an antigen/antibody complex. Following agglutination, this was measured turbidimetrically using a Roche/Hitachi Modular P analyzer. Data on CRP concentration was collected every week for the first 4 weeks, every two weeks between weeks 4 and 12, and at the conclusion of the test at week 16.

Results

Serum CRP levels were greatly reduced in all patients studied (Fig. 41). The reduction in serum CRP levels was rapid, with immediate reduction in CRP levels relative to placebo within one week of Ab1 administration, and prolonged diminished levels continued at least until the final measurement was taken (up to sixteen weeks). In all cases, CRP levels fell to at or below the normal reference range (less than 5–6 mg/L) within one week. Thus, administration of Ab1 to rheumatoid arthritis patients can cause a rapid and sustained suppression of serum CRP levels and presents an effective treatment regime.

Example 27 Ab1 Increases Hemoglobin in Patients with Advanced Cancer
Antibody Ab1 was dosed at 80 mg, 160 mg, or 320 mg of Ab1 in phosphate buffered saline to 93 individuals with non-small cell lung carcinoma. The placebo group of 31 individuals with non-small cell lung carcinoma was dosed with with phosphate buffered saline only. Blood samples were removed just prior to dosing (zero week), and at two, four, eight and twelve weeks, and the hemoglobin concentration was determined. Mean hemoglobin concentration rose for those receiving antibody Ab1, while mean hemoglobin concentration of those receiving placebo did not rise after twelve weeks when compared to the concentration just prior to dosing (zero week) (Figs. 42 and 43).

A subset of the study population began the study with low levels of hemoglobin, defined as a baseline hemoglobin concentration below 11 g/l. Mean hemoglobin concentration rose above 11 g/l after eight weeks for those receiving antibody Ab1 at dosages of 160 mg and 320 mg, while mean hemoglobin concentration of those receiving antibody Ab1 at dosages of 80 mg or placebo did not rise above 11 g/l after eight weeks (Fig. 44).

These results further demonstrate some of the beneficial effects of administration of Ab1 to chronically ill individuals. Because IL-6 is the main cytokine responsible for the anemia of chronic disease (including cancer-related anemia), neutralization of IL-6 by Ab1 increases hemoglobin concentration in these individuals.

Example 28 Ab1 Increases Hemoglobin in Patients with Rheumatoid Arthritis.

Hemoglobin levels were analyzed in patients with rheumatoid arthritis during treatment with Ab1 antibody. Ab1 antibody was dosed at 80 mg, 160 mg, or 320 mg in phosphate buffered saline to 94 individuals with rheumatoid arthritis. The placebo group of 33 individuals with rheumatoid arthritis was dosed with phosphate buffered saline only. Blood samples were removed just prior to dosing (zero week), and at one, two, three, four, six, eight, ten, twelve, and sixteen weeks, and the hemoglobin concentration was determined. Mean hemoglobin concentration rose for those receiving antibody Ab1, while mean hemoglobin concentration of those receiving placebo did not appreciably rise after sixteen weeks when compared to the concentration just prior to dosing (zero week) (Fig. 45).

These results further demonstrate some of the beneficial effects of administration of Ab1 to chronically ill individuals. Because IL-6 is the main cytokine responsible for the anemia of chronic disease (including cancer-related anemia), neutralization of IL-6 by Ab1 increases hemoglobin concentration.
Example 29 Ab1 Increases Albumin in Patients with Advanced Cancer

[0903] Introduction

[0904] Serum albumin concentrations are recognized as predictive indicators of survival and/or recovery success of cancer patients. Hypoalbuminemia correlates strongly with poor patient performance in numerous forms of cancer. For example, in one study no patients undergoing systemic chemotherapy for metastatic pancreatic adenocarcinoma and having serum albumin levels less than 3.5 g/dL successfully responded to systemic chemotherapy (Fujishiro, M., et al., Hepatogastroenterology, 47(36):1744-46 (2000)). The authors conclude that “[p]atients with … hypoalbuminemia … might be inappropriate candidates for systemic chemotherapy and might be treated with other experimental approaches or supportive care.” Id.

[0905] Similarly, Senior and Maroni state that “[t]he recent appreciation that hypoalbuminemia is the most powerful predictor of mortality in end-stage renal disease highlights the critical importance of ensuring adequate protein intake in this patient population.” (J.R. Senior and B.J. Maroni, Am. Soc. Nutr. Sci., 129:313S-314S (1999)).

[0906] In at least one study, attempts to rectify hypoalbuminemia in 27 patients with metastatic cancer by daily intravenous albumin infusion of 20 g until normal serum albumin levels (>3.5 g/dL) were achieved had little success. The authors note that “[a]lbumin infusion for the advanced stage cancer patients has limited value in clinical practice. Patients with PS 4 and hypoalbuminemia have poorer prognosis.” (Demirkazik, A., et al., Proc. Am. Soc. Clin. Oncol., 21:Abstr 2892 (2002)).

[0907] Accordingly, there remains a need in the art for methods and/or treatments that improve serum albumin concentrations in cancer patients and address hypoalbuminemic states in cancer patients, particularly those with advanced cancers.

[0908] Methods

[0909] Antibody Ab1 was dosed at 80 mg, 160 mg, or 320 mg of Ab1 in phosphate buffered saline to 93 individuals with non-small cell lung carcinoma. Each individual received a dosage of. The placebo group of 31 individuals with non-small cell lung carcinoma was dosed with phosphate buffered saline only. Blood samples were removed just prior to dosing (zero week), and at two, four, eight and twelve weeks, and the albumin concentration was determined.
Results

Mean albumin concentration rose for those receiving antibody Ab1, while mean albumin concentration of those receiving placebo did not rise after twelve weeks when compared to the concentration just prior to dosing (zero week) (Fig. 46). The change from baseline albumin values for all dosage concentration groups is plotted in Figure 47.

A subset of the study population began the study with low levels of albumin, defined as a baseline albumin concentration less than or equal to 35 g/L. Mean albumin concentration initially rose with all dosages of antibody Ab1 over placebo, but only patients receiving 160 mg or 320 mg demonstrated sustained albumin levels above 35 g/L over 8 weeks of the study (Fig. 48). The 80 mg dosage group demonstrated an initial increase, but gradually declined after week 2 and never rose above 35 g/L during the 8 weeks where data was available.

Example 30 Ab1 Improved Weight and Reduced Fatigue in Patients with Advanced Cancer

Introduction

Weight loss and fatigue are very common symptoms of patients with advanced forms of cancer, and these symptoms can worsen as the cancer continues to progress. Fatigue and weight loss can have significant negative effects on the recovery of patients with advanced forms of cancer, for example by disrupting lifestyles and relationships and affecting the willingness or ability of patients to continue cancer treatments. Known methods of addressing fatigue and weight loss include regular routines of fitness and exercise, methods of conserving the patient’s energy, and treatments that address anemia-induced fatigue. Nevertheless, there remains a need in the art for methods and/or treatments that improve fatigue and weight loss in cancer patients.

Methods

One-hundred twenty-four patients with non-small cell lung cancer (NSCLC) were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=31), 80 mg (n=29), 160 mg (n=32), or 320 mg (n=32) of the Ab1 monoclonal antibody every 8 weeks over a 24 week duration for a total of 3 doses.
Patients were evaluated prior to administration of the dosage, and thereafter for at least 12 weeks post dose. At the time of each evaluation, patients were screened for the following: a.) any change in weight; and b.) fatigue as measured using the Facit-F Fatigue Subscale questionnaire, a medically recognized test for evaluating fatigue (See, e.g., Cella, D., Lai, J.S., Chang, C.H., Peterman, A., & Slavin, M. (2002). Fatigue in cancer patients compared with fatigue in the general population. Cancer, 94(2), 528-538; Cella, D., Eton, D.T., Lai, F J-S., Peterman, A.H & Merkel, D.E. (2002). Combining anchor and distribution based methods to derive minimal clinically important differences on the Functional Assessment of Cancer Therapy anemia and fatigue scales. Journal of Pain & Symptom Management, 24 (6) 547-561.).

Results

Weight Change

The averaged weight change data from each dosage concentration group (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody over 12 weeks is plotted in Figure 49. The average percent change in body weight from each dosage concentration is plotted in Fig. 50. The averaged lean body mass data for the dosage concentration groups is plotted in Figure 51.

Fatigue

The averaged fatigue from each dosage concentration group (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody demonstrated increases in the mean Facit-F FS subscale score for some of the dosage concentration groups in the patient population over the period of 8 weeks (Fig. 52). The change from baseline Facit-F subscale score is plotted in Figure 53.

Example 31 Ab1 Decreases D-dimer Levels in Patients with Advanced Cancer

Introduction

D-dimer concentrations are recognized as useful diagnostic tools in predicting risks of thrombotic events in patients. (Adam et al., 113 Blood 2878-87 (2009)) Patients that are negative for D-dimer have a low probability for thrombosis. For example, D-dimer analysis can rule out suspected lower-extremity deep-vein thrombosis in patients. (Wells et al., 349 N. Engl. J. Med. 1227-35 (2003)) Clinical evaluation in combination with negative D-dimer test can effectively lower the instance of pulmonary embolism to 0.5%. (Van Belle et al.,

[0925] D-dimer analysis may have utility in tracking the progress of treating coagulation disorders. One study indicated that anticoagulation treatment for acute venous thromboembolism resulted in a gradual decline in D-dimer concentrations. (Adam et al., 113 Blood 2878-87 (2009); Schutgens et al., 144 J. Lab. Clin. Med. 100-07 (2004)) This discovery led to the conclusion that D-dimer levels monitoring could be used to assess treatment responsiveness. (Adam et al., 113 Blood at 2883)

[0926] For patients with cancer, D-dimer analysis may have additional significance, as cancer increases the prevalence of thrombosis. (Adam et al., 113 Blood 2878-87 (2009)) One study with oncology patients indicated that D-dimer concentrations have a high negative predictive value and high sensitivity in diagnosing pulmonary embolism. (King et al., 247 Radiology 854-61 (2008)) Deep-vein thrombosis can similarly be excluded for cancer patients with low probability of developing deep-vein thrombosis and a negative test for D-dimer, although such a combination is less likely for oncology patients. (Lee et al., 123 Thromb. Res. 177-83 (2008)) A higher threshold for a negative D-dimer result may be necessary in cancer patients. (Righini et al., 95 Haemost. 715-19 (2006))

[0927] Accordingly, there remains a need in the art for methods and/or treatments of thrombosis that improve D-dimer concentrations in cancer patients and address elevated D-dimer states in cancer patients, particularly those with advanced cancers.

[0928] Methods

[0929] One-hundred twenty-four patients with non-small cell lung cancer (NSCLC) were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=31), 80 mg (n=29), 160 mg (n=32), or 320 mg (n=32) of the Ab1 monoclonal antibody every 8 weeks over a 24 week duration for a total of 3 doses. Data on D-dimer concentration was collected for the first 8 weeks of treatment. D-dimer data concentration was quantitated by a D-dimer immunoturbidimetric assay. Briefly, the assay is based on the change in turbidity of a microparticle suspension that is measured by photometry. About 1.5 mL of patient sample sodium citrate plasma was collected and stored in a plastic collection tube. A suspension of latex microparticles, coated by covalent bonding with monoclonal antibodies specific for D-dimer, was mixed with the test plasma whose D-dimer level was to be assayed. Antigen-antibody reactions leading to an agglutination of the
latex microparticles induced an increase in turbidity of the reaction medium. This increase in turbidity was reflected by an increase in absorbance, the latter being measured photometrically using a STAGO STA analyzer. The increase in absorbance was a function of the D-dimer level present in the test sample.

[0930] Results

[0931] The averaged data for each dosage concentrations (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody are plotted in Figure 54. Error bars were omitted from the graph for clarity purposes. The percent change from baseline in D-dimer concentration is plotted in Figure 55. All dosage levels of Ab1 antibody demonstrated a drop in D-dimer levels over placebo over the period of 8 weeks.

Example 32 Ab1 achieved ACR 20/50/70 in Patients with Rheumatoid Arthritis.

[0932] Introduction

[0933] Rheumatoid arthritis is a chronic, systemic inflammatory disorder that principally attack synovium of joints. The disease causes painful and potentially disabling inflammation, with onset typically occurring between 40 and 50 years of age. Interpretation of drug treatment efficacy in rheumatoid arthritis is made difficult by the myriad of subjective and objective assessment tools made available over the years. The American College of Rheumatology ("ACR") released a standardized set of rheumatoid arthritis measures to facilitate evaluation of improvement of the disease in clinical trials. Felson et al., 36 Arthritis & Rheumatism 729-40 (1993).

[0934] Methods

[0935] One-hundred twenty-seven patients with active rheumatoid arthritis and CRP ≥10 mg/L were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=33), 80 mg (n=32), 160 mg (n=34), or 320 mg (n=28) of the Ab1 monoclonal antibody, once at the start of the 16 week trial and again at week 8. Data on CRP concentration was collected every week for the first 4 weeks, every two weeks between weeks 4 and 12, and at the conclusion of the test at week 16.

[0936] Assessment under the standardized protocols from the American College of Rheumatology were employed in determining the percentage of improvement of patients during the clinical trial and conducted by a person trained in the ordinary art of evaluating
rheumatoid arthritis. The evaluation was based upon activity measures, including tender joint count, swollen joint count, the patient's assessment of pain, the patient's and physician's global assessments of disease activity, and laboratory evaluation of either erythrocyte sedimentation rate or CRP level. Id. The patient's assessment of pain was based upon the Stanford Health Assessment Questionnaire Disability Index (HAQ DI). Patients that achieve a 20% increase in activity measures for rheumatoid arthritis during a clinical trial are categorized as achieving ACR 20. Similarly, patients achieving 50% and 70% improvements are categorized as ACR 50 and ACR 70, respectively.

[0937] Results

[0938] A significant portion of patients suffering from rheumatoid arthritis achieved ACR 20 or greater during the course of the study (Fig. 56). Patients observed rapid improvement in systems within the first 4 weeks of the study, as well as continued, steady improvement throughout the course of the 16 week evaluation (Figs. 57, 58, and 59). The greatest results where exhibited by patients receiving the 320 mg dosage level, with 43% achieving ACR 70 status during the study (Fig. 59).

[0939] Analysis of the individual components of the ACR evaluation demonstrated gains in every component (Fig. 60). HAQ DI scores demonstrated clinically meaningful change over placebo during the course of the evaluation (Fig. 61). Serum CRP levels were greatly reduced in all patients studied (Fig. 41). The reduction in serum CRP levels was rapid, with immediate reduction in CRP levels relative to placebo within one week of Ab1 administration, and prolonged diminished levels continued at least until the final measurement was taken (up to sixteen weeks). In all cases, CRP levels fell to at or below the normal reference range (less than 5–6 mg/L) within one week. Thus, administration of Ab1 can cause a rapid and sustained improvement rheumatoid arthritis patients, as evidenced by the significant improvement in ACR scores during clinical evaluation, and presents an effective treatment regime.

Example 33 Ab1 Achieved Improved DAS28 and EULAR Scores in Patients with Rheumatoid Arthritis

[0940] Introduction

[0941] Rheumatoid arthritis is a chronic, systemic inflammatory disorder that principally attack synovium of joints. The disease causes painful and potentially disabling inflammation, with onset typically occurring between 40 and 50 years of age. Interpretation of drug
treatment efficacy in rheumatoid arthritis is made difficult by the myriad of subjective and objective assessment tools made available over the years. The American College of Rheumatology ("ACR") released a standardized set of rheumatoid arthritis measures to facilitate evaluation of improvement of the disease in clinical trials. Felson et al., 36 Arthritis & Rheumatism 729-40 (1993).

[0942] Inflammatory activity associated with rheumatoid arthritis is measured using numerous variables through validated response criteria such as Disease Activity Score (DAS), DAS28 and EULAR. The DAS is a clinical index of rheumatoid arthritis disease activity that combines information from swollen joints, tender joints, the acute phase response, and general health. Fransen, J., et al., Clin. Exp. Rheumatol., 23 (Suppl. 39): S93-S99 (2005). The DAS 28 is an index similar to the original DAS, but utilizes a 28 tender joint count (range 0-28), a 28 swollen joint count (range 0-28), ESR (erythrocyte sedimentation rate), and an optional general health assessment on a visual analogue scale (range 0-100). Id. The European League against Rheumatism (EULAR) response criteria classify patients using the individual amount of change in the DAS and the DAS value (low, moderate, high) reached into one of the following classifications: Good; Moderate; or Non-Responders. Id.

[0943] Methods

[0944] One-hundred twenty-seven patients with active rheumatoid arthritis were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=33), 80 mg (n=32), 160 mg (n=34), or 320 mg (n=28) of the Ab1 monoclonal antibody, once at the start of the 16 week trial and again at week 8. Data on the DAS28 and EULAR scores was collected every week for the first 4 weeks, every two weeks between weeks 4 and 12, and at the conclusion of the test at week 16. Assessment under the standardized DAS28 and EULAR protocols were employed in determining the respective scores of patients during the clinical trial and conducted by a person trained in the ordinary art of evaluating rheumatoid arthritis.

[0945] Results

[0946] Patients receiving 80 mg, 160 mg or 320 mg of Ab1 demonstrated improved DAS28 scores relative to those patients receiving placebo over the course of 16 weeks, as presented in Fig. 62 as a mean change from the baseline DAS28 score. Furthermore, a significant percentage of patients receiving 80 mg, 160 mg or 320 mg of Ab1 achieved
“Good” or “Moderate” classifications relative to those patients receiving placebo over the course of 16 weeks. (Fig. 63).

[0947] Thus, administration of Ab1 can result in improved DAS28 and EULAR scores in rheumatoid arthritis when compared to those patients receiving placebo.

SEQUENCE LISTING

The biological sequences referenced herein are provided below:

SEQ ID NO: 1
VPPGEDSKDVAAPHRQPLTSERIDKQIRYILDGISALRKETCNKSNMCESEASKEAENNLNLKMAEK
DGCFQSGFNEETCLVKIITGLLEFEVYLEYLNQRFESSEEQQARAVQMSTKVLIQFQLKKAKNLDAITTPD
PTTNASLLTQLQAQNQWLQDMTPTHLIRSFKEFLQQSSLRALRQM

SEQ ID NO: 2
MDTRAPTLQLGLLLLWLPARGACAYDMTQTPASVAAAAGGTVTICQASQSSINNLSWYQQKPGQPRK
LLYRASTLASGVRSSRFKGSRTFEFTLTSDLECDAAATYYCQQGYSLRLNIDNAGGGGTQVEVVKRTVA
APSFVFIPPSDEQLKSGTASVVCVCLNN

SEQ ID NO: 3
METGLRWLLLVAVLKGVQCQSLIESSGRLVTPGTLPLTLTCTASGFSLSNYYVTWVRQAPKGGLEWIGI
IYGSDELAYATWAIGRTFIKSTSTTVDLKMTSTLTTADTATYFCARDDDSDWDAKFNLLWGQGTLVTVSS
ASTKGPSVFPLAPSSKSGTAAAGGCLVK

SEQ ID NO: 4
QASQSSINNELS

SEQ ID NO: 5
RASTLAS

SEQ ID NO: 6
QQGYSLRNIDNA

SEQ ID NO: 7
NYYVT

SEQ ID NO: 8
IYGSDELAYATWAIG

SEQ ID NO: 9
DDSSWDADAKFNLL

SEQ ID NO: 10
ATGGACACAGAGGCCCCACTCACGTGCTGGGGCTCTGGCTGGCTCAGGTCCAGCATGT
GCCTATGATATGACCACTCCAGCCCTCGGTGTCTGAGCTTGGGAGGACAGTCAACCATCAAG
TGCCAGCCAGTGACAGCAATTAAACATTGAATTTACCTGTTATCAGACAAAACGAGCAGCAGCTCC
CAAGCTCCTGATCTATAGGCGATCCACCTCTGGGACATCTGGGTCTCATGCGGGTTCAAAGGACAGTG
ATCTGGGACAGAGTTTCATCTCACCATTACGACCTGGAGGTGTGCGACCTGGCTAATCTACTACGT
TCAACAGGGTTATAGTCTGAGGAATATTGATAATGCTTTCCGGCGAGGACGGACGGTGTGCAGCA
SEQ ID NO: 23
QASETIVSWLS
SEQ ID NO: 24
QASDLAS
SEQ ID NO: 25
QGYSGSNVDNV
SEQ ID NO: 26
DHAMG
SEQ ID NO: 27
FINSOSARYASWAEG
SEQ ID NO: 28
GGAIVWISHFDP
SEQ ID NO: 29
ATGGGACACGAAGGCCCCACTCACGTGCTGGGCTCTCTGTGCTGGGTCCAGGTGCAAGATGT
GCCATGATATGACCCAGACTCCAGCCTCTGTTGAGGTAGGTGTGAGGGAGGGACACAGTCACCACATCAAT
TGCCAGGCGACTGAGACCCACATTACATTTATGTGTATTCGGTACGAGAAGCCAGGCGAGCTCCTCCC
AAGCTCTGATCTACACCGATCATCGGTCTGCTGCTTTGCGGCTTCCCACTCGAGATCAGGGAGTAGGG
GCTGGGACAGATGACACTCTCTACCACATACGCGGCGATGCAAGATGCTGAGCCACTTACTAGTGT
CAACAGGGTTATAGTGGTAGTAAATGTTGATAATGTTTTCCGCCCCAGGAGCAGGAGGTGTGTGTGTCA
ACGTAACGGTACCGGCCCCATGTCTTCTCTGTCTACCTCCGCAAATCGAGACGGCCCAGCGTCAAG
TGCTCTGTTGGTGTGCTGCTGAATACTTCTATACCCACGAGGAACGAGG
SEQ ID NO: 30
ATGGGAGACTGGGCTGCTGGGCTTCTGGTCGCTGTGCTCAGAAATGTTCAAGTCAGTAGGAGCAAGCAG
CTGAAGGGAGCTCGGGGTGTTGCCGTCAGCCGCTTGGAGAACACCCGACACTGCTACGGACAGCTCCT
GGATTTCTCCCTCAATGACCATGCAATGGGCTGCTGCCAGAGGGAAGGGACGCTGGAATA
CATCCGATTCAGATATAGTGGTGAGAGGCAAGCTAGGCAGGCTGAGGGCAGAAGGGCAAGGCCAGACT
TTTTCTGTTAGCAAGCAGGCTGCTGGAGATCAAGATGGCAACAAGGACAGGCAGCAGGCGACACC
CTTGTCAGCCGCTCGACCGCTCCACCAAGGGCCATCGGTCTTCTCCCTTGCGCACCCTCTCCAA
AGCACCCCTCGGGCAGCCGCTGGGCTCTGGTCAGAG
SEQ ID NO: 31
CAGGCCAGTGAGACCATTACAGTGGTTATCC
SEQ ID NO: 32
CAGGCACTCGATCTGGCATCT
SEQ ID NO: 33
CAACAGGGTTATAGTGGTAGAATGTTGATAATGTT
SEQ ID NO: 34
GACCATGCAATGGGC
SEQ ID NO: 35
TTCAATTAATAGTGGGCTAGCCGACAGCCTACGCGGAGCTGGGCAGAAGGC
SEQ ID NO: 36
GGGGGCTGCTTTGGAGATTCATAGATTTTTGATCCC
SEQ ID NO: 37
MDTRAPTQLLGLLLLWLPAGATFAAVLTQTSPVSAAVGGTVSISCQASQSVSVDNYLGSWFQPKPGQPP
KLLIYGASTLASGVPFSRFVGSSTQFTLTTIDVDQQCDAATYVACVYDDDSDNAFGGGTEVVVKRTV
AAPSVFIPPSDEQLKGSATSVCLNNF
SEQ ID NO: 38
METGLRWWLLLVALKVGVCQALSLEESGGRLVTGPTPLTLTCTASGFSLSVYMMNWRQAPGKLEWIG
FITMSDNYASWAKGRFTISKTSSTTVDKMTSPPTEDTATYFCARSQGRTMGRDLMWPGTTVS
ASTKGPSVFPLAPSSKSTGGAALGCLVK
SEQ ID NO: 39
QASQSYDVNNYL
SEQ ID NO: 40
GASTLAS
SEQ ID NO: 41
AGVYDDSDNA
SEQ ID NO: 42
VYYMN
SEQ ID NO: 43
FITMSDNYASWAKG
SEQ ID NO: 44
SRGWGTMGRDL
SEQ ID NO: 45
ATGGAGACCGAGGGGCCCCCCTGCACTAATGGCCTTGGGTGGCTGCTGCTTGGCTGGCTGGCTGGCTGGCAGGTCCACATTT
GCCGCCGTGCTGACCCAGACTCCATCTCCCTGGGTGTGAGCTGGGAGGCAACTGACGTGATTCACATT
TGCCAGCCAGTCAGGTGTTATGACCAACAACATTTATCTGTGTTTACGCAAGAACCAGGCGAG
CCTCCCAAGCTCCTGATCTATGGTGCATCCACTCCTGGGAGGCTCCACGTTCTGTTGGGCAC
AGTGGAACTCTGGGACAGCATCTCTACCATCACTCAGACGAGTGATGCTGAGGTGCTGCCATTTAC
TATTGTCAGGGCCTTTATGATGTAGTATGATAATGCTTCGGCGGAGGACCCAGGAGTGGTGGTTC
AAAACCTACGGTAGCGGCCCCCATCTGTCTTACGTCTCCCCTGGCAATAGCAATGCTGA
ACTGCTCTCTGTGGTGCTGCTGGGCTGAATAACTTCT
SEQ ID NO: 46
ATGGGAGACTGGGCTGGCTGCTTTCTCTGCTGGCTGCTCAAAGGTTGGTTCCAGGTGTCACTGCTG
GAGAGATCGGGGGGCCTGGCTCACCCCTGGGAACCCCTCAGACTCAGCTCACCAGGCCCTCTGG
ATTCTCCCATGTGCTACTACATGGAACCTGGGGCGCAAGCAAGGGGCTGAAGAT
CAGATTATCATTACATAGGTGAAATATAATTACGGCAGCTGGGCGAAAGGCGGAAATCCCATTC
CAAAAACCTCAGACACGATGTGCTGAAATGACACCTCGAACCAGGAGACAGCCCAACCTATT
TCTGTGCCAGGAGATCGTGGCTGGGCTGCTGATCATGAGGTGGTCTGCTGGGCCCCAGCCACCCCTCG
TCACCGCTCAGGCGGCCTCACCAGGCCCATCTGGCTTCCCTCCCTGACCCCACTCCATGAGCA
CCTCTGGGGGCAAGCGCCCTGGGCTGGCTGCTGCAAGG
IIGGFTTYYATWAKG
SEQ ID NO: 76
GGPGNNGDI
SEQ ID NO: 77
ATGGACAGGAGGGCCGCACCTCAGCTGCTTGGGTTCTGCTGCTTGGTCCAGGTGCCACATTT
GCCCAAGTGCTGACCCGAGACCTCACTGCGCTTGCAGCTGTGGGAGGACACGTGACACCATA
TGCCAGGCGCAGTCAAGGTGTTTAGTATGAAACACTGCTTATTGGCAGGGGAGGGCGAGAGTGTCGA
ACGTACGCTAGCGGCCCATCTCTGTCTCTCATTCACCTCCCGGACATCTGATAGCAGTTGAAATCTGGAAC
TGCCCTGTGGTGTGTCCTGTAATAACTCT
SEQ ID NO: 78
ATGGGAAGCTGGCTGCTGCTGCTTGCTGCTGCTCAGAAGTGCAGTGTCAGCTGGTG
GAGGAGTCCGGGATCGCTGCTGCAGCCACCTGGCAGCACCTGCACTCTGACACCTGCTTGGC
TTTCCCTCACGTAGTCTAGTACATGCAGGTGAGTGGGAGTCCGAGGCTAGGGAAGGGGAGCTGGAGTTGAT
CGAATCATATTGGTGTGTTTAGTACACATCTACTACGCGACCTGGGCGAAAGCCGATTCCACACCCT
CAAAAATCCTGACACCAGGTTGACTGTGAGATGTAACACTCCGAGAACCTGGAACAGGGAACCTTCCCT
TCTGACAGAGGTGCTCTGTAGTAGTGTGAGCATCTGGGCGCAAGGGGACCCCTGTCGACACCTGCGG
GCAGAGCCAGCTGGCTGCTGCTGCTGCG
SEQ ID NO: 79
CAGGCCAGTCAGAGTGTGATGATAAACACTGCTGAGGC
SEQ ID NO: 80
TCTGCATCCACTCTGGCATCT
SEQ ID NO: 81
GCAGGCAGTTTTGATGTAATATCTTTCT
SEQ ID NO: 82
AGCTATGCAATGAGC
SEQ ID NO: 83
ATCATTTGGTGTGGTTTGGTACACATACTACGCGACCTGGGCGAAAGGC
SEQ ID NO: 84
GGGTGTCCTGGTAATGCTGGTACATC
SEQ ID NO: 85
MDTRAPTLQLLLWLPGATFAAVLQTPSPVSVPVGGTVTIKCQSSSFLSWYQQPKPGQPK
LIIYQASKLASSVPRDSFGSGSGQFTLTISVGQCDDAATYCLGGYDDDDNFAAHGGTEVVKRTVA
APSVFIFIPSDEQLKSGTASVVCLLLNF
SEQ ID NO: 86
METGLRWLLLVALKVGVCQVQESGGLLVPSTPLTTLTCTVSGIDLSDDYAMSWVRQAPGKGLWIG
IYAGSGSTWASYASWAGRGRTSTKSTTVDLKTSPPTEDTATYFCARDGYDDYGDFFRLDLDLWGPGLVT
VSSASTKGPSVFPAPSSKSTSGTTAALGCLVKD
SEQ ID NO: 87
QSSQSVYNNFLS
SEQ ID NO: 88
QASKLAS
SEQ ID NO: 89
LGYYDDDADNA
SEQ ID NO: 90
DYAMS
SEQ ID NO: 91
IIYAGSGSTWASYASWAKG
SEQ ID NO: 92
DGYYDDYGDFFRLDLD
SEQ ID NO: 93
ATGGGACACGAGGGCCCCCACTCAGTCTGTTGGGCTCTGCTCTGGCTCCAGGTGCCACATT
GCAGCCGGTGTGTAACCCAGACACATCGGGCGGTGTGTAACCTGGGAGGACAGTCACCATCA
ATGGCAGTCAGTCAGTGTNTATATAATTATTTATATCGTGTAGTACGACAGAACCAGGGCAGCC
TCCCAAGCTCTGTACCTCAGTCTACCCAGATCAGTCTGCTCGGTGCTCGGTGCTCAAGGTGTGCAT
TGATCTGGAGACACAGCTTCACTTCTTACCACATCGGCGTGCAGTGTGACAGTCTGCTGCCACTT
ACTAGTGATGTAGTCTGCTGATAATTCTTCTGCGCAAGGACAGGCTGATGGCTCA
ACGTAGTACGAGGGCCCTACCTCTTCATCTCCGCGGATGAGCTGAAATCTGGAAC
TGCCCTCTGTGTGTCCTGCTGACAATAACTTCC
SEQ ID NO: 94
ATGGGAGACTGCGGGCTGCTGCTGTCTCTCTGTGCTGCTCAAGGTGTCCACAGTCAGTCGTTG
GAGAGTCCGGGGCGCTGCTGCTGCTGCTGCTCAAGGTGTCCACAGTCAGTCGTTG
AATCAGCCCTACTGACATGACATGACATGACATGACATGACATGACATGACATGACATGACATGACATGAC
TCCGAAATCTTTATGGCTGGATGGTAGCTGCAGATGGTAGGCTGCAGTGGTAGGCTGCAGTGGTAGGCTGCAG
ATCTCCAAAACCTCAGAACCAGTGGATCTGAAATCAACACGTCCGACAAACCCAGGACACGAGCCACC
CTATTCTCTGTCACGAGATGGACAGATCCGATGACTTGGGATTCTCAGTGGATCTCTTGGGCCC
AGGCACCGTCCGCTACGGTGGCCCTCCACCAAGGCGGCTACGGTCCCTCCCTTGGCGGCCACCCT
CTCCAAAGCCACCTCTGGGCGCCACAGCGCCCGCTGGCCTGCTGCTGAAGGTCT
SEQ ID NO: 95
CAGTCAGTCAGTTTATAATAATTTTATATC
SEQ ID NO: 96
CAGGCATCCAAAACCTGGCATCT
SEQ ID NO: 97
CTAGCCGGTTATGATGATGATGCTGATAATC
SEQ ID NO: 98
GACTATGCAATGAGC
SEQ ID NO: 99
ATCATTTATGCTGTGTAGTGTAGCACTATGGTACGGCGAGCTGGCGAAAGGC
SEQ ID NO: 100
GATGGATAACGATGACTATTGATTTCTGAGCTGTGGATCTGCTC
SEQ ID NO: 101
MDTRAPTQLLLLLLWLPGARACAYMTQTPASVSAAVVGGTGTIKCQASQSINNELSWYQQKSGQRPK
LLYRASTLASGVSFFSGSGTETFTLTSIDLECADATAYYCQGGYSLRNIDNAFGGGTVEVVKRTVA
APSVFIFPPSDEQLKSGTASVVALCLNNF
SEQ ID NO: 102
METGLRWLLLVAVLSGVQCQSLSEESGGRVVTGPTPLTTLCTASGFSLSNYYMTWVRQAPKGLEWIG
MIYGSDETAYANWAGRTSKSTTTVLKMTLSLTAADATATYFCARDSSDDWDKFNLLWQQGTLVTV
SSASTKGPSVFPLAPSSKSTSGTAAALGCLVK
SEQ ID NO: 103
QASQSINNELS
SEQ ID NO: 104
RASTLAS
SEQ ID NO: 105
QQGSLRNRIDNA
SEQ ID NO: 106
NYYMT
SEQ ID NO: 107
MIYGSDETAYANWAIG
SEQ ID NO: 108
DDSSDDWDKFN
SEQ ID NO: 109
ATGGACAGGAGGGCCCACTACGCTGCTGGGGCTTCCGCTGCTGGCTCCAGGTGCGCAAGATG
GCCTATGATATGACCCACACTCCAGCCTGGTTCTGCAAGCTGGGAGGCACAGTCACCATCAAA
TGCCAGGGCAGTCAGAGCATTAACAATGAAATATCCTGGTATCAAGCAAGATACGGGCGAGGGTGCC
CAAGCTCTCTGCATCTATAGGGCATTACCACTCTCGCTGCTATCAAGGTCGTCGTTCAAGGCCAGTG
GTCCTGAGAGATCGTCCATCTGATCTGCTGCGGCGAAGGTCGCTTCAAGGTCGTCGTTCAAGGAC
AACTACCGGATACGCGCGCCATCTGCTCTCTCTCCGCCACATCTGAGCGAGTTGAAAATCTGGAA
CTGCTCTGCTTGTGTGGCTGCTGAAATACTTC
SEQ ID NO: 110
ATGGGACAGCTGGCCTGCGCTTTCTCTGGTCAAGGTCAGGTTGAATGTCAGTGCTGGGGAAGGGCT
GAGGTGCGGCGCCCTTGGTTACACCGAGACACACACCCGACAGGTAGCTGG
ATTCTCCCTCAGAACCCAGCAAGGCGGCTCGCCAGGGAAAGGCGGCTGGAATGGA
CGGAAATGGATTTATGTTATGATGAAACAGGCTACCGGAAGTGGGCGATAGGCGAGTTCCCATCT
CCAAACCCCTCGACACGCGTGATCTGGAAATGACCACTGCTGCAGCCCGCGACAGGACACGGCCACCTAT
TTCTGTGCGAGAGATAGTATGATGACTGGGATGCAAAAATTTAACTTGTGGGGCAAGGGACCCTC
GTCACCGTGCTCGAGCGCCCTCCCAACAGGGCCCATCGGTCTCTCCCCCTGGGCACCCTCCTCCAAGAGC
ACCTCTGGGGGCACAGCGCCCTGGGCTGCTGGTCAAGG
SEQ ID NO: 111
CAGGCCAGTCAGAGCACTTAAACATGAATTATCC
SEQ ID NO: 112
AGGGCATCCACTCTGGCATCT
SEQ ID NO: 113
CAACAGGGTTTATAGTCTGAGGAATATTGATAATGCT
SEQ ID NO: 114
AACTACTACATGACC
SEQ ID NO: 115
ATGATTTTATGGTATGGATGAAACACGCCTACCGCAACGTGCGGATAGGC
SEQ ID NO: 116
GATGATAGTATGGACTGGGATGCAAAATTTAACTTG
SEQ ID NO: 117
EVQLVESGGGLVQPGGLRLSCAASGFLSNYYTWFVRQAPKGKGLEWVQGMYGSDEAYANWAIGH
FTISRDNSKNTLQLQMNSLRAEDTAVYCARDDSDWDAKFNL
SEQ ID NO: 118
EVQLVESGGGLVQPGGLRLSCAASGFLSNYYTWFVRQAPKGKGLEWVQGMYGSDEAYANSAIGRF
TISRDNSKNTLQLQMNSLRAEDTAVYCARDDSDWDAKFNL
SEQ ID NO: 119
DIQMTQSPKTLSASVGRVTITCQASQINNELSWYQQPKGPKAPKLIIYRASTLASGVPFSGSGSGTE
FILTSSLQPDDFATYYCQQQGYSRNIDNA
SEQ ID NO: 120
IIYGSDEAYATSAIG
SEQ ID NO: 121
MIYGSDEAYANSAIG
SEQ ID NO: 122
MDTRAPTQLGLLLWLGATFAAVLTQTPSPVSAAVGTVTISCQSSQSVGNQDLSWFQQRPGQPP
KLLIYEISKLESVPFSFSGSGSGTHFTLTSQVQCDDAATYYCLGGYDDADNA
SEQ ID NO: 123
METGLRLWLLLVALKGVCGHSVEEGGRRLVTPTGPLTTCTVGSFSLSSRTMSWVRQAPKGLEWIG
YIWSGSGSTYYATWAKGRFTISKTSTTVDLKITSPTTEDTATYPFCARLGDGTGHAYATRLNL
SEQ ID NO: 124
QSSQSVGNQDLS
SEQ ID NO: 125
EISKLES
SEQ ID NO: 126
LGGYDDADNA
SEQ ID NO: 127
SRTMS

SEQ ID NO: 128
YIWSGGSTYYATWAKG

SEQ ID NO: 129
LGDTGGHAYATRLNL

SEQ ID NO: 130
ATGGAACACGAGGGCCCGCCACTCAGTCGTGGGGCTCTGTGCTCTGGCTCCAGGTCACATTT
GCAGCCGTGCTGACCCAGACACCATCACCACGGCTGTACAGCTGCTGGGAGGCACAGTCACCACATCAG
TTGCCAAGCTCGATACGAGTGGTCGAATACACAGGACCTTAATTGTTTCAAGCAGAGACCAGGGGCA
GGCTCCCAAGCTCTGTACATCTACAGAAATATCCCAACTGGAATCTGGGCTCAGTCCCCATCGGGGTTCAGCGG
CAGTGGAATCTGGGACACACTTACCTACTTCAACGCGGCGATAGTGAATGCTGTCGACTGACCTAACT
CTACTGTCCTAGGGCTTTATGATGATGATGCTGTAATAGCT

SEQ ID NO: 131
ATGGAACACTGGGCTGCTGCTCTCTCTGTGCTGCTGCTCAGGAGGTCTCAGTCGTCCAGGTCACATTT
GAGGAAGTCCGGGGTCTGCTGCTGCTGCCGGCGCAGCAGACCCCTGAGACACACCATTGCACGGCAGGGTCTGGG
ATTCTCCCTCAGTATGGTCACCAATGTCCTGGTGGTCGCCAGGTCACGGGAGGGGTCTGGAATGATGATGAT
CGGATACATTTGAGGTTGGTACGACATACTACGCACCGGCGAAGGGGGCCTGGGAGGGGAGGGGAGGGG
CCAAACACTGGAACCAGGGTGGATCTGTAAGAAATACACAGTTCGGAACAACGGAGGCAAGCCGACCTCAT
TTCTGTGCCAGATTTGCCGATAGTGTGTTGTCACGCTTTATGTCTACTCGCTTAAATCTC

SEQ ID NO: 132
CAGTCCAGTCAGATGTTGGAATAAACCAGGACTTATCC

SEQ ID NO: 133
GAAATATCCAAACTGGAATCT

SEQ ID NO: 134
CTAGGCCGGTTATGATGATGATGCTGATATAATGCT

SEQ ID NO: 135
AGTCGTACAATGTC

SEQ ID NO: 136
TACATTGAGTTGGTGGTAGACACATACACTACGGGACTGCGGCGAAGGG

SEQ ID NO: 137
TTGGGCGATACTGTTGGTAGTCACGCTTTATGCTACTCGCTTAAATCTC

SEQ ID NO: 138
MDTRAPTQLLGLLLLWLPGATFAAVLTFPSSVSAAVGGTVSISCQSSQS8VSNKLYAWYQQPGQPP
KLIIYWTSTLGSAGPSRFSGSGITQFTLTSIGVQCDDAATYYCLGAYDDADNA

SEQ ID NO: 139
METGLRWLLLVAVLKGVQCSVESGGRVLKVPDHFLTTLTCTASGFSLEGGMYTWVRQPAGKGLEWIG
ISYDGSSTYASWAKGRFTISKSTTVDLKMTSLTTEDTATYFVCSRKLKYPTVTSDDL

SEQ ID NO: 140
QSSQSVSNKLYA
SEQ ID NO: 141
WTSKLAS

SEQ ID NO: 142
LGAYDDADNA

SEQ ID NO: 143
GGYMT

SEQ ID NO: 144
ISYDSGGTTYYASWAKG

SEQ ID NO: 145
SLKYPNTVSDDL

SEQ ID NO: 146
ATGGACACGAGGGCCCCCACCTCAGCTGTGGGGCTCTCTGTGCTTGGCTCCCCAGGTGCCACATT
GCAGCCTGCTCAACAGACACCATCGTCCGTGTCGAGTGTGGGAGGCAAGTCAGTCAAAGGC
TTGCCAGTCCAGTCAGAGTGTITTTTAGTAAATGATACCTAGCCTGATCAGCAGAAACCAGGGCA
GCCTCCAAAGCTCTTCTAGATCCTAAGTCCTAAAACCTGGCATACTGCTGGGGCTCCGATACGT
CAGTGAGATCCGGAGCAAAATTACCTTCACATCTCAATACCGAGCGCTGAGCAGTGGACTGCTCG
CTACTGTCAGGCCTTAATAGATGATGATGCTATAATCT

SEQ ID NO: 147
ATGGAGACTGGCTGCGCTGCTTTCTCTGGTGCTGCTGATGTTAAAGGTGTCAGTGTCAGTGCT
GAAGAGTCCGGGGGTCGCTGTTCAAGGCTTGAGAAGCCCTGGACACTGATCTGGAACAGG
ATTCTCCCTGGAAGGGCCGCTCAGACAGCTGGTCCGCCAGGCTCAGAGGGAAGGGGTGAATAGA
TCGGAATCGATTTATGATGTGATGGACACATACTACGCGAGCTGCGCAGAACAGGACACGGCCAC
TCCAAAGCATCGTGCAACCAGGTTGTCTGAATAGAAATAGCAGTCTGACAACCAGGAGCACACGGCCAC
CTATTTCTCGTCAGATCATAAAAATATCCATAGTTACTTGTTACTTCTCGTTACTTGAGCTTTG

SEQ ID NO: 148
CAGTCCAGTCAGAGTGTTTTATAGTAAATAAGTGACTAGCC

SEQ ID NO: 149
TGGACATCCAAAATGGCATCT

SEQ ID NO: 150
CTAGGGCTTATGATGATGATGCTGATAATGCT

SEQ ID NO: 151
GGCGGCTACATGACC

SEQ ID NO: 152
ATCAGTTATGATGAGTGAGCACACATACTACGCGAGCTGGGCAGAACAGG

SEQ ID NO: 153
TCACTAAAAATATCCTACTGTTACTTCTGATGACTTG

SEQ ID NO: 154
MDTRAPQLLLGLLLLWLPGATFAAVLQTPTSPVSAAVGTVTISCQSSQSVSYNNNDLAWNYYQQKPGQPP
KLLYIYASTLASSVGPSRFKGSRSQFTLTSFVQCDDDAAAYYCLGGYDDADNA

SEQ ID NO: 155
SEQ ID NO: 198
CAATGGTGTTATTTTGGTGATAGTGT

SEQ ID NO: 199
AGCGGCTACTACATGTGC

SEQ ID NO: 200
TGTATTTCCACTATTACTAACAACATTAACCGGAGCTGGGCGAAGGC

SEQ ID NO: 201
GGGATTTATTTCTGATAATAATTATTATGCTTTG

SEQ ID NO: 202
MDTRAPTQLLLLLLWLPGARCDVVMTQTPASVEAAVGGTFTIKCQASESIGNALAWYQQKPGQPPK
LLIYKASTLASGVPSRFSGSGTTEFTLTISGVQCDDAAYYCQWCYFGDSV

SEQ ID NO: 203
METGLRWLLLLVAKLGQFQQLVESGGGLVKPGASLTTLTCKASGFSFSGYMCWRQAPAQGKLE
SIACIFITIDNTYAYANWAKGRTISKPSSPTVTLMQMTSLTAADTATYFCARGIYSTDNYAL

SEQ ID NO: 204
QASESIGNALA

SEQ ID NO: 205
KASTLAS

SEQ ID NO: 206
QWCYFGDSV

SEQ ID NO: 207
SGYYYMC

SEQ ID NO: 208
CIFITIDNTYANWAKG

SEQ ID NO: 209
GIYSTDNYYAL

SEQ ID NO: 210
ATGGACACAGGGCCCATCACGCTGGGGCTCCCTGCTGCTGGCTCCCGAGGTCCAGATGT
GATGTTTGATGACCAAGCCGACTCCAGCCTCGTGAGGGCAGCTGGGAGGGCAAGCTCAGTCCAA
GTGCCAGGCGCAATGAGCATTGGCAATGCTGGTATCGCAAGAAACGAGGCGAGCCTTC
CCAAGCTCTGTACTACAGCCTTACTGCTCAGTGCTGGGTCCCGATCGGTCCGGACGTG
GATCTGGGACAGAAGTTACACTCTCACCACATCCAGGCGGCTGAGTGCTGCGGTATGCTCGGCTTACTACT
GTCAAATGTTGTTTGGTGATGATGTT

SEQ ID NO: 211
ATGGAGACGTCGGGTCGCTGGTTCCTCGTGCTGCTCGCTCCAAAGGCTGTCGATGCTGAGCAG
CTGCTGCAGATCCGCGGCGGCTGGCCAGCCTGAGCTGACAATACTCATCTGCAAGACCTCTC
TGGAATCTCCGATGATCAGGCGCTACTACATGCTGCTGGTGCCGCGACAGGGAAGGCGACTG
GTCGAGTCCAGATCATTTCATATTACGATAAACACTTACTACGGGAACGGGAAGCATT
CACCCTCCTCAAGCCCTCTCGCCACGCTGACTTCTCGAAAATGACAGTCTGACAGCCCGAGACAC
GGCCACCTAATTTCTGTCGCGAGGGGATTATTATCTACTGATATATATATGCTTTG
SEQ ID NO: 212
CAGGCCAGTGAGAGCATTGGCAATGCATTAGCC
SEQ ID NO: 213
AAGGCATCCTCCTGGCATCT
SEQ ID NO: 214
CAATGGTGTATTTTGGTGATAGTT
SEQ ID NO: 215
AGCGGCTACTACATGTGC
SEQ ID NO: 216
TGCATTTTTACTATTAATCGATAACACTTACTACCGAATTGCGAAAGGC
SEQ ID NO: 217
GGGATTATTTACTGATAAAATTATAATGCTTTG
SEQ ID NO: 218
MDTRAPTQLGLLLLWLWPJARCDVMTQTASVEAVVGGTVTIKQCASQSVSSYNWYQKPGQPPK
LLIYRASTLESQVSFKSGTGTEFULTISDLECADAATTYCQCTYGTSYYGAA
SEQ ID NO: 219
METGLRWLLTVAVLKGVQCSVEXGGRLVTPTPLTLTCTVSIGSILSSNAISWRVQAPKGKLEWIGIS
YSGTTYYASWAKGRFTISKSTSSTTVDLKITSPTTEDTATYFCARDDDPTTVMVMLIPFGAGMDL
SEQ ID NO: 220
QASQSVSSYYLN
SEQ ID NO: 221
RASTLES
SEQ ID NO: 222
QCTYGTSYYGAA
SEQ ID NO: 223
SNAIS
SEQ ID NO: 224
IISYSGETTYASWAKG
SEQ ID NO: 225
DDPTTVMVMLIPFGAGMDL
SEQ ID NO: 226
ATGGGACAGAGGCCCCCACCTAGCTGCTGGGCTCCTCGCTGGCTCTCGGAGGTGCGCCAGATGT
GATGTGGTGATGACCCAGCTCCAGGCTGGGAGGCACAGGTGAGGAGGCGACACTCAACTCAAA
GTGCAATGCGCAATCGTATGCTAGCTACATATTAACTGGATACGCAAGAACCAGGGCACCCG
CCACAGCTCTGATCTACAGGGCATCCACTCTGGAAATCGTGCGTCCGTCGCCGATGCTGCCACTTA
CTACTGTCAATGCTATTGATAGTAGTATGATGATGATGCTGCT
SEQ ID NO: 227
ATGGGACAGACTGCGCTGGCTGGTCTCCTCGGCTGCTGTCAAGGGTGTCAGTGTCAGTGCGTG
GAGGGAGTCGCCCGGGGCTGGCTGCTGATCGGAGTCCAGCGCATCCCTGGAGGACACCCCTGACACTCAGCTGGCACCCTGCTCTGCT
ATCTCCCTCACGTAGCAATGCAATAAAGCTGGTCCGCGCCAGGCTTCAAGGGAAGGGGCTGGAATGGAT
CGAATCATCATTAGTTATAGTGGTACCACATCTAAGGGCGGCTGGGGAAGGGGCTTCAAGGGAATGGAT
CAAAACCTCCTGCAACCAGCGTGGATCTGAAAATCTACTAGTCCGACAACCGAGGACACGGGCCACCT
ACTTCTGTGCCAGAGATGACCCCTACAGACAGTTATGTTATGGTATACCTTTTTGGAGCCGCGCATGG
ACCTC
SEQ ID NO: 228
CAGGCAGTCAGAGCAGCGTATAGCGTACTGAAAC
SEQ ID NO: 229
AGGCGATCCACCTCTGGAAATCT
SEQ ID NO: 230
CAATGTACTTTATGTTACTAGTGCTAGTTATGTTATGGTCGCT
SEQ ID NO: 231
AGCAATGCAATAAAGC
SEQ ID NO: 232
ATCATTAGTTATAGTGGTACCACATCTAAGGGCGGCTGGGGAAGGGGCTTCAAGGGAATGGAT
CAAAACCTCCTGCAACCAGCGTGGATCTGAAAATCTACTAGTCCGACAACCGAGGACACGGGCCACCT
ACTTCTGTGCCAGAGATGACCCCTACAGACAGTTATGTTATGGTATACCTTTTTGGAGCCGCGCATGG
ACCTC
SEQ ID NO: 233
GATGCCCTACGACAGTTATGTTATGTTATACCTTTTTGGAGCCGCGCATGGACCTC
SEQ ID NO: 234
MDTRAPTQLGLLWVLWLGATFAQVLTQTASPVSAAVGGTGTINCMQASQSVDVYKNLYSBDYQKPGQP
PKGLYISASTLDGSVPLRGSSGTQFTLTISDVQCDDAATYCLGYSYDCSNGCAY
SEQ ID NO: 235
METGLRLWLLLAVLKGVCQSSLEESGDVLKPEGSLTLCTASGFSFSSYWMCMQVRQAPGKGLEWIA
CIVTGNGNTYYANWAKGRFTISKTSTTVTLQMTSLTAAATATATYFCAKAYDL
SEQ ID NO: 236
QASQSVYKNLYS
SEQ ID NO: 237
SASTLDS
SEQ ID NO: 238
LGYSYDCCSSGDCYA
SEQ ID NO: 239
SYWMC
SEQ ID NO: 240
CIVTGNGNTYYANWAKG
SEQ ID NO: 241
AYD
SEQ ID NO: 242
ATGGACACAGGAGGGCCCACTCAGCTGGGGCTCCTGCTGCTCGGCTCCAGGAGGCCACATT
GCCCAAGTGTGCAACCAGACTGACATCGCCGCTGTCTGAGCTGCTGAGGCCACAGTCACCATCAA
CTGCCAGGCGCAGCTCAGGTTTTATAAAGAACAACCTACTTTATCCCTGTAATCAAGCAGAACCAGCGC
AGCTCCAAAGGCCGCTGATCCTATCTCAGACCTAGTTCTGGGCTCCATTGCCGTTGACCG
GCAGTGGATCTGGGACACAGTTCACCTCTCACCATCACTAGCGACGTGCAGTGTGAGACGATGCTGCCACTT
ACTACTGTCTAAGCAGTTATGATTGATAGTGATTGGATTGATTGACT
SEQ ID NO: 243
ATGGGAGACTGGGCTCGCTGCTGCTCCTTCTCTGGCTGTGTGCTGATGATCTGCAGTGTCAGTGCCTGG
GAGAAGTCCGGGGAGACTCTGGATAGGCTAGGGATCCCTGACACTCACTTCCTGG
ATTCTCTCCTCATAGCTACTGGAATGTGCGCTGTCGCCAGCGTCCAGGGAGGGGCTGAGTGAT
CGCATGCATTTGTATGCTAAATGTAACAACCTACTACCGGAACTGGGCGAAAGGGCCGATTCA
CTCAAACACCTGTCGACCAACGGTGACTCTCGAAATGACCAGCTCTGACAGCGCGCGAACAGCGCCA
CCTATTGTGTGGCAAGCGCTATGACCTTG
SEQ ID NO: 244
CAGGCCCAGTCAGATGTGTTTATAAAGAAACAACTAATTATCC
SEQ ID NO: 245
TCTGCACTCGACTCTAGATTCT
SEQ ID NO: 246
CTAGGCAGTTATGATTGATAGTGATTGGATTGATTGACT
SEQ ID NO: 247
AGCTACTGGATGTGC
SEQ ID NO: 248
TGCAATTGTTACTGGAATGTAACACTACTACCGGAACCTGGGCGAAAGGC
SEQ ID NO: 249
GCTATGACTTG
SEQ ID NO: 250
MDTRAPTQLGLLWLWPSTFAAVLQTTPSPVSAAVGGTVSISCQASQSVYDNYNLSWYQQKPGQPP
KLYYGASTLASSGVSPRFKGTGSQTFTLTITDVQDDAAATYYCAGVFNDDSDDA
SEQ ID NO: 251
METGLRWLLLVAVPKVGQCSLEESGGLVTGPTPLTLTCTLSFGSLSAAYYMSSWVRQAPKGKLEGWIGF
ITLSHDHYARWAKGRTFSTSTTTVDLKMTPPTEDTATYFCARSRGCWAGMGRDL
SEQ ID NO: 252
QASQSVYDNYNLYS
SEQ ID NO: 253
GASTLAS
SEQ ID NO: 254
AGVFNDDSDDA
SEQ ID NO: 255
AYYMS
SEQ ID NO: 256
FITLSHDHYARWAKG
SEQ ID NO: 257
SRGWGAMGRDL
SEQ ID NO: 258
SEQ ID NO: 273
SLSSITFL

SEQ ID NO: 274
ATGGACACGAGGCCCCACCTCACAGTCGTGGGGTCTCTGGTCTCTGTCGCTCCAGGTGCCACATTC
GCAGCGCGTGGCTGACCCAGACACCACTGCCCTGCTCGCGCTGTTGGAGGGACACGTCACCAGTC
TTGCCAGGCCAGTCAGGTGTTTATAACAAACAAAAATTAGCTGTATCACGAAATTCAGGCGC
AGCCTCCAAGGCTCCTGATCTACTGGGACATCCACTCTGGCATCTGGTCTCAGCGGGTCTACG
GCAGTGGATCTGGGAGACAGTTCATCAGTCAGCAGGGCGTGCAAGTCTGAGCATGCATTCTGG
ACTACTGTCTAGGGCCTTTTGGATGATGATGCTGTAGAATGCT

SEQ ID NO: 275
ATGGAGAAGCTGGCCTGTCGTTCTCTCTTTGGCTGCTGCTCAAAAGGTGTCTCAATTGTCAGTG
GCGGAGTGCCGGGGGTGCGCTGGTGACCGGTGGAGCCACACTCCCTGACACTCCTGGCACAGGCCTGG
ATTCTCCCCATGATGCTACTCCATGAGCTGTTGGGCTCAGCGGCAGGGAGCGTGAATATAT
CGAGATCTAGTTGATTAGTGGTAGACACATACACTACGGCGACCTTGGCGAAAGGCCAGATCCCATTC
CAGAACCCTCGACCACGGTGCTCCTGAAAATCACCAGTCCGACAACCGAGGAACGGCCACCTATT
TCTGTTGCAGAGTTCTTTCTTCTATTACTTTCTTG

SEQ ID NO: 276
CAGGCCCCAGTCAGAGTTTTTATAACAAACAAAAATTAGGCC

SEQ ID NO: 277
TGGGCATCCACTCCTGGCATCT

SEQ ID NO: 278
CTAGGGCTTTTGTGATGATGATGCTGTGATAATGCT

SEQ ID NO: 279
AGCTACTCCATGACC

SEQ ID NO: 280
GTCAATGGTACTAGTGGTAGACACATACACTACCGGACCTTGGCGAAAGGCC

SEQ ID NO: 281
AGTCTTTTCTTCTATTACTTTCTTG

SEQ ID NO: 282
MDTRAPTQLLLLWLLWLGARCAFELQTQPASVEAAAVGTVTINCQASQNIYRYLAWYQQKPGQPKF
LIYLASTLASGVPSRKFSGSSTGTEFTLTDLECADAATYYCQSYSSLNSVA

SEQ ID NO: 283
METGLRLWLLLVALKVQCEQLVESGDLQLPPGLTLTCTASLEDFSSGYWICYVQVPGKGLEW
IGCIYTGGSGSTFYAASWAKRFTIKTSSTTVLQMTSLTAATATYFCARGYSFGYFKL

SEQ ID NO: 284
QASQNIYRYLA

SEQ ID NO: 285
LASTLAS

SEQ ID NO: 286
QSYYSSNSVA
SEQ ID NO: 287
SGYWIC
SEQ ID NO: 288
CIYTGSSGSTFYASWAKG
SEQ ID NO: 289
GYSGFGYFKL
SEQ ID NO: 290
ATGGGACACGAGGGCCCACTCAGCTGCTGCTCTTGGCTGCTTGGCTCCCAGGTCCAGATGT
GCATTCGAATTGACCCAGACTCCAGCTTGGGGAAGCCAGCTGCGGAGGCAAGTCACCATTCAA
TTGCCAGGCCAATGACATTTTATAGATACCTTGGCTATAGCAGAAGAACCCAGGGCAAGCCTCC
CAAGTTTTGATCTCATATTTGGAATCTGTCTGCTGCTGCTTGGTCCCAGAGTCTCCAGGAGGCTGGA
GTTGGATCGGATCAATTTATACCTGATGATGTTGGAAGAGCAGCAGCTGCACTTCAGAGCTCTCT
GAGTTAGACTTCTAAGGGTACTGGATATGCTGCGGCTGGCAGTGGAGGCGAGGGCTTGA
ATCCACCACTCTCCAAAACCTGCTGACACGAGGCTGATGATGACTCTTGGTCTGAAATGACCAAGTCTGACAGCCGCGGA
CACGGCCACCTATTCTGTGCAGAGGTTTAGATGTGGCTTTGGTACTTAAAGTGG
SEQ ID NO: 291
CAGGGCACTGCAAGACATTTTAGATGATACCTAGCC
SEQ ID NO: 293
CTGGGATCTACTCTGGCATCT
SEQ ID NO: 294
CAAGTTATTATAGTAGTAATAGATGTGCCT
SEQ ID NO: 295
AGCGGCTACTGGGATATGC
SEQ ID NO: 296
TGCACTTTATACCTGTTAGTTAGTGGTACCTTTTACCGCAGTGGGCGGAAAGGC
SEQ ID NO: 297
GGTTATAGTGCGTTTGGTACTTTAAGTTG
SEQ ID NO: 298
MDTRAPTLQLLLLWLPAGRCAAYDMTQPSVEAVVAGGVTIKCQASEDIYLLAWYQQPGQP
LLYDSDASLGVPSRFKGSGSGTEFTLAISSGVQDDAATYYCQQAWSYSDIDNA
SEQ ID NO: 299
METGLRLWLLLVAKLKVQCSVEESGGRLVTPGPTLTLOTSAGFSLSSYYMSWVRQAPKGGLEWIGI
ITTSQNYTFAWAKRLTISRTSTTVDLKITSPPTEDTATYFCARTSDIFYRRNL
SEQ ID NO: 300
SEQ ID NO: 315
METGLRWWLWVAGLYWSVESGGRVLVPGLTTGSLTRHAITWVRQAPGKGLEWIGC
IWSSGGSTYYATWAKGRFTISKTSTTVDLRITSTDEDATAYFCARVIGDTAGYAYFTGLDL

SEQ ID NO: 316
QSSQSVYNDMDLA

SEQ ID NO: 317
SASTLAS

SEQ ID NO: 318
LGAFFDDADNT

SEQ ID NO: 319
RHAIT

SEQ ID NO: 320
CIWSGGSTYYATWAKG

SEQ ID NO: 321
VIGDTAGYAYFTGLDL

SEQ ID NO: 322
ATGGCACAGCAGGCCCCCCCACCTCAGCTGCTGGGCTCTCTGCTGCTGCTGGCTCACG
GCCGCCTGCTGACCCAGACTGCACTCAACCCCGCGCTGCTGCGGGAGCCACAGTCACCAATCAAC
TGCCAGTCCAGTGATGTTTATAATGACATGACTTATGCTGTCTCCATCGAGAGAGGACAG
CCTCCCAAGCTGCTGATCTTATTTCTGACATCCACCTCAGTGCTGGTCGCTGCACAGTGCT
AGCTGCTAGGCGCTTTTGATGATGATGCTGATAATCT

SEQ ID NO: 323
ATGGGAGACTGGCTGCCGCTGCTTCTTCTCTGCTGCTGCTGCTCAAAGGTTGTCAGTGTCAGTCGGTG
GAGGAGTCCGGGGGTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
ATTCCCTCTCACTAGCAGCTACATTACAACCTTGTCGGCCAGCTGCAAGAGGCTGTTGAAATGGA
TCGGATGCAATTTTGGAGTGTGAGCAGCATACTACCCGACCTGCGGGCGAAGGCGGAATCCACCCTCT
CCAAACCTGCGACACCGGTTGATCTGAAATACACAGCTCCAGAACCAGAACCGACACCGACACCGAC
TTCTGTCGCCAGACTCATTGCGCATCTGCTGTGTATGCTTTATTTTACGGGCTTTCG

SEQ ID NO: 324
CAGTCCAGTCAAGTGGGTTTATAATGACATGGAATGTAGCC

SEQ ID NO: 325
TCTGCATCCACCTCCTGCACTCT

SEQ ID NO: 326
CTAGGGCGTTTTGATGATGATGCTGATAATCT

SEQ ID NO: 327
AGGCATGCAATAACC

SEQ ID NO: 328
TGCAATTGGAAGTGGTGGTAGACACATACTACCGGAACCTGCGGGCGAAAGGC

SEQ ID NO: 329
GTCA{T}TGGCCGATAC{T}GCTGGTTATGCTTATTTTACGGGGCTTGACTTG
SEQ ID NO: 330
MDTRAPTQLLLLLWLPGARCA{Y}MDTQPASVEVAVGGTVTIKCQASVQYSVNYLWSWYQQPKGQPP
KLL{Y}TASSLASSGVP{F}RSFSGSGTEFLLTSIGVECADAATY{Y}CQQGYTSDVDNV
SEQ ID NO: 331
METGLRLWLLLVAVLKGVCQSL{X}EAGGRVLPFTP{F}LTCTVS{X}DLSSYAMGWRQAPKGLEYIGI
ISSS{G}STYYATWAKR{F}TISQASSTTVD{L}KITSPTTEDSATYFCARGAGSGG{V}WWLDGFDP
SEQ ID NO: 332
QASQSVYNW{L}S
SEQ ID NO: 333
TASSLAS
SEQ ID NO: 334
QQGYTSDVDNV
SEQ ID NO: 335
SYAMG
SEQ ID NO: 336
IISSSGSTYYATWAKG
SEQ ID NO: 337
GGAGGGG{V}WWLDGFDP
SEQ ID NO: 338
ATGGACACGAGGGCC{X}C{X}ACT{X}CA{X}CGTGGGCTCTCTGCTGCTTGGGCTGCCAGGTGCGAGAGTGT
GCTATGATATGACCCAGACTCCGCTGGTGGAGGATAGGTCGTGGGAGGACACAGTCACACATCCAA
GTGCCAGGCCAGTCAAGGTGGTTTAATTGGTTATCTCTGATTACGCAAGAACCCAGGGGCAAGCCTCC
CAAAGCTCTGATCTATACGCAATCCAGTCTGGGTCCAGTCAATGGGCTCCATCGGATTCAGTGGCAGTGG
AATCTGGGAGAGATCGTCTCACCATCATCGCAGCGGCTGAGTGTGCGGAGATGCTGCCACTTACTACTG
TCACACAGGTTTATACTAGTGATTTGATAATGTT
SEQ ID NO: 339
ATGGAGACTGGGCTCGTGGCTCTCTTCTGGCTGTCTTGCTGCAAAGGATGTGTCAGTCGCTGG
GAGGAGCCGGGCTGGCTGGCTGGCCCTGAGCCCTGGGACACCCCTGACACACTCACCTGCAGTCTCCTGG
AATCGACCTCAGTAGCTATTGAATGGCTGGGTCCAGGCTCAGGGGAAGGGGCTGGAATACA
TCGGAATCAATTAGTAGTAGTGGTAGACACATACTACGCCAGCTGGGGGAAAGCCCGGATTCACCACCT
CACAAGCCCTCGTCCGACCAGGGTGATCTGGAAAATACCACTCCGACAACCGAGGACTCCGCCACA
TATTTCTGTCGCCAGGGGGCTGCTGATGTTGGTGGTGGTGGTGTGTTTGGCTGGTCTGTGATGTGTGTG
SEQ ID NO: 340
CAGGCCAGTCAGAGTGTATTTATAATTGGTTATCC
SEQ ID NO: 341
ACCTGCTCCAGTCTGGCATCT
SEQ ID NO: 342
CAACAGGGTTATACTAGTGGATTTGATAATGTT
SEQ ID NO: 343
ACTGTAAGGCGATCTGGCATCT
SEQ ID NO: 358
CAACAGGGTTATAGTAGTTATGTGATAATGTT
SEQ ID NO: 359
GACTATGCACTGGGC
SEQ ID NO: 360
TACATTCTAGTATGTTACCAGACCTACGCGACCTGGGCAGAACGC
SEQ ID NO: 361
GGGGTGCTGTATGAGTGTTATGAAGTGATCCTTGTAGGTGTTTGCTCCC
SEQ ID NO: 362
MDTRAPTQQLLGLLLWLPAGTAFQVLTQTPSSVSAAVGGTTVTNCQASQSVYQNNYLWSWQKQPQP
KLLIGAATLASEVPSRFGSGLCTQFTLTIDLEDDAATYYCAGAYRVDVS
SEQ ID NO: 363
METGLRLLVLAVLKGVQCQSLLESGDLVKGASLTLTCTAGSFSTSTYYIYVWRQAPKGLEWAAC
CIDAGSSGSTDYATWVNGRFTIKSTSSSTTVLQMTSLTAAATATYFCAKWARYGGNVWGYDL
SEQ ID NO: 364
QASQSVYQNNYLS
SEQ ID NO: 365
GAATLASS
SEQ ID NO: 366
AGAYRVDVS
SEQ ID NO: 367
STYYIY
SEQ ID NO: 368
CIDAGSSGSTDYATWVNG
SEQ ID NO: 369
WDYGGNVWGYDL
SEQ ID NO: 370
ATGGACACGGGCCCCCACTCAGCTGCTGGGCTCCTGCTGCTGCCTCCAGTGCACCACATT
GCCFAAGTGCTGACCCAGACTCCATCCTCCCTGCTGAGCTGTGGAGGGACACAGCTCAACCACC
TGCCAGGCCCAGTCAGGTGTATCTCAGAAACACTACTTATCTTCTGTTCAGCAGAACCCAGGGCA
CGCTCCAAAGCTCCTCTGATCTATGCTGGGCCCACCTCTGGCTCCATCGGCGGTCAAAAGGC
AGTGGATCTGGACACAGTCTCTCACCACGCAGCGACCTGGAGTGAGTGACGATGTGCACACTTAC
TACTGTGCACGCGCTTATAGGATGTGGATCTCT
SEQ ID NO: 371
ATGGAGACTGGCGCTGCGCCTCCCTTGCGCTGCTGCTGCTCAAGGTTGTCAGTGCAGTCTGG
GAGGAGTCGCGGAGACCTGTCAAGCCCTGGGGCGATCCCTGACACTACCTGCAACGCTCCTGG
ATCTCCTTTACTAGTACCTACACTACCTACTCTGGTCGCCAGCAGCAGGAGAGGGGGCTGAGTG
GATCGCATGTATTGTAGTGTAGTGTAGTGGTACACTTACTACGCGACCTGGGTGAATGGCCCAGT
ATGGGACACTGGGCTGGCCTGCTCTCTCTGGTGCGCTGTGCTCAAGGTTGTCAGTCTCGAGTGTG
GAGGAGGACGGGGGAGGACCTTGCTCAAGGCTAGGGATCCCTTGACACTCACCTGCAAAAGCCCTCTGG
ACTCGACCTGCGTACCTACTGTTTCAAGTGTGGTGGTCCGGCCAGGCTCCAGGGGAGGGCTAGTG
GATCGCTTGATATTTTATACGTTGATGATGTGTTCCAC1TTTCTACGCGAGCTGCGGATGAACTGGCATTCC
ACCATCTCCAAAACCTCGTCGACCAACGCTGACTCTTGCAATGACCAGTCTGAGACGGCGGACAC
GGCCACATTTATTTTTGTCGCGAGGTTATAGTTGGTGATATGGTTATTTTAAGTTG
SEQ ID NO: 388
CAGGCCAGTCAGACAGCATTAGTAGTATTACTTAGCC
SEQ ID NO: 389
AGGGCGTCCACTCTGGCATCT
SEQ ID NO: 390
CAAGAGTATTATGATAGTGGTTCAAATCCT
SEQ ID NO: 391
ACCTACTGGTTCATGTGC
SEQ ID NO: 392
TGTTATTTATACGTTGATGATGTGTTCCAC1TTTCTACGCGAGCTGCGGATGAACTGGCATTCC
SEQ ID NO: 393
GGTTATAGTGTTATGTTATTTTAAGTTG
SEQ ID NO: 394
MDTRAPTQLLGLLLLWLPQTVIAEMTQPSVSAAVGGTVSISCQASQSVYKNQNSWYQKSGQP
KLIIYGASALASGVPSSRFKGSQGTEFLTISDVQCDDAATYYACAGAITGSIDTGD
SEQ ID NO: 395
METGLRLLLVALVKKVQCSLEESGGDLVKGPSLTLCTTSFGFSFSSYFICWVQRAPGGKLEWIA
CIYGGDGSTYASWAKGRFTISKSTSSSTVTLQMTSLTAADTATYFCAREWAYSQYFGAFDL
SEQ ID NO: 396
QASQSVYKNQQLS
SEQ ID NO: 397
GASALAS
SEQ ID NO: 398
AGAITGSIDTGD
SEQ ID NO: 399
SSYFIC
SEQ ID NO: 400
CIYGGDGSTYASWAKG
SEQ ID NO: 401
EWASYQYFGAFDL
SEQ ID NO: 402
ATGGGACACGAGGGCCGCTGCTCAGCTCTGTGGGCTCTGCTGCTCTGCTGCTCCAGGTGTCAATTT
GCTCGGAGCAGTCTCCAGTTCGCTCTGCTGCAGCTCTGCTGCTGCTGCTCAGGCAAGTTT
TGCCAGCGGAGATGCTCCATTTATAAGACACCAACCATATATCTCTGGTGATATGCAGAAGATCGGCA
GCCTCCAAAGCTCTGTGATCTATGTTGATCAGTCGCGCTCTGCTGATCAGTCCGCCTACGCGGTTCAAGGG
CAGTGGGATCTGGGACAGAGTTCACTCTCACCACACGCACTGACGATGCTGCTGACACTTTA
CTACTGTGCAGCGGCTATTACTGGTGATATTGATACGGATGGT
SEQ ID NO: 403
ATGGGAGACTGGCTGGGCTGTCGCTTCTCTCTGTCGCTGCTCAAAGGCTGCTCCAGTGTGCAGTGGTTG
GAGAGATCTCCCGGGGGAGACCTGTCGTCAGTCCGACACTCAACTCGCAACAACTCTGGG
ATTCTCCTCAGTACAGCTACTCTACATTGTCTGCTGCCAGGTCACCGAGGAAGGGGTGGAGGTG
GATCGCATGCAATTATAGTGTTGATGGCAGCAGCACAATGGGAGCAGTGGCGCAAGAGGCGGATTCA
CCATCTCCAAACCTCTGGCAACCAGGTGACGGCTGCAATTGACACAGTCTGCAGCGCCCGAGACAG
GCCACCTATTCTCTGTGCGAGAGAATGGGCATATAGTCAAGGTATTTTGGTGTCTTGTATCAC
SEQ ID NO: 404
CAGGCCAGTCAGAGTTTATAAGAAACAACCAATTATCC
SEQ ID NO: 405
GGTGCATCGGCTCTGGCATC
SEQ ID NO: 406
GCAGGGCAATAGTGATATTGATACGGATGGT
SEQ ID NO: 407
AGCAGCTACTCTACTTC
SEQ ID NO: 408
TGCATTATGTTGGATGACACATCATACGCGAGCTGCGCAAGGGC
SEQ ID NO: 409
GAATGGGCATATAGTCAAGGTATTTTGGTGTCTTGTATC
SEQ ID NO: 410
MDTRAPTQLLLLLLLLWLPGARCDVVMQTPASVEAAVGGGTVIKCQASEDISSYLAWYQQKPGQPPK
LLIYAASNLESGVSSRFKGSNGTEYLTISDLECADAATYQQCQTYGTISISDGNA
SEQ ID NO: 411
METGLRWWLLLVAVLKGVQCSVEESGGRVLTPGTPLTCLTVSFGSLSYFMSTWVRQAPGELEYIGFI
NPQGSAAYASNYKVRFTISKSTTTDLKITSPTTEDTATYFCARVLIVSYGAFTI
SEQ ID NO: 412
QASEDISSYLA
SEQ ID NO: 413
AASNLES
SEQ ID NO: 414
QCTYGITISISDGNA
SEQ ID NO: 415
SYFM
SEQ ID NO: 416
FINPQGSAYASNVKVR
SEQ ID NO: 417
VLIVSYGAFTI
SEQ ID NO: 418
ATGGACAGGGCCCCACTCACGCTGCTGGGCTCTGCTGCTGCTGCTCCAGTGCCAGTGT
GATGTTGATGACACGACTACGCTCAGGCTGGAGGAGCAGCTGCTGAGGACAGTCACCATCAA
GTGCCAGGGCAAGTGAGATTATAGTACTACTTATGCTGATACAGACGAACACGAGGCGAGCCCTC
CCAAGCTCTGATCTATGCTGATCCAAATCTGGGAATCTGCGGTTCTATCAGTACCATCAAAGGCAGTG
GATCTGGGACAGAGTAGCTACCTCACCACATCAGGCAAGCTGCTGCGATGCTGACTCCACCTATTACT
GTCATGGTACTTATGGTACTATTTCTATTAGTAGATGGTAATGCT

SEQ ID NO: 419
ATGGGACTGGGGCTGCGCTGGGCTCTCCTGCTGCTGCTGCTCAAGGTTGCACATGATCGCCGCTG
GAGGAGTCCCCGAGGAGGCTGGTCCACGGGTGGCAGCACCAGCTCAGGCTGGAGGAGGCTGAATCAT
CGGATTCCATTACTTCTGCTGATAGCGTTACTACTACGCGAGCTGGGTTGAAGGGCCGATCACCACCTC
CAAGTCCCCAGCAAGGTAGATCTCGAAAAATCAACCAGTCCGACAACCAGGAGCAGCGCACCCTATT
TCTGTTGCCAGGTTTCTGATTGGTTTTCTATGAGGACTTTACCATC

SEQ ID NO: 420
CAGGCCAGTAGGATATTAGTAGCTACTTAGGCC

SEQ ID NO: 421
GCTGCAATCAAATCTGGAATCT

SEQ ID NO: 422
CAATGATACITATGGTACTATTTCTATTAGTAGATGGTAATGCT

SEQ ID NO: 423
AGCTACTTCATGACC

SEQ ID NO: 424
TTCATTTAATCTCGTGGTACTGCGGTGTTACCTCAGGCTGGGTGAAAGGC

SEQ ID NO: 425
GTTCGTAGTTTCTTATGGAAGCCTTCTTACCATC

SEQ ID NO: 426
MDTRAPTLQILLLLLLWLPGRACDVMVTQTPASVSAAVGGTVTJKCQASEDIESYLAWYQQKPGQPPK
LIIYGASNLSEGVSSRFKGSGTSFTELITSDLECADAAKYQCCTYGIISIDGNA

SEQ ID NO: 427
METGLWLVLVLVAKGVQCSVEEGSGRLVTPTGTLTLCSTVAGFSLSSYFMTWVRQAPGEGLEYIGF
MNTGDNAYASYWAKGRFTIKSTSTTDKLKTSPTTEDTATYFCARVLVYAYGAFNI

SEQ ID NO: 428
QASEDIESYLA

SEQ ID NO: 429
GASNLES

SEQ ID NO: 430
QCTYGIISIDGNA

SEQ ID NO: 431
SYFMT
SEQ ID NO: 432
FMNTGDNAYYASWAKG

SEQ ID NO: 433
VLVWAYGAFNI

SEQ ID NO: 434
ATGGGACACGGGGCCTGCTGAGGTCCTCCTGCTGTGCTATCCAGGTCAGGATGT
GATGGTTGATGACCAGACTCCACCCAGTGCTGTACAGAGCTGCTGATGGGCAGGCACAGTCACCATCAAG
TGCCAGGGCAAGTGGACATTGAAAGCTATCTAGCTGCTATTCAGCAAGAAACCCAGGGCAGCCTCC
CAAGCTCTGTATCCTATGGTCATCCAAATCTGGAATCTGGGCTTCTCATCAGCGGTTCACAAAAGGCA
ATCGGACAGAGATTCATCCTCAACCATCGAGCATTGGAGATGTCGGATGCCTACATTACTATTG
TCATGCACTTTATGGATTATATGATGATGTTAGCT

SEQ ID NO: 435
ATGGGAGACTGGGCGCTGCTGAGGTCCTCCTGCTGTGCTCAAAAGGTGTCCAGTGCAGTCAGGCTG
GAGGAGTCCGGGGGGCCTGCTGTACAGAGCTGCTGATGGGCAGGCACAGTCACCATCAAG
TGCCAGGGCAAGTGGACATTGAAAGCTATCTAGCTGCTATTCAGCAAGAAACCCAGGGCAGCCTCC
CAAGCTCTGTATCCTATGGTCATCCAAATCTGGAATCTGGGCTTCTCATCAGCGGTTCACAAAAGGCA
ATCGGACAGAGATTCATCCTCAACCATCGAGCATTGGAGATGTCGGATGCCTACATTACTATTG
TCATGCACTTTATGGATTATATGATGATGTTAGCT

SEQ ID NO: 436
CAGGCCAGTGAGGACATTGAAAGCTATCTAGCC

SEQ ID NO: 437
GGTGCACTCACTTGGGAATCT

SEQ ID NO: 438
CAATGCACCTTATGGATTATATGATGATGTTAGCT

SEQ ID NO: 439
AGCTACTACGGACC

SEQ ID NO: 440
TTCATGGAATACGTGGGATAACGCATACATACGGCAGCTGGCCGAAAGGC

SEQ ID NO: 441
GTTCCTTGTTGGCTTTATGGAGCCTTACATC

SEQ ID NO: 442
MDTRAPTQLLLLLLWLPGATFAAVLVTQIPSVPSEPVGTVSICQSSKSVMNNYLAWYQQKPGQPP
KLLYYGASNLASGVPDRFSGSGTGQFQTLDSSVDQDDDAAATYYCQGGYTGYSDHGT

SEQ ID NO: 443
METGLRWWLLLVAVLKVVGQCQVSVESGGRILVPDETLTLTCTVSGFDLSSYPMNWVRRQAPGKGLEWIG
FINVTGTIVYASWAKGRFTISKTSTTVDLKMTSPTTEDTATYFCARGSYVSGYAYYNV

SEQ ID NO: 444
QSSKSVMNNYLA

SEQ ID NO: 445
GASNLAS
SEQ ID NO: 446
QGGYGTYSDHGT
SEQ ID NO: 447
SYPMN
SEQ ID NO: 448
FINTGTIVYASWAKG
SEQ ID NO: 449
GSYVSSGYAYYFNV
SEQ ID NO: 450
ATGGACACGAGGGCCACCTAGGTCTGGGGGCTCTGCTTGCTGGCTCCAGGTCAGGCAATTG
GCCGCGTGCTGACAAGACTCTCACTTCCCCCCTGTGCAACCTGTTGGAAGGCACACAGTCTACCTAC
TGCCAGTCAGTAAGATGTGTATAGATAAACAACTACTTAGCCTTGGTATCAGCAGAAAACCAGGCA
GCCTCCCAAGCTCTCAGATCTATGATGGTCATTCAATTCTGACTCTGGGTGGTGGGCTCCACTACAGG
CACTGCTAAGGCGGTTATATGCTGGTTATAGTGATCATGGGACT
SEQ ID NO: 451
ATGGAGACTGGCTGCTGGCTCTCCTCTCTGGCTGCTGGCTCAAGGCTGTCCAGGTCAGTCTAGG
GAGAGTCCGGCGGTGGCCCTGTTGAAGCCTGTACGAAAACCTGACACTCACCCTGACAGTCTCTGG
AATTCGACCTCAGTACTCATTCAATGACCTGGGCTGGTCAGGCTTGACAGGAAAGGCGGCTGGAATGA
TGGTTTTACATTAAACTCTGGTGTACCATAGCTACTACGCGAGCTGGGCAAAAAAGGGGCTTTACACC
TACTCCAGGACCACTGGGATCTGAAATGACACTCAGGGACAACCGAGGACAGGCGCCACCTAT
TTCTGTGCCAGAGGACTTATGTTATCTGCTACTAATTTAAGTGC
SEQ ID NO: 452
CAGTCCAGTAAAGATGTATGATGTAATACAACTACTTAGCC
SEQ ID NO: 453
GGTCGATCCAGATTTCCATCT
SEQ ID NO: 454
CAAGGCGGTTATATACTGTTATAGTGATCATGGGACT
SEQ ID NO: 455
AGCTATCCAAATGAAC
SEQ ID NO: 456
TTCATTATACCTGGTGGTACCATAGCTACTACGGAGCTGGGCAAAAGGCC
SEQ ID NO: 457
GGCAGTTATGTTCTACCTCGGTTATGCTACTATTTATAATGTC
SEQ ID NO: 458
MDTRAPTQLGLPLLWLPGATFAAVLTDQTPSPVSAAVGGTGTISCSQSSQSVYNNSWLSWFOQKPGQPP
KLLYKASTLASSVPSRFSKGSUGGTQFTLTISDVQCDVATYYCAGGYLDSVI
SEQ ID NO: 459
METGLRLWLLLAVLKGVRCSVEESEGGLRVTGTPILTTCCTGFSLLSTYSIWQRQAPGTKLEWIGII
ANSGTTFYANWAKGRFTUKSKTSTTVDLKITSPTTEDTATYFCARESGMYEYGKFN
SEQ ID NO: 460
QSSQSVYNNWLS
SEQ ID NO: 461
KASTLNAS
SEQ ID NO: 462
AGGYLDSVI
SEQ ID NO: 463
TYSIN
SEQ ID NO: 464
IIANGTTFYANWAKG
SEQ ID NO: 465
ESGMYNEYGKFINI
SEQ ID NO: 466
ATGGGACACGAGGGCCCAACTCAGCTGGTGGCTCTCCGCTGCTTGCTCCAGGGCACACATTT
GCCGCGTGCTGACACCAGCTCCTCCGTCCGGACAGCTGCTCCGGGAGGGGCAACAGTCACTCAGT
TGCCAGTGCGATCTACAGGTTTATAATAAACACTGTTTATCTCTGTTTTCAAGCAGAAACCGAGCAG
CCTCCAAGCCTCCTGATCTCAAAGGCATCCACACTCTGCTGATCTGGGTCACCACTGCGGTTCAAGGC
AGTGGAATCTGGGACACAGTCTCAGTCCACCACGACGGAGTGTGCAAGGATGTGGTTCGCACATTAAC
TACTGTGCAGGGCCGAATTCATGATGTGTTATT
SEQ ID NO: 467
ATGGGAGACTGGGCTCGCTGGTCTTTTCCTGCTGCTTGCTCAGGTTGTCAGTCCAGTCTGGTG
GAGGAGTCCGCGTGGTCTGTCAGCCTGGAGAACACCCCTGACACTCACCTGACAGTCTTG
ATTCTCCCTCAGTACCTATTCAATAAACTGGGAGCAAGGCTGGAAAGGAGCTGGAATGGAT
CGGAATCTTGGACTAAATAGGTGATTACCAATTCCTACTAGCAACTGGCAGAAAAGGGCAACACGCGC
CAGTGGCAAGACAGTGGGAGTGTCAATAGGATATGTGGTAAATTAAACATC
SEQ ID NO: 468
CAGTCCAGTCAAGAATTTTATAATAAACACTGTTTATCC
SEQ ID NO: 469
AAGGCATCCACTGCGGATCT
SEQ ID NO: 470
GCAGGGCGGTATCTTGTAGTGGTATT
SEQ ID NO: 471
ACCTATTCAATAAAC
SEQ ID NO: 472
ATCATGGCTAATAGTGGTACCACATTCTACGGAAACTGGGCGAAAGGC
SEQ ID NO: 473
GAGAGTGGAATGTCAATGGAATATGTTAATTTAACATC
SEQ ID NO: 474
ATCATTTATCTTAATGGTATCTACATACTACCGGAACTGGGCGAAAAGGC
SEQ ID NO: 489
GATGCAGAAAGTAGTAAGAAGATTATTTAATGGGCTACTTAAAGTCC
SEQ ID NO: 490
MDTRAPTLQQLLLLWLPGARCSADMTQTPSSVSAAVGGTAVTINCQASENIYSLAWYQQKPGQPPL
LIFRASLASSVSSRFKGSSTQFTLTISDLECCDAATYYCQQGATVYDIDNN
SEQ ID NO: 491
METGLRWWWAVLKGVQCSLESSEGGLRVTPGTPLTLTCTVSGIDLSAYAMIWVRQAPGGELEWITU
YPNGITYYANWAKGRFTVSKTSTAMLKITSPTTEDTATYFCARDAESSKNAYWGYFNV
SEQ ID NO: 492
QASENIYSLA
SEQ ID NO: 493
RASTLAS
SEQ ID NO: 494
QQGATVYDIDNN
SEQ ID NO: 495
AYAMI
SEQ ID NO: 496
IIYPNGITYYANWAKG
SEQ ID NO: 497
DAESSKNAYWGYFNV
SEQ ID NO: 498
ATGGGACAGCAGGGCCCAACTCACGCTGCTGCTGGCTCCTGCTGCTGCTGCCAGGTTGCAGAGTGT
GCCTCTGTATATGACCGAGACTCCATCTCCGCTGCTGACGCTGTGAGGAGGCACAGTCAACTCAAT
TGCCAGGGCGAGTGAACATTTATAGCTTTTTTGCTTGTATACGCAGAAACCCAGGGGACGCTCC
AAAGCTCCTGATCTTCAGGGCTCCTCCCATCTGGCACATCGGTCTCGTCCCTGCTCTGGGTCCAGTGA
TCTGGGACACAGTTCACTCTCACTACAGCGACCTGGAGTGTAGCTGAGCTGCCCCTACTACTGT
CAACAGGGGTCTACTGTATGATATTGATAATAAT
SEQ ID NO: 499
ATGGGAGACTGCGTGCCGCTCTCCCTTGCTGCTGCTGCTCAAGGTGTCAGGTGTCATCAGCTG
GAGGAGTCCCGGGGTCGCTGCTGCTGCTGCTGCTGCAACCCCTGACACTGTCACAGTGTTTCTGGA
ATCGACCCCTGATCTGCAATGTCTCGTCCGAGCTCAGGGGAGGAGGGGCTGGAATGGAT
CACAATCATTTTATCTGATACATACTAGCAGGAACTGGGCGAAAAGGGCTACTGAGGT
CAAAAACCTCAGACCGCGATGGATCTGAAATACCACTACGTCCGACACCCGAGCAGACCGCCACCTATT
TCTGGTCCAGAGATGCAAGAAGTAGTGAAGAATGGTTATTGGGCTACTTTAAGTCC
SEQ ID NO: 500
CAGGCGCAGGAAACTTTTAGCTTTTTGGCC
SEQ ID NO: 501
AGGGCTCCACTCTGGCATCT
SEQ ID NO: 502
CAACAGGGTGCTACTGTGATATGATATTGATAATAAT
SEQ ID NO: 503
GCCTATGCAATGATC
SEQ ID NO: 504
ATCATTATCTTAATGATATCATAACTACGCGAACTGGCGAAGG
SEQ ID NO: 505
GATGCAGAAATGAGTGAAGATGCTATTGAGGGCTACTTTAAGTGC
SEQ ID NO: 506
MDTRAPTQLLGLLLLWLPGATFAIEMTQTPSVPAAVGGVTITINCQASESVFNMLSSWYQQPKGHSPK
LLIYDASDLASGVPFKGSGSTQFTLTSIGVECDDAAATYYCAGYKSNDGDNV
SEQ ID NO: 507
METGLRWWLVLVAVLKGVQCSLEESGGRVLVTGTPTPLTLCTVSGFSLNRSITMWVRQAPGEGLGWIII
TGSGRTYYANWAKGRFTISKSTTTSTVDLMKMTSPTEDTAYFCARGHPGLGSNI
SEQ ID NO: 508
QASESVFNMLSS
SEQ ID NO: 509
DASDLAS
SEQ ID NO: 510
AGYKSDSNDGDNV
SEQ ID NO: 511
RNSIT
SEQ ID NO: 512
IIIGSGRTYYANWAKG
SEQ ID NO: 513
GHPGLGSNI
SEQ ID NO: 514
ATGGACACGAGGGCCCCAATCGCTGTGGGCTCCTGCTGCTGGCTCCAGGTGGGCAATTT
GCCATTTGAAATGACCCAGACTCCATCACCCTCCGGTCTGGGCGCTGTGGGACGACAGTCAACTTCAAT
TGCCAGGGCCAGTGAGAGTGTGTGGTTAAATATATGTTATCTGTGTATCAAGAGAATTCCAGGGCACTCT
CCTAAGCTCCGTATCTATGAGCATCGATCCATGGCATTGCTGGGATCCATCCAGGTGATCCAGGTGATTAAGGCAGT
GGATCTGCGAACACAGTTCACTCCATACCCATCGTGCGGAGGTGCTGTGACGATGCTGCCCTACTAT
TGTCAGGATTATAAAAGTGATAGTAATGATGGGCGATAATTT
SEQ ID NO: 515
ATGGAGACACGAGGGCTTGGGCTTGGTCCCTTCGTTGCTGCTGCTTCCAGGTTCACTGCGATGCTGCTC
GAGGAGTCGGGGGCTGGCAGCTGCAAGCCCTGACACTACCTGACAGTCTCTGG
ATTCTCCCTAAACGGATAATCAATACCTGGTGCCGCACGGCTCCAGGAGGGAGGGGCTGGAACTGA
TCGGAAATATTACCTGATTGTTAGAACGTACTCAGCGGAATCTGGAACGGCAAAAGGCGGATCCACCATC
TTCCAAACCATCGACCACGGTGATCTGGAATGACCAGTCCGAACACCGAGGACACGGCCACCTA
TTTCTGTGCCAGGGCCATCTGGTCTTGGTGAACATC
SEQ ID NO: 516
CAGGCCAGTGAGAGTGTATTTAATAATAGTTATCC
SEQ ID NO: 517
GATGCATCCGATCTGGCATCT
SEQ ID NO: 518
GCAGGGTATAAAAGTAGATAGTAGATGAGCGATAATGTT
SEQ ID NO: 519
AGGAATCAATAACC
SEQ ID NO: 520
ATCAATTAAGTGAGTAGAAGCTACGCCTGGCCTACGCTGAGT
SEQ ID NO: 521
GGCCATCTGTCTTGGGTAGTGGTACATC
SEQ ID NO: 522
MDTRAPTQLLQLLLWLPGATFAPQVLTQVTASSVSAAVGGTVTINCQSQSVYNNYLWSYQYQQKPGQPP
KLLIYTASSLSAGPSRFKGSSTQFTLTISETVEQDADAATYQCYGYSGPIT
SEQ ID NO: 523
METGLRWWLVLVAVLKGVQCSVQLEEGRGLVTGPTPLTLTCTASGFSLNNYYIQWVRQAPGEGLEWIGII
YAGGSAYYATWANGRTFTIAKTSSSTTVDLKMSTLTTEDTATYFCARGTFDGYEL
SEQ ID NO: 524
QSSQSVYNNYL
SEQ ID NO: 525
TASSLAS
SEQ ID NO: 526
QGYYSGPIT
SEQ ID NO: 527
NYYYIQ
SEQ ID NO: 528
IIYAGGSAYYAYATWANG
SEQ ID NO: 529
GTFDGYEL
SEQ ID NO: 530
ATGGACACAGAGGGCCCGCCACTGACTGCTGCTGGGCTCTCTGTCTCTGCTCTGCTCCAGGTGCCCACATTT
GCCGCAAATGGCGTACCCAGACATGCACTGCTCCCTGGTGGAGCAGCATCTACCATCTACATTCCAGACCGAGCTG
CCAACGATCTGCTATATCTGCAATGCCAGCTGGCTGTCCTGTCCTGTCCTGTCCTGTCCTGTCCTGTCCTGTCCTG
GGATCTGGGACAAGCTTACATCTCTACCCACTGAGGCAAGTGGCAATGGCAATGGCAATGGCAATGGCAATGGCA
TTGACGTCTACATTATATGCTTCTACTATAATTACT
SEQ ID NO: 547
ATGGGAGACTGGGCTGGCTGGCTTCCTCTGGTCTGGTCAGCTCAAGGTTGGTCGATCGTCTGCTG
GAGGAAAGGGCGGCTCGGGCTGCACCGCTGGAACACCCCTGTGACACTCAGCCTCTG
ATTCTCTCCCTCACTGAGCTACCTCTGATGGCTGGTCGCAAGCTCCAGCTGGGAGGGGTGGAATACAT
CGGATTCATTAAATCCTGCTGATGCGCATACACTACAAGCGAGCTGGGCGAATGCGCATCTG
CAAAAACCTCCGACACGCTGAGCTGATCTGGAAAAATCCACCAGTCCGACAACCCGGAGGACACGGCCACTATT
TCTGTGCCAGGATTCTCTATGTTCTTTATTTGAGCGCTTTACCCATC

SEQ ID NO: 548
CAGGTCAGTGAGACGCGTTTATAGTAATAAACCTCTTTATCC

SEQ ID NO: 549
AGGGCATCCAAATCTGGGACATCT

SEQ ID NO: 550
CAAGGGCATTATATAGTGGTGCTCATTAATAGT

SEQ ID NO: 551
AGCTACTTCCATGAGC

SEQ ID NO: 552
TTCAATTAATCCTGGGTAATGCGCATACACTACGCGAGCTGGGCGAGTGGCG

SEQ ID NO: 553
ATTCTATTTGTTCTATGAGGCCCTTACCCATC

SEQ ID NO: 554
MDTRAPTQLGLLLLLWLFROCGACYMTQTPASVEAVGGTVTICQATESIGNELSWYQQKPGQAPK
LLIYSASTLASGVPKSGSQTQFTLTITGVECDDAATYYCQGSSANIDNA

SEQ ID NO: 555
METGLRWWLLLAVLKVQCSLEESGRLVTPGTPLTLTCTGFSLSKYMSWVRQAPEKGLKYIG
YIDSTTVNTYATWARGRFSKTSTTVDKITSPTSEDATATYFCARGSTYFTDGGHRLDL

SEQ ID NO: 556
QATESIGNELS

SEQ ID NO: 557
SASTLAS

SEQ ID NO: 558
QQGSSANIDNA

SEQ ID NO: 559
KYYMS

SEQ ID NO: 560
YIDSTTVNTYATWAR

SEQ ID NO: 561
GSTYFTDGGHRLDL

SEQ ID NO: 562
ATGGGACAGGGCCCACTCAGCTGGGGCTCGGCTGCTGGCTGCTGCAGGTGGCAAGGATGT
GCCTATGATATAGCACGAATCCAGCTCGCTTGAGGTAGTCTGTTGGAGGCGACAGTCACCCTACAA
GTGCCAGGGC CACTTGAGAGCAT NTG CTG ATCTA TCTGAT GTG TGT CCGAT CACGTA GCAGAT GCTGTC CCAAGCTTCGATCTATTTCTGACATCCTGCTCGGTGGTCTCTGGCATTCCATCCGCATTGAGT GCATGAGCAGGTCTCACTCACTCTCACTACGCCCACCGCCTGGAGTGTGATGCTGCCACTTACTA GTCAACAGGGTTATAGTAGTGTGCAAATATTTGATAAATGCT

SEQ ID NO: 563
ATGGGAGACTGGGCTCGGGCTGGTTTCCTCTGTCGCTGCTGCTCAAGGTGTCCAGTGCAGTCGCTG GAGGAGTCGGGGGTCCGGCTGACGCTCGGTGGGACACCCCTGTGACACTCACCTGCACCCTGCTCTGGA TTCTCCCTCAGTAAAGTACATACATGAGCTGGTCGCTCCAGCAGGCTCCAGAGAAGGGGCTGAAATACATC GGATACATGGGATAGTACTACTGTTAATACATACATACGTACGCGACCTGGCGAGAGGCCAGTTCACCATC TTCAAAAACCTCGACCAAGGTGGATCTGAGATCTACCAAGTTCGGAAGAAGACACGGCCACCTA TTTCTGTGCCAGAGGAAGTAGACTTATTATTACTGATGGAGCCTCGGTGATCTC

SEQ ID NO: 564
CAGGCCCACCTGAGAGCATGGCAATGAGTTATCC

SEQ ID NO: 565
TCTGCATCCACTCTGGCATCT

SEQ ID NO: 566
CAACAGGGTTATAGTAGTGTGCAAATATTTGATAAATGCT

SEQ ID NO: 567
AAGTACTACATGAGC

SEQ ID NO: 568
TACATGGATAGTACTACTGTTAATACATACATACGCGACCTGGCGAGAGGCCAGTTCACCATC

SEQ ID NO: 569
GGAGATCTTATTTACTGATGGAGGCCCACCGGTGATCTC

SEQ ID NO: 570
MDTRAPTQLGLLLLWLPGARCAYDMTQTPASVEVAVGGTVTIKCQATESIGNELS WYQQPKPGQAPK LLIYSASLASSGVPSRFKGSQGSGTQFTILITGVECDDAATYYCQQQYSSANIDNA

SEQ ID NO: 571
METGLRWWLLLVAVLKGVQCSLEESGGRLVTGPTPLTLTCTVSFGSLSTYNMGWVRQAPGKGLEWIG SITIDGRTYYASWAKGRFTVSKSSTTVDLKMTSOLTGDTTYFCARILIVSYGAFTI

SEQ ID NO: 572
QATESIGNELS

SEQ ID NO: 573
SASTLAS

SEQ ID NO: 574
QQGYSSANIDNA

SEQ ID NO: 575
TYNMG

SEQ ID NO: 576
SITIDGRTYYASWAKG

SEQ ID NO: 577
ILIVSYGAFTI
SEQ ID NO: 578
ATGGGACAGGGGCTGGCTGGGCTCTGGCTCGCTGGGCTGGCCAGATGT
GCCTATGATATGACCCGACTCCAGCCTCTGCTGGAGTGAGTGTGAGGAGG
AGCAGCTACACTCTCGGCTCAAAACCCAGGGGCAAGCTC
CCAGCTCTCCGATATCTGCTAGCATTCAATCTCTGGTCAATGAGAAA
GATCTGGGACACAGTTTACTTCAACATCCACCCGGGCTGGGATGAGTATG
GCTGCTCCATTTACTTATTTTATGGGCCTTTACCAC
SEQ ID NO: 580
CAGGCCCAGTGAAGAGCATTGGGCAAATGAGTTATCC
SEQ ID NO: 581
TCTGCACTCCACTCTGGCATCT
SEQ ID NO: 582
CAACAGGGTTATAGTGATGCTAATATGTAATGCT
SEQ ID NO: 583
ACCTACAACATGGGC
SEQ ID NO: 584
AGTATTACTATTTGATGGTCGACATCATACTACGGAGCTGGGGCAAGGC
SEQ ID NO: 585
ATTCITATTGTTTCTTATGGGCCTTTACCAC
SEQ ID NO: 586
VAAPSFIFFPSDEQLKSGTASVYCLNNNYPREAKVQKVDNAOOGNSQESVTEQDSKDTYSLST
LTLKADYEKHKVLACEVTQHGLSSPVTKSNRGE
SEQ ID NO: 587
GTGGGCTGACACATCTGCTTCATCTCCCCGGCCTGATGAGCAGTTGAAATCTGGGAACTGCCCTCTG
TTTGTGCTGCTGATAAATCTTCATCCCCAGAGAGCAGCCAATGAGTGGGATAAAGGCC
CTCCCAATCGGTAAACTCCAGGAGATGTCAAGAGACAGAGCAGCAGACCTAGCCT
CAGCAGCAGCAGCTGGAGCAAAAGAGCATACGAGAAAACCAGAATCTAGCCTAGGGAAGT
CCCCACAGGGCCTGAGCTGCCGCTTCAACAGAGCGTTCCACAGGGGAGATGT
SEQ ID NO: 588
ASTKGPSVFLPAPSSKSTSGTATGLCVDKYDFEPVPVTVSNSGALTSGVHTFPAVLQSSGLYSLSV
TVSSSLGQTQYCNVNHKPSNKTVDKREVPSKCDKTHTCPCCPAPELLGGPSVFLFPPKDKTLMISR
PEVTCVVVDVSHEPVEFKFNYWVDGGEVHNAKTPREEQHYASTYRVSVTVLHVDWLNNGKEYKC
ILDGISALRKETCNK
SEQ ID NO: 601
GISALRKETCNKSNM
SEQ ID NO: 602
ALRKETCNKSNMCES
SEQ ID NO: 603
KETCNCNKSNMCESSKE
SEQ ID NO: 604
CNKSNMCESSKEALAN
SEQ ID NO: 605
SNMCESSKEALAEKN
SEQ ID NO: 606
CESSKEALAEKNLNL
SEQ ID NO: 607
SKEALAEKNLNLPKM
SEQ ID NO: 608
ALAEKNLNLPKMAEK
SEQ ID NO: 609
ENNLNLPKMAEKGDC
SEQ ID NO: 610
LNLPKMAEKGDCFQS
SEQ ID NO: 611
PKMAEKGDCFQSGFN
SEQ ID NO: 612
AEKDGFQSGFNEEET
SEQ ID NO: 613
DGCFQSGFNEETCLLV
SEQ ID NO: 614
FQSGFNEETCLVKII
SEQ ID NO: 615
GFNEETCLVIITGL
SEQ ID NO: 616
EETCLVIITGLLLEF
SEQ ID NO: 617
CLVIITGLLLEFEVY
SEQ ID NO: 618
KIITGLLLEFEVYLEY
SEQ ID NO: 619
TGLLLEFEVYLEYLQN
SEQ ID NO: 620
QAQNQWLQDMTHHLI
SEQ ID NO: 641
NQWLQDMTHHLILRS
SEQ ID NO: 642
LQDMTHHLILRSFKE
SEQ ID NO: 643
MTTHHLILRSFKEFLQ
SEQ ID NO: 644
HLILRSFKEFLQSSL
SEQ ID NO: 645
LRSFKEFLQSSLRAL
SEQ ID NO: 646
FKEFLQSSLRALRQM
SEQ ID NO: 647
AYDMTQTPASVSAAVGGTVTIKCQASQSQINNELSWYQQPKGQPQPKLLIIYRASTLASGVSSRFKGSggG
EFTLTLISDEACADAATYCYQQQYSLRNIDNAFGGGTVEVVKR
SEQ ID NO: 648
AIQMTQPSSLSAVGDRVTITCRAQSQGIRNDLGWYYQQPKPGAPKLPKLIYAASSLOVQPSRFSGSGSGTD
FTLTISSLQPEDFAYYCY
SEQ ID NO: 649
DIQMTQPSSLSAVGDRVTITCRAQSQGISNYLAWYYQQPKPGPVKLPKLIYAASTLOVQPSRFSGSGSGTD
FTLTISSLQPEDVATYYCY
SEQ ID NO: 650
DIQMTQPSSTLSAVGDRVTITCRAQSQISSWLAWYYQQPKPGAPKLPKLIYKASLQPSRFSGSGSGTE
FTLTISSLQPDPDFATYYCY
SEQ ID NO: 651
AIQMTQPSSLSAVGDRVTITCQASQSQINNELSWYQQPKGQPQPKLLIIYRASTLASGVSSRFSGSGSGTD
FTLTISSLQPEDFATYYCYQQGYLRNIDNAFGGGTKVEIKR
SEQ ID NO: 652
QSLLESGGLVTPGTPTLTCTASGFSLSNYYVTWVRQAPGKGEWIGIIYGSDETAYATWAIKRFTISK
TSTTVDLKMTSTLAATATYFCARDDDSDDDAKFNGLWQQGTLTVSS
SEQ ID NO: 653
EQLVLESGGGLVQPGGLRLSACASGFTVSSNYMWSVRQAPGKGEWVSVIYSGGSTYADSYVGRF
TISRDNSKNTLYLQMNSLRAEDTAYYCAR
SEQ ID NO: 654
EQLVLESGGGLIQQPGGLRLSACASGFTVSSNYMWSVRQAPGKGEWVSVIYSGGSTYADSYVGRFT
TISRDNSKNTLYLQMNSLRAEDTAYYCAR
SEQ ID NO: 655
EQLVLESGGGLVQPGGLRLSACASGFTFSYYAMSVRQAPGKGEWVSVIYSGGSTYADSYVGRF
TISRDNSKNTLYLQMNSLRAEDTAYYCAK
ATGGACAGCAGGCGCGGGCCCCCACTCAGCTGGGCTCCCTGCTGCTGGTCCTCCCGGATGACAGCTATTT
GCCGGCGTGTGACCCGACTCCACTTCCTCCCCGTGCTCAGCTGGGGGAGGACAGTGAAGATCATAG
TGCCAGGCGACAGTCAAGTGGTTATGACAAAAACACTACTATATATCTCGGTTTCAGCAGAAACCAGGCGAG
CTTCCCAAAGCTTCATGATCTATAGGTGACATTCCAATCTGGGTTCTCCCGAATCGGTTCTGACAGGAG
AGTGGATCTGGGACAGTCAGTGACACTCATTCCGACAGTACAGTGCAGTGGTCAGTGCAGATCTAC
TATTTGTGCAGGCGTTATAGTGATAGATGATCTGAAATGCC

SEQ ID NO: 674
ATGGGAGACTGGCGTCCGCTGGTCTCTTCTCTTCTGTTGCTGAATAGGCTGCTGCAAAAGGTGTCCAGTGTCAGTCGCTG
GAGGGCTCCGGGCTCCTGCTCAACCCCTGGGACACCCCTTGGACACTCACCAGCAGGCTATGGG
ATTTCCTCTAGTGCTATACATGAAACCCGCTTCAGCAGGGGAGGCTGAATGAT
CGGATTCATTAAATCAGTGTAAATATAATAATTACGGCAGACTGGGCGAGATGCGATCTACAC
CAAAACCTCGACACCGGGGTGGACTaaATGACAGTGTCGACACCCCGAGGACACAGGCACACTATT
TCTGTGGCCAGGAGTCGTTGGGCTGACAAATGGGTCGGTGTTGACCTAC

SEQ ID NO: 675
MDTRAPTQLLGLLLLLWLPGAIAPDVPLTQTPSPVSAPVGGTSTISICQASQSVSYYENNYLWSFQQKQPQP
LGYGASTLSGVPSRFKGSSTGQFQLTTTDYQCCDAAYYCAVGYVDSDDDDA

SEQ ID NO: 676
METGLRWLLLLVAVLKVQQQEQLKESSGGGLVTPGGTLTLTCTASGFSILNAAYMNWVRQAPKGLEW
IGFITLNNNVAYANWAKGRFTSFKSTSTTVDLKMTSPTPEDATYFACRSRGWAGMRLDL

SEQ ID NO: 677
ATGGACACGAGGCGCGGGCCCCCACTCAGCTGGGCTCCCTGCTGCTGGTCCTCCCGGATGACAGCTATTT
GACCCCTGTGCTGACCCGACTCCACTTCCTCCCCGTGCTCAGCTGGGGGAGGACAGTGAAGATCATAG
TGCCAGGCGACAGTCAAGTGGTTATGACAAAAACACTACTATATATCTCGGTTTCAGCAGAAACCAGGCGAG
CTTCCCAAAGCTTCATGATCTATAGGTGACATTCCAATCTGGGTTCTCCCGAATCGGTTCTGACAGGAG
AGTGGATCTGGGACAGTCAGTGACACTCATTCCGACAGTACAGTGCAGTGGTCAGTGCAGATCTAC
TATTTGTGCAGGCGTTATAGTGATAGATGATCTGAAATGCC

SEQ ID NO: 678
ATGGGAGACTGGCGTCCGCTGGTCTCTTCTCTTCTGTTGCTGAATAGGCTGCTGCAAAAGGTGTCCAGTGTCAGTCGCTG
GAGGGCTCCGGGCTCCTGCTCAACCCCTGGGACACCCCTTGGACACTCACCAGCAGGCTATGGG
ATTTCCTCTAGTGCTATACATGAAACCCGCTTCAGCAGGGGAGGCTGAATGAT
CGGATTCATTAAATCAGTGTAAATATAATAATTACGGCAGACTGGGCGAGATGCGATCTACAC
CAAAACCTCGACACCGGGGTGGACTaaATGACAGTGTCGACACCCCGAGGACACAGGCACACTATT
TCTGTGGCCAGGAGTCGTTGGGCTGACAAATGGGTCGGTGTTGACCTAC

SEQ ID NO: 679
MDTRAPTQLLGLLLLLWLPGAIAPDVPLTQTPSPVSAAVGGTSTINQASQSQSVDNNWLGWYYQQKRGQ
PPKLYSYASTLSGVPSRFKGSSTGQFQLTTTDYQCCDAAYYCAVGYVDSDDDDA

SEQ ID NO: 680
METGLRWLLLLVAVLKVQQQEQLKESSGGGLVTPGGTLTLTCTASGFSILNAAYMNWVRQAPKGLEWIGI
IGGGTTTYYATWAKGRFTISKTSTTVDLRITSPTTEDATYFCARGGPGNGGDI

SEQ ID NO: 681
ATGGGACACGAGGGCGCCCACTCAGCTGCTGGGGCTCCTGCTTGCTGGCCACCAACATT
GCCCAAGTGCTGACCCAGACTCCATCTGCGTGCTGTCGATGGAAGGACAGTCACTTACAC
TGCCAGGGAGTCAGGTTTATGATATACGACAACTGTGGTATACAGCAGAAACGAGGGCA
GCCTCCCAAGTACCTGATCAAGACCTGCTCCGGGTCCATGCTGCCAGAAAGGGGCTGGAGGT
CGGATATCTACGGGATCTGAGAATCAGGACATTCCGCAAAACCGAGAGGGCCACCTTATT
TCGGAGCAAGGGTGGTCTCCTGTAATGGGGTGGTACAT
SEQ ID NO: 683
MDTRAPTLQGLLLLWLPAGTFAAVLVTQTPSVPVPGVTIVIKCQQSSQSVNNFSLWSWYQKPGKPP
LLIYQASKLAVPGVQPLSTFVLSQDQAATYYCLGYYDADNA
SEQ ID NO: 684
METGLRLWLLVLAVLKVGQCQVESSEGGMLVTPTGLPLTCTVSGIDLSDYAMSWVRQAPKGLGWEIG
IYAGSGSTWYASWAKGRFTISKSTTTVDLKITSPTTEDTATYFCARDGYYDYGDFRDLDDL
SEQ ID NO: 685
ATGGGACACGAGGGCGCCCACTCAGCTGCTGGGGCTCCTGCTTGCTGGCCACCAACATT
GCAGCCTCGCTGACCCAGACTCCATCTGCGTGCTGTCGATGGAAGGACAGTCACTTACAC
TGCCAGGGAGTCAGGTTTATGATATACGACAACTGTGGTATACAGCAGAAACGAGGGCA
GCCTCCCAAGTACCTGATCAAGACCTGCTCCGGGTCCATGCTGCCAGAAAGGGGCTGGAGGT
CGGATATCTACGGGATCTGAGAATCAGGACATTCCGCAAAACCGAGAGGGCCACCTTATT
TCGGAGCAAGGGTGGTCTCCTGTAATGGGGTGGTACAT
SEQ ID NO: 686
ATGGGACACGAGGGCGCCCACTCAGCTGCTGGGGCTCCTGCTTGCTGGCCACCAACATT
GCAGCCTCGCTGACCCAGACTCCATCTGCGTGCTGTCGATGGAAGGACAGTCACTTACAC
TGCCAGGGAGTCAGGTTTATGATATACGACAACTGTGGTATACAGCAGAAACGAGGGCA
GCCTCCCAAGTACCTGATCAAGACCTGCTCCGGGTCCATGCTGCCAGAAAGGGGCTGGAGGT
CGGATATCTACGGGATCTGAGAATCAGGACATTCCGCAAAACCGAGAGGGCCACCTTATT
TCGGAGCAAGGGTGGTCTCCTGTAATGGGGTGGTACAT
SEQ ID NO: 687
MDTRAPTLQGLLLLWLPAGTFAAVLVTQTPSVPVPGVTIVIKCQQSSQSVNNFSLWSWYQKPGKPP
LLIYRASLAVPSRFFKGSFGSSTFELTISDLECADAATYYCQQGYSRLNIDNA
SEQ ID NO: 688
METGLRLWLLVLAVLKVGQCQVESSEGGMLVTPTGLPLTCTVSGIDLSDYAMSWVRQAPKGLGWEIG
IYAGSGSTWYASWAKGRFTISKSTTTVDLKITSPTTEDTATYFCARDGYYDYGDFRDLDDL
SEQ ID NO: 689
SEQ ID NO: 697
GATGATAGTAGTGACTGGGATGCAAAATGGTCAACTTG
SEQ ID NO: 698
GCTATCCAGATGACCCAGTCTTCTTCTTCTTCTCTCTGTGCTGACATGGGAGCAAGATGTCACCACGACTCTTTTGC
GCCAGGCCCAGTCAGAGCAATTAAAATAGGTATCCTGTATGCGAAGAAAACCCAGGGAAAGCCTTTTGC
AAGGCTCTGATCATATAGGGCAATCCACCCTCTCTGACTGAGAAGGAGGTCGCTCCAGGCTCCAGGGGAAAGG
GCTGGAGCTGGGTCGACATCAGATCAAGTGGTAAAACCCGCTACGCTCCATTGCTAGCC
ATTCCACCTTTCAAGAGACAATTTCAAGAAGAAGCCCTGATATCTCTCAATGGAACAGCGTGAGGTA
GGCACATCTGCTGTATATCTCGTCTAGATAGTATAGTAGCTGACTGGGATGACAAAGTTCACCTTG
GGGCAAGGAGACCTCTGCCAGCTGACG
SEQ ID NO: 700
GCTATCCAGATGACCCAGTCTTCTTCTTCTTCTCTCTGTGCTGACATGGGAGCAAGATGTCACCACGACTCTTTTGC
GCCAGGCCCAGTCAGAGCAATTAAAATAGGTATCCTGTATGCGAAGAAAACCCAGGGAAAGCCTTTTGC
AAGGCTCTGATCATATAGGGCAATCCACCCTCTCTGACTGAGAAGGAGGTCGCTCCAGGCTCCAGGGGAAAGG
GCTGGAGCTGGGTCGACATCAGATCAAGTGGTAAAACCCGCTACGCTCCATTGCTAGCC
ATTCCACCTTTCAAGAGACAATTTCAAGAAGAAGCCCTGATATCTCTCAATGGAACAGCGTGAGGTA
GGCACATCTGCTGTATATCTCGTCTAGATAGTATAGTAGCTGACTGGGATGACAAAGTTCACCTTG
GGGCAAGGAGACCTCTGCCAGCTGACG
SEQ ID NO: 701
GCTATCCAGATGACCCAGTCTTCTTCTTCTTCTCTCTGTGCTGACATGGGAGCAAGATGTCACCACGACTCTTTTGC
GCCAGGCCCAGTCAGAGCAATTAAAATAGGTATCCTGTATGCGAAGAAAACCCAGGGAAAGCCTTTTGC
AAGGCTCTGATCATATAGGGCAATCCACCCTCTCTGACTGAGAAGGAGGTCGCTCCAGGCTCCAGGGGAAAGG
GCTGGAGCTGGGTCGACATCAGATCAAGTGGTAAAACCCGCTACGCTCCATTGCTAGCC
ATTCCACCTTTCAAGAGACAATTTCAAGAAGAAGCCCTGATATCTCTCAATGGAACAGCGTGAGGTA
GGCACATCTGCTGTATATCTCGTCTAGATAGTATAGTAGCTGACTGGGATGACAAAGTTCACCTTG
GGGCAAGGAGACCTCTGCCAGCTGACG
SEQ ID NO: 702
AIQMTQPSSSLASVGDVRRITTCACASQSGINELSWYQKPGKAPKLLIYRASLAVSRPSFSGSAGTD
FTLTISSQPDDDFATYYCQQYGSRLIDNAFFGGTGKVEIKRTVAPSVEIPPSDEQKGTASVVCLN
NFYPREAKVQWVDNALQSGSNSQESVTEDKSDTYSLSLTSKLADYHEKHYVECEVTHQGLSSP
VTKSFNGRCE
SEQ ID NO: 703
GAGGTTGAGCTGGTGGAGTCTGGGAGGAGCTTGGTCAGCAGCTGGGGGTTCTCTGAGACTCTCTCTG
TGACAGGTCAGTCTCTCATGGAATGACTGAGGCTGGGCTGACAGGCTGGGAGG
GCTGGAGCTGGGTCGACATCAGATCAAGTGGTAAAACCCGCTACGCTCCATTGCTAGCC
ATTCCACATCTCCAGACAGAATTTCAAGAAGAAGCCCTGATATCTCTCAATGGAACAGCGTGAGGTA

SEQ ID NO: 707
ATGAGAGTGGTTAACGCTTTGGCGAGGACTCTTGACAGTGCTGCTGAGGAGGTGGTTTGAGGTTAAGATAGGCTGCGGATTTGCCGAGGACTCTTGACAGTGCTGCTGAGGAGGTGGTTTGAGGTTAAGATAG

SEQ ID NO: 708
MKWTVFTFSLLFLFSSAYSEVQLVESGGGLVQPGGLRSLCAASGFSLNYSYVTWVRQAPKGKLEWVGI

SEQ ID NO: 709
AIQMTOQPSLASSVGDRTTITCQASQINSNELSWYQQPGKAPKLLYRASTLASGVRPSGSGSGTD

SEQ ID NO: 710
RASQGIRNDLG

SEQ ID NO: 711
RASQGISNYLA
What is claimed is:

1. A method of preventing, treating, or diagnosing a disease or condition associated with IL-6, comprising administration of an Ab1 antibody or antibody fragment to a subject in need thereof, wherein the Ab1 antibody or antibody fragment comprises:

 a light chain polypeptide comprising: a polypeptide having at least 75% identity to SEQ ID NO: 709, a polypeptide encoded by a polynucleotide that has at least 75% identity to the polynucleotide of SEQ ID NO: 723, a polypeptide encoded by a polynucleotide that hybridizes under medium stringency conditions to a polynucleotide having the sequence of the reverse complement of SEQ ID NO: 723, or a polypeptide encoded by a polynucleotide that hybridizes under high stringency conditions to a polynucleotide having the sequence of the reverse complement of SEQ ID NO: 723; and

 a heavy chain polypeptide comprising: a polypeptide having at least 75% identity to SEQ ID NO: 657, a polypeptide encoded by a polynucleotide that has at least 75% identity to the polynucleotide of SEQ ID NO: 700, a polypeptide encoded by a polynucleotide that hybridizes under medium stringency conditions to a polynucleotide having the sequence of the reverse complement of SEQ ID NO: 700, or a polypeptide encoded by a polynucleotide that hybridizes under high stringency conditions to a polynucleotide having the sequence of the reverse complement of SEQ ID NO: 700;

 wherein the Ab1 antibody or antibody fragment specifically binds to IL-6 and antagonizes one or more activity associated with IL-6.

2. The method of claim 1, wherein the light chain polypeptide includes one or more substitutions within the light chain framework region(s) relative to the light chain framework region sequences of SEQ ID NO: 709.

3. The method of claim 2 wherein one or more of the substitutions within the light chain framework region(s) is substitution with the sequence of a corresponding position of a donor sequence, wherein the donor sequence is comprising: SEQ ID NO: 2; a human, rabbit, or a non-human primate light chain sequence; and a light chain of any of Ab2, Ab3, Ab4, Ab5, Ab6, Ab7, Ab8, Ab9, Ab10, Ab11, Ab12, Ab13, Ab14, Ab15, Ab16, Ab17, Ab18, Ab19, Ab20, Ab21, Ab22, Ab23, Ab24, Ab25, Ab26, Ab27, Ab28, Ab29, Ab30, Ab31, Ab32, Ab33, Ab34, Ab35, or Ab36,
wherein the substitution results in replacement, insertion, and/or deletion of one or more amino acids, and

wherein the corresponding position is determined by sequence alignment between the framework region of SEQ ID NO: 709 and the donor sequence.

4. The method of claim 1, wherein the heavy chain polypeptide includes one or more substitutions within the heavy chain framework region(s) relative to the heavy chain framework region sequences of SEQ ID NO: 657.

5. The method of claim 4 wherein one or more of the substitutions within the heavy chain framework region(s) is substitution with the sequence of a corresponding position of a donor sequence, wherein the donor sequence is comprising: SEQ ID NO: 3; a human, rabbit, or a non-human primate heavy chain sequence; and a heavy chain of any of Ab2, Ab3, Ab4, Ab5, Ab6, Ab7, Ab8, Ab9, Ab10, Ab11, Ab12, Ab13, Ab14, Ab15, Ab16, Ab17, Ab18, Ab19, Ab20, Ab21, Ab22, Ab23, Ab24, Ab25, Ab26, Ab27, Ab28, Ab29, Ab30, Ab31, Ab32, Ab33, Ab34, Ab35, or Ab36,

wherein the substitution results in replacement, insertion, and/or deletion of one or more amino acids, and

wherein the corresponding position is determined by sequence alignment between the framework region of SEQ ID NO: 657 and the donor sequence.

6. The method of any of claims 1-5, wherein the light chain polypeptide comprises one or more Ab1 light chain CDR polypeptide comprising:

a light chain CDR1 having at least 72.7% identity (identical to at least 8 out of 11 residues) to SEQ ID NO: 4;

a light chain CDR2 having at least 85.7% identity (identical to at least 6 out of 7 residues) to SEQ ID NO: 5;

a light chain CDR3 having at least 50% identity (identical to at least 6 out of 12 residues) to SEQ ID NO: 6;

a light chain CDR1 having at least 90.9% similarity (similar to at least 10 out of 11 residues) to SEQ ID NO: 4;

a light chain CDR2 having at least 100% similarity (similar to at least 7 out of 7 residues) to SEQ ID NO: 5; or
a light chain CDR3 having at least 66.6% similarity (similar to at least 8 out of 12 residues) to SEQ ID NO: 6;

and wherein the heavy chain polypeptide comprises one or more Ab1 heavy chain CDR polypeptide comprising:

 a heavy chain CDR1 having at least 80% identity (identical to at least 4 out of 5 residues) to SEQ ID NO: 7;
 a heavy chain CDR2 having at least 50% identity (identical to at least 8 out of 16 residues) to SEQ ID NO: 120;
 a heavy chain CDR3 having at least 33.3% identity (identical to at least 4 out of 12 residues) to SEQ ID NO: 9;
 a heavy chain CDR1 having at least 100% similarity (similar to at least 5 out of 5 residues) to SEQ ID NO: 7;
 a heavy chain CDR2 having at least 56.2% similarity (similar to at least 9 out of 16 residues) to SEQ ID NO: 120; or
 a heavy chain CDR3 having at least 50% similarity (similar to at least 6 out of 12 residues) to SEQ ID NO: 9.

7. The method of any of claims 1-5, wherein the light chain polypeptide comprises one or more Ab1 light chain CDR polypeptide comprising:

 a light chain CDR1 having at least 81.8% identity (identical to at least 9 out of 11 residues) to SEQ ID NO: 4;
 a light chain CDR2 having at least 71.4% identity (identical to at least 5 out of 7 residues) to SEQ ID NO: 5; or
 a light chain CDR3 having at least 83.3% identity (identical to at least 10 out of 12 residues) to SEQ ID NO: 6;

and wherein the heavy chain polypeptide comprises one or more Ab1 heavy chain CDR polypeptide comprising:

 a heavy chain CDR1 having at least 60% identity (identical to at least 3 out of 5 residues) to SEQ ID NO: 7;
a heavy chain CDR2 having at least 87.5% identity (identical to at least 14 out of 16 residues) to SEQ ID NO: 120; or

a heavy chain CDR3 having at least 83.3% identity (identical to at least 10 out of 12 residues) to SEQ ID NO: 9.

8. The method of any of claims 6–7, wherein the Ab1 antibody or antibody fragment comprises at least two of said light chain CDR polypeptides and at least two of said heavy chain CDR polypeptides.

9. A method of preventing or treating a disease or condition associated with IL-6, comprising administration of an Ab1 antibody or antibody fragment to a subject in need thereof, wherein the Ab1 antibody or antibody fragment comprises:

 two or more Ab1 light chain CDR polypeptides comprising:

 a light chain CDR1 having at least 72.7% identity (identical to at least 8 out of 11 residues) to SEQ ID NO: 4;

 a light chain CDR2 having at least 85.7% identity (identical to at least 6 out of 7 residues) to SEQ ID NO: 5; or

 a light chain CDR3 having at least 50% identity (identical to at least 6 out of 12 residues) to SEQ ID NO: 6;

 and two or more Ab1 heavy chain CDR polypeptide comprising:

 a heavy chain CDR1 having at least 80% identity (identical to at least 4 out of 5 residues) to SEQ ID NO: 7;

 a heavy chain CDR2 having at least 50% identity (identical to at least 8 out of 16 residues) to SEQ ID NO: 120; or

 a heavy chain CDR3 having at least 33.3% identity (identical to at least 4 out of 12 residues) to SEQ ID NO: 9;

 wherein the Ab1 antibody or antibody fragment specifically binds to IL-6 and antagonizes one or more activity associated with IL-6.

10. A method of preventing or treating a disease or condition associated with IL-6, comprising administration of an Ab1 antibody or antibody fragment to a subject in need thereof, wherein the Ab1 antibody or antibody fragment comprises:
two or more Ab1 light chain CDR polypeptides comprising:

- a light chain CDR1 having at least 90.9% similarity (similar to at least 10 out of 11 residues) to SEQ ID NO: 4;
- a light chain CDR2 having at least 100% similarity (similar to at least 7 out of 7 residues) to SEQ ID NO: 5; or
- a light chain CDR3 having at least 66.6% similarity (similar to at least 8 out of 12 residues) to SEQ ID NO: 6;

and two or more Ab1 heavy chain CDR polypeptide comprising:

- a heavy chain CDR1 having at least 100% similarity (similar to at least 5 out of 5 residues) to SEQ ID NO: 7;
- a heavy chain CDR2 having at least 56.2% similarity (similar to at least 9 out of 16 residues) to SEQ ID NO: 120; or
- a heavy chain CDR3 having at least 50% similarity (similar to at least 6 out of 12 residues) to SEQ ID NO: 9;

wherein the Ab1 antibody or antibody fragment specifically binds to IL-6 and antagonizes one or more activity associated with IL-6.

11. The method of any of claims 9-10 wherein said Ab1 antibody or antibody fragment comprises said light chain CDR1, said light chain CDR3, said heavy chain CDR2, and said heavy chain CDR3.

12. The method of any of claims 9-10 wherein said Ab1 antibody or antibody fragment comprises said light chain CDR1, said light chain CDR2, said light chain CDR3, said heavy chain CDR1, said heavy chain CDR2, and said heavy chain CDR3.

13. The method of any of claims 9-12 wherein said light and heavy chain CDR polypeptides are comprised in an antibody or antibody fragment comprising Fab, Fab', F(ab')2, Fv, scFv, IgNAR, SMIP, camelbody, or nanobody.

14. The method of any of claims 9-12 wherein the framework regions (FRs) 1, 2, 3 and 4 in the variable light and heavy regions of said Ab1 antibody or antibody fragment, respectively, are human FRs which are unmodified or which have each been modified by the substitution of at most 2 or 3 human FR residues with the corresponding FR residues of the
parent rabbit antibody light or heavy chain of SEQ ID NO: 2 and SEQ ID NO: 3, respectively,

wherein said human light chain FRs 1, 2 and 3 have been derived from a human variable light chain antibody sequence that has been selected from a library or database of human germline antibody sequences based on its high level of homology (relative to other human germline antibody sequences contained in the library or database) to the subsequence of the parent rabbit antibody light chain of SEQ ID NO: 2 extending from the beginning of FR1 to the end of FR3; and

wherein said human light chain FR4 has been derived from a human variable light chain antibody sequence that has been selected from a library or database of human germline antibody sequences based on its high level of homology (relative to other human germline antibody sequences contained in the library or database) to the parent rabbit antibody light chain FR4 contained in SEQ ID NO: 2; and

wherein said human heavy chain FRs 1, 2 and 3 have been derived from a human variable heavy chain antibody sequence that has been selected from a library or database of human germline antibody sequences based on its high level of homology (relative to other human germline antibody sequences contained in the library or database) to the subsequence of the parent rabbit antibody heavy chain of SEQ ID NO: 3 extending from the beginning of FR1 to the end of FR3; and

wherein said human heavy chain FR4 has been derived from a human variable heavy chain antibody sequence that has been selected from a library or database of human germline antibody sequences based on its high level of homology (relative to other human germline antibody sequences contained in the library or database) to the parent rabbit antibody heavy chain FR4 contained in SEQ ID NO: 3.

15. The method of any of claims 1-14, wherein the Ab1 antibody or antibody fragment has an in vivo half-life of at least about 22 days in a healthy human subject.

16. The method of any of claims 1-14, wherein the Ab1 antibody or antibody fragment has an in vivo half-life of at least about 25 days in a healthy human subject.

17. The method of any of claims 1-14, wherein the Ab1 antibody or antibody fragment has an in vivo half-life of at least about 30 days in a healthy human subject.
18. The method of any of claims 1-17, wherein the Ab1 antibody or antibody fragment has a binding affinity (Kd) for IL-6 of less than about 50 picomolar, or a rate of dissociation (K_{off}) from IL-6 of less than or equal to 10^{-4} S^{-1}.

19. The method of any of claims 1-18, wherein the Ab1 antibody or antibody fragment specifically binds to the same linear or conformational epitope(s) and/or competes for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody consisting essentially of the polypeptides of SEQ ID NO: 702 and SEQ ID NO: 704 or the polypeptides of SEQ ID NO: 2 and SEQ ID NO: 3.

20. The method of claim 19, wherein said binding to the same linear or conformational epitope(s) and/or competition for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof is ascertained by epitopic mapping using overlapping linear peptide fragments which span the full length of the native human IL-6 polypeptide and includes one or more residues comprised in IL-6 fragments selected from those respectively encompassing amino acid residues 37-51, amino acid residues 70-84, amino acid residues 169-183, amino acid residues 31-45 and/or amino acid residues 58-72 of SEQ ID NO: 1.

21. The method of any of claims 1-20, wherein the Ab1 antibody or antibody fragment is aglycosylated.

22. The method of any of claims 1-21, wherein the Ab1 antibody or antibody fragment contains an Fc region that has been modified to alter effector function, half-life, proteolysis, and/or glycosylation.

23. The method of any of claims 1-22, wherein the Ab1 antibody or antibody fragment is a human, humanized, single chain, or chimeric antibody.

24. The method of any of claims 1-23, wherein the Ab1 antibody or antibody fragment is comprising Fab, Fab', F(ab')2, Fv, or scFv.

25. The method of any of claims 1-24, wherein said Ab1 antibody or antibody fragment further comprises a human Fc.

26. The method of claim 25, wherein said human Fc is derived from IgG1, IgG2, IgG3, IgG4, IgG5, IgG6, IgG7, IgG8, IgG9, IgG10, IgG11, IgG12, IgG13, IgG14, IgG15, IgG16, IgG17, IgG18 or IgG19.
27. The method of any of claims 1-26, wherein the one or more activity associated with IL-6 is an in vivo activity comprising:

- decreased serum albumin;
- elevated C-reactive protein ("CRP");
- fatigue; fever;
- anorexia (loss of appetite);
- weight loss;
- cachexia; weakness;
- decreased Glasgow Prognostic Score ("GPS");
- elevated serum D-dimer;
- abnormal coagulation profile; or any combination thereof.

28. The method of any of claims 1-26, wherein one or more of the one or more activity associated with IL-6 is an in vitro activity comprising:

- stimulation of proliferation of T1165 cells;
- binding of IL-6 to IL-6R;
- activation (dimerization) of the gp130 signal-transducing glycoprotein;
- formation of IL-6/IL-6R/gp130 multimers;
- stimulation of haptoglobin production by HepG2 cells modified to express human IL-6 receptor; or any combination thereof.

29. The method of any of claims 1-28 wherein the Ab1 antibody or antibody fragment is expressed from a recombinant cell.

30. The method of claim 29 wherein the cell is selected from a mammalian, yeast, bacterial, and insect cell.

31. The method of claim 30 wherein the cell is a yeast cell.

32. The method of claim 31 wherein the cell is a diploidal yeast cell.

33. The method of claim 31 wherein the yeast cell is a Pichia yeast.

34. The method of any of claims 1-33 wherein the disease or condition associated with IL-6 is comprising: cancer; a disease or condition associated with hypercoagulation; a disease or condition associated with elevated serum CRP; a disease or condition associated with hypoalbuminemia; an inflammatory disorder; a viral disorder; a wasting syndrome; an autoimmune disorder; or any combination thereof.

35. The method of any of claims 1-33 wherein the disease or condition associated with IL-6 is comprising: general fatigue, exercise-induced fatigue, cancer-related fatigue, inflammatory disease-related fatigue, chronic fatigue syndrome, cancer-related cachexia, cardiac-related cachexia, respiratory-related cachexia, renal-related cachexia, age-related cachexia, rheumatoid arthritis, systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis, psoriasis, psoriatic arthropathy, ankylosing spondylitis, inflammatory bowel disease (IBD), polymyalgia rheumatica, giant cell arteritis, autoimmune vasculitis,
graft versus host disease (GVHD), Sjogren’s syndrome, adult onset Still’s disease, rheumatoid arthritis, systemic juvenile idiopathic arthritis, osteoarthritis, osteoporosis, Paget’s disease of bone, osteoarthritis, multiple myeloma, Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, prostate cancer, leukemia, renal cell cancer, multicentric Castleman’s disease, ovarian cancer, drug resistance in cancer chemotherapy, cancer chemotherapy toxicity, ischemic heart disease, atherosclerosis, obesity, diabetes, asthma, multiple sclerosis, Alzheimer’s disease, cerebrovascular disease, fever, acute phase response, allergies, anemia, anemia of inflammation (anemia of chronic disease), hypertension, depression, depression associated with a chronic illness, thrombosis, thrombocytosis, acute heart failure, metabolic syndrome, miscarriage, obesity, chronic prostatitis, glomerulonephritis, pelvic inflammatory disease, reperfusion injury, transplant rejection, graft versus host disease (GVHD), cytokine storm, avian influenza, H1N1 influenza, porcine influenza, H5N1 influenza, smallpox, pandemic influenza, adult respiratory distress syndrome (ARDS), severe acute respiratory syndrome (SARS), sepsis, or systemic inflammatory response syndrome (SIRS).

36. The method of claim 34 wherein the disease or condition associated with hypercoagulation is comprising: cancer, acute venous thrombosis, pulmonary embolism, thrombosis during pregnancy, hemorrhagic skin necrosis, acute or chronic disseminated intravascular coagulation (DIC), clot formation from surgery, long bed rest, long periods of immobilization, venous thrombosis, fulminant meningococcemia, acute thrombotic stroke, acute coronary occlusion, acute peripheral arterial occlusion, massive pulmonary embolism, axillary vein thrombosis, massive iliofemoral vein thrombosis, occluded arterial cannulae, occluded venous cannulae, cardiomyopathy, venooclusive disease of the liver, hypotension, decreased cardiac output, decreased vascular resistance, pulmonary hypertension, diminished lung compliance, leukopenia, thrombocytopenia, heparin-induced thrombocytopenia (HIT), heparin-induced thrombocytopenia and thrombosis (HITT), atrial fibrillation, implantation of a prosthetic heart valve, genetic susceptibility to thrombosis, factor V Leiden, prothrombin gene mutation, methylenetetrahydrofolate reductase (MTHFR) polymorphism, platelet-receptor polymorphism, trauma, fractures, burns, or any combination thereof.

37. The method of claim 34 wherein the disease or condition associated with elevated serum CRP is comprising: chronic inflammatory diseases, rheumatoid arthritis, juvenile rheumatoid arthritis, psoriasis, psoriatic arthropathy, ankylosing spondylitis, systemic lupus erythematosus, Crohn’s disease, ulcerative colitis, pemphigus, dermatomyositis, polymyositis, polymyalgia rheumatica, giant cell arteritis, vasculitis, polyarteritis nodosa, Wegener’s
granulomatosis, Kawasaki disease, isolated CNS vasculitis, Churg-Strauss arteritis, microscopic polyarteritis, microscopic polyangiitis, Henoch-Schonlein purpura, essential cryoglobulinemic vasculitis, rheumatoid vasculitis, cryoglobulinemia, relapsing polychondritis, Behcet's disease, Takayasu's arteritis, ischemic heart disease, stroke, multiple sclerosis, sepsis, vasculitis secondary to viral infection, Buerger's Disease, cancer, advanced cancer, Osteoarthritis, systemic sclerosis, CREST syndrome, Reiter's disease, Paget's disease of bone, Sjogren's syndrome, diabetes type 1, diabetes type 2, familial Mediterranean fever, autoimmune thrombocytopenia, autoimmune hemolytic anemia, autoimmune thyroid diseases, pernicious anemia, vitiligo, alopecia areata, primary biliary cirrhosis, autoimmune chronic active hepatitis, alcoholic cirrhosis, viral hepatitis, hepatitis B, hepatitis C, other organ specific autoimmune diseases, burns, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, allergic asthma, other allergic conditions or any combination thereof.

38. The method of **claim 34** wherein the disease or condition associated with hypoalbuminemia is comprising: cancer, advanced cancer, rheumatoid arthritis, AIDS, heart disease, liver disease, dehydration, malnutrition, lead exposure, malaria, respiratory disease, old age, hypothyroidism, tuberculosis, hypopituitarism, neurasthenia, hypernatremia, hyponatremia, renal disease, splenica, ankylosing spondylitis, failure to thrive (faltering growth), inflammatory bowel disease, celiac's disease, trauma, burns, or any combination thereof.

40. The method of claim 39, wherein the cancer is comprising: Colorectal Cancer, Non-Small Cell Lung Cancer, Cholangiocarcinoma, Mesothelioma, Castleman's disease, Renal Cell Carcinoma, or any combination thereof.

41. The method of any of claims 1-40 wherein prior to administration of the Ab1 antibody or antibody fragment the subject has exhibited or is at risk for developing one or more of the following symptoms:

 decreased serum albumin; elevated serum C-reactive protein ("CRP"); fatigue; fever; anorexia (loss of appetite); weight loss; cachexia; weakness; decreased Glasgow Prognostic Score ("GPS"); elevated serum D-dimer; abnormal coagulation profile; and any combination thereof.

42. The method of claim 41 wherein said symptom is a side-effect of another therapeutic agent administered to the subject prior to, concurrent with, or subsequent to administration of the Ab1 antibody or antibody fragment.

43. The method of any of claims 1-40 wherein the Ab1 antibody or antibody fragment is administered in a therapeutically effective amount for prevention or treatment of one or more symptom associated with elevated IL-6.

44. The method of claim 43 wherein the therapeutically effective amount is between about 0.1 and 20 mg/kg of body weight of recipient subject

45. The method of claim 41 further comprising monitoring the subject to assess said symptom subsequent to administration of the Ab1 antibody.

46. The method of claim 41 wherein said symptom is exhibited prior to Ab1 antibody or antibody fragment administration.
47. The method of claim 46 wherein said symptom is improved or restored to a normal condition within approximately 1-5 weeks of Ab1 antibody administration.

48. The method of claim 47 wherein said symptom thereafter remains improved for an entire period intervening two consecutive Ab1 antibody administrations.

49. The method of claim 41, wherein the subject’s coagulation profile is assessed by measurement of the subject’s serum level of one or more of D-dimer, Factor II, Factor V, Factor VIII, Factor IX, Factor XI, Factor XII, F/fibrin degradation products, thrombin-antithrombin III complex, fibrinogen, plasminogen, prothrombin, and von Willebrand factor.

50. The method of claim 41, wherein the subject’s coagulation profile is assessed by a functional measurement of clotting ability.

51. The method of claim 50, wherein the functional measurement of clotting ability is selected from prothrombin time (PT), prothrombin ratio (PR), international normalized ratio (INR), or any combination thereof.

52. The method of claim 41, further comprising: measuring the subject’s international normalized ratio (INR) prior to administration of the Ab1 antibody or antibody fragment, and administering to the subject the Ab1 antibody or antibody fragment if the subject’s INR is less than about 0.9.

53. The method of claim 41, further comprising: measuring the subject’s international normalized ratio (INR) prior to administration of the Ab1 antibody or antibody fragment, and administering to the subject the Ab1 antibody or antibody fragment if the subject’s INR is less than about 0.5.

54. The method of any of claims 52-53, wherein the subject’s INR is raised to greater than approximately 0.9 within 4 weeks of administering to the subject the Ab1 antibody or antibody fragment.

55. The method of claim 41, further comprising: measuring the subject’s serum D-dimer level prior to administration of the Ab1 antibody or antibody fragment, and administering the Ab1 antibody or antibody fragment if the subject’s serum D-dimer level is above the normal reference range.

56. The method of claim 55, wherein the subject’s serum D-dimer level is lowered to less than the upper limit of the normal reference range within 4 weeks of administering to the subject the Ab1 antibody or antibody fragment.
57. The method of claim 41 that results in a prolonged improvement in the subject’s coagulation profile.

58. The method of claim 41, wherein the subject’s coagulation profile is measurably improved within about 2 weeks of administration of the Ab1 antibody or antibody fragment.

59. The method of claim 58, wherein the subject’s coagulation profile remains measurably improved approximately 12 weeks after administering to the subject the Ab1 antibody or antibody fragment.

60. The method of claim 41, further comprising: measuring the subject’s body temperature prior to administration of the Ab1 antibody or antibody fragment, and administering the Ab1 antibody or antibody fragment if the subject’s body temperature is higher than about 38 °C.

61. The method of claim 41, further comprising: measuring the subject’s body weight prior to administration of the Ab1 antibody or antibody fragment, and administering the Ab1 antibody or antibody fragment if the subject’s weight has declined by approximately 5% or more within approximately 30 days, or if the subject’s lean body mass index is less than about 17 kg/m² (male subject) or less than about 14 kg/m² (female subject).

62. The method of claim 41, further comprising: measuring the subject’s muscular strength prior to administration of the Ab1 antibody or antibody fragment, and administering the Ab1 antibody or antibody fragment if the subject’s muscular strength has declined by greater than approximately 20% within approximately 30 days.

63. The method of claim 41, that results in a prolonged improvement in cachexia, weakness, fatigue, and/or fever in the subject.

64. The method of claim 41, wherein the subject’s body mass is raised by approximately 1 kilogram within approximately 4 weeks of administration of the Ab1 antibody or antibody fragment.

65. The method of claim 41, wherein the subject’s cachexia is measurably improved within about 4 weeks of Ab1 antibody or antibody fragment administration.

66. The method of claim 65, wherein the subject’s cachexia is assessed by measurement of the subject’s total body mass, lean body mass, lean body mass index, and/or appendicular lean body mass.
67. The method of claim 66, wherein the measurement of the subject's body mass discounts (subtracts) the estimated weight of the subject's tumor(s) and/or extravascular fluid collection(s).

68. The method of claim 66, wherein the subject's cachexia remains measurably improved approximately 8 weeks after Ab1 antibody or antibody fragment administration.

69. The method of claim 41, wherein the subject's weakness is measurably improved within about 2 weeks of Ab1 antibody or antibody fragment administration.

70. The method of claim 69, wherein the subject's weakness remains measurably improved approximately 12 weeks after Ab1 antibody or antibody fragment administration.

71. The method of claim 41, wherein the subject's fatigue is measurably improved within about 1 week of Ab1 antibody or antibody fragment administration.

72. The method of claim 71, wherein the subject's fatigue is measured by the FACIT-F FS test.

73. The method of claim 72, wherein the subject's FACIT-F FS score is improved by at least about 10 points.

74. The method of claim 71, wherein the subject's fatigue remains measurably improved approximately 12 weeks after anti-IL-6 antibody administration.

75. The method of claim 41, wherein the subject's fever is measurably improved within about 1 week of Ab1 antibody or antibody fragment administration.

76. The method of claim 75, wherein the subject's fever remains measurably improved approximately 12 weeks after Ab1 antibody or antibody fragment administration.

77. The method of claim 41, wherein said subject exhibits an elevated serum CRP level prior to administration of the Ab1 antibody or antibody fragment.

78. The method of claim 41 wherein said subject exhibits a reduced serum albumin level prior to administration of the Ab1 antibody or antibody fragment.

79. The method of claim 41, whereby the subject's Glasgow Prognostic Score (GPS) is improved.

80. The method of claim 41, further comprising: measuring the subject's serum CRP level prior to administration of the Ab1 antibody or antibody fragment, and administering the
Ab1 antibody or antibody fragment if the subject’s serum CRP level is at least approximately 5 mg/L.

81. The method of claim 41, wherein the subject’s serum CRP level is reduced to less than approximately 10 mg/L within 1 week of administration of the Ab1 antibody or antibody fragment.

82. The method of claim 41, wherein the subject’s serum CRP level is reduced to less than approximately 5 mg/L within 1 week of administration of the Ab1 antibody or antibody fragment.

83. The method of claim 41, wherein the subject’s serum CRP level is reduced to less than approximately 1 mg/L within 1 week of administration of the Ab1 antibody or antibody fragment.

84. The method of claim 41 that results in a prolonged reduction in serum CRP level of the subject.

85. The method of claim 81, wherein 14 days after Ab1 antibody or antibody fragment administration the subject’s serum CRP level remains less than approximately 10 mg/L.

86. The method of claim 81, wherein 21 days after Ab1 antibody or antibody fragment administration the subject’s serum CRP level remains less than approximately 10 mg/L.

87. The method of claim 81, wherein 28 days after Ab1 antibody or antibody fragment administration the subject’s serum CRP level remains less than approximately 10 mg/L.

88. The method of claim 81, wherein 35 days after Ab1 antibody or antibody fragment administration the subject’s serum CRP level remains less than approximately 10 mg/L.

89. The method of claim 81, wherein 42 days after Ab1 antibody or antibody fragment administration the subject’s serum CRP level remains less than approximately 10 mg/L.

90. The method of claim 81, wherein 49 days after Ab1 antibody or antibody fragment administration the subject’s serum CRP level remains less than approximately 10 mg/L.
91. The method of **claim 81**, wherein 56 days after Ab1 antibody or antibody fragment administration the subject’s serum CRP level remains less than approximately 10 mg/L.

92. The method of **claim 41**, further comprising: measuring the subject’s serum albumin level prior to administration of the Ab1 antibody or antibody fragment, and administering the Ab1 antibody or antibody fragment if the subject’s serum albumin level is less than approximately 35 g/L.

93. The method of **claim 92**, wherein the subject’s serum albumin level is increased to greater than approximately 35 g/L within about 5 weeks of administration of the Ab1 antibody or antibody fragment.

94. The method of **claim 41** that results in a prolonged increase in serum albumin level of the subject.

95. The method of **claim 94**, wherein 42 days after Ab1 antibody or antibody fragment administration the subject’s serum albumin level remains above 35 g/L.

96. The method of **claim 94**, wherein 49 days after Ab1 antibody or antibody fragment administration the subject’s serum albumin level remains above 35 g/L.

97. The method of **claim 94**, wherein 56 days after Ab1 antibody or antibody fragment administration the subject’s serum albumin level remains above 35 g/L.

98. The method of **claim 41**, wherein the subject’s serum albumin level is increased by about 5 g/L within approximately 5 weeks of administering the Ab1 antibody or antibody fragment.

99. The method of **claim 41** further comprising monitoring the subject to assess coagulation profile.

100. The method of **claim 41** wherein the subject has exhibited an elevated serum D-dimer level prior to treatment.

101. The method of **claim 41** wherein the subject has exhibited an elevated serum C-reactive protein (CRP) level prior to treatment.

102. The method of any of **claims 1-101** wherein the anti-IL-6 antibody or antibody fragment is administered to the subject with a frequency at most once per period of approximately four weeks.
103. The method of claim 102, wherein the anti-IL-6 antibody or antibody fragment is administered to the subject with a frequency at most once per period of approximately eight weeks.

104. The method of claim 103, wherein the anti-IL-6 antibody or antibody fragment is administered to the subject with a frequency at most once per period of approximately twelve weeks.

105. The method of claim 104, wherein the anti-IL-6 antibody or antibody fragment is administered to the subject with a frequency at most once per period of approximately sixteen weeks.

106. The method of any of claims 1-40, wherein the Ab1 antibody or antibody fragment is administered in a diagnostically effective amount for detection of IL-6 expressing disease sites.

107. The method of claim 106, wherein the Ab1 antibody or antibody fragment is directly or indirectly coupled to a radionuclide, fluorophore, or other detectable label that facilitates detection of the antibody at IL-6 expressing disease sites.

108. The method of claim 106, which is used to detect IL-6 expressing tumors or metastases.

109. The method of claim 106, which is used to detect the presence of sites of inflammation associated with IL-6 expressing cells.

110. The method of claim 106, wherein the results are used to facilitate design of an appropriate therapeutic regimen.

111. The method of claim 106, wherein said therapeutic regimen includes radiotherapy, chemotherapy or a combination thereof.

112. The method of any of claims 1-101, wherein the Ab1 antibody or antibody fragment is co-administered with another therapeutic agent comprising: chemotherapy agents, statins, cytokines, immunosuppressive agents, gene therapy agents, anti-coagulants, anti-cachexia agents, anti-weakness agent, anti-fatigue agent, anti-fever agent, anti-nausea agents, antiemetic agents, IL-6 antagonists, cytotoxic agents, analgesics, antipyretics, anti-inflammatory agents, antibiotics, antiviral agents, anti-cytokine agents, other therapeutic agents, or any combination thereof.
113. The method of claim 112, wherein the chemotherapy agent is comprising: VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcystabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids, vinblastine, vincristine, vindesine, vinorelbine, mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1 antagonists, interleukins, IL-12, IL-2, IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux™, Avastin™, Pertuzumab, anti-CD20 antibodies, Rituxan®, ocrelizumab, ofatumumab, DXL625, Herceptin®, or any combination thereof.

114. The method of claim 112, wherein the anti-coagulant is comprising: abciximab (ReoPro™), acenocoumarol, antithrombin III, argatroban, aspirin, bivalirudin (Angiomax™), clopidogrel, dabigatran, dabigatran etexilate (Pradaxa™/Pradax™), desirudin (Revasc™/Iprivask™), dipyridamole, eptifibatide (Integrilin™), fondaparinux, heparin, hirudin, idrarinix, lepirudin (Refludan™), low molecular weight heparin, melagatran, phenindione, phenprocoumon, ticlopidine, tirofiban (Aggrastat™), warfarin, ximelagatran, ximelagatran (Exanta™/Exarta™), or any combination thereof.

115. The method of claim 112, wherein the statin is comprising: atorvastatin, cerivastatin, fluvastatin, lovastatin, mevastatin, pitavastatin, pravastatin, rosvastatin, simvastatin, or any combination thereof.

116. The method of claim 112, wherein the another therapeutic agent is an antagonist of a factor comprising tumor necrosis factor-alpha, Interferon gamma, Interleukin 1 alpha, Interleukin 1 beta, Interleukin 6, proteolysis inducing factor, leukemia-inhibitory factor, or any combination thereof.

117. The method of claim 112, wherein the anti-cachexia agent is comprising: cannabis, dronabinol (Marinol™), nabilone (Cesamet), cannabidiol, cannabichromene, tetrahydrocannabinol, Sativex, megestrol acetate, or any combination thereof.

118. The method of claim 112, wherein the anti-nausea agent or antiemetic agent is comprising: 5-HT3 receptor antagonists, ajwain, alizapride, anticholinergics, antihistamines, aprepitant, benzodiazepines, cannabichromene, cannabidiol, cannabinoids, cannabis, casopitant, chlorpromazine, cyclizine, dexamethasone, dexamethasone, dimenhydrinate (Gravol™), diphenhydramine, dolasetron, domperidone, dopamine antagonists, doxylamine, dronabinol (Marinol™), droperidol, emetrol, ginger, granisetron, haloperidol, hydroxyzine,
hyoscine, lorazepam, meclizine, metoclopramide, midazolam, muscimol, nabilone (Cesamet),
nk1 receptor antagonists, ondansetron, palonosetron, peppermint, Phenergan,
prochlorperazine, Promacot, promethazine, Pentazine, propofol, sativex,
tetrahydrocannabinol, trimethobenzamide, tropisetron, nandrolone, stilbestrol, thalidomide,
lenalidomide, ghrelin agonists, myostatin antagonists, anti-myostatin antibodies, selective
androgen receptor modulators, selective estrogen receptor modulators, angiotensin II
antagonists, beta two adrenergic receptor agonists, beta three adrenergic receptor agonists, or
any combination thereof.

119. The method of claim 112, wherein the another therapeutic agent is comprising
tamoxifen, BCL-2 antagonists, estrogen, bisphosphonates, teriparatide, strontium ranelate,
sodium alendronate (Fosamax), risedronate (Actonel), raloxifene, ibandronate (Boniva),
Obatoclax, ABT-263, gossypol, gefitinib, epidermal growth factor receptor tyrosine kinase
inhibitors, erlotinib, epidermal growth factor receptor inhibitors, psoralens, trioxysalen,
methoxsalen, bergapten, retinoids, etretinate, acitretin, infliximab (Remicade®), adalimumab,
infliximab, etanercept, Zenapax™, Cyclosporine, Methotrexate, granulocyte-colony
stimulating factor, filgrastim, lenograstim, Neupogen, Neulasta, 2-Arylpropionic acids,
Aceclofenac, Acemetacin, Acetylsalicylic acid (Aspirin), Alclofenac, Alminoprofen,
Amoxicillin, Ampirone, Arylalkanoic acids, Azapropazone, Benorylate/Benorilate,
Benoxaprofen, Bromfenac, Carprofen, Celecoxib, Choline magnesium salicylate, Clofezone,
COX-2 inhibitors, Dexibuprofen, Dexketoprofen, Diclofenac, Diflunisal, Droxidone,
Ethenzamide, Etodolac, Etoricoxib, Faislamine, fenamic acids, Fenbufen, Fenoprofen,
Flufenamic acid, Flunoxaprofen, Flurbiprofen, Ibuprofen, Ibuproxacon, Indometacine,
Indoprofen, Kebuzone, Ketoprofen, Ketorolac, Lornoxicam, Loxoprofen, Lumiracoxib,
Magnesium salicylate, Meclofenamic acid, Mefenamic acid, Meloxicam, Metamizole,
Methyl salicylate, Mofebutazone, Nabumetone, Naproxen, N-Arylanthranilic acids,
Oxametacin, Oxaprozin, Oxicams, Oxyphenbutazone, Parecoxib, Phenazone,
Phenylbutazone, Phenylbutazone, Piroxicam, Pirprofen, profens, Proglumetacain, Pyrazolidine
derivatives, Rofecoxib, Salicyl salicylate, Salicylamide, Salicylates, Sulfinpyrazone,
Sulindac, Suprofen, Tenoxicam, Tiaprofenic acid, Tolafenamic acid, Tolmetin, and
Valdecoxib. Antibiotics include Amikacin, Aminoglycosides, Amoxicillin, Ampicillin,
Ansamycins, Arsenoamine, Azithromycin, Azlocillin, Aztreonam, Bacitracin,
Carbacephem, Carbapenems, Carbencilllin, Cefaclor, Cefadroxil, Cefalexin, Cefalothin,
Cefalotin, Cefamandole, Cefazolin, Cefdinir, Cefditoren, Cefepime, Cefixime, Cefoperazone,
Cefotaxime, Cefoxitin, Cefpodoxime, Cefprozil, Ceftazidime, Ceftibuten, Ceftizoxime, Ceftobiprole, Ceftriaxone, Cefuroxime, Cephalosporins, Chloramphenicol, Cilastatin, Ciprofloxacin, Clarithromycin, Clindamycin, Cloxacillin, Colistin, Co-trimoxazole, Dalfopristin, Demeclocycline, Dicloxacillin, Dirithromycin, Doripenem, Doxycycline, Enoxacin, Ertapenem, Erythromycin, Ethambutol, Fluclaxacillin, Fosfomycin, Furazolidone, Fusidic acid, Gatifloxacin, Geldanamycin, Gentamicin, Glycopeptides, Herbimycin, Imipenem, Isoniazid, Kanamycin, Levofloxacin, Lincomycin, Linezolid, Lomefloxacin, Loracarbef, Macrolides, Mafenide, Meropenem, Meticillin, Metronidazole, Mezlocillin, Minocycline, Monobactams, Moxifloxacin, Mupirocin, Nafcillin, Neomycin, Netilmicin, Nitrofurantoin, Norfloxacin, Ofloxacin, Oxacillin, Oxytetracycline, Paromomycin, Penicillin, Penicillins, Piperacillin, Platensimycin, Polymyxin B, Polypeptides, Prontosil, Pyrazinamide, Quinolones, Quinupristin, Rifampicin, Rifampin, Roxithromycin, Spectinomycin, Streptomycin, Sulfacetamide, Sulfamethizole, Sulfanilamide, Sulfadiazine, Sulfisoxazole, Sulfonamides, Teicoplanin, Telithromycin, Tetracycline, Tetracyclines, Ticarcillin, Tinidazole, Tobramycin, Trimethoprim, Trimethoprim-Sulfamethoxazole, Troleandomycin, Trovafloxacin, and Vancomycin. Active agents also include Aldosterone, Beclometasone, Betamethasone, Corticosteroids, Cortisol, Cortisone acetate, Deoxycorticosterone acetate, Dexamethasone, Fludrocortisone acetate, Glucocorticoids, Hydrocortisone, Methylprednisolone, Prednisolone, Prednisone, Steroids, and Triamcinolone. Antiviral agents include abacavir, aciclovir, acyclovir, adefovir, amantadine, amprenavir, an antiretroviral fixed dose combination, an antiretroviral synergistic enhancer, arbidol, atazanavir, atripla, brivudine, cidofovir, combivir, darunavir, delavirdine, didanosine, docosanol, edoxudine, efavirenz, emtricitabine, enfuvirtide, entecavir, entry inhibitors, famciclovir, fomivirsen, fosamprenavir, foscarnet, fosfonet, fusion inhibitor, ganciclovir, gardoasil, ibacitabine, idoxuridine, imiquimod, imunovir, indinavir, inosine, integrase inhibitor, interferon, interferon type I, interferon type II, interferon type III, lamivudine, lopinavir, loviride, maraviroc, MK-0518, moroxydine, nelfinavir, nevirapine, nelfinavir, nucleoside analogues, oseltamivir, penciclovir, peramivir, pleconaril, podophyllotoxin, protease inhibitor, reverse transcriptase inhibitor, ribavirin, rimantadine, ritonavir, saquinavir, stavudine, tenofovir, tenofovir disoproxil, tipranavir, trifluridine, trizivir, tromantadine, truvada, valaciclovir, valganciclovir, vicriviroc, vidarabine, viramidine, zalcitabine, zanamivir, zidovudine, or any combination thereof.
120. The method of **claim 112**, wherein the cytotoxic agent, chemotherapeutic agent, or immunosuppressive agent is comprising: 1-dehydrotestosterone, 1-methyl nitrosourea, 5-fluorouracil, 6-mercaptopurine, 6-mercaptopurine, 6-thioguanine, Abatacept, abraxane, acitretin, aclarubicin, Actinium-225 (225Ac), actinomycin, Adalimumab, adenosine deaminase inhibitors, Afelimomab, Aflibercept, Aftuzumab, Alefacept, alitretinoin, alkyl sulfonates, alkylation agents, altretamine, alvocidib, aminolevulinic acid/methyl aminolevulinate, aminopterin, aminopterin, amrubin, amscrine, amscrine, anagrelide, Anakinra, anthracenediones, anthracyclines, anthracyclines, anthramycin (AMC); antimitotic agents, antibiotics, anti-CD20 antibodies, antifolates, Anti-lymphocyte globulin, Antimetabolites, Anti-thymocyte globulin, arsenic trioxide, Aselizumab, asparaginase, asparagine depleters, Astatine-211 (211At), Atlizumab, Atoxorlinumab, atrazentan, Avastin™, azacitidine, Azathioprine, azelastine, aziridines, Basiliximab, BAYX antibodies, Beclatecept, Belimumab, belotecan, bendamustine, Berrilimumab, bexarotene, bisantrene, Bismuth -213 (213Bi), Bismuth-212 (212Bi), bleomycin, bleomycin, bleomycin, BLyS antibodies, bortezomib, busulfan, busulfan, Calcineurin inhibitors, calicheamicin, camtothecin, camptothecins, capecitabine, carboplatin (paraplatin), carboquone, carminomycin, carmofur, carmustine, Carmustine (BSNU), CAT antibodies, CD11a antibodies, CD147/Basin antibodies, CD154 antibodies, CD18 antibodies, CD20 antibodies, CD23 antibodies, CD3 antibodies, CD4 antibodies, CD40 antibodies, CD62L/L-selectin antibodies, CD80 antibodies, CDK inhibitors, Cedelizumab, celecoxib, Cetolizumab pegol, chlorambucil, chlorambucils, Ciclosporin, cis-dichlorodiamine platinum (II) (DDP) cisplatin, cladribine, Clenoliximab, clofarabine, colchicin, Complement component 5 antibodies, Copper-67 (67Cu), corticosteroids, CTLA-4 antibodies, CTLA-4 fusion proteins, Cyclophilin inhibitors, cyclophosphamides, cyclophosphamide, cytarabine, cytarabine, cytochalasin B, cytotoxic ribonucleases, dacarbazine, Daclizumab, dactinomycin, dactinomycin (actinomycin D), daunorubicin, daunorubicin, daunorubicin (formerly daunomycin), decitabine, Deforolimus, demecolcine, detorubicin, dibromomannitol, diethylcarbamazine, dihydrofolate reductase inhibitors, dihydroxy anthracin dione, diphertheria toxin, DNA polymerase inhibitors, docetaxel, Dorlimomab aritox, Dorlixizumab, doxorubicin (adriamycin), DXL625, Eculizumab, Efalizumab, efaproxiral, EGFR antagonists, elesclomol, elsamitrucin, Elsilimomab, emetine, endothelin receptor antagonists, epipodophyllotoxins, epirubicin, epothilones, Erbitux™, Erlizumab, estramustine, Etanercept, ethidium bromide, etoglucid, etoposide, etoposide phosphate, Everolimus, Faralimomab, farnesyltransferase inhibitors, FKBP inhibitors, floxuridine, fludarabine, fluorouracil, Fontolizumab, fotemustine,
Galiximab, Gallium-67 (\(^{67}\)Ga), Gantenerumab, Gavitomomab, gemcitabine, glucocorticoids, Golimumab, Gomiliximab, gramicidin D, Gusperimus, Herceptin\(^{\circledast}\), hydrazines, hydroxyurea, hypomethylating agents, idarubicin, Iadarubine, ifosfamide, IL-1 antagonists, IL-1 receptor antagonists, IL-12, IL-12 antibodies, IL-12R antagonists, IL-13 antibodies, IL-2, IL-2 inhibitors, IL-2 receptor/CD25 antibodies, IL-6 antibodies, imatinib mesylate, Immunoglobulin E antibodies, IMP dehydrogenase inhibitors, Infliximab, Inolimomab, Integrin antibodies, Interferon antibodies, interferons, Interleukin 5 antibodies, Interleukin-6 receptor antibodies, interleukins, Iodine-125 (\(^{125}\)I), Iodine-131 (\(^{131}\)I), Ipilimumab, irinotecan, ixabepilone, Keliximab, larotaxel, Lead-212 (\(^{212}\)Pb), Lebrilumab, Leflunomide, Lenalidomide, Lerdelimumab, leucovorine, LFA-1 antibodies, lidocaine, lipoxygenase inhibitors, lomustine (CCNU), lonidamine, lucanthone, Lumiliximab, Lutetium-177 (\(^{177}\)Lu), Macrolides, mannosulfan, Maslimomab, masoprolcol, mechlorethamine, melphalan, Mepolizumab, mercaptopurine, Metelimumab, Methotrexate, microtubule assembly inhibitors, microtubule stability enhancers, mitramycin, mitobromitol, mitoguazone, mitomycin, mitomycin C, mitotane, mitoxantrone, Morolimumab, mTOR inhibitors, Muromonab-CD3, mustines, Mycophenolic acid, myotane (O,P\(^{\prime}\)-(DDD)), Natalizumab, nedaplatin, Nerelimomab, nimustine, nitrogen mustards, nitrosoureas, nordihydroguaiaretic acid, oblimersen, ocrelizumab, Ocrelizumab, Odulimomab, ofatumumab, olaparib, Omalizumab, ortataxel, Otelixizumab, oxaliplatin, oxaliplatin, paclitaxel (taxol), Pascolizumab, PDGF antagonists, pegasparagse, pemtrexed, Pentostatin, Pertuzumab, Pexelizumab, phosphodiesterase inhibitors, Phosphorus-32 (\(^{32}\)P), Pimecrolimus Abetimus, pirarubicin, pixantrone, platins, plicamycin, poly ADP ribose polymerase inhibitors, porfimer sodium, porphyrin derivatives, prednimustine, procaine, procarbazine, procarbazine, propranolol, proteasome inhibitors, pseudomonas exotoxin, \textit{Pseudomonas} toxin, purine synthesis inhibitors, puromycin, pyrimidine synthesis inhibitors, radionuclides, radiotherapy, raltitrexed, ranimustine, Reslizumab, retinoid X receptor agonists, retinoids, Rhenium-186 (\(^{186}\)Re), Rhenium-188 (\(^{188}\)Re), ribonucleotide reductase inhibitors, ricin, Rilonacept, Rituxan\(^{\circledast}\), Rovelizumab, rubitecan, Ruplizumab, Samarium-153 (\(^{153}\)Sm), satraplatin, Scandium-47 (\(^{47}\)Sc), selective androgen receptor modulators, selective estrogen receptor modulators, seliciclib, semustine, sex hormone antagonists, Sipilizumab, Sirolimus, steroid aromatase inhibitors, steroids, streptozocin, streptozotocin, Tacrolimus, talaporfin, Talizumab, taxanes, taxols, tegafur, Telimomab arixox, temoporfin, temozolomide, temsirolimus, Temsirolimus, Teneliximab, teniposide, Teplizumab, Teriflunomide, tesetaxel, testolactone, tetracaine, Thalidomide, thioepa chlorambucil, thiopurines thioguanine,
ThioTEPA, thymidylate synthase inhibitors, tiazofurin, tipifarnib, T-lymphocyte antibodies, TNF antagonists, TNF antibodies, TNF fusion proteins, TNF receptor fusion proteins, TNF-alpha inhibitors, Tocilizumab, topoisomerase inhibitors, topotecan, Toralizumab, trabectedin, Tremelimumab, treosulfan, tretinoin, triazenes, triaziquone, triethylenthiemelamine, triplatin tetranitrate, trofosfamide, tumor antigen specific monoclonal antibodies, tyrosine kinase inhibitors, uramustine, Ustekinumab, valrubicin, Valrubicine, Vapaliximab, VEGF antagonists, Vepalimomab, verteporfin, vinblastine, vinca alkaloids, vincristine, vindesine, vinflunine, vinorelbine, Visilizumab, vorinostat, Yttrium-88 (^{88}Y), Yttrium-90 (^{90}Y), Zanolimumab, zileuton, Ziralimumab, Zolimomab aritox, zorubicin, Zotarolimus, or any combination thereof.

121. The method of claim 112, wherein another active agent is one or more agonist, antagonist, or modulator of a factor comprising: TNF-alpha, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-18, IFN-alpha, IFN-gamma, BAFF, CXCL13, IP-10, VEGF, EPO, EGF, HRG, Hepatocyte Growth Factor (HGF), Hepcidin, or any combination thereof.

122. The method of claim 112, wherein the IL-6 antagonist is comprising: anti-IL-6 antibodies or fragments thereof, antisense nucleic acids, polypeptides, small molecules, or any combination thereof.

123. The method of claim 122, wherein the antisense nucleic acid comprises at least approximately 10 nucleotides of a sequence encoding IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, or SYK.

124. The method of claim 122, wherein the antisense nucleic acid comprises DNA, RNA, peptide nucleic acid, locked nucleic acid, morpholino (phosphorodiamidate morpholino oligo), glycerol nucleic acid, threose nucleic acid, or any combination thereof.

125. The method of claim 122, wherein the anti-IL-6 antibody or fragment thereof is comprising: Ab1, Ab2, Ab3, Ab4, Ab5, Ab6, Ab7, Ab8, Ab9, Ab10, Ab11, Ab12, Ab13, Ab14, Ab15, Ab16, Ab17, Ab18, Ab19, Ab20, Ab21, Ab22, Ab23, Ab24, Ab25, Ab26, Ab27, Ab28, Ab29, Ab30, Ab31, Ab32, Ab33, Ab34, Ab35, Ab36, an IL-6 binding fragment of any of the foregoing, a variant of any of the foregoing, or any combination thereof.

126. The method of claim 122, wherein the IL-6 antagonist polypeptide comprises a fragment of a polypeptide having a sequence selected from the group consisting IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, and SYK.
127. The method of claim 126, wherein the fragment is at least 40 amino acids in length.

128. The method of claim 122, wherein the IL-6 antagonist comprises a soluble IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, SYK, or any combination thereof.

129. The method of claim 112, wherein the IL-6 antagonist is coupled to a half-life increasing moiety.

130. The method of any of claims 112-129, wherein the Ab1 antibody or antibody fragment is directly or indirectly coupled to one or more of said another therapeutic agent.

131. The method of any of claims 1-101, wherein the Ab1 antibody or antibody fragment is directly or indirectly coupled to a detectable label.

132. The method of claim 131 wherein the detectable label is comprising: fluorescent dyes, bioluminescent materials, radioactive materials, chemiluminescent moieties, streptavidin, avidin, biotin, radioactive materials, enzymes, substrates, horseradish peroxidase, acetylcholinesterase, alkaline phosphatase, beta-galactosidase, luciferase, rhodamine, fluorescein, fluorescein isothiocyanate, umbelliferone, dichlorotriazinylamine, phycoerythrin, dansyl chloride, luminol, luciferin, aequorin, Iodine 125 (125I), Carbon 14 (14C), Sulfur 35 (35S), Tritium (3H), Phosphorus 32 (32P), or any combination thereof.

133. The method of any of claims 1-30 or claims 34-128, wherein the Ab1 antibody is administered to the subject in the form of one or more nucleic acids that encode the Ab1 antibody.

134. The method of claim 133 wherein the one or more nucleic acids are introduced into the recipient as a virus, liposome, cationic lipid complex, cationic polymer complex, or nanoparticle complex.

135. The method of claim 133 wherein the one or more nucleic acids are comprised of yeast or human preferred codons.

136. The method of claim 133 wherein the one or more nucleic acids are comprised in a vector.

137. The method of claim 136 wherein the vector is a plasmid or recombinant viral vector.
138. The method of claim 133 wherein the one or more nucleic acids comprise the heavy and light chain polynucleotide sequences of SEQ ID NO: 723 and SEQ ID NO: 700; SEQ ID NO: 701 and SEQ ID NO: 703; SEQ ID NO: 705 and SEQ ID NO: 707; SEQ ID NO: 720 and SEQ ID NO: 724; and SEQ ID NO: 10 and SEQ ID NO: 11.

139. The method of any of the foregoing claims, wherein the Ab1 antibody comprises:

(a) light and heavy chain polypeptides comprising: SEQ ID NO: 709 and SEQ ID NO: 657; SEQ ID NO: 702 and SEQ ID NO: 704; SEQ ID NO: 706 and SEQ ID NO: 708; SEQ ID NO: 20 and SEQ ID NO: 19; or SEQ ID NO: 2 and SEQ ID NO: 3;

(b) a polypeptide having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to any of the polypeptides of (a);

(c) a polynucleotide that hybridizes under moderately or highly stringent hybridization conditions to any of the heavy and light chain polynucleotide sequences of SEQ ID NO: 723 and SEQ ID NO: 700; SEQ ID NO: 701 and SEQ ID NO: 703; SEQ ID NO: 705 and SEQ ID NO: 707; SEQ ID NO: 720 and SEQ ID NO: 724; and SEQ ID NO: 10 and SEQ ID NO: 11;

(d) a polynucleotide having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to any of the heavy and light chain polynucleotide sequences of SEQ ID NO: 723 and SEQ ID NO: 700; SEQ ID NO: 701 and SEQ ID NO: 703; SEQ ID NO: 705 and SEQ ID NO: 707; SEQ ID NO: 720 and SEQ ID NO: 724; and SEQ ID NO: 10 and SEQ ID NO: 11;

(e) a polypeptide encoded by any of the polynucleotides of (c) or (d).

140. A therapeutic composition comprising an Ab1 antibody and another therapeutic compound,

wherein the Ab1 antibody comprises:

a light chain polypeptide comprising: a polypeptide having at least 75% identity to SEQ ID NO: 709, a polypeptide encoded by a polynucleotide that has at least 75% identity to the polynucleotide of SEQ ID NO: 723, a polypeptide encoded by a polynucleotide that hybridizes under medium stringency conditions to a polynucleotide having the sequence of the reverse complement of SEQ ID NO: 723, or a polypeptide encoded by a polynucleotide that hybridizes under high stringency conditions to a polynucleotide having the sequence of the reverse complement of SEQ ID NO: 723; and
a heavy chain polypeptide comprising: a polypeptide having at least 75% identity to
SEQ ID NO: 657, a polypeptide encoded by a polynucleotide that has at least 75% identity to
the polynucleotide of SEQ ID NO: 700, a polypeptide encoded by a polynucleotide that
hybridizes under medium stringency conditions to a polynucleotide having the sequence of
the reverse complement of SEQ ID NO: 700, or a polypeptide encoded by a polynucleotide
that hybridizes under high stringency conditions to a polynucleotide having the sequence of
the reverse complement of SEQ ID NO: 700;

wherein the Ab1 antibody or antibody fragment specifically binds to IL-6 and
antagonizes one or more activity associated with IL-6;

and wherein the another therapeutic compound comprising: chemotherapy agents,
statins, cytokines, gene therapy agents, anti-coagulants, anti-cachexia agents, anti-weakness
agent, anti-fatigue agent, anti-fever agent, anti-nausea agents, antiemetic agents, IL-6
antagonist, a cytotoxic agent, another therapeutic compound, or any combination thereof.

141. The composition of **claim 140**, wherein the light chain polypeptide includes one
or more substitutions within the light chain framework region(s) relative to the light chain
framework region sequences of SEQ ID NO: 709.

142. The composition of **claim 141**, wherein one or more of the substitutions within the
light chain framework region(s) is substitution with the sequence of a corresponding position
of a donor sequence, wherein the donor sequence is comprising: SEQ ID NO: 2; a human,
rabbit, or a non-human primate light chain sequence; and a light chain of any of Ab2, Ab3,
Ab4, Ab5, Ab6, Ab7, Ab8, Ab9, Ab10, Ab11, Ab12, Ab13, Ab14, Ab15, Ab16, Ab17, Ab18,
Ab19, Ab20, Ab21, Ab22, Ab23, Ab24, Ab25, Ab26, Ab27, Ab28, Ab29, Ab30, Ab31,
Ab32, Ab33, Ab34, Ab35, or Ab36,

wherein the substitution results in replacement, insertion, and/or deletion of one or
more amino acids, and

wherein the corresponding position is determined by sequence alignment between the
framework region of SEQ ID NO: 709 and the donor sequence.

143. The composition of **claim 142**, wherein the heavy chain polypeptide includes one
or more substitutions within the heavy chain framework region(s) relative to the heavy chain
framework region sequences of SEQ ID NO: 657.
144. The composition of **claim 143**, wherein one or more of the substitutions within the heavy chain framework region(s) is substitution with the sequence of a corresponding position of a donor sequence, wherein the donor sequence is comprising: SEQ ID NO: 3; a human, rabbit, or a non-human primate heavy chain sequence; and a heavy chain of any of Ab2, Ab3, Ab4, Ab5, Ab6, Ab7, Ab8, Ab9, Ab10, Ab11, Ab12, Ab13, Ab14, Ab15, Ab16, Ab17, Ab18, Ab19, Ab20, Ab21, Ab22, Ab23, Ab24, Ab25, Ab26, Ab27, Ab28, Ab29, Ab30, Ab31, Ab32, Ab33, Ab34, Ab35, or Ab36,

wherein the substitution results in replacement, insertion, and/or deletion of one or more amino acids, and

wherein the corresponding position is determined by sequence alignment between the framework region of SEQ ID NO: 657 and the donor sequence.

145. The composition of any of **claims 140-144**, wherein the light chain polypeptide comprises one or more Ab1 light chain CDR polypeptide comprising:

a light chain CDR1 having at least 72.7% identity (identical to at least 8 out of 11 residues) to SEQ ID NO: 4;

a light chain CDR2 having at least 85.7% identity (identical to at least 6 out of 7 residues) to SEQ ID NO: 5;

a light chain CDR3 having at least 50% identity (identical to at least 6 out of 12 residues) to SEQ ID NO: 6;

a light chain CDR1 having at least 90.9% similarity (similar to at least 10 out of 11 residues) to SEQ ID NO: 4;

a light chain CDR2 having at least 100% similarity (similar to at least 7 out of 7 residues) to SEQ ID NO: 5; or

a light chain CDR3 having at least 66.6% similarity (similar to at least 8 out of 12 residues) to SEQ ID NO: 6;

and wherein the heavy chain polypeptide comprises one or more Ab1 heavy chain CDR polypeptide comprising:

a heavy chain CDR1 having at least 80% identity (identical to at least 4 out of 5 residues) to SEQ ID NO: 7;
a heavy chain CDR2 having at least 50% identity (identical to at least 8 out of 16 residues) to SEQ ID NO: 120;

a heavy chain CDR3 having at least 33.3% identity (identical to at least 4 out of 12 residues) to SEQ ID NO: 9;

a heavy chain CDR1 having at least 100% similarity (similar to at least 5 out of 5 residues) to SEQ ID NO: 7;

a heavy chain CDR2 having at least 56.2% similarity (similar to at least 9 out of 16 residues) to SEQ ID NO: 120; or

a heavy chain CDR3 having at least 50% similarity (similar to at least 6 out of 12 residues) to SEQ ID NO: 9.

146. The composition of any of claims 140-144, wherein the light chain polypeptide comprises one or more Ab1 light chain CDR polypeptide comprising:

a light chain CDR1 having at least 81.8% identity (identical to at least 9 out of 11 residues) to SEQ ID NO: 4;

a light chain CDR2 having at least 71.4% identity (identical to at least 5 out of 7 residues) to SEQ ID NO: 5; or

a light chain CDR3 having at least 83.3% identity (identical to at least 10 out of 12 residues) to SEQ ID NO: 6;

and wherein the heavy chain polypeptide comprises one or more Ab1 heavy chain CDR polypeptide comprising:

a heavy chain CDR1 having at least 60% identity (identical to at least 3 out of 5 residues) to SEQ ID NO: 7;

a heavy chain CDR2 having at least 87.5% identity (identical to at least 14 out of 16 residues) to SEQ ID NO: 120; or

a heavy chain CDR3 having at least 83.3% identity (identical to at least 10 out of 12 residues) to SEQ ID NO: 9.

147. The composition of any of claims 145-146, wherein the Ab1 antibody or antibody fragment comprises at least two of said light chain CDR polypeptides and at least two of said heavy chain CDR polypeptides.
A therapeutic composition comprising an Ab1 antibody and another therapeutic compound,

wherein the Ab1 antibody comprises:

two or more Ab1 light chain CDR polypeptides comprising:

a light chain CDR1 having at least 72.7% identity (identical to at least 8 out of 11 residues) to SEQ ID NO: 4;

a light chain CDR2 having at least 85.7% identity (identical to at least 6 out of 7 residues) to SEQ ID NO: 5; or

a light chain CDR3 having at least 50% identity (identical to at least 6 out of 12 residues) to SEQ ID NO: 6;

and two or more Ab1 heavy chain CDR polypeptide comprising:

a heavy chain CDR1 having at least 80% identity (identical to at least 4 out of 5 residues) to SEQ ID NO: 7;

a heavy chain CDR2 having at least 50% identity (identical to at least 8 out of 16 residues) to SEQ ID NO: 120; or

a heavy chain CDR3 having at least 33.3% identity (identical to at least 4 out of 12 residues) to SEQ ID NO: 9;

wherein the Ab1 antibody or antibody fragment specifically binds to IL-6 and antagonizes one or more activity associated with IL-6;

and wherein the another therapeutic compound comprising: chemotherapy agents, statins, cytokines, gene therapy agents, anti-coagulants, anti-cachexia agents, anti-weakness agent, anti-fatigue agent, anti-fever agent, anti-nausea agents, antiemetic agents, IL-6 antagonist, a cytotoxic agent, another therapeutic compound, or any combination thereof.

A therapeutic composition comprising an Ab1 antibody and another therapeutic compound,

wherein the Ab1 antibody comprises:

a light chain CDR1 having at least 90.9% similarity (similar to at least 10 out of 11 residues) to SEQ ID NO: 4;
a light chain CDR2 having at least 100% similarity (similar to at least 7 out of 7 residues) to SEQ ID NO: 5; and

a light chain CDR3 having at least 66.6% similarity (similar to at least 8 out of 12 residues) to SEQ ID NO: 6;

and two or more Ab1 heavy chain CDR polypeptide comprising:

a heavy chain CDR1 having at least 100% similarity (similar to at least 5 out of 5 residues) to SEQ ID NO: 7;

a heavy chain CDR2 having at least 56.2% similarity (similar to at least 9 out of 16 residues) to SEQ ID NO: 120; or

a heavy chain CDR3 having at least 50% similarity (similar to at least 6 out of 12 residues) to SEQ ID NO: 9;

wherein the Ab1 antibody or antibody fragment specifically binds to IL-6 and antagonizes one or more activity associated with IL-6;

and wherein the another therapeutic compound comprising: chemotherapy agents, statins, cytokines, gene therapy agents, anti-coagulants, anti-cachexia agents, anti-weakeness agent, anti-fatigue agent, anti-fever agent, anti-nausea agents, antiemetic agents, IL-6 antagonist, a cytotoxic agent, another therapeutic compound, or any combination thereof.

150. The composition of any of claims 148-149, wherein said Ab1 antibody or antibody fragment comprises said light chain CDR1, said light chain CDR3, said heavy chain CDR2, and said heavy chain CDR3.

151. The composition of any of claims 148-149, wherein said Ab1 antibody or antibody fragment comprises said light chain CDR1, said light chain CDR2, said light chain CDR3, said heavy chain CDR1, said heavy chain CDR2, and said heavy chain CDR3.

152. The composition of any of claims 144-147, wherein said light and heavy chain CDR polypeptides are comprised in an antibody or antibody fragment comprising Fab, Fab', F(ab')2, Fv, scFv, IgNAR, SMIP, camelbodies, or nanobodies.

153. The composition of any of claims 148-151, wherein the framework regions (FRs) 1, 2, 3 and 4 in the variable light and heavy regions of said Ab1 antibody or antibody fragment, respectively, are human FRs which are unmodified or which have each been modified by the substitution of at most 2 or 3 human FR residues with the corresponding FR
residues of the parent rabbit antibody light or heavy chain of SEQ ID NO: 2 and SEQ ID NO: 3, respectively,

wherein said human light chain FRs 1, 2 and 3 have been derived from a human variable light chain antibody sequence that has been selected from a library or database of human germline antibody sequences based on its high level of homology (relative to other human germline antibody sequences contained in the library or database) to the subsequence of the parent rabbit antibody light chain of SEQ ID NO: 2 extending from the beginning of FR1 to the end of FR3; and

wherein said human light chain FR4 has been derived from a human variable light chain antibody sequence that has been selected from a library or database of human germline antibody sequences based on its high level of homology (relative to other human germline antibody sequences contained in the library or database) to the parent rabbit antibody light chain FR4 contained in SEQ ID NO: 2; and

wherein said human heavy chain FRs 1, 2 and 3 have been derived from a human variable heavy chain antibody sequence that has been selected from a library or database of human germline antibody sequences based on its high level of homology (relative to other human germline antibody sequences contained in the library or database) to the subsequence of the parent rabbit antibody heavy chain of SEQ ID NO: 3 extending from the beginning of FR1 to the end of FR3; and

wherein said human heavy chain FR4 has been derived from a human variable heavy chain antibody sequence that has been selected from a library or database of human germline antibody sequences based on its high level of homology (relative to other human germline antibody sequences contained in the library or database) to the parent rabbit antibody heavy chain FR4 contained in SEQ ID NO: 3.

154. The composition of any of claims 140-153, wherein the Ab1 antibody or antibody fragment has an in vivo half-life of at least about 22 days in a healthy human subject.

155. The composition of any of claims 140-153, wherein the Ab1 antibody or antibody fragment has an in vivo half-life of at least about 25 days in a healthy human subject.

156. The composition of any of claims 140-153, wherein the Ab1 antibody or antibody fragment has an in vivo half-life of at least about 30 days in a healthy human subject.
157. The composition of any of claims 140-156, wherein the Ab1 antibody or antibody fragment has a binding affinity (Kd) for IL-6 of less than about 50 picomolar, or a rate of dissociation (K_{off}) from IL-6 of less than or equal to 10^{-4} S^{-1}.

158. The composition of any of claims 140-157, wherein the Ab1 antibody or antibody fragment specifically binds to the same linear or conformational epitope(s) and/or competes for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody consisting essentially of the polypeptides of SEQ ID NO: 702 and SEQ ID NO: 704 or the polypeptides of SEQ ID NO: 2 and SEQ ID NO: 3.

159. The composition of claim 158, wherein said binding to the same linear or conformational epitope(s) and/or competition for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof is ascertained by epitopic mapping using overlapping linear peptide fragments which span the full length of the native human IL-6 polypeptide and includes one or more residues comprised in IL-6 fragments selected from those respectively encompassing amino acid residues 37-51, amino acid residues 70-84, amino acid residues 169-183, amino acid residues 31-45 and/or amino acid residues 58-72 of SEQ ID NO: 1.

160. The composition of any of claims 140-159, wherein the Ab1 antibody or antibody fragment is aglycosylated.

161. The composition of any of claims 140-160, wherein the Ab1 antibody or antibody fragment contains an Fc region that has been modified to alter effector function, half-life, proteolysis, and/or glycosylation.

162. The composition of any of claims 140-161, wherein the Ab1 antibody or antibody fragment is a human, humanized, single chain, or chimeric antibody.

163. The composition of any of claims 140-162, wherein the Ab1 antibody or antibody fragment is comprising Fab, Fab', F(ab')_2, Fv, or scFv.

164. The composition of any of claims 140-163, wherein said Ab1 antibody or antibody fragment further comprises a human Fc.

165. The composition of claim 164, wherein said human Fc is derived from IgG1, IgG2, IgG3, IgG4, IgG5, IgG6, IgG7, IgG8, IgG9, IgG10, IgG11, IgG12, IgG13, IgG14, IgG15, IgG16, IgG17, IgG18 or IgG19.
166. The composition of any of **claims 140-165**, wherein the one or more activity associated with IL-6 is an *in vivo* activity comprising:

- decreased serum albumin; elevated C-reactive protein ("CRP"); fatigue; fever; anorexia (loss of appetite); weight loss; cachexia; weakness; decreased Glasgow Prognostic Score ("GPS"); elevated serum D-dimer; abnormal coagulation profile; or any combination thereof.

167. The composition of any of **claims 140-165**, wherein one or more of the one or more activity associated with IL-6 is an *in vitro* activity comprising:

- stimulation of proliferation of T1165 cells; binding of IL-6 to IL-6R; activation (dimerization) of the gp130 signal-transducing glycoprotein; formation of IL-6/IL-6R/gp130 multimers; stimulation of haptoglobin production by HepG2 cells modified to express human IL-6 receptor; or any combination thereof.

168. The composition of any of **claims 140-167**, wherein the Ab1 antibody or antibody fragment is expressed from a recombinant cell.

169. The composition of **claim 168**, wherein the cell is selected from a mammalian, yeast, bacterial, and insect cell.

170. The composition of **claim 169**, wherein the cell is a yeast cell.

171. The composition of **claim 170**, wherein the cell is a diploidal yeast cell.

172. The composition of **claim 171**, wherein the yeast cell is a Pichia yeast.

173. The composition of any of **claims 140-172**, wherein the Ab1 antibody or antibody fragment is co-administered with another therapeutic agent comprising: chemotherapy agents, statins, cytokines, immunosuppressive agents, gene therapy agents, anti-coagulants, anticachexia agents, anti-weakness agent, anti-fatigue agent, anti-fever agent, anti-nausea agents, antiemetic agents, IL-6 antagonists, cytotoxic agents, analgesics, antipyretics, anti-inflammatory agents, antibiotics, antiviral agents, anti-cytokine agents, other therapeutic agents, or any combination thereof.

174. The composition of **claim 173**, wherein the chemotherapy agent is comprising: VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcycabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids, vinblastine, vincristine, vindesine, vinorelbine, mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective
estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1 antagonists, interleukins, IL-12, IL-2, IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux™, Avastin™, Pertuzumab, anti-CD20 antibodies, Rituxan®, ocrelizumab, ofatumumab, DXL625, Herceptin®, or any combination thereof.

175. The composition of claim 173, wherein the anti-coagulant is comprising: abciximab (ReoPro™), acenocoumarol, antithrombin III, argatroban, aspirin, bivalirudin (Angiomax™), clopidogrel, dabigatran, dabigatran etexilate (Pradaxa™/Pradax™), desirudin (Revasc™/Iprivask™), dipyridamole, eptifibatide (Integrilin™), fondaparinux, heparin, hirudin, idraparinux, lepirudin (Refludan™), low molecular weight heparin, melagatran, phenindione, phenprocoumon, ticlopidine, tirofiban (Aggrastat™), warfarin, ximelagatran, ximelagatran (Exanta™/Exarta™), or any combination thereof.

176. The composition of claim 173, wherein the statin is comprising: atorvastatin, cerivastatin, fluvastatin, lovastatin, mevastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, or any combination thereof.

177. The composition of claim 173, wherein the another therapeutic agent is an antagonist of a factor comprising tumor necrosis factor-alpha, Interferon gamma, Interleukin 1 alpha, Interleukin 1 beta, Interleukin 6, proteolysis inducing factor, leukemia-inhibitory factor, or any combination thereof.

178. The composition of claim 173, wherein the anti-cachexia agent is comprising: cannabis, dronabinol (Marinol™), nabilone (Cesamet), cannabinoid, cannabinoids, tetrahydrocannabinol, Sativex, megestrol acetate, or any combination thereof.

179. The composition of claim 173, wherein the anti-nausea agent or antiemetic agent is comprising: 5-HT3 receptor antagonists, ajwain, alizapride, anticholinergics, antihistamines, aprepitant, benzodiazepines, cannabinomere, cannabinoids, cannabinoid, cannabinoid, cannabis, casopitant, chlorpromazine, cyclizine, dexamethasone, dexamethasone, dimenhydrinate (Gravol™), diphenhydramine, dolasetron, domperidone, dopamine antagonists, doxylamine, dronabinol (Marinol™), droperidol, emetrol, ginger, granisetron, haloperidol, hydroxyzine, hyoscine, lorazepam, meclizine, metoclopramide, midazolam, muscimol, nabilone (Cesamet), nk1 receptor antagonists, ondansetron, palonosetron, peppermint, Phenergan, prochlorperazine, Promacot, promethazine, Pentazine, propofol, sativex, tetrahydrocannabinol, trimethobenzamide, tropisetron, nandrolone, stilbestrol,
thalidomide, lenalidomide, ghrelin agonists, myostatin antagonists, anti-myostatin antibodies, selective androgen receptor modulators, selective estrogen receptor modulators, angiotensin II antagonists, beta two adrenergic receptor agonists, beta three adrenergic receptor agonists, or any combination thereof.

180. The composition of claim 173, wherein the another therapeutic agent is comprising tamoxifen, BCL-2 antagonists, estrogen, bisphosphonates, teriparatide, strontium ranelate, sodium alendronate (Fosamax), risedronate (Actonel), raloxifene, ibandronate (Boniva), Obatoclax, ABT-263, gossypol, gefitinib, epidermal growth factor receptor tyrosine kinase inhibitors, erlotinib, epidermal growth factor receptor inhibitors, psoralens, trioxysalen, methoxsalen, bergapten, retinoids, etretinate, acitretin, infliximab (Remicade®), adalimumab, infliximab, etanercept, Zenapax™, Cyclosporine, Methotrexate, granulocyte-colony stimulating factor, filgrastim, lenograstim, Neupogen, Neulasta, 2-Arylpropionic acids, Aceclofenac, Acemetacin, Acetylsalicylic acid (Aspirin), Alclofenac, Alminoprofen, Amoxicillin, Ampyrene, Aryalkanoic acids, Azapropazole, Benorylate/Benorilate, Benoxaprofen, Bromfenac, Carprofen, Celecoxib, Choline magnesium salicylate, Clofazone, COX-2 inhibitors, Dexibuprofen, Dexketoprofen, Didclofenac, Diflunisal, Droxycam, Ethenzamide, Etodolac, Etoricoxib, Faislamine, fenamic acids, Fenbufen, Fenoprofen, Flufenamic acid, Flunoxaprofen, Flurbiprofen, Ibuprofen, Ibuproxx, Indometacinc, Indoprofen, Kebuzone, Ketoprofen, Ketorolac, Loroxicam, Loxoprofen, Lumiracoxib, Magnesium salicylate, Meclofenamic acid, Metamizole, Meprobamate, Mofebutazone, Nabumetone, Naproxen, N-Arylanthranilic acids, Oxametacin, Oxaprozin, Oxycams, Oxypenbutazone, Parecoxib, Phenazone, Phenylbutazone, Phenylbutazone, Piroxicam, Pirprofen, profens, Proglumetacin, Pyrazolidine derivatives, Rofecoxib, Salicyl salicylate, Salicylamide, Salicylates, Sulfapyrazone, Sulindac, Suprofen, Tenoxicam, Tiaprofenic acid, Tolifenamic acid, Tolmetin, and Valdecoxib. Antibiotics include Amikacin, Aminoglycosides, Amoxicillin, Ampicillin, Ansamycins, Arspenamine, Azithromycin, Azlocillin, Aztreonam, Bacitracin, Carbacephem, Carbapenems, Carbenicillin, Cefaclor, Cefadroxil, Cefalexin, Cefalothin, Cefalotin, Cefamandole, Cefazolin, Cefdinir, Cefditoren, Cefepime, Cefixime, Cefoperazone, Cefotaxime, Cefoxitin, Cefpodoxime, Cefprozil, Ceftazidime, Ceftibuten, Ceftizoxime, Cefotibiprole, Ceftriaxone, Cefuroxime, Cephalexin, Chloramphenicol, Dilasaten, Ciprofloxacin, Clarithromycin, Clindamycin, Cloxacillin, Colistin, Co-trimoxazole, Dalfopristin, Demeclocycline, Dicloxacillin, Dirithromycin, Doripenem, Doxycycline,
Enoxacin, Ertapenem, Erythromycin, Ethambutol, Fluvoxacillin, Fosfomycin, Furazolidone, Fusidic acid, Gatifloxacin, Geldanamycin, Gentamicin, Glycopeptides, Herbimycin, Imipenem, Isoniazid, Kanamycin, Levofloxacin, Lincomycin, Linezolid, Lomefl oxacin, Loracarbef, Macrolides, Mafenide, Meropenem, Meticillin, Metronidazole, Mezlocillin, Minocycline, Monobactams, Moxifloxacin, Mupirocin, Nafcillin, Neomycin, Netilmicin, Nitrofurantoin, Norfloxacin, Ofloxacin, Oxacinill, Oxytetracycline, Paromomycin, Penicillin, Penicillins, Piperacillin, Platensimycin, Polymyxin B, Polypeptides, Prontosil, Pyrazinamide, Quinolones, Quinupristin, Rifampicin, Rifampin, Roxithromycin, Spectinomycin, Streptomycin, Sulacetamide, Sulfamethizole, Sulfanilimide, Sulfasalazine, Sulfisoxazole, Sulfonamides, Teicoplanin, Telithromycin, Tetracycline, Tetracyclines, Ticarcillin, Tinidazole, Tobramycin, Trimethoprim, Trimethoprim-Sulfamethoxazole, Troleandomycin, Trovafloxacin, and Vancomycin. Active agents also include Aldosterone, Beclometasone, Betamethasone, Corticosteroids, Cortisol, Cortisone acetate, Deoxy corticosterone acetate, Dexamethasone, Fludrocortisone acetate, Glucocorticoids, Hydrocortisone, Methylprednisolone, Prednisolone, Prednisone, Steroids, and Triamcinolone. Antiviral agents include abacavir, aciclovir, acyclovir, adebovir, amantadine, amprenavir, an antiretroviral fixed dose combination, an antiretroviral synergistic enhancer, arbidol, atazanavir, atripla, brivudine, cidovir, combinor, darunavir, delavirdine, didanosine, docosanol, edoxudine, efavirenz, emtricitabine, enfuvirtide, entecavir, entry inhibitors, famiclovir, fomivirsen, fosamprenavir, foscarinet, fosfonet, fusion inhibitor, ganciclovir, gardasil, ibacitabine, idoxuridine, imiquimod, imunovir, indinavir, inosine, integrase inhibitor, interferon, interferon type I, interferon type II, interferon type III, lamivudine, lopinavir, loviride, maraviroc, MK-0518, moroxydine, nelfinavir, nevirapine, nexavir, nucleoside analogues, oseltamivir, penciclovir, peramivir, pleconaril, podophyllotoxin, protease inhibitor, reverse transcriptase inhibitor, ribavirin, rimantadine, ritonavir, saquinavir, stavudine, tenofovir, tenofovir disoproxil, tipranavir, trifluridine, trizivir, tromantadine, truvada, valaciclovir, valganciclovir, vicriviroc, vidarabine, viramidine, zalcitabine, zanamivir, zidovudine, or any combination thereof.

181. The composition of claim 173, wherein the cytotoxic agent, chemotherapeutic agent, or immunosuppressive agent is comprising: 1-dehydrotestosterone, 1-methyl nitrosourea, 5-fluorouracil, 6-mercaptopurine, 6-mercaptopurine, 6-thioguanine, Abatacept, abraxane, acitretin, aclarubicin, Actinium-225 (^{225}Ac), actinomycin, Adalimumab, adenosine deaminase inhibitors, Afelimomab, Aflibercept, Aftuzumab, Alefacept,
alitretinoin, alkyl sulfonates, alkylating agents, altretamine, alvodidib, aminolevulinic acid/methyl aminolevulinate, aminopterin, aminopterin, amrubicin, amsacrine, amsacrine, anagrelide, Anakinra, anthracenediones, anthracyclines, anthracyclines, anthracyclines, anthramycin (AMC); antimyotic agents, antibiotics, anti-CD20 antibodies, antifolates, Anti-lymphocyte globulin, Antimetabolites, Anti-thymocyte globulin, arsenic trioxide, Aseluzumab, asparaginase, asparagine depleters, Astatine-211 (211At), Atlizumab, Atorolimumab, atrasantan, Avastin™, azacitidine, Azathioprine, azelastine, aziridines, Basiliximab, BAYX antibodies, Belatacept, Belimumab, belotecan, bendamustine, Bertilimumab, bexarotene, bisantrene, Bismuth -213 (213Bi), Bismuth-212 (212Bi), bleomycin, bleomycin, bleomycin, BLyS antibodies, bortezomib, busulfan, busulfan, Calcineurin inhibitors, calicheamicin, camptothecin, camptothecins, cepatcitabine, carboplatin (paraplatin), carboquone, carminomycin, carmofur, carmustine, carmustine (BSNU), CAT antibodies, CD11a antibodies, CD147/Basigin antibodies, CD154 antibodies, CD18 antibodies, CD20 antibodies, CD23 antibodies, CD3 antibodies, CD4 antibodies, CD40 antibodies, CD62L/L-selectin antibodies, CD80 antibodies, CDK inhibitors, Cedelizumab, celecoxib, Cetrolizumab pegol, chlorambucil, chlorambucils, Ciclosporin, cis-dichlorodiamine platinum (II) (DDP) cisplatin, cladribine, Clenoliximab, clofarabine, colchicin, Complement component 5 antibodies, Copper-67 (67Cu), corticosteroids, CTLA-4 antibodies, CTLA-4 fusion proteins, Cyclophillin inhibitors, cyclophosphamides, cyclophosphamide, cytarabine, cytarabine, cytochalasin B, cytotoxic ribonucleases, dacarbazine, Daclizumab, dactinomycin, dactinomycin (actinomycin D), daunorubicin, daunorubicin, daunorubicin (formerly daunomycin), decitabine, Deforolimus, demecolcine, detorubicin, dibromomannitol, diethylcarbamazine, dihydrofolate reductase inhibitors, dihydroxy anthracin dione, diphtheria toxin, DNA polymerase inhibitors, docetaxel, Dorlimomab aritox, Dorlixizumab, doxorubicin (adriamycin), DXL625, Eculizumab, Efalizumab, efaproxiral, EGFR antagonists, elesclomol, elsmatruclin, Elsilimomab, emetine, endothelin receptor antagonists, epipodophyllotoxins, epirubicin, epothilones, Erbitux™, Erlizumab, estramustine, Etsanercept, ethidium bromide, etoglucid, etoposide, etoposide phosphate, Everolimus, Faralimomab, farnesyltransferase inhibitors, FKBP inhibitors, floxuridine, fludarabine, fluorouracil, Fontolizumab, fotemustine, Galiximab, Gallium-67 (67Ga), Gantenerumab, Gavilimomab, gemcitabine, glucocorticoids, Golimumab, Gomiliximab, gramicidin D, Gusperimus, Herceptin®, hydrazines, hydroxyurea, hypomethylating agents, idarubicin, Idarubicine, ifosfamide, IL-1 antagonists, IL-1 receptor antagonists, IL-12, IL-12 antibodies, IL-12R antagonists, IL-13 antibodies, IL-2, IL-2
inhibitors, IL-2 receptor/CD25 antibodies, IL-6 antibodies, imatinib mesylate, Immunoglobulin E antibodies, IMP dehydrogenase inhibitors, Infliximab, Inolimomab, Integrin antibodies, Interferon antibodies, interferons, Interleukin 5 antibodies, Interleukin-6 receptor antibodies, interleukins, Iodine-125 (\(^{125}\text{I}\)), Iodine-131 (\(^{131}\text{I}\)), Ipilimumab, irinotecan, ixabepilone, Keliximab, larotaxel, Lead-212 (\(^{212}\text{Pb}\)), Lebrilizumab, Leflunomide, Lenalidomide, Lerdelimumab, leucovorine, LFA-1 antibodies, lidocaine, lipoxygenase inhibitors, lomustine (CCNU), lonidamine, lucanthone, Lumiliximab, Lutetium-177 (\(^{177}\text{Lu}\)), Macrolides, mannosulfan, Maslimomab, masoprostol, mechloretamine, melphalan, Mepolizumab, mercaptopurine, Metelimumab, Methotrexate, microtubule assembly inhibitors, microtubule stability enhancers, mithramycin, mitobronitol, mitoguazone, mitomycin, mitomycin C, mitotane, mitoxantrone, Morolimumab, mTOR inhibitors, Muromonab-CD3, mustines, Mycophenolic acid, myotane (O,P\(^{\prime}\)-(DDD)), Natalizumab, nedaplatin, Nerelimomab, nimustine, nitrogen mustards, nitrosoureas, nordihydroguaiaretic acid, oblimersen, ocrelizumab, Ocrelizumab, Odulimomab, ofatumumab, olaparib, Omalizumab, ortaxel, Otelixizumab, oxaliplatin, oxaliplatin, paclitaxel (taxol), Pascolizumab, PDGF antagonists, pegaspargase, pemetrexed, Pentostatin, Pertuzumab, Pexelizumab, phosphodiesterase inhibitors, Phosphorus-32 (\(^{32}\text{P}\)), Pimecrolimus Abetimus, pirarubicin, pixintrone, platins, plicamycin, poly ADP ribose polymerase inhibitors, porfimer sodium, porphyrin derivatives, prednimustine, procaine, procarbazine, procarbazine, propranolol, proteasome inhibitors, pseudomonas exotoxin, \textit{Pseudomonas} toxin, purine synthesis inhibitors, puromycin, pyrimidine synthesis inhibitors, radionuclides, radiotherapy, raltitrexed, ranimustine, Reslizumab, retinoid X receptor agonists, retinoids, Rhenium-186 (\(^{186}\text{Re}\)), Rhenium-188 (\(^{188}\text{Re}\)), ribonucleotide reductase inhibitors, ricin, Riloncept, Rituxan\textregistered, Rovelizumab, rubitecan, Ruplizumab, Samarium-153 (\(^{153}\text{Sm}\)), satraplatin, Scandium-47 (\(^{47}\text{Sc}\)), selective androgen receptor modulators, selective estrogen receptor modulators, seliciclib, semustine, sex hormone antagonists, Siplizumab, Sirolimus, steroid aromatase inhibitors, steroids, streptozocin, streptozotocin, Tacrolimus, talaporfin, Talizumab, taxanes, taxols, tegafur, Telimomab aritox, temoporfin, temozolomide, temsirolimus, Temsirolimus, Teneliximab, teniposide, Teplizumab, Teriflunomide, tesetaxel, testolactone, tetracaine, Thalidomide, thioepa chlorambucil, thiopurines thioguanine, ThioTEPA, thymidylate synthase inhibitors, tiazofurin, tipifarnib, T-lymphocyte antibodies, TNF antagonists, TNF antibodies, TNF fusion proteins, TNF receptor fusion proteins, TNF-\textit{alpha} inhibitors, Tocilizumab, topoisomerase inhibitors, topotecan, Toralizumab, trabectedin, Tremelimumab, treosulfan, tretinoin, triazenes, triaziquone, triethylenemelamine, triplatin
tetranitrate, trofosfamide, tumor antigen specific monoclonal antibodies, tyrosine kinase inhibitors, uramustine, Ustekinumab, valrubicin, Valrubicine, Vapaliximab, VEGF antagonists, Vepalimob, verteporfin, vinblastine, vinca alkaloids, vincristine, vindesine, vinflunine, vinorelbine, Visilizumab, vorinostat, Yttrium-88 (\(^{88}\text{Y}\)), Yttrium-90 (\(^{90}\text{Y}\)), Zanolimumab, zileuton, Ziralimunab, Zolimob ariox, zurubicin, Zotarolimus, or any combination thereof.

182. The composition of **claim 173**, wherein the other active agent is one or more agonist, antagonist, or modulator of a factor comprising: TNF-\(\alpha\), IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-18, IFN-\(\alpha\), IFN-\(\gamma\), BAFF, CXCL13, IP-10, VEGF, EPO, EGF, HRG, Hepatocyte Growth Factor (HGF), Heparin, or any combination thereof.

183. The composition of **claim 173**, wherein the IL-6 antagonist is comprising: anti-IL-6 antibodies or fragments thereof, antisense nucleic acids, polypeptides, small molecules, or any combination thereof.

184. The composition of **claim 183**, wherein the antisense nucleic acid comprises at least approximately 10 nucleotides of a sequence encoding IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, or SYK.

185. The composition of **claim 183**, wherein the antisense nucleic acid comprises DNA, RNA, peptide nucleic acid, locked nucleic acid, morpholino (phosphorodiamidate morpholino oligo), glycerol nucleic acid, threose nucleic acid, or any combination thereof.

186. The composition of **claim 183**, wherein the anti-IL-6 antibody or fragment thereof is comprising: Ab1, Ab2, Ab3, Ab4, Ab5, Ab6, Ab7, Ab8, Ab9, Ab10, Ab11, Ab12, Ab13, Ab14, Ab15, Ab16, Ab17, Ab18, Ab19, Ab20, Ab21, Ab22, Ab23, Ab24, Ab25, Ab26, Ab27, Ab28, Ab29, Ab30, Ab31, Ab32, Ab33, Ab34, Ab35, Ab36, an IL-6 binding fragment of any of the foregoing, a variant of any of the foregoing, or any combination thereof.

187. The composition of **claim 183**, wherein the IL-6 antagonist polypeptide comprises a fragment of a polypeptide having a sequence selected from the group consisting IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, or SYK.

188. The composition of **claim 187**, wherein the fragment is at least 40 amino acids in length.
189. The composition of claim 183, wherein the IL-6 antagonist comprises a soluble IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, SYK, or any combination thereof.

190. The composition of claim 173, wherein the IL-6 antagonist is coupled to a half-life increasing moiety.

191. The composition of any of claims 170-190, wherein the Ab1 antibody or antibody fragment is directly or indirectly coupled to one or more of said another therapeutic agent.

192. The composition of any of claims 140-167, wherein the Ab1 antibody or antibody fragment is directly or indirectly coupled to a detectable label.

193. The composition of claim 192 wherein the detectable label is comprising: fluorescent dyes, bioluminescent materials, radioactive materials, chemiluminescent moieties, streptavidin, avidin, biotin, radioactive materials, enzymes, substrates, horseradish peroxidase, acetylcholinesterase, alkaline phosphatase, beta-galactosidase, luciferase, rhodamine, fluorescein, fluorescein isothiocyanate, umbelliferone, dichlorotriazinylamine, phycoerythrin, dansyl chloride, luminol, luciferin, aequorin, Iodine 125 (125I), Carbon 14 (14C), Sulfur 35 (35S), Tritium (3H), Phosphorus 32 (32P), or any combination thereof.

194. The composition of any of claims 140-193, wherein the Ab1 antibody is administered to the subject in the form of one or more nucleic acids that encode the Ab1 antibody.

195. The composition of claim 194, wherein the one or more nucleic acids are introduced into the recipient as a virus, liposome, cationic lipid complex, cationic polymer complex, or nanoparticle complex.

196. The composition of claim 194, wherein the one or more nucleic acids are comprised of yeast or human preferred codons.

197. The composition of claim 194, wherein the one or more nucleic acids are comprised in a vector.

198. The composition of claim 194, wherein the vector is a plasmid or recombinant viral vector.

199. The composition of claim 194, wherein the one or more nucleic acids comprise the heavy and light chain polynucleotide sequences of SEQ ID NO: 723 and SEQ ID NO:
200. The composition of any of claims 140-193, wherein the Ab1 antibody comprises:

(a) light and heavy chain polypeptides comprising: SEQ ID NO: 709 and SEQ ID NO: 657; SEQ ID NO: 702 and SEQ ID NO: 704; SEQ ID NO: 706 and SEQ ID NO: 708; SEQ ID NO: 20 and SEQ ID NO: 19; or SEQ ID NO: 2 and SEQ ID NO: 3;

(b) a polypeptide having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to any of the polypeptides of (a);

(c) a polynucleotide that hybridizes under moderately or highly stringent hybridization conditions to any of the heavy and light chain polynucleotide sequences of SEQ ID NO: 723 and SEQ ID NO: 700; SEQ ID NO: 701 and SEQ ID NO: 703; SEQ ID NO: 705 and SEQ ID NO: 707; SEQ ID NO: 720 and SEQ ID NO: 724; and SEQ ID NO: 10 and SEQ ID NO: 11;

(d) a polynucleotide having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to any of the heavy and light chain polynucleotide sequences of SEQ ID NO: 723 and SEQ ID NO: 700; SEQ ID NO: 701 and SEQ ID NO: 703; SEQ ID NO: 705 and SEQ ID NO: 707; SEQ ID NO: 720 and SEQ ID NO: 724; and SEQ ID NO: 10 and SEQ ID NO: 11;

(e) a polypeptide encoded by any of the polynucleotides of (c) or (d).
FIG. 1
FIG. 4

A2M 24h (µg/ml)

ID₅₀ = 0.08273 mg/kg
r² = 0.9701

Log Dose Ab1

0.03 mg/kg Ab1
0.1 mg/kg Ab1
0.3 mg/kg Ab1
3 mg/kg Ab1

Control
FIG. 5
FIG. 7

- Polyclonal IgG (270-320mg TW)
- Ab1 (270-320mg TW)

Percent survival vs Time (days)
FIG. 8

- Polyclonal IgG (400-527mg TW)
- Ab1 (400-527mg TW)

Percent survival vs. Time (days)
FIG. 10A
FIG. 10B

Aβ3 BLOCKS GP130 BINDING

BINDING (nm)

0.0000

1.0000

2.0000

2.5000

0 500 1000 1500 2000 2500 3000 3500

TIME (SECONDS)

ANTIBODY

IL6R1

GP130

BUFFER CONTROL

IL6

Aβ3
FIG. 10C
FIG. 11

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Blocks IL6 binding to R1</th>
<th>Blocks IL6 binding to GP130</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab1</td>
<td>Yes</td>
<td>Yes</td>
<td>021051</td>
</tr>
<tr>
<td>Ab2</td>
<td>No</td>
<td>Partial</td>
<td>021050</td>
</tr>
<tr>
<td>Ab3</td>
<td>No</td>
<td>Yes</td>
<td>021030</td>
</tr>
<tr>
<td>Ab4</td>
<td>No</td>
<td>Yes</td>
<td>021050</td>
</tr>
<tr>
<td>Ab6</td>
<td>Yes</td>
<td>Yes</td>
<td>021051</td>
</tr>
<tr>
<td>Ab7</td>
<td>Yes</td>
<td>Yes</td>
<td>021051</td>
</tr>
<tr>
<td>Ab8</td>
<td>No</td>
<td>Yes</td>
<td>021051</td>
</tr>
</tbody>
</table>
FIG. 12

<table>
<thead>
<tr>
<th>1</th>
<th>VPPGIEDEKDVAAPHR (SEQ ID NO: 590)</th>
<th>20</th>
<th>ENNINLNPMAEKDGK (SEQ ID NO: 609)</th>
<th>39</th>
<th>QMTKTVLQFLQKKA (SEQ ID NO: 628)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>GEDSKDVAAPHRGQPL (SEQ ID NO: 591)</td>
<td>21</td>
<td>LNLPLVMAMERDGQFS (SEQ ID NO: 610)</td>
<td>40</td>
<td>TKVLIQFLQKXNL (SEQ ID NO: 629)</td>
</tr>
<tr>
<td>3</td>
<td>SKDVAAPHRGQPLTSS (SEQ ID NO: 592)</td>
<td>22</td>
<td>PMMAEKEDGQFSQPFSN (SEQ ID NO: 611)</td>
<td>41</td>
<td>LIQFLQKXANLDAI (SEQ ID NO: 630)</td>
</tr>
<tr>
<td>4</td>
<td>VAAPHRGQPLTSSERI (SEQ ID NO: 593)</td>
<td>23</td>
<td>AEKDGCFQSFGNEET (SEQ ID NO: 612)</td>
<td>42</td>
<td>FLQKXAKNLDLTT (SEQ ID NO: 631)</td>
</tr>
<tr>
<td>5</td>
<td>PHRQPLTSSERIDKQ (SEQ ID NO: 594)</td>
<td>24</td>
<td>DCQPQGSPHEECLV (SEQ ID NO: 613)</td>
<td>43</td>
<td>KDKSNLDAITTPDFT (SEQ ID NO: 632)</td>
</tr>
<tr>
<td>6</td>
<td>OPLTSERIDKQIRY (SEQ ID NO: 595)</td>
<td>25</td>
<td>FGSPNPHECCLVII (SEQ ID NO: 614)</td>
<td>44</td>
<td>KLNLDAITTPDFT (SEQ ID NO: 633)</td>
</tr>
<tr>
<td>7</td>
<td>TSSERIDKQIRYILD (SEQ ID NO: 596)</td>
<td>26</td>
<td>GFNPEECLVKTITGL (SEQ ID NO: 615)</td>
<td>45</td>
<td>DAITTPDPPTNAS (SEQ ID NO: 634)</td>
</tr>
<tr>
<td>8</td>
<td>ERIKDQRYTLDQG (SEQ ID NO: 597)</td>
<td>27</td>
<td>EETCLOVLKLIILEP (SEQ ID NO: 616)</td>
<td>46</td>
<td>TFDPDPPTNAS (SEQ ID NO: 635)</td>
</tr>
<tr>
<td>9</td>
<td>DKQRYTLDQG (SEQ ID NO: 598)</td>
<td>28</td>
<td>CVKCIITGGLFPEVY (SEQ ID NO: 617)</td>
<td>47</td>
<td>DPDPPTNAS (SEQ ID NO: 636)</td>
</tr>
<tr>
<td>10</td>
<td>IRYTLDQG (SEQ ID NO: 599)</td>
<td>29</td>
<td>KITGGLFPEVY (SEQ ID NO: 618)</td>
<td>48</td>
<td>TNSLTLKQAQW (SEQ ID NO: 637)</td>
</tr>
<tr>
<td>11</td>
<td>ILDQG (SEQ ID NO: 600)</td>
<td>30</td>
<td>TLPEFVY (SEQ ID NO: 619)</td>
<td>49</td>
<td>SLLKLAQW (SEQ ID NO: 638)</td>
</tr>
<tr>
<td>12</td>
<td>GISALR (SEQ ID NO: 601)</td>
<td>31</td>
<td>LEFEVY (SEQ ID NO: 620)</td>
<td>50</td>
<td>TKLQAQW (SEQ ID NO: 639)</td>
</tr>
<tr>
<td>13</td>
<td>ALKETC (SEQ ID NO: 602)</td>
<td>32</td>
<td>EYLEVY (SEQ ID NO: 621)</td>
<td>51</td>
<td>QAQQW (SEQ ID NO: 640)</td>
</tr>
<tr>
<td>14</td>
<td>KETCH (SEQ ID NO: 603)</td>
<td>33</td>
<td>LELYQRPSSESEQA (SEQ ID NO: 622)</td>
<td>52</td>
<td>MQHLMDDMTHLIR (SEQ ID NO: 641)</td>
</tr>
<tr>
<td>15</td>
<td>CSKDH (SEQ ID NO: 604)</td>
<td>34</td>
<td>QNFRPSSERQARAV (SEQ ID NO: 623)</td>
<td>53</td>
<td>LQDMTHLIRRPSK (SEQ ID NO: 642)</td>
</tr>
<tr>
<td>16</td>
<td>SMAGH (SEQ ID NO: 605)</td>
<td>35</td>
<td>MRQPSERQARQASQ (SEQ ID NO: 624)</td>
<td>54</td>
<td>MTHLIRRPSK (SEQ ID NO: 643)</td>
</tr>
<tr>
<td>17</td>
<td>GS (SEQ ID NO: 606)</td>
<td>36</td>
<td>SSSERQAVQQSTKSV (SEQ ID NO: 625)</td>
<td>55</td>
<td>HLILRRSFPEKQ (SEQ ID NO: 644)</td>
</tr>
<tr>
<td>18</td>
<td>SKEAL (SEQ ID NO: 607)</td>
<td>37</td>
<td>SQARQMQSTKVLIQ (SEQ ID NO: 626)</td>
<td>56</td>
<td>LSSFRPEQSLRR (SEQ ID NO: 645)</td>
</tr>
<tr>
<td>19</td>
<td>ALAH (SEQ ID NO: 608)</td>
<td>38</td>
<td>RAQMQSTKVLIQ (SEQ ID NO: 627)</td>
<td>57</td>
<td>PKHFLQSSLR (SEQ ID NO: 646)</td>
</tr>
</tbody>
</table>
FIG. 15

A. Surface Plasmon Resonance: Averaged binding constants determined at 25 °C for Ab1 to IL-6.

<table>
<thead>
<tr>
<th>Species (IL-6)</th>
<th>K_d (M⁻¹s⁻¹)</th>
<th>K_d (s⁻¹)</th>
<th>K_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>1.6e6</td>
<td>2.2e³</td>
<td>1.4 nM</td>
</tr>
<tr>
<td>Mouse</td>
<td>1.1e6</td>
<td>4.0e⁻⁴</td>
<td>0.4 nM</td>
</tr>
<tr>
<td>Dog</td>
<td>Below LOQᵃ</td>
<td>Below LOQᵃ</td>
<td>Below LOQᵃ</td>
</tr>
<tr>
<td>Human</td>
<td>1.6e⁴</td>
<td>5e⁻⁷</td>
<td>4 pM</td>
</tr>
<tr>
<td>Cynomolgus monkey</td>
<td>9.6e⁴</td>
<td>3e⁻⁶</td>
<td>31 pM</td>
</tr>
</tbody>
</table>

ᵃ. Below Limit of Quantitation

B. IC50 values for Ab1 against human, cynomolgus monkey, mouse, rat and dog IL-6 in the T1165 assay.

<table>
<thead>
<tr>
<th>IL-6 Species</th>
<th>IC50 (pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>13</td>
</tr>
<tr>
<td>Cynomolgus monkey</td>
<td>12</td>
</tr>
<tr>
<td>Mouse</td>
<td>1840</td>
</tr>
<tr>
<td>Rat</td>
<td>2060</td>
</tr>
<tr>
<td>Dog</td>
<td>No inhibition of cell proliferation</td>
</tr>
</tbody>
</table>
FIG. 16

Mean Plasma Concentration of Ab1 in Healthy Male Subjects
FIG. 17

Ab1 Pharmacokinetics in Healthy Human Volunteers

\[R^2 = 0.9964 \]
FIG. 18

Ab1 Pharmacokinetics in Healthy Human Volunteers

$R^2 = 0.9817$
FIG. 19

Summary of Ab1 Pharmacokinetics in Healthy Human Volunteers

<table>
<thead>
<tr>
<th>Dose of Ab1</th>
<th>$T_{1/2}$ (days)</th>
<th>AUC (µg · h / mL)</th>
<th>C_{max} (µg / mL)</th>
<th>T_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mg</td>
<td>10.3</td>
<td>35</td>
<td>0.1</td>
<td>8</td>
</tr>
<tr>
<td>3mg</td>
<td>11.6</td>
<td>229</td>
<td>0.7</td>
<td>4</td>
</tr>
<tr>
<td>10mg</td>
<td>22.4</td>
<td>1473</td>
<td>4.0</td>
<td>4</td>
</tr>
<tr>
<td>30mg</td>
<td>25.1</td>
<td>9076</td>
<td>19.4</td>
<td>4</td>
</tr>
<tr>
<td>100mg</td>
<td>30.3</td>
<td>26128</td>
<td>48.0</td>
<td>12</td>
</tr>
<tr>
<td>300mg</td>
<td>26.2</td>
<td>92891</td>
<td>188.0</td>
<td>12</td>
</tr>
<tr>
<td>640mg</td>
<td>30.2</td>
<td>175684</td>
<td>306.0</td>
<td>12</td>
</tr>
</tbody>
</table>
FIG. 20

Pharmacokinetics of Ab1 in Patients with Advanced Cancer

Elimination half-life: 31d

Mean plasma concentration of Ab1 given as a single IV infusion of 80 mg (n=2) or 160 mg (n=3) (Mean +/- SEM)
FIG. 21

Unprecedented Elimination Half-life of Ab1

<table>
<thead>
<tr>
<th></th>
<th>Cynomolgus Monkey (days)</th>
<th>Human (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab1</td>
<td>15-21</td>
<td>~31</td>
</tr>
<tr>
<td>Actemra (Tocilizumab)</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Remicade</td>
<td>5</td>
<td>8 to 9.5</td>
</tr>
<tr>
<td>Synagis</td>
<td>8.6</td>
<td>20</td>
</tr>
<tr>
<td>Erbitux</td>
<td>3 to 7</td>
<td>5</td>
</tr>
<tr>
<td>Zenapax</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>Avastin</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Pertuzumab</td>
<td>10</td>
<td>18 to 22</td>
</tr>
</tbody>
</table>
FIG. 22

Ab1 Increases Hemoglobin Concentration in Patients with Advanced Cancer

Single IV infusion of 80 mg, 160 mg, or 320 mg Ab1 (n=8) (Mean +/- SEM)
FIG. 23

Mean Plasma Lipid Concentration After Ab1 Infusion in Patients with Advanced Cancer

Single IV infusion of 80 mg, 160 mg, or 320 mg Ab1 (n=8) (Mean +/- SEM)
FIG. 24

Mean Neutrophil Counts After Ab1 Infusion in Patients with Advanced Cancer

Single IV infusion of 80 mg, 160 mg, or 320 mg Ab1 (n=8) (Mean +/- SEM)
FIG. 25

Ab1 Suppresses Serum CRP in Healthy Volunteers

Median serum CRP concentration (µg/mL)

Time (h)

Placebo i.v. (n=14)
Ab1 1mg i.v. (n=6)
Ab1 3mg i.v. (n=6)
Ab1 10mg i.v. (n=6)
Ab1 30mg i.v. (n=5)
Ab1 100mg i.v. (n=5)
FIG. 26A

Ab1 Suppresses Serum CRP in Patients with Advanced Cancer

Single IV infusion of 80 mg or 160 mg Ab1 (n=5) (Mean +/- SEM)
FIG. 26B

Ab1 Suppresses Serum CRP in Patients with Advanced Cancer

80mg, as a Single IV Infusion
FIG. 27

Ab1 Prevents Weight Loss in a Mouse Cancer Cachexia Model

- Polyclonal IgG
- Ab1 30mg/kg day 1
- Ab1 10mg/kg day 1
- Ab1 3mg/kg day 1
- PBS control

Ab1 Dosing

Mean Percent Body Weight

Time (days)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

* p<0.0001
* p<0.0005
Ab1 Prevents Weight Loss in a Mouse Cancer Cachexia Model

FIG. 28
FIG. 29

Ab1 Promotes Weight Gain in Patients with Advanced Cancer

Single IV infusion of 80 mg or 160 mg Ab1 (n=5)
FIG. 30

Ab1 Reduces Fatigue in Patients with Advanced Cancer

Single IV infusion of 80 mg or 160 mg Ab1 (n=5)
Mean score for U.S. general population = 40.1
FIG. 31

Ab1 Promotes Hand Grip Strength (L+R) in Patients with Advanced Cancer

Response considered clinically significant

Single IV infusion of 80 mg or 160 mg Ab1
FIG. 32

Ab1 Suppresses Serum Amyloid A (An Acute Phase Protein)
FIG. 33

Ab1 Increases Plasma Albumin Concentration in Patients with Advanced Cancer

Single IV infusion of 80 mg or 160 mg Ab1 (n=5)
FIGURE 34 - PREFERRED ANTI-IL-6 ANTIBODY HUMANIZATION

SEQ ID NO: 647 AY67MTTVPSASVAAVGTVTICG CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 648 AY67MTTVPSASVAAVGTVTICG CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 649 AY67MTTVPSASVAAVGTVTICG CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 650 AY67MTTVPSASVAAVGTVTICG CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 651 AY67MTTVPSASVAAVGTVTICG CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC

FR3

SEQ ID NO: 647 OQOSLENMIDGR FGQOTTVVVRK CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 648 FGQOTTVVVRK CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 649 FGQOTTVVVRK CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 650 FGQOTTVVVRK CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 651 FGQOTTVVVRK CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC

FR1

SEQ ID NO: 652 -QLEESGDRKTVTFQPLTPACTAASAPCSLH KTVVT MVRQAPQKLEWG LVHS-EDTYAVATAYG RTFISTKST--TVDLKMTSTTAADTATYFCAR
SEQ ID NO: 653 EVQVEXGTVQYQGSLVLSACAGGTVT QYXMS MVRQAPQKLEWG LVHS-EDTYAVATAYG RTFISTKST--TVDLKMTSTTAADTATYFCAR
SEQ ID NO: 654 EVQVEXGTVQYQGSLVLSACAGGTVT QYXMS MVRQAPQKLEWG LVHS-EDTYAVATAYG RTFISTKST--TVDLKMTSTTAADTATYFCAR
SEQ ID NO: 655 EVQVEXGTVQYQGSLVLSACAGGTVT QYXMS MVRQAPQKLEWG LVHS-EDTYAVATAYG RTFISTKST--TVDLKMTSTTAADTATYFCAR
SEQ ID NO: 656 EVQVEXGTVQYQGSLVLSACAGGTVT QYXMS MVRQAPQKLEWG LVHS-EDTYAVATAYG RTFISTKST--TVDLKMTSTTAADTATYFCAR
SEQ ID NO: 657 EVQVEXGTVQYQGSLVLSACAGGTVT QYXMS MVRQAPQKLEWG LVHS-EDTYAVATAYG RTFISTKST--TVDLKMTSTTAADTATYFCAR

CDR3

SEQ ID NO: 652 DQSSDQDAKPSQ WQQGTQTVYSS CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 653 DQSSDQDAKPSQ WQQGTQTVYSS CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 654 DQSSDQDAKPSQ WQQGTQTVYSS CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 655 DQSSDQDAKPSQ WQQGTQTVYSS CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 656 DQSSDQDAKPSQ WQQGTQTVYSS CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
SEQ ID NO: 657 DQSSDQDAKPSQ WQQGTQTVYSS CSQASONHELGL WPQKQOPQKLQIVY GYSSRPGSSTESFLTISIESDSCDATTYCC
FIGURE 35 - PREFERRED ANTI-IL-6 ANTIBODY HUMANIZATION

<table>
<thead>
<tr>
<th>SEQ ID</th>
<th>CDR1</th>
<th>FR1</th>
<th>CDR2</th>
<th>FR2</th>
<th>CDR3</th>
<th>FR3</th>
<th>CDR4</th>
<th>FR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO:647</td>
<td>AT86</td>
<td>995</td>
<td>T985</td>
<td>982</td>
<td>876</td>
<td>97</td>
<td>865</td>
<td>975</td>
</tr>
<tr>
<td>NO:648</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
<td>865</td>
</tr>
<tr>
<td>NO:650</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
<tr>
<td>NO:709</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID</th>
<th>CDR1</th>
<th>FR1</th>
<th>CDR2</th>
<th>FR2</th>
<th>CDR3</th>
<th>FR3</th>
<th>CDR4</th>
<th>FR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO:652</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
<tr>
<td>NO:653</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
<tr>
<td>NO:655</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
<tr>
<td>NO:657</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID</th>
<th>CDR1</th>
<th>FR1</th>
<th>CDR2</th>
<th>FR2</th>
<th>CDR3</th>
<th>FR3</th>
<th>CDR4</th>
<th>FR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO:654</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
<tr>
<td>NO:656</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
<tr>
<td>NO:657</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID</th>
<th>CDR1</th>
<th>FR1</th>
<th>CDR2</th>
<th>FR2</th>
<th>CDR3</th>
<th>FR3</th>
<th>CDR4</th>
<th>FR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO:654</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
<tr>
<td>NO:656</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
<tr>
<td>NO:657</td>
<td>995</td>
<td>982</td>
<td>876</td>
<td>975</td>
<td>97</td>
<td>865</td>
<td>975</td>
<td>97</td>
</tr>
<tr>
<td>SEQ ID</td>
<td>CDR1</td>
<td>FR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:2</td>
<td>MDTRAPTQLLLLLLLLLWLGARC AYDMQTQPASVSAAVGTVITIKC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:20</td>
<td>IQMTQSPSLSASVGVNDRVTITC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:647</td>
<td>AYDMQTQPASVSAAVGTVITIKC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:651</td>
<td>A10MTQSPSLSASVGVNDRVTITC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:660</td>
<td>MDTRAPTQLLLLLLLLLWLGARC AYDMQTQPASVSAAVGTVITIKC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:666</td>
<td>IQMTQSPSLSASVGVNDRVTITC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:699</td>
<td>A10MTQSPSLSASVGVNDRVTITC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:702</td>
<td>A10MTQSPSLSASVGVNDRVTITC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:706</td>
<td>MKWTVFISLLFLFSSAYS A10MTQSPSLSASVGVNDRVTITC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:709</td>
<td>A10MTQSPSLSASVGVNDRVTITC QASQSINNELS WYQQKPQGKAPKLILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEQ ID</th>
<th>CDR2</th>
<th>FR3</th>
<th>CDR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO:2</td>
<td>RASTLAS GVSSRFKGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:20</td>
<td>RASTLAS GVPSRFGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:647</td>
<td>RASTLAS GVSSRFKGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:651</td>
<td>RASTLAS GVPSRFGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:660</td>
<td>RASTLAS GVSSRFKGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:666</td>
<td>RASTLAS GVPSRFGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:699</td>
<td>RASTLAS GVPSRFGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:702</td>
<td>RASTLAS GVPSRFGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:706</td>
<td>RASTLAS GVPSRFGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO:709</td>
<td>RASTLAS GVPSRFGSQGSTFTPHTLISLDLEGADAATYYC QQYSLRNIDNA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 36B - Alignment of Ab1 light chains (continued)

FR4 kappa constant light chain
SEQ ID NO:2 FGGGTEVVVKR T VAAPSVFIFPPSDQQLKSGTASVCLLLN
SEQ ID NO:20 FGGGTEVVVKR
SEQ ID NO:647 FGGGTEVVVKR
SEQ ID NO:651 FGGGTKVEIKR
SEQ ID NO:660 FGGGTKVEIKR T VAAPSVFIFPPSDQQLKSGTASVCLLLNFFYPREAVQPQKVDNALQSGN
SEQ ID NO:666 FGGGTKVEIKR T VAAPSVFIFPPSDQQLKSGTASVCLLLNFFYPREAVQPQKVDNALQSGN
SEQ ID NO:702 FGGGTKVEIKR T VAAPSVFIFPPSDQQLKSGTASVCLLLNFFYPREAVQPQKVDNALQSGN
SEQ ID NO:706 FGGGTKVEIKR T VAAPSVFIFPPSDQQLKSGTASVCLLLNFFYPREAVQPQKVDNALQSGN
SEQ ID NO:709 FGGGTKVEIKR

kappa constant light chain (continued)
SEQ ID NO:2 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
SEQ ID NO:20 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
SEQ ID NO:647 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
SEQ ID NO:651 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
SEQ ID NO:660 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
SEQ ID NO:666 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
SEQ ID NO:699 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
SEQ ID NO:702 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
SEQ ID NO:706 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
SEQ ID NO:709 SQSVTEQDSKSTYSHLSSTTLSKADYKSLLKHYAICEVTQGLSSLPPVTKSFNRGEC
FIGURE 37A - Alignment of Ab1 heavy chains

SEQ ID NO: 3	METGLRWLLLVAVLKVQCC - QSLLESGGRLVTGPPLTLTCTASGFLS NYVT WVRQAPKGLWIG
SEQ ID NO: 18	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 19	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 652	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 656	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 657	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 658	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 661	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 664	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 665	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 704	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG
SEQ ID NO: 708	EVQLVESGGGLVQPGSRLSCAAGFSLS NYVT WVRQAPKGLWIG

<table>
<thead>
<tr>
<th>CDR2</th>
<th>FR3</th>
<th>CDR3</th>
<th>FR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ ID NO: 3</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 18</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 19</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 652</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 656</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 657</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 658</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 661</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 664</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 665</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 704</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO: 708</td>
<td>IIFYG-SDEYATYAFAG RPTISKTST--TVLKLGMSTLTAADATGTYCAR DDSDWDKFNWL WQQTTLVTVSS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 37B - Alignment of Ab1 heavy chains, continued

gamma-1 constant heavy chain polypeptide

SEQ ID NO: 3
ASTKGPSVFPLAPSSKSTSGTALGCLVK

SEQ ID NO: 664
ASTKGPSVFPLAPSSKSTSGTALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAPAVLQSSGLY SSVTVPSSS

SEQ ID NO: 665
ASTKGPSVFPLAPSSKSTSGTALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAPAVLQSSGLY SSVTVPSSS

SEQ ID NO: 704
ASTKGPSVFPLAPSSKSTSGTALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAPAVLQSSGLY SSVTVPSSS

SEQ ID NO: 708
ASTKGPSVFPLAPSSKSTSGTALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAPAVLQSSGLY SSVTVPSSS

gamma-1 constant heavy chain polypeptide, continued

SEQ ID NO: 664
LGTQTYICNVKPSNTKVDKRVEKSCDKTCHTCCPACPELLGGSVPFLFPKDPDLMLRSRTPEVTCVVVDV

SEQ ID NO: 665
LGTQTYICNVKPSNTKVDKRVEKSCDKTCHTCCPACPELLGGSVPFLFPKDPDLMLRSRTPEVTCVVVDV

SEQ ID NO: 704
LGTQTYICNVKPSNTKVDKRVEKSCDKTCHTCCPACPELLGGSVPFLFPKDPDLMLRSRTPEVTCVVVDV

SEQ ID NO: 708
LGTQTYICNVKPSNTKVDKRVEKSCDKTCHTCCPACPELLGGSVPFLFPKDPDLMLRSRTPEVTCVVVDV

gamma-1 constant heavy chain polypeptide, continued

SEQ ID NO: 664
HEDPEVKFNWYVDGEVHNAKTPREEQYASTYRVSVLTLDQDLNGKERVKCKVSNKALPAEKTSKAKQ

SEQ ID NO: 665
HEDPEVKFNWYVDGEVHNAKTPREEQYASTYRVSVLTLDQDLNGKERVKCKVSNKALPAEKTSKAKQ

SEQ ID NO: 704
HEDPEVKFNWYVDGEVHNAKTPREEQYASTYRVSVLTLDQDLNGKERVKCKVSNKALPAEKTSKAKQ

SEQ ID NO: 708
HEDPEVKFNWYVDGEVHNAKTPREEQYASTYRVSVLTLDQDLNGKERVKCKVSNKALPAEKTSKAKQ

gamma-1 constant heavy chain polypeptide, continued

SEQ ID NO: 664
FREPQVYTLPPSDELTNKQSPSLTCLVKGFYPSDSIAVWESNGQPPENNYKTTPPLSVLSDGSFFLYSKLTVDKSRW

SEQ ID NO: 665
FREPQVYTLPPSDELTNKQSPSLTCLVKGFYPSDSIAVWESNGQPPENNYKTTPPLSVLSDGSFFLYSKLTVDKSRW

SEQ ID NO: 704
FREPQVYTLPPSDELTNKQSPSLTCLVKGFYPSDSIAVWESNGQPPENNYKTTPPLSVLSDGSFFLYSKLTVDKSRW

SEQ ID NO: 708
FREPQVYTLPPSDELTNKQSPSLTCLVKGFYPSDSIAVWESNGQPPENNYKTTPPLSVLSDGSFFLYSKLTVDKSRW

gamma-1 constant heavy chain polypeptide, continued

SEQ ID NO: 664
QQQVFSVCSVMHEALHNHYTKQKLSLSPGK

SEQ ID NO: 665
QQQVFSVCSVMHEALHNHYTKQKLSLSPGK

SEQ ID NO: 704
QQQVFSVCSVMHEALHNHYTKQKLSLSPGK

SEQ ID NO: 708
QQQVFSVCSVMHEALHNHYTKQKLSLSPGK
Mean (±SEM) C-reactive protein concentration versus time: Ab1 versus placebo in NSCLC patients

- Ab1 80mg (n=29)
- Ab1 160mg (n=32)
- Ab1 320mg (n=32)
- Placebo (n=31)

Figure 38
Median (dQQR) C-reactive protein concentration (mg/L) versus time: Ab1 versus placebo in NSCLC patients

Figure 39
Mean (±SD) plasma C-reactive protein concentration ALD518 80mg, 160mg, and 320mg as a single i.v. infusion in patients with advanced cancer (n=8)

Figure 40
Mean (±SD) C-reactive protein concentration versus time: Ab1 versus placebo in rheumatoid arthritis patients with an inadequate response to methotrexate

Figure 41
Mean (±SD) hemoglobin concentration (g/dl): Ab1 versus placebo in NSCLC patients

Figure 42
Mean (±SD) change from baseline in hemoglobin concentration (g/dl): Ab1 versus placebo in NSCLC patients

Figure 43
Mean (±SEM) hemoglobin concentration (g/dl) in NSCLC patients with a baseline hemoglobin below 11g/l at baseline versus time:
Ab1 versus placebo

Figure 44
Mean (±SEM) Hemoglobin concentration: Ab1 versus placebo in patients with rheumatoid arthritis who have an inadequate response to methotrexate

Figure 45
Mean (±SD) plasma albumin concentration (g/L) versus time: Ab1 versus placebo in NSCLC patients

Figure 46
Mean (±SD) change from baseline in plasma albumin concentration (g/L) versus time: Ab1 versus placebo in NSCLC patients

Figure 47
Mean (±SEM) albumin concentration in NSCLC patients with a baseline albumin ≤35 g/l at baseline versus time: Ab1 versus placebo

Figure 48
Mean (±SD) change from baseline in body weight (kg) versus time: Ab1 versus placebo in NSCLC patients

Figure 49
Mean (±SD) % change in body weight versus time: Ab1 versus placebo in NSCLC patients

Figure 50
Percentage change in mean (±SEM) lean body mass (kg) over time using DEXA: Ab1 versus placebo in NSCLC patients

Figure 51
Mean (±SD) FACIT fatigue subscale score versus time: Ab1 versus placebo in NSCLC patients

Figure 52
Mean (±SD) change from baseline FACIT-F fatigue subscale score versus time: Ab1 versus placebo in NSCLC patients

Figure S3
Median D-dimer concentration (ng/ml) versus time: Ab1 versus placebo in NSCLC patients

- Placebo (n=31)
- Ab1 60mg (n=29)
- Ab1 160mg (n=32)
- Ab1 320mg (n=32)

Time (weeks)

Figure 54
% change from baseline in median D-dimer concentration (ng/ml) versus time: Ab1 versus placebo in NSCLC patients

Figure 55
Percentage patients achieving ACR 20/50/70 at week 16 – MITT non responder imputation

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n=33)</th>
<th>Ab1 80mg (n=32)</th>
<th>Ab1 160mg (n=34)</th>
<th>Ab1 320mg (n=28)</th>
<th>Ab1 Pooled (n=94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR 20</td>
<td>36% (p=0.0026)</td>
<td>75% (p=0.0283)</td>
<td>65% (p=0.0005)</td>
<td>82% (p=0.0002)</td>
<td></td>
</tr>
<tr>
<td>ACR 50</td>
<td>15% (p=0.0281)</td>
<td>41% (p=0.0291)</td>
<td>50% (p=0.0052)</td>
<td></td>
<td>44% (p=0.0032)</td>
</tr>
<tr>
<td>ACR 70</td>
<td>6% (p=0.0824)</td>
<td>22% (p=0.2585)</td>
<td>18% (p=0.0015)</td>
<td>43% (p=0.0130)</td>
<td>27% (p=0.0130)</td>
</tr>
</tbody>
</table>

Figure 56
Percentage patients achieving a good/moderate EULAR response versus time: Ab1 versus placebo in rheumatoid arthritis patients with an inadequate response to methotrexate

Figure 57
Percentage patients achieving an ACR50 score versus time - Ab1 versus placebo MITT in rheumatoid arthritis patients with an inadequate response to methotrexate

Figure S8
Percentage patients achieving an ACR70 score versus time - Ab1 versus placebo MITT in rheumatoid arthritis patients with an inadequate response to methotrexate

Figure 59
Figure 60
Mean (±SEM) change from baseline in HAQ-DI score versus time: Ab1 versus placebo in patients with rheumatoid arthritis with an inadequate response to methotrexate.
Mean (±SD) DAS28-CRP score versus time: Ab1 versus placebo in rheumatoid arthritis patients with an inadequate response to methotrexate

Figure 62
Percentage patients achieving a good/moderate EULAR response versus time: Ab1 versus placebo in rheumatoid arthritis patients with an inadequate response to methotrexate

Figure 63