TICKET DISPENSER WITH AUTOMATIC FEED AND SIGNAL

Albert Holmman, Brooklyn, N.Y., assignor to Taller & Cooper, Inc., Brooklyn, N.Y., a corporation of New York

Application Serial No. 436,573, Mar. 2, 1965; This application Jan. 26, 1967, Serial No. 612,850

34 Claims. (Cl. 221—2)

ABSTRACT OF THE DISCLOSURE

The ticket issuing machine comprises a pair of ticket dispensers. Each dispenser comprises a magazine having means for storing a stack of tickets. Each dispenser has a dispensing position. Each dispenser is provided with electrically operated means to feed the topmost ticket off the top of the stack of tickets in its associated magazine to said dispensing position thereof and partly projecting from said dispenser from where the ticket may be manually withdrawn from said dispenser. Electrically controlled means is provided to selectively enable the feed means of either one of said dispensers for operation, and to automatically disable the feed means of the other dispenser so that only one of said dispensers may be enabled at any one time. Operating means is provided common to both dispensers. There is further provided electrically controlled means controlled by and dependent upon actuation of the common operating means to cause operation of the enabled feed means only. Time delay control means is provided to automatically disable the enabled feed means and to enable to disabled feed means if the enabled feed means has not operated within a predetermined period after actuation of said common operating means, to feed a ticket to dispensing position. There is further provided means controlled by enabling of the disabled feed means for causing operation of the heretofore disabled feed means which has now become enabled upon disabling the heretofore enabled feed means, to feed a topmost ticket off the stack associated with the feed means which has now become enabled, to dispensing position. Furthermore there is provided manually controlled means independent of the time delay means to disable the feed means of an enabled dispenser and enable the feed means of a disabled dispenser at will whereby to permit selection of which dispenser is to dispense a ticket upon the subsequent actuation of the common operating means. Each magazine comprises means to move the stack of tickets stored in said magazine in a direction at right angles to the tickets of said stack. The stack moving means includes electric motive means. There is further provided means including a switch engaged by the topmost ticket of the stack to de-energize the electric motive means to stop advance of the stack moving means until the topmost ticket disengages from said switch upon said topmost ticket being moved off the stack and to again energize the electric motive means upon such disengagement to operate the stack moving means until the next topmost ticket of the stack engages the switch to thereby de-energize the electric motive means and stop advance of said stack moving means.

This is a continuation of Serial No. 436,573, filed Mar. 2, 1965, and now abandoned.

This invention relates generally to ticket issuing machines and more particularly to a ticket issuing machine that issues a transit or toll ticket to a vehicle driver who enters a toll or fare facility, having the multiple entry lanes and locations and multiple exiting lanes and locations.

The present invention is directed toward a machine to issue transit tickets in the form of pre-punched tabulating cards having pertinent data printed thereon relative to the location of the ticket issuing machine, the time of issue and other desired indicia. As is well known in the toll collection art, many toll roads use the ticket system wherein the vehicle driver upon entering the toll road receives a transit ticket and when departing from the toll road at any one of many distant exits surrenders the ticket to the toll collector. The collector ascertains the entry point and thereby determines the toll to be paid. The ticket system permits the vehicle driver to move from the point of entry to the exit point with intermediate stops to pay tolls. Heretofore, toll attendants manually handled the transit tickets to the vehicle drivers. The salaries etc. of the toll attendants to merely hand out transit tickets become a considerable expense especially when considered in the light of continuous twenty-four hour operation. The present invention eliminates the entry toll attendant and effects savings of salaries, relief attendants, fringe benefits, etc. by automatically issuing a transit ticket to the driver of a vehicle entering a toll road entry lane.

This one of the principal objects of the invention resides in the provision of a machine to automatically issue a transit ticket in the form of a pre-punched tabulating card to a vehicle driver upon the vehicle entering a prescribed lane of a toll facility.

Further, the use of a machine to issue a ticket introduces the possibility of malfunction and thereby deprive the toll facility of the use of the entry lane. It will be remembered that the use of the ticket issuing machines eliminates the need for entry toll attendants, and thus a breakdown becomes a serious problem. Previous ticket machines of the class described, upon malfunctioning, necessitated the closing of the lane to traffic. With the present invention, a malfunction of the ticket issuing machine automatically causes a transfer from one magazine to a second reserve magazine which issues the transit ticket.

Accordingly, another object of the invention resides in a ticket issuing machine of the class described having secondary or reserve ticket issuing means in the event that the primary ticket issuing means fails or depletes itself of tickets.

Still another object is to provide in a machine of the class described, attention attracting means that calls the vehicle driver's attention to the ticket issued by the machine.

Yet another object of the machine is to provide positive feed means that positively moves the supply of pre-punched tickets to the issuing position rather than the previously available gravity feed. Thus, potential jamming of the supply of tickets is substantially eliminated thereby assuring the feeding of tickets to the ticket issuing mechanism.

Other ancillary objects will be in part hereinafter pointed out and will be in part hereinafter apparent.

In the drawings:

FIGURE 1 is a side elevation of the ticket issuing machine with the external cover removed to more fully illustrate the mechanisms.

FIGURE 2 is a plan of the machine with one half section shown in dotted line as both sections are similar in construction.

FIGURE 3 is an enlarged detail of the head or upper portion of the machine shown in FIGURE 1.

FIGURE 4 is a detail of one head section as viewed from the right in FIGURE 1.

FIGURE 5 is a detail in cross-section taken along line 5-5 of FIGURE 3.

FIGURE 6 is a fragmentary cross-section taken along line 6-6 of FIGURE 1.

FIGURE 7 is a plan detail of the printing hammer.

FIGURE 8 is a detail of the solenoid assembly ticket feed.
FIGURE 9 is a perspective view of a typical toll plaza with the ticket issuing machines disposed to issue tickets to vehicles entering the toll road.

FIGURE 10 is a circuit schematic of the controls that actuate the respective sections of the ticket issuer when the vehicle wheel rolls over the treadle.

FIGURE 11 is a schematic diagram of the magazine platform control circuits.

Referring to FIGURE 9 of the drawings in detail, 10 generally designates the ticket issuing machine mounted on an island 12. Between adjacent islands 12 is a lane 14 through which a vehicle, not shown, must pass to enter the toll road. Embedded in the lane 14 is treadle 16 having electrical contacts that are closed by the action of a vehicle rolling thereover, as will be hereinafter described. It will be noted that the actuating treadle 16 is disposed ahead of the ticket issuer 10 when vehicles pass through lane 14 in the direction of the arrow. Further, the use of a treadle is for illustrative purposes only as many other vehicle presence devices could be utilized to actuate the ticket issuer 10. Vehicle presence detectors, such as magnetic loops, ultrasonic transducers and the like, not shown, are well known to those skilled in the art to be equal in operation to a responsive pressure vehicle treadle such as designated 16.

Briefly, the front wheel of a vehicle upon rolling over treadle 16 closes a circuit, hereinafter described, that actuates ticket issuer 10 to issue a ticket through one of the throats 18. Auxiliary devices such as alarms, bells, and/or lights attract the vehicle driver's attention to the projecting portion of the ticket in the throat 18. The vehicle driver manually grasps the projecting portion of the ticket and removes it from the issuer 10 as the vehicle proceeds onto the toll road to his destination. Upon departing from the toll road at his destination, the vehicle driver surrenders the ticket to a toll collector who ascertainment from the ticket the point of entry and determines the amount of toll to be collected from the vehicle driver.

It will be understood that while the present invention is shown associated with entering a toll road, the same ticket issuer can be readily used with many other types of entries that require the issuance of a ticket in the form of a standard tabulating card.

As shown in FIGURE 10, the ticket issuer 10 comprises two inter-related ticket storing, printing, and issuing mechanisms or dispensers 20 and 20a. Since each dispenser mechanism 20, 20a is similar in construction, only one dispenser mechanism 20, such as shown in FIGURE 11, need be described.

Dispenser mechanism 20 generally comprises a frame 22 having a base 24, vertical side walls 26, 28, and 30, upper wall 32 and other interconnecting members hereinafter described. The frames 22 are mounted on wheels 34 that ride on rails 36 to facilitate servicing of the unit 10 when mounted in the casing 36b, FIGURE 9. Referring to FIGURES 1, 3, and 6, the rear portion of frame 22 provides the card magazine 40 which houses a stack of standard tabulating cards 42. Magazine 40 is defined by four vertical members 44 spaced apart in dimensioned relationship to the dimensions of the cards 42, i.e.; the cards 42 rest on an elevator platform 46 in superimposed stacked position within the vertical members 44 and are guided by the members 44 as elevator platform 46 rises.

Means are provided to raise the platform 46 with the stack of cards thereon to the upper card feeding mechanism 50. Directed toward this end is a vertical helically grooved feed shaft 52 journalized in the frame 22 and rotated between members 44 and 52 by an electric motor 56 through chain 58, rotates sprocket 54 and shaft 52 unidirectionally to raise platform 46. Platform 46 is provided with a base frame 50 that is provided with a threaded clutch 60 which engages shaft 52. A vertical guide rod 62 guides the vertical movement of platform frame 48.

Rear frame wall 26 is provided with a hinged door 26a that permits access to the magazine 40 when cards 42 are to be inserted in the magazine. Clutch 60 may be manually disengaged from shaft 52 by threading screw 56 to provide room for the cards 42 being inserted or loaded in magazine 40.

When loaded, shaft 52 rotates to raise platform 46 until the top card 42a on stack 42 engages a limit switch 63 which interrupts and stops electric motor 56. Concurrently, the top card 42a engages a friction feed wheel 66 mounted on a shaft 67 that is journaled in the spaced arms 68a and 68b of a frame 68 (FIG. 2). Frame 68 is pivotally mounted on a shaft 70 which is journaled between brackets attached to the upper terminals of members 44 of magazine 40. Also pivotally mounted on shaft 70 is a frame 72 that cooperates with adjustable throat section 74a to form a throat 74 through which a single card 42a may pass as hereinafter described.

As hereinafter set forth, friction roller 66 is affixed to shaft 67 which is driven by a pinion 76 which meshes with an idler gear 78 which meshes with a second idler gear 80. Gear 80 meshes with a pinion 82 that is affixed to shaft 70 journaled in pivotal frame 72. Also affixed to shaft 70 is a sprocket gear 84 which is driven by chain 86. Chain 86 is rotated by electric motor 90 as follows:

Motor 90 has a shaft 92 with a pulley 94 affixed thereto. A belt 96 on pulley 94 drives a pulley 98 secured to a gear 100 both of which are mounted on a stub shaft 102. Gear 100 meshes with pinion 104 coaxially affixed to sprocket gear 106 on stub shaft 108. A chain 110 on sprocket gear 106 also engages sprocket gear 112. Affixed to and rotatable with sprocket gear 112 is a second sprocket gear 114 both of which are affixed to a shaft 116. Chain 86 engages sprocket gear 114 which in turn engages a sprocket 118 which in turn engages a sprocket 120 and sprocket 122 which drive motor 90. When energized, rotors friction roller 66 and feeds card 42a rightwardly as viewed in FIGURE 2 through throat 74 into engagement with a pressure roller 120 affixed to shaft 116. Throat 74 permits but a single card 42a to pass therethrough to the roller 120.

Roller 120 engages an idler roller 122 and card 42a passes therewith. The card 42a continues in a rightwardly direction, FIGURE 3, and is further engaged by roller 126 affixed to shaft 108 and idler roller 128 disposed above roller 126.

On shaft 116 is fixed a gear 200 meshing with a gear 201 on shaft 202. On shaft 202 are cams 90a, 90b fixed to rotate therewith.

As the card 42a moves between feed roller 120 and feed roller 126, a microswitch 130 (FIG. 10) is actuated to energize printing solenoid 132 (FIG. 7) which actuates the printing hammer 134 (FIGS. 2 and 7). Hammer 134 strikes the moving card 42a and causes said card to engage an inked ribbon 136 which engages the engraved printing wheels 140 of the time unit 142 and the engraved collector's key 146. Other pertinent data in the form of engraved slugs, not shown, may be also be imprinted on card 42a with the printing operation. The card 42a continues to be fed until the rear edge of card 42a passes over a microswitch 148 (FIG. 10) permitting said microswitch 148 to open, thus opening the circuit to motor 90. Card 42a now extends approximately five inches beyond the machine.

The vehicle driver now grasps the card 42a and manually flocks the card away from the rollers 126 and 128. While the card 42a is extended from rollers 126, 128, a microswitch 150 (FIG. 10) is held closed to actuate an alarm and a flashing light that attracts the vehicle driver to the extended card 42a.

Should the card 42a fail to pass through throat 74 or between rollers 120, 122 or between rollers 126, 128 within a predetermined period of time after closing the treadle switch, time delay switch unit 152 energizes and the controls are switched from magazine 20 to magazine 20a to cause a card 42a to be issued by magazine 20a, as hereinafter described.

The printing unit 142 is completely described in U.S. Patent 2,687,936, issued August 31, 1954, and need not be
described in detail herein. Further, it will be noted that printing unit 142 is mounted on a frame 154 which is pivoted on a shaft 156 journaled in the printing frame 158 which is mounted on the upper wall 32 of frame 22. Thus, printing unit 142 can be pivoted away from the card 42a in the event of a jam or malfunction to permit access to the card 42a.

Similarly, card feed 50 is pivotally mounted to expose the feeding mechanism, should a jam or malfunction occur in this area.

It will further be noted that microswitch 160 is disposed to be engaged by the platform frame 48 when the supply of cards 42 on platform 46 is exhausted.

Microswitch 160 further interrupts the energizing circuit to motor 56 thereby stopping the raising of elevator 46 to avoid damage to the elevator platform and related mechanism. It will be noted that all the controls and associated mechanisms for magazine 20 are duplicated and provided for magazine 20a and only when time delay 152 is actuated does the control for magazine 20a become energized.

As shown in FIGURE 11, the energizing circuit for platform elevator motor 52 includes microswitches 26a, 26b, 63, and 160 in series with a source of power. Switch 26a is a normally open switch that is closed by the magazine door 26a. Switch 63 is normally closed and opens upon the top card 42a on stack 42 engaging the switch 63. Similarly, switch 160 is a normally closed type and remains engaged when the card 42a on platform 48 reaching its upper limit, such as occurs when the stack of tickets 42 is exhausted in either magazine.

Referring to FIGURE 10, the control circuits for both magazines are substantially identical with a gate relay 170 determining which magazine shall issue a ticket. Rail 170a is a solenoid actuated mechanical two position switch whereby a swinging contact 170b normally engages a fixed contact 170a. When solenoid 170d is energized, as will be hereinafter described, swinging contact 170b disengages contact 170a and is moved to engage contact 170c and remains so engaged even after solenoid 170d de-energizes. A subsequent re-energization of solenoid 170d will restore swinging 170b to engage contact 170a and alternately a further re-energization of solenoid 170d, swinging 170b engages contact 170c.

It may be stated that gate relay 170 is the main gate that controls the issuance of a ticket from either dispenser mechanism 20 or 20a.

Following the circuit in FIGURE 10, a source of positive potential is connected through gate relay switch 170 to common conductor 172 to tredle switch 174 which when closed by operation of tredle 16, completes the circuit through normally closed dropout contacts 175a to motor 90. Motor 90 energizes and concurrently rotates a pair of cams 90a and 90b (FIG. 2) along with the rotation of chain 86. The drive for cams 90a and 90b is of such a ratio that one complete revolution of cams 90a and 90b equals the feeding of a ticket from stack 42 to projection of the ticket from throat 18. As motor 90 rotates, cam 90a closes motor hold contacts 176 to continue energization of motor 90 after tredle switch 174 opens.

Tredle switch 174 is common to the circuits for both dispensers, and is operative, when closed, to energize the motor 90 of the circuit for the enabled dispenser which circuit is at that time connected to the common feed line, which in FIG. 10, is designated as the (+) feed line.

Cam 90b controls a switch 180 that when closed energizes a solenoid 182 which pivots feed roller 66 out of engagement with the next card on ticket stack 42a. The timing is such that the feeding of the top card 42a is accomplished before cam 90b closes switch 180 to energize solenoid 182.

As hereinbefore set forth, card 42a moving past the print position closes switch 180 thereby energizing solenoid 132 to effect a printing operation.

Microswitches 148 and 150 are respectively opened and closed when the ticket is in its extended position from throat 18. Switch 150 completes a circuit to alarm means A to signal to the driver that the ticket should be removed from the throat 18.

The normal period of time required from the ticket 42a being fed from the top of stack 42 to the projecting of the ticket from throat 18 is approximately one second. Thus, a delay beyond the one second period indicates a malfunction and accordingly means are provided to effect a switchover from dispenser 20 to dispenser 20a. Directed toward this end, there is provided a time delay relay 152 which energizes in a parallel circuit with motor 90. Time delay relay 152, upon energization closes holding contacts 152a thus establishing an independent circuit through closed contacts 152a, normally closed contacts 175b of dropout relay 175.

Assuming ticket 42a is dispensed in the normal one second period, motor 90 rotates cams 90a and 90b to their initial positions opening the circuit to the motor and operating motor hold contacts 176. A diode 186 prevents a reverse circuit from re-energizing motor 90 through the time delay circuit established through time delay holding contacts 152a and normally closed contacts 175b of dropout relay 175. However, arrival of the ticket 42a at its normal extending position from throat 18 causes the ticket to close a microswitch 188 in addition to the aforesaid microswitches 148 and 150. Switch 188 upon closing energizes relay 175 which opens normally closed contacts 175a in the tredle switch circuit and contacts 175b in the time delay holding circuit. Thus time delay 152 de-energizes as long as ticket 42a remains in the throat 18, a second ticket cannot be dispensed since contacts 175a are open and motor 90 cannot be energized.

The manual removal of ticket 42a from throat 18 permits contacts 150 to open thereby de-energizing the alarm circuit and concurrently opens microswitch 188 thus de-energizing dropout relay 175. The de-energizing of dropdown relay 175 restores contacts 175a and 175b to their normally closed positions in preparation for the succeeding ticket dispensing operation.

However, in the event that ticket 42a does not reach its ticket dispensing position in throat 18, such as caused by a jam or malfunction, time delay 152 continues to be energized. Time delay 152 includes a mechanical switch 152b that closes after three seconds of energization of time delay 152.

Thus, the failure of ticket 42a to open normally closed microswitch 148 and the three second energization of time delay 152 causing closing of contacts 152b, establishes a circuit that energizes solenoid 170d of main gate switch 170 thereby switching swinger 170b from engagement with contact 170a to engagement with 170c.

One side of solenoid 170d is connected to a minus side of the feed circuit, as at 210.

Thus, the control circuit for dispenser 20 is de-energized and the control circuit for dispenser 20a is energized and a ticket may be dispensed by dispenser 20a.

It will be noted that secondary pairs of contacts 170c and 170c' are closed when solenoid 170d is energized. Normally open contact pair 170c are disposed parallel to tredle switch 174 of dispenser 20 while normally open contact pair 170c' are parallel to tredle switch 174 of dispenser 20a. Therefore, when gate switch 170 is actuated by the failure of dispenser 20 to issue a ticket, contacts 170c are momentarily closed to initiate a cycle of the dispenser 20a which issues a ticket in substitution for the ticket that failed to issue through dispenser 20.

To assure that contacts 170c remain closed until after swinger 170b has engaged contact 170a of gate 170, solenoid 170d is the slow release type that holds energized for a small period of time after switch 170 (contacts 170a and 170b) has opened. It will be understood that should dispenser 20 fail after dispenser 20 has been cleared, then the reverse procedure to that hereinbefore described would occur.
The manual push button 190 is provided to manually effect a switch over from one dispenser to the other for maintenance or loading purposes. Furthermore, it will be understood that while passenger vehicles have two axles which actuate the treadle 16, only one treadle switch 174 actuation will occur for each vehicle to limit the issuance of one ticket per vehicle. TC in FIG. 10 is the relay for a conventional electromagnetic counter. PR is the relay in parallel with solenoid 132. Upon energizing solenoid 132, relay PR is energized to close switch PR to energize transaction counter relay TC. While but a single embodiment of the invention has been shown and described, it will be understood that modifications and changes could be made without departing from the scope of the invention as set forth in the following claims.

The invention claimed is:

1. A dispenser comprising a dispensing position, from which a ticket in said dispensing position may be withdrawn manually, a magazine, means in the magazine for support of a stack of tickets, means to advance said support means in a direction normal to the tickets of said stack, means to feed the outermost ticket of said stack in its own plane, off said stack to said dispensing position, means to stop operation of said advance means when said outermost ticket is in a predetermined plane on said stack until said ticket is fed off said stack by said feed means, and to automatically operate said advance means, when said outermost ticket has been fed off said stack, to bring the next outermost ticket to said predetermined plane and again stop advance of said support means, operating means, means controlled by actuation of said operating means to operate said feed means, and means controlled by operation of said feed means to automatically stop operation of said feed means when said feed means has fed said outermost ticket off said stack to said dispensing position.

2. The combination of claim 1, said means to advance said support means comprising an electric motor, and said means to stop operation of said advance means and then again operate said advance means, comprising a switch positioned to contact the outermost ticket in said stack in said predetermined plane, and means controlled by said switch to control operation of said motor.

3. The combination of claim 1, said feed means comprising electric motive means, means controlled by operation of said feed means to retain said electric motive means energized for operating said feed means, and to automatically de-energize said electric motive means when said outermost ticket has been fed off said stack to said dispensing position.

4. The combination of claim 3, said feed means comprising a moving means contacting said outermost ticket in said predetermined position, for moving said outermost ticket off said stack, and means controlled by operation of said feed means, to lift said contacting means wholly off and away from said stack, after said outermost ticket has been fed off said stack to said dispensing position.

5. The combination of claim 4, said means to advance said support means comprising an electric motor, and said means to stop operation of said advance means, and then again operate said advance means, comprising a switch positioned to contact the outermost ticket in said stack in said predetermined plane, and means controlled by said switch to control operation of said motor.

6. The combination of claim 3, said retain means comprising means to keep said motive means for said feed means operative even after de-actuation of said operating means.

7. The combination of claim 1, and means to prevent a subsequent actuation of said feed means upon a subsequent actuation of said operating means, if, after a first actuation of said operating means, said feed means has operated to feed a ticket to said dispensing position, unless the fed ticket in dispensing position has been withdrawn from the dispenser before said subsequent actuation of said operating means.

8. The combination of claim 1, said operating means comprising vehicle sensing means.

9. The combination of claim 1, an electric signal means for said dispenser, and means controlled by feed of a ticket by the ticket feeding means to said dispensing position to actuate said signal means and means controlled by removal of the fed ticket from said dispenser to de-actuate said actuated signal means.

10. The combination of claim 2, said stack moving means comprising a platform on which the stack is mounted, and means controlling said platform to control energization of said motor.

11. The combination of claim 4, a frame, said contact means comprising a roller rotatably mounted on said frame and positioned to engage the outermost ticket of the stack, in one position of said frame, said feed means comprising means to rotate said roller, and means to mount said frame on said magazine for movement from a position where the roller is in contact with said outermost ticket to a position where said roller is spaced away from said stack to expose the outermost ticket of said stack.

12. The combination of claim 10, a door for said magazine, and means controlled by said door to control energization of said motor.

13. The combination of claim 11, means forming a throat through which the fed ticket may move, and means to mount said throat forming means for movement from a position overlying said magazine to a position to expose the top of said magazine.

14. The combination of claim 13, a print unit, and means to mount said print unit over said dispensing position, for movement up and away from said dispensing position.

15. The combination of claim 7, said prevent means comprising switch means controlled by a ticket in said dispensing position.

16. The combination of claim 1, and time delay means positioned to be contacted by a ticket in dispensing position, to prevent operation of the feed means if the feed means fails to feed the outermost ticket of the stack to said dispensing position within a predetermined period after operation of said operating means, with no ticket being present in said dispensing position when said operating means is actuated.

17. The combination of claim 1, said feed means comprising a roller contacting the outermost sheet of said stack, and means to rotate said roller means to move said roller normally to its axis, off said stack, and means controlled by said feed means to energize said solenoid.

18. The combination of claim 16, and means, including ticket engaging means, controlled by manual removal of a ticket from dispensing position, to render the time delay means inoperative.

19. The combination of claim 4, said lift means comprising electrically operated means and switch means controlled by said feed means, and controlling said electrically operated means.

20. The combination of claim 1, another dispenser like the above described dispenser, electrically operated means associated with each dispenser to operate the feed means of that dispenser, said operating means being common to both dispensers, electrically controlled means to selectively enable the electrically operated means of either one of said dispensers, and to automatically disable the electrically operated means of the other dispenser so that only one of said dispensers may be enabled at any one time, and whereby actuation of said common operating means will cause operation of said enabled electrically operated means only, and time delay controlled means to automatically disable the enabled electrically operated
means and enable the disabled electrically operated means if the heretofore enabled electrically operated means has now by operation of said feed means to automatically move said feed member normally to its rotary axis to disengage said feed member from said topmost ticket of said stack, after movement of said feed member sufficiently to move said topmost ticket to dispensing position.

26. The combination of claim 22, the feed means for each dispenser comprising a circuit, a motor in each circuit, and means controlled by each motor to feed a topmost ticket off the stack in said dispenser, said enabling and disabling means comprising switch means to selectively connect the circuits for said motors to a common feed line, said common operating means comprising a switch in series with the motors of said circuits, means controlled by said time delay means to actuate said means to selectively connect the circuits to said common feed line, and means controlled by said feed means of the enabled dispenser to de-energize the motor in the circuit for said enabled dispenser upon dispensing the ticket for said dispenser to dispensing position.

27. The combination of claim 22, each feed means comprising a roller contacting topmost ticket in the associated stack, and means to rotate said roller, each circuit comprising solenoid means in each circuit to move said roller away from the topmost ticket on the stack, switch means in each circuit to control said solenoid in each circuit, and means controlled by either one of said motors of each circuit, to actuate said solenoid control switch of said circuit.

28. The combination of claim 27, and each circuit further comprising switch means in series with said means to selectivity connect said circuits to said common feed line, and disposed in position to be actuated by a ticket in the dispensing position of the disabled dispenser.

29. The combination of claim 28, another switch in each circuit, controlled by a ticket in dispensing position of the enabled feed means, and means controlled by said another switch to prevent energization of the motor for said enabled feed means, upon actuating said operating means, unless the ticket in said dispensing position of the enabled feed means has previously been withdrawn from said dispensing position.

30. The combination of claim 29, and means controlled by actuation of the means to selectively connect the circuits to a common feed, for energizing the motor of the selected circuit to operate the feed means of the selected circuit.

31. The combination of claim 22, said operating means comprising vehicle sensing means.

32. The combination of claim 22, an electric signal means for each dispenser, and means controlled by feed of a ticket by a ticket feeding means of an enabled dispenser to actuate the signal means for said enabled dispenser, and means controlled by removal of the fed ticket from said enabled dispenser to de-actuate said actuated signal means.

33. The combination of claim 22, and means to prevent a subsequent actuation of an enabled feed means upon a subsequent actuation of said operating means, if, after first actuation of said operating means, the enabled feed means has operated to feed a ticket to its dispensing position unless the feed ticket in dispensing position has been withdrawn from the enabled dispenser before said subsequent actuation of said operating means.

34. The combination of claim 24, said retain means comprising means to keep said motor for said feed means operative even after de-actuation of said operating means.

References Cited

UNITED STATES PATENTS

2,563,724 11/1944 Ford --------------- 194—10 X
3,193,070 7/1965 Dudenhofer ------- 221—226 X

SAMUEL F. COLEMAN, Primary Examiner.

U.S. Cl. X.R.

221—9, 231