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(57) ABSTRACT 

An example embodiment of the present invention provides 
processes relating to a connection/communication protocol 
and a memory-addressing scheme for a distributed shared 
memory system. In the example embodiment, a logical node 
identifier comprises bits in the physical memory addresses 
used by the distributed shared memory system. Processes in 
the embodiment include logical node identifiers in packets 
which conform to the protocol and which are stored in a 
connection control block in local memory. By matching the 
logical node identifiers in a packet against the logical node 
identifiers in the connection control block, the processes 
ensure reliable delivery of packet data. Further, in the 
example embodiment, the logical node identifiers are used to 
create a virtual server consisting of multiple nodes in the 
distributed shared memory system. 
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NODE IDENTIFICATION FOR DISTRIBUTED 
SHARED MEMORY SYSTEM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. The present application is a continuation applica 
tion of pending U.S. patent application Ser. No. 1 1/740.432 
filed Apr. 26, 2007 and entitled “Node Identification for Dis 
tributed Shared Memory System, which is related to the 
following commonly-owned U.S. utility patent application, 
filed on Jan. 29, 2007, whose disclosure is incorporated 
herein by reference in its entirety for all purposes: U.S. patent 
application Ser. No. 1 1/668,275, entitled “Fast Invalidation 
for Cache Coherency in Distributed Shared Memory Sys 
ten. 

TECHNICAL FIELD 

0002 The present disclosure relates to an identification 
process for the nodes in a distributed shared memory system. 

BACKGROUND 

0003. A distributed shared memory (DSM) is a multipro 
cessor System in which the processors in the system are con 
nected by a scalable interconnect, such as an InfiniBand 
switched fabric communications link, instead of abus. DSM 
systems present a single memory image to the user, but the 
memory is physically distributed at the hardware level. Typi 
cally, each processor has access to a large shared global 
memory in addition to a limited local memory, which might 
be used as a component of the large shared global memory 
and also as a cache for the large shared global memory. 
Naturally, each processor will access the limited local 
memory associated with the processor much faster than the 
large shared global memory associated with other processors. 
This discrepancy in access time is called non-uniform 
memory access (NUMA). 
0004. A major technical challenge in DSM systems is 
ensuring that the each processor's memory cache is consistent 
with each other processor's memory cache. Such consistency 
is called cache coherence. To maintain cache coherence in 
larger distributed systems, additional hardware logic (e.g., a 
chipset) or software is used to implement a coherence proto 
col, typically directory-based, chosen in accordance with a 
data consistency model. Such as strict consistency. DSM sys 
tems that maintain cache coherence are called cache-coherent 
NUMA (ccNUMA). 
0005 Typically, if additional hardware logic is used, a 
node in the system will comprise a chip that includes the 
hardware logic and one or more processors and will be con 
nected to the other nodes by the scalable interconnect. For 
purposes of initial connection and later communication 
between nodes, the system might employ node identifiers, 
e.g., serial, random, or centrally assigned numbers, which in 
turn might be used as part of an address for physical memory 
residing on the node. 

SUMMARY 

0006. In particular embodiments, the present invention 
provides methods, apparatuses, and systems directed to node 
identification in a DSM system. In one particular embodi 
ment, the present invention provides node-identification pro 
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cesses for use with a connection/communication protocol and 
a memory-addressing, Scheme in a DSM system. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0007 FIG. 1 is a block diagram showing a DSM system, 
which system might be used with some embodiments of the 
present invention. 
0008 FIG. 2 is a block diagram showing some of the 
physical and functional components of an example DSM 
management chip or logic circuit, which chip might be used 
as part of a node with some embodiments of the present 
invention. 
0009 FIG. 3 is a diagram showing the format of an RDP 
over Ethernet packet and its header, which formats might be 
used in some embodiments of the present invention. 
0010 FIG. 4 is a diagram showing the format of an RDP 
over InfiniBand packet and its header, which formats might 
be used in some embodiments of the present invention. 
0011 FIG. 5 is a diagram showing the format of an RDP 
packet, its header, and its optional trailer, which formats 
might be used in Some embodiments of the present invention. 
0012 FIG. 6 is a diagram showing the format of a connec 
tion control block, which format might be used in some 
embodiments of the present invention. 
0013 FIG. 7 is a diagram showing an example illustrating 
the use of LNIDs with respect to the RDP protocol, which 
protocol might be used with an embodiment of the present 
invention. 
0014 FIG. 8 is a diagram showing a flowchart of an 
example process for building an RDP packet for transmission 
over the switched fabric network, which process might be 
used with an embodiment of the present invention. 
0015 FIG. 9 is a diagram showing a flowchart of an 
example process for validating an RDP packet received over 
the switched fabric network, which process might be used 
with an embodiment of the present invention. 
0016 FIG. 10 is a diagram showing the format of a 40-bit 
physical memory address in a 16-node DSM system and the 
format of a 40-bit physical memory address in a 256-node 
DSM system, which formats might be used with embodi 
ments of the present invention. 
0017 FIG. 11 is a diagram showing, for didactic purposes, 
the local views of a physical address space for a virtual server 
comprised of three nodes. 
0018 FIG. 12 is a diagram showing a flowchart of an 
example process for altering a physical memory address prior 
to transmission over a HyperTransport bus, which process 
might be used with an embodiment of the present invention. 
0019 FIG. 13 is a diagram showing a flowchart of an 
example process for altering a physical memory address prior 
to transmission over a Switched fabric, which process might 
be used with an embodiment of the present invention. 

DETAILED DESCRIPTION OF THE INVENTION 

0020. The following example embodiments are described 
and illustrated in conjunction with apparatuses, methods, and 
systems which are meant to be examples and illustrative, not 
limiting in scope. 

A. ccNUMA DMA System with DSM-Management 
Chips 

0021 A DSM system has been developed that provides 
cache-coherent non-uniform memory access (ccNUMA) 
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through the use of a DSM-management chip. In a particular 
embodiment, a DSM system may comprise a distributed com 
puter network of up to 16 nodes, connected by a switched 
fabric, where each node includes two or more Opteron CPUs 
and one DSM management chip. In another embodiment, this 
DSM system comprises up to 256 nodes connected by the 
switched fabric. 
0022. The DSM system allows the creation of a multi 
node virtual server which is a virtual machine consisting of 
multiple CPUs belonging to two or more nodes. In some 
embodiments, the nodes use a connection/communication 
protocol to communicate with each other and with virtual I/O 
servers in the DSM system. Enforcement of the connection/ 
communication protocol is also handled by the DSM-man 
agement chip. Consequently, virtual I/O servers include a 
DSM-management chip, though they do not contribute any 
physical memory to the DSM system and consequently do not 
make use of the chip's functionality directly related to cache 
coherence, in particular embodiments. For a further descrip 
tion of a virtual I/O server, see U.S. patent application Ser. 
No. 11/624,542, entitled “Virtualized Access to I/O Sub 
systems, and U.S. patent application Ser. No. 1 1/624,573, 
entitled “Virtual Input/Output Server”, both fled on Jan. 18, 
2007 which are incorporated herein by reference for all pur 
poses. As explained below, the connection/communication 
protocol uses an identifier called a logical node identifier 
(LNID) to identify source and destination nodes for packets 
that travel over the Switched fabric. 
0023 FIG. 1 is a diagram showing accNUMA DSM sys 
tem, which system might be used with a particular embodi 
ment of the invention. In this DSM system, four nodes (la 
beled 101, 102, 103, and 104) are connected to each other 
over a switched fabric (labeled 105) such as Ethernet or 
InfiniBand. In turn, each of the four nodes includes two 
Opteron CPUs, a DSM-management chip, and memory in the 
form of DDR2 SDRAM (double-data-rate two synchronous 
dynamic random access memory). In this embodiment, each 
Opteron CPU includes a local main memory connected to the 
CPU. This DSM system provides NUMA (non-uniform 
memory access) since each CPU can access its own local 
main memory faster than it can access the other memories 
shown in FIG. 1. 
0024. Also as shown in FIG. 1, a block of memory has its 
“home' in the local main memory of one of the Opteron CPUs 
in node 101. That is to say, this local main memory is where 
the system's version of the memory block is stored, regardless 
of whether there are any cached copies of the block. Such 
cached copies are shown in the DDR2s for nodes 103 and 104. 
The DSM-management chip includes hardware logic (e.g., 
the CMM) to enforce a coherence protocol and make the 
DSM system cache-coherent (e.g., ccNUMA) when multiple 
nodes are caching copies of the same block of memory. 

B. Example System Architecture of a 
DSM-Management Chip 

0025 FIG. 2 is diagram showing the physical and func 
tional components of a DSM-management chip, which chip 
might be used as part of a node with particular embodiments 
of the invention. The DSM-management chip includes inter 
connect functionality facilitating communications with one 
or more processors, which might be Opteron processors 
offered by Advanced Micro Devices (AMD), Inc., of Sunny 
Vale, Calif., in some embodiments. As FIG. 2 illustrates, the 
DSM-management chip includes two HyperTransport Man 
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agers (HTM), each of which manages communications to and 
from a processor over a HT (HyperTransport) bus. More 
specifically, an HTM provides the PHY and link layer func 
tionality for a cache coherent HT interface such as Opteron's 
ccHT. The HTM captures all received HT packets in a set of 
receive queues per interface (e.g., posted/non-posted com 
mand, request command, probe command and data) which 
are consumed by the Coherent Memory Manager (CMM). 
The HTM also captures packets from the CMM in a similar 
set of transmit queues per interface and transmits those pack 
ets on the HT interface. As a result of the two HTMs, the 
DSM-management chip becomes a coherent agent with 
respect to any bus Snoops broadcast over the cache-coherent 
HT bus by a processor's memory controller. Of course, other 
inter-chip or bus communications protocols might be used in 
other embodiments of the present invention. 
0026. Also as shown in FIG. 2, the two HTMs are con 
nected to a Coherent Memory Manager (CMM), which 
enforces a coherence protocol and thereby provides cache 
coherent access to memory shared by the nodes that are part 
of the DSM fabric. In addition to interfacing with the Opteron 
processors through the HTM, the CMM interfaces with the 
fabric via the RDM (Reliable Delivery Manager). Addition 
ally, the CMM provides interfaces to the HTM for DMA 
(Direct Memory Access) and configuration. 
0027. In some embodiments, the CMM behaves like both 
a processor cache on a cache-coherent (e.g., ccHT) bus and a 
memory controller on a cache-coherent (e.g., ccHT) bus, 
depending on the scenario. In particular, when a processor on 
a node performs an access to a home (or local) memory 
address, the home (or local) memory will generate a probe 
request that is used to Snoop the caches of all the processors 
on the node. The CMM will use this probe to determine if it 
has exported the block of memory containing that address to 
another node and may generate DSM probes (over the fabric) 
to respond appropriately to the initial probe. In this scenario, 
the CMM behaves like a processor cache on the cache-coher 
ent bus. 

0028. When a processor on a node performs an access to a 
remote memory, the processor will direct this access to the 
CMM. The CMM will examine the request and satisfy it from 
the local cache, if possible, and, in the process, generate any 
appropriate probes. If the request cannot be satisfied from the 
local cache, the CMM will send a DSM request to the remote 
memory's home node to (a) fetch the block of memory that 
contains the requested data or (b) request a state upgrade. In 
this case, the CMM will wait for the DSM response before it 
responds back to the processor. In this scenario, the CMM 
behaves like a memory controller on the ccHT bus. 
0029. The RDM manages the flow of packets across the 
DSM-management chip's two fabric interface ports. The 
RDM has two major clients, the CMM and the DMA Man 
ager (DMM), which initiate packets to be transmitted and 
consume received packets. The RDM ensures reliable end 
to-end delivery of packets using a connection/communica 
tion protocol called Reliable Delivery Protocol (RDP). On the 
fabric side, the RDM interfaces to the selected link/MAC 
(XGM for Ethernet, IBL for InfiniBand) for each of the two 
fabric ports. In particular embodiments, the fabric might con 
nect nodes to other nodes. In other embodiments, the fabric 
might also connect nodes to virtual IO servers. In particular 
embodiments, the processes using LNIDs described below 
might be executed by the RDM. 
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0030. The XGM provides a 10 GEthernet MAC function, 
which includes framing, inter-frame gap handling, padding 
for minimum frame size, Ethernet FCS (CRC) generation and 
checking, and flow control using PAUSE frames. The XGM 
supports two link speeds: single data rate XAUI (10Gbps) 
and double data rate XAUI (20Gbps). In particular embodi 
ments, the DSM-management chip has two instances of the 
XGM, one for each fabric port. Each XGM instance inter 
faces to the RDM, on one side, and to the associated PCS, on 
the other side. 
0031. The IBL provides a standard 4-lane IB link layer 
function, which includes link initialization, link state 
machine, CRC generation and checking, and flow control. 
The IBL block supports two link speeds, single data rate (8 
Gbps) and double data rate (1.6 Gbps), with automatic speed 
negotiation. In particular embodiments, the DSM-manage 
ment chip has two instances of the IBL, one for each fabric 
port. Each IBL instance interfaces to the RDM, on one side, 
and to the associated Physical Coding Sub-layer (PCS), on 
the other side. 
0032. The PCS, along with an associated quad-serdes, 
provides physical layer functionality for a 4-lane InfiniBand 
SDR/DDR interface, or a 10 G/20 G Ethernet XAUI/ 
10GBase-CX4 interface. In particular embodiments, the 
DSM-management chip has two instances of the PCS, one for 
each fabric port. Each PCS instance interfaces to the associ 
ated IBL and XGM. 
0033. The DMM shown in FIG. 2 manages and executes 
direct memory access (DMA) operations over RDP interfac 
ing to the CMM block on the host side and the RDM block on 
the fabric side. For DMA, the DMM interfaces to software 
through the DmaCB table in memory and the on-chip DMA 
execution and completion queues. The DMM also handles the 
sending and receiving of RDP interrupt messages and non 
RDP packets, and manages the associated inbound and out 
bound queues. 
0034. The DDR2 SDRAM Controller (SDC) attaches to a 
one or two external 240-pin DDR2 SDRAM DIMM, which is 
actually external to the DMS-management chip, as shown in 
both FIG. 1 and FIG. 2. In particular embodiments, the SDC 
provides SDRAM access for the CMM and the DMM. 
0035. In some embodiments, the DSM-management chip 
might comprise an application specific integrated circuit 
(ASIC), whereas in other embodiments the chip might com 
prise a field-programmable gate array (FPGA). Indeed, the 
logic encoded in the chip could be implemented in Software 
for DSM systems whose requirements might allow for longer 
latencies with respect to cache coherence, DMA, interrupts, 
etc. 

C. RDP Packets and Their Headers 

0036 FIG. 3 is a diagram showing the format of a packet 
for RDP over Ethernet and the packet's header, which formats 
might be used in Some embodiments of the present invention. 
When RDP runs over the Ethernet MAC layer, an RDP packet 
is encapsulated in an Ethernet MAC frame. The Ethernet 
header of an encapsulated RDP packet is a VLAN-tagged 
header (where VLAN stands for virtual local area network). 
In FIG. 3, SA identifies the 6-byte source MAC address and 
DA identifies the 6-byte destination MAC address. 
0037. The Reliable Delivery Protocol allows RDP and 
non-RDP packets to co-exist on the same fabric. When RDP 
runs over the Ethernet MAC layer, RDP and non-RDP pack 
ets are distinguished from each other by the presence of the 
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VLAN header and the value of the Length/Type field follow 
ing it. For an RDP packet: (a) the VLAN header is present, 
i.e., the first Length/Type field (following the last SA byte) 
has a value of 0x0081; and (b) the second Length/Type field 
(following the VLAN header) has a value less than 1536 
(frame length). An Ethernet frame that does not satisfy both of 
the above conditions is a non-RDP packet. 
0038 FIG. 4 is a diagram showing the format of a packet 
for RDP over InfiniBand and the packet's header, which for 
mats might be used in Some embodiments of the present 
invention. It will be appreciated that the header includes fields 
for Source Local ID and Destination Local ID. When RDP 
runs over the IB link layer, an RDP packet is encapsulated into 
an IB packet. The format of an IB Local Transport Packet is 
used, although the 12-byte Base Transport Header (BTH) 
which is normally present after the Local Route Header 
(LRH) is replaced by the RDP header (8 bytes) and the first 4 
bytes of the RDP payload. From the standpoint of the 113 
standard, bits 31:24 of the first DWORD of the RDP Header 
is the OpCode field of Base Transport Header (BTH). The 
most significant two bits (31:30) of that field have a fixed 
value of 0x3 (binary 11) for RDP packets, which specifies a 
Manufacturer Specific OpCode. The RSv8 field of the BTH 
(bits 31:24 of the second DWORD) is not protected by the 
32-bit IB Invariant CRC (ICRC). This corresponds to the 
most significant 8 bits of the DstLNID. Thus, these bits do not 
have end-to-end protection but do have point-to-point protec 
tion by the 16-bit Variant CRC (VCRC), which presents an 
insignificant risk of failure since the DstLNID is only used as 
a packet validation field at the destination node in conjunction 
with many other validation fields. A false match of a cor 
rupted LNID MSB (most significant bit) with good VCRC 
has very low probability and would only occur if the connec 
tion parameters were set up inconsistently at the source and 
destination nodes. 
0039. When RDP runs over the InfiniBand link layer, RDP 
and non-RDP packets are distinguished by the values of the 
LNH field in the IB Local Route Header and the QpCode field 
in the IB Base Transport Header. For an RDP packet: (a) 
LNH=0x2 (IBA Local); and (b) OpCode bits 7:6–0x3 
(Manufacturer Specific OpCode). An InfiniBand packet that 
does not satisfy both of the above conditions is a non-RDP 
packet. 
0040 FIG. 5 is a diagram showing the format of an RDP 
packet and its header, which formats might be used in some 
embodiments of the present invention. An RDP packet con 
sists of a header, payload, and optional trailer. As shown in 
FIG. 5, another field in the RDP packet is the SrcLNID 
(Source Logical Node ID) which identifies the packet's 
Source node. This is the connection identifier (i.e., remote 
LNID) at the destination node. This field is also 16 bits wide. 
Also as shown in FIG. 5, one of the fields in an RDP packet is 
the DestLNID (Destination Logical NodeID) which identi 
fies the packet's destination node. This is the connection 
identifier (i.e., remote LNID) at the source node. This field is 
16 bits wide. 

D. Using LNIDs with RDP 
0041. In particular embodiments, the DSM system uses a 
software data structure called the connection control block 
(CCB), stored in local memory such as the local main 
memory shown in FIG. 1, to facilitate implementation of the 
RDP protocol. The RDM uses a received packet's source 
LNID as an index into the CCB to find an entry for the 
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connection corresponding to the packet. FIG. 6 is a diagram 
showing the format of a CCB entry for a single connection, 
which format might be used in some embodiments of the 
present invention. As shown in FIG. 6, each entry records the 
fabric address for two paths, Path 0 and Path 1, which may 
correspond to the two fabric interface ports shown connected 
to the RDM in FIG. 2. In other embodiments, there might be 
more than two paths, corresponding to more than two fabric 
interface ports. It will be appreciated that the CCB entry has 
a field called MY LNID, which identifies the LNID for the 
RDM's node. 

0042. For an RDP connection between a pair of nodes, the 
node at each end uses an LNID to refer to the node at the other 
end. Within a multi-node virtual server (VS), every node is 
assigned a unique LNID, possibly by some management 
entity for the DSM system. For example, within a three-node 
VS, the LNID values might be 0, 1, and 2, or 1, 3, and 4, i.e., 
they not need to be sequentially incrementing from 0. In 
addition, every server (multi-node virtual server or standal 
one server) assigns a unique LNID to each node that commu 
nicates with it. For example, a standalone server node that 
communicates with the virtual server described above might 
be assigned an LNID value of 16 by the VS. If that same node 
communicates with another server, it may be assigned the 
same LNID or a different LNID by that server. Therefore, 
LNID assignments are unique from the standpoint of a given 
server, but they are not unique across servers. 
0043. An example of LNID assignments is shown in FIG. 
7. In the example, a virtual computing environment (VCE) 
consists of two virtual servers (A and B), an application server 
(C), and a virtual I/O server (D). In this example, virtual 
server A assigns LNID values 0, 1, and 2 to each of its own 
nodes (VS nodes A0, A1, and A2, respectively) and an LNID 
value of 16 to virtual I/O server D. Virtual server Bassigns 
values of I and 5 to each of its own nodes (VS nodes B1 and 
B5, respectively) and an LNID value of 18 to virtual I/O 
server D. Application server Cassigns an LNID value of 3 to 
virtual I/O server D. Virtual I/O server Dassigns LNID values 
0, 2, and 4, to VS nodes A0, A1 and A2, respectively, and 
LNID values of 6 and 8 to VS nodes B1 and B5. Finally, 
virtual I/O server Dassigns a value of 10 to application server 
C. These various assignments are collected and Summarized 
in Table 7.1 in FIG. 7. 

0044 Table 7.2 shows the SrcLNID and DstLNID values 
used in the headers of RDP packets exchanged between dif 
ferent node pairs. For example, VS nodes A0 and A1 both 
belong to virtual server A, so a packet from A0 to A1 will have 
a SrcLNID value of 0 (LNID assigned to A0 by VSA), and a 
DstLNID value of 1 (LNID assigned to A1 by VSA). As 
another example, a packet from A1 to I/O server D will have 
a SrcLNID value of 2 (LNID assigned to A1 by I/O server D) 
and a DstLNID value of 16 (LNID assigned by V S A to I/O 
server D). 
0045 FIG. 8 is a diagram showing a flowchart of an 
example process for building an RDP packet for transmission 
over the switched fabric network, which process might be 
used with an embodiment of the present invention. In the 
process's first step 801, the node's Reliable Delivery Manager 
(RDM) receives a DestLNID and data for an RDP packet 
from the node's CMM or DMM. The RDM uses the packet's 
DestLNID to look up the entry corresponding to the 
DestLNID in the Connection Control Block (CCB), in step 
802.1f there is no corresponding entry, the RDM sends an 
error message to the CMM or DMM, as the case maybe. Then 

Jan. 6, 2011 

in step 803, the RDM builds an RDP header for an RDP 
packet for the data, using the DestLNID and the CCB entry's 
MYLNID value. In step 804, the RDM builds a fabric header 
for the RDP packet, using information in the CCB entry's 
remote fabric address. Once the RDP packet is complete, the 
RDM sends the packet to the fabric link for transmission to 
the remote node, in step 805. 
0046 FIG. 9 is a diagram showing a flowchart of an 
example process for validating an RDP packet received over 
the switched fabric network, which process might be used 
with an embodiment of the present invention. In the process’s 
first step 901, a node's RDM receives an RDP packet over the 
switched fabric network. The RDM then checks to see 
whether the packet's destination fabric address (e.g., the 
6-byte MAC DA in an Ethernet header or the Destination 
Local ID in an Infiniband LRH) matches the node's fabric 
address, in step 902. If not, the RDM discards the packet. 
Otherwise, the RDM goes to step 903 and determines 
whether the packet is an RDP packet. If not, the RDM will 
process the packet as a non-RDP packet, in step 904. Other 
wise, if the packet is an RDP packet, the RDM uses the 
packet's SrcLNID to look up the entry corresponding to the 
SrcLNID in the Connection Control Block (CCB), in step 
905. If there is no corresponding entry, the RDM discards the 
packet. Then the RDM goes to step 906 and checks to make 
Sure that the packet's source fabric address (e.g., the 6-byte 
MACSA in an Ethernet header or the Source Local ID in an 
Infiniband LRH) matches the CCB entry's remote fabric 
address (e.g., for Path 0 or Path 1). If not, the RDM discards 
the packet. Otherwise, the RDM checks to determine whether 
the packet's DestLNID matches the CCB entry's MY LNID, 
in step 907. If not, the RDM discards the packet. But if there 
is a match, the RDM forwards the packet to the CMM or 
DMM for further processing. 

E. Using LNIDs With Memory-Addressing Scheme 
0047. As indicated earlier, the DSM system also uses 
LNIDS in its memory-addressing scheme. In particular 
embodiments, the physical memory address width is 40-bits 
(e.g., in DSM systems that use the present generation of 
Opteron CPUs), though it will be appreciated that there are 
numerous other suitable widths. FIG.10 is a diagram showing 
the format of a 40-bit physical memory address in a 16-node 
DSM system and the format of a 40-bit physical memory 
address in a 256-node DSM system. As shown in FIG. 10, the 
four most significant bits comprise an LNID in the 16-node 
DSM system and the eight most significant bits comprise an 
LNID in the 256-node DSM system. 
0048. In particular embodiments of the DSM system, the 
physical address space for a virtual server is arranged so that 
the local node's memory always starts at address 0 (zero). One 
reason for using this arrangement is compatibility with legacy 
system Software, in particular embodiments. Specifically, 
with local memory starting at address 0, system Software 
(e.g., boot code) accesses local memory the same way that it 
does on a standard server. Another reason for using this 
arrangement is that it simplifies the address lookup in the 
CMM. For a memory read/write request from a local proces 
sor, an address in the lower 11 16th or 11256th segment of the 
40-bit address space is always local and all other addresses 
map to memory in other nodes. 
0049. To see how the arrangement works, consider the 
example of a virtual server consisting of three nodes: 0, 1, and 
2. In a 16-node DSM system, the total addressable memory 
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space for this virtual server would be 1 terabyte (240) and 
each node would be allocated a segment which is 1116 of that 
space (64 GB or 236). From a global view, the first 64GB 
segment of the physical address space starting at address 0 
would be allocated to node 0 (i.e., the node whose LNID 
equals 0), the next 64 GB segment to node 1, and the follow 
ing segment to node 2. The remaining 13 segments would be 
unused since LNIDs 4-15 are not used. 

0050 FIG. 11 shows this physical address space from the 
local view of each of the three nodes in the virtual server. The 
local view of node 0 would be the same as the global view and 
is shown in FIG. 11 under the label “Node 0, with Local 
Memory (0) first, Node 1 Memory second, and Node 2 
Memory third. The local view of node 1 would be as shown 
under the label “Node 1', with Local Memory (1) first, Node 
0 Memory second, and Node 2 Memory third. And the local 
view of node 2 would be as shown under the label "Node 2, 
with Local Memory (2) first, Node I Memory second, and 
Node 0 Memory third. 
0051. It will be appreciated that in order to accomplish this 
arrangement, the locations of the local segment and the node 
0 segment are swapped in the address map. And since 
MY LNID, as defined above, is the LNID assigned to the 
local node, this is equivalent to swapping MY LNID with 
LNID 0 in the address map. However, such a swapping would 
create confusion in the DSM system if it were applied to 
memory traffic leaving the node ver the switched fabric. 
Therefore, the node's CMM reverses the swapping for traffic 
leaving the node. 
0052 FIG. 12 is a diagram showing a flowchart of an 
example process for altering a physical memory address, by 
the Swapping a described above, prior to transmission over a 
HyperTransport bus. In the process's first step 1201, a node's 
CMM receives a memory operation (e.g., a read, write, or 
probe) pertaining to a physical memory address from the 
RDM on the DSM-management chip. In step 1202, the CMM 
determines whether the four (or eight) most significant bits in 
the physical address are equal to: (1) the MYLNID value for 
the node; or (2) zero. If so, the CMM goes to step 1203, 
where: (1) if those bits are equal to the MY LNID value, the 
CMM sets the bits to zero (e.g., by changing to Zero the four 
(or eight) most significant bits in the physical memory 
address) before transmission of the operation over the Hyper 
Transport bus; and (2) if those bits are equal to zero, the CMM 
sets those bits to MY LNID (e.g., by changing to MYLNID 
the four (or eight) most significant bits in the physical 
memory address) before transmission of the operation over 
the HyperTransport bus. Otherwise, if those bits are not equal 
to MY LNID or zero, the CMM goes to step 1204 and allows 
the memory operation to proceed without processing relating 
to LNID swapping. 
0053 FIG. 13 is a diagram showing a flowchart of an 
example process for altering a physical memory address, by 
reversing the Swapping as described above, prior to transmis 
sion over a switched fabric. In the process's first step 1301, a 
node's CMM receives a memory operation (e.g., a read, write, 
or probe) pertaining to a physical memory address from one 
of the node's CPUs over the HyperTransport (e.g., ccHT) bus 
that connects the node's CPUs to the node's DSM-manage 
ment chip. In step 1302, the CMM determines whether the 
four (or eight) most significant bits in the physical address are 
equal to: (1) the MY LNID value for the node; or (2) zero. If 
so, the CMM goes to step 1303, where: (1) if those bits are 
equal to the MY LNID value, the CMM sets the DstLNID 
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value to Zero (e.g., by changing to Zero the four (or eight) most 
significant bits in the physical memory address) before trans 
mission of the operation to the RDM; and (2) if those bits are 
equal to zero, the CMMsets the DstLNID value to MY LNID 
(e.g. by changing to MY LNID the four (or eight) most 
significant bits in the physical memory address) before trans 
mission of the operation to the RDM. Otherwise, if those bits 
are not equal to MY LNID or zero, the CMM goes to step 
1304 and allows the memory operation to proceed without 
processing relating to LNID swapping, if the physical 
memory address is not for exported local memory. (If the 
physical memory address is for exported local memory, a 
probe operation to another physical memory address might 
result, feeding back into the process at step 1301.) 
0054 Particularembodiments of the above-described pro 
cesses might be comprised of instructions that are stored on 
storage media. The instructions might be retrieved and 
executed by a processing system. The instructions are opera 
tional when executed by the processing system to direct the 
processing system to operate inaccord with the present inven 
tion. Some examples of instructions are software, program 
code, firmware, and microcode. Some examples of Storage 
media are memory devices, tape, disks, integrated circuits, 
and servers. The term “processing system” refers to a single 
processing device or a group of inter-operational processing 
devices. Some examples of processing devices are integrated 
circuits and logic circuitry. Those skilled in the art are familiar 
with instructions, storage media, and processing systems. 
0055 Those skilled in the art will appreciate variations of 
the above-described embodiments that fall within the scope 
of the invention. In this regard, it will be appreciated that there 
are many other possible orderings of the steps in the processes 
described above and many other possible modularizations of 
those orderings. Also, it will be appreciated that the above 
processes relating to memory-addressing will work with 
physical memory addresses that exceed 40-bits in width and 
DSM systems that have more than 256 nodes. Further, it will 
be appreciated that the DSM system will work with nodes 
whose CPUs are not Opterons having accHT bus. As a result, 
the invention is not limited to the specific examples and 
illustrations discussed above, but only by the following 
claims and their equivalents. 

What is claimed is: 
1. A method, comprising: 
receiving, at a distributed shared memory circuit of a first 

node in a distributed shared memory system, a message 
from a second node in the distributed shared memory 
system comprising a plurality of nodes each having a 
unique logical unit identifier, wherein the message indi 
cates a memory operation related to a local memory of 
the first node and identifies a memory address; 

ifa first plurality of contiguous bits of the memory address 
equal a logical node identifier of the first node, changing 
the first plurality of contiguous bits to a predetermined 
value; 

if the first plurality of contiguous bits of the memory 
address equal the predetermined value, changing the 
first plurality of contiguous bits to the logical node iden 
tifier of the first node: 

forwarding the message to a processor of the first node for 
processing. 

2. The method of claim 1 wherein the predetermined value 
1S ZO. 
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3. The method of claim 1 wherein the first set of contiguous 
bits of the memory address are the most significant bits. 

4. The method of claim 1 wherein the plurality of nodes 
internally access their respective local memories having the 
first plurality of contiguous bits set to the predetermined 
value. 

5. The method of claim 1 wherein the plurality of nodes 
access the local memory of the node having a logical unit 
identifier equal to the predetermined value using its own 
respective logical node identifier. 

6. The method of claim 1 wherein the memory operation is 
a read command. 

7. The method of claim 1 wherein the memory operation is 
a write command. 

8. The method of claim 1 wherein the memory operation is 
a probe. 

9. A method comprising 
receiving, at a distributed shared memory circuit of a first 

node in a distributed shared memory system, a message 
from a processor of the first node identifying a memory 
operation related to a local memory of a second node in 
the distributed shared memory system comprising a plu 
rality of nodes each having a unique logical unit identi 
fier, wherein the message identifies a memory address; 

ifa first plurality of contiguous bits of the memory address 
equal a logical node identifier of the first node, changing 
the first plurality of contiguous bits to a predetermined 
value; 

if the first plurality of contiguous bits of the memory 
address equal the predetermined value, changing the 
first plurality of contiguous bits to the logical node iden 
tifier of the first node: 

forwarding the message to the second node for processing. 
10. The method of claim 9 wherein the predetermined 

value is Zero. 
11. The method of claim 9 wherein the first set of contigu 

ous bits of the memory address are the most significant bits. 
12. The method of claim 9 wherein the plurality of nodes 

internally access their respective local memories having the 
first plurality of contiguous bits set to the predetermined 
value. 

13. The method of claim 9 wherein the plurality of nodes 
access the local memory of the node having a logical unit 
identifier equal to the predetermined value using its own 
respective logical node identifier. 

14. The method of claim 9 wherein the memory operation 
is a read command. 
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15. The method of claim 9 wherein the memory operation 
is a write command. 

16. The method of claim 9 wherein the memory operation 
is a probe. 

17. A distributed shared memory system, comprising: 
a plurality of interconnected nodes, wherein each node has 

a logical node identifier comprising a plurality of con 
tiguous bits; wherein each of the nodes comprises one or 
more processors and a local memory; and wherein each 
of the nodes further comprises a distributed memory 
logic circuit operative to share the local memory of a 
respective node in a distributed shared memory system 
to create a shared memory in connection with other 
nodes of the plurality of nodes accessible using binary 
addresses comprising a plurality of bits, wherein a first 
set of contiguous bits of the binary addresses of the 
shared memory correspond to a logical node identifier of 
a node in the plurality of nodes, and 

wherein the one or more processors of each of the nodes are 
operative to access the local memory of its own node having 
the first set of contiguous bits of the binary addresses set to a 
uniform predetermined value; and 
wherein the distributed memory logic circuit is further opera 
tive to map the uniform predetermined value to the logical 
node identifier of the local node in memory management 
traffic transmitted between the nodes that include binary 
addresses of the shared memory. 

18. The system of claim 17 wherein each of the one or more 
processors access the local memory of the node having a 
logical node identifier equal to the predetermined value using 
the logical node identifier of its own node. 

19. The method of claim 17 wherein the predetermined 
value is Zero. 

20. The method of claim 17 wherein the first set of con 
tiguous bits of the memory address are the most significant 
bits. 

21. The method of claim 17 wherein the distributed 
memory logic circuit is operative to 

if a first plurality of contiguous bits of the binary address 
equal a logical node identifier of the node, change the 
first plurality of contiguous bits to the predetermined 
value; 

if the first plurality of contiguous bits of the memory 
address equal the predetermined value, change the first 
plurality of contiguous bits to the logical node identifier 
of the node. 


