PCI‘ WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 5 : (11) International Publication Number: WO 91/11768
GOGF 13/38, 13/00 Al (43) International Publication Date: 8 August 1991 (08.08.91)
(21) International Application Number: PCT/US90/04697 | (74) Agents: FLIESLER, Martin, C. et al.; Fliesler, Dubb,
Meyer & Lovejoy, 4 Embarcadero Center, Suite 400, San
(22) International Filing Date: 20 August 1990 (20.08.90) Francisco, CA 94111 (US).
(30) Priority data: (81) Designated States: AT (European patent), AU, BE (Euro-
474,350 2 February 1990 (02.02.90) us pean patent), CA, CH (European patent), DE (Euro-

(71) Applicant: AUSPEX SYSTEMS, INC. [US/US]; 2952
Bunker Hill Lane, Santa Clara, CA 95054 (US).

(72) Inventors: PITTS, William, M. ; 780 Mora Drive, Los Al-
tos, CA 94022 (US). BLIGHTMAN, Stephen, E. ; 775
Salt Lake Drive, San Jose, CA 95133 (US). STARR, Da-
ryl, D. ; 446 Folsom Court, Milpitas, CA 95035 (US).

pean patent)*, DK (European patent), ES (European pa-
tent), FR (European patent), GB (European patent), IT
(European patent), JP, KR, LU (European patent), NL
(European patent), SE (European patent).

Published
With international search report.

(54) Title: BUS LOCKING FIFO MULTI-PROCESSOR COMMUNICATION SYSTEM

(57) Abstract

FO FULL signal (1125) from the FIFO (1125).

1134
vicRn | ADDRESS /~ N BERR™ CONTROL

PROCESSOR] DATA - —7 LOGIC

)
v 1127
1140 N—1136 1130
1125~
pata | " FIFD FULL
FIFD
FIFO < DATA | 2 |DATA >
L
FIFD FULL 120 z 120 DATA
1125 d

p
1136 —

CONTROL BERR™ fua? . T\ DATA MICRO
LOGIC . ADDRESS IPROCESSOR

u3e 1140
/‘ 1134 ~ L._—-—__

1101 /. ,
n 1163

A message transfer system for transferring message data from a master processor (1140) across a VMEDbus (22) to a slave
processor (1140). The message transfer system includes a FIFO (1120) interconnected to the VMEbus (22) for receiving and stor-
ing the message data transferred from the master processor (1140). The FIFO FULL state, which indicates that FIFO (1120) is
unable to store message data, and generates a FIFO FULL signal (1125) to indicate the existence of the FIFO FULL state. The
system further includes a means (1130) interconnected to the FIFO (1120) and the VMEbus (22) responsive to the receipt of a FI-

* See back of page




DESIGNATIONS OF “DE”

Until further notice, any designation of “DE” in any .international application
whose international filing date is prior to October 3, 1990, shall have effect in the
territory of the Federal Republic of Germany with the exception of the territory of the
former German Democratic Republic. ’

Codes used to identify States party 1o the PCT on the front pages of pamphiets publishing international

applications under the PCT.

Austria
Australia
Barbados
Belgium
Burkina Faso
Buigaria

Benin

Brazil

Canada
Central Afrizan Republic
Congo .
Swiwerland
Céte d'lvoire
Cameroon
Czechoslovakia
Germany
Denmartk

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Guinca

Greece

Hungary

Italy

Japan
Democratic People's Republic

" of Korea
-‘Republic of Korea

Licchtenstein
Sri Lanka
Luxembourg
Monato

Madagascar
Mali

Mongolia
Mauritania
Malawi
Nctherlands
Norway

Poland
Romania

Sudan

Sweden

Sencgal

Sovict Union
Chad

Togo .
United States of America




10

15

20

WO 91/11768

BUS LOCKING FIFO MULTI—PROCESSOR COMMUNICATION
SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to the
following U.S. Patent Applications:

1. MULTIPLE FACILITY OPERATING SYSTEM
ARCHITECTURE, inventors: David Hitz, Allan
Schwartz, James Lau, and Guy Har:iis;

2. PARALLEL I/0O NETWORK FILE SERVER
ARCHITECTURE, inventors: John Row, Larry Boucher,
William Pitts, and Steve Blightman;

3. ENHANCED VMEBUS PROTOCOL UTILIZING
SYNCHRONOQUS HANDSHAKING AND BLOCK MODE DATA
TRANSFER, inventor: Daryl D. Starr;

4. HIGH SPEED, FLEXIBLE SOURCE/DESTINATION DATA
BURST DIRECT MEMORY ACCESS CONTROLLER, inventor:
Daryl D. Starr;

The above applications are all assigned to the
assignee of the present invention and are all

expressly incorporated herein by reference.

SUBSTITUTE SHEET

PCT/US90/04697




10

15

20

25

30

35

WO 91/11768 PCT/US90/04697

Field of the Invention:

The present invention relates generally to the
field of microcomputers and, more specifically, to a
bus locking FIFO communication system for use in a

multiprocessor computer system.

Background of the Invention:

Over the past several years, the computer
industry has experienced a remarkable evolution in
the architecture of technical and office computing
systems. Distributed “smart" workstations have
increasingly replaced the simple "dumb" terminal
attached to a mainframe or microcomputer. These
"smart" workstations are, themselves, computers
having local processing ability and local memory
storage. Such "smart" workstations comprise part of
a larger network, which includes a wide variety of
processors, data storage and communication devices,
and other peripherals.

A workstation network generally consists of
individual user workstations (referred to as
“clients") and shared resources for filing, data
storage, printing and wide-area communications
(referred to individually as "servers"). The
clients and servers are inter-connected along a
local area network ("LAN"), such as an ethernet.
Multiple ethernets may be connected to one another
by a backbone ethernet.

Clients along an ethernet are typically connected
to a server providing the clients with data and
storage facilities. Servers that primarily provide
for file storage access are referred to as "file
servérs". A conventional server might include a

central processing unit ("CPU") coupled .to the

~ ethernet. The CPU itself isvcoupled to a primary

SUBSTITUTE SHEET



10

15

20

25

30

WO 91/11768 | PCT/US90/04697

-3-

memory device. Both the CPU and the primary memory
device are.ébnnected to a conventional input}putput
device ("I/O"), such as a bus. Using the bus, the
CPU may communicate with other devices such as disk
controllers, for mass storage, or other peripheral
devices. _

Although processor technology and performance has
increased significantly in recent years,
input/output performance has not commensurately
improved to date. Thus, although the processing
performance capabilities of the CPU are
considerable, the overall performance of the system
is less formidable due to the lower performance
threshold of I/O embodied in the bus.

The level of performance of any bus is largely
determined by the time required to execute data
transfer transactions across the bus. If the
transaction time for a given transaction across the
bus can be optimized to the shortest period of time
possible, the bus will be capable of handling more
transactions in a given period of time. Hence,
performance is increased as the bus is capable of
handling a greater number of transactions during a
given period of time.

The VME backplane bus (hereinafter "VMEbus") is
one of the most popular I/0O bus systems presently in
use. The VMEbus is widely implemented and standard
throughout the industry. To this end, the Standards
Committee of the Institute of Electrical and
Electronics Engineers ("IEEE") has formulated and
published VMEbus standards in a publication entitled
EMEQQ§_§pggiﬁiggtign_M§nug;, revision D1.2.
(hereinafter "the VMEbus standard"), which is hereby
incorporated by reference.

SUBSTITUTE SHEET




10

15

20

25

30

35

WO 91/11768

-4-

The standard VMEbus interface system consists of
backplaﬁe interface logic, four groups of signal
lines referred to as "buses," and a collection of
functional modules which communicate with one
another using the signal lines. The four buses are
the data transfer bus ("DTB"), arbitration bus,
priority interrupt bus and utility bus. The present
application is principally concerned with the DTB.

The DTB allows "masters," which are functional
modules, such as the CPU or other intelligent
controllers connected to the VMEbus, that initiate
DTB cycles, to direct the transfer of binary data
between themselves and "slaves." A "slave" is a
functional module, such as primary memory, which
detects DTB cycles initiated by a "master" and, when
those cycles specify its participation, transfers
data to or receives data from its "master."

There are seven DTB cycles which a "master" may
implement on the DTB: READ, WRITE, BLOCK READ, BLOCK
WRITE, READ-MODIFY-WRITE, ADDRESS ONLY, and
INTERRUPT ACKNOWLEDGE CYCLE.

In a READ cycle, one, two, three or four bytes of
parallel data are transferred across the DTB from
master to slave. The READ cycle begins when the
master broadcasts an address and an address modifier
and places data on the DTB. Each slave captures the
address and address modifier and determines whether
it is to respond to the cycle. The intended slave
recipient retrieves the data from its internal
storage and places the data on the DTB,
acknowledging the data transfer.

- ;n a WRITE cycle, one, two, three or four bytes
of ﬁarallel data are transferred across the bus from
a master to a slave. The cycle commences when the

master broadcasts an address and address modifier

SUBSTITUTE SHEET

PCT/US90/04697



10

15

20

25

30

WO 91/11768

-5-

and places data on the DTB. Each slave on the bus
captures the address and address modifier and
determineé whether it is to respond to the cycle.
The intended slave(s) stores the data and
acknowledges the transfer.

The BLOCK READ cycle is a DTB cycle used to
transfer a block of one to two-hundred fifty-six
bytes from a slave to a master. The BLOCK READ
transfer is accomplished using a string of one, two
or four byte-wide (i.e., 8, 16, or 32 bit-wide data
words) data transfers. Once the block transfer is
started, the master does not release the DTB until
all of the bytes have been transferred. The BLOCK
READ cycle differs from a string of READ cycles in
that the master broadcasts only one address and
address modifier at the beginning of the cycle. The
slave increments the address on each transfer in
order that the data for the next transfer is
retrieved from the next higher location.

The BLOCK WRITE cycle, like the BLOCK READ cycle,
is a DTB cycle used to transfer a block of one to
two-hundred fifty-six bytes from a master to a
slave. The BLOCK WRITE transfer is accomplished
using a string of one, two or four byte-wide data
transfers. Once the block transfer is started, the
master does not release the DTB until all of the
bytes have been transferred. The BLOCK WRITE cycle
differs from a string of WRITE cycles in that the
master broadcasts only one address and address
modifier at the beginning of the cycle. The slave
increments the address on each transfer in order
that the data for the next transfer is retrieved
from the next higher location. |

SUBSTITUTE SHEET

PCT/US90/04697




10

15

20

25

30

35

WO 91/11768 PCT/US90/04697

-6-

The READ-MODIFY cycle is a DTB cycle used to both

‘read from'ahd write to a slave location without

permitting another master access to the slave
location.

The ADDRESS-ONLY cycle consists only of an
address broadcast. Data is not transferred. Slaves
do not acknowledge ADDRESS-ONLY cycles and the
master terminates the cycle without waiting for an
acknowledgement.

It should be noted that this differs from
"synchronous" systems in that in totally
"synchronous" systems the response of the slave is
irrelevant. This initiation of a DTB cycle is
referred to in the art as "handshaking." After a
master initiates a data transfer cycle it waits for
the designated slave to respond before finishing the
cycle. The asynchronous nature of the VMEbus allows
a slave to take as long as it needs to respond. The
VMEbus requires four propagations across the DTB to
complete a single handshake sequence. If a slave
fails to respond because of a malfunction or if the
master accidentally addresses a location where there
is no slave, the bus timer intervenes allowing the
cycle to be terminated.

The VMEbus standard specifies the use of location
monitors, which are on the functional modules, to
monitor data transfers over the DTB. Each operates
to detect accesses to the locations it has been
assigned to watch. When an access to one of these
assigned locations occurs, the location monitor
typically signals its on-board processor by means of
an interrupt request signal. In such a
configuration, if processor A writes into the global
VMEbus memory monitored by processor B’'s location

monitor, processor B will be interrupted.

SUBSTITUTE SHEET



10

15

20

25

30

WO 91/11768

-7-

The DTB includes three types of lines: addressing
lines, data lines and control lines.

Masters use address lines numbers 2 thiough 31,
denoted as A02 through A31, to select a four-byte
group to be accessed. Four additional lines, data
strobe zero (DSO0*), data strobe one (DS1*), address
line number one (A01) and longword (LWORD*), are
then used to select which byte locations within the
fiur-byte group are accessed during the data
transfer. The asterisk following the abbreviated
line designation denotes that these lines are
vactive low" (i.e., considered "active" when driven
low). Using these four lines, a master can access
one, two, three or four-byte locations
simultaneously, depending upon the type of cycle
initiated.

The DTB includes six address modifier lines which
allow the master to pass additional binary
information to the slave during a data transfer.
Sixty-four possible modifier codes exist, which are
classified into each of three categories: defined,
reserved and user defined. User defined codes may
be used for any purpose which the user deems
appropriate. Typical uses of the user defined codes
include page switching, memory protection, master or
task identification, privileged access to resources
and so forth.

Thirty-two data lines, D00 through D31, actually
transfer data across the bus. The master may
simultaneously access up to four byte locations.
When the master has selected the byte locations to
be accessed, it can transfer binary data between
itsélf and those locations over the data bus.

SUB. ITUTLZ SHEET

PCT/US90/04697




10

15

20

25

30

WO 91/11768

-8-

The DTB includes six control lines: address
strobe (AS*), data strobe zero (DS0*), data strobe
one (DS1*), bus error (BERR*), data transfer
acknowledge (DTACK*), and read/write (WRITE*). The
VME standard requires that the control lines be
considered "active" when driven low.

A falling edge on the AS* line informs all slave
modules that the broadcasted address is stable and
can be captured.

DSO* and DS1*, in addition to their function in
selecting byte locations for data transfer, also
serve control functions. On WRITE cycles, the first
falling edge of the data strobe indicates that the
master has placed valid data on the data bus. On
READ cycles, the first rising edge tells the slave
when it can remove valid data from the DTB.

A slave will drive DTACK* low to indicate that it
has successfully received the data on a WRITE cycle.

On a READ cycle, the slave drives DTACK* low to
indicate that it has placed data on the DTB.

The BERR* line is an open-collector signal driven
low by the slave or the bus timer to indicate to the
master that the data transfer was unsuccessful. For
example, if a master tries to write to a location
which contains Read-Only memory, the responding
slave might drive BERR* low. If the master tries to
access a location that is not provided by any slave,
the bus timer would drive BERR* low after waiting a
specified period of time.

WRITE* is a level significant line strobed by the
leading edge of the first data strobe. It is used
by the master to indicate the direction of data
transfer operations. When WRITE* is driven low, the

SUBSTITUTE SHEET

PCT/US90/04697



10

15

20

25

30

35

WO 91/11768 ' PCT/US90/04697

-9-

data transfer direction is from the master to the

_slave. When WRITE* is driven high, thé data

transfer direction is from the slave to the master.

The VMEbus standard sets forth a handshake which
requires four separate propagations across the
VMEbus. The master asserts DSO* and DS1* to
initiate the data transfer cycle. The slave, in
response to the master’s assertion of DSO* and DS1*,
asserts DTACK*. In response to the assertion of
DTACK* by the master, the master deasserts DSO* and
DS1*. The slave, in response, deasserts DTACK* to
complete the handshake. Each four of these
propagations is required to accomplish the
handshake.

The maximum transfer rate across a typical VMEbus
is generally in the range of 20 to 30 megabytes per
second. However, in situations where a great deal
of data must be transferred very quickly from one
device on the VMEbus to another device on the VMEbus
or a large number of data transfers need to be made,
this transfer rate can oftentimes be slow enough to
result in processing delays. Accordingly, in order
to maximize data transfer and processing efficiency,
the transfer rate of data across the VME backplane
bus should be increased.

Another significant aspect of VMEbus architecture
is the "message" passing system implemented to pass
"messages" across the bus. A typical "message"”
might consist of a message from a CPU controller to
a disk controller to read a particular block of data
on a disk controlled by the disk controller. As
various processes are running on the various
funéfional modules, it is necessary to send
"messages" across fhe bus from one module to

another.

SUBSTITUTE- SHEET




10

15

20

25

30

35

WO 91/11768 PCT/US90/04697

-10-

The most common manner in which messages are

~ . delivered is commonly referred to as the "mailbox

method" of message transfer. Under the mailbox
method, the processor which originates the message
to be delivered is designated as the "sender" and
the processor to which the message is to be sent is
designated as the "recipient." All processors
adapted to receive messages are equipped with a
"mailbox."

The processors located on the various functional
modules allocate memory for the purposes of storing
the "messages." The messages are typically of fixed
length of 128 bytes. Consequently, the various
processors allocate 128 bytes of memory to a
"message buffer." To initiate the transmission of a
message, the sender inserts a message to be sent to
the designated recipient into the message buffer.
The message must then be delivered to rscipient.

The sender will institute a conventional VMEbus
READ operation directed to the recipient’s mailbox.
If the data read from the recipient’s mailbox is a
"0," this indicates that a slot is available in the
recipient’s mailbox. The sender is then free to
write a "pointer" into the recipient’s mailbox by
transmitting the pointer across the VMEbus using a
WRITE operation. The "pointer" comprises the
address of the sender’s message buffer.

If the data read from the mailbox is nonzero, the
recipient’s mailbox is full and the sender is
required to wait a predetermined period of time
before attempting once again to ascertain whether it
may write a pointer into the recipient'’s mallbox
After the predetermlned perlod of time has elapsed,
the sender will then institute a READ operation
directed to the mailbox in order to ascertain

SUBSTITUTE SHEET



10

15

20

25

30

35°

WO 91/11768 ' PCT/US90/04697

-11~-

whether a slot is available in the recipient’s
mailbox. Upon detecting an availéble slot, the
sender will initiate a WRITE operation to pléce a
pointer in the mailbox.

The recipizant monitors its mailbox for incoming
pointers. Upon receiving a pointer, the recipient
may initiate a sequence of READ operations to
retrieve the message from the sender’s message
buffer.

The recipient processor must include one mailbox
for each potential sender. This one-to-one
requirement is mandated by the fact that, unless one
mailbox is dedicated to each sender, collisions
between two different senders simultaneously writing
into the same mailbox. Thus, in the prior art, the
recipient averts such collisions by establishing one
mailbox for each potential sender. A recipient
processor will typically include a plurality of
mailboxes, each corresponding to a particular
potential sender. Because the recipient must
establish one mailbox for each potential sender, a
great deal of the recipient’s memory is used to set
up the mailboxes. Moreover, because each recipient
has multiple mailboxes capable of simultaneously
receiving messages from a number of different
senders, the time required to poll all of the
multiple mailboxes can be substantially more than
the time required to poll just one mailbox.

Where fast transfers are the objective, the
mailbox method is most undesirable. The mailbox
method requires numerous transaction across the
VMEbus. As noted, the sender must initiate a READ
opefétion at least once, if not multiple timés, to
initially detect the availability of a mailbox slot.

. To place the pointer in the recipient’s mailbox, the

SUBSTITUTE SHEET




10

15

20

25

30

35

WO 91/11768 PCT/US90/04697

-12-

sender must initiate a WRITE operation. The
recipient, in turn, must initiate a READ operation
to retrieve the message. These multiple
transactions across the VMEbus consume bus time,
which results in a slower overall performance.
Hence, a need exists for a high performance
message transfer system, which is compatible with
the VMEbus standard. To date, there has been little
progress made in increasing the transfer rate beyond
the 20 to 30 megabyte per second range. Adherence
to the VMEbus standard poses a problem with respect
to improving the data transfer rate of the VMEbus.
The popularity of the VMEbus is due, in large
part, to both the widespread implementation of the
VMEbus standard and the industry-wide compatibility
of other systems and peripherals. Indeed, it is
this paramount consideration of compatibility which
has, to some extent, retarded efforts to increase
the performance of the VMEbus. The architecture of
a compatible VMEbus must be consistent with the
VMEbus standard. Performance problems must be
resolved within the context of the VMEbus standard

if compatibility is to be maintained.

SUMMARY OF THE INVENTION

The present invention is directed to a message
transfer system for transferring message data from a
first processor ("sender") to a second processor
("receiver") across a bus. The message transfer
system includes a station comprising a FIFO
interconnected to the bus for receiving and storing
the message data transferred from the first

.proéessor. The FIFO has a FIFO FULL state, which -

indicates that the FIFO is unable to store message
data, and generates a FIFO FULL signal to indicate

SUBSTITUTE SHEET



10

15

20

25

30

35

WO 91/11768

~-13-

the existence of the FIFO FULL state. The system

- . further includes a means, interconnected to the FIFO

means and the VMEbus, for responding across the
VMEbus to a FIFO WRITE cycle from a sender processor
with the BUS ERROR signal, instead of the normal
DTACK signal, when this WRITE cycle occurs while the
FIFO is generating the FIFO FULL signal.

The present invention provides an apparatus and
method for efficiently and rapidly transferring
message data across a bus from one processor to
another. The present invention’s efficient and
rapid performance is attributable, in large part, to
the minimization of transactions across the bus.

The number of bus cycles required to accomplish the
transfer of message data across the bus is reduced
to a single WRITE cycle. This marks a substantial
improvement over prior art message transfer systems,
which, as noted, require multiple cycles to
accomplish the transfer of message data.

Moreover, the present invention requires only one
FIFO for each processor to handle message data
transfer from all senders. This likewise marks a
departure from prior art systems which require that
each processor include one mailbox for each
potential sender. The use of a single FIFO per
recipient processor is advantageous as it
substantially reduces the hardware required to
accomplish message data transfer and simplifies the
polling function. The recipient processor needs
only to look at a single FIFO for message data
rather than polling multiple mailboxes for message
pointers.

It is an object of the present invention to
provide a multi-precessor communication system which

both minimizes hardware requirements necessary to

SUBSTITUTE SHEET

PCT/US90/04697




10

15

20

25

30

WO 91/11768

-14-

implement a message transfer function and
significantly simplifies the management of messages
transferred.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram representing the
preferred embodimént of the hardware support for the
present invention.

Fig. 2 is a block diagram illustrating the
principal signal lines logically connecting the data
transfer bus to a master functional unit, as
required by the VMEbus standard.

Fig. 3 is a block diagram illustrating the
principal signal lines logically connecting the data
transfer bus to a slave functional unit, as required
by the VMEbus standard.

Fig. 4A is a timing diagram illustrating the
conventional VMEbus standard handshaking protocol.

Fig. 4B is a timing diagram illustrating the fast
transfer mode handshake. .

Fig. 5A is timing diagram illustrating the
standard VMEbus protocol for data referencing during
a BLOCK WRITE cycle.

Fig. 5B is timing diagram illustrating the fast
transfer protocol of the present invention for data
referencing during a BLOCK WRITE cycle.

Fig. 6A is timing diagram illustrating the
standard VMEbus protocol for data referencing during
a BLOCK READ cycle.

Fig. 6B is timing diagram illustrating the fast
transfer protocol of the present invention for data
referencing during a BLOCK READ cycle.

fig. 7A is a flowchart illustrating the operation
of the fast transfer protocol BLOCK WRITE cycle.

SUBSTITUTE SHEET

PCT/US90/04697



10

15

20

25

30

WO 91/11768 PCT/US90/04697

-15-

Fig. 7B is a continuation of the flowchart of

Fig. 7A. ,
Fig. 7C is a continuation of the flowchart of
Fig. 7B.

Fig. 8A is a flowchart illustrating the operation
of the fast transfer protocol BLOCK READ cycle.
Fig. 8B is a continuation of the flowchart of

Fig. 8A.
Fig. 8C is a continuation of the flowchart of
Fig. 8B.

Fig. 9 is a timing diagram illustrating the data
transfer timing associated with a fast transfer mode
BLOCK WRITE operation.

Fig. 92 illustrates a data transfer cycle which
could be inserted in the location of box 900 in Fig.
9.

Fig. 10 is a timing diagram illustrating the data
transfer timing associated with a fast transfer mode
BLOCK READ operation.

Fig. 10A illustrates a data transfer cycle which
could be inserted in the location of box 1000 in
Fig. 10.

Fig. 11 is a block diagram illustrating the
principal signal lines logically connecting the data
transfer bus to a modified slave functional unit, as
implemented in the preferred embodiment of the
present invention.

Fig. 12 is a flowchart illustrating a message
data transfer operation accomplished under the
present invention.

Fig. 13 is a block diagram of the bus-locking
FIFO multi-processor communication system of the

. present invention.

QIRSTITU™T SHEET




10

15

20

25

30

35

WO 91/11768 PCT/US90/04697

-16-

- Fig. 14 is a block diagram of the preferred
embodiment of one of the processors employed in the
bus-locking FIFO multi-processor communication
system of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. S em Qverview

A block diagram representing the preferred
embodiment of the hardware support for the present
invention, generally indicated by the reference
numeral 10, is provided in Fig 1. The architecture
of the preferred hardware system 10 is described in
the above-identified related application entitled
PARALLEL I/O NETWORK FILE SERVER ARCHITECTURE which
application is expressly incorporated by reference.

The hardware components of the system 10 include
multiple instances of network controllers 12, file
system controllers 14, and mass storage processors
16 interconnected by a high-bandwidth backplane bus
22. Each of these controllers 12, 14, 16 preferably
include a high performance processor and local
program store, thereby minimizing their need to
access the bus 22. Rather, bus 22 accesses by the
controllers 12, 14, 16 are substantially limited to
transfer accesses as required to transfer control
information and client workstation data between the
controllers 12, 14, 16 system memory 18, and a local
host processor 20, when necessary.

The illustrated system 10 configuration includes
four network controllers 12A-C two file controllers
14A-B two mass storage processors 16A-B a bank of
four system memory cards 18A-D and a local host
proééssor 20 coupled to the backplane bus 22. Each
network controller (NC) 12 pfeferably includes two

independent ethernet network connections, shown as

SUBSTITUTE SHEET




10

15

20

25

30

WO 91/11768 ' PCT/US90/04697

-17-

the network pairs 1, 3, 5 and 7, controlled by a
Motorola 68620 processor. Each of the network '
connections directly support the ten megabit per
second data rate specified for a conventional
individual Ethernet network connection. The
preferred hardware embodiment of the present
invention thus realizes a combined maximum data
throughput potential of 80 megabits per second.

The file controllers (FC) 14, intended to operate
primarily as specialized computer engines, each
include a high-performance Motorola 68020 based
microprocessor system, two megabytes of local
program memory and a smaller half-megabyte high-
speed data store.

The mass storage processors (SP) 16 function as
intelligent small computer system interface (SCSI)
controllers. Each includes a Motorola 68020 based
microprocessor system, a local program and data
memory, and an array of ten parallel SCSI channels.
Drive arrays 24A-B are coupled to the storage
processors 16A-B to provide mass storage.
Preferably, the drive arrays 24A-B are ten unit wide
arrays of SCSI storage devices and from one to three
units deep uniformly. 1In the preferred embodiment
of the present invention using conventional 768
megabyte 5%-inch hard disk drives for each unit of
the arrays 24A-B. Thus, each drive array level
achieves a storage capacity of approximately 6
gigabytes, with each storage processor readily
supporting 18 gigabytes, and a system 10 capable
realizing a total combined data storage capacity of

36 gigabytes.

SUBSTITUTE SHEET




10

15

20

25

30

35

WO 91/11768 PCT/US90/04697

-18-

The local host prdcessor 20, in the preferred
embodiments of the present invention, is a Sun 3/40
central processor card, model Sun 3E120, B

manufactured and distributed by Sun Microsystems,

el

Inc.

Finally, the system memory cards 18 each provide
32 megabytes of 32-bit memory for shared use within
the computer system 10. The memory is logically
visible to each of the processors of the system 10.

A VMEbus 22 is used in the preferred embodiments
of the present invention to interconnect the network
controllers 12, file controllers 14, storage
processor 16, system memory 18, and local host 20.
The hardware control logic for controlling the
VMEbus 22, as at least implemented on the network
controller 12 and storage processor 16, has been
enhanced to support the bus master fast transfer
protocol of the present invention. The system
memory 18 also implements the modified slave VMEbus
control logic, also in accordance with the present
invention, to allow the system memorf 18 to act as
the data transfer data source or destination for the
network controller 12 and storage processors 16.

It should be understood that, while the system 10
configuration represents the initially preferred
maximum hardware configuration, the present
invention is not limited to the preferred number or
type of controllers or the preferred size and type

of disk drives.

II. Fphanced VMEbug Qverview
Figs. 2 and 3 are, respectively, block diagrams
of E}pical master and slave functional units -
(respectively hereinafter "master® and "slave").
Thg signal lines interconnecting the master and

SUBSTITUTE SHEET



10

15

20

25

30

35

40

45

WO 91/11768

PCT/US90/04697

-19-

slave across the data transfer bus (DTB), as shown
in Figs. 2 and 3, are the following:

A01-A15

Al6-a23

A24-A31

AMO-AMS5

AS*

BERR¥*

D00-D31

ADDRESS bus (bits 1-15) -
Three-state driven address
lines that are used to
broadcast a short, standard,
or extended address.

ADDRESS bus (bits 16-23) -
Three-state driven address
lines that are used in
conjunction with A01-Al5 to
broadcast a standard or
extended address.

ADDRESS bus (bits 24-31) -
Three-state driven address
lines that are used in
conjunction with A01-A23 to
broadcast an extended
address.

ADDRESS MODIFIER (bits 0-5) -
Three-state driven lines
that are used to broadcast
information such as address
size, cycle type, and/or
MASTER identification.

ADDRESS STROBE - A three-
state driven signal that
indicates when a valid
address has been placed on
the address bus.

BUS ERROR - An open-collector
driven signal generated by a
SLAVE or BUS TIMER. This
signal indicates to the
MASTER that the data transfer
was not completed.

DATA BUS - Three-state driven
bidirectional data lines used
to transfer data between
MASTERS and SLAVES.

sUBSTITUTE SHEET




10

15

20

25

30

35

40

45

50

WO 91/11768 PCT/US90/04697

-20-

DSO*, DS1%* DATA STROBE ZERO, ONE -

: Three-state driven signals
used in conjunction with ,
LWORD and A0l to indicate how ’
many data bytes are being
transferred (1, 2, 3, or 4).
During a write cycle, the N
falling edge of the first
data strobe indicates that
valid data is available on
the data bus. On a read
cycle, the rising edge of the
first data strobe indicates
that data has been accepted
from the data bus.

DTACK* DATA TRANSFER ACKNOWLEDGE - A
three-state driven signal
generated by a SLAVE. The
falling edge of this signal
indicates that valid data is
available on the data bus
during a read cycle, or that
data has been accepted from
the data bus during a write
cycle. The rising edge
indicates when the SLAVE has
released the data bus at the
end of a READ CYCLE.

LWORD* LONGWORD - A three-state
driven signal used in
conjunction with DSO*, DS1%*,
and A0l to select which byte
location(s) within the 4 byte
group are accessed during the
data transfer.

WRITE* WRITE - A three-state driven
signal generated by the
MASTER to indicate whether
the data transfer cycle is a
read or write. A high level
indicates a read operation; a
low level indicates a write
operation.

As shown in Fig. 2, the slave functional module
200 is logically connected to backplane interface e
logic 210. THe backplane interface logic 210 is
connected to the data transfer bué 10 by signal

SUBSTITUTE SHEET



10

15

20

25

30

35

WO 91/11768 PCT/US90/04697

-21~

lines 220. The signal flow direction of the signal
lines 320 is indicated By the direction of the
respective arrows. The DTACK* signal line
originates with the slave and is driven by a
conventional 64 mA three-state driver. The data
lines are, of course, bidirectional, as shown in
Fig. 2.

As shown in Fig. 3, the master functional module
300 is logically connected to backplane interface
logic 310. The backplane interface logic 310 is
connected to the data transfer bus 10 by signal
lines 320. The signal flouw direction of the signal
lines 320 is indicated by the direction of the
respective arrows. The DSO*, DS1*, AS* and AMO
through AM5 signal lines originate with the master.
The data lines, DOO through D31, are, of course,

bidirectional, as shown in Fig. 3.

IIT. Enhanced VMEbus Fast Transfer Protocol

The present invention increases the data transfer
rate across the VMEbus by reducing the number of bus
propagations required to accomplish handshaking and
data transfer.

Fig. 4A illustrates the conventional handshaking
protocol defined by the VMEbus standard. Four bus
propagations ave required to accomplish a handshake
using the conventional VMEbus handshaking protocol.
A master will initiate a data transfer over the DTB
by asserting DSO* and DS1*, shown as propagation 1
in Fig. 4A. The addressed slave then asserts
DTACK*, shown as propagation 2 in Figure 4A. The
master, upon receiving the assertion of DTACK*
driéén by the slave, deasserts DSO* and DS1*, shown
as propagation 3 in Figure 4A. The slave, upon
receiving deassertion of DSO* and DS1*, Qeasserts

SUBSTITUTE SHEET




10

15

20

25

30

35

WO 91/11768 ' PCT/US90/04697

-22-

DTACK*, shown as propagation 4 in Figure 4A. Upon
the deassertion of DTACK by the slave, the handshake
is then completed.

Fig. 4B is a timing diagram illustrating the fast
transfer mode handshake protocol. Only two bus
propagations are used to accomplish a handshake. At
the initiation of a data transfer cycle, the master
will assert and deassert DSO* in the form of a pulse
of a given duration in the manner shown as
propagation 1 in Fig. 4B. The deassertion of DSO¥*
is accomplished without regard as to whether a
response has been received from the slave. Hence,
the DSO* signal is wholly decoupled from the DTACK*
signal.

The master must then wait for an acknowledgement
from the slave. Subsequent pulsing of DSO* cannot
occur until a responsive DTACK* signal is received
from the slave. Upon receiving the slave’s
assertion of DTACK*, shown as propagation 2 in Fig.
4B, the master can then immediately ;eassert data
strobe, if so desired. The fast transfer mode
protocol of the present invention does not require
the master to wait for the deassertion of DTACK* by
the slave as a condition precedent to the subsequent
assertions of DSO*. In the fast transfer mode, only

.the leading edge (i.e., the assertion) of a signal
is significant. Thus, the deassertion of either
DSO0* or DTACK* is completely irrelevant for
completion of a handshake.

It should be noted that the fast transfer
protocol of the present invention does not employ
the.D81* line for data strobe purposes. The use of
both DSO* and DS1* would be undesirable in the

1 present'contexﬁ; Because DSO* and DS1* are driven

83

by different drivers, skew between the signals is a

SUBSTITUTE SHEET

wr



10

15

20

25

30

WO 91/11768 PCT/US90/04697

-23-

very common problem. Skew between DSO* and DS1*

_results in delay of the assertion of the data strobe

condition required to signal a data transfer.
Accordingly, under the present invention, the DS1*
line is not used in the handshake process. Skew
problems are eliminated by referencing on DSO* for
data strobe purposes under the fast transfer mode
protocol of the present invention.

The fast transfer mode protocol may be
characterized as pseudo-synchronous as it includes
both synchronous and asynchronous aspects. The fast
transfer mode protocol is synchronous in character
due to the fact that DSO* is asserted and deasserted
without regard to a response from the slave. The
asynchronous aspect of the fast transfer mode
protocol is attributable to the fact that the master
may not subsequently assert DSO* until a response to
the prior strobe is received from the slave.
Consequently, because the present invention includes
both synchronous and asyncﬁronous components, it is
most accurately classified as "pseudo-synchronous."

Fig. 5A is a timing diagram illustrating the
standard VMEbus protocol for data referencing during
a BLOCK WRITE cycle. In a standard VMEbus BLOCK
WRITE operation, the data to be transferred is
broadcast, as shown in Fig. 5A, and the master
asserts DSO* and DS1*. The slave receives the data
and asserts DTACK*. Under the standard VMEbus
protocol, valid data is guaranteed to be broadcast
to the slave for a known period of time after the
assertion of DTACK* by the slave. The master then
deasserts DSO* and DS1%*, although valid data
continues to be broadcast. The BLOCK WRITE cycle is
completed upon déaséertion of DTACK*. by the slave.

syBsTITUTE SHEET




10

15

20

25

30

35

WO 91/11768

-24-~

Fig. 5B is a timing diagram illustrating the fast
transfer protocol of the present invenﬁion for data |
referencing during a BLOCK WRITE cycle. The
transfer of data during a BLOCK WRITE cycle is
referenced only to DSO*, as shown in Fig. 5B. The
master broadcasts valid data to the slave. The
master then asserts DSO to the slave, as shown in
Fig. 5B. The slave is given a predetermined period
of time, t, in Fig. 5B, after the assertion of DSO*
in which to capture the data. Hence, slave modules
must be prepared to capture data at any time, as
DTACK* is not referenced during the transfer cycle.

Fig. 6A is timing diagram illustrating the
standard VMEbus protocol for data referencing during
a BLOCK READ cycle. In a standard VMEbus BLOCK READ
operation, the master asserts DSO* and DS1*, as
shown in Fig. 6A. The slave, in response to the
assertion of DSO* and DS1*, broadcasts the data to
be transferred across the bus and asserts DTACK*.
Valid data is guaranteed to be broadcast to the
master for a given period of time after the
assertion of DTACK* by the slave. The master then
deasserts DSO* and DS1*, although valid data
continues to be broadcast. The BLOCK READ cycle is
completed upon deassertion of DTACK* by the slave.

Fig. 6B is a timing diagram illustrating the fast
transfer protocol of the present invention for data
referencing during a BLOCK READ cycle. The transfer
of data during a BLOCK READ cycle is referenced only
to DTACK*, as shown in Fig. 6B. The master asserts
DSO*. The slave broadcasts data to the master and
theq asserts DTACK*, as shown in Fig. 6B. Under the
fasfltransfer protocol, the master is given a
predetermined period of time, t. in Fig. 6B, after
the assertion of DTACK, in which to capture the

SUBSTITUTE SHEET

PCT/US90/04697



10

15

20

25

30

WO 91/11768 ' PCT/US90/04697

-25-

data. Hence, master modules must be prepared to
capture data at any time as DSO is not referenced
during the transfer cycle.

Fig. 7, parts A through C, is a flowchart
illustrating the operations involved in
accomplishing the fast transfer protocol BLOCK WRITE
cycle of the present invention. To initiate a BLOCK
WRITE cycle, the master broadcasts the memory
address of the data to be transferred and the
address modifier across the DTB bus. The master
also drives interrupt acknowledge signal (IACK*)
high and the LWORD* signal low 701. The IACK*
signal is a standard VMEbus protocol signal used to
acknowledge an interrupt request from the priority
interrupt bus.

A special address modifier broadcast by the
master indicates to the slave module that the fast
transfer protocol will be used to accomplish the
BLOCK WRITE. In one embodiment of the invention,
the hexadecimal address modifier "1f," which is one
of the user defined address modifiers under the
VMEbus standard, is broadcast to the slave to
indicate that the fast transfer protocol will be
used. However, it should be understood that any of
the user defined address modifiers might be
designated as the fast transfer protocol address
modifier.

It should also be noted that the starting memory
address of the data to be transferred should reside
on a 64-bit boundary and the size of block of data
to be transferred should be a multiple of 64 bits.
In order to remain in compliance with the VMEbus
staﬁdard, the block must not cross a 256 byte
boundary without performing a new address cycle.

SUBSTITUTE SHEET




10

15

20

25

30

35

.DSO*;signal. In the fast transfer protocol of the

WO 91/11768 PCT/US90/04697

-26-

The slave modules connected to the DTérreceive
the address and the address modifier broadcast by
the master across the bﬁs and receive LWORD* low and °
IACK* high 703. Shortly after broadcasting the
address and address modifier 701, the master drives

73

the AS* signal low 705. The slave modules receive
the AS* low signal 707. Each slave individually
determines whether it will participate in the data
transfer by determining whether the broadcasted
address is valid for the slave in question 709. If
the address is not valid, the data transfer does not
involve that particular slave and it ignores the
remainder of the data transfer cycle.

The master drives WRITE* low to indicate that the
transfer cycle about to occur is a WRITE operation
711. The slave receives the WRITE* low signal 713
and, knowing that the data transfer operation is a
WRITE operation, awaits receipt of a high to low
transition on the DSO* signal line 715. The master
will wait until both DTACK* and BERR* are high 718,
which indicates that the previous sl&ve is no longer
driving the DTB.

The master proceeds to place the first segment of
the data to be transferred on data lines D00 through
D31, 719. After placing data on D00 through D31,
the master drives DSO* low 721 and, after a
predetermined interval, drives DSO0* high 723.

In response to the transition of DSO* from high
to low, respectively 721 and 723, the slave latches
the data being transmitted by the master over data
lines DOO through D31, 725. It should be noted that
the latching operation is responsive only to the

present invention, DTACK* is not referenced for
purboses of latching data placed on the data lines

 SUBSTITUTE SHEET



10

15

20

25

30

35

WO 91/11768

-27-

by the master. The master places the next segment
of the data to be transferred on data lines DOO
through D31, 727, and awaits-receipt of a DTACK*
signal in the form of a high to low transition
signal, 729 in Fig. 7B.

Referring to Fig. 7B, the slave then drives
DTACK* low, 731, and, after a predetermined period
of time, drives DTACK high, 733. The data latched
by the slave, 725, is written to a device, which has
been selected to store the data, 735. The slave
also increments the device address, 735. The slave
then waits for another transition of DSO* from high
to low, 737.

To commence the transfer of the next segment of
the block of data to be transferred, the master
drives DSO* low, 739 and, after a predetermined
period of time, drives DSO* high, 741. 1In response
to the transition of DSO* from high to low,
respectively 739 and 741, the slave latches the data
being broadcast by the master over dgta lines DOO
through D31, 743. The master places the next
segment of the data to be transferred on data lines
D00 through D31, 745, and awaits receipt of a DTACK*
signal in the form of a high to low transition, 747.

The slave then drives DTACK* low, 749, and, after
a predetermined period of time, drives DTACK* high,
751. The data latched by the slave, 743, is written
to the device selected to store the data and the
device address is incremented, 753. The slave waits
for another transition of DSO* from high to low,
737.

The transfer of data will continue in the above-
deséribed manner until all of the data has been
transferred from the master to the slave. After all

of the data has been transferred, the master will

sUBSTITUTE SHEET

PCT/US90/04697




10

15

20

25

30

WO 91/11768

-28-

release the address lines, address modifier lines,
data lines( iACK* line, LWORD* line and DSO* line,
755. The master will then wait for receipt of a
DTACK* high to low transition, 757. The slave will
drive DTACK* low, 759 and, after a predetermined
period of time, drive DTACK* high, 761. 1In response
to the receipt of>the DTACK* high to low transition,
the master will drive AS* high, 763, and then
release the AS* line, 765.

Fig. 8, parts A through C, is a flowchart
illustrating the operations involved in
accomplishing the fast transfer protocol BLOCK READ
cycle of the present invention. To initiate a BLOCK
READ cycle, the master broadcasts the memory address
of the data to be transferred and the address
modifier across the DTB bus, 801. The master drives
the LWORD* signal low and the IACK* signal high,
801. As noted previously, a special address
modifier indicates to the slave module that the fast
transfer protocol will be used to accomplish the
BLOCK READ.

The slave modules connected to the DTB receive
the address and the address modifier broadcast by
the master across the bus and receive LWORD* low and
IACK* high, 803. Shortly after broadcasting the
address and address modifier, 801, the master drives
the AS* signal low, 805. The slave modules receive
the AS* low signal, 807. Each slave individually
determines whether it will participate in the data
transfer by determining whether the broadcasted
address is valid for the slave in question, 809. If
the_address is not valid, the data transfer does not
invéive that particular slave and it ignores the
remainder of the data transfer cycle.

SUBSTITUTE SHEET

PCT/US90/04697

)



10

15

20

25

30

WO 91/11768

-29-

The master drives WRITE* high to indicate that
the transfer cycle about to occur is a READ
operation, 811. The slave receives the WRITE* hlgh ’
signal, 813, and, knowing that the data transfer
operation is a READ operation, places the first
segment of the data to be transferred on data lines
D00 through D31, 819. The master will wait until
both DTACK* and BERR* are high, 818, which indicates
that the previous slave is no longer driving the
DTB.

The master then drives DSO* low, 821, and, after
a predetermined interval, drives DSO* high, 823.

The master then awaits a high to low transition on
the DTACK* signal line, 824. As shown in Fig. 8B,
the slave then drives the DTACK* signal low, 825,
and, after a predetermined period of time, drives
the DTACK* signal high, 827.

In response to the transition of DTACK* from high
to low, respectively 825 and 827, the master latches
the data being transmitted by the slave over data
lines D00 through D31, 831. It should be noted that
the latching operation is responsive only to the
DTACK* signal. In the fast transfer protocol of
present invention, DSO* is not referenced for
purposes of latching data placed on the data lines
by the master. The data latched by the master, 831,
is written to a device, which has been selected to
store the data the device address is incremented,
833.

The slave places the next segment of the data to
be transferred on data lines D00 through D31, 829,
and then waits for another transition of DSO* from

.hlgh to low, 837.

suBSTITUTE SHEET

PCT/US90/04697




10

15

20

25

30

.35

WO 91/11768 PCT/US90/04697

-30-

- To commence the transfer of the next segment of
the block of data to be transferred, the master
drives DS0* low, 839, and, after a predetermined
period of time, drives DSO* high, 841. The master
then waits for the DTACK* line to transition from
high to low, 843.

The slave drives DTACK* low, 845, and, after a
predetermined period of time, drives DTACK* high,
847. In response to the transition of DTACK* from
high to low, respectively 839 and 841, the master
latches the data being transmitted by the slave over
data lines DOO through D31, 845. The data latched
by the master, 845, is written to the device
selected to store the data, 851 in Fig. 8C, and the
device address is incremented. The slave places the
next segment of the data to be transferred on data
lines D00 through D31, 849.

The transfer of data will continue in the above-
described manner until all of the data to be
transferred from the slave to the master has been
written into the device selected to store the data.
After all of the data to be transferred has been
written into the storage device, the master will
release the address lines, address modifier lines,
data lines, the IACK* line, the LWORD line and DSO*
line, 852. The master will then wait for receipt of
a DTACK* high to low transition, 853. The slave
will drive DTACK* low, 855, and, after a
predetermined period of time, drive DTACK* high,
857. 1In response to the receipt of the DTACK* high
to low transition, the master will drive AS* high,

. 859,aand release the AS* line, 861.

Fig. 9 is a timing diagram illustrating the data
transfer timing associated with a fast transfer mode

" BLOCK. WRITE operation.

SUBSTITUTE SHEET

it

32



10

15

20

25

30

WO 91/11768 ' PCT/US90/04697

-31-

As shown in Fig. 9, the address of the location
to which data is to be transferred is broadcast . on
lines A01 through A3l. The address modifier, which
would include the fast transfer mode address
modifier code, is broadcast by the master on lines
AMO through AM5. After the address and address
modifier have been set up on their respective lines,
the master drives AS  low. The WRITE line is driven
low by the master to indicate, as noted previously,
that the operation to follow is a WRITE operation.

Because the DS1° line is not used during a fast
transfer mode operation, the line may or may not be
asserted throughout the operation.

After driving the WRITE line low, the master
broadcasts the first segment of the data to be
transferred on lines D00 through D31.

DSO" is driven low and the signal subsequently
deasserted by being driven high, aé shown in Fig. 9.
The data being broadcast by the master as DSO™ is
driven low and is latched by the slave, in response
to the DSO" signal being driven low. After DSO" is
driven low, the master broadcasts the next segment
of data to be transferred to the slave over lines
D00 through D31, as shown in Fig. 9. The slave, in
response to DSO’ being driven low, subsequently
acknowledges the data transfer by driving DTACK low
for a given period and then deasserting the signal
by driving the DTACK line high. As shown in Fig. 9,
DSO’ is not reasserted until the slave acknowledges
the data transfer by driving the DTACK line low.

As noted previously, the data transfer cycles
will continue until all of the data to be
transferred has been broadcast to the slave. The
number of :ycles required to cbmplete the transfer

SUBSTITUTE SHEET




10

15

20

25

30

35

WO 91/11768

-32-

would occur at box 900 in Fig. 9. Box 900 is merely
exemplary and not drawn to a particular time scale.

Fig. 9A illustrates a data transfer cyéle which
could be inserted in the location of box 900 in Fig.
9. As shown in Fig. 92, DSO is driven low. 1In
response to the DSO" low signal, the slave latches
the data broadcast at the time DSO" went low. The
master broadcasts the next segment of the data to be
transferred. The slave, acknowledging the data
transfer, drives DTACK low. This operation would
continue until all data has been transferred.

Referring again to Fig. 9, after the data
transfer operation has been completed, the slave
drives DTACK low. 1In response, the master deasserts
AS*by driving the AS’ line high. The master
likewise releases the WRITE line by driving the line
high.

The duration of the respective DSO° and DTACK
signals can vary depending upon the application and
the system being used. Likewise, the period between
the assertion of DSO  and the assertién of DTACK may
also vary depending upon the application and the
system being used. Obviously, the data transfer
rate will be increased if the duration of the DSO"
and DTACK'signals and the period between the
assertion of DSO* and DTACK are minimized.

Fig. 10 is a timing diagram illustrating the data
transfer timing associated with a fast transfer mode
BLOCK READ operation.

As shown in Fig. 10, the address of the location
to which data is to be transferred is broadcast on
lines A0l through A31. The address modifier, which
would include the fast transfer mode address
modifier code, is broadcast by the master on line
AMO through AM5. After the address and address

SUBSTITUTE SHEE1

PCT/US90/04697



10

15

20

25

30

35

WO 91/11768 PCT/US90/04697

-33-

modifier have been set up on their respective lines,
the master drives AS low. The WRITE‘ line is driven
high by the master to indicate, as noted previously,
that the operation to follow is a READ operation.

Because the DS1’ line is not used during a fast
transfer mode operation, the line remains high
throughout the entire operation.

In response to the WRITE line being driven high,
data is broadcast by the slave on lines D00 through
D31.

DSO" is driven low and the signal subsequently
deasserted by being driven high, as shown in Fig.

10. The slave, in response to DSO" being driven low,
subsequently acknowledges the data transfer by
driving DTACK low for a given period and then
deasserting the signal by driving the DTACK line
high. The data being broadcast by the slave as DTACK’
is driven low is latched by the master, in response
to the DTACK signal being driven low. After DTACK
ig driven low, the slave broadcasts the next segment
of data to be transferred to the master over lines
D00 through D31, as shown in Fig. 10. DSO is not
reasserted until the slave acknowledges the data
transfer by driving the DTACK line low.

As noted previously, the data transfer cycles
will continue until all of the data to be
transferred has been broadcast to the master. The
number of cycles required to complete the transfer
would occur at box 1000 in Fig. 10. Box 1000 is
merely exemplary and not drawn to a particular time
scale. Fig. 10A illustrates a data transfer cycle
which could be inserted in the location of box 1000
in Fig. 10. As shown in Fig. 10A, DSO’ is driven
low. 1In responée to the DSO" low signal, the slave
acknowledges the data transfer by driving DTACK low.

SUBSTITUTE SHEET




10

15

20

25

30

35

WO 91/11768

-34-

In response to the DTACK low signal, the master

latches the dété broadcast at the time DTACwaent

low. The slave broadcasts the next segment of the
data to be transferred. This operation would
continue until all data has been transferred.

Referring again to Fig. 10, after the data
transfer operation has been completed the slave
drives DTACK low. 1In response, the master deasserts
AS" by driving the AS" line high. The master
likewise releases the WRITE line.

‘As already noted with regard to the WRITE
operation, the duration of the respective DSO" and
DTACK signals can vary depending upon the
application and the system being used. Likewise,
the period between the assertion of DSO’ and the
assertion of DTACK'nmy'also vary depending upon the
application and the system being used. Obviously,
the data transfer rate will be increased if the
duration of the DSO" and DTACK signals and the
period between the assertion of DSO* and DTACK are
minimigzed.

Because the fast transfer protocol requires that
data signals remain on the DTB for a very short
period of time, the amount of skew between the
control signals and the data signals must be
minimized. For example, the DTACK* signal, which
references data transfer on a BLOCK READ cycle, must
go from high to low in the shortest possible
interval so as to enable the master the maximum
amount of time, under the circumstances, to capture
the data to be transferred.

To implement the fast transfer protocol, a
convéntional 64 mA tri-state driver 245 is
substituted for the 48 maA open collector driver

conventionally used in the slave module to drive

SUBSTITUTE SHEET

PCT/US90/04697



10

15

20

25

30

WO 91/11768 PCT/US90/04697

-35-

DTACK* as shown in Fig. 11. This substitution is
necessary because the 48 mA open collector DTACK*
driver does not drive DTACK* from high to low
quickly enough for purposes of the present
invention. Implementation of the 64 mA tri-state
driver 245 provides a means of quickly changing the
state of the DTACK* signal so as to reduce skew
between the DTACK* and data signals sufficient for
purposes of the present invention.

It should likewise be noted that the data drivers
on master and slave modules have been modified. To
implement fast transfer protocol in the preferred
embodiment of the present invention, the
conventional VMEbus data drivers should be replaced
with 64 mA tri-state drivers in SO-type packages.
This modification reduces the ground lead inductance
of the actual driver package itself and, thus,
reduces "ground bounce" effects which contribute to
skew between data, DSO* and DTACK*.

Further, in order to maximize performance, signal
return inductance along the bus backplane should be
reduced to a level permitting the short signal
activation times necessary to implement the fast
transfer mode protocol. In the preferred embodiment
of the present invention, signal return inductance
is reduced using a connector system having a greater
number of ground pins so as to minimize signal
return and mated-pair pin inductance. One such
connector system is the "High Density Plus"
connector, Model No. 420-8015-000, manufactured by

Teradyne Corporation.

SUBSTITUTE SHEET




10

15

20

25

30

35°

WO 91/11768

-36-

1V. Bus Locking FIFQ Message Passing Protocol
While the enhanced fast transfer protocol

provides for the expedient block transfer of message
data, the present invention further and in -
combination provides for a similarly expedient
delivery of message descriptors between the
processors. These message descriptors are used, in
the preferred embodiments of the present invention,
to deliver the information necessary for the
processor that receives a message descriptor to
locate a data block and initiate an enhanced fast
transfer protocol block transfer.

Figure 12 is a flowchart illustrating a message
descriptor transfer operation accomplished under the
present invention. A sender processor (hereinafter
"sender"), not shown in Figure 12, may initiate a
message descriptor transfer, 1010, by initiating a
WRITE cycle, as described above, to a FIFO, not
shown in Figure 12, associated with a recipient
processor (hereinafter "recipient") over the VMEbus.
Message descriptors may contain data of any type.
Typically, the message descriptor consists of a 128
byte wide data packet. 1In the preferred embodiments
of the present invention, a message descriptor
contains a shared memory address of a data block
that is to be transferred to the message descriptor
recipient processor. This recipient processor will
act as the master processor in initiating an
enhanced fast transfer protocol block transfer of
the data block from the shared memory address
provided by the message descriptor to a memory
location of the recipient processor’s own choosing.

In the transfer of a message descriptor from a

~ sender to a receiver, if the. recipient processor’s

FIFO is not FULL and a message descriptor WRITE

SUBSTITUTE SHEET

PCT/US90/04697



10

15

20

25

30

35

WO 91/11768 PCT/US90/04697

-37-

operation is successful, the recipient’s control

logic will adknowledge the message descriptor

transfer by transmitting a DTACK signal to the
sender, 1030.

If the FIFO being written to by the sender is
full, 1020, the recipient’s control logic will drive
BERR  low, indicating a BUS ERROR, i.e., a bus-lock
on the message descriptor write operation. This
informs the sender that the WRITE operation was
unsuccessful. The sender will then wait for a
designated period of time, 1050, before attempting
to retry the WRITE operation. The waiting time is
determined by the application. After waiting the
designated interval, 1050, the sender will retry the
WRITE operation, 1010. This process will continue
until the message descriptor transfer operation is
successful (i.e., the sender receives DTACK rather
than BERR').

Figure 13 is a block diagram of the bus locking
multi-processor communication system. A processor
1101 and a processor 1103 are each interconnected to
VMEbus 22. It should be understood that either of
the processors 1101 and 1103 may send or,
alternatively, receive message descriptors across
VMEbus 22.

A message descriptor is transmitted by a sender,
1101 for example, across VMEbus 22 to FIFO 1120 of a
recipient, 1103 for example. To initiate a
transfer, the sender’s microprocessor 1140
broadcasts, one word at a time typically the
descriptor and its address across the VMEbus 22.

The address broadcast by the sender corresponds to
the Sus address of recipient’s FIFO. If the FIFO
1120 is either empty or not full, the message

descriptor is received by and stored in FIFO 1120.

SUBSTITUTE SHEET




10

15

20

25

30

WO 91/11768 PCT/US90/04697

-38-

The message descriptor can then be read from FIFO

1120 by the microprocessor 1140 when it is ready to

process the next message descriptor.

If a recipient FIFO 1120 is full, the FIFO 1120
transmits a FIFO FULL signal along the FIFO FULL
line 1125 to the recipient processor’s control logic
1130. 1In response to receiving a FIFO FULL signal,
the recipient’s control logic 1130 generates a BERR*
signal by driving BERR* line 1127 low,

Figure 14 is a block diagram of the preferred
embodiment of one of the message transfer units of
the bus-locking multi-processor communication system
of the present invention. A message descriptor is
transmitted by the sender processor, not shown in
Figure 14, across VMEbus 22 and is received at the
recipient processor by a data receiver 1210.
Similarly, the address and address modifier, also
transmitted by the sender processor across VMEbus
22, are received by address receiver 1240 and
forwarded to an address detect circuit 1250. The
address detect circuit detects the address and
address modifier and enables the control logic 1130.
The address and address modifier transmitted by the
sender processor, not shown in Figure 14, is
supplied to the control logic 1130 by lines 1247 and
1245 respectively. The transmitted address
designates the FIFO 1120 as the intended recipient.

FIFO 1120 is a conventional FIFO having at least
three data storage states: a "FIFO full" state,
indicating that all FIFO storage locations are full
and cannot store any further data, a "FIFO not full"
state, indicating that some, but not all, of the
meméfy storage locations are available for the

storage of a message descriptor, and a "FIFO empty"

SUBSTITUTE SHEET



10

15

20

25

30

35°

WO 91/11768 : PCT/US90/04697

-39~

state, which indicates that all memory storage
locations are available for the StOrage of message
descriptors.

The FIFO 1120 has a FIFO FULL signal output line
1125 interconnected to the control logic 1130. The
FIFO FULL line 1125 is activated by the FIFO 1120
when a "FIFO full" state exists and a sender
processor is attempting to write descriptor data
into a full FIFO 1120. A FIFO EMPTY signal line
1235 is interconnected to the control microprocessor
1220 and signals the microprocessor 1220 in the
event FIFO 1120 is empty. A FIFO NOT EMPTY signal
line 1236 is interconnected to control
microprocessor 1220 to signal the control
microprocessor 1220 that a message descriptor is
resident in some, but not all, of the FIFO'’s 1120
storage locations.

Data input lines 1215 interconnect the data
receiver 1210 to the FIFO 1120. Data is output from
the FIFO 1120 to the control microprocessor 1220
across data lines 1233. Two control lines, FIFO
WRITE 1231 interconnected to the control logic 1130
and FIFO READ 1237 interconnected to the
microprocessor 1220, control the flow of data to and
from the FIFO 1120.

WRITE* signal line 1127 interconnects
microprocessor 1220 to control logic 1130 and is
driven low in the event the microprocessor 1220
desires to initiate a data WRITE operation. Data
lines 1129 interconnect microprocessor 1220 to data
transceiver 1212. Similarly, address lines 1123 and
address modifier lines 1122 interconnect
micréprocessor 1220 and address transceiver 1213.

Data transceiver 1212 transmits and receives data

. directed, respectively, to and from VMEbus 22.

SUBSTITUTE SHEET




10

15

20

25

30

35

WO 91/11768

-40-

Likewise, address transceiver 1213 transmits and
receives address and address modifier signals
directed, respectively,rto and from VMEbus 22.

Control logic 1130 is interconnected to VMEbus 22
by WRITE* line 1250, BERR* line 1262, DTACK* line
1264 and DSO* 1266. The WRITE* line 1250, DTACK*
line 1264 and DSO* line operate in the manner
described above. If the WRITE operation is
successfully accomplished, the recipient processor
acknowledges the transfer by having control logic
1130 drive DTACK* low.

If the sender’'s processor, not shown in Figure
14, is attempting to write a message descriptor into
the FIFO 1120 when a FIFO full state condition
exists, the FIFO activates FIFO FULL line 1125.

Upon receipt of the FIFO FULL signal across FIFO
FULL line 1125, control logic 1130 drives BERR line
1250 low indicating to the sender that the immediate
WRITE operation was unsuccessful. The sender may,
upon receipt of the BERR* signal, choose to
retransmit the descriptor to the recipient.

If the FIFO is not full and the WRITE operation
was successful, the message descriptor is stored in
the FIFO 1120 for subsequent access and use by the
recipient microprocessor 1220. Successful message
descriptor transfers conclude with a DTACK signal
generated by the recipient processor’s control logic
1130.

The processor system shown in FIGURE 14 can also
be used to transmit message descriptors. To
transmit message descriptors to a recipient
processor, not shown in FIGURE 14, along VMEbus 22,

‘theihicroprocessor 1220 compiles the message'data to

be transferred in a "message buffer". The address

of the intended recipient.FIFO'and address modifier

SUBSTITUTE SHEET

PCT/US90/04697



10

15

20

WO 91/11768 PCT/US90/04697

-41-

are transmitted to the address transceiver 1213.

~ The microprocessor 1220 drives WRITE* line 1127 low.

In response, control logic 1130 drives the WRITE*
line 1260 low to indicate that the processor is
instituting a WRITE operation. A message
descriptor, which is a pointer to the "message
buffer", is transmitted by microprocessor 1220 to
the data transceiver 1212. The data, address, and
address modifier are broadcast by respective
transceivers across VMEbus 22. As noted above, if
the addressed FIFO is full, the processor will
receive a BERR* signal, indicating the WRITE
operation was unsuccessful.

The foregoing description of the present
invention merely sets forth the preferred
embodiment. Modifications and variations of the
invention as described and set forth above may be
made which are consistent with the scope and spirit
of the present invention and the appended claims.
Other aspects, objects and advantages of this
invention can be obtained from a study of the
drawing, the disclosure and the appended claims.

SUBSTITUTE SHEET




10

15

20

25

30

35

WO 91/11768

-42-

, CLAIMS
What is claimed is:

1. A message transfer system for transferring
message data from a master processor across a VMEbus
to a slave processor, the apparatus comprising:

FIFO means interconnected to the VMEbus for
receiving and storing the message data transferred
from the master processor, said FIFO means having a
FIFO FULL state indicative that said FIFO means is
unable to store message data, said FIFO means
generating a FIFO FULL signal to indicate the
existence of said FIFO FULL state; and

means interconnected to said FIFO means and the
VMEbus for transmitting a BUS ERROR signal across
the VMEbus responsive to the receipt of a FIFO FULL
signal from said FIFO means.

2. A message transfer system for transferring
message data from a master processor across a VMEbus
to a slave processor, the apparatus comprising:

a message data channel means for receiving
message data transmitted from the master
processor, said message data channel means
interconnected to the VMEbus;

a FIFO means for storing message data
interconnected to said message channel means,
said FIFO means having a FIFO FULL state
indicative that said FIFO means is unable to
store message data, said FIFO means generating a
FIFO FULL signal to indicate the existence of
said FIFO FULL state; and

means for transmitting a BUS ERROR signal
across the VMEbus responsive to the receipt of a
FIFO FULL signal from said FIFO means. )

3. A method for terminating the transfer of message

SUBSTITUTE SHEE?

PCT/US90/04697



10

15

WO 91/11768 PCT/US90/04697

-43-

data across a VMEbus from a master processor to a
slave processor in the event that the slave
processor is unable to store the message data to be -
transferred, the method comprising the steps of:
initiating a WRITE cycle so as to write the
message data across the VMEbus to a FIFO means
interconnected to a slave processor; and
transmitting a BUS ERROR signal in response
to the initiation of the WRITE cycle to indicate
that the FIFO means is unable to capture the
message data transferred.
4. The method of Claim 3 wherein the method
comprises the additional step of reinitiating the
WRITE cycle after predetermined amount of time has

lapsed.

SUBSTITUTE SHEET




PCT/US90/04697

WO 91/11768

1/19

dve \

oﬁl\

w

1-014

A3710dLNOD

3114

NO0SSI208d
g—»
| A9YAOLS
\ \ v
Vb2 __
o1 [ %
(
| H
__ K 'Xii
.
LSOH _ -mm
aCalig v
AdCOWINW
02 —
WILSAS

mﬁ\

JJOMLAN

A3T1I041LNOT

mﬁL

SUBSTITUTE SHEET




PCT/US90/04697

WO 91/11768

2/19

///, 200

BACKPLANE INTERFACE LOGIC

SLAVE

SHY-—-0WY

«0Sd

%1sd

w LIAA

S3NIT SS3Naav

«TAOMT

210
220//—’

DATA TRANSFER BUS

o

FIG.-2

////—300

MASTER
BACKPLANE INTERFACE LOGIC

|

SWY—-0WV

e e — —— w—— — —— — — ——

— — — — — G— Y— — —

us

DATA_TRANS

o

sUBSTITUTE SHEET

FIG.—3




WO 91/11768 PCT/US90/04697

3719

DSO¥aDS1* T ] | H

F—1-—8—2-o—3-——4-s—1—sf—2—2—3—

DTACK* | ; l M

FIG.-4A

e L

F—1——2——1—»f

DTACK* L | ]

F1G-4B

SUBSTITUTE SHEET




WO 91/11768 ' PCT/US90/04697

4/19
DSo*eDst* . L : |
F—#t
DATA  XXXXXXX_VALID DATA XXXX
% »
DTACK* | [

FI1G.~5A

DSO0* I I
Ftc-of

pata  XXXXXVALTE TATA XXXKXXXKKXXKKX

FIG.-5B

SUBSTITUTE SHEET




WO 91/11768 PCT/US90/04697

5/19
DS0*&DST* — |
—nt
paTA  XXXXXXX VALID DATA ST
2 »
DTACK* l [

FIG.—-6A

DTACK* I

F—tc—
paTA XXX VALID DATA  HOOXKXXX XXX XX

FIG.—6B

SUBSTITUTE SHEE?




WO 91/11768

PCT/US90/04697

6/19
MASTER 701 SLAVE
BROADCAST ADDRESS AND
ADDRESS MODIFIER,
DRIVE LWORD* LOW
AND IACK* HIGH
703— v
¢ /705 RECEIVE ADDRESS,
, ADDRESS MODIFIER,
DRIVE AS* LOW LWORD* LOW AND
IACK* HIGH
707 = v

1
[

RECEIVE AS* LOW

709
IS

ADDRESS VALID FOR
THIS SLAVE

DRIVE WRITE* LOW

v 718

WAIT UNTIL DTACK* AND
BERR* ARE HIGH

& /719
PLACE DATA ON D00-D31

DRIVE DSOD* LOW
‘ 723

DRIVE DSO* HIGH

v ~727

PLACE NEXT DATA ON
-D00-D31

713 —~
RECEIVE WRITE* LOW
718 —~ &
WAIT UNTIL DSO* GOES
HIGH TO LOW
.
L
725\ v
LATCH DATA FROM D00-D31

. y
- (10 FIG~7B )

FIG.—7A

1
( 70 FIG-7B )

suBSTITUTE SHEET




PCT/US90/04697

WO 91/11768
7/19
|
MASTER o SLAVE ‘
(FROM FI1G-74) ( FROM FI1G-7A )
/729 731~ v
DRIVE DTACK* Low
WAIT UNTIL DTACK* 733 — 7
HIGH TO LOW TRANSITION RIVE DTACK® RiGH
g
735"\ v
799 WRITE DATA INTO
y Vel SELECTED DEVICE AND
DRIVE nfn* LOW INCREMENT DEVICE ADDRESS
741
737— ¢
DRIVE DSO* HIGH
WAIT FOR DSO*
HIGH TO LOW TRANSITION
Y ~745 | 743— jl
PLACE NEXT DATA [ON LATCH DATA FROM LINES
D00-D31 D00-D31
749 —~ 4
v [~ 747 DRIVE DTACK¥ LOW
WAIT UNTIL DTACKX 251 7
HIGH TO LOW TRANSITION SRTVE DTACK® High
[ 753
WRITE DATA INTO
SELECTED DEVICE AND
INCREMENT DEVICE ADDRESS
4
(10 FIG-7C ) | ( 10 FIG-7C )

FIG-7B

SUBSTITUTE SHEET




WO 91/11768

(FROM FIG-7B)

8/19

PCT/US90/04697

( FROM FIG~-7B)

COMPLETE NUMBER
OF CYCLES REQUIRED
TO TRANSFER ALL DATA

RELEASE ADDRESS LINES,
ADDRESS MODIFIER LINES,
DATA LINES, LWORD¥,
DSO*, AND 1ACK*

735

4

f‘757

WAIT FOR DTACK*
HIGH TO LOW TRANSITION

759\

v

DRIVE DTACK* LOw

761—

v

DRIVE DTACK* HIGH

T‘

|

,— 763

DRIVE AS* HIGH

L 4

765

RELEASE AS¥*

FIG-7C

SUBSTITUTE SHEET




WO 91/11768

PCT/US90/04697

9/19
MASTER SLAVE
HAsIER 801
BROADCAST ADDRESS,
ADDRESS MODIFIER AND
DRIVE LWORD* LOW
803— v
~ 805
i RECEIVE ADDRESS,
DRIVE AS¥* LOW ADDRESS MODIFIER AND
LWORD¥ LOW
e —

811
v [

DRIVE WRITE* HIGH

v 818

WAIT UNTIL DTACK* AND
BERR* ARE HIGH

809

RECEIVE AS* LOW

IS

ADDRESS VALID FOR
THIS SLAVE

YES

RECEIVE WRITE * HIGH

v —821
DRIVE DSO* LOW
. — 823
DRIVE DSO* HIGH
P
v — 824 819 ~ '
WAIT UNTIL DTACK*
HIGH TO LOW TRANSITION PLACE gﬁg fDEIN LINES

( 70 FIG-8B )

'

- (1o F16-88 )

FIG.—8A

SUBSTITUTE SHEET




PCT/US90/04697

WO 91/11768
10719
MASTER SLAVE
( FROM FIG.-8A) (FROM F1G.-8A)
885\ *
DRIVE DTACK* LOW
827
DRIVE DTACK* HIGH
r — 831
LATCH DATA FROM LINES
D00-D31 529 ,
v — 833 — v
WRITE DATA INTO PLAE‘%NSSEXEOOD_%E‘; ON
SELECTED DEVICE AND
INCREMENT DEVICE ADDRESS 835— ¥
1 839 WAIT FOR DSO*
DRIVE DSO* LOv HIGH TO LOW TRANSITION
v 841
DRIVE DSO* HIGH

~ 843 | 845

Y
WAIT UNTIL DTACKX DRIVE DTACK* LOW
HIGH TO LOW_TRANSITION 847 — ¥
DRIVE DTACK* HIGH
[~ 845 1849 — v
LATCH DATA FROM LINES PLACE NEXT DATA ON
D00-D31 LINES D00-D31
( 1O F1G-8C ) ( 70 F1G~8C )

- FIG.-8B

sUBSTITUTE SHEET




WO 91/11768

(FROM F1G.~8B )

I /-851

WRITE DATA INTD
SELECTED DEVICE AND
INCREMENT DEVICE ADDRESS

PCT/US90/04697

11719

( FROM FI1G~8B)

CONTINUE DATA TRANSFER
CYCLES UNTIL DATA
HAS BEEN TRANSFERRED

ADDRESS MODIFIER LINES,
DATA LINES, LWORD¥,
DSO* AND IACHX*LINES

RELEASE ADDRESS LINES,| — gs2 v

|~

WAIT FOR DTACK*
HIGH TO LOW TRANSITION

TRANSFER COMPLETE

857

DRIVE DTACK* HIGH

DRIVE AS* HIGH

RELEASE AS*

v — 861

FIG.—BC |

SUBSTITUTE SHEET




PCT/US90/04697

WO 91/11768

12719

————s.

006

NOILV3d40
31L37dW0O2
0L T313N93y
S3T13A3
JIASNVAL viva
LA3SNI

6—"9I4

K XX

N

D

e

L MovLa

1ea-00a

% 0SS0

«1ST

* 3LIdM

xSV

1eV-0v

SHV-0WY

SUBSTITUTE SHEET




WO 91/11768 ' PCT/US90/04697

13/19

300
D
AN

N
FIG.—-SA

_ 7

D00-D31

DS0*
DTACK *

SUBSTITUTE SHEET




PCT/US90/04697

WO 91/11768

14/19

000t

NOILVA3d0
31371dW03
0L d313dn03d
S3T13AT
AdFASNVAL Y1ivad
1A3SNI

01-"DI4

X

X

N
X

L HI9La
1gq-ona
N
N

% ILINM
« SV
1EY-0Y

SWY-0WY

SUBSTITUTE SHEE1




WO 91/11768

‘(////———1000

_/

DSo*

15/19

D00-D31
DTACK*

SUBSTITUTE SHEE1

PCT/US90/04697

FIG.—10A




WO 91/11768 PCT/US90/04697

16/19

(o
L 2
s /
o N
\ 9
[8a}
]
N |
2 L
(¥} Q
&.
 le— 4 '
- CWY-0WY | i
o E‘ —————— §—V ————— &ll H
Lud
3 gl | gl : 50 L
31352 < x0SC <
ololy = g < LD
= Al (04
= X x50 =
O | <
& o ILINM - L
» 3l
OI09LT
———————————— ’
ML
e ————————— —— >
S3ANIT VLY
o >nvlva | .
S3ANIT SSINAY \\\\\\
le
o T0AT
2
o
QU
4%}

SUBSTITUTE SHEET




WO 91/11768 PCT/US90/04697

17/19

////"* 1010
SENDER INITIATES

WRITE CYCLE TO e
RECIPIENT FIFD

1020

ND YES
L 4 L 4
CONTROL LOGIC CONTROL LOGIC
TRANSMITS TRANSMITS
pTACK ¥ BERR ¥

J 1040 /
1030

SENDER WAITS
DESIGNATED
INTERVAL FOR
ANOTHER TRY

., . 1050J
FIG-12

suBSTITUTE SHEET




PCT/US90/04697

WO 91/11768

18/19

4\ €011

£1-"9I4

berl 4\8:
0vil /~ N el
JOSSIIMNd SS3Jaav X 21907
OM3IW o nm:K xsiei3d 0¥1NOD
VIVT . " oopy
4
ce—1I- S211
viva oSt s S TNd 0414
¢ o >
04L4 viva] & [viva Y1 o
TN 0413 T
ca1l
\‘
— 9ET1 —
0ETT \\ L2111 AN (1) 298
21901 WET N vLva 4O0SSID0N
* .
0NLNOD 7 Ss3ua OM0IN

SUBSTITUTE SHEET




PCT/US90/04697

WO 91/11768

19/19

-

p1-'DI4 o
6ctl / 3, SNV |
—5 ]
| viva v.iva
022l
l‘
7 0121
NOSSI0Ng L 2E2t ~ ALdW3 LON O4I4 J y L
| LE2T av3y 0414 0211 G121 5,93 ,
ON3IW | SE21 —  ALdW3 0414 e A ’ —
< . vivad v1vad
gea21 — vive  —le2t | 0414
« JLIAM 3LINM 0414
N4 | o414 33—
L211 0ETT G211 0921 J
b 3
o JO0YLNOD _—— 0921
7 1E-00Y 0521 g
* = 123130 Ca—
=% ﬁ Ly2l e——————1  Jaav
Q| ‘ Jaay | S0-00WY
ol cyar — S0-00WY P
co11 7 TE-00V mwﬁ_”%wh
sor1—— GO—-00WY
2921 —
$921
9921—

SNE 3WA

SUBSTITUTE SHEET




INTERNATIONAL SEARCH REPORT
International Application No PCT/US90/O4697

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3
According to International Patent Classification (IPC) or to both National Classification and IPC
1PC(5) GOGF 13/38, 13/00

US 364/200

Il. FIELDS SEARCHED

Minimum Documentation Searched 4

Classification System ] Classification Symbols

Us 364/200

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched &

lIl. DOCUMENTS CONSIDERED TO BE RELEVANT !4

Category * | Citation of Docamem. 1% with indication, where appropriate, of the relevant passages !7 | Relevant to Claim No. 1%
X Us, A, 4,062,059 (SUZUKL ET AL) 06 DECEMBER 1977 i 1-4
X US, A, 4,423,482 (KARGROVE ET AL) 27 DECEMBER 1983 @  1-4
X Us, A, 4,285,038 (SUZUKI ET AL) 18 AUGUST 1981 1-4
1
i
i
i
)
i
1
|
* Snecial categories of cited documents: 13 “T" later docurgent published aﬂerﬂ(he interngtionallﬁli?g dgtt:
wan i which i ity date and not in conflict with the application bu
A" document defining the general state of the art which is not or priori con |
considered to be of particular relevance ;:r:s’zi‘tignunderstand the principle or theory underlying the
“E" fe_”ai:ierd(ai?:ument but published on or after the international uX" document of particular relevance; the claimed invention
9 cannot be considered novel or-cannot be considered to
o docu;lnent wl:’ich may é!lar?‘w l‘:mu!:nl_:l on prioc;ity c!?im(s)hor involve an inventive step
which is cited to establish the pubiication date of another wy" document of in . i i
- att s r particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to invoive an inventive step when the
“0" document referring to an oral discl e, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
upr document published prior to the international filing date but in the art.
iater than the priority date claimed “&" document member of the same patent family

IV. CERTIFICAT.ON
-Date of the Actual Completion of the International Search 3 Date of Mailing of this International Search Report 2 ’

06 _NOVEMBER 1990 R R2FEB 1991
International Searching Authority ! ?_a{ture of Authdhzed &' 20 I (LQ\M
ISA/US ’ CHRISTOPHER B. SHIN

Form PCT/ISA/210 (second sheet) (May 1986)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

