Brush seal assembly including a pair of annular plates (11, 12) defining an annular slot (14) between them and a radially outer chamber (15) opening into the slot (14); and an annular brush seal (13) having bristles (16) and an enlarged portion (17) at its outer periphery formed by welding the bristles (16) together, the brush seal (13) extending through the slot (14) with its enlarged portion (17) retained in the chamber (15) wherein at least a portion of one of the plates (11, 12) has an extension thereof which is deformed over the other plate (11, 12) to hold the plates (11, 12) together to form the assembly characterised in that one of the plates (12) has a flat face in the region of the slot (14).
This invention relates to brush seal assemblies. Brush seals are typically used in, for example, gas turbine engines to seal between a stator and a rotating shaft. The bristles of the brush seal frequently extend between a pair of plates so that their free ends project there from and commonly the bristles and plates are welded into a single assembly. This arrangement enables easy handling and assembly and enables the unit to be provided with a very precise outer diameter. However, in use the bristles become worn and from time to time the seals need replacing. As the plates are made from rather expensive alloys, this can lead to a fairly high cost of ownership for the gas turbine.

In EP-A-091 1554A the possibility of clamping the brush seal elements between two plates is shown, but the plates are then held together by their mounting means and this creates problems of assembly and replacement.

According to the present invention there is provided a brush seal assembly including a pair of annular plates defining an annular slot between them and a radially outer chamber opening into the slot; and an annular brush seal having an enlarged portion at its outer periphery, the brush seal extending through the slot with its enlarged portion retained in the chamber wherein at least a portion of one of the plates is deformed over the other plate to hold the plates together to form the assembly characterised in that one of the plates has a flat face in the region of the slot and/or in that the other plate has a portion for squeezing locally the bristles against the flat region to hold the bristles or in that wherein the enlarged portion is asymmetric relative to the bristles.

In one embodiment the one plate is formed by a first leg of an L section
member and the extension is formed by the other.

In any embodiment the portion of the one plate may be formed by local deformation and preferably at least two portions are deformed.

Thus typically a number of tabs will be deformed out of an originally annular portion of the extension to locate and hold the two plates together. When the brush seal needs replacing, the tabs can be machined away and a new brush seal inserted. Further tabs can then be formed from previously undeformed portions of the extension. In this way the other plate can be reused over a significant number of repair cycles and the one plate can also be reused until there is insufficient under formed material left to form the deformed portions or tabs.

Thus from another aspect the invention consists in a method of refurbishing a seal as defined above including:

(a) releasing the plates by removing or releasing the portional portions;
(b) inserting a new brush seal; and
(c) deforming at least one different portion of the one plate over the other plate to hold the plates together.

As has already been indicated, it is believed that in most instances the step of removal will need to take place by machining.

It will also be understood that one plate could be deformed around the entire circumference of the extension, if that degree of location was required. In that case the one plate would become sacrificial, but the other plate would still be reusable.

Although the invention has been defined above it is to be understood it
includes any inventive combination of the features set out above or in the following description.

The invention may be performed in a number of ways and a specific embodiment will now be described, by way of example, with reference to the accompanying drawings, in which:

Figure 1 is a scrap radial cross-section through a portion of an annular brush seal assembly;

Figure 2 is a corresponding view of another embodiment; and

Figure 3 is a corresponding view of a third embodiment.

Thus a brush seal assembly, generally indicated at 10, includes a front plate 11, a rear plate 12 and a brush seal 13.

The plates define a radially extending slot 14, which is open at its radially inner end (not shown) and an outer peripheral annular chamber 15, which opens into the slot 14. This will reduce machining cost and is particularly made suitable with the clamping feature mentioned below. The bristles 16 of the brush seal 13 are joined together by an enlarged asymmetric root portion 17, formed by welding the ends of the bristles together. The root portion 17 is generally rectangular in section and dimensioned so as not to pass through opening 14a, which forms the peripherally outer portion of the slot 14. It will be noted that seats 18 and 19 are formed in the chamber 15 on either side of the opening 14a so as to prevent the root portion 17 from becoming rotated to the extent that it can be pulled out through the opening 14a.

Each of the plates 11 and 12 are generally L shaped in radial section so that the plate 11 has an annular extension or leg 20 that can be locally deformed.
inwardly to form tabs 20a that engage on an inclined shoulder 21 formed on the plate 12. This fixing causes a projection 22 on plate 11 to clamp the bristles 16 against the plate 12 by squeezing them against the plate 12. The tabs 20a may conveniently be spaced at approximately 120° intervals.

In due course, when the bristles 16 have become worn, the assembly 10 can be removed from the gas turbine and the tabs 20a machined off to release the assembly. A new brush seal 13 can be inserted and the plates re-engaged by forming new tabs 20a in under formed portions of the leg 20. Eventually a new front plate 11 will need to be provided, but the rear plate can still be recycled. As the alloys from which the plates 11 and 12 are formed are expensive and the seals may typically be a metre or more in diameter, this recycling will significantly reduce the cost of ownership of the brush seal assembly.

Figures 2 and 3 illustrate alternative embodiments where a face 12a of the rear plate 12 is flat both in the bristle clamping region and in the region of the slot 14. In these cases the chamber 15 defined by the slot 14 lies entirely within the front plate 11 with the rear plate 12 simply defining one wall. This approach is surprising as it might be thought difficult to retain the brush seal 13. However, the clamping of the bristles makes it particularly efficacious.

It will be appreciated that instead of just having local tabs 20a, the plates 11,12 could be joined together around the entire circumference by spinning over the extension 20.
Claims

1. A brush seal assembly including a pair of annular plates defining an annular slot between them and a radially outer chamber opening into the slot; and an annular brush seal having bristles and an enlarged portion at its outer periphery formed by welding the bristles together, the brush seal extending through the slot with its enlarged portion retained in the chamber wherein at least a portion of one of the plates has an extension thereof which is deformed over the other plate to hold the plates together to form the assembly characterised in that one of the plates has a flat face in the region of the slot.

2. A brush seal assembly wherein the other of the plates has a portion locally squeezing the bristles against the flat plate region to hold the bristles.

3. A brush seal assembly as claimed in claim 1 or claim 2 wherein the enlarged portion is asymmetric relative to the bristles.

4. An assembly as claimed in any one of the preceding claims wherein the one plate is formed by a first leg of an L sectioned member and the extension is formed by the other.

5. An assembly as claimed in any one of the preceding claims wherein the portion of the one plate is formed by local deformation.

6. A method of refurbishing a seal as claimed in any one of the preceding claims including:

(a) releasing the plates by reviewing or releasing the portion or portions;
(b) inserting a new brush seal; and
(c) deforming at least one different portion of the one plate over the other.
plate to hold the plates together.

7. A method as claimed in any claim 6 wherein at least two portions are deformed.

8. A method as claimed in claim 6 or claim 7 wherein the step of removal is performed by machining.
1. A brush seal assembly including a pair of annular plates defining an annular slot between them and a radially outer chamber opening into the slot; and an annular brush seal having bristles and an enlarged portion at its outer periphery formed by welding the bristles together, the brush seal extending through the slot with its enlarged portion retained in the chamber wherein at least a portion of one of the plates has an extension thereof which is deformed over the other plate to hold the plates together to form the assembly characterised in that one of the plates has a flat face in the region of the slot.

2. A brush seal assembly wherein the other of the plates has a portion locally squeezing the bristles against the flat plate region to hold the bristles.

3. A brush seal assembly as claimed in claim 1 or claim 2 wherein the enlarged portion is asymmetric relative to the bristles.

4. An assembly as claimed in any one of the preceding claims wherein the one plate is formed by a first leg of an L sectioned member and the extension is formed by the other.

5. An assembly as claimed in any one of the preceding claims wherein the portion of the one plate is formed by local deformation.

6. A method of refurbishing a seal as claimed in any one of the preceding claims including:

(a) releasing the plates by removing or releasing the portion or portions;

(b) inserting a new brush seal; and

(c) deforming at least one different portion of the one plate over the other.
Fig. 1
INTERNATIONAL SEARCH REPORT

Internal application No
PCT/GB2007/003694

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F16J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>
| X | WO 99/06673 A (SEALOL [US])
11 February 1999 (1999-02-11)
page 7, lines 2-8
page 7, lines 19-21
figures 6,13,15
-----|
| X | US 2002/189096 A1 (FLOWER RALPH FRANKLIN
JOHN [GB]) 19 December 2002 (2002-12-19)
paragraphs [0036], [0037]
figures 1,3-8,10
-----|
| Y | EP 1 347 218 A (UNITED TECHNOLOGIES CORP
paragraphs [0023], [0024], [0026],
[0039] - [0041]
figures 2a, 2b, 3a, 3b, 4-7
-----|

Further documents are listed in the continuation of Box C

See patent family annex

Special categories of cited documents

'A' document defining the general state of the art which is not considered to be of particular relevance
'B' earlier document but published on or after the international filing date
'C' document which may throw doubts on novelty claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
'D' document referring to an oral disclosure, use, exhibition or other means
'E' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
'X' document of particular relevance the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
'Y' document of particular relevance the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art
'A' document member of the same patent family

Date of the actual completion of the international search
29 November 2007

Date of mailing of the international search report
06/12/2007

Name and mailing address of the ISA
European Patent Office, P B 5818 Patentlaan Z
NL-2280 HV Rijswijk
Tel (+31-70) 340 2040 Tx 31 651 epo nl
Fax (+31-70) 340 3016

Authorized officer
Van WeI, Oscar
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>FR 2 626 646 A (MOTOREN TURBINEN UNION [DE]) 4 August 1989 (1989-08-04) page 4, line 27 - page 5, line 12 figure 3</td>
<td>1, 2, 4, 5</td>
</tr>
<tr>
<td>A</td>
<td>WO 03/091609 A (CROSS MFG CO 1938 LTD [GB]; FLOWER RALPH FRANKLYN JOHN [GB]) 6 November 2003 (2003-11-06) page 8, lines 22-27 figures 6, 9, 10</td>
<td>1-8</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 293 140 A (CROSS MFG CO [GB]) 30 November 1988 (1988-11-30) column 6, lines 8-27 figure 5B</td>
<td>1, 4, 5</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 9906673</td>
<td>11-02-1999</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2002189096</td>
<td>19-12-2002</td>
<td>AT 298056 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2394669 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60020884 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60020884 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1244881 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0148404 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003518599 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003178778 A1</td>
</tr>
<tr>
<td>FR 2626646</td>
<td>04-08-1989</td>
<td>DE 3802653 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2214998 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1228063 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5066024 A</td>
</tr>
<tr>
<td>EP 0293140</td>
<td>30-11-1988</td>
<td>DE 3878589 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3878589 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1026068 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2693178 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5090710 A</td>
</tr>
</tbody>
</table>