Abstract: Disclosed are methods and apparatus for determining deficiencies of an aircraft or avionics system (4), the system (4) being configured to process inputs (8) to produce outputs (10). Methods comprise providing first inputs (8); for each first input (8), processing, using the system (4), that input (8) to produce an output (10); for each first input (8), determining a value of a function of the corresponding output (10) that is indicative of how well the system (4) performs when processing that input (8); and, using the first inputs (8) and the determined function values, generating second inputs (8) using a process for determining inputs (8) for the system (4) that correspond to maximum or minimum function values, the maximum or minimum function values being values that are indicative of poor system performance.
SYSTEM TESTING ALGORITHM AND APPARATUS

FIELD OF THE INVENTION

The present invention relates to determining deficiencies of systems.

BACKGROUND

It is desirable to be able to discover any design defects present in avionic/aircraft software and systems. The finding and analysis of such design defects tends to allow for a better understanding of the capabilities and limitations of the software and systems. Also, it tends to facilitate the design of better avionic/aircraft software and systems.

Typically, when testing a black box (or white box) system, a tester stimulates inputs to the system in order to observe the behaviour of the outputs. For systems with several inputs, each input having multiple possible values, the testing of all possible input states may be impractical or impossible.

There are a number of known methods for testing such systems.

For example, "Black-box Testing: techniques for functional testing of software and systems" Beizer, Boris, ISBN: 0471 120944 discloses partitioning the input space of a system being tested. All the input values in a partition may then be considered to be equivalent, and only one representative value in each partition is the used to test the system to sufficiently cover the whole input space.

"The art of software testing" Myers, Glenford J., ISBN: 0471 043281 discloses using one or more boundary values as representative test cases for a system. Testing methods that explore boundary conditions tend to perform better than methods that do not. However, software and digital systems may not be continuous, and therefore the testing of boundary conditions may not discover certain design defects.

All-pairs testing, or pair-wise testing, is a combinatorial software testing method that, for each pair of input parameters of a system (typically, a software algorithm), tests all possible discrete combinations of those parameters. This tends to be faster than performing an exhaustive search of all combinations of all possible input parameters.

Modified Condition/Decision Coverage (MC/DC), is used in the standard DO-178B to ensure that Level A (Catastrophic) software is tested adequately. The technique still requires testers to develop their own test cases.

SUMMARY OF THE INVENTION

In a first aspect, the present invention provides a method of determining deficiencies of an aircraft or avionics system, the system being configured to process an input to produce an output, the method comprising: providing a first set of inputs for the system; for each input in the first set, processing, using the system, that input to produce a corresponding output; for each input in the first set, determining, using one or more processors operatively coupled to the system, for the output that corresponds to that input, a value of a function of that output, the value of the function being indicative of how well the system performs when processing that input; and using the first set of inputs and the determined function values, generating, by the one or more processors, a second set of inputs, wherein the generation of the second set of inputs is performed using a process for determining inputs for the system that correspond to maximum or minimum function values, the maximum or minimum function values being values that are indicative of poor system performance.

The process may be an iterative process. Also, generation of the second set of inputs may comprise performing one or more iterations of the process.
The process may be selected from a group of processes consisting of: a genetic algorithm, an evolutionary algorithm, a multiple objective evolutionary algorithm, a simulated annealing process, a neural network.

The process may be a genetic algorithm.

The genetic algorithm may comprise selecting a subset of the first set of inputs, selection of an input being dependent on the value of the function corresponding to that input, and generating the second set of inputs using the selected subset of inputs.

The step of generating the second set of inputs using the selected subset of inputs may comprise performing a crossover process on the inputs in the selected subset.

The step of generating the second set of inputs using the selected subset of inputs may comprise performing a mutation process on the inputs in the selected subset.

The step of providing a set of inputs for the system may comprise stochastically sampling a plurality of inputs from an input space of the system to produce the first set of inputs.

The system may be a system selected from a group of systems consisting of: a collision avoidance system, a route planning system, a decision making system, a non-deterministic system, a black-box system.

In a further aspect, the present invention provides apparatus comprising: an aircraft or avionics system, the system being configured to process an input to produce an output; and one or more processors operatively coupled to the systems and configured to: provide a first set of inputs for the system; for each input in the first set, determine, for a system output that corresponds to that input, a value of a function of that output, the value of the function being indicative of how well the system performs when processing that input; and using the first set of inputs and the determined function values, generate a second set of inputs, wherein the generation of the second set of inputs is performed using a process for determining inputs for the system that
corresponds to maximum or minimum function values, the maximum or minimum function values being values that are indicative of poor system performance.

The apparatus may be wholly onboard an aircraft.

The process may be an iterative process. Also, generation of the second set of inputs may comprise performing one or more iterations of the process.

The process may be selected from a group of processes consisting of: a genetic algorithm, an evolutionary algorithm, a multiple objective evolutionary algorithm, a simulated annealing process, a neural network.

The process may be a genetic algorithm.

The genetic algorithm may comprise selecting a subset of the first set of inputs, selection of an input being dependent on the value of the function corresponding to that input, and generating the second set of inputs using the selected subset of inputs.

The generation of the second set of inputs using the selected subset of inputs may comprise performing a crossover process on the inputs in the selected subset.

The generation of the second set of inputs using the selected subset of inputs may comprise performing a mutation process on the inputs in the selected subset.

In a further aspect, the present invention provides an aircraft comprising apparatus in accordance with the preceding aspect.

In a further aspect, the present invention provides a computer program or plurality of computer programs arranged such that when executed by a computer system it/they cause the computer system to operate in accordance with any of the above aspects.

In a further aspect, the present invention provides a machine readable storage medium storing a computer program or at least one of the plurality of computer programs according to the preceding aspect.
Figure 1 is a schematic illustration (not to scale) of an aircraft; Figure 2 is a schematic illustration (not to scale) of a network; and Figure 3 is a process flow-chart showing certain steps of an embodiment of a system testing algorithm.

DETAILED DESCRIPTION

Figure 1 is a schematic illustration (not to scale) of an aircraft 2. The aircraft 2 comprises a collision avoidance system 4.

The collision avoidance system 4 is a conventional system that may operate onboard the aircraft 2 and may be independent of ground-based systems (e.g. air traffic control systems). The collision avoidance system 4 performs a collision avoidance algorithm on data received by it from other aircraft systems. The collision avoidance algorithm is a conventional algorithm.

The collision avoidance system 4 may be a black-box or white-box system. The collision avoidance system 4 operates so as to warn the pilot of the aircraft 2 of the presence of other aircraft, obstacles, or the ground, so that collision of the aircraft 2 with those other entities may be avoided. The collision avoidance system 4 may indicate to the pilot a manoeuvre that will prevent, or reduce the risk of, a collision.

The collision avoidance system 4 may operate over a relatively short range (i.e. so as to prevent, or reduce the risk of, an aircraft-on-aircraft collision), or may operate over a relatively long range (i.e. so that standard separation between aircraft during flight is substantially maintained).

An embodiment of a system testing algorithm will be described in more detail later below with reference to Figure 3. In the embodiment, the system testing algorithm will be used to test (i.e. to discover any design defects in) the collision avoidance algorithm performed by the collision avoidance system 4.
Figure 2 is a schematic illustration (not to scale) of a network 100 in which the embodiment of the system testing algorithm is to be implemented. In some embodiments, this network 100 may be on the aircraft 2.

The network 100 comprises the collision avoidance system 4 and an input generator 6.

In this embodiment, the collision avoidance system 4 is configured to receive a plurality of inputs 8. Initially, the inputs 8 for the collision avoidance system 4 are test variables that may be set by an operator. Each of the plurality of inputs 8 may be, for example, indicative of a position and a velocity of another aircraft, object, or the ground relative to the aircraft 2.

The collision avoidance system is configured to perform the collision avoidance algorithm on the inputs 8 to generate a plurality of outputs 10. Each of the plurality of outputs 10 may be, for example, indicative of a recommended manoeuvre to be performed by the pilot, and a corresponding miss-distance between the aircraft 2 and the other aircraft, object, or the ground if that recommended manoeuvre were performed.

The collision avoidance system 4 and an input generator 6 are coupled together so that the outputs 10 of the collision avoidance system 4 are the inputs of the input generator 6.

The input generator 6 is configured to perform an input generation algorithm on the outputs 10 of the collision avoidance system 4 to form a new set of inputs 8 for the collision avoidance system 4. The input generation algorithm performed by the input generator 6 forms part of the system testing algorithm and is described in more detail later below with reference to Figure 3.

The testing of the collision avoidance algorithm may be performed onboard the aircraft 2, e.g. the network 100 may be wholly located on the aircraft 2. Alternatively, at least some of the process of the testing the collision avoidance algorithm may be performed remotely from the aircraft 2, i.e. one or more entities of the network 100 may be remote from the aircraft 2, e.g. the collision avoidance system 4 may be removed from the aircraft 2 prior to the testing of the collision avoidance algorithm.
Figure 3 is a process flow-chart showing certain steps of an embodiment of a system testing algorithm performed using the network 100.

In this embodiment, the system testing algorithm is a genetic algorithm. The system testing algorithm is used to generate inputs 8 to the collision avoidance system 4 with which the collision avoidance system 4 performs poorly. It is an aim of the system testing algorithm to generate an input 8 to the collision avoidance system 4 with which the collision avoidance system 4 performs most poorly. The system testing algorithm is an iterative optimisation process.

At step s2, a plurality of initial inputs 8 for the collision avoidance system 4 is provided. The initial inputs 8 for the collision avoidance system 4 are test variables that may be set by an operator.

Each input 8 encodes a candidate (e.g. optimal) solution to the problem of finding inputs for the collision avoidance system 4 with which the collision avoidance system 4 performs poorly, i.e. each of the inputs 8 may be an input with which the collision avoidance system demonstrates poor performance.

The initial inputs 8 form an initial population of solutions. The population may be of any appropriate size, e.g. several hundred or thousand inputs. The initial inputs 8 may be a set of inputs that have been randomly selected from the set of all possible inputs to the collision avoidance system 4, i.e. the population may be generated randomly. Alternatively, the inputs 8 may be "seeded" in areas where optimal solutions are likely to be found.

The inputs 8 may be represented, e.g., as an array of bits. Such a representation tends to be advantageously convenient as below described crossover operations tend to be facilitated. Alternatively, the inputs 8 may be represented in binary as strings of 0s and 1s. Other representations are possible.

In the terminology typically used in the field of genetic algorithms, the inputs 8 may be referred to as chromosomes or genotypes, each of which encodes a candidate solution (also referred to as an individual, creature, or phenotype).
At step s4, the collision avoidance system 4 performs the collision avoidance algorithm on the inputs 8 to determine the outputs 10.

In this embodiment, each of the plurality of outputs 10 corresponds to a particular input 8. An output 10 may, for example, comprise a recommended manoeuvre to be performed by the pilot if the corresponding input 8 were actually observed. An output 10 may further comprise a corresponding miss-distance between the aircraft 2 and another aircraft, an object, or the ground if that recommended manoeuvre were performed.

The below described steps s6 to s14 of the system testing algorithm may, for example, be performed by the input generator 6.

At step s6, using the outputs 10, the fitness of each individual input 8 is evaluated.

In this embodiment, the fitness of an input 8 is evaluated by determining the value of a fitness function of the output 10 corresponding to that input 8. Thus, a "fitness value" is determined for each of the inputs 8.

Any appropriate fitness function may be used. The fitness function is typically dependent on the algorithm being tested.

Any appropriate performance measure or metric may be used to assess the performance of a system. A metric used may depend on the system, i.e. the type of system itself. Inputs with which a system performs "most poorly" may be indicated by certain values (e.g. lowest or highest) of the performance metric or measure used to assess the system. For example, good performance of a collision avoidance algorithm may result in a relatively large separation distance between two aircraft. Similarly, poor performance of that collision avoidance algorithm may result in a relatively small, or zero, separation distance between two aircraft. The assessment of performance of the collision avoidance algorithm may comprise simulating a collision encounter between two aircraft. Such simulation may comprise computing distances between the two aircraft. Higher distances may represent larger aircraft separation and good algorithm performance, whilst low distances may represent smaller separation and poor algorithm performance. In this case, a fitness function (i.e. a function for
assessing the fitness or performance of the algorithm) may be a function of the
distance between the two aircraft in the collision encounter.

In other embodiments, a route planning algorithm may be under test. The
route planning algorithm may be for computing a route, for a vehicle, between
two points such that fuel use is minimised. Also, there may be a number of
obstacles to be avoided. An appropriate fitness function in such embodiments
may be a function of the amount of fuel remaining when the vehicle reaches its
destination. Cases in which the route planning algorithm performs poorly may
be found, for example, by finding inputs which correspond to minimum values of
this fitness function.

A value of the fitness functions for a particular input 8 is indicative of how
poor the performance of the collision avoidance algorithm is when performed
using that input 8. For example, for an input 8, the lower the value of the fitness
function (e.g. separation distance) calculated for that input 8 is, the worse the
performance of the collision avoidance algorithm may be. In this case, it may be
an object of the system testing process to identify inputs 8 that correspond to
minimum values of the fitness function (i.e. to identify the inputs 8 with which
the collision avoidance algorithm performs the worst). Also, in another example,
for an input 8, the higher the value of the fitness function calculated for that
input 8 is, the worse the performance of the collision avoidance algorithm may
be. In this case, it may be an object of the system testing process to identify
inputs 8 that correspond to maximum values of the fitness function (i.e. to
identify the inputs 8 with which the collision avoidance algorithm performs the
worst).

At step s8, it is determined whether the system testing algorithm is to be
terminated yet.

The algorithm may be deemed to terminate when one or more
appropriate conditions have been met. For example, the algorithm may
terminate when a pre-determined number of generations of inputs 8 have been
produced (i.e. when a pre-determined number of iterative cycles of the
algorithm have been performed). Also for example, the algorithm may terminate
when the value of the fitness function corresponding to one or more of the inputs \(\mathbf{8} \) exceeds a threshold level. Also for example, the algorithm may terminate when an allocated budget (computation time/money) has been reached.

If at step s8 it is determined that the algorithm is not to end yet, the method proceeds to step s10.

However, if at step s8 it is determined that the algorithm is to end, the method proceeds to step s14 before ending. Step s14 will be described in more detail later below after the description of steps s10, s12, and s13.

At step s10, it has been determined that the system testing algorithm is not yet to be terminated. At step s10, a plurality of inputs \(\mathbf{8} \) are selected (e.g. stochastically) from the current set of inputs \(\mathbf{8} \). In other words, a subset of the set of inputs \(\mathbf{8} \) is selected e.g. at random.

In this embodiment, this selection of a subset of the inputs \(\mathbf{8} \) is performed depending upon the respective calculated fitness values of the inputs \(\mathbf{8} \). In particular, individual inputs \(\mathbf{8} \) are selected through a fitness-based process, where fitter solutions (as measured by the fitness function) are typically more likely to be selected. For example, if relatively lower fitness values correspond to relative worse performance of the collision avoidance algorithm, an input \(\mathbf{8} \) would be more likely to be selected at step s10 if it corresponded to a lower fitness value than if it corresponded to a higher fitness value.

Any appropriate selection process may be used. For example, a selection process in which the fitness of each of the inputs \(\mathbf{8} \) is used to preferentially select the fittest inputs may be used. Alternatively, a selection process in which only a random sample of the population is selected from may be used. Alternatively, a fitness proportionate selection (or roulette-wheel selection) process, a stochastic universal sampling process, a tournament selection process, a truncation selection process, or an elitist selection process may be used.

At step s12, the selected inputs \(\mathbf{8} \) are modified to form a new population, i.e. a new set of inputs \(\mathbf{8} \) for the collision avoidance system \(\mathbf{4} \). In this
embodiment, modification of the selected inputs 8 comprises the recombination and the mutation of certain of the selected inputs 8.

In other words, at step s12 a next generation population of inputs 8 is produced from those inputs 8 selected. In this embodiment, this production of the next generation population is performed using genetic operators, namely crossover (also called recombination) and mutation operators.

Typically, a crossover operator is used to produce a new input 8 from two (or more) “parent” inputs 8 that have been selected from the set of inputs selected at step s10. The new input 8 determined using the parent inputs 8 may be thought of as a "child" input/solution.

Any appropriate crossover techniques may be used. For example, a one-point crossover process, a two-point crossover process, a "cut and splice" crossover process, a uniform crossover process, a half uniform crossover process, a three parent crossover process may be used, a "crossover for ordered chromosomes" process may be used. Also, for example a crossover process that uses any or all of the following crossover operators may be used: a partially-matched crossover operator, a cycle crossover operator, an order-based crossover operator, a position-based crossover operator, a voting recombination crossover operator, an alternating-position crossover operator, a sequential constrictive crossover operator. Other possible methods include the edge recombination operator and partially mapped crossover.

Typically, a mutation process is performed to alter one or more gene values in a chromosome from its initial state (i.e. to change one or more bit-values of an input 8). For example, if inputs 8 are in binary as strings of 0s and 1s, a 1 value may be changed, at random, to a 0 value (and vice versa). This mutation may occur depending upon a pre-defined mutation probability. Preferably, this mutation probability is low.

Any appropriate mutation techniques may be used. For example, a single point mutation process, an inversion mutation process, a floating point mutation process, a bit string mutation process, may be used. Alternatively, a mutation process that uses some or all of the following mutation operators may be used:
a flip bit mutation operator, a boundary mutation operator, a non-uniform
mutation operator, uniform mutation operator replaces, and/or a Gaussian
mutation operator.

The crossover and mutation process performed on the inputs 8 that were
selected at step $s10$ produce a next generation population of inputs 8 from a
previous generation. Advantageously, the average fitness of the produced next
generation of inputs 8 tends to be improved relative to the previous generation.

In other embodiments, only one of the crossover or mutation operators is
used to produce the new generation of inputs 8. Also, in other embodiments,
genetic operators other than crossover and mutation operators (for example,
regrouping, colonization-extinction, or migration genetic operators) may be used
may be used instead of or in addition to one or both of the crossover and
mutation operators.

At step $s13$, the previous inputs 8 are replaced by the new (i.e. the latest)
inputs 8. In other words, the previous generation population is replaced by the
new generation population that has been determined at step $s12$.

After the performance of step $s13$, the method of figure 3 reverts back to
step $s4$. Thus, the process of Figure 3 is an iterative process.

Referring back to step $s8$, if at step $s8$ it is determined that the algorithm
is to end, the method proceeds to step $s14$.

At step $s14$, the latest (i.e. most recent generation) of inputs 8 are
displayed (e.g. on a display) to an operator (i.e. a party performing the testing of
the collision avoidance algorithm).

Thus, a system testing algorithm is provided.

The system testing algorithm advantageously tends to discover any
design defects in the algorithm/system being tested (i.e. the collision avoidance
algorithm performed by the collision avoidance system). The design defects
may be displayed to the tester as input values that the system being tested
performs poorly when input with. The corresponding output values and fitness
values corresponding to those input values may also be displayed to the tester.
The finding of these defects allows a tester to analyse the performance of the system/algorithm being tested and better understanding of the capabilities and limitations of the software and systems. The system/algorithm may be modified, updated, or changed so as to overcome or alleviate the effects of the discovered/determined deficiencies. Thus, the design of better software and systems tends to be facilitated.

The above described method and apparatus for testing systems and software tend to be particularly useful for testing avionics/aircraft software, and in particular avionics/aircraft software having several inputs, each input having multiple possible values. This is because avionics/aircraft software tends to be relatively complex and conventional testing methods tend to be impractical or impossible.

The above described method and apparatus for testing systems and software tend to be particularly useful for testing black box systems as knowledge of the internal workings of the system tend not to be needed. The provided methods and apparatus may also be used to test white box systems.

The above described system is a test case generation system that uses an optimisation technique to iteratively create test cases for a system under test. Advantageously, the test case generation system is capable of generating a test case that demonstrates poor performance of the system under test. Also, the test case that demonstrates the poor performance of the system under test is advantageously without an exhaustive search of the input space of the system under test having to be performed.

Advantageously, portioning of the input space does not need to be performed.

Advantageously, manual creation of test cases by a tester does not need to be performed.

Advantageously, an initial set of test cases, e.g. randomly selected inputs from the input space, tend to evolve to become those system inputs with which the system under test exhibits poor performance. Thus, design weakness tends to be discovered.
Advantageously, the above described method and apparatus may be used in the certification of systems, e.g. to gather certification evidence.

Advantageously, the above described method and apparatus may be used to test non-deterministic and/or autonomous systems.

Apparatus, including the input generator and/or the collision avoidance system, for implementing the above arrangement, and performing the method steps described herein, may be provided by configuring or adapting any suitable apparatus, for example one or more computers or other processing apparatus or processors, and/or providing additional modules. The apparatus may comprise a computer, a network of computers, or one or more processors, for implementing instructions and using data, including instructions and data in the form of a computer program or plurality of computer programs stored in or on a machine readable storage medium such as computer memory, a computer disk, ROM, PROM etc., or any combination of these or other storage media.

It should be noted that certain of the process steps depicted in the flowchart of Figure 3 and described above may be omitted or such process steps may be performed in differing order to that presented above and shown in Figure 3. Furthermore, although all the process steps have, for convenience and ease of understanding, been depicted as discrete temporally-sequential steps, nevertheless some of the process steps may in fact be performed simultaneously or at least overlapping to some extent temporally.

In the above embodiments, the system testing algorithm is used to generate inputs to a collision avoidance system with which the collision avoidance system performs poorly. However, in other embodiments, the system testing algorithm is used to generate inputs for a different type of algorithm. For example, in other embodiments, the system testing algorithm is used to test software/algorithms of different aircraft/avionics systems e.g. route planning systems, decision making systems used on aircraft. The system testing algorithm may be used to test a non-deterministic system. The system testing algorithm may be used to test a commercially available black-box system.
In the above embodiments, the system testing algorithm is a genetic algorithm. The genetic algorithm is used to optimise values of a fitness function. The value of the fitness function corresponding to a particular algorithm input is indicative of how poorly the algorithm under test performs when performed using that particular input. However, in other embodiments, a different method of optimising the values of the fitness function may be used. For example, in other embodiments a different genetic algorithm implemented in a different appropriate way may be used. Also for example, in other embodiments a different type of evolutionary algorithm, or a multiple objective evolutionary algorithm, may be used to optimise the fitness values. In other embodiments a simulated annealing process may be used to optimise the fitness values. In other embodiments a neural network may be used to optimise the fitness values.
CLAIMS

1. A method of determining deficiencies of an aircraft or avionics system (4), the system (4) being configured to process an input (8) to produce an output (10), the method comprising:
 - providing a first set of inputs (8) for the system (4);
 - for each input (8) in the first set, processing, using the system (4), that input (8) to produce a corresponding output (10);
 - for each input (8) in the first set, determining, using one or more processors (6) operatively coupled to the system (4), for the output (10) that corresponds to that input (8), a value of a function of that output (10), the value of the function being indicative of how well the system (4) performs when processing that input (8); and
 - using the first set of inputs (8) and the determined function values, generating, by the one or more processors (6), a second set of inputs (8);

 wherein
 - the generation of the second set of inputs (8) is performed using a process for determining inputs (8) for the system (4) that correspond to maximum or minimum function values, the maximum or minimum function values being values that are indicative of poor system performance.

2. A method according to claim 1, wherein the process is an iterative process and generation of the second set of inputs (8) comprises performing one or more iterations of the process.

3. A method according to claim 1 or 2, wherein the process is selected from a group of processes consisting of: a genetic algorithm, an evolutionary algorithm, a multiple objective evolutionary algorithm, a simulated annealing process, a neural network.
4. A method according to claim 3, wherein the process is a genetic algorithm.

5. A method according to claim 4, wherein the genetic algorithm comprises:
 selecting a subset of the first set of inputs (8), selection of an input (8) being dependent on the value of the function corresponding to that input (8); and
 generating the second set of inputs (8) using the selected subset of inputs (8).

6. A method according to claim 5, wherein the step of generating the second set of inputs (8) using the selected subset of inputs (8) comprises performing a crossover process on the inputs (8) in the selected subset.

7. A method according to claim 5 or 6, wherein the step of generating the second set of inputs (8) using the selected subset of inputs (8) comprises performing a mutation process on the inputs in the selected subset.

8. A method according to any of claims 1 to 7, wherein the step of providing a set of inputs (8) for the system comprises stochastically sampling a plurality of inputs (8) from an input space of the system to produce the first set of inputs (8).

9. A method according to any of claims 1 to 8, wherein the system (4) is a system selected from a group of systems consisting of: a collision avoidance system, a route planning system, a decision making system, a non-deterministic system, a black-box system.
10. Apparatus comprising:

an aircraft or avionics system (4), the system (4) being configured to process an input (8) to produce an output (10); and

one or more processors (6) operatively coupled to the system (4) and configured to:

provide a first set of inputs (8) for the system (4);

for each input (8) in the first set, determine, for a system output (10) that corresponds to that input (8), a value of a function of that output (10), the value of the function being indicative of how well the system performs when processing that input (8); and

using the first set of inputs (8) and the determined function values, generate a second set of inputs (8); wherein

the generation of the second set of inputs (8) is performed using a process for determining inputs (8) for the system (4) that corresponds to maximum or minimum function values, the maximum or minimum function values being values that are indicative of poor system performance.

11. Apparatus according to claim 10, wherein the apparatus is wholly onboard an aircraft (2).

12. Apparatus according to claim 10 or 11, wherein

the process is an iterative process and generation of the second set of inputs (8) comprises performing one or more iterations of the process;

the process is a genetic algorithm;

the genetic algorithm comprises:

selecting a subset of the first set of inputs (8), selection of an input (8) being dependent on the value of the function corresponding to that input (8); and
generating the second set of inputs (8) using the selected subset of inputs (8); and

the step of generating the second set of inputs (8) using the selected subset of inputs (8) comprises:

performing a crossover process on the inputs (8) in the selected subset; and

performing a mutation process on the inputs (8) in the selected subset.

13. An aircraft (2) comprising apparatus in accordance with any of claims 10 to 12.

14. A computer program or plurality of computer programs arranged such that when executed by a computer system it/they cause the computer system to operate in accordance with the method of any of claims 1 to 9.

15. A machine readable storage medium storing a computer program or at least one of the plurality of computer programs according to claim 14.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

ADD.

According to International Patent Classification (IPC) and to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G05B G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

"X" document considered to be of particular relevance

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 31 January 2014

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

International application No
PCT/GB2013/052681

06/02/2014

Authorized officer

Schri ef 1, Josef

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2010069587 A1</td>
<td>24-06-2010</td>
<td>NONE</td>
</tr>
</tbody>
</table>