发明名称

射频标签在门区移动方向判断的方法

摘要

本发明公开了一种射频标签在门区移动方向判断的方法，使用器件包括，RFID 标签：人员佩戴的或绑定在物品上的具有唯一 ID 的 RFID 标签；RFID 阅读器：安装在门区的读区，用来探测并记录 RFID 标签信息的装置；天线：连接在 RFID 阅读器上的天线，用于在特定的方向上发送或接收射频信号；服务器：用来运行标签信息处理程序，并把实时的位置信息保存到数据库；显示终端：从服务器读取门区人员或物品的实时信息，显示给最终用户；在每个门区的内外分别设置 RFID 阅读器，RFID 阅读器通过天线，读取 RFID 标签的 ID 信息，并将读取的信息传输至服务器，服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来判断人员进出门区的方向。达到高效率且高准确度的判断人员进出的目的。
1. 一种射频标签在门区移动方向判断的方法，使用器件包括，
RFID 标签：人员佩戴的或绑定在物品上的具有唯一 ID 的 RFID 标签；
RFID 阅读器：安装在区域的门区，用来探测并记录 RFID 标签信息的装置；
天线：连接在 RFID 阅读器上的天线，用来在特定的方向上发送或接收射频信号；
服务器：用来运行 RFID 标签信息处理程序，并把实时的位置信息保存到数据库；
显示终端：从服务器读取人员或物品的实时信息，显示给最终用户。
其特征在于，在每个门区的内外分别设置 RFID 阅读器，RFID 阅读器通过天线，读取
RFID 标签的 ID 信息，并将读取的信息传输至服务器，服务器根据 RFID 阅读器探测到 RFID
标签的先后顺序来进行人员进出方向的判断。
2. 根据权利要求 1 所述的射频标签在门区移动方向判断的方法，其特征在于，服务器
根据 RFID 阅读器天线位置部署的情况以及其探测到 RFID 标签的时间顺序来进行人员进出
方向的判断，具体分为以下 2 种情况：
 a）RFID 标签先被门区外的天线先看到，然后被门区内的天线看到，则发送 RFID 标签
 进门的消息；
 b）RFID 标签先被门区内的天线看到，再被门区外的天线看到，则发送出门消息。
3. 根据权利要求 1 所述的射频标签在门区移动方向判断的方法，其特征在于，服务器
根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断具体为以下 2 种
情况：
 a）无论是否先被门区外的天线看到，门内的天线看到 RFID 标签时，发送进门消息；
 b）无论是否被门区内的天线看到，门外天线看到 RFID 标签时，发送出门消息。
4. 根据权利要求 1 所述的射频标签在门区移动方向判断的方法，其特征在于，服务器
根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断具体为以下 2 种
情况：
 a）RFID 标签被门区外的天线看到，表示进门；
 b）RFID 标签被门区内的天线看到，表示出门。
5. 根据权利要求 1 所述的射频标签在门区移动方向判断的方法，其特征在于，服务器
根据 RFID 阅读器探测到 RFID 标签在内外相关区域时间的历史记录，来进行人员进出方向
的判断，具体为：
RFID 阅读器标签被看到时不发送出门消息，仅发送被看到的消息，服务器根据探测到的
RFID 标签位置和探测时间的历史记录判断人员是进门还是出门。
6. 根据权利要求 1 至 5 任一所述的射频标签在门区移动方向判断的方法，其特征在于，
服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断，服务器
根据记录中的 RFID 标签当前位置和在当前位置读取 RFID 标签的时间记录，对人员进出
行综合判断。
射频标签在门区移动方向判断的方法

技术领域

[0001] 本发明涉及定位领域，具体地，涉及一种射频标签在门区移动方向判断的方法。

背景技术

[0002] 随着无线射频技术越来越成熟，基于无线射频技术的大型区域的实时定位系统也有了很大的发展，广泛的应用于大型工厂、仓储物流等领域的人或物品定位。现有的基于无线射频技术的大型区域的实时定位系统采用的都是无源低频的 RFID 标签，在大型区域的每个子区域的出入口安装 RFID 阅读器，人员或物品进入一个区域时，由人员主动的把标签放到阅读器的天线前，阅读器读到标签后把标签信息录入系统，系统的软件部分记录人员的位置信息。

[0003] 这样做的缺点主要有两个方面，一方面，效率太低，在紧急状况下无法准确快速的记录物品或人员的位置信息；另一方面，由于位置信息都是由人员手动输入的，无法保证人员一定会输入位置信息，系统存在漏洞。

发明内容

[0004] 本发明的目的在于，针对上述问题，提出一种射频标签在门区移动方向判断的方法，以实现高效率且准确度高的优点。

[0005] 为实现上述目的，本发明采用的技术方案是：

一种射频标签在门区移动方向判断的方法，使用器件包括，
RFID 标签：人员佩戴的或绑定在物品上的具有唯一 ID 的 RFID 标签；
RFID 阅读器：安装在区域的门区，用来探测并记录 RFID 标签信息的装置；
天线：连接在 RFID 阅读器上的天线，用来在特定的方向上发送或接收射频信号；
服务器：用来运行标签信息处理程序，并把实时的位置信息保存到数据库；
显示终端：从服务器读取人员或物品的实时信息，显示给最终用户；

在每个门区的内外分别设置 RFID 阅读器，RFID 阅读器通过天线，读取 RFID 标签的 ID 信息，并将读取的信息传输至服务器，服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断。

[0006] 优选的，服务器根据 RFID 阅读器天线位置部署的情况以及其探测到 RFID 标签的时间顺序来进行人员进出方向的判断，具体分为以下 2 种情况：

a）RFID 标签先被门区外的天线先看到，然后被门区内的天线看到，则发送 RFID 标签进门的消息；

b）RFID 标签先被门区内天线内的天线看到，再被门区外的天线看到，发送出门消息。

[0007] 优选的，服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断，具体为以下 2 种情况：

a）无论是否先被门外的天线看到，门内的天线看到 RFID 标签时，发送进门消息；

b）无论是否被门内的天线看到，门外天线看到 RFID 标签时，发送出门消息。
优选的，服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断具体为以下 2 种情况：

a) RFID 标签被门区外的天线看到，表示进门；
b) RFID 标签被门区内的天线看到，表示出门。

优选的，服务器根据 RFID 阅读器探测到 RFID 标签在内外相关区域时间的历史记录，来进行人员进出方向的判断，具体为：

RFID 阅读器标签被看到时不发送出门信息，仅发送被看到的消息，服务器根据探测到的 RFID 标签位置和探测时间的历史记录，判断人员是进门还是出门。

优选的，服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断时，服务器根据记录中的 RFID 标签当前位置和在当前位置读取 RFID 标签的时间记录，对人员进出门进行综合判断。

本发明的技术方案具有以下有益效果：

本发明的技术方案，通过在门区内外分别设置 RFID 阅读器，通过天线对 RFID 标签进行读取，从而根据读取 RFID 标签的位置信息和时间，对人员和物品的进出信息进行判断，从而达到高效率且高准确度的判断人员进出的目的。

下面通过附图和实施例，对本发明的技术方案做进一步的详细描述。

附图说明

附图 1 为本发明实施例所述的射频标签在门区移动方向判断系统的拓扑示意图；
附图 2 为本发明实施例所述的天线安装位置的示意图；
附图 3 为本发明实施例所述的第一种情况下进出门方向判断的流程图；
附图 4 为本发明实施例所述的第二种情况下进出门方向判断的流程图；
附图 5 为本发明实施例所述的第三种情况下进出门方向判断的流程图；
附图 6 为本发明实施例所述的第四种情况下进出门方向判断的流程图。

具体实施方式

以下结合附图对本发明的优选实施例进行说明，应当理解，此处所描述的优选实施例仅用于说明和解释本发明，并不用于限定本发明。

一种射频标签在门区移动方向判断的方法，使用器件如附图 1 所示，包括，
RFID 标签：人员佩戴的或绑定在物品上的具有唯一 ID 的 RFID 标签；
RFID 阅读器：安装在区域的非门区，用来探测并记录 RFID 标签信息的装置；
天线：连接在 RFID 阅读器上的天线，用来在特定的方向上发送或接收射频信号；
服务器：用来运行标签信息处理程序，并把实时的位置信息保存到数据库；
显示终端：从服务器读取人员或物品的实时信息，显示给最终用户。

附图 2 所示，在每个门区的内外分别设置 RFID 阅读器。RFID 阅读器通过天线，读取 RFID 标签的 ID 信息，并将读取的信息传输至服务器。服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断。

服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断具体为：

4
RFID 标签先被门区外的天线看到，再被门区内的天线看到，则发送 RFID 标签进入的消息；RFID 标签先被门区内的天线看到，再被门区外的天线看到，则发送出门消息。

服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断具体为：

RFID 标签被门区内的天线看到，表示进门，RFID 标签被门区外的天线看到表示出门。

服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断具体为：

RFID 标签被门区外的天线看到，表示进门，RFID 标签被门区内的天线看到表示出门。

服务器根据 RFID 阅读器探测到 RFID 标签的先后顺序来进行人员进出方向的判断具体为：

RFID 阅读器标签被看到时不发送出门消息，仅发送被看到的消息，服务器根据探测到的 RFID 标签位置和探测时间判断人员是进门还是出门。

为了克服现有的基于射频识别技术的门区定位系统在进出门判断方面的低效和漏洞，本技术方案采用了一种自动识别的技术来自动的进行人员或物品移动方向的判断，由阅读器和天线自动检测 RFID 标签信息，而不需人员手动刷卡。硬件方面，根据每个门区的大小和位置具体安排天线，门区内和门区外分别安装天线，按照内区外不同的天线读到标签的时间和顺序来判断人员或物品的进出。软件方面根据收到的标签信息和人员或物品在系统中的当前位置和到达时间综合的判断人员的进出方向，计算人员的当前位置，为人员的门区进出判断提供一个更高效完善的技术方案。按照实际的天线安装情况和门区的大小、天线间的距离，按照门区内天线和门区外天线的功能不同，把门区分为四种情况：

如图 3 所示，第一种是分区的情况，标签先被门区外的天线看到，再被门区内的天线看到，则发送标签进入的消息；

标签先被门区内的天线看到，再被门区外的天线看到，则发送出门消息。在这种情况下，每一个发送的消息都可以保证是真实准确的消息，后台的软件部分按照正常人员进行处理更新人员的状态。

服务器收到消息后，先获得发送消息的 RFID 阅读器对应的区域，标签绑定的人员或物品，然后查询人员或物品在数据库中的位置和到达该位置的时间，如果到达时间已经超过了允许时间，则说明系统中的人员和物品状态无效，要把人员的位置设置在区域外，然后比较系统中的位置和现实中的区域，保证区域的不同做出不同的处理，更新人员的状态。

如图 4 所示，第二种情况是，标签被门区内的天线看到，则表示进门，标签被门区外的天线看到表示出门。这种情况下，可能会发送错误的消息，软件在进行处理时，会根据系统中人员当前的位置进行判断，如果系统中的人员状态与实际发送的进出消息不一致，则不进行处理。

如图 5 所示，第三种情况是，标签被门区外的天线看到，表示进门，标签被门区内
的天线看到表示出门。这种情况下可能发送错误的消息, 软件进行处理时, 也会根据人员当前的位置进行判断, 如果系统中人员的位置和实际发送的消息不一致, 则不进行处理。服务器需要对人员和物品进行是否是同一次进出的判断, 从而过滤掉错误的消息。

[0025] 如图 6 所示, 第四种情况是, 标签被看到是不发送进出门的消息, 仅发送被看到的消息, 软件根据系统中人员位置和到达时间判断人员是进门还是出门。如果当前位置是区域内, 且超过一定时间, 则判断方向为出门, 如果当前区域是区域外, 且超过一定时间, 则判断方向为进门。

[0026] 上述四种情况是根据具体使用环境进行设定, 每个门区只采用最合适的一种情况对进出门进行判断。

[0027] 当有人或物品经过门区时, RFID 阅读器会发送读取的 RFID 标签信息到服务器, 服务器上的软件根据每个门区的情况按照消息处理的流程判断人员或物品的进出, 并更新人员或物品的位置信息和到达该位置的时间, 并记录轨迹信息。

[0028] 最后应说明的是: 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 尽管参照前述实施例对本发明进行了详细的说明, 对于本领域的技术人员来说, 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内, 所作的任何修改、等同替换、改进等, 均应包含在本发明的保护范围之内。
图 3
图 4
收到消息

解析消息，得到：标签号、方向、门

查询人员信息：当前位置、出现时间

是否同一次进出？ 是：更新时间，否：向前位

当前位置有效？ 是：正常进出门的处理，否：当前位置设置为"厂外"

当前位置与上一次进出门比较

是：正常进出门的处理，否：补充到目标区域的逻辑

结束

图 5
收到消息

解析消息，得到：标号、方向、门

查询人员信息：当前位置、出现时间

是否同一次进出？

是 → 更新时间 → 结束

否 →

当前位置有效？

是 → 正常出门 → 正常出门的处理 → 结束

否 → 当前位置设置为厂外 → 当前位置与进出门比较 → 其他区域 → 补充到目标区域的逻辑