Title: 1-AZAINDOZILINE DERIVATIVES

Abstract

1-Azaindolizine derivatives represented by general formula (I) or pharmacologically acceptable salts thereof, wherein R₁ represents -OR₁ or -NHCOR₁ (wherein R₁ is C₃₋₅ cycloalkyl, C₅₋₁₀ alkyl substituted by C₃₋₅ cycloalkyl, carboxyl-substituted C₁₋₅ alkyl, or phenyl-substituted C₁₋₅ alkyl, and R₁ is C₁₋₅ alkyl or C₃₋₅ cycloalkyl); and R₂ represents C₁₋₅ alkyl (optionally substituted by two halogen atoms), C₅₋₁₀ cycloalkyl, C₅₋₁₀ alkenyl, or -(CH₂)ₙR₃ (wherein m is 1 or 2 and R₃ is C₅₋₁₀ cycloalkyl, C₁₋₅ alkoxy, or tetrahydrofuranyl).
(57)要約

一般式（I）

\[
\text{R}_1\text{N}^+\text{C}_3\text{H}_4\text{C}=\text{O}
\]

[式中, R₁は式-OR₂又は-NHCOR₄ (R₄はC₃-C₈シクロアルキル,
C₃-C₈シクロアルキルC₁-C₆アルキル、カルボキシルC₁-C₆アルキル、
フェニルC₁-C₆アルキル、R₂はC₁-C₆アルキル、C₃-C₈シクロアルキル),
R₄はC₁-C₆アルキル（ハロゲンで2置換されていてもよい）、
C₃-C₈シクロアルキル、C₅-C₁₀アルケニル又は式-(CH₂)ₘ-R₄ (m
は1又は2、R₄はC₃-C₈シクロアルキル、C₁-C₆アルコキシ、テトラ
ヒドロフリル)を表す]で示される1-アザインドリジン誘導体又はその薬
学的に許容される塩。
明細書

1-アザインドリジン誘導体

技術分野

本発明は一般式（I）

\[
\begin{array}{c}
\text{N} \\
\text{R}_1 \\
\text{OR}_2 \\
\text{CN} \\
\text{COOH}
\end{array}
\]

[式中、R_1は式-OR_2又は-NHCOR_4（R_4はC_3-C_8シクロアルキル、C_3-C_8シクロアルキルC_1-C_6アルキル、カルボキシルC_1-C_6アルキル、フェニルC_1-C_6アルキル、R_4はC_1-C_6アルキル、C_3-C_8シクロアルキル）、R_2はC_1-C_6アルキル（ハロゲンで2置換されていてもよい）、C_3-C_8シクロアルキル、C_3-C_10アルケニル又は式-(CH_2)_m-R_5（mは1又は2、R_5はC_3-C_8シクロアルキル、C_1-C_6アルコキシ、テトラヒドロフラン）を表す]で示される1-アザインドリジン誘導体又はその薬学的に許容される塩に関する。更に詳しくは、白血球と血管内皮細胞の接着を阻害する活性を有し、抗炎症剤、抗アレルギー剤、抗敗血症ショック剤、自己免疫疾患治療剤、臓器移植拒絶反応抑制剤、虚血再灌流障害治療剤、癌転移抑制剤等として有用な1-アザインドリジン誘導体に関する。

背景技術

種々の急性及び慢性炎症において、共通して認められる病態は炎症組織への白血球の浸潤である。生理的状態で血液中の白血球はリンパ球を除い
て血管から外へ出ること、すなわち組織へ浸潤することはなく、炎症のような病態が生じた場合のみ白血球は血管壁を通り抜けて、組織へ浸潤することが可能である。

白血球の浸潤は、サイトカイン、ケモカイン、リピッド及び補体等によって惹起される。これらの物質によって活性化した白血球は、同様に活性化した血管内皮細胞上をころがり（rolling）、強固に接着し（adhesion）、そして血管内皮細胞間隔を通って抜けて組織へ浸潤して行く（transmigration）。

この白血球と血管内皮細胞との相互作用の過程にはセレクチンファミリー、インテグリンファミリー、イムノグラプシンファミリーと呼ばれる細胞接着分子が関与している。細胞接着分子は白血球及び血管内皮細胞の両方に発現していて、互いに特異的な組み合わせで結合することができる（Springer TA. Cell, 76, 301-314(1994)）。血管内皮細胞に発現する細胞接着分子のうち、E-セレクチン及びVCA M-1は生理的状態では発現していないが、例えばTNF-α、IL-1、リポポリサッカライド等の炎症性の刺激を受けると急速に細胞表面に発現する。一方、白血球の表面にはα鎖とβ鎖から構成されるヘテロダイマーであるインテグリンが発現していて、炎症性の刺激によって立体構造を変化させることにより、血管内皮細胞に発現する細胞接着分子と結合することが可能となる。また、好中球に発現しているインテグリンMac-1は炎症性刺激によって発現が増大し、血管内皮細胞への接着を増強する（Carlos TM ら. Blood, 84, 2068-2101(1994)）。

また、癌の転移は癌組織から離脱した癌細胞が標的臓器の血管内皮細胞に接着し、組織内へ浸潤することで成立すると考えられていて、種々の細胞接着分子が関与していることが報告されている（Bevilacqua MP, Annual Review Immunology, 11, 767-804(1993)）。
以上のことから、炎症組織において炎症性刺激によって誘導される種々の細胞接着分子の発現を抑制する物質は、種々の急性及び慢性炎症疾患及び癌の転移に対して有効な薬剤になると考えられる。

一方、本発明の1－アザインドリジン誘導体に構造的に類似する化合物としては、国際公開公報（WO90/07508）記載の抗アレルギー作用を有する化合物が知られている。また、その公開公報に記述された化合物のうち、3-(2-カルボキシル-2-シアノビニル)-2,8-ジイソプロキシシミダゾ[1,2-a]ピリジンについては、細胞接着分子阻害作用を示すことが見出され、栄井により報告されている [Inflammation Research 45, 224-229 (1996)]。

細胞接着分子阻害剤は新たな作用機序を持つ薬剤として、抗炎症、抗アレルギー、抗敗血症ショック、臓器移植拒絶反応抑制、虚血再灌流障害抑制、癌転移抑制等への応用が期待され、種々の化合物が細胞接着分子阻害剤として提案されているが、未だに薬剤として開発されたものはない。

また、細胞接着分子阻害作用を有する上記文献記載の化合物についても活性面で十分とはいえがたく、薬剤開発には至っていないのが現状である。

発明の開示

本発明者らは、細胞接着分子阻害剤、特に白血球と血管内皮細胞の接着を阻害する化合物を得るために鋭意研究を行った結果、炎症性刺激によりヒト血管内皮細胞に誘導されるE－セレクチンの発現を上記文献記載の1－アザインドリジン誘導体に比べて明らかに強く抑制する化合物を見出し、本発明を完成した。

本発明の化合物は前記一般式（I）で示されるが、この式中の各記号の定義に使用する語句の意味と例を以下に説明する。

「C₁－C₆」とは、限定がなければ炭素数1～6個を有する基を意味す
「$C_3 - C_8$」とは、限定がなければ炭素数3〜8個を有する基を意味する。

「$C_5 - C_{10}$」とは、限定がなければ炭素数5〜10個を有する基を意味する。

「$C_1 - C_6$アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、t-ブチル、sec-ブチル、n-ペンチル、n-ヘキシル等の直鎖又は分枝鎖状のアルキル基が挙げられる。

「$C_1 - C_4$アルコキシ」としては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、t-ブトキシ、sec-ブトキシ、n-ペンチルオキシ、n-ヘキシルオキシ等の直鎖又は分枝鎖状のアルコキシ基が挙げられる。

「$C_3 - C_8$シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチルが挙げられる。

「$C_3 - C_8$シクロアルキル$C_1 - C_6$アルキル」とは、上記「$C_1 - C_6$アルキル」で定義される基のいずれかの炭素原子に上記「$C_3 - C_8$シクロアルキル」で定義される基が結合した基を意味する。

「カルボキシル$C_1 - C_6$アルキル」とは、上記「$C_1 - C_6$アルキル」で定義される基のいずれかの炭素原子にカルボキシル基が結合した基を意味する。

「フェニル$C_1 - C_6$アルキル」とは、上記「$C_1 - C_6$アルキル」で定義される基のいずれかの炭素原子にフェニル基が結合した基を意味する。

「$C_5 - C_{10}$アルケニル」としては、1-ペンテニル、3-ヘキセンニル、2-メチル-1-オクテニル、1,3-ヘプタジエニル、3,7-ジメチル-2,6-オクタジエ
ニル等の直鎖又は分枝鎖状のアルケニルが挙げられる。

本発明の化合物としては、例えば、以下の化合物を挙げることができるが、本発明はこれらの化合物に限定されるものではない。

・3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメトキシ-2-イソプロピシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメトキシ-2-イソプトキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメトキシ-2-(3-ヘキシルオキシ)イミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノピニル)-2-シクロペンチルオキシ-8-シクロプロピルメトキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノピニル)-2-シクロヘプチルオキシ-8-シクロプロピルメトキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメトキシ-2-イソプロピシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロヘキシルメトキシ-2-イソプロピシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロヘキシルメトキシ-2-シクロペンチルオキシイミダゾ[1,2-a]ピリジン

・2-sec-ブトキシ-3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメトキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロペンチルメトキシ-2-シクロペンチルオキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメトキシ-2-シクロペンチルオキシイミダゾ[1,2-a]ピリジン
3-(2-カルボキシル-2-シアノビニル)-8-シクロヘプチルメトキシ-2-イソプロピルキシイミダゾ[1,2-a]ビリジン
3-(2-カルボキシル-2-シアノビニル)-8-シクロオクチルメトキシ-2-イソプロピルキシイミダゾ[1,2-a]ビリジン
3-(2-カルボキシル-2-シアノビニル)-2-シクロオクチルオキシ-8-シクロプロピルメトキシイミダゾ[1,2-a]ビリジン
3-(2-カルボキシル-2-シアノビニル)-8-シクロヘプチルオキシ-2-(2-メトキシエトキシ)イミダゾ[1,2-a]ビリジン
3-(2-カルボキシル-2-シアノビニル)-2,8-ジシクロヘプチルオキシイミダゾ[1,2-a]ビリジン
3-(2-カルボキシル-2-シアノビニル)-8-シクロヘプチルオキシ-2-(2-テトラヒドロフリルメトキシ)イミダゾ[1,2-a]ビリジン
3-(2-カルボキシル-2-シアノビニル)-8-シクロペンチルオキシ-2-イソプロピルキシイミダゾ[1,2-a]ビリジン
2-sec-ブトキシ-3-(2-カルポキシル-2-シアノビニル)-8-シクロペンチルオキシイミダゾ[1,2-a]ビリジン
3-(2-カルポキシル-2-シアノビニル)-8-シクロブトキシ-2-イソプロピルキシイミダゾ[1,2-a]ビリジン
2-ブトキシ-3-(2-カルポキシル-2-シアノビニル)-8-シクロペンチルオキシイミダゾ[1,2-a]ビリジン
2-ブトキシ-3-(2-カルポキシル-2-シアノビニル)-8-シクロヘプチルオキシイミダゾ[1,2-a]ビリジン
3-(2-カルポキシル-2-シアノビニル)-2-シクロヘキシルオキシ-8-シクロペンチルオキシイミダゾ[1,2-a]ビリジン
3-(2-カルポキシル-2-シアノビニル)-2-シクロヘキシルメトキシ-8-シ
クロベンチルオキシイミダゾ[1,2-a]ピリジン
・3-(2-カルボキシル-2-シアノビニル)-8-シクロヘキシルオキシ-2-イソプロピルシイミダゾ[1,2-a]ピリジン
・3-(2-カルボキシル-2-シアノビニル)-8-シクロヘプチルオキシ-2-イソプロピルシイミダゾ[1,2-a]ピリジン
・3-(2-カルボキシル-2-シアノビニル)-8-シクロプトキシ-2-シクロペンチルオキシイミダゾ[1,2-a]ピリジン
・3-(2-カルボキシル-2-シアノビニル)-8-シクロヘキシルオキシ-2-シクロペンチルオキシイミダゾ[1,2-a]ピリジン
・3-(2-カルボキシル-2-シアノビニル)-8-シクロヘクチルオキシ-8-シクロペンチルオキシイミダゾ[1,2-a]ピリジン
・8-アセチルアミノ-3-(2-カルボキシル-2-シアノビニル)-2-イソプロピルシイミダゾ[1,2-a]ピリジン
・8-アセチルアミノ-3-(2-カルボキシル-2-シアノビニル)-2-シクロペンチルオキシイミダゾ[1,2-a]ピリジン
・8-アセチルアミノ-3-(2-カルボキシル-2-シアノビニル)-2-シクロヘプチルオキシイミダゾ[1,2-a]ピリジン
・8-アセチルアミノ-3-(2-カルボキシル-2-シアノビニル)-2-ヘキシルオキシイミダゾ[1,2-a]ピリジン
・8-アセチルアミノ-2-sec-プトキシ-3-(2-カルボキシル-2-シアノビニル)イミダゾ[1,2-a]ピリジン
・8-アセチルアミノ-3-(2-カルボキシル-2-シアノビニル)-2-オクチルオキシイミダゾ[1,2-a]ピリジン
・3-(2-カルボキシル-2-シアノビニル)-8-シクロペンチルカルボニルアミノ-2-イソプロピルシイミダゾ[1,2-a]ピリジン
8

・3-(2-カルボキシル-2-シアノピニル)-8-シクロペンチルカルボニルアミノ-2-シクロペンチルオキシイミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメチルカルボニルアミノ-2-イソプロピルキシイミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-2-シクロペンチルオキシ-8-シクロプロピルメチルカルボニルアミノイミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-8-(5-カルボキシル)ペンチルオキシ-2-オクチルオキシイミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-8-(5-カルボキシル)ペンチルオキシ-2-デシルオキシイミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-8-(5-カルボキシル)ヘキシルオキシ-2-オクチルオキシイミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-8-(5-カルボキシル)ヘキシルオキシ-2-(trans-3,7-ジメチル-2,6-オクタジエン-1-イル)オキシイミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-8-(5-カルボキシル)ヘキシルオキシ-2-デシルオキシイミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメトキシ-2-(1,3-ジクロロ-2-プロポキシ)イミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロペンチルオキシ-2-(1,3-ジクロロ-2-プロポキシ)イミダゾ[1,2-a]ビリジン

・3-(2-カルボキシル-2-シアノピニル)-8-シクロヘプチルオキシ-2-(1,3-
ジクロロ-2-プロボキシ)イミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノビニル)-2-(2-クロロ-1-エトキシ)-8-シクロプロピルメトキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノビニル)-2-(2-クロロ-1-エトキシ)-8-シクロペンチルオキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノビニル)-2-メトキシ-8-(2-フェネチル)オキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノビニル)-2-エトキシ-8-(2-フェネチル)オキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノビニル)-2-メトキシ-8-(1-フェネチル)オキシイミダゾ[1,2-a]ピリジン

・3-(2-カルボキシル-2-シアノビニル)-2-メトキシ-8-ベンジルオキシイミダゾ[1,2-a]ピリジン

本発明の化合物は、その構造中に不斉炭素原子を有する場合、不斉炭素原子由来の異性体及びそれらの混合物（ラセミ体）が存在するが、それらはいずれも本発明の化合物に含むものとする。

本発明の化合物は薬学的に許容される塩としてアルカリ塩の形体をとってよい。適当なアルカリ塩としては、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩、バリウム塩等が挙げられる。

【製造工程】

本発明の化合物は、下記反応式に示される一般式(Ⅳ)の合成中間体を接触還元又はアルカリ加水分解し、必要に応じて薬学的に許容される塩に変換することによって容易に製造することができる。
接触還元の場合、触媒としては10％パラジウム＝炭素、5％パラジウム＝硫酸パリウム、酸化白金等が挙げられ、その使用量は合成中間体（Ⅴ）1モルに対して0.01〜0.1モルである。反応溶媒としてはメタノール、エタノール、酢酸、ジオキサン、酢酸エチル等が挙げられ、エタノール又は酢酸エチルが好ましい。反応温度としては0〜80℃、好ましくは室温の範囲であり、反応時間は反応温度により変化するが、1〜24時間が適当である。

アルカリ加水分解の場合、使用するアルカリとしては水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等が挙げられる。反応溶媒としては水、メタノール、エタノール等を単独で或いは混合して使用することができる。また、反応温度は0〜80℃、好ましくは50〜70℃の範囲であり、反応時間は反応温度により変化するが、0.5〜24時間特に0.5〜2時間が適当である。

上述の接触還元又はアルカリ加水分解により得られる化合物（カルボン酸）は常法によってカリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩、バリウム塩等の薬学的に許容される塩に変換できるが、接触還元又はアルカリ加水分解で得られた化合物を単離せずに塩に変換してもよい。

なお、このようにして得られる本発明の化合物又はその薬学的に許容される塩は、通常の分離精製手段、例えば抽出、濃縮、中和、濾過、再結晶、カラムクロマトグラフィー等で単離することができる。

合成中間体（Ⅴ）は新規化合物であり、その製造に当たっては簡略な方法[ケミカルファーマシューティカル プレティン 34 巻6号、2435〜2442(1986)]及び倉田等の方法[薬学雑誌 101 巻11号、980〜990(1981)]を応用する。すなわち、下記反応式に示されるように、一般式（II）のピリジニウムプロマイドに1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、ナト
リウムエトキシド、水酸化ナトリウム等の塩基の存在下、一般式（III）の化合物と反応させ、次いで一般式（IV）の化合物と反応させることにより容易に製造し得る。

[反応式]

式中、\(R_1 \)及び\(R_2 \)は前記の定義に同じであり、\(R \)は\(C_1 \sim C_6 \)アルキル又はベンゼン、\(X \)はハロゲン又は水酸基を表す

[作用]

次に、一般式（I）で表される本発明の化合物の薬理効果を説明する。

なお、試験例1における被験化合物番号は後記実施例の化合物番号に対応し、比較化合物として用いる化合物Aは前記文献記載の3-(2-カルボキシル-2-シアノビニル)-2,8-ジイソプロポキシイミダゾ[1,2-a]ピリジンのナトリウム塩である。

試験例1）[E-セレクチンの発現抑制]

ヒト脳帯静脈血管内皮細胞（HUVEC；三光純粋）は、Medium 199 培地（日本水製薬）に10％牛胎児血清（FBS；GIBCO）、内皮細胞成長因子（endothelial cell growth supplement, ECGS；コスモ・バイオ）（30μg/ml）、ベニシリ

ン（100U/ml）及びストレプトマイシン（100μg/ml）を添加した培地を用いて培養した。HUVECをゼラチンコートした12穴のプラスチックプレートに1.6

×10^5個播種し、5％炭酸ガス中、37℃で一夜単層培養した。リポポリサ
12

ツラライド（LPS：シグマ）（1μg/ml）を加えて刺激し、E-セレクチンを発現させ、4時間後に細胞を回収した。被験化合物はハンクス液（日水製薬）に溶解し、LPS添加の1時間前にHUVECに加えた（被験化合物の最終濃度は50μg/ml）。回収したHUVECに一次抗体としてマウス抗ヒトE-セレクチン抗体（IgG1）（生化学工業）を加えて氷中に30分間放置した。洗浄後、二次抗体としてphycoerythrinが結合したヒツジ抗マウスIgG抗体（コスモ・バイオ）を加え、氷中に30分間放置して標識した。E-セレクチンの発現はフローサイトメーター（コルター）を用いて測定した。

抑制率は、LPSで刺激したHUVECの平均蛍光強度（a）及び非刺激下のHUVECにおける平均蛍光強度（c）をそれぞれ最大発現量及び最小発現量として、被験化合物存在下でのLPS刺激によるHUVECの平均蛍光強度（b）から次式に従って算出し、その結果を下記表1に示す。

抑制率（％） = [1-(b-c)÷(a-c)] × 100

<table>
<thead>
<tr>
<th>被験化合物</th>
<th>抑制率（％）</th>
<th>被験化合物</th>
<th>抑制率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>化合物1</td>
<td>45.8</td>
<td>化合物14</td>
<td>76.3</td>
</tr>
<tr>
<td>化合物2</td>
<td>84.5</td>
<td>化合物15</td>
<td>81.2</td>
</tr>
<tr>
<td>化合物3</td>
<td>49.9</td>
<td>化合物16</td>
<td>90.6</td>
</tr>
<tr>
<td>化合物4</td>
<td>47.4</td>
<td>化合物17</td>
<td>68.4</td>
</tr>
<tr>
<td>化合物5</td>
<td>92.3</td>
<td>化合物18</td>
<td>66.8</td>
</tr>
<tr>
<td>化合物6</td>
<td>44.2</td>
<td>化合物19</td>
<td>67.5</td>
</tr>
<tr>
<td>化合物7</td>
<td>74.3</td>
<td>化合物20</td>
<td>52.7</td>
</tr>
<tr>
<td>化合物8</td>
<td>86.4</td>
<td>化合物21</td>
<td>69.0</td>
</tr>
<tr>
<td>化合物9</td>
<td>70.3</td>
<td>化合物22</td>
<td>54.5</td>
</tr>
<tr>
<td>化合物10</td>
<td>91.4</td>
<td>化合物23</td>
<td>57.2</td>
</tr>
<tr>
<td>化合物11</td>
<td>46.4</td>
<td>化合物24</td>
<td>63.6</td>
</tr>
<tr>
<td>化合物12</td>
<td>46.5</td>
<td>化合物25</td>
<td>93.5</td>
</tr>
<tr>
<td>化合物13</td>
<td>42.4</td>
<td>化合物26</td>
<td>90.5</td>
</tr>
<tr>
<td>化合物A</td>
<td></td>
<td></td>
<td>10.7</td>
</tr>
</tbody>
</table>
上記結果より、本発明の化合物は比較化合物Aに比べて細胞接着分子の発現を明らかに強く抑制していることが判明した。

次に、本発明の化合物を哺乳動物とりわけ人に適用する場合の投与方法、剤型、投与量について説明する。

本発明の化合物は経口的又は非経口的に投与可能であり、経口投与の剤型としては錠剤、コーティング錠剤、散剤、顆粒剤、カプセル剤、マイクロカプセル剤、シロップ剤等が、又非経口投与の剤型としては注射剤（用時溶解して用いる注射用凍結乾燥剤を含む）、塗剤等が使用できる。これらの剤型の調製は薬学的に許容される賦形剤、結合剤、滑沢剤、崩壊剤、懸濁化剤、乳化剤、防腐剤、安定化剤及び分散剤、例えば乳糖、白糖、でんぶん、デキストリン、結晶セルロース、カオリン、炭酸カルシウム、タルク、ステアリン酸マグネシウム、蒸溜水又は生理食塩水を用いて行われる。

投与量は患者の症状、年齢、体重等に応じて異なるが、成人に対する一日量として5～2,000mgを2～3回に分けて投与することができる。

発明を実施するための最良の形態

次に、本発明化合物の実施例を示して更に具体的に説明するが、本発明はこれに限定されるものではない。

実施例1) 3-(2-カルボキシル-2-シアノビルニル)-8-シクロブトキシ-2-イソプロピロキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物1）

金属ナトリウム81mgを無水エタノール3.0mlに加え、室温で1時間攪拌した後、2-アミノ-3-シクロブトキシ-1-(エトキシカルボニルメチル)ピリジニウムブロマイド586mg(1.77mmol)を加え、さらに室温で1時間攪拌した。次いで、その反応混合物に1-(ペンジルオキシカルボニル)-1-シアノ
-2-エトキシエチレン409mg（1.77mmol）を0℃にて加え、0℃で4時間攪拌したのち析出した結晶を口取し、乾燥した。得られた結晶をジメチルホルムアミド5mlに懸濁し、イソプロピルプロピヨード0.42ml（4.43mmol）を加え55℃で5時間加熱した。放冷後、反応液を酢酸エチルで抽出し、抽出液を水洗し無水硫酸マグネシウムで乾燥した。乾燥後、抽出液を濃縮し、残渣を減圧下溶媒を蒸去し、残渣をシリカゲルカラムクロマトグラフィー（溶離液：ヘキサン：酢酸エチル=2：1）で精製し、3-(2-ベンジルオキシカルボキシル-2-シアノビニル)-8-シクロプトキシ-2-イソプロピオキシイミダゾ[1,2-a]ピリジン236mg（収率31％、融点：110～111℃）を得た。

次に、この化合物200mg（0.46mmol）をエタノール10mlに溶解し、10％パラジウム-炭素15mgを加え、水素雰囲気下窒温で1時間接触還元した後、10％パラジウム-炭素を濾過し、濾液を減圧下濃縮した。得られた残渣を飽和水溶液5mlに溶解し不溶部を濾別し、濾液に2N塩酸を加えて中和し、析出した結晶を口取し、エタノールより再結晶し、標記カルボン酸63mg（収率40％）を得た。このカルボン酸52mg（0.15mmol）を水10mlに懸濁し、炭酸ナトリウム8.1mgを加え、室温で1日間攪拌した後、不溶部を濾別し、濾液を凍結乾燥して、標記カルボン酸ナトリウム53mg（収率96％）を得た。

標記カルボン酸

融点：178-182℃
NMR（CDCl₃）δ：1.51（6H, d, J=6Hz）, 1.75（1H, brq, J=9Hz）, 1.94（1H, brq, J=11Hz）, 2.3-2.4（2H, m）, 2.4-2.7（2H, m）, 4.85（1H, quint, J=7Hz）, 5.57（1H, sept, J=6Hz）, 6.72（1H, d, J=8Hz）, 6.95（1H, dd, J=7Hz, 8Hz）, 8.14（1H, d, J=7Hz）, 8.25（1H, s）
MS m/z：342[M+H]^+
標記カルボン酸ナトリウム

MS m/z: 364 [M+Na]^+

実施例1）と同様にして、相当する出発原料から下記化合物を製造した。

・2-sec-ブトキシ-3-(2-カルボキシル-2-シアノビニル)-8-シクロペンチルオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物2）

標記カルボン酸

融点: 162-166 ℃

NMR (CDCl₃) δ: 1.02 (3H, t, J=7Hz), 1.47 (3H, d, J=6Hz), 1.6-2.1 (11H, m), 5.03 (1H, m), 6.87 (1H, d, J=8Hz), 6.97 (1H, dd, J=7Hz, 8Hz), 8.15 (1H, d, J=7Hz), 8.25 (1H, s)

MS m/z: 370 [M+H]^+

標記カルボン酸ナトリウム

MS m/z: 392 [M+Na]^+

・3-(2-カルボキシル-2-シアノビニル)-8-シクロヘプチルオキシ-2-イソプロピオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物3）

標記カルボン酸

融点: 160-170 ℃

NMR (CDCl₃) δ: 1.3-1.5 (3H, m), 1.51 (6H, d, J=6Hz), 1.6-1.9 (5H, m), 2.0-2.1 (2H, m), 4.4-4.6 (1H, m), 5.4-5.6 (1H, m), 6.9-7.0 (2H, m), 8.15 (1H, d, J=5Hz), 8.24 (1H, s)

MS m/z: 370 [M+H]^+

標記カルボン酸ナトリウム

MS m/z: 392 [M+Na]^+

・3-(2-カルボキシル-2-シアノビニル)-8-シクロペプチルオキシ-2-イソプロピオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物4）
標記カルボン酸

融点: 171-175 ℃

NMR (CDCl₃) δ : 1.4-1.6 (8H, m), 1.6-1.7 (4H, m), 1.7-1.8 (2H, m), 1.8-2.0 (2H, m), 2.0-2.2 (2H, m), 4.73 (1H, quint, J=4Hz), 5.52 (1H, sept, J=6Hz), 6.26 (1H, d, J=8Hz), 6.97 (1H, dd, J=6Hz, 8Hz), 8.14 (1H, d, J=6Hz), 8.24 (1H, s)

MS m/z : 384 [M+H]⁺

標記カルボン酸ナトリウム

MS m/z : 406 [M+Na]⁺

・3-(2-カルボキシル-2-シアノビル)-2,8-ジシクロヘプチルオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物5）

標記カルボン酸

融点: 143-146 ℃

NMR (CDCl₃) δ : 1.5-1.7 (12H, m), 1.7-1.9 (4H, m), 1.9-2.0 (4H, m), 2.0-2.2 (4H, m), 4.74 (1H, quint, J=4Hz), 5.42 (1H, quint, J=4Hz), 6.26 (1H, d, J=8Hz), 6.96 (1H, dd, J=6Hz, 8Hz), 8.14 (1H, d, J=6Hz), 8.24 (1H, s)

MS m/z : 438 [M+H]⁺

標記カルボン酸ナトリウム

MS m/z : 460 [M+Na]⁺

・3-(2-カルボキシル-2-シアノビル)-8-シクロプロピルメトキシ-2-イソプロピリミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物6）

標記カルボン酸

融点: 118-123 ℃

NMR (CDCl₃) δ : 0.4-0.5 (2H, m), 0.5-0.7 (2H, m), 1.3-1.5 (1H, m), 1.49 (6H,
d, J=6Hz), 4.09 (2H, d, J=7Hz), 5.4-5.6 (1H, m), 6.84 (1H, d, J=8Hz), 6.93 (1H, dd, J=6Hz, 8Hz), 8.09 (1H, d, J=6Hz), 8.21 (1H, s)
MS m/z : 342 [M+H]^+

標記カルボン酸ナトリウム

MS m/z : 364 [M+Na]^+

・2-sec-プロトキシ-3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメトキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物7）
標記カルボン酸

融点 : 159-164 ℃

NMR (CDCl₃) δ : 0.4-0.5 (2H, m), 0.5-0.7 (2H, m), 1.02 (3H, t, J=6Hz), 1.3-1.5 (1H, m), 1.48 (3H, d, J=6Hz), 1.7-2.1 (2H, m), 4.08 (2H, d, J=7Hz), 5.3-5.5 (1H, m), 6.89 (1H, d, J=8Hz), 6.97 (1H, dd, J=6Hz, 8Hz), 8.17 (1H, d, J=6Hz), 8.26 (1H, s)
MS m/z : 356 [M+H]^+

標記カルボン酸ナトリウム

MS m/z : 378 [M+Na]^+

・3-(2-カルボキシル-2-シアノピニル)-8-シクロプロピルメトキシ-2-(3-ヘキシルオキシ)イミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物8）
標記カルボン酸

融点 : 144-150 ℃

NMR (CDCl₃) δ : 0.4-0.5 (2H, m), 0.5-0.7 (2H, m), 0.9-1.1 (6H, m), 1.3-1.6 (4H, m), 1.7-2.0 (3H, m), 4.10 (2H, d, J=7Hz), 5.3-5.5 (1H, m), 6.90 (1H, d, J=8Hz), 6.96 (1H, dd, J=7Hz, 8Hz), 8.19 (1H, d, J=7Hz), 8.26 (1H, s)
MS m/z : 384 [M+H]^+
標記カルボン酸ナトリウム

MS m/z : 406 [M+Na]^+
・3-((2-カルボキシル-2-シアノビニル)-2-シクロヘプチルオキシ-8-シクロプロピルメトキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物9）

標記カルボン酸
融点: 157-160 ℃
NMR (CDCl₃) δ : 0.4-0.5 (2H, m), 0.5-0.7 (2H, m), 1.3-1.5 (1H, m), 1.6-1.8 (2H, m), 1.8-2.1 (6H, m), 4.09 (2H, d, J=7Hz), 5.6-5.8 (1H, m), 6.89 (1H, d, J=8Hz), 6.97 (1H, dd, J=6Hz, 8Hz), 8.13 (1H, d, J=6Hz), 8.23 (1H, s)
MS m/z : 368 [M+H]^+
標記カルボン酸ナトリウム

MS m/z : 390 [M+Na]^+
・3-((2-カルボキシル-2-シアノビニル)-2-シクロヘプチルオキシ-8-シクロプロピルメトキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物10）

標記カルボン酸
融点: 142-145 ℃
NMR (CDCl₃) δ : 0.4-0.5 (2H, m), 0.5-0.7 (2H, m), 1.3-2.3 (13H, m), 4.08 (2H, d, J=7Hz), 5.4-5.6 (1H, m), 6.88 (1H, d, J=8Hz), 6.97 (1H, dd, J=7Hz, 8Hz), 8.17 (1H, d, J=7Hz), 8.25 (1H, s)
MS m/z : 396 [M+H]^+
標記カルボン酸ナトリウム
MS m/z: 418[M+Na]^+
・3-(2-カルボキシル-2-シアノビニル)-8-シクロヘキシルメトキシ-2-イソプロピルシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物11）
標記カルボン酸
融点: 200-203 ℃
NMR (DMSO-d_6) δ: 1.0-1.1 (2H, m), 1.2-1.3 (3H, m), 1.41 (6H, d, J=6Hz), 1.7-1.8 (3H, m), 1.8-1.9 (3H, m), 4.01 (2H, d, J=6Hz), 5.33 (1H, quint, J=6Hz), 7.04 (1H, dd, J=7Hz, 8Hz), 7.12 (1H, d, J=8Hz), 8.22 (1H, s), 8.32 (1H, d, J=7Hz), 13.09 (1H, brs)
MS m/z: 384[M+H]^+
標記カルボン酸ナトリウム
MS m/z: 406[M+Na]^+
・3-(2-カルボキシル-2-シアノビニル)-8-シクロヘキシルメトキシ-2-シクロペンチルオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物12）
標記カルボン酸
融点: 178-181 ℃
NMR (DMSO-d_6) δ: 1.0-1.2 (2H, m), 1.2-1.4 (3H, m), 1.5-1.8 (5H, m), 1.8-1.9 (5H, m), 1.9-2.0 (4H, m), 4.00 (2H, d, J=6Hz), 5.53 (1H, quint, J=4Hz), 7.04 (1H, dd, J=6Hz, 8Hz), 7.11 (1H, d, J=8Hz), 8.20 (1H, s), 8.31 (1H, d, J=6Hz), 13.08 (1H, brs)
MS m/z: 410[M+H]^+
標記カルボン酸ナトリウム
MS m/z: 432[M+Na]^+
・8-アセチルアミノ-3-(2-カルボキシル-2-シアノビニル)-2-シクロペンチルオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物13）
標記カルボン酸
融点: 106-108 ℃
NMR (DMSO-d_6) δ: 1.0-1.2 (2H, m), 1.2-1.4 (3H, m), 1.5-1.8 (5H, m), 1.8-1.9 (5H, m), 1.9-2.0 (4H, m), 4.00 (2H, d, J=6Hz), 5.53 (1H, quint, J=4Hz), 7.04 (1H, dd, J=6Hz, 8Hz), 7.11 (1H, d, J=8Hz), 8.20 (1H, s), 8.31 (1H, d, J=6Hz), 13.08 (1H, brs)
MS m/z: 444[M+H]^+
標記カルボン酸ナトリウム
MS m/z: 466[M+Na]^+
・8-アセチルアミノ-3-(2-カルボキシル-2-シアノビニル)-2-シクロペンチルオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物14）
標記カルボン酸
融点: 113-115 ℃
NMR (DMSO-d_6) δ: 1.0-1.2 (2H, m), 1.2-1.4 (3H, m), 1.5-1.8 (5H, m), 1.8-1.9 (5H, m), 1.9-2.0 (4H, m), 4.00 (2H, d, J=6Hz), 5.53 (1H, quint, J=4Hz), 7.04 (1H, dd, J=6Hz, 8Hz), 7.11 (1H, d, J=8Hz), 8.20 (1H, s), 8.31 (1H, d, J=6Hz), 13.08 (1H, brs)
MS m/z: 478[M+H]^+
標記カルボン酸ナトリウム
MS m/z: 499[M+Na]^+
チルオキシイミダゾ[1,2-a]ビリジン及びそのナトリウム塩（化合物22）

標記カルボン酸

融点：194-196 ℃

NMR（DMSO-d₆）δ：1.6-2.1（8H，m），2.23（3H，s），5.6-5.8（1H，m），7.11（1H，dd，J=7.3Hz，6.9Hz），8.23（1H，d，J=7.3Hz），8.24（1H，s），8.45（1H，d，J=6.9Hz），9.69（1H，s），13.09（1H，brs）

MS m/z：355[M+H]^+

標記カルボン酸ナトリウム

MS m/z：377[M+Na]^+

・3-(2-カルボキシル-2-シアノビニル)-2-メトキシ-8-(2-フェネチル)オキシイミダゾ[1,2-a]ビリジン及びそのナトリウム塩（化合物23）

融点：193-195 ℃

NMR（CDCl₃）δ：1.80（3H，d，J=6Hz），4.31（3H，s），5.62（1H，q，J=6Hz），6.73（1H，d，J=8Hz），6.83（1H，dd，J=7Hz，8Hz），8.06（1H，d，J=7Hz），8.23（1H，s）

MS m/z：364[M+H]^+

標記カルボン酸ナトリウム

MS m/z：386[M+Na]^+

・3-(2-カルボキシル-2-シアノビニル)-8-シクロベンチルカルボニルアミノ-2-シクロベンチルオキシイミダゾ[1,2-a]ビリジン及びそのナトリウム塩（化合物26）

標記カルボン酸

融点：179-181 ℃

NMR（DMSO-d₆）δ：1.5-2.1（16H，m），3.0-3.2（1H，m），5.6-5.7（1H，m），7.11（1H，dd，J=7.6Hz，6.3Hz），8.21（1H，d，J=7.6Hz），8.24（1H，s），
8.46 (1H, d, J=6.3Hz), 9.49 (1H, s), 13.09 (1H, brs)

MS m/z : 409 [M+H]^+

標記カルボン酸ナトリウム

MS m/z : 431 [M+Na]^+

実施例2) 3-(2-カルボキシル-2-シアノビニル)-8-シクロヘプチルオキシ-2-(2-メトキシエトキシ)イミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物13）

金属ナトリウム 957mg を無水エタノール 30ml に加え、室温で1時間摂拌した後、2-アミノ-3-シクロヘプチルオキシ-1-(エトキシカルボニルメチル)ピリジニウムプロマイド 8.18g (21.9mmol) を加え、さらに室温で1時間摂拌した。次いで、その反応混合物に1-(ベンジルオキシカルボニル)-1-シアノ-2-エトキシエチレン 5.07g (21.9mmol) を0℃にて加え、0℃で20分間摂拌した後反応液に水を加え、5%塩酸でpH 3～4に調整し、ジクロロメタンで抽出し、抽出液を水洗して無水硫酸マグネシウムで乾燥した。

乾燥後、抽出液を濃縮し、残渣を減圧下溶媒を溜去し、残渣をシリカゲルカラムクロマトグラフィー（溶媒液：ジクロロメタン：メタノール＝40 : 1）で精製し、3-(2-ベンジルオキシカルボニル-2-シアノビニル)-8-シクロヘプチルオキシ-2-ヒドロキシイミダゾ[1,2-a]ピリジン 5.62g (収率60%) を得た。

この化合物 250mg (0.579mmol) をテトラヒドロフラン (脱水) 6ml に溶解し、2-メトキシエタノール 0.14ml (1.74mmol)、トリフェニルホスフィン 482mg (1.74mmol)、ジアソカルボン酸ジエチルエステル 0.27ml (1.74mmol)を順次加え室温で5分間摂拌した。その後、反応液を酢酸エチルで抽出し、抽出液を水洗して無水硫酸マグネシウムで乾燥した。乾燥後、抽出液を濃縮し、残渣を減圧下溶媒を溜去し、残渣をシリカゲルカラムクロマトグラ
フィー（溶離液：ヘキサン：酢酸エチル＝2：1）で精製して、3-（2-ベンジルオキシカルボキシル-2-シアノビニル）-8-シクロヘプタンルオキシ-2-（2-メトキシエトキシ）イミダゾ[1,2-a]ピリジン 191mg（収率 67%，融点 76～77℃）を得た。この化合物 191mg（0.39mmol）をエタノール 15ml に溶解し、10％パラジウム－炭素 20mg を加え、水素気圧気下室温で 1 時間接触還元した後、10％パラジウム－炭素を濁別した後、濁液を減圧下濃縮した。

得られた残渣を飽和水溶液 5ml に溶解し不溶部を濁別した後、濁液に 2N 塩酸を加えて中和し、酢酸エチルで抽出し、抽出液を水洗して無水硫酸マグネシウムで乾燥した。乾燥後、抽出液を濃縮し、粗生成物をエタノールより再結晶し、標記カルボン酸 111mg（収率 71%）を得た。このカルボン酸 111mg（0.28mmol）を水 10ml に懸濁し、炭酸ナトリウム 15.3mg を加え、室温で 1 日間攪拌した後、不溶部を濁別し、濁液を凍結乾燥して、標記カルボン酸ナトリウム 101mg（収率 86%）を得た。

標記カルボン酸

融点：85-88 ℃

NMR(CDC13) δ : 1.4-1.6(2H, m), 1.6-1.7(4H, m), 1.7-1.9(2H, m), 1.9-2.0(2H, m), 2.0-2.2(2H, m), 3.47(3H, s), 3.91(2H, t, J=5Hz), 4.70(1H, quint, J=4Hz), 4.78(2H, t, J=5Hz), 6.85(1H, d, J=8Hz), 6.98(1H, dd, J=6Hz, 8Hz), 8.10(1H, d, J=6Hz), 8.25(1H, s)

MS m/z : 400[M+H]^+

標記カルボン酸ナトリウム

MS m/z : 422[M+Na]^+

実施例 2）と同様にして、相当する出発原料から下記化合物を製造した。

3-（2-カルボキシル-2-シアノビニル）-2-シクロヘキシルオキシ-8-シクロベンチルオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物
14)
標記カルボン酸
融点: 200-201 ℃
NMR (CDCl₃) δ: 1.3-2.2 (18H, m), 5.01 (1H, quint, J=4Hz), 5.2-5.3 (1H, m),
6.86 (1H, d, J=7Hz), 6.97 (1H, dd, J=6Hz, 7Hz), 8.15 (1H, d, J=6Hz),
8.25 (1H, s)
MS m/z: 396 [M+H]^+
標記カルボン酸ナトリウム
MS m/z: 418 [M+Na]^+
・3-(2-カルボキシル-2-シアノビニル)-2-シクロオクチルオキシ-8-シクロベニルオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物15）
標記カルボン酸
融点: 189-191 ℃
NMR (CDCl₃) δ: 1.3-2.2 (18H, m), 5.04 (1H, quint, J=4Hz), 5.43 (1H, quint, J=4Hz), 6.87 (1H, d, J=7Hz), 6.96 (1H, dd, J=6Hz, 7Hz), 8.15 (1H, d, J=6Hz), 8.23 (1H, s)
MS m/z: 424 [M+H]^+
標記カルボン酸ナトリウム
MS m/z: 446 [M+Na]^+
・3-(2-カルボキシル-2-シアノビニル)-2-シクロヘキシルメトキシ-8-シクロベニルオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物16）
標記カルボン酸
融点: 186-187 ℃
NMR (CDCl₃) δ : 1.0-1.4 (5H, m), 1.7-2.1 (14H, m), 4.43 (2H, d, J=7Hz), 4.99 (1H, quint, J=5Hz), 6.87 (1H, d, J=8Hz), 6.99 (1H, dd, J=7Hz, 8Hz), 8.18 (1H, d, J=7Hz), 8.26 (1H, s)

MS m/z : 410 [M+H]^+

標記カルボン酸ナトリウム

MS m/z : 432 [M+Na]^+

・3-(2-カルボキシル-2-シアノビニル)-8-シクロヘプチルオキシ-2-(2-テトラヒドロフルリルメトキシ)イミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物17）

標記カルボン酸

融点: 115-118 ℃

NMR (DMSO-d₆) δ : 1.4-1.6 (6H, m), 1.6-1.9 (6H, m), 1.9-2.1 (2H, m), 3.30 (2H, brs), 3.6-3.7 (1H, m), 3.7-3.9 (1H, m), 4.2-4.3 (1H, m), 4.4-4.6 (1H, m), 4.7-4.9 (2H, m), 7.0-7.1 (2H, m), 8.23 (1H, s), 8.3-8.4 (1H, m), 13.16 (1H, brs)

MS m/z : 426 [M+H]^+

標記カルボン酸ナトリウム

MS m/z : 448 [M+Na]^+

・3-(2-カルボキシル-2-シアノビニル)-2-シクロオクチルオキシ-8-シクロプロピルメトキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物18）

標記カルボン酸

融点: 155-161 ℃

NMR (CDCl₃) δ : 0.3-0.5 (2H, m), 0.6-0.8 (2H, m), 1.3-1.4 (1H, m), 1.4-1.9 (10H, m), 2.0-2.2 (4H, m), 4.09 (2H, d, J=7Hz), 5.47 (1H, m), 6.89 (1H,
d, J=8Hz), 6.97(1H, dd, J=6Hz, 8Hz), 8.17(1H, d, J=6Hz), 8.24(1H, s)

MS m/z: 410[M+H]⁺

標記カルボン酸ナトリウム

MS m/z: 432[M+Na]⁺

・3-(2-カルボキシル-2-シアノビニル)-8-シクロヘプチルメトキシ-2-イソプロポキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物19）

標記カルボン酸

融点: 165-172 ℃

NMR(CDCl₃) δ: 1.51(6H, d, J=6Hz), 1.8-2.0(4H, m), 2.1-2.3(2H, m), 2.8-3.0(1H, m), 4.21(2H, d, J=7Hz), 5.5-5.6(1H, m), 6.87(1H, d, J=8Hz), 6.97(1H, dd, J=6Hz, 8Hz), 8.14(1H, d, J=6Hz), 8.24(1H, s)

MS m/z: 356[M+H]⁺

標記カルボン酸ナトリウム

MS m/z: 378[M+Na]⁺

・2-ブトキシ-3-(2-カルボキシル-2-シアノビニル)-8-シクロペンチルオキシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物20）

標記カルボン酸

融点: 180-181 ℃

NMR(CDCl₃) δ: 1.00(3H, t, J=7Hz), 1.4-2.1(12H, m), 4.63(2H, t, J=7Hz), 5.00(1H, quint, J=5Hz), 6.87(1H, d, J=8Hz), 6.99(1H, dd, J=6Hz, 8Hz), 8.15(1H, d, J=6Hz), 8.26(1H, s)

MS m/z: 370[M+H]⁺

標記カルボン酸ナトリウム

MS m/z: 392[M+Na]⁺

・2-ブトキシ-3-(2-カルボキシル-2-シアノビニル)-8-シクロヘプチルオ
キシイミダゾ[1,2-a]ピリジン及びそのナトリウム塩（化合物21）

標記カルボン酸

融点：160-165 ℃

NMR (CDCl₃) δ : 1.00 (3H, t, J=7Hz), 1.5-2.2 (16H, m), 4.64 (2H, t, J=7Hz),
4.6-4.8 (1H, m), 6.86 (1H, d, J=8Hz), 6.97 (1H, dd, J=6Hz, 8Hz), 8.14 (1H,
d, J=6Hz), 8.24 (1H, s)

MS m/z : 398 [M+H]⁺

標記カルボン酸ナトリウム

MS m/z : 420 [M+Na]⁺

・3-(2-カルボキシル-2-シアノビニル)-8-(5-カルボキシル)ベンチルオキシ
2-(trans-3,7-ジメチル-2,6-オクタジエン-1-イル)オキシイミダゾ
[1,2-a]ピリジン及びそのナトリウム塩（化合物24）

標記カルボン酸

融点：149-151 ℃

NMR (CDCl₃) δ : 1.5-2.2 (19H, m), 2.34 (2H, t, J=7.3Hz), 4.22 (2H, t,
J=6.8Hz), 5.63 (1H, t, J=6.4Hz), 6.82 (1H, d, J=7.8Hz), 6.95 (1H, dd,
J=7.8Hz, 6.6Hz), 8.15 (1H, d, J=6.6Hz), 8.23 (1H, s)

MS m/z : 518 [M+H]⁺

標記カルボン酸ナトリウム

MS m/z : 540 [M+Na]⁺

・3-(2-カルボキシル-2-シアノビニル)-8-シクロペンチルオキシ-2-(1,3-
ジクロロ-2-プロポキシ)イミダゾ[1,2-a]ピリジン及びそのナトリウム塩
（化合物25）

融点：185-187 ℃

NMR (CDCl₃) δ : 1.7-2.1 (8H, m), 4.0-4.2 (4H, m), 5.0-5.1 (1H, m), 5.6-
5.7 (1H, m), 6.69 (1H, d, J=8Hz), 7.02 (1H, dd, J=7Hz, 8Hz), 8.05 (1H, d, J=7Hz), 8.26 (1H, s)

MS m/z : 424 [M+H]⁺

標記カルボン酸ナトリウム
MS m/z : 446 [M+Na]⁺

産業上の利用可能性

本発明の1−アザインドリジン誘導体は、優れた細胞接着分子阻害作用に基づいて、炎症組織への白血球の浸潤を抑制し、抗炎症剤、抗アレルギー剤、抗肋血症ショック剤、自己免疫疾患治療剤、臓器移植拒絶反応抑制剤、虚血再灌流障害治療剤、癌転移抑制剤等として利用し得る。
請求の範囲

1. 一般式（I）

\[
\begin{array}{c}
\text{N} \\
\text{OR}_2 \\
\text{CN} \\
\text{COOH}
\end{array}
\]

[式中、\(R_1 \) は式 - OR, \(R_2 \) は NH COR, \(R_3 \) は \(C_3 \sim C_8 \) シクロアルキル、
\(C_3 \sim C_8 \) シクロアルキル C_1 - C_6 アルキル、カルボキシル C_1 - C_6 アルキル、
フェニル C_1 - C_6 アルキル、\(R_4 \) は C_1 - C_6 アルキル、\(C_3 \sim C_8 \) シクロアルキル、
\(R_5 \) は C_1 - C_6 アルキル (ハロゲンで 2 置換されていてもよい)、
\(C_3 \sim C_8 \) シクロアルキル、\(C_5 \sim C_{10} \) アルケニル又は式 - (CH_2)_m - R (m は 1 又は 2, R は \(C_3 \sim C_8 \) シクロアルキル、C_1 - C_6 アルコキシ、テトラヒドロフリル) を表す]

で示される 1-アザインドリジン誘導体又はその薬学的に許容される塩。

2. \(R_1 \) が \(C_3 \sim C_8 \) シクロアルキルオキシである請求項 1 記載の化合物。

3. \(R_1 \) が \(C_3 \sim C_8 \) シクロアルキルオキシで、\(R_1 \) が C_1 - C_6 アルキル (ハロゲンで 2 置換されていてもよい)、\(C_3 \sim C_8 \) シクロアルキル又は \(C_3 \sim C_8 \) シクロアルキルメチルである請求項 1 記載の化合物。

4. \(R_1 \) が \(C_3 \sim C_8 \) シクロアルキルメトキシである請求項 1 記載の化合物。

5. \(R_1 \) が \(C_3 \sim C_8 \) シクロアルキルメトキシで、\(R_2 \) が C_1 - C_6 アルキル
又は \(C_3 \sim C_8 \) シクロアルキルである請求項 1 記載の化合物。
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/00918

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl6 C07D471/04 // A61K31/435

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl6 C07D471/04 // A61K31/435

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 CAPLUS, REGISTRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
24 May, 1999 (24. 05. 99)

Date of mailing of the international search report
1 June, 1999 (01. 06. 99)

Name and mailing address of the ISA/Japanese Patent Office
Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

国際出願番号 PCT/JP99/00918

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int. Cl* C07D471/04 // A61K31/435

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int. Cl* C07D471/04 // A61K31/435

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
CAPLUS, REGISTRY (STN)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
</table>

C欄の続きにも文献が挙げられている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「B」国際出願前の出願または特許であるが、国際出願日以後に公表されたもの
「C」優先特許権に基づき提出される文書又は他の文書の発行日若しくは他の特別な理由を確認するために引用する文献（理由を付す）
「O」出願書類による開示、使用、展示等に言及する文献
「P」国際出願日前に、かつ優先権の主張の基礎となる出願

国際調査を完了した日 24.05.99
国際調査報告の発送日 01.06.99

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
種 村 慎 樹

電話番号 03-3581-1101 内線 3491

様式PCT／ISA／210（第2ページ）（1998年7月）