A portable electric height adjustable platform assembly, and method of use, the assembly residing on a fixed height desktop to move a computer monitor, keyboard, and mouse between a user’s sitting and standing position. The platform assembly comprises: a horizontally positioned platform unit configured for supporting a computer keyboard and mouse; a height adjustable lifting column unit comprising three telescopic sections, affixed vertically to the platform, with the outer section positioned above the platform unit to affix the monitor to, and the middle and inner section extensible below the platform to raise-lower the assembly; a base unit affixed to the bottom end of the lifting column unit, and configured to stabilize the assembly in a vertical position; an electric actuator housed within and able to activate the lifting column unit to vertically extend and collapse the telescopic sections, thus simultaneously raising and lowering the computer monitor, keyboard, and mouse.
ELECTRIC HEIGHT ADJUSTABLE PLATFORM FOR COMPUTER KEYBOARD AND MONITOR

FIELD OF THE DISCLOSURE

[0001] The field of the disclosure is that of height adjustable office workstations. More specifically, the field is to a portable, electric height adjustable platform that resides on top of a standard office desk and which is able to raise and lower a computer monitor, keyboard, and mouse between a sitting and a standing position while the office desk remains stationary.

BACKGROUND OF THE DISCLOSURE

[0002] The adverse effects of prolonged sitting are well documented. Prolonged sitting can cause: an accumulation of metabolites; accelerated disk degeneration leading to disk herniation; premature mortality; chronic diseases such as cardiovascular disease, diabetes, and cancer; and obesity (Pope et al., "Spine Ergonomics", Annual Review of Biomedical Engineering, Vol. 4: 49-68; and, Pronk et al., "Reducing Occupational Sitting Time and Improving Worker Health: The Take-a-Stand Project, 2011", Centers for Disease Control and Prevention, Vol. 9, Oct. 11, 2012).

[0003] Height adjustable desks that position a user to stand and work have become popular to assist a user in avoiding these adverse health effects. But prolonged standing also has its adverse health effects: back and leg muscle fatigue leading to injury; varicose veins; joint compression and tearing where the synovial fluid is not circulating and thus reducing the normal lubrication and cushioning of synovial joints, such as knees.

[0004] A user therefore needs to be able to rapidly shift between sitting and standing at their desk throughout the course of their workday in order to avoid these adverse effects while maximizing the benefits of standing. Height adjustable desks are specifically designed for this purpose, but many employers do not permit their office employees to substitute a height adjustable desk for a standard, fixed height office desk that has been selected to fit the décor of the office.

[0005] In lieu of a height adjustable desk, employees may add an accessory to their desktop comprising an assembly that will raise and lower the computer monitor, keyboard, and/or mouse. Unfortunately, many of these desktop accessories have significant limitations, such as: 1) they require large areas of desktop space, which leaves little room for other essential and personal user’s items to be easily accessible on the desktop; 2) they are unstable and easily prone to being knocked over, which could permanently damage the computer monitor; 3) they have limited weight capacities, and are thus not able to safely support large, heavy computer monitors; 4) they have limited ranges of motion between a standing and sitting position; and, 5) many require a manual mechanism to adjust the platform’s height, which is labious and interrupts the user’s workflow.

[0006] For example, U.S. Pat. No. 5,526,756 that issued to Watson, D. on Jun. 18, 1996, discloses a non-standard office desk with a height adjustable computer monitor platform and a keyboard platform supported within apertures extending through the desktop. Because the platforms are built into the desk, then they are not portable and cannot be moved to another desk.

[0007] And, U.S. Patent Application 20150083027 Al to Martin, D. A., published Mar. 26, 2015, discloses a platform with five height adjustable legs that a user manually lifts onto a desktop and then places their computer monitor and keyboard onto the platform. Every time the user wants to switch between a sitting and a standing position, or move to another work station, they must physically move the keyboard, computer monitor and the platform.

[0008] Therefore, what is needed within the office furniture industry for a portable, electrically powered height adjustable assembly for use on a standard height fixed desk that is able to automatically raise and lower a computer monitor, keyboard and mouse between a sitting and a standing position. The assembly should also accommodate a mounting of a flat screen computer monitor. It would be especially beneficial if the height adjustable assembly was portable such that a user could easily move the entire platform assembly comprising a flat screen computer monitor, keyboard, and mouse, between desks or other work surfaces, such as counter tops and tables.

SUMMARY

[0009] The various embodiments of the present disclosure comprise a portable, electric height adjustable platform assembly, and method of use, to vertically move a computer monitor, keyboard, and mouse between a user’s sitting and standing position. The platform assembly resides upon a flat surface of fixed height, such as a standard office desk, or counter top, or table top, etc.; and, it is portable so that it may be picked-up and moved from one flat surface to another, such as from a user’s office desk to a kitchen countertop or dining table.

[0010] In an embodiment, the platform assembly primarily comprises: a horizontal platform unit supporting a keyboard and mouse; a lifting column unit supporting the computer monitor and to raise and lower it in unison with the keyboard and mouse; a base unit attached to the bottom of the assembly to stabilize it; and an electric actuator to expand and retract the lifting column unit.

[0011] A flat screen computer monitor is permanently affixed to the lifting column unit above the platform unit such that the computer monitor and platform unit with the keyboard do not move relative to each other, and while the lifting column expands and retracts below the platform unit to raise and lower the computer monitor and the platform unit.

[0012] In one or more embodiments, the platform assembly units further comprise: a) a horizontally positioned platform unit with sufficient surface area for a standard sized computer keyboard and mouse; b) a height adjustable lifting column unit comprising telescopic sections (e.g., three), affixed vertically to the platform unit, with the sections extensible through a platform cutout above the platform to affix the computer monitor to, and below the platform to raise and lower the assembly height; c) a base unit affixed to the bottom end of the lifting column unit, and configured to stabilize the platform assembly in a vertical position; and, d) an electric actuator housed within, or connected to, the lifting column unit and able to control it to vertically extend and retract its telescopic sections, thus simultaneously raising and lowering the computer monitor, keyboard, and mouse without moving them relative to each other.

[0013] In an embodiment, a computer monitor is easily installed on the lifting column top section by the user;
therefore, the lifting column is compatible for use with a wide variety of types of flat screen, or flat panel, computer monitors or the like (e.g., those with liquid crystal displays, interactive-smart televisions, game consoles, etc.). The platform assembly has the computer monitor pre-installed and shipped by the manufacturer.

[0014] In another embodiment, the platform assembly does not require the computer monitor to be affixed to the lifting column, such as for use with a wall mounted computer monitor or smart television, and/or a large desktop monitor. In this embodiment, the lifting column unit may not extend above the platform unit by comprising fewer telescopic sections (e.g., two sections), and the platform unit may or may not comprise a cut-out for the lifting column.

[0015] The various embodiments disclosed herein further comprise a method of use of the platform assembly to automatically (e.g., via electric power) move a computer monitor, keyboard, and/or mouse between a sitting and a standing position while not moving them relative to each other, the steps comprising: a) placing a portable, electric powered height adjustable computer monitor platform assembly as disclosed herein on a substantially flat work surface, such as the desktop of a standard office desk; b) affixing a flat screen computer monitor perpendicularly to a front side of the platform assembly’s lifting column, and placing a computer keyboard and mouse on the platform unit; c) raising the platform assembly to a standing position under the operational control of an electric actuator; and, d) lowering the platform assembly to a sitting position under the operational control of the electric actuator, wherein the electric actuator is connected to the lifting column unit.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Other characteristics and advantages will emerge more clearly on reading the following description of various embodiments of the present disclosure, given as an illustrative example, and the appended figures wherein “right” and “left” side of the desk are from the perspective of the user behind the desk:

[0017] FIG. 1 is a right front top perspective view of the computer monitor platform in a sitting position on a desktop;

[0018] FIG. 2 is a right front perspective view of the computer monitor platform in a sitting position on a desktop;

[0019] FIG. 3 is a back left perspective view of the computer monitor platform in a sitting position on a desktop;

[0020] FIG. 4 is a back left bottom perspective view of the computer monitor platform in a sitting position illustrating the underside of the platform;

[0021] FIG. 5 is a back left bottom perspective view of the computer monitor platform in a standing position illustrating the underside of the platform;

[0022] FIG. 6 is a view of FIG. 1 without the computer monitor, comprising a right front top perspective view of the platform in a standing position;

[0023] FIG. 7 is an exploded view of the lifting column of FIG. 6 without the platform member;

[0024] FIG. 8A is a perspective view of the top of the platform illustrating the cutout where the lifting column is affixed and extends above and below the platform; and,

[0025] FIG. 8B is a perspective view of the bottom of the platform.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0026] Reference will now be made in detail to the embodiments of the present general inventive concept, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present general inventive concept while referring to the figures.

[0027] The matters defined in the description, such as detailed construction and elements, are provided to assist in a comprehensive understanding of the present general inventive concept. Thus, it is apparent that the exemplary embodiments may be carried out without those specifically defined matters. Also, well-known functions or constructions are not described in detail since they would obscure the exemplary embodiments with unnecessary detail.

[0028] As used herein, the term “Computer Monitor” refers to any flat screen on a plane connected to a computing device comprising one or more processing units and memory, such as a computer display or smart television display that is a liquid crystal type or LCD (Liquid Crystal Display). The computer monitor may be linked via wires, cables, or wirelessly to a keyboard.

Electric Height Adjustable Platform Assembly

[0029] The electric height adjustable platform assembly 100 exemplified in FIGS. 1-8 comprises the primary components of: a platform unit 110; a lifting column unit 112; a base unit 130; and an electric actuator (i.e. within the lifting column 112). Various mechanisms of fixation of the components are well known to the artisan, such as the bolts, screws, and the like (e.g. see exploded view of FIG. 7). Additionally, in FIGS. 1-8 the front of the platform assembly 100 and its components is faces towards the user who is operating the computer; and, the back of assembly 100 faces away from the user.

[0030] As illustrated in FIG. 1, the platform assembly 100 resides horizontally atop a flat surface 210 that is fixed in height, such as: a desktop of a non-height adjustable office desk of standard height (e.g. about 28 to 30 inches). Platform assembly 100 may also reside upon other flat surfaces that are used in work spaces, such as a counter top, a table top, etc.

[0031] The platform assembly 100 is height adjustable between a sitting and a standing position as measured from the flat surface 210 (versus from the floor of a normal height adjustable desk). The platform unit 110 has sufficient top surface area for a computer keyboard 116 and mouse 118 to reside on top of platform unit 110 and/or other computer peripheral devices, such as a user-operable power switch 150 for selectively operating the lifting column unit 112, phones and battery charges, etc. The height adjustable lifting column unit 112 is affixed vertically to the platform unit 110, and it extends above and below the platform unit 110 using telescopic sections 112a,b,c. The base unit 130 is affixed to the bottom end of the lifting column unit 112 at section 112c, and it is configured to stabilize the assembly 100 in a vertical position so that it does not easily tip over when the platform assembly 100 or the desktop 210 is bumped or shifted or otherwise disturbed. And, an electric actuator comprises, for example, electric motors housed in the lifting column unit to
expand and collapse the telescopic sections of the lifting column unit between a standing position and a sitting position.

Platform Unit

[0032] Platform unit 110 may further comprise a variety of shapes (e.g. rectangular, square, semi-circular, oval, etc.), as long as the platform unit 110 possesses a large enough top surface area with room for a standard sized computer keyboard 116, a computer mouse 118, and/or other peripheral computer devices. But, the top surface area of the platform is substantially smaller than a standard sized desktop's so that it may be portable and easily picked up and moved to another work station by the user.

[0033] The shape of the unit 110 relative to the lifting column unit 112 must also allow a computer monitor 114 to reside a comfortable distance from the user to easily see the display on the monitor 114. In the exemplified embodiment of FIG. 6, the platform unit 110 is in a shape that is substantially semi-circular with the straight front edge 110a facing the user, and with a curved back edge 110b on the opposing side of platform 110 facing towards the front of the desktop and away from the user.

[0034] And as illustrated in FIGS. 6, 8A, and 8B, the platform unit 110 further comprises a cutout 160 for the lifting column unit 112 to pass through the platform unit 110. In the exemplified embodiments, the cutout 160 is substantially rectangular shaped, with two short sides 160a aligned with the front and back of the platform unit 110, and two long sides 160b aligned with the sides of the platform 110 (e.g. see FIG. 5). Other shapes of cutouts 160 would be readily apparent to the artisan (e.g. circular, square, etc.). The cutout 160 is located near the middle of the back edge of the platform unit 110b.

[0035] Platform 110 may further comprise a user control mechanism, or power switch 150, to activate the electric actuator that raises and lowers the platform unit 110 and the lifting column unit 120. Switch 150 may be located anywhere on the platform 110 top, side edge, or under surface, other than where a keyboard 116 and the computer mouse 118 normally reside, such as on the top surface upper right corner for a right handed user, or on the upper left side of the platform unit 110 for a left handed user. In the exemplified embodiment, switch 150 is located a few inches directly away from the mouse 118 and towards the back edge of the platform 110b. Other placements on the platform assembly 100 are readily configurable by one of ordinary skill in the art, such as on the base of the lifting column 112b, or near the user on the front side edge 110a of the platform 110.

Lifting Column Unit

[0036] As illustrated in FIGS. 1-7, the lifting column unit 112 comprises: two or more interlocked expandable and collapsible telescopic sections that raise and lower the computer monitor and keyboard platform unit 110 in unison so that the configuration of the two relative to each other remains the same.

[0037] The lifting column unit is divided into telescopic sections that collapse or retract, and extend or linearly expand. In the exemplified embodiment of FIGS. 1-7, the lifting column comprises three telescopic sections (112a, b, c) with a front side facing the user and a back side facing the front of the desktop 210 away from the user. The lifting column unit interlocking, telescopic sections comprise: a top outer section 112a, a middle section 112b, and an inner bottom section 112c. The top outer section 112a permanently extends above the platform 110 in a fixed position with a flat screen computer monitor 114 attached to the front side of section 112a facing towards the user.

[0038] The middle section 112b and the inner bottom section 112c temporarily reside within and are encased or enclosed by the outer section 112a when the lifting column is fully retracted in a sitting position. Then when the platform assembly 100 is in a sitting position and the sections are fully extended, then sections 112b and 112c reside below the platform unit 110. Thus the lifting column sections 112b and 112c temporarily extend above the platform unit 110 with section 112c enclosed or encased within section 112b and 112a when the assembly is in a sitting position; and below the platform 110 when the assembly is in a standing position with section 112b joined at the end with section 112c but not encasing or otherwise overlapping it. Likewise section 112b is encased within section 112a above the platform 110 when the assembly 100 is in a sitting position, and section 112b extends vertically below platform 110 when the assembly is in a standing position.

[0039] In an embodiment, the lifting column unit further comprises: a bent L-like shape (in cross section) bar member 122 affixed to the front of the top telescopic section 112a; a straight rectangular shaped back plate member 136 opposite the member 122; a top plate member 138; a computer monitor plate member 140; and a computer monitor frame member 142. It is noted, though, that one of skill in the art could modify the lifting column unit to stably support the platform 110 by methods well known.

[0040] The bent bar member 122 is substantially flat, rectangular, and bent into an L-like shape when viewed from the side or cross-section, and/or half of a U-like shape; and/or it comprises two sections (i.e. top and bottom) oriented at about a ninety degree angle relative to each other. It resides with the top section affixed to the front side of the lifting column top section 112a and facing the user. The back surface of the computer monitor 114 is affixed to the top section of member 122 to stabilize the fixation of the computer monitor 114 to the lifting column 112.

[0041] The bar member 122 further extends through the cutout 160 of the platform 110, with the bend or junction in member 122 substantially aligned with the cutout 160. The bottom section of the member 122 extends towards the user and the front of the platform 110a, and it is affixed to the underside of the platform 110 to provide stability to the platform 110 and to maximize the amount of weight or load that the platform can support.

[0042] A back plate member 136 is affixed opposite to the top end of member 122, and on the opposing side (i.e. the back side) of the lifting column 112 facing away from the user and towards the front of the desk. Thus, the lifting column top section 112a is sandwiched between member 136 and member 122. Member 136 is a substantially flat rectangular or square shaped plate that is affixed perpendicularly to the top surface of platform 110 and at the cutout's front, short side 160a. The back plate member 136 works in conjunction with the member 122 to stabilize the entire platform assembly 100, as well as preventing lateral movement of the platform unit 110.

[0043] A top plate member 138 is affixed to the top section of the lifting column 112a while covering the top edge of the
member 122. Thus it assists in securing the bent L-shape bar member 122 to the lifting column 112. It is substantially square or rectangular shaped, and sized to tightly fit the cross-sectional area of the lifting column 112 combined with the width and thickness of member 122.

[0044] A computer monitor plate member 140 is affixed to the front side of the top section, or end, of member 122. It affixes the back surface, i.e. the backside, of the computer monitor 114 to the lifting column 112 via member 122. It thus functions to stabilize the computer monitor.

[0045] And, as illustrated in FIG. 3, monitor frame member 142 is affixed to the back of the computer monitor 114. Member 142 comprises an arced or curved member extending from the monitor fixture plate bottom edge 140a to the opposing bottom ends of the computer monitor 114a, b.

Base Unit

[0046] A base unit 130 is affixed to the bottom end of the lifting column unit at telescopic section 112c, and it is configured to stabilize the assembly 100 in a vertical position when the platform assembly 100 is resting atop a flat surface 210.

[0047] As illustrated in FIGS. 5-7, the base unit comprises: a) an inner rectangular member 132; and, b) a half-circular member 134.

[0048] The inner rectangular member 132 is affixed perpendicularly to the bottom end of the lifting column inner section 112c and extends toward platform unit front edge 110a (e.g. towards the user). Base member 132 also lies parallel to and directly below the bottom section of the bent bar member 122.

[0049] In an embodiment, the half-circular member 134 is a substantially single tube, or tubular member C-like shape, that is affixed at its mid-point and perpendicularly to the back side of the inner rectangular member 132, and to bottom end of the lifting column inner section 112c. In other embodiments, the half-circular member may be solid and encasing the inner rectangular member 132, or in lieu of 132. In other embodiments, the member 134 is substantially square, rectangular, oval, or circular shaped.

[0050] And the curvature, or diameter, of the bar member 134 is sized and positioned to vertically align with the curved back edge 110b of the platform unit 110. Therefore, the base unit is about the same diameter or width as the platform unit 110, or slightly larger, such that is aligns with the platform unit back edge 110b (e.g. see FIG. 6, “110b”).

Mechanism of Height Adjustment (Electric Actuator)

[0051] The lifting column unit’s interlocking, telescopic top outer section 112a, a middle section 112b, and an inner bottom section 112c move vertically under the operational control of a power switch 150 that is connected to an electric actuator. In an embodiment, the electric actuator housed within the lifting column unit 112 to push, pull or both the sections 112a and/or 112b and/or 112c in a vertical direct. Various types of electric motors are envisioned for use within the lifting column 112, such as: an electric motor with a chain and sprocket design.

[0052] An electric actuator with a threaded spindle design is also applicable for use in the present disclosure. A low voltage direct current motor, via a gear system, rotates a threaded spindle, onto which a nut is fitted. Since the nut cannot rotate and the piston rod is restrained, then the piston rod will move upward and downward when the threaded spindle rotates, thus expanding and retracting the lifting column sections 112a, b, c.

[0053] It is noted that other embodiments of the electric actuator are envisioned within the scope of the present disclosure and within the abilities of one of skill in the art to configure. By way of a non-limiting alternative configuration, an electric actuator may reside beneath the platform unit 110 and be connected to the lifting column 112 to expand and retract the sections 112a, b, c.

[0054] Although the present disclosure has been described with reference to one or more embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the disclosure and/or the appended claims.

[0055] Information as herein shown and described in detail is fully capable of attaining the above-described object of the disclosure and is, thus, representative of the subject matter which is broadly contemplated by the present disclosure. The scope of the present disclosure fully encompasses other embodiments which may become obvious to those skilled in the art, and is to be limited, accordingly, by nothing other than the appended claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural and functional equivalents to the elements of the above-described embodiments and additional embodiments that are known to those of ordinary skill in the art are hereby expressly incorporated by reference and are intended to be encompassed by the present claims.

What is claimed is:

1. A portable electric powered height adjustable computer monitor platform assembly, comprising:
 a) a horizontally positioned platform unit, of substantially semi-circular shape, that is height adjustable between a sitting and a standing position, wherein the platform unit is configured for a computer keyboard and mouse to reside on a top surface of the platform unit;
 b) a height adjustable lifting column unit affixed vertically to the platform unit, extensible above and below the platform unit, and able to affix a flat screen computer monitor to the lifting column unit above the platform unit;
 c) a substantially C-like shape base unit, affixed to the bottom end of the lifting column unit, and configured to stabilize the platform assembly in a vertical position;
 d) an electric actuator to activate the lifting column unit to vertically extend to a standing position and collapse to a sitting position; and,
 e) wherein the assembly resides temporarily on top of a fixed-height work station comprising one or more of: a standard height office desk; a counter top; and/or, a table top.

2. The platform assembly of claim 1, wherein the lifting column unit comprises three telescopic sections comprising a top outer section, a middle section, and an inner bottom section, with the top outer section permanently extending above the platform and affixed to the computer monitor.

3. The platform assembly of claim 2, wherein the middle and inner section reside within the outer section and extend above the platform unit when the platform assembly is in a sitting position; and, the middle and inner section are in an extended position below the platform unit when the assembly is in a standing position.
4. The platform assembly of claim 2 wherein a flat screen computer monitor back surface is affixed perpendicularly to a front side of the lifting column unit top outer section.

5. The platform assembly of claim 1 wherein the platform unit further comprises a cut-out for the lifting column unit to extend through, wherein the cutout is located near the middle of a back edge of the platform unit.

6. The platform assembly of claim 5 wherein the lifting column unit further comprises an L-like shape bar member extending through the cut-out with:

a) a top section affixed in parallel to and between the front side of the lifting column, and perpendicularly to the computer monitor back surface;

b) a bottom section residing perpendicular to a lower end of the top section and flush with the cut-out, and residing beneath and affixed to an underside of the platform unit; and,

c) wherein the bar member is able to support the weight of the platform unit, keyboard, mouse and to stabilize the computer monitor.

7. The platform assembly of claim 3 wherein the electric actuator resides within the lifting column unit, and a user control mechanism for the actuator resides on top of the platform unit.

8. The platform assembly of claim 7, further comprising a user control mechanism coupled to the electric actuator and affixed on the top surface of the platform unit, wherein activation of the user control mechanism generates a vertical force within the lifting column unit sections to raise and lower the platform unit by extending and retracting the sections.

9. The platform assembly of claim 1 wherein the base unit further comprises:

a) an inner rectangular member affixed perpendicularly to a bottom end of the lifting column unit inner bottom section and extending towards a platform unit front edge; and,

b) a single tube, half-circular member affixed at a midpoint perpendicularly to the inner rectangular member and the lifting column inner section; and,

c) wherein the half-circular member is positioned to partially encircle the inner rectangular member.

10. The platform assembly of claim 9 wherein the half-circular member aligns with or is slightly wider in diameter than the outer edge of the platform unit.

11. A portable electric powered height adjustable computer monitor platform assembly, comprising:

a) a horizontally positioned thin, flat plate, platform unit height adjustable between a sitting and a standing position as measured from a desktop surface, wherein the platform unit is configured for a computer keyboard and mouse to reside on a top surface of the platform unit;

b) a height adjustable lifting column unit affixed vertically to the platform unit, comprising a top outer section, a middle section, and an inner bottom section, wherein the top outer section permanently extends above the platform and is configured to be affixed with a flat screen computer monitor;

c) a base unit affixed to the bottom end of the lifting column unit, and configured to stabilize the assembly in a vertical position;

d) an electric actuator to activate the lifting column unit to vertically extend to a standing position and collapse to a sitting position as measured from a desktop surface; and,

e) wherein the platform assembly is able to reside in a stable manner on a desktop of a non-height adjustable office desk of a standard height, and the assembly is substantially smaller in diameter than the desktop.

12. The platform assembly of claim 11 wherein the platform unit further comprises a cut-out for the lifting column unit to extend vertically through, wherein the cutout is located near the middle of a back edge of the platform unit.

13. The platform assembly of claim 12 wherein the lifting column unit further comprises an L-like shape bar member extending through the cut-out with:

a) a top section affixed in parallel to and between the front side of the lifting column, and perpendicularly to the computer monitor back surface; and,

b) a bottom section residing perpendicular to the top section, and residing beneath and affixed to an underside of the platform unit.

14. The platform assembly of claim 11 wherein the electric actuator resides within the lifting column unit, and a user control mechanism resides on the platform unit.

15. The platform assembly of claim 11 wherein the base unit further comprises:

a) an inner rectangular member affixed perpendicularly to the lifting column inner section;

b) a half-circular member affixed perpendicularly to the inner rectangular member at a midpoint of the half-circular member and positioned to encircle a right and left side of the inner rectangular member; and,

c) wherein the half-circular member aligns with an outer edge of the platform unit.

16. The platform assembly of claim 10 wherein the lifting column middle and inner section reside within the outer section and extend above the platform when the assembly is in a sitting position; and, the middle and inner section are in an extended position below the platform when the assembly is in a standing position.

17. A method of automatedly moving a computer monitor, keyboard, and mouse between a sitting and a standing position, comprising the steps of:

a) providing an electric powered height adjustable computer monitor platform assembly comprising,

i) a thin, horizontally positioned substantially semi-circular shape platform unit, wherein the platform unit is configured for a computer keyboard and mouse to reside on a top surface of the platform unit;

ii) a height adjustable lifting column unit affixed vertically to the platform unit, comprising a top outer section, a middle section, and an inner bottom section, wherein the top outer section permanently extends vertically above the platform and is configured to be affixed with a flat screen computer monitor, and the middle and inner section are in extendible below the platform unit when the assembly is in a standing position;

iii) a base unit affixed to the bottom end of the lifting column unit, and configured to stabilize the assembly in a vertical position;
iv) an electric actuator to activate the lifting column unit to vertically extend to a standing position and retract to a sitting position as measured from a desktop surface; and,
v) wherein the platform assembly is able to reside in a stable manner on a desktop of a non-height adjustable office desk of a standard height, and the assembly is substantially smaller in diameter than the desktop.
b) placing the platform assembly upon a desktop of a non-height adjustable office desk of a standard height;
c) affixing a flat screen computer monitor perpendicularly to a front side of the lifting column unit, and placing a computer keyboard and mouse on the platform unit;
d) raising the platform assembly to a standing position under the operational control of an electric actuator; and,
e) lowering the platform assembly to a sitting position under the operational control of the electric actuator, wherein the electric actuator is housed within the lifting column unit.

18. The method of claim 17, wherein the platform unit further comprises a cut-out for the lifting column unit to extend vertically through, and wherein the cutout is located near the middle of a back edge of the platform unit.

19. The method of claim 18, wherein the lifting column unit further comprises an L-like shape bar member extending through the cut-out, comprising:
a) a top section affixed in parallel to and between the front side of the lifting column unit, and perpendicularly to the computer monitor back surface; and,
b) a bottom section residing perpendicular to the top section, and residing beneath and affixed to an underside of the platform unit.

20. The method of claim 17, wherein the platform assembly base unit further comprises:
a) an inner rectangular member affixed perpendicularly to the lifting column inner section;
b) a half-circular member affixed perpendicularly to the inner rectangular member at a midpoint of the half-circular member and positioned to encircle a right and left side of the inner rectangular member; and,
c) wherein the half-circular member is about the same diameter as the platform unit.