(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 May 2010 (06.05.2010)

(21) International Application Number:
PCT/EP2009/063154

(22) International Filing Date:
9 October 2009 (09.10.2009)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
0857440 31 October 2008 (31.10.2008) FR

(71) Applicant (for all designated States except US): AK-TIEBOLAGET SKF [SE/SE]; Hornsgatan 1, S-415 50 Göteborg (SE).

(54) Title: LUBRICATING DEVICE AND ITS USE FOR LUBRICATING A WHEEL FLANGE OF A RAILWAY VEHICLE

(57) Abstract: Device for lubricating a wheel flange of a railway vehicle based on the spraying of a pressurized jet of lubricant, comprising an electromagnetic pump with a pump body (5) in which a piston (20) is displaced, and a means (19) for guiding the piston (20) in a bore (22), the guidance means (19) including an opening (32) designed to communicate with a lubricant transfer channel (17) in the pump body (5), said opening (32) opening out into a compression chamber (23) situated in a downstream part of the bore (22), the device comprising a heating block (7) arranged so as to transfer heat energy to the lubricant before spraying.
Designated States (unless otherwise indicated, for every kind of regional protection available): ARlPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published: with international search report (Art. 21(3))
Lubricating device and its use for lubricating a wheel flange of a railway vehicle

The invention relates to a lubrication device that can be used, for example, to lubricate a wheel flange of a railway vehicle.

On a railway wheel, a distinction is made between the generally tapered rolling surface in contact with the top surface of the rail and the wheel flange. The wheels are guided on the rails in a straight line by the tapered nature of the rolling surfaces and in the curves by the wheel flange which bears on the lateral faces of the rail. The wheel flange exceeds the rolling surface by a number of centimetres, and prevents any risk of the transit car being derailed. The friction forces between the wheel flange and the lateral surface of the rail result in wear of the flange, energy losses through friction and noise.

In order to reduce these drawbacks, lubrication devices are generally provided which deposit lubricant on the wheel flange or on the lateral faces of the rails by spraying a jet of lubricant.

Current lubrication devices typically use compressed air mixed with a lubricant, this mixture being sprayed in the form of a jet produced through the intermediary of a nozzle positioned in the vicinity of the wheel flange. Such devices are, for example, described in United States patents US 3760904 and US 6186411. These lubrication devices increase the storage volumes needed to compress the air, which makes the air compressors installed on the motor coaches and used for other equipment relatively costly. Moreover, they do not allow the quantity of lubricant sprayed onto the wheel flange to be delivered accurately because of the non-uniform nature of the air-lubricant mixture.

Another type of lubrication device described in patent of invention BE 893 171 comprises an electromagnetic pump which directly sprays the lubricant onto the flange without compressed air, which allows this pump to deliver the quantity of lubricant sprayed onto the flange with accuracy. By providing an inlet valve and an outlet valve actuated in time in a deferred manner, this pump makes it possible to suck the lubricant into a chamber and to discharge it under pressure.
Nevertheless, this pump does not make it possible to spray an adequate jet of lubricant onto the wheel flange because of the viscosity of the lubricant and the path the lubricant follows in the lubrication device. Such a pump is not suited to all types of lubricant and to the variations in outside temperatures that range, for example, in certain circumstances, between -30°C and +50°C, which alters the viscosity of the lubricant, making an accurate adjustment of the quantity of lubricant sprayed very difficult.

The present invention aims at solving these problems. In particular, the invention proposes a lubrication device making it possible to spray an accurate and easily-adjusted quantity of lubricant.

Another subject of the invention is a lubrication device of simple and compact structure.

Finally, another subject of the invention is a lubrication device in which guidance of the lubricating jet is enhanced.

The invention proposes a lubrication device based on the spraying of a pressurized jet of lubricant, comprising an electromagnetic pump with a pump body in which a piston is displaced, and a means for guiding the piston in a bore, the guidance means including an opening designed to communicate with a lubricant transfer channel, said opening opening out into a compression chamber situated in a downstream part of the bore, the device having a heating block arranged so as to transfer heat energy to the lubricant before spraying.

In one embodiment, the heating block is mounted on the pump body and is traversed by the lubricant transfer channel.

The heating block can include a lubricant storage chamber linked to the lubricant transfer channel.

A lubricant spraying nozzle can be mounted directly on the pump body, for example around an end of reduced diameter of the pump body.

In another embodiment, the heating block is mounted down-stream of the pump body.

A lubricant spraying nozzle can comprise an elongated nozzle body with a through-passage for the lubricant. The nozzle body is advantageously mounted downstream of the pump body and comes into
contact with the heating block.

Preferably, the heating block includes means for attachment to the pump body and for securing the spraying nozzle in position.

In all the embodiments, the heating block is advantageously made of a heat-conducting material and includes an electric heating element.

Furthermore, the lubrication device includes an isolating plug mounted to move in a guide sleeve housed in the downstream part of said bore. The plug can be activated by an elastic means tending to displace it to the closed position. The guide sleeve can include a radial annular lip on which the isolating plug bears in the closed position.

The guidance means can advantageously be displaced with respect to the lubricant transfer channel so as to adjust the volume of the compression chamber.

In an embodiment more particularly suited to the lubrication of a wheel flange of a railway vehicle, an air baffle is positioned so as to orient an air stream toward the outlet of the spraying nozzle. The baffle can have an air sampling means comprising an air intake orifice oriented in the direction of travel of the railway vehicle.

According to another aspect of the invention, a lubrication device as mentioned hereinabove is used to lubricate at least one wheel of a railway vehicle bogie.

Other features and benefits of the invention will become apparent from reading the detailed description of an embodiment, taken by way of non-limiting example and illustrated by the appended drawings, in which:

- Figure 1 represents a lubrication device according to one embodiment positioned above a wheel of the railway vehicle;
- Figure 2 diagrammatically represents the lubrication device of Figure 1, in elevation;
- Figure 3 diagrammatically represents a cross-sectional view of a heating block along the axis III-III of Figure 2;
- Figure 4 diagrammatically represents an enlarged cross-sectional view along the axis IV-IV of Figure 2 of the body of an
electromagnetic pump;
- Figure 5 diagrammatically represents an enlarged detail view of a nozzle attached to the pump body;
- Figures 6a and 6b illustrate the operation of the pump;
- Figure 7 represents a lubrication device according to the invention equipped with an air sampling means; and
- Figure 8 diagrammatically represents in cross section the pump body of a lubrication device according to another embodiment.

Figure 1 represents a lubrication device 1, according to the invention, positioned above a wheel 2 of a railway vehicle that is not represented in the figures. The rail 2 has a rolling surface 3 of generally tapered form and a wheel flange 4 projecting with respect to the rolling surface 3.

The device comprises an electromagnetic pump body 5 linked to an electric actuator 6, and a heating block 7 linked to an electrical power supply 8, the heating block 7 being attached lengthwise to the length of the pump body 5. The device 1 is secured to the frame of the railway vehicle at an appropriate distance from the flange 4, the axis of the pump body 5 and of the nozzle 9 being inclined relative to the rotation axis of the wheel 2 by an appropriate angle for the lubricant to be deposited roughly at the junction of the flange 4 and the rolling surface 3. This angle can be, for example, between 45° and 65°.

Hereinafter in the description, the adjective longitudinal relates to the lengthwise direction of the pump or of the heating block, and the adjective transversal to a direction perpendicular to this length.

A nozzle 9 is positioned on the front face 9a of the pump body 5 facing the flange 4, in order to spray lubricant onto the latter.

A longitudinal connection 10 and an elbow 11 passing through the heating block 7 allow the pump body 5 to be supplied with lubricant by a lubricant tank that is not represented. An orifice that can be blocked by a screw 13 makes it possible to drain the pump body 5.

Figure 2 represents an enlarged view of the heating block 7 and of the pump body 5. Lubricant is circulated from the heating block 7 to the pump body 5 via a channel 17 linked to the transversal elbow 11.
Figure 3 represents a cross-sectional view of the heating block 7 along the axis III-III of Figure 2.

The heating block 7 has a parallelepipedal body made of a heat-conducting material in which are housed a heating element 14 such as an electrical resistance and a thermostat 15 both connected to the electrical power supply 8. A lubricant storage chamber 16 is linked to the channel 17 conveying the lubricant into the pump body 5.

The chamber 16 is linked to the transversal elbow 11. The chamber 16 and the lubricant-conveying channel 17 make it possible to store a volume of lubricant in the heating block 7 upstream from and close to the pump body 5. Since the heating block 7 is made of a heat-conducting material, it heats the stored volume of lubricant when the heating element 14 is operating, making it possible to send a more free-flowing lubricant into the pump body 5.

The lubrication device 1 is attached to the frame of the railway vehicle so that the lubricant can flow by gravity as far as the chamber 16 of the heating block 7. The drain screw 13 allows communication between the channel 17 and the atmosphere, so as to balance the pressure inside the lubrication device 1 with the atmospheric pressure.

Figure 4 is an enlarged view in cross section along the axis IV-IV of the pump body 5. The pump body 5 includes a recess 18 in which is housed a means 19 of guiding a piston rod 20. The nozzle 9 is attached to an end of reduced diameter 21 of the pump body 5 projecting from the front face 9a. The guidance means 19 has a through-bore 22 linking the lubricant-conveying channel 17 represented by broken lines in Figure 4 to a compression chamber 23. This compression chamber 23 is separated from an outlet channel 24 situated in the nozzle 9 by an isolating plug 25. The guidance means 19 is of generally cylindrical form, and includes a central part 26b situated between a front part 26a and a rear part 26c, the central part 26b having a diameter greater than that of the front 26a and rear 26c parts.

An elastic means 29, such as a helical spring, bears at one end on a washer 28 attached to the end of the piston rod 20, and at the other end on a shoulder 28a of the central part 26b. The spring 29 is used to return
the piston rod 20 to an initial position with respect to the guidance means 19. A guide sleeve 31 is housed in the bore 22 at its downstream end opposite to that where the piston rod 20 leaves the bore 22 and has the spring 29. The isolating plug 25 is mounted in the guide sleeve 31 for its travel.

The compression chamber 23 corresponds to the volume situated between a transversal opening 32 in the guidance means 19 and the isolating plug 25 housed in a downstream part of the bore 22. The transversal opening 32 communicates with the lubricant-conveying channel 17.

A number of gaskets 45 are arranged in the guidance means 19 so as to ensure seal-tightness between the guidance means 19, the pump body 5 and the piston rod 20.

The elements that form the nozzle 9 can be better seen in Figure 5 which represents an enlarged detail view of the nozzle 9. The nozzle 9 has a form that is symmetrically tapered with respect to the axis X-X' and includes a radial internal shoulder 40, a tapered area 41 and a longitudinal conduit part 41a. The nozzle 9 is attached by its tapped base 43 to the end 21 which has a threaded cylindrical surface 47 projecting from the front face 9a of the pump body 5.

The outlet channel 24 for the lubricant jet leaving the nozzle 9 is made up by the longitudinal arrangement, from the isolating plug 25, of a first passage 33 in the sleeve 31, followed by a second passage 34 in a hollow body 35 serving as a spacer between the nozzle 9 and the sleeve 31, then a third passage 36 in the nozzle 9 through which the lubricant is ejected onto the wheel flange 4.

The guide sleeve 31 is housed by a cylindrical portion 37 in the downstream end 30 of the bore 22. A radial end flange 38 bears on a shoulder of the hollow body 35, on a shoulder 39 of the constriction 21. The radical flange 38 also bears on the shoulder 40 of the nozzle 9. The sleeve 31 includes an orifice 27 delimited by a radial annular lip 37a. The void 27 is capable of allowing the lubricant to pass when the isolating plug 25 opens.

An elastic means such as a helical spring 42 is mounted between
the hollow body 35 and the isolating plug 25 so as to stress the isolating plug in the closure direction.

The downstream end 30 of the guidance means 19 is situated at the constriction 21.

As represented in Figures 4, 6a and 6b, the volume of the compression chamber 23 can be adjusted by the longitudinal travel of the guidance means 19 with respect to the conveying channel 17, this travel being produced by the action of a thrust bearing 49 mounted in a groove 49a in the guidance means 19 and capable of being displaced by a cam 50.

In the position illustrated in Figure 4, the compression chamber 23 is larger than in the positions illustrated in Figures 6a or 6b, which results from the positioning of the transversal opening 32 closer to the conveying channel 17, the opening 32 having a section in common with and larger than the section of the lubricant conveying channel 17. Figures 6a and 6b show the result of a longitudinal travel of the front part 26a of the guidance means 19. The guidance means 19 has been displaced inside the pump body 5, its front part 26a being guided inside the end 21 and by its bore guided along the cylindrical surface 37 of the sleeve 31. The central part 26b is displaced longitudinally by being guided by the bore 18 of the pump body 5.

Figure 6a shows a position corresponding to the suction of the lubricant through the conveying channel 17, the lubricant entering into the compression chamber 23 situated in the pump body 5 through the transversal opening 32 of the guidance means 19. Figure 6b shows a position corresponding to the discharging of the lubricant out of the compression chamber 23 into the outlet channel 24 after the isolating plug 25 has opened, which follows the movement of the piston rod 20 toward the downstream part of the bore 22 situated on the right in Figures 6a and 6b.

In the two positions illustrated in Figures 6a and 6b, the guidance means 19 has been displaced relative to the position illustrated in Figure 4, the front face 30 of the guidance means 19 coming into contact with the flange 38 of the sleeve 31. In the position illustrated in
Figure 6a, the piston rod 20 is held toward the left of the figure by the spring 29 so that the volume of the compression chamber 23 is maximum. In the position illustrated in Figure 6b, the piston rod 20 is actuated against the force of the spring 29 by discharging the lubricant situated in the chamber 23.

The piston 20 is actuated in a conventional manner by the electric actuator 6.

Figure 7 represents an embodiment of a lubrication device as described hereinabove associated with an air sampling means 46 which is used to better guide the jet of lubricant at the outlet of the nozzle 9 onto the flange 4 and protect it from external air turbulences.

The air sampling means 46 comprises an air intake orifice 51 with a protection mesh 52. The orifice 51 is linked to a conduit 53 which opens out around the nozzle 9. In other words, the air sampling means 46 generates an air stream that envelopes and guides the jet of lubricant between the outlet of the nozzle 9 and the flange 4. The inlet loop 51 is oriented in the direction of travel of the rail transit car. Thus, as soon as the transit car reaches a sufficient speed, air is directed around the nozzle 9, in the direction of spraying of the jet of lubricant so as to enhance the guidance of the jet of lubricant. This effect increases with the speed of the transit car, which makes it possible to enhance the lubrication as the speed of the transit car increases. The air sampling means 46 that has just been described can be replaced by a simple air baffle such as a flange appropriately positioned so as to orient a flow of air toward the nozzle 9.

The heating block 7 is used to adjust the viscosity of the lubricant at the inlet of the pump body 5. The temperature of the heating block is adjusted for the lubricant to be sufficiently fluid to be sprayed in a fine jet through the nozzle 9 following the movement of the piston rod 20. The lubricant is sprayed at high speed by the travel of the piston rod 20 and reaches the wheel flange 4 by virtue of the proximity of the lubrication device to the flange 4, for example of the order of a few tens of mm.

Advantageously, the fact that the lubrication device 1 has
roughly the form of a pencil reduces the length of travel of the lubricant between the lubricant storage volume and the wheel flange 4, which makes it more accurate for delivery. The heating block 7 is also used, by virtue of the chamber 16, as a buffer storage volume and is situated close to the pump body 5 to which it is linked by the lubricant-conveying channel 17. Furthermore, the nozzle 9 attached to the pump body 5 avoids having the lubricant travel through a hose at the outlet of the pump 5.

Figure 8 illustrates a second embodiment of a lubrication device according to the invention, which is distinguished from the first embodiment illustrated in the preceding figures only by the arrangement and the structure of the heating block referenced 54 in Figure 8. In this embodiment, as is illustrated in Figure 8, in which similar elements are given the same references as in the preceding figures, the nozzle 9 comprises an elongated nozzle body 55 with a through-passage 56 for the lubricant. The nozzle body 55 includes, at one of its ends, the actual nozzle with its outlet channel 24 and, at its other end, a peripheral shoulder 57 which can bear against the flange 38 of the sleeve 31. The nozzle body 55 also has a tapered area 41 which bears on the hollow body 35 in the same way as in the embodiment illustrated in Figure 4.

The heating block 54 has an annular structure and surrounds the nozzle body 55 while being in contact with the latter over its entire length. The heating block 54 has an annular recess in which a heating ring 58 is mounted. The heating block 54 has a portion in the form of a tapered ring 59 which cooperates with the threaded cylindrical surface 47 projecting from the end of reduced diameter 21 of the pump body 5. Furthermore, a shoulder 60 of the heating block 54 bears on the shoulder 57 of the nozzle body 55. In this way, mounting the heating block 54 by screwing onto the end 21 of the pump body 5 makes it possible both to attach the heating block 54 to the pump body and keep in position the nozzle 9 which is thus clamped between the heating block 54 and the pump body 5 with the radial flange 38 inserted between them. During this mounting procedure, the heating ring 58 is also held against the pump body 5.
In this embodiment, the heat energy produced by the heating ring 58 is transmitted by the heating block 54, made as previously of a heat-conducting material, as far as the nozzle body 55, which makes it possible to heat up the lubricant passing through the passage 56 before its output through the orifice 24 of the nozzle 9. In this embodiment, the lubricant is therefore heated downstream of the pump body, unlike the case in the embodiment illustrated in the preceding figures, in which the heating takes place upstream of the pump body.

In all cases, the inventive device is compact and easy to put in place, notably on a railway vehicle.

Preferably, the lubrication device is positioned on the front bogie of a railway vehicle, which is in turn preferably at the front of a train. In this way, the lubricant deposited on the wheel flange at the front of the transit car or at the front of the train is partly deposited onto the rails and makes it possible to also lubricate the other wheels of the transit car and of the train.

The inventive device can also be used to lubricate other moving members operating outdoors and consequently likely to be subject to low temperatures, such as dockside cranes, materials or goods transportation systems, conveyor articulations or even elevators.
CLAIMS

1. Lubrication device based on the spraying of a pressurized jet of lubricant, comprising an electromagnetic pump with a pump body (5) in which a piston (20) is displaced, and a means (19) for guiding the piston (20) in a bore (22), the guidance means (19) including an opening (32) designed to communicate with a lubricant transfer channel (17), said opening (32) opening out into a compression chamber (23) situated in a downstream part of the bore (22), characterized in that it comprises a heating block (7) arranged so as to transfer heat energy to the lubricant before spraying.

2. Lubrication device according to Claim 1, in which the heating block (7) is mounted on the pump body (5) and is traversed by the lubricant transfer channel (17).

3. Lubrication device according to Claim 2, in which the heating block (7) includes a lubricant storage chamber (16) linked to the lubricant transfer channel (17).

4. Lubrication device according to one of Claims 2 to 3, in which a lubricant spraying nozzle (9) is mounted directly on the pump body (5).

5. Lubrication device according to Claim 4, in which the pump body (5) has an end of smaller diameter (21) around which the spray nozzle (9) is mounted.

6. Lubrication device according to Claim 1, in which the heating block (54) is mounted downstream of the pump body (5).

7. Lubrication device according to Claim 6, in which a lubricant spraying nozzle (9) comprises an elongated nozzle body (55) having a through-passage (56) for the lubricant and mounted downstream of the pump body, the heating block (54) being in contact with the nozzle body (55).

8. Lubrication device according to Claim 7, in which the heating block (54) includes means of attachment to the pump body (5) and of securing the spraying nozzle (9) in position.
9. Lubrication device according to one of Claims 2 to 8, in which the heating block (7, 54) is made of conductive material and includes an electric heating element (14, 58).

10. Lubrication device according to one of the preceding claims, including an isolating plug (25) mounted to move in a guide sleeve (31) housed in the downstream part of said bore (22), the plug (25) being activated by an elastic means (42) tending to displace it to the closed position.

11. Lubrication device according to one of the preceding claims, in which the guidance means (19) can be displaced with respect to the lubricant transfer channel (17) so as to adjust the volume of the compression chamber (23).

12. Lubrication device according to one of the preceding claims, suitable for lubricating a wheel flange of a railway vehicle, comprising an air baffle (46) positioned so as to orient an air stream toward the outlet of the spraying nozzle (9).

13. Lubrication device according to Claim 12, in which the baffle has an air sampling means (46) comprising an air intake orifice oriented in the direction of travel of the railway vehicle.

14. Use of a lubrication device according to one of the preceding claims, in lubricating at least one wheel of a railway vehicle bogie.
INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2009/063154

A. CLASSIFICATION OF SUBJECT MATTER

Inventory No: B61K3/00 B61K3/02 F16N7/38 F16N13/04 F16N39/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B61K F16N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 3 760 904 A (LUTHAR P) 25 September 1973 (1973-09-25) cited in the application column 1, line 33 - column 2, line 19; figures</td>
<td>1-6,9,14</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 297 735 A (INTERLUBE SYST LTD [GB]) 4 January 1989 (1989-01-04) column 1, line 54 - column 2, line 40; figures</td>
<td>1-6,9,14</td>
</tr>
<tr>
<td>A</td>
<td>US 2 203 112 A (SWANSON OLOF W) 4 June 1940 (1940-06-04) column 2, lines 71-75; figures</td>
<td>1-14</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C

[X] See patent family annex

- Special categories of cited documents
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search: 8 December 2009
Date of mailing of the international search report: 18/12/2009

Name and mailing address of the ISA/
European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040
Fax (+31-70) 340-3016

Authorized officer

Vedoato, Luca

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 236 063 A (NELSON ROY [US] ET AL)</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>17 August 1993 (1993-08-17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 2, line 64 - column 3, line 52; figures</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 1 407 775 A (SCHLACKS WILLIAM J)</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>28 February 1922 (1922-02-28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 3760904 A</td>
<td>25-09-1973</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4925373 A</td>
</tr>
<tr>
<td>US 2203112 A</td>
<td>04-06-1940</td>
<td>NONE</td>
</tr>
<tr>
<td>US 5236063 A</td>
<td>17-08-1993</td>
<td>NONE</td>
</tr>
<tr>
<td>US 1407775 A</td>
<td>28-02-1922</td>
<td>NONE</td>
</tr>
</tbody>
</table>