A coupling means for a bicycle provided with a pedal operated brake activating means (8) which is separated from the drive chain, comprising a first freewheel coupling (8) which is associated with the pedal crank assembly for torque transfer to the brake activating means (8) at reverse rotation of the pedal crank, and a second freewheel coupling (43; 64; 143) for torque transfer to the drive wheel at forward rotation of the pedal crank, and a third freewheel coupling which is associated with the drive wheel and arranged to deactivate either of said first freewheel coupling or said second freewheel coupling (43; 64; 143) by means of a shifting means (30; 65; 130) at reverse rotation of the drive wheel. A slip clutch (35, 36; 67; 69; 135, 136) is arranged to enable greater freedom of rotation as said third freewheel coupling is engaged.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	ML	Mali
AU	Australia	GA	Gabon	MR	Mauritania
BB	Barbados	GB	United Kingdom	MW	Malawi
BE	Belgium	HU	Hungary	NL	Netherlands
BG	Bulgaria	IT	Italy	NO	Norway
BJ	Benin	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	LI	Liechtenstein	SN	Senegal
CH	Switzerland	LK	Sri Lanka	SU	Soviet Union
CM	Cameroon	LU	Luxembourg	TD	Chad
DE	Germany, Federal Republic of	MC	Monaco	TG	Togo
DK	Denmark	MG	Madagascar	US	United States of America
Arrangement, for a bicycle, which automatically remove
the brake functioning at a backward movement of the
driving-wheel

This invention relates to a coupling means for a bicycle provided
with a pedal operated brake activating means separated from the drive
chain, and which comprises a first freewheel coupling associated with
pedal crank for torque transmission to the brake activating means at
reverse rotation of the pedal crank and a second freewheel coupling
associated with the drive wheel of the bicycle for torque transmission
to the drive wheel at forward rotation of the pedal crank.

One problem inherent with previously known bicycle designs of this type
resides in the fact that the freewheel coupling in the pedal crank
assembly and the drive wheel hub have had such an engagement direction
that by rearward movement of the bicycle, i.e. when the drive wheel is
rotated in its reverse direction, such a rearward movement is trans-
ferred by the chain to the pedal crank and further to the brake activ-
vating means, whereby the brake is activated and the bicycle is locked
dead.

This invention intends to accomplish a device which automatically will
inactivate the braking function at reverse rotation of the drive wheel.

 embodiments of the invention are herein below described in detail under
reference to the accompanying drawings.

On the drawings:

Fig 1 shows a side elevation of the bicycle comprising the pedal crank
assembly, the drive wheel and the brake device.

Fig 2 shows cross-section along line A-A in Fig 1 including a dis-
engagement means according to the invention.

Fig 3 shows, partly in section, a view of the pedal crank assembly of
the bicycle.

Fig 4 shows a section along line B-B in Fig 3 and illustrates the
brake activating means as well as the disengagement means.

Fig 5 shows a disengagement device according to the invention lo-
cated in the hub of the drive wheel.
Fig 6 shows a section along line A-A in Fig 5.

Fig 7 shows a section along line B-B in Fig 5.

Fig 8 shows a longitudinal section through the hub of the drive wheel according to an alternative embodiment of the invention.

Fig 9 shows a section along line E-E in Fig 8.

Fig 10 shows a section along line F-F in Fig 8.

Fig 11 shows a longitudinal section through the drive wheel hub according to another embodiment of the invention.

Fig 12 shows a section along line G-G in Fig 11.

Fig 13 shows a side elevation of the bicycle comprising assembly, the drive wheel and brake device.

Fig 14 shows cross-section along line A-A in Fig 13 including a disengagement means according to the invention.

Fig 15 shows, partly in section, a view of the pedal crank assembly of the bicycle according to another embodiment of the invention.

Fig 16 shows a section along line B-B in Fig 14.

Fig 17 shows a section along line C-C in Fig 15.

Fig 18 shows a section along line G-G in Fig 15 according to another embodiment of the invention.

The bicycle which is illustrated in Fig 1 comprises a pedal crank assembly in which is journalled a pedal crank shaft 2 provided with rigidly attached pedal arms and a sprocket wheel by which a chain is connected to the drive wheel of the bicycle. The pedal crank assembly also comprises a brake activating means which by means of a wire 50 is connected to a rim brake 51.

The brake activating means at the pedal crank assembly comprises a sleeve 1 which is rigidly attached to the crank shaft 2, a rotating ring 3 surrounding the sleeve 1 and being drivingly connected to the latter via friction surfaces 10. See Fig 3. These friction surfaces 10 are conical and are pressed together by means of a washer spring 9.
which acts against one of the pedal arms 5. The rotating ring 3 is
provided with ratchet teeth 4 for cooperation with a number of catches
7. The latter are pivotally supported on a ring 6 which in turn is
formed with a radially extending activating arm 8. See Fig 4.

At forward rotation of the pedal shaft, the catches 7 remain unengaged
in that they are pivoted away from the teeth 4 of the rotating ring 3.
At reverse rotation of the pedal cranks, the catches 7 will engage
positively the teeth 4 and thereby make the ring 6 rotate in a reverse
direction and exert an activating movement on the arm 8. The arm 8 is
coupled to the rim brake 51 by the wire 50. At too high brake acti-
vating force applied on the pedal cranks, a slipping movement will
occur between the friction surfaces 10 so as to protect the device
against overloads.

On the outer periphery of the ring 6, there is journalled a disengage-
ment ring 11 which by means of a wire 14 is connected to an activating
device on the drive wheel. The ring 11 is formed with grooves 12 which
is located just outside the catches 7 as the ring 11 occupies its in-
active position. As the disengagement device is activated, the ring 11
will be rotated by the wire 14 such that one of the edges 13 of the
grooves 12 will engage and pivot the catches 7 and, thereby, inactivate
the brake activating coupling. This occurs at reverse rotation of the
drive wheel and prevents the braking device, i.e., the rim brake 51, to
be activated and lock the bicycle dead.

In order to accomplish the above described disengagement of the brake
activating means, the hub of the drive wheel is provided with an ex-
ternal freewheel coupling in the form of catches 21 arranged between
a ring 20 mounted on the hub and an activating ring 23. See Fig 1 and
2. The activating ring 23 is coupled to a wire activating arm 28 by
means of a friction coupling 25, 26. At reverse rotation of the drive
wheel, the catches 21 will establish a rigid connection between the
ring 20 and the activating ring 23 and, thereby, move the activating
arm 28 backwards, and through the wire 14 rotate ring 11 and disengage
the catches 7 in the pedal crank assembly. For enabling a longer re-
verse movement of the drive wheel, the friction coupling 25, 26 will
allow the activating arm 28 to slip relative to the activating ring 23.
According to the above described embodiment of the invention, the bicycle comprises a freewheel coupling associated with the drive wheel and which by means of an activating means is intended to inactivate the brake activating device in the pedal crank assembly. In Fig 5, 6 and 7, there is shown an embodiment of the invention in which the disengagement device is located within the hub of the drive wheel and arranged to inactivate the freewheel coupling of the drive wheel by which the drive force is transmitted from the chain sprocket to the drive wheel. In the embodiment of the hub shown in Fig 5, the disengagement device is located at the hub of the drive wheel and comprises a non-rotating shaft 29 locked to the frame of the bicycle. In the drive wheel, there is immovably connected a hub sleeve 42 which on its outside supports a drive sleeve 44 journaled on ball bearings. On the drive sleeve 44, there are rigidly mounted a number of chain sprockets 40 of different sizes. The drive sleeve 44, which is rotatably journaled on the hub sleeve 42, is arranged to transfer the drive force from the chain and the chain sprockets 40 to the wheel via a number of catches 43 which form a freewheel coupling between the drive sleeve 44 and the hub sleeve 42.

In order to accomplish a discontinuation in the connection between the wheel and the brake activating means in the pedal crank assembly and, thereby, avoid a locking dead of the bicycle at reverse movement, this embodiment of the invention comprises means in the drive wheel hub for deactivating the catches 43. For that purpose, a deactivating sleeve 30 is journaled in the hub sleeve 42. The activating sleeve 30 is arranged to move the catches 43 to an inactive position at rearward movement of the wheel. This is accomplished by means of catches 32 and a tooth ring 33 journaled on a non-rotating sleeve 34. The catches 32 and the tooth ring 33 form a third freewheel coupling which has the same direction of engagement as the freewheel coupling in the pedal crank assembly as well as the freewheel coupling between the drive sleeve 44 and the hub sleeve 42. The tooth ring 33 is coupled to the non-rotating sleeve 34 by means of a friction coupling 33, 36 for enabling slippage of the tooth ring 33 at extended rearward movement of the wheel. As being illustrated in Fig 6, the dis-
engagement sleeve 30 is formed with openings 30a into which the catch 43 extends at normal operation of the bicycle. At reverse rotation and locking of the deactivating sleeve 30 by means of the catches 32, the sleeve 30 will force the catch 43 out of the opening 30a, and thereby, move the catch 43 out of engagement with the drive sleeve 44. The openings 30a have a larger circumferential extent than the catch 43 and enables a rotational play between the sleeve 30 and the catch 43. This play is intended to give a delay of the disengagement of the catch 43. Return movement of the sleeve 30 is ensured by a torsion spring 31.

For preventing any kind of load from acting on the catch 43 and make disengagement of the latter more difficult when acted upon by the sleeve 30, the drive sleeve 44 is provided with a coupling ring 39 which is rotationally locked relative to the latter except for a play 46. See Fig 7. To ensure that this play will always offer a certain degree of free running of the ring 39 at the start of the reverse movement of the wheel, there is incorporated a spring 47 which is active to turn the sleeve 39 in that direction in which the play to the drive sleeve 44 is ensured. This rotational play between the ring 39 and the drive sleeve 44 also intends to avoid locking dead of the bicycle at heavy braking. Due to the elasticity of the brake force transmitting means, a rotational play is required to avoid the drive catch 43 to engage before the brake has been released.

In the above described embodiments of the invention, there are described two alternative locations of a third freewheel coupling in order to accomplish a deactivation of anyone of the other freewheel couplings, i.e. either the freewheel coupling in the pedal crank assembly or the freewheel coupling in the drive wheel hub, and in which deactivating means are incorporated to avoid locking dead of the bicycle at a longer reverse movement of the bicycle.
In Fig 8, 9 and 10, there is shown an alternative embodiment of the invention in which a deactivating means is incorporated in the hub of the drive wheel for deactivating the freewheel coupling of the drive wheel by which the drive torque is transferred from the chain sprocket to the wheel. In the embodiment shown in Fig 8, the deactivating means comprises a non-rotating shaft 60 rigidly locked to the bicycle frame. A hub sleeve 61 is rigidly attached to the drive wheel and is journaled by means of a ball bearing on a drive sleeve 63. The latter is in turn journaled on the shaft 60 by means of two ball bearings and carries a number of chain sprockets 62 of different sizes. The drive sleeve 63 is arranged to transfer a power from the chain and the chain sprockets 62 to the wheel via a number of catches 64 which form a freewheel coupling between the drive sleeve 63 and the hub sleeve 61.

In order to accomplish a discontinuation in the connection between the drive wheel and the brake activating means in the pedal crank assembly and to avoid locking dead of the bicycle at reverse movement, this embodiment of the invention comprises means in the drive wheel hub for deactivating the catches 64. For this purpose, there is journaled a toothed deactivating sleeve 65 in the hub sleeve 61, such that deactivating sleeve 65 via catches 66 and a catch supporting ring 67 is arranged to move the catches 64 to their rest positions at reverse rotation of the wheel. The catches 66 and the toothed deactivating sleeve 65 form a third freewheel coupling. The catch supporting ring 67 is journaled on a non-rotating sleeve 71 by means of a friction coupling to enable slippage at long reverse movements.

The friction coupling comprises the catch supporting ring 67, a ring 69 firmly attached to the shaft 60 and a spring 72 for pressing together the catch supporting ring 67 and the ring 69. The spring 72 is axially supported by a sleeve 68. As being apparent from Fig 9, the deactivating sleeve 65 is formed with a sloping surface 65a which leaves the catch 64 unaffected at normal operation of the bicycle. The deactivating sleeve 65 is kept in its inactive position by means of a pretensioned spring 75. At reverse movement and interengagement
between the deactivating sleeve 65 and the catches 66, the deactivating sleeve 65 will force the catch 64 up on the sloping surface 65a, and thereby, move the catch 64 out of engagement with the drive sleeve 63.

For preventing any kind of load from acting on the catches 64 and make deactivation of the latter more difficult when acted upon by the deactivating sleeve 65, the drive sleeve is provided with a coupling ring 70 which is drivingly coupled to the drive sleeve 63 over a play 73. See Fig 10. To make sure that this play will always enable a certain degree of freerunning of the coupling ring 70 at the start of the reverse movement of the wheel, there is provided a spring 76 which is active to turn the coupling ring 70 in the direction in which the play relative to the drive sleeve 63 is ensured. This rotational play between the ring 70 and the drive sleeve 63 also serves as an insurance against locking dead of the bicycle at heavy braking. Due to the elasticity in the brake force transmitting means, a rotational play is required to avoid the catches 64 to get engaged before the brake has been released.

In Fig 11 and 12, there is shown still another embodiment of the invention in which the deactivating means is located inside the sprocket wheel unit of the drive wheel and arranged to deactivate the freewheel coupling by which the propulsion force of the bicycle is transmitted from the sprocket wheels to the drive wheel. According to this embodiment of the invention, the device comprises a non-rotatable shaft 129 rigidly attached to the frame of the bicycle. To the drive wheel, there is rigidly attached a sleeve 142 which on its outside carries a drive sleeve 144 journalled on a ball bearing. On the drive sleeve 144, there are non-rotatably mounted a number of chain sprockets 140. The drive sleeve 144 which is rotatably journalled on the hub sleeve 142 is intended to transmit the propulsion force from the chain sprockets 140 to the wheel by means of a number of catches 143 which form a freewheel coupling between the drive sleeve 144 and the hub sleeve 142. In order to accomplish a discontinuation
of the connection between the drive wheel and the brake activating means in the crank assembly to thereby prevent locking dead of the bicycle at reverse movement, there is rotatably mounted a deactivating sleeve 130 within the hub sleeve 142. By means of catches 132 and a toothed ring 133 mounted on the deactivating sleeve 130, the latter is intended to move the catches 143 to their inactive positions at reverse rotation of the wheel. The catches 132 and the toothed ring 133 form a third freewheel coupling. The deactivating sleeve 130 which is formed with a sloping surface is coupled to a ring 150 with a corresponding sloping surface for accomplishing of an axial movement of the deactivating sleeve 130. The ring 150 is rotated by means of a friction coupling 135, 136 which allows the ring 150 to slip at longer reverse movement.

As been illustrated in Fig 12, the deactivating sleeve 130 comprises a conical portion 130a which does not influence upon the catch 143 at normal operation of the bicycle, but is kept in inactive position by a pretensioned spring 131. At reverse rotation and activation of the deactivating sleeve 130 via the catches 132, the deactivating sleeve 130 will rotate and, at the same time, be axially displaced by engagement of the sloped surfaces against the corresponding surfaces on ring 150. Thereby, the drive catches 143 are moved out of engagement with the drive-sleeve 144.

In the drive wheel hub shown in Fig 11, there is comprised a fourth freewheel coupling, the purpose of which is to activate the coupling sleeve 130 during braking so as to prevent locking dead of the bicycle at braking to stillstand. This freewheel coupling comprises a sleeve 148 in which is journaled a coupling ring 139 which carries catches 155. The sleeve 148 is formed with grooves 146 which enables a rotational play of the coupling ring 139. A spring 147 acts to maintain this play at normal operation of the bicycle.
The bicycle which is illustrated in Fig 13 comprises a pedal crank assembly in which is journalled a pedal crank shaft 2 provided with rigidly attached pedal arms and a sprocket wheel by which a chain is connected to the drive wheel of the bicycle. The pedal crank assembly also comprises a brake activating means which by means of a wire 50 is connected to a rim brake 51.

The brake activating means at the pedal crank assembly comprises a sleeve 201 which is rigidly attached to the crank shaft 2, a rotating ring 203 surrounding the sleeve 201 and being drivingly connected to the latter via friction surfaces 210. See Fig 14. These friction surfaces 210 are conical and are pressed together by means of a washer spring 209 which acts against an adjustable ring nut 214. The rotating ring 203 is provided with ratchet teeth 204 for cooperation with a number of catches 207. The latters are pivotally supported on a ring 206 which in turn is formed with a radially extending activating arm 8 for connection to the rim brake 51.

At forward rotation of the pedal shaft, the catches 207 remain unengaged in that they are pivoted away from the teeth 204 of the rotating ring 203. At reverse rotation of the pedal cranks, the catches 207 will engage positively the teeth 204 and thereby make the ring 206 rotate in a reverse direction and exert an activating movement on the arm 8. At too a high brake activating force applied on the pedal cranks, a slipping movement will occur between the friction surfaces 210 so as to protect the device against overloads.

A freewheel coupling is provided between the pedal shaft 2 and the sprocket wheel 240 which in a common way is coupled to the rear wheel of the bicycle by means of a chain. This freewheel coupling in the pedal crank assembly comprises a sleeve 242 which is nonrotatably mounted on the pedal shaft 2 and which on its outer periphery supports a sprocket wheel carrying drive sleeve 244. The latter is journalled on the sleeve 242 by means of ball bearings and arranged to transfer the drive force
from the pedal shaft 2 to the sprocket wheel via couple of catches 243. The latters form a freewheel coupling between the shaft sleeve 242 and the drive sleeve 244.

In order to obtain, according to the invention, an interruption in the connection between the rear wheel of the bicycle and the brake activating means in the pedal crank assembly to thereby prevent locking dead of the bicycle at reverse movement, there are provided means in the pedal crank assembly by which the catches 243 are lifted out of engagement. To this end, a deactivation sleeve 230 is rotatably supported on the drive sleeve 244. The deactivation sleeve 230 is formed with a tooth ring for cooperation with catches 232 tiltably supported on a ring 233. The latter is rotatably mounted on a flanged, frame mounted sleeve 250, and arranged to disengage the catches 243 at reverse rotation of the drive sleeve 244 caused by reverse movement of the bicycle.

The catches 232 and the tooth ring on the deactivation sleeve 230 form a fourth freewheel coupling which has the same engagement direction as both the freewheel coupling in the rear wheel hub and the drive coupling 242-244 in the pedal crank assembly. The ring 233 which carriers the catches 232 is coupled to the stationary flanged sleeve 250 by means of a friction coupling for enabling slipage at longer reverse movements. The friction coupling comprises one or move adjustment screws 221, each provided with a spring 220 and a friction element 219. These screws 221 are mounted in threaded through openings in the ring 233, and accomplish a frictional engagement with the outer surface of the flanged sleeve 250.

As illustrated in Fig 16, the deactivation sleeve 230 is formed with recesses 230a in which the outer portions of the catches 243 are received during normal, forward movement of the bicycle. At reverse rotation of the sprocket wheel and the drive sleeve 244, the deactivation sleeve 230 is locked by the catches 232 and forces the catches 243 out of the recesses 230a and, thereby, out of engagement with the drive sleeve 244.

In order to prevent any kind of load from acting on the catches 243 and, thereby, making their disengagement harder, the
sleeve 242 is provided with toothed ring 239. The latter is rotationally coupled to the sleeve 242 over a rotational play. This play is accomplished by a narrow external tooth 246 on the sleeve 242 in cooperation with a considerably wider recess 246a on the inside surface of the toothed ring 239, See Fig.17. In order to ensure that the above mentioned play will always offer a certain amount of lost motion of the toothed ring 239 at the beginning of the reverse movement of the wheel, there is provided a spring 247 for biasing the ring 239 in the direction in which the play visavi the sleeve 242 is obtained. This rotational play also ensures that the bicycle is locked dead at real hard braking. Due to same resiliency in the brake force transmitting means, there is required a rotational play to prevent the catches 245 from reengaging before the brake is released.

In still another embodiment of the invention, illustrated in Fig.18, there is mounted a catch 248 in the drive sleeve 244 having on opposite direction of engagement in relation to the drive catches 243 and being engaged at reverse rotation of the pedal crank. At continued reverse pedal crank movement, the drive catches 243 are disengaged (as described above), and due to the rotation of the deactivation sleeve 230 a further play will occur. The advantage by this arrangement is that the rotational play can be reduced. There will be a smaller lost motion each time you restart pedalling after having rest for a while during forward driving. The reason is that an extra play is provided at braking only. By this arrangement, is it possible to have a better control on the drive catches 243 in respect of the engagement shoulders after braking. After a heavy braking, the play is still same when re-starting pedalling.

The embodiments of the invention are not limited to the above described examples but may be varied within the scope of the claims.
Claims

1. Coupling means for a bicycle provided with a pedal operated brake activating means (8) which is separated from the drive chain, comprising a first freewheel coupling (7) associated with the pedal crank assembly for torque transfer to the brake activating means (8) at reverse rotation of the pedal crank, and a second freewheel coupling (43, 64; 143) associated with the drive wheel of the bicycle for torque transfer to the drive wheel at forward rotation of the pedal crank, characterized by a third freewheel coupling (32; 66; 132) associated with the drive device of the bicycle, a shifting means (23; 30; 65; 130) connected to said third freewheel coupling (21; 32; 66; 132) and arranged to be activated by the latter at reverse rotation of the drive wheel of the bicycle, said shifting means (23; 30; 65; 130) being arranged to prevent engagement of, alternatively, said first freewheel coupling (7) or said second freewheel coupling (43; 64; 143) as said third freewheel coupling (21; 32; 66; 132) is activated.

2. Device according to claim 1, wherein said shifting means (23; 30; 65; 130) is arranged to influence upon and prevent engagement of said second freewheel coupling (43; 64; 143).

3. Device according to claim 2, wherein a slip clutch (35, 36; 67, 69; 135, 136) is provided to prevent limitation of reverse movement of the bicycle.
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *
According to International Patent Classification (IPC) or to both National Classification and IPC 4
B 62 L 5/18

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 4</td>
<td>B 62 L 1/00/-16, 5/00/-20; B 62 M 1/00/-02/-06, 11/16</td>
</tr>
<tr>
<td>Nat Cl</td>
<td>631:3/01, 3/02, 9, 10, 11/01, 11/02</td>
</tr>
<tr>
<td>US Cl</td>
<td>188:24-27</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 8

SE, NO, DK, FI classes as above

III. DOCUMENTS CONSIDERED TO BE RELEVANT:

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 11 with indication, where appropriate, of the relevant passages 12</th>
<th>Relevant to Claim No. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>SE, A, 186 799 (FICHTEL & SACHS AG) 10 December 1963</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>WO, A1, 84/01924 (AB TRAMA) 24 May 1984</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>DE, A1, 2 727 488 (FOSTER EDWIN EARL) 4 January 1979</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>DE, C2, 2 819 471 (SHIMANO INDUSTRIAL CO LTD) 16 November 1978</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 2 106 204 (WINNETT BOYD) 7 April 1983</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4 261 449 (FOSTER) 14 April 1981</td>
<td>1</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 1988-06-08
Date of Mailing of this International Search Report: 1988-06-27
International Searching Authority
Swedish Patent Office

[Signature of Authorized Officer: Peter Norberg]