
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0004733 A1

Krakirian et al.

US 2011 0004733A1

(43) Pub. Date: Jan. 6, 2011

(54)

(75)

(73)

(21)

(22)

(63)

NODE IDENTIFICATION FOR DISTRIBUTED
SHARED MEMORY SYSTEM

Inventors: Shahe Hagop Krakirian, Palo
Alto, CA (US); Isam Akkawi,
Aptos, CA (US)

Correspondence Address:
Huawei Technologies Co., Ltd.
IPR Dept., Building B1-3-A, Huawei Industrial
Base, Bantian
Shenzhen Guangdong 518129 (CN)

Assignee: 3 LeafNetworks, Santa Clara, CA
(US)

Appl. No.: 12/755,113

Filed: Apr. 6, 2010

Related U.S. Application Data

Continuation of application No. 1 1/740.432, filed on
Apr. 26, 2007, now Pat. No. 7,715,400.

Publication Classification

(51) Int. Cl.
G06F 12/00 (2006.01)

(52) U.S. Cl. 711/147: 711/E12.001

(57) ABSTRACT

An example embodiment of the present invention provides
processes relating to a connection/communication protocol
and a memory-addressing scheme for a distributed shared
memory system. In the example embodiment, a logical node
identifier comprises bits in the physical memory addresses
used by the distributed shared memory system. Processes in
the embodiment include logical node identifiers in packets
which conform to the protocol and which are stored in a
connection control block in local memory. By matching the
logical node identifiers in a packet against the logical node
identifiers in the connection control block, the processes
ensure reliable delivery of packet data. Further, in the
example embodiment, the logical node identifiers are used to
create a virtual server consisting of multiple nodes in the
distributed shared memory system.

Bit

33O292.827.262524.232222O1918 1716151413121 109 8 7 6 5 4 3 2 1 0

()

1-4 Etherent IIeader

RDP header RDP Over Ethernet

2 Packet Format

RDP payload (0 to 188 DWORDs)

(n+1) F RDP Trailer (0, 1 or 2 DWORDs) (n+2)
O Ethernet FCS

DA4
SAI3)
OXOO

SAI2
Ox81

SAI1)
SA5)

Ethernet IIeader for
RDP Packct

Len () (LSB) Len 1 (MSB) VIDO) (LSB)

| 314

US 2011/0004733 A1

WISCHWISCH

Jan. 6, 2011 Sheet 1 of 13 Patent Application Publication

US 2011/0004733 A1 Jan. 6, 2011 Sheet 2 of 13 Patent Application Publication

ÇÃO { º

OVW WIÐX XU?I ?II TAI

Z ?!...I

r | L

WVRICIS ZN?CICI COCIS WIWNICI ZRICIGH

JIHOO WILH

Patent Application Publication Jan. 6, 2011 Sheet 3 of 13 US 2011/0004733 A1

DWORD

O

1-4 Etherent Header

g RDP header RDP Over Ethernet

2 Packet Format

RDP payload (0 to 188 DWORDs)

(n+1) (n+2) RDP Trailer (0, 1 or 2 DWORDs)
O Ethernet FCS

DA1 DAO
DA 5 DA 4 DA 3 DA2
SA3 SA2 SA1 SAO Ethernet IIeader for

SA5 SA4 RDP Packet

LenO (LSB) Len 1 (MSB) VIDO) (LSB) Pro VIDI MSB

3 Fig.

Patent Application Publication Jan. 6, 2011 Sheet 4 of 13 US 2011/0004733 A1

Bit

DWORD
31 29 28 27 26.25 423 22O19 8 7 6 5 4 3 2 11109 8 7 6

IB Local Route Header (LRH)

RDP Header

RDP payload (0 to 188 DWORDs)

RIDP Over InfiniBand

Packet Format

RDP Trailer (0, 1 or 2 DWORDs)

IB Invarian CRC
IB Wariant CRC

Destination Iocal D InfiniBand Local Route

Source local IID

Fig. 4

IIeader for RDP Packet

Patent Application Publication Jan. 6, 2011 Sheet 5 of 13 US 2011/0004733 A1

Eit
S3C Q 28 ses. S 222 o 8 i. 3. loos, 6 5 () IWORD

O
1 RDP Header

2
RDP Packet Format

RDP Payload (0 to 188 DWORDs)
l

Fit 30.9282762524.2322 losississ loss. C) WOR

O Ox3 Wer AP WC CmdCodc F SendRN Send SNLSB IIleader for RDP Packet
DStLND SrcLNID

AckSNO) Optional Trailer for RDP Packet

AckSN1

Fig. 5

Patent Application Publication Jan. 6, 2011 Sheet 6 of 13 US 2011/0004733 A1

FIG 6

Bit 313029 282,2625 2423 22 21, 2019 1817, 1615 141312111O 9 8 7 6 5 4 3 2 1 0
DWORD

O Rescrved six y MY LNID
I Reserved

2 Path OMiddle Fabric Address Path O Low Fabric Address

3 VPTMR Reserved Path 0 IIigh Fabric Address
DITSEL

4 Path 1 Middle Fabric Address

Reserved Path 1 High Fabric Address
DITSEL

6 Reserved

7

8 Transmit Replay Bu??er Head and Tail Pointers for VCO
9 Transmit Replay Buffer Head and Tail Pointers for VCO
10 Transmit Replay Buffer Head and Tail Pointers for VC1
11 Transmit Replay Buffer IIead and Tail Pointers for VC1
12 Transmit Replay Buffer Head and Tail Pointers for VC2
13 Transmit Replay Buffer Head and Tail Pointers for VC2
14 Transmit Replay Bu??er Head and Tail Pointers for VC3
15 Transmit Replay Buffer Head and Tail Pointers for VC3
16 Send Sequence Number for VC1 Send Sequence Number for VCO
17 Send Sequence Number for VC3 Send Sequence Number for VC2
18 Expected Sequence Number for VC Expected Sequence Number for VCO
19 Expected Sequence Number for VC3 Expected Sequence Number for VC2
2C) Transmitted Packet Count for WCO

21 Transmitted Packet Count for VC1

2. Transmitted Packet Count for VC2

23 Transmitted Packet Count for VC3

24 Received Packet Count for WCO

25 Received Packet Count for VC1

26 Received Packet Count for VC2

27 Received Packet Count for WC3

28 Replayed Packet Count for VC1 Replayed Packet Count for VCO
29 Replayed Packet Count for VC3 Replayed Packet Count for VC2
30 Received Send SNError Count Received ECRC Error Count

3. Reserved

Patent Application Publication Jan. 6, 2011 Sheet 7 of 13 US 2011/0004733 A1

Assigning Server Node Assigned LND
WS Node AO OO
WS Node Al O

Table 71 --- Wirtual Server A WS Ndle A O

If Serve l6
WS Node B5 Ol

Virtual Server B WS Nodic Bl O5

Wirtual Server A f) Server) 8
App Server C AO Sevie D O3

WS Node A0 | - WS Node AO OO
LNIDA=OO WS Ndle A O

WS Node A 04
LNDDOO If O SeryerID WS Node B5 O6

WS Node Al as WS Node 31 O8

NIDAFO App Server C O
a F

INDO=O2 y

WS Node A2 H- t His AO Server D
LNDA O2 SourceNode Destination Node ScLNID DstLND

LNTD A=16
LNDD 04 LNTD B-18 WS Node AO WS Node A1 O

LNDD=O3 WS Node AO WS Node A2 O2
- WS Node A1 WS Node AO OO

--- WS Nodic A WS Node A2 O2
Wittilal Server B WS Nodi A2 WS Node AO OO
WS Node B1 - WS Nodi A2 WS Node A O

IND B=0.1 WS Node B1 WS Node B5 05
LNDD-06 WS Node B5 WS Node B1 O1
vic will d is Table 7.2 -- WS Nodic AO If O. ScycD OO 16
Vs Node B5 - WSNOdcA IFOScycD O2 6
(NIRBOs WS Node A2 IFO Server D 04 16
LNDD=08 WS Node B1 If Server O6 18

- WS Node B2 IFO ScycD O8 18

App Server C App Server C IFO Server D 10 O3
IND - O If Server) WS Node A) 16 ())

IO ScycrD WS Node A1 16 O2
Fi 7 IO ScrwcrD WS Node A2 16 O)4

9. IO ScycrD WS Node B1 18 06
08 IO ScycrD WS Node B2 18

3 IO Server D App Server C O 10

Patent Application Publication Jan. 6, 2011 Sheet 8 of 13 US 2011/0004733 A1

Node's RDM Receives Packet
from CMM or DMM

Lookup CCB Entry. Using Given DestLNID;
If DestLNID is Not in CCB, Send Error Message to CMM or DMM 802

Build REDP Hodr With Given
DestLNID and CCB's

MY LNID
803

Build Fabric Hr. With
CCB's Remote Fabric Addr

Transmit Packet
to Fabric Link

804

805

FIG.8

Patent Application Publication Jan. 6, 2011 Sheet 9 of 13 US 2011/0004733 A1

Node's RDM Receives RDP Packet Over Network
901

902
Does Packet's Dest No
Fabric Addr Match

Node's 2

904

Process the No S Packet an RDP
Packet as Packet?

Non-RDP Packet

Lookup CCB Entry Using Packet's SrcLNID;
905 If Src, NID is Not in CCB, Discard Packet

906
Does Packet's Src Fabric
Addr Match CCB's
Remote Fabric Addr

907

Does Packet's
DestLNID Match
CCB's My LNID?

Discard the
Packet

908

Yes

Pass Packet's
Contents to CMM

or DMM 909

FIG. 9

US 2011/0004733 A1 Jan. 6, 2011 Sheet 10 of 13 Patent Application Publication

US 2011/0004733 A1 Jan. 6, 2011 Sheet 11 of 13 Patent Application Publication

Kuouuaw o epoN Kuouuaw I apo N (Z) Kuouu?W |e90T Z ºpòN

Kuouuaw z epoN Kuouuaw o ºpoN

KuouuæW Z apoN Kuouuaw IºpoN (O) KjouJew IeooT

Patent Application Publication Jan. 6, 2011 Sheet 12 of 13 US 2011/0004733 A1

CMM Receives
Memory Operation

from RDM 120

1202
Do 4 (or 8) Most
Significant Bits of
Physical Memory
Address Equal

MY LNID or Zero?

Memory Operation Can
Proceed Without

Processing Relating to
LNID Swapping

1204

If 4 (or 8) Most Significant Bits Equal MY LNID,
Set Them to Zero Before Transmission Over HT;
If 4 (or 8) Most Significant Bits Equal Zero, Set

Them to MY LNID Before Transmission Over HT 1203

FIG. 12

Patent Application Publication Jan. 6, 2011 Sheet 13 of 13 US 2011/0004733 A1

CMM Receives
Memory Operation
from CPU Over HT 1301

1302

Do 4 (or 8) Most
Significant Bits of
Physical Memory
Address Equal

MY LNID or Zero?

Memory Operation Can Proceed
Without Processing Relating to
LNID Swapping, If Physical
Memory Address Not For
Exported Local Memory 1304

If 4 (or 8) Most Significant Bits Equal MY LNID,
Set DstLNID to Zero for RDM Packet: If 4 (or 8)
Most Significant Bits Equal Zero, Set DstLNID to

MY LNID for RDM Packect 1303

FIG. 13

US 2011/0004733 A1

NODE IDENTIFICATION FOR DISTRIBUTED
SHARED MEMORY SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a continuation applica
tion of pending U.S. patent application Ser. No. 1 1/740.432
filed Apr. 26, 2007 and entitled “Node Identification for Dis
tributed Shared Memory System, which is related to the
following commonly-owned U.S. utility patent application,
filed on Jan. 29, 2007, whose disclosure is incorporated
herein by reference in its entirety for all purposes: U.S. patent
application Ser. No. 1 1/668,275, entitled “Fast Invalidation
for Cache Coherency in Distributed Shared Memory Sys
ten.

TECHNICAL FIELD

0002 The present disclosure relates to an identification
process for the nodes in a distributed shared memory system.

BACKGROUND

0003. A distributed shared memory (DSM) is a multipro
cessor System in which the processors in the system are con
nected by a scalable interconnect, such as an InfiniBand
switched fabric communications link, instead of abus. DSM
systems present a single memory image to the user, but the
memory is physically distributed at the hardware level. Typi
cally, each processor has access to a large shared global
memory in addition to a limited local memory, which might
be used as a component of the large shared global memory
and also as a cache for the large shared global memory.
Naturally, each processor will access the limited local
memory associated with the processor much faster than the
large shared global memory associated with other processors.
This discrepancy in access time is called non-uniform
memory access (NUMA).
0004. A major technical challenge in DSM systems is
ensuring that the each processor's memory cache is consistent
with each other processor's memory cache. Such consistency
is called cache coherence. To maintain cache coherence in
larger distributed systems, additional hardware logic (e.g., a
chipset) or software is used to implement a coherence proto
col, typically directory-based, chosen in accordance with a
data consistency model. Such as strict consistency. DSM sys
tems that maintain cache coherence are called cache-coherent
NUMA (ccNUMA).
0005 Typically, if additional hardware logic is used, a
node in the system will comprise a chip that includes the
hardware logic and one or more processors and will be con
nected to the other nodes by the scalable interconnect. For
purposes of initial connection and later communication
between nodes, the system might employ node identifiers,
e.g., serial, random, or centrally assigned numbers, which in
turn might be used as part of an address for physical memory
residing on the node.

SUMMARY

0006. In particular embodiments, the present invention
provides methods, apparatuses, and systems directed to node
identification in a DSM system. In one particular embodi
ment, the present invention provides node-identification pro

Jan. 6, 2011

cesses for use with a connection/communication protocol and
a memory-addressing, Scheme in a DSM system.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 FIG. 1 is a block diagram showing a DSM system,
which system might be used with some embodiments of the
present invention.
0008 FIG. 2 is a block diagram showing some of the
physical and functional components of an example DSM
management chip or logic circuit, which chip might be used
as part of a node with some embodiments of the present
invention.
0009 FIG. 3 is a diagram showing the format of an RDP
over Ethernet packet and its header, which formats might be
used in some embodiments of the present invention.
0010 FIG. 4 is a diagram showing the format of an RDP
over InfiniBand packet and its header, which formats might
be used in some embodiments of the present invention.
0011 FIG. 5 is a diagram showing the format of an RDP
packet, its header, and its optional trailer, which formats
might be used in Some embodiments of the present invention.
0012 FIG. 6 is a diagram showing the format of a connec
tion control block, which format might be used in some
embodiments of the present invention.
0013 FIG. 7 is a diagram showing an example illustrating
the use of LNIDs with respect to the RDP protocol, which
protocol might be used with an embodiment of the present
invention.
0014 FIG. 8 is a diagram showing a flowchart of an
example process for building an RDP packet for transmission
over the switched fabric network, which process might be
used with an embodiment of the present invention.
0015 FIG. 9 is a diagram showing a flowchart of an
example process for validating an RDP packet received over
the switched fabric network, which process might be used
with an embodiment of the present invention.
0016 FIG. 10 is a diagram showing the format of a 40-bit
physical memory address in a 16-node DSM system and the
format of a 40-bit physical memory address in a 256-node
DSM system, which formats might be used with embodi
ments of the present invention.
0017 FIG. 11 is a diagram showing, for didactic purposes,
the local views of a physical address space for a virtual server
comprised of three nodes.
0018 FIG. 12 is a diagram showing a flowchart of an
example process for altering a physical memory address prior
to transmission over a HyperTransport bus, which process
might be used with an embodiment of the present invention.
0019 FIG. 13 is a diagram showing a flowchart of an
example process for altering a physical memory address prior
to transmission over a Switched fabric, which process might
be used with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

0020. The following example embodiments are described
and illustrated in conjunction with apparatuses, methods, and
systems which are meant to be examples and illustrative, not
limiting in scope.

A. ccNUMA DMA System with DSM-Management
Chips

0021 A DSM system has been developed that provides
cache-coherent non-uniform memory access (ccNUMA)

US 2011/0004733 A1

through the use of a DSM-management chip. In a particular
embodiment, a DSM system may comprise a distributed com
puter network of up to 16 nodes, connected by a switched
fabric, where each node includes two or more Opteron CPUs
and one DSM management chip. In another embodiment, this
DSM system comprises up to 256 nodes connected by the
switched fabric.
0022. The DSM system allows the creation of a multi
node virtual server which is a virtual machine consisting of
multiple CPUs belonging to two or more nodes. In some
embodiments, the nodes use a connection/communication
protocol to communicate with each other and with virtual I/O
servers in the DSM system. Enforcement of the connection/
communication protocol is also handled by the DSM-man
agement chip. Consequently, virtual I/O servers include a
DSM-management chip, though they do not contribute any
physical memory to the DSM system and consequently do not
make use of the chip's functionality directly related to cache
coherence, in particular embodiments. For a further descrip
tion of a virtual I/O server, see U.S. patent application Ser.
No. 11/624,542, entitled “Virtualized Access to I/O Sub
systems, and U.S. patent application Ser. No. 1 1/624,573,
entitled “Virtual Input/Output Server”, both fled on Jan. 18,
2007 which are incorporated herein by reference for all pur
poses. As explained below, the connection/communication
protocol uses an identifier called a logical node identifier
(LNID) to identify source and destination nodes for packets
that travel over the Switched fabric.
0023 FIG. 1 is a diagram showing accNUMA DSM sys
tem, which system might be used with a particular embodi
ment of the invention. In this DSM system, four nodes (la
beled 101, 102, 103, and 104) are connected to each other
over a switched fabric (labeled 105) such as Ethernet or
InfiniBand. In turn, each of the four nodes includes two
Opteron CPUs, a DSM-management chip, and memory in the
form of DDR2 SDRAM (double-data-rate two synchronous
dynamic random access memory). In this embodiment, each
Opteron CPU includes a local main memory connected to the
CPU. This DSM system provides NUMA (non-uniform
memory access) since each CPU can access its own local
main memory faster than it can access the other memories
shown in FIG. 1.
0024. Also as shown in FIG. 1, a block of memory has its
“home' in the local main memory of one of the Opteron CPUs
in node 101. That is to say, this local main memory is where
the system's version of the memory block is stored, regardless
of whether there are any cached copies of the block. Such
cached copies are shown in the DDR2s for nodes 103 and 104.
The DSM-management chip includes hardware logic (e.g.,
the CMM) to enforce a coherence protocol and make the
DSM system cache-coherent (e.g., ccNUMA) when multiple
nodes are caching copies of the same block of memory.

B. Example System Architecture of a
DSM-Management Chip

0025 FIG. 2 is diagram showing the physical and func
tional components of a DSM-management chip, which chip
might be used as part of a node with particular embodiments
of the invention. The DSM-management chip includes inter
connect functionality facilitating communications with one
or more processors, which might be Opteron processors
offered by Advanced Micro Devices (AMD), Inc., of Sunny
Vale, Calif., in some embodiments. As FIG. 2 illustrates, the
DSM-management chip includes two HyperTransport Man

Jan. 6, 2011

agers (HTM), each of which manages communications to and
from a processor over a HT (HyperTransport) bus. More
specifically, an HTM provides the PHY and link layer func
tionality for a cache coherent HT interface such as Opteron's
ccHT. The HTM captures all received HT packets in a set of
receive queues per interface (e.g., posted/non-posted com
mand, request command, probe command and data) which
are consumed by the Coherent Memory Manager (CMM).
The HTM also captures packets from the CMM in a similar
set of transmit queues per interface and transmits those pack
ets on the HT interface. As a result of the two HTMs, the
DSM-management chip becomes a coherent agent with
respect to any bus Snoops broadcast over the cache-coherent
HT bus by a processor's memory controller. Of course, other
inter-chip or bus communications protocols might be used in
other embodiments of the present invention.
0026. Also as shown in FIG. 2, the two HTMs are con
nected to a Coherent Memory Manager (CMM), which
enforces a coherence protocol and thereby provides cache
coherent access to memory shared by the nodes that are part
of the DSM fabric. In addition to interfacing with the Opteron
processors through the HTM, the CMM interfaces with the
fabric via the RDM (Reliable Delivery Manager). Addition
ally, the CMM provides interfaces to the HTM for DMA
(Direct Memory Access) and configuration.
0027. In some embodiments, the CMM behaves like both
a processor cache on a cache-coherent (e.g., ccHT) bus and a
memory controller on a cache-coherent (e.g., ccHT) bus,
depending on the scenario. In particular, when a processor on
a node performs an access to a home (or local) memory
address, the home (or local) memory will generate a probe
request that is used to Snoop the caches of all the processors
on the node. The CMM will use this probe to determine if it
has exported the block of memory containing that address to
another node and may generate DSM probes (over the fabric)
to respond appropriately to the initial probe. In this scenario,
the CMM behaves like a processor cache on the cache-coher
ent bus.

0028. When a processor on a node performs an access to a
remote memory, the processor will direct this access to the
CMM. The CMM will examine the request and satisfy it from
the local cache, if possible, and, in the process, generate any
appropriate probes. If the request cannot be satisfied from the
local cache, the CMM will send a DSM request to the remote
memory's home node to (a) fetch the block of memory that
contains the requested data or (b) request a state upgrade. In
this case, the CMM will wait for the DSM response before it
responds back to the processor. In this scenario, the CMM
behaves like a memory controller on the ccHT bus.
0029. The RDM manages the flow of packets across the
DSM-management chip's two fabric interface ports. The
RDM has two major clients, the CMM and the DMA Man
ager (DMM), which initiate packets to be transmitted and
consume received packets. The RDM ensures reliable end
to-end delivery of packets using a connection/communica
tion protocol called Reliable Delivery Protocol (RDP). On the
fabric side, the RDM interfaces to the selected link/MAC
(XGM for Ethernet, IBL for InfiniBand) for each of the two
fabric ports. In particular embodiments, the fabric might con
nect nodes to other nodes. In other embodiments, the fabric
might also connect nodes to virtual IO servers. In particular
embodiments, the processes using LNIDs described below
might be executed by the RDM.

US 2011/0004733 A1

0030. The XGM provides a 10 GEthernet MAC function,
which includes framing, inter-frame gap handling, padding
for minimum frame size, Ethernet FCS (CRC) generation and
checking, and flow control using PAUSE frames. The XGM
supports two link speeds: single data rate XAUI (10Gbps)
and double data rate XAUI (20Gbps). In particular embodi
ments, the DSM-management chip has two instances of the
XGM, one for each fabric port. Each XGM instance inter
faces to the RDM, on one side, and to the associated PCS, on
the other side.
0031. The IBL provides a standard 4-lane IB link layer
function, which includes link initialization, link state
machine, CRC generation and checking, and flow control.
The IBL block supports two link speeds, single data rate (8
Gbps) and double data rate (1.6 Gbps), with automatic speed
negotiation. In particular embodiments, the DSM-manage
ment chip has two instances of the IBL, one for each fabric
port. Each IBL instance interfaces to the RDM, on one side,
and to the associated Physical Coding Sub-layer (PCS), on
the other side.
0032. The PCS, along with an associated quad-serdes,
provides physical layer functionality for a 4-lane InfiniBand
SDR/DDR interface, or a 10 G/20 G Ethernet XAUI/
10GBase-CX4 interface. In particular embodiments, the
DSM-management chip has two instances of the PCS, one for
each fabric port. Each PCS instance interfaces to the associ
ated IBL and XGM.
0033. The DMM shown in FIG. 2 manages and executes
direct memory access (DMA) operations over RDP interfac
ing to the CMM block on the host side and the RDM block on
the fabric side. For DMA, the DMM interfaces to software
through the DmaCB table in memory and the on-chip DMA
execution and completion queues. The DMM also handles the
sending and receiving of RDP interrupt messages and non
RDP packets, and manages the associated inbound and out
bound queues.
0034. The DDR2 SDRAM Controller (SDC) attaches to a
one or two external 240-pin DDR2 SDRAM DIMM, which is
actually external to the DMS-management chip, as shown in
both FIG. 1 and FIG. 2. In particular embodiments, the SDC
provides SDRAM access for the CMM and the DMM.
0035. In some embodiments, the DSM-management chip
might comprise an application specific integrated circuit
(ASIC), whereas in other embodiments the chip might com
prise a field-programmable gate array (FPGA). Indeed, the
logic encoded in the chip could be implemented in Software
for DSM systems whose requirements might allow for longer
latencies with respect to cache coherence, DMA, interrupts,
etc.

C. RDP Packets and Their Headers

0036 FIG. 3 is a diagram showing the format of a packet
for RDP over Ethernet and the packet's header, which formats
might be used in Some embodiments of the present invention.
When RDP runs over the Ethernet MAC layer, an RDP packet
is encapsulated in an Ethernet MAC frame. The Ethernet
header of an encapsulated RDP packet is a VLAN-tagged
header (where VLAN stands for virtual local area network).
In FIG. 3, SA identifies the 6-byte source MAC address and
DA identifies the 6-byte destination MAC address.
0037. The Reliable Delivery Protocol allows RDP and
non-RDP packets to co-exist on the same fabric. When RDP
runs over the Ethernet MAC layer, RDP and non-RDP pack
ets are distinguished from each other by the presence of the

Jan. 6, 2011

VLAN header and the value of the Length/Type field follow
ing it. For an RDP packet: (a) the VLAN header is present,
i.e., the first Length/Type field (following the last SA byte)
has a value of 0x0081; and (b) the second Length/Type field
(following the VLAN header) has a value less than 1536
(frame length). An Ethernet frame that does not satisfy both of
the above conditions is a non-RDP packet.
0038 FIG. 4 is a diagram showing the format of a packet
for RDP over InfiniBand and the packet's header, which for
mats might be used in Some embodiments of the present
invention. It will be appreciated that the header includes fields
for Source Local ID and Destination Local ID. When RDP
runs over the IB link layer, an RDP packet is encapsulated into
an IB packet. The format of an IB Local Transport Packet is
used, although the 12-byte Base Transport Header (BTH)
which is normally present after the Local Route Header
(LRH) is replaced by the RDP header (8 bytes) and the first 4
bytes of the RDP payload. From the standpoint of the 113
standard, bits 31:24 of the first DWORD of the RDP Header
is the OpCode field of Base Transport Header (BTH). The
most significant two bits (31:30) of that field have a fixed
value of 0x3 (binary 11) for RDP packets, which specifies a
Manufacturer Specific OpCode. The RSv8 field of the BTH
(bits 31:24 of the second DWORD) is not protected by the
32-bit IB Invariant CRC (ICRC). This corresponds to the
most significant 8 bits of the DstLNID. Thus, these bits do not
have end-to-end protection but do have point-to-point protec
tion by the 16-bit Variant CRC (VCRC), which presents an
insignificant risk of failure since the DstLNID is only used as
a packet validation field at the destination node in conjunction
with many other validation fields. A false match of a cor
rupted LNID MSB (most significant bit) with good VCRC
has very low probability and would only occur if the connec
tion parameters were set up inconsistently at the source and
destination nodes.
0039. When RDP runs over the InfiniBand link layer, RDP
and non-RDP packets are distinguished by the values of the
LNH field in the IB Local Route Header and the QpCode field
in the IB Base Transport Header. For an RDP packet: (a)
LNH=0x2 (IBA Local); and (b) OpCode bits 7:6–0x3
(Manufacturer Specific OpCode). An InfiniBand packet that
does not satisfy both of the above conditions is a non-RDP
packet.
0040 FIG. 5 is a diagram showing the format of an RDP
packet and its header, which formats might be used in some
embodiments of the present invention. An RDP packet con
sists of a header, payload, and optional trailer. As shown in
FIG. 5, another field in the RDP packet is the SrcLNID
(Source Logical Node ID) which identifies the packet's
Source node. This is the connection identifier (i.e., remote
LNID) at the destination node. This field is also 16 bits wide.
Also as shown in FIG. 5, one of the fields in an RDP packet is
the DestLNID (Destination Logical NodeID) which identi
fies the packet's destination node. This is the connection
identifier (i.e., remote LNID) at the source node. This field is
16 bits wide.

D. Using LNIDs with RDP
0041. In particular embodiments, the DSM system uses a
software data structure called the connection control block
(CCB), stored in local memory such as the local main
memory shown in FIG. 1, to facilitate implementation of the
RDP protocol. The RDM uses a received packet's source
LNID as an index into the CCB to find an entry for the

US 2011/0004733 A1

connection corresponding to the packet. FIG. 6 is a diagram
showing the format of a CCB entry for a single connection,
which format might be used in some embodiments of the
present invention. As shown in FIG. 6, each entry records the
fabric address for two paths, Path 0 and Path 1, which may
correspond to the two fabric interface ports shown connected
to the RDM in FIG. 2. In other embodiments, there might be
more than two paths, corresponding to more than two fabric
interface ports. It will be appreciated that the CCB entry has
a field called MY LNID, which identifies the LNID for the
RDM's node.

0042. For an RDP connection between a pair of nodes, the
node at each end uses an LNID to refer to the node at the other
end. Within a multi-node virtual server (VS), every node is
assigned a unique LNID, possibly by some management
entity for the DSM system. For example, within a three-node
VS, the LNID values might be 0, 1, and 2, or 1, 3, and 4, i.e.,
they not need to be sequentially incrementing from 0. In
addition, every server (multi-node virtual server or standal
one server) assigns a unique LNID to each node that commu
nicates with it. For example, a standalone server node that
communicates with the virtual server described above might
be assigned an LNID value of 16 by the VS. If that same node
communicates with another server, it may be assigned the
same LNID or a different LNID by that server. Therefore,
LNID assignments are unique from the standpoint of a given
server, but they are not unique across servers.
0043. An example of LNID assignments is shown in FIG.
7. In the example, a virtual computing environment (VCE)
consists of two virtual servers (A and B), an application server
(C), and a virtual I/O server (D). In this example, virtual
server A assigns LNID values 0, 1, and 2 to each of its own
nodes (VS nodes A0, A1, and A2, respectively) and an LNID
value of 16 to virtual I/O server D. Virtual server Bassigns
values of I and 5 to each of its own nodes (VS nodes B1 and
B5, respectively) and an LNID value of 18 to virtual I/O
server D. Application server Cassigns an LNID value of 3 to
virtual I/O server D. Virtual I/O server Dassigns LNID values
0, 2, and 4, to VS nodes A0, A1 and A2, respectively, and
LNID values of 6 and 8 to VS nodes B1 and B5. Finally,
virtual I/O server Dassigns a value of 10 to application server
C. These various assignments are collected and Summarized
in Table 7.1 in FIG. 7.

0044 Table 7.2 shows the SrcLNID and DstLNID values
used in the headers of RDP packets exchanged between dif
ferent node pairs. For example, VS nodes A0 and A1 both
belong to virtual server A, so a packet from A0 to A1 will have
a SrcLNID value of 0 (LNID assigned to A0 by VSA), and a
DstLNID value of 1 (LNID assigned to A1 by VSA). As
another example, a packet from A1 to I/O server D will have
a SrcLNID value of 2 (LNID assigned to A1 by I/O server D)
and a DstLNID value of 16 (LNID assigned by V S A to I/O
server D).
0045 FIG. 8 is a diagram showing a flowchart of an
example process for building an RDP packet for transmission
over the switched fabric network, which process might be
used with an embodiment of the present invention. In the
process's first step 801, the node's Reliable Delivery Manager
(RDM) receives a DestLNID and data for an RDP packet
from the node's CMM or DMM. The RDM uses the packet's
DestLNID to look up the entry corresponding to the
DestLNID in the Connection Control Block (CCB), in step
802.1f there is no corresponding entry, the RDM sends an
error message to the CMM or DMM, as the case maybe. Then

Jan. 6, 2011

in step 803, the RDM builds an RDP header for an RDP
packet for the data, using the DestLNID and the CCB entry's
MYLNID value. In step 804, the RDM builds a fabric header
for the RDP packet, using information in the CCB entry's
remote fabric address. Once the RDP packet is complete, the
RDM sends the packet to the fabric link for transmission to
the remote node, in step 805.
0046 FIG. 9 is a diagram showing a flowchart of an
example process for validating an RDP packet received over
the switched fabric network, which process might be used
with an embodiment of the present invention. In the process’s
first step 901, a node's RDM receives an RDP packet over the
switched fabric network. The RDM then checks to see
whether the packet's destination fabric address (e.g., the
6-byte MAC DA in an Ethernet header or the Destination
Local ID in an Infiniband LRH) matches the node's fabric
address, in step 902. If not, the RDM discards the packet.
Otherwise, the RDM goes to step 903 and determines
whether the packet is an RDP packet. If not, the RDM will
process the packet as a non-RDP packet, in step 904. Other
wise, if the packet is an RDP packet, the RDM uses the
packet's SrcLNID to look up the entry corresponding to the
SrcLNID in the Connection Control Block (CCB), in step
905. If there is no corresponding entry, the RDM discards the
packet. Then the RDM goes to step 906 and checks to make
Sure that the packet's source fabric address (e.g., the 6-byte
MACSA in an Ethernet header or the Source Local ID in an
Infiniband LRH) matches the CCB entry's remote fabric
address (e.g., for Path 0 or Path 1). If not, the RDM discards
the packet. Otherwise, the RDM checks to determine whether
the packet's DestLNID matches the CCB entry's MY LNID,
in step 907. If not, the RDM discards the packet. But if there
is a match, the RDM forwards the packet to the CMM or
DMM for further processing.

E. Using LNIDs With Memory-Addressing Scheme
0047. As indicated earlier, the DSM system also uses
LNIDS in its memory-addressing scheme. In particular
embodiments, the physical memory address width is 40-bits
(e.g., in DSM systems that use the present generation of
Opteron CPUs), though it will be appreciated that there are
numerous other suitable widths. FIG.10 is a diagram showing
the format of a 40-bit physical memory address in a 16-node
DSM system and the format of a 40-bit physical memory
address in a 256-node DSM system. As shown in FIG. 10, the
four most significant bits comprise an LNID in the 16-node
DSM system and the eight most significant bits comprise an
LNID in the 256-node DSM system.
0048. In particular embodiments of the DSM system, the
physical address space for a virtual server is arranged so that
the local node's memory always starts at address 0 (zero). One
reason for using this arrangement is compatibility with legacy
system Software, in particular embodiments. Specifically,
with local memory starting at address 0, system Software
(e.g., boot code) accesses local memory the same way that it
does on a standard server. Another reason for using this
arrangement is that it simplifies the address lookup in the
CMM. For a memory read/write request from a local proces
sor, an address in the lower 11 16th or 11256th segment of the
40-bit address space is always local and all other addresses
map to memory in other nodes.
0049. To see how the arrangement works, consider the
example of a virtual server consisting of three nodes: 0, 1, and
2. In a 16-node DSM system, the total addressable memory

US 2011/0004733 A1

space for this virtual server would be 1 terabyte (240) and
each node would be allocated a segment which is 1116 of that
space (64 GB or 236). From a global view, the first 64GB
segment of the physical address space starting at address 0
would be allocated to node 0 (i.e., the node whose LNID
equals 0), the next 64 GB segment to node 1, and the follow
ing segment to node 2. The remaining 13 segments would be
unused since LNIDs 4-15 are not used.

0050 FIG. 11 shows this physical address space from the
local view of each of the three nodes in the virtual server. The
local view of node 0 would be the same as the global view and
is shown in FIG. 11 under the label “Node 0, with Local
Memory (0) first, Node 1 Memory second, and Node 2
Memory third. The local view of node 1 would be as shown
under the label “Node 1', with Local Memory (1) first, Node
0 Memory second, and Node 2 Memory third. And the local
view of node 2 would be as shown under the label "Node 2,
with Local Memory (2) first, Node I Memory second, and
Node 0 Memory third.
0051. It will be appreciated that in order to accomplish this
arrangement, the locations of the local segment and the node
0 segment are swapped in the address map. And since
MY LNID, as defined above, is the LNID assigned to the
local node, this is equivalent to swapping MY LNID with
LNID 0 in the address map. However, such a swapping would
create confusion in the DSM system if it were applied to
memory traffic leaving the node ver the switched fabric.
Therefore, the node's CMM reverses the swapping for traffic
leaving the node.
0052 FIG. 12 is a diagram showing a flowchart of an
example process for altering a physical memory address, by
the Swapping a described above, prior to transmission over a
HyperTransport bus. In the process's first step 1201, a node's
CMM receives a memory operation (e.g., a read, write, or
probe) pertaining to a physical memory address from the
RDM on the DSM-management chip. In step 1202, the CMM
determines whether the four (or eight) most significant bits in
the physical address are equal to: (1) the MYLNID value for
the node; or (2) zero. If so, the CMM goes to step 1203,
where: (1) if those bits are equal to the MY LNID value, the
CMM sets the bits to zero (e.g., by changing to Zero the four
(or eight) most significant bits in the physical memory
address) before transmission of the operation over the Hyper
Transport bus; and (2) if those bits are equal to zero, the CMM
sets those bits to MY LNID (e.g., by changing to MYLNID
the four (or eight) most significant bits in the physical
memory address) before transmission of the operation over
the HyperTransport bus. Otherwise, if those bits are not equal
to MY LNID or zero, the CMM goes to step 1204 and allows
the memory operation to proceed without processing relating
to LNID swapping.
0053 FIG. 13 is a diagram showing a flowchart of an
example process for altering a physical memory address, by
reversing the Swapping as described above, prior to transmis
sion over a switched fabric. In the process's first step 1301, a
node's CMM receives a memory operation (e.g., a read, write,
or probe) pertaining to a physical memory address from one
of the node's CPUs over the HyperTransport (e.g., ccHT) bus
that connects the node's CPUs to the node's DSM-manage
ment chip. In step 1302, the CMM determines whether the
four (or eight) most significant bits in the physical address are
equal to: (1) the MY LNID value for the node; or (2) zero. If
so, the CMM goes to step 1303, where: (1) if those bits are
equal to the MY LNID value, the CMM sets the DstLNID

Jan. 6, 2011

value to Zero (e.g., by changing to Zero the four (or eight) most
significant bits in the physical memory address) before trans
mission of the operation to the RDM; and (2) if those bits are
equal to zero, the CMMsets the DstLNID value to MY LNID
(e.g. by changing to MY LNID the four (or eight) most
significant bits in the physical memory address) before trans
mission of the operation to the RDM. Otherwise, if those bits
are not equal to MY LNID or zero, the CMM goes to step
1304 and allows the memory operation to proceed without
processing relating to LNID swapping, if the physical
memory address is not for exported local memory. (If the
physical memory address is for exported local memory, a
probe operation to another physical memory address might
result, feeding back into the process at step 1301.)
0054 Particularembodiments of the above-described pro
cesses might be comprised of instructions that are stored on
storage media. The instructions might be retrieved and
executed by a processing system. The instructions are opera
tional when executed by the processing system to direct the
processing system to operate inaccord with the present inven
tion. Some examples of instructions are software, program
code, firmware, and microcode. Some examples of Storage
media are memory devices, tape, disks, integrated circuits,
and servers. The term “processing system” refers to a single
processing device or a group of inter-operational processing
devices. Some examples of processing devices are integrated
circuits and logic circuitry. Those skilled in the art are familiar
with instructions, storage media, and processing systems.
0055 Those skilled in the art will appreciate variations of
the above-described embodiments that fall within the scope
of the invention. In this regard, it will be appreciated that there
are many other possible orderings of the steps in the processes
described above and many other possible modularizations of
those orderings. Also, it will be appreciated that the above
processes relating to memory-addressing will work with
physical memory addresses that exceed 40-bits in width and
DSM systems that have more than 256 nodes. Further, it will
be appreciated that the DSM system will work with nodes
whose CPUs are not Opterons having accHT bus. As a result,
the invention is not limited to the specific examples and
illustrations discussed above, but only by the following
claims and their equivalents.

What is claimed is:
1. A method, comprising:
receiving, at a distributed shared memory circuit of a first

node in a distributed shared memory system, a message
from a second node in the distributed shared memory
system comprising a plurality of nodes each having a
unique logical unit identifier, wherein the message indi
cates a memory operation related to a local memory of
the first node and identifies a memory address;

ifa first plurality of contiguous bits of the memory address
equal a logical node identifier of the first node, changing
the first plurality of contiguous bits to a predetermined
value;

if the first plurality of contiguous bits of the memory
address equal the predetermined value, changing the
first plurality of contiguous bits to the logical node iden
tifier of the first node:

forwarding the message to a processor of the first node for
processing.

2. The method of claim 1 wherein the predetermined value
1S ZO.

US 2011/0004733 A1

3. The method of claim 1 wherein the first set of contiguous
bits of the memory address are the most significant bits.

4. The method of claim 1 wherein the plurality of nodes
internally access their respective local memories having the
first plurality of contiguous bits set to the predetermined
value.

5. The method of claim 1 wherein the plurality of nodes
access the local memory of the node having a logical unit
identifier equal to the predetermined value using its own
respective logical node identifier.

6. The method of claim 1 wherein the memory operation is
a read command.

7. The method of claim 1 wherein the memory operation is
a write command.

8. The method of claim 1 wherein the memory operation is
a probe.

9. A method comprising
receiving, at a distributed shared memory circuit of a first

node in a distributed shared memory system, a message
from a processor of the first node identifying a memory
operation related to a local memory of a second node in
the distributed shared memory system comprising a plu
rality of nodes each having a unique logical unit identi
fier, wherein the message identifies a memory address;

ifa first plurality of contiguous bits of the memory address
equal a logical node identifier of the first node, changing
the first plurality of contiguous bits to a predetermined
value;

if the first plurality of contiguous bits of the memory
address equal the predetermined value, changing the
first plurality of contiguous bits to the logical node iden
tifier of the first node:

forwarding the message to the second node for processing.
10. The method of claim 9 wherein the predetermined

value is Zero.
11. The method of claim 9 wherein the first set of contigu

ous bits of the memory address are the most significant bits.
12. The method of claim 9 wherein the plurality of nodes

internally access their respective local memories having the
first plurality of contiguous bits set to the predetermined
value.

13. The method of claim 9 wherein the plurality of nodes
access the local memory of the node having a logical unit
identifier equal to the predetermined value using its own
respective logical node identifier.

14. The method of claim 9 wherein the memory operation
is a read command.

Jan. 6, 2011

15. The method of claim 9 wherein the memory operation
is a write command.

16. The method of claim 9 wherein the memory operation
is a probe.

17. A distributed shared memory system, comprising:
a plurality of interconnected nodes, wherein each node has

a logical node identifier comprising a plurality of con
tiguous bits; wherein each of the nodes comprises one or
more processors and a local memory; and wherein each
of the nodes further comprises a distributed memory
logic circuit operative to share the local memory of a
respective node in a distributed shared memory system
to create a shared memory in connection with other
nodes of the plurality of nodes accessible using binary
addresses comprising a plurality of bits, wherein a first
set of contiguous bits of the binary addresses of the
shared memory correspond to a logical node identifier of
a node in the plurality of nodes, and

wherein the one or more processors of each of the nodes are
operative to access the local memory of its own node having
the first set of contiguous bits of the binary addresses set to a
uniform predetermined value; and
wherein the distributed memory logic circuit is further opera
tive to map the uniform predetermined value to the logical
node identifier of the local node in memory management
traffic transmitted between the nodes that include binary
addresses of the shared memory.

18. The system of claim 17 wherein each of the one or more
processors access the local memory of the node having a
logical node identifier equal to the predetermined value using
the logical node identifier of its own node.

19. The method of claim 17 wherein the predetermined
value is Zero.

20. The method of claim 17 wherein the first set of con
tiguous bits of the memory address are the most significant
bits.

21. The method of claim 17 wherein the distributed
memory logic circuit is operative to

if a first plurality of contiguous bits of the binary address
equal a logical node identifier of the node, change the
first plurality of contiguous bits to the predetermined
value;

if the first plurality of contiguous bits of the memory
address equal the predetermined value, change the first
plurality of contiguous bits to the logical node identifier
of the node.

