REGULATION OF FOOD PREFERENCE USING GLP-1 AGONISTS

Inventors: Kirsten Raun, Lyngby (DK); Pia Von Voss, Vaerlose (DK); Liselotte Bjerre Knudsen, Valby (DK); Kjell Malmlof, Kalmar (SE)

Assignee: Novo Nordisk A/S, Bagsvaerd (DK)

Correspondence Address:
NOVO NORDISK, INC.
PATENT DEPARTMENT
100 COLLEGE ROAD WEST
PRINCETON, NJ 08540 (US)

Related U.S. Application Data
Continuation of application No. PCT/DK04/00853, filed on Dec. 9, 2004.

Foreign Application Priority Data
Dec. 9, 2003 (DK)......................... PA 2003 01816

Publication Classification

Int. Cl.
A61K 38/26 (2006.01)

U.S. Cl. .. 514/12

ABSTRACT
GLP-1 agonists selectively decrease the amount of food intake, wherein the food has a high glycemic index or wherein the amount of mono-and di-saccharides together constitute a large proportion of the total amount of carbohydrates.
REGULATION OF FOOD PREFERENCE USING GLP-1 AGONISTS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of International Application Number PCT/DK2004/000853, filed Dec. 9, 2004, which claims priority to Danish Patent Application Number PA 2003 01816, filed Dec. 9, 2003, and U.S. Provisional Application No. 60/529,480, filed Dec. 15, 2003, the contents of each of which is incorporated herein in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to the use of GLP-1 agonists to reduce calorie intake from foods with a high glycemic index, or from foods wherein a high proportion of the carbohydrates is constituted by mono- and di-saccharides.

BACKGROUND OF THE INVENTION

[0003] Lifestyle in many parts of the world today is characterized by an enormous meal and “between-meal” intake of calories from solid food and snacks as well as drinkable calories. This lifestyle is often referred to as “western world lifestyle”, and it is generally regarded as unhealthy. Our food earlier consisted of an average of 10% protein, 50% fat and 60% carbohydrates; the carbohydrates mostly in the form of slowly absorbed carbohydrates. The food and especially the between-meal snack consumed today often has a much higher amount of quickly absorbed carbohydrates and fat. The amount of quickly absorbed carbohydrates may be measured as the glycemic index or as the fraction of mono- and di-saccharide of the total amount of carbohydrates. The excess intake of quickly absorbed carbohydrates and/or high fat leads to reduced feelings of hunger, and to increased stress (WF Horn, N Keim. Effects of glycemic index on hunger, stress and arousal. FASEB Journal 2003:17(4-5):A7097). Also, some human beings have cravings for sweet and/or fat food, sometimes enhanced by stress or premenstrual tension, or they may have psychological problems manifested as binge eating or compulsive eating habits. As a consequence of this western world lifestyle and the psychological disorders described above there is a general excessive intake of food like sodas, juice, chocolatemilk, sweetened coffee, candy, chocolate, cake, biscuits, crackers, french fries, burgers, white bread with jam or jelly or honey, chips, sweet and fat cereals.

[0004] GLP-1 has been described as an incretin hormone with a large array of effects. GLP-1 was discovered in 1984 and found to be an important incretin [Nauck, M. A.; Kleine, N.; Orskov, C.; Holst, J. J.; Willms, B.; Creutzfeldt, W., Diabetologia 1993, 36, 741-744]. It is released from the L-cells in the intestine upon a meal and potently releases insulin from the beta-cells in the pancreas. Numerous effects other than just stimulation of insulin release have been ascribed to GLP-1. In the pancreas, GLP-1 not only releases insulin, it does so in a glucose-dependent manner, and it has a number of other functionally important effects: stimulation of insulin biosynthesis, restoration of glucose sensitivity to the islets, stimulation of increased expression of the glucose transporter GLUT-2 and glucokinase. GLP-1 also has a number of effects on regulation of beta-cell mass, stimulation of replication and growth of existing beta-cells, inhibition of apoptosis and neogenesis of new b-cells from duct precursor cells, which leads to reduced hepatic glucose output. In the gut, GLP-1 is a potent inhibitor of motility and gastric emptying and has also been shown to inhibit gastric acid secretion. The inhibition of gastric emptying leads to decreased food intake and reduced body weight [Flint, A.; Raben, A.; Astrup, A.; Holst, J. J., J Clin Invest 1998, 101, 515-520; Zander, M.; Mudshad, S.; Madson, J. L.; Holst, J. J., Lancet 2002, 359, 824-830]. Thus, the current belief is that the GLP-1 agonists may be able to control the progression of the type 2 diabetes disease by not only controlling blood glucose, but also by a number of other effects. GLP-1 has also been proposed to have direct effects on glucose uptake in liver, muscle and adipose tissue but the quantitative significance of these effects has been questioned [Kiellner, T. J.; Habener, J. F., Endocrine Reviews 1999, 20, 876-913]. New publications even suggest that it does not stop here, there may be specific receptors in the heart which along with the benefits of reducing blood glucose may prevent cardiovascular complications, and that GLP-1 stimulates memory and learning capabilities. A comprehensive review exists on the glucagon-like peptides [Kiellner, T. J.; Habener, J. F., Endocrine Reviews 1999, 20, 876-913].

[0005] A large number of articles have been published on the effects of GLP-1 on food intake. GLP-1 reduces food intake, both after central administration and after peripheral administration (Turtion, Nature 1996:379:69-72, Flint J Clin Invest 1998, 101, 515-520). Also, central administration of high doses of GLP-1 induces taste aversion (Tang-Christensen, Diabetes 1998:47:530-537). However, site directed micro injections of GLP-1 into the PVN induces pharmacologically specific inhibition of feeding without induction of taste aversive behaviour (McAloon, Wellman, Am. J. Phys 1998:274,R23-R29). In animals having their arcuate nucleus lesioned by neonatal monosodium glutamate treatment, central administration of GLP-1 has lost its anorectic potential but is still inducing taste aversion (Tang-Christensen, Diabetes 1998:47:530-537). Further support of dissociated specific satiety inducing central targets of GLP-1 and non-specific taste aversion inducing central targets come from lesion studies showing that PVN constitute a target where GLP-1 elicits satiety whereas the central amygdala and the parabrachial nuclei constitute areas involved in mediating GLP-1 induced taste aversion (van Dijk and Thiele, Neuropeptides 1999:33, 406-414). Other studies have confirmed that there are diverse roles of GLP-1 receptors in the control of food intake and taste aversion (Kinzig, J Neuroscience 2002:22(23):10470-10476). Also, chronic repetitive central administration of the GLP-1 antagonist, exendin-9-39, enhances food intake suggesting that an endogenous tone of satiety mediating GLP-1 exists in central pathways mediating body weight homeostasis (Meeran, Endocrinology 199:140:244-250). In a human study, continuous infusion of GLP-1 to type 2 diabetic patients gave rise to marked improvement of glycaemic control and caused moderate yet non-significant weight loss (Zander, Lancet 2002: 359, 824-830). The site of the anorectic action of peripherally administered GLP-1 is unknown but participation of both central and peripheral sites in GLP-1 is likely, because a recent study has shown that radiolabelled GLP-1 readily gains access to the central nervous system (Hassan, Nuci Med Biol 1999:26:413-420). The nucleus of the solitary tract is situ-
ated adjacent to the blood brain barrier free area postrema, and other studies using radio-labelled neuropeptides have shown that peripheral administration of neuropeptides gain access both to the area postrema as well as the adjacent subpostrema regions including the dorsal vagal complex (Whitcomb Am J Phys 1990: 259:G687-G691). Thus, it is likely that peripherally administered GLP-1 enters the nucleus of the solitary tract with resulting impact on ascending neurons involved in regulation of food intake. Interaction of GLP-1 with vagal afferents from the gastrointestinal tract should also be considered as mediator of its anorectic actions because transection of the vagus nerve renders the stomach of anaesthetised pigs insensitive to the anikinic actions of intravenously administered GLP-1 (Weitgrefen, Am J Phys 1998:275:984-992). Probably both vagal afferents and GLP-1 receptors accessible from the periphery are responsible for the anorexia induced by GLP-1, because we have seen that bilateral subdiaphragmatic vagotomy on rats carrying the anorectic GLP-1 producing tumour has no impact on the development of anorexia (Jensen, JCI 1998: 101:S03-S10). Last, GLP-1 has been shown to inhibit intake of different kinds of food, both rich in fat and in carbohydrate (Jennings, Diabetes Res and Clin Pract 2000:50(1):S386).

Despite this in dept knowledge it as never been described that a GLP-1 agonist has the effect of specifically modifying the intake of food associated with an unhealthy western world lifestyle. This effect could be useful in the treatment of all kinds of disorders linked to an increased intake of sweet or fat food.

Earlier studies suggest that serotonergic drugs effect a selective reduction in the intake of carbohydrate rich food [Wurtman, Neurophysiopharmacology, 1993, 9, 201-210].

SUMMARY OF THE INVENTION

The present inventors have surprisingly found that GLP-1 agonists can be used to specifically modify the intake of food by a subject, wherein said food has a high glycemic index or food wherein mono- or di-saccharide constitute a large proportion of the total amount of carbohydrate. Accordingly, in one aspect the present invention relates to a method for reducing intake of food by a subject, wherein said food has a glycemic index above 60%, or wherein said food has a glycemic index above 40% combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

In another aspect, the invention relates to a method for reducing intake of food by a subject, wherein mono- and di-saccharides in said food together constitute more than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

In another aspect, the invention relates to a method of increasing intake of food in a subject wherein mono- and di-saccharides together constitute less than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

In still another aspect, the invention relates to a method of treating a subject with an abnormal or excessive intake of food wherein the glycemic index is above 60%, or wherein the glycemic index is above 40% combined with that more than 30% of the total amount of energy stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

In still another aspect, the invention relates to a method of treating a subject with an abnormal or excessive intake of food wherein the mono- and di-saccharides together constitute more than 25% of the total amount of carbohydrates, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

In yet another aspect, the invention relates to a method for promoting the sales of a GLP-1 agonist-containing product, said method comprising the public distribution of information describing the reduced intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates attributable to the consumption of said product and optionally the benefits connected with that.

In yet another aspect, the invention relates to a pharmaceutical product, comprising: (a) a GLP-1 agonist which reduces the intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates in a container; and (b) a notice associated with said container in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by said agency of said GLP-1 compound for human or veterinary administration to reduce intake of food with a high glycemic index.

Definitions

The glycemic index is a measure of the ability of food to raise the blood glucose level.

The glycemic index of a food is determined by feeding a group consisting of at least 10 healthy people a portion of food containing 50 grams of digestible (available) carbohydrate and then measure the effect on their blood glucose levels during the following two hours. For each person, the area under their two-hour blood glucose response (glucose AUC) is measured. On another occasion, the same group of people consume 50 g of glucose, and their two-hour blood glucose response is also measured. The glycemic index for the food is the AUC determined for the food divided by the AUC determined for glucose multiplied by 100% (calculated as the average for the group). Food with a high glycemic index contain slowly digested carbohydrate, which produces a large rapid rise and fall in the level of blood glucose. In contrast, foods with a low glycemic index score contain slowly digested carbohydrate, which produces a gradual, relatively low rise in the level of blood glucose.

In the present context “mono-saccharides” is intended to indicate a carbohydrate that cannot be hydroly-
sed to simpler carbohydrates. The most relevant mono-
saccharides in food are glucose and fructose.

In the present context “di-saccharides” is intended to
indicate carbohydrates which can be hydrolysed into
two mono-saccharides. The most relevant di-saccharides in food
are sucrose, maltose and lactose.

The amount of mono- and di-saccharides in food
may be analysed specifically by enzymatic, gas-liquid chroma-
tography (GLC) or high performance liquid chromatog-
raphy (HPLC) methods. Depending on the food matrix to be
analyzed, extraction of the low molecular weight carbohy-
drates in aqueous ethanol, usually 80% (v/v), may be
advisable before analysis. Relevant analysis methods are
provided in e.g. Southgate, “Determination of food carbo-
Greenfield, “Food composition data. Production, manage-
ment and use”, Elsevier Applide Science, London, 1992; and
Department of Health, “Dietary sugars and human health,

In the present context, “carbohydrates” are defined as in
“Carbohydrates in human nutrition. (FAO Food and
FAO/WHO Expert Consultation Rome, 14-18 Apr. 1997,
namely as polyhydroxy aldehydes, ketones, alcohols, acids,
their simple derivatives and their polymers having linkages of
the acetal type.

In the present context, “fat” is intended to indicate
mono-, di- and tri-carboxylic acid ester derived from
glycerol and cholesterol, where the glycerols are the more
important source of energy in the food of the two. The
amount of fat in food may be determined as disclosed in
FAO: Food energy—methods of analysis and conversion
2002.

In the present context, “total carbohydrate content” is
intended to indicate the sum of carbohydrates present in
the food. It is not measured as such, but rather calculated as
the difference between the total weight of the food and the
sum of the weights of the non-carbohydrate components
[FAO: Food energy—methods of analysis and conversion
2002.

In the present context “obese” or “obesity” implies an
excess of adipose tissue. In this context obesity is best
viewed as any degree of excess adiposity that imparts a
health risk. The distinction between normal and obese
individuals can only be approximated, but the health risk
imparted by obesity is probably a continuum with increasing
adiposity. However, in the context of the present invention,
individuals with a body mass index (BMI=body weight in
kilograms divided by the square of the height in meters)
above 25 are to be regarded as obese.

In the present context “food”, unless otherwise
stated, is intended to indicate food in any form, i.e. both
liquid and solid food, as well as basic food and candy,
snacks, etc.

In the present context, “abnormal or excessive
intake of food” is intended to indicate an intake with
pathological consequences, such as obesity, or which can be
ascribed to a psychological state connected with e.g. preg-
nancy or premenstrual tension, or to a psychological disease,
such as binge eating or compulsory eating habits.

An “effective amount” of a compound as used
herein means an amount sufficient to cure, alleviate or
partially arrest the clinical manifestations of a given disease
or state and its complications. An amount adequate to
accomplish this is defined as “effective amount”. Effective
amounts for each purpose will depend on the severity of the
disease or injury as well as the weight and general state of
the subject. It will be understood that determining an appro-
priate dosage may be achieved using routine experimenta-
tion, by constructing a matrix of values and testing different
points in the matrix, which is all within the ordinary skills of
a trained physician or veterinarian.

The term “treatment” and “treating” as used herein
means the management and care of a patient for the purpose
of combating a condition, such as a disease or a disorder.
The term is intended to include the full spectrum of treat-
ments for a given condition from which the patient is suffer-
ing, such as administration of the active compound to allevi-
ate the symptoms or complications, to delay the progression
of the disease, disorder or condition, to alleviate or relief the
symptoms and complications, and/or to cure or eliminate the
disease, disorder or condition as well as to prevent the
condition, wherein prevention is to be understood as the
management and care of a patient for the purpose of com-
bating the disease, condition, or disorder and includes the
administration of the active compounds to prevent the onset
of the symptoms or complications.

In the present context “reducing intake of food” is
intended to indicate that the amount of food (measured by its
energy content) eaten by a group consisting of one or more
subjects being administered a GLP-1 agonist is reduced
compared to a similar control group not being administered
a GLP-1 agonist, as provided in the present invention.
Similarly, “increasing intake of food” is intended to indicate
that the amount of food (measured by its energy content)
eaten by a group consisting of one or more subjects being
administered a GLP-1 agonist is increased compared to a
similar control group not being administered a GLP-1 ago-
nist, as provided in the present invention.

DESCRIPTION OF THE INVENTION

In one embodiment, the present invention relates to the
use of GLP-1 agonists to modify the intake of specific
types of food by a subject wherein the food has a high
glycemic index or wherein the mono-and di-saccharides
together constitute a large proportion of the total amount of
carbohydrate in said food.

In one embodiment, the invention provides a
method for decreasing the intake of food by a subject,
wherein the food has a high glycemic index or wherein the
mono-and di-saccharides together constitute a large propor-
tion of the total amount of carbohydrate in said food, said
method comprising the administration of an effective
amount of a GLP-1 agonist to said subject. In particular, the
glycemic index of the food may be above 60%, such as
above 65%, such as above 70%, such as above 75%, such as
above 80%, such as above 90%.

In another embodiment, the invention provides a
method for decreasing the intake of food by a subject,
wherein the food has a glycemic index above 40%, and wherein more than 30% of the total amount of energy stems from fat, the method comprising administering an effective amount of a GLP-1 agonist to said subject. This embodiment includes any combination of food with a glycemic index above 40%, such as above 45%, such as above 50%, such as above 55%, such as above 60%, such as above 65%, such as above 70%, such as above 75%, such as above 80%, such as above 90% and wherein more than 30%, such as more than 35%, such as more than 40%, such as more than 50%, such as more than 60%, such as more than 70%, such as more than 80% of the total amount of energy stems from fat.

[0033] In one embodiment, the invention provides a method of decreasing the intake of food by a subject, wherein mono- and di-saccharides together constitute more than 25% of the total amount of carbohydrate in said food, the method comprising administering to said subject an effective amount of a GLP-1 agonist. In particular mono- and di-saccharides together constitute more than 30%, such as more than 35%, such as more than 40%, such as more than 45%, such as more than 50%, such as more than 70%, such as more than 80%, such as more than 90%, or even 100%. In particular, more than 30%, such as more than 40%, such as more than 50%, such as more than 60%, such as more than 70%, such as more than 80% of the total amount of energy in said food stems from fat. In one embodiment, more than 25% of the total mono- and tri-saccharides together constitute more than 25% of the total amount of carbohydrates.

[0034] In another embodiment, the invention provides a method of increasing the intake of food by a subject, wherein the food has a low glycemic index or wherein the mono- and di-saccharides together constitute a small proportion of the total amount of carbohydrate in said food, said method comprising the administration of an effective amount of a GLP-1 agonist to said subject. In particular the glycemic index of the food may be below 60%, such as below 50%, such as below 40%, such as below 35%, such as below 30%, such as below 20%, such as below 10%, such as below 5%.

[0035] In another embodiment, the invention provides a method of increasing the intake of food by a subject wherein the food has a glycemic index below 40%, and wherein less than 30% of the total amount of energy stems from fat, said method comprising the administration to a subject of an effective amount of a GLP-1 agonist. This embodiment includes any combination of food with a glycemic index below 40%, such as below 30%, such as below 20%, such as below 10%, such as below 5% and wherein less than 30%, such as less than 20%, such as less than 10%, such as less than 5% of the total amount of energy stems from fat.

[0036] In yet another embodiment, the invention provides a method of increasing the intake of food by a subject, wherein mono- and di-saccharides together constitute less than 25% of the total amount of carbohydrates in said food, such as less than 20%, such as less than 15%, such as less than 10%. In particular, the food is also poor in fat as measured by how much of the total amount of energy in the food stems from fat. In particular less than 30%, such as less than 25%, such as less than 20%, such as less than 15%, such as less than 10%, or even less than 5% of the total energy stems from fat. In another embodiment, mono-, di- and tri-saccharides together constitute less than 25% of the total amount of carbohydrates.

[0037] In another embodiment, the decrease in intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates, as discussed above, is accompanied by an increase in the intake of food with a low glycemic index or of food wherein mono-and di-saccharides together constitute as small proportion of the total amount of carbohydrates, as discussed above.

[0038] The amount of energy in food is typically quoted in calories or joules, and it can be measured by burning the food, e.g. in a bomb calorimeter. The amount of energy attributable to fat can be determined by multiplying the amount of fat in the food, analysed as discussed above, with 38 kJ/g.

[0039] It is well-known that many people prefer sweet and/or fatty food because they think it has a better taste. Accordingly, the present invention also provides a method a regulating taste preferences, and in particular regulating taste preferences away from sweet and fatty food, said method comprising the administration of an effective amount of a GLP-1 agonist.

[0040] It is quite clear that the western world style is not healthy as evidenced by the increase in obesity with all its pathological consequences, such as diabetes and cardiovascular complications, and in that sense the lifestyle must be regarded as abnormal. Accordingly, in one embodiment, the present invention relates to a method of normalising lifestyle, and in particular the food preference, said method comprising the administration of an effective amount of a GLP-1 agonist.

[0041] In one embodiment, the subject to be treated has an increased appetite, hunger or craving for sweet or fat food. This may be related to e.g. stress, quit of smoking, pregnancy, pre-menstrual tension, or it can be ascribed physiological problems or diseases, such as binge eating, compulsive eating habits and Seasonal Affective Disorder.

[0042] Binge eating disorder (BED) is a fairly new diagnosable disorder—see e.g. Int. J. Obesity, 2002, 26, 299-307 and Curr. Opin. Psychiatry, 17, 43-48, 2004. BED is characterised by binge eating episodes as is bulimia nervosa (BN). However, subjects with BED do not, contrary to patients with BN, engage in compensatory behaviours, such as e.g. self-induced vomiting, excessive exercise, and misuse of laxatives, diuretics or enemas. Studies have shown that 1-3% of the general population suffer from BED, whereas a higher prevalence (up to 25-30%) have been reported for obese patients [Int. J. Obesity, 2002, 26, 299-307]. These numbers show that BED subjects may or may not be obese, and that obese patients may or may not have BED, i.e. that the cause of the obesity is BED. However, a proportion of subjects with BED eventually becomes obese due to the excess calorie intake. Laboratory studies have shown that BED patients consumed more dessert and snack (rich in fat and poor in proteins) than did an obese control group [Int. J. Obesity, 2002, 26, 299-307], and the method of the present invention is thus believed to be particular well-suited for treatment of BED.

[0043] In one embodiment, the invention relates to a method or treating BED in a subject, the method comprising
administering to said subject an effective amount of a GLP-1 agonist. In particular, said subject is obese.

[0044] In one embodiment, the invention relates to the use of a GLP-1 agonist in the manufacture of a medicament for the treatment of BED in a subject. In particular, said subject is obese.

[0045] Bulimia nervosa is characterised by the same binge eating episodes as is BED, however, BN is, however, also characterised by the above mentioned compensatory behaviour. A proportion of subjects with BN will eventually become obese to the extent that the compensatory behaviour cannot fully compensate the excess calorie intake. Studies have compared binges of patients with BN and with BED concluding that binges in subjects with BN were higher in carbohydrates and sugar content than those of subjects with BED. No difference was, however, found in the number of consumed calories [Int. J. Obesity, 2002, 26, 299-307]. The methods of the present invention is therefore believed to be particular well-suited for the treatment of BN.

[0046] In one embodiment, the invention relates to a method of treating BN in a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist. In particular, said subject is obese.

[0047] In one embodiment, the invention relates to the use of a GLP-1 agonist in the manufacture of a medicament for the treatment of BN in a subject. In particular, said subject is obese.

[0048] Craving for food or the intense desire to eat a particular food is normally associated with energy dense food, such as fatty or carbohydrate-rich food [Appetite, 17, 177-185, 1991; Appetite, 17, 167-175, 1991]. Examples of such foods include chocolate, biscuits, cakes and snacks. A proportion of food cravers eventually become obese due to the excess calorie intake. The methods of the present invention are believed to be particular well-suited for the treatment of food craving, in particular craving for fatty or carbohydrate-rich food.

[0049] In one embodiment, the invention relates to a method of treating food craving, such as craving for fatty or carbohydrate-rich food, such as chocolate craving in a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist.

[0050] A snack is typically a light, casual, hurried convenience meal eaten between real meals. Snacks are typically fatty and carbohydrate-rich. Studies have shown that there is an increasing prevalence of snacking, especially among US children, and that snacking is a significant cause for the increase in BMI in e.g. children [J. Pediatrics, 138, 493-498, 2001; Obes. Res., 11, 143-151, 2003]. A shift towards more healthy snacks could probably arrest or change the increase in BMI which has taken place over the last years. Data in shown here illustrate that GLP-1 agonists are capable of shifting food preferences from fatty and carbohydrate-rich food to low-fat glycemic index low food. GLP-1 agonist are therefore useful in diminishing the amount of snacking or in changing the preference of snack to more healthy snack.

[0051] In one embodiment, the invention provides a method of changing the snack preference in a subject to low fat, glycemic index low snack, the method comprising administration of an effective amount of a GLP-1 agonist to said subject. In particular, said subject is obese.

[0052] In one embodiment, the invention provides a method of lowering the amount a snack intake ("snacking") of a subject, the method comprising administering to said subject an effective amount of a GLP-1 agonist. In particular, said subject is obese.

[0053] According to the above discussion, GLP-1 agonists are believed to be particular useful in the treatment of obesity, wherein the obesity is caused by BED, BN, food craving (in particular chocolate craving) or snacking.

[0054] The subject of the present invention can in principle be any animal with GLP-1 receptors, and in particular mammals, such as humans, pet animals, such as cats and dogs, and zoo animals, such as elephants, giraffes, lions and snakes.

[0055] In another embodiment, the invention relates to a method of promoting sales, purchase, buying or trade of a GLP-1 agonist-containing product, said method comprising the public distribution of information describing the reduced intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates attributable to the consumption of said product and the benefits connected with that, an in particular the health benefits. In particular, said distribution of said information is achieved by a method selected from the group consisting of verbal communication, pamphlet distribution, print media, audio tapes, magnetic media, digital media, audiovisual media, billboards, advertising, newspapers, magazines, direct mailings, radio, television, electronic mail, braille, electronic media, banner ads, fiber optics, and laser light shows. In particular, said product is a pharmaceutical product.

[0056] In one embodiment of the methods of the present invention, the GLP-1 agonist is administered to the subject in connection with a meal. In the present context, "in connection with a meal" is intended to indicate a period of up to four hours before or after the meal, such as up to 3 hours before or after, such as up to 2 hours before or after, such as up to 1 hour before or after, such as 30 minutes before or after, such as 15 minutes before or after, such directly in connection with the meal.

[0057] In the present context, "a GLP-1 agonist" is understood to refer to any compound, including peptides and non-peptide compounds, which fully or partially activate the human GLP-1 receptor. In a preferred embodiment, the "GLP-1 agonist" is any peptide or non-peptide small molecule that binds to a GLP-1 receptor, preferably with an affinity constant (Kd) or a potency (EC50) of below 1 µM, e.g. below 100 nM as measured by methods known in the art (see e.g. WO 98/08871) and exhibits insulino tropic activity, where insulino tropic activity may be measured in vivo or in vitro assays known to those of ordinary skill in the art. For example, the GLP-1 agonist may be administered to an animal and the insulin concentration measured over time.

[0058] In one embodiment, the GLP-1 agonist is selected from the group consisting of GLP-1(7-36)-amide, GLP-1(7-37), a GLP-1(7-36)-amide analogue, a GLP-1(7-37) analogue, or a derivative of any of these.

[0059] In the present application, the designation "an analogue" is used to designate a peptide wherein one or
more amino acid residues of the parent peptide have been substituted by another amino acid residue and/or wherein one or more amino acid residues of the parent peptide have been deleted and/or wherein one or more amino acid residues have been added to the parent peptide. Such addition can take place either at the N-terminal end or at the C-terminal end of the parent peptide or both. Typically “an analogue” is a peptide wherein 6 or less amino acids have been substituted and/or added and/or deleted from the parent peptide, and most preferably, a peptide wherein one amino acid has been substituted and/or added and/or deleted from the parent peptide.

[0060] In the present application, “a derivative” is used to designate a peptide or analogue thereof which is chemically modified by introducing e.g., ester, alkyl or lipophilic functionalities on one or more amino acid residues of the peptide or analogue thereof. Methods for identifying GLP-1 agonists are described in WO 93/19175 (Novo Nordisk A/S) and examples of suitable GLP-1 analogues and derivatives which can be used according to the present invention includes those referred to in WO 99/43705 (Novo Nordisk A/S), WO 99/43706 (Novo Nordisk A/S), WO 99/43707 (Novo Nordisk A/S), WO 98/08871 (Novo Nordisk A/S), WO 99/43708 (Novo Nordisk A/S), WO 99/43341 (Novo Nordisk A/S), WO 87/06941 (The General Hospital Corporation), WO 90/11296 (The General Hospital Corporation), WO 91/11457 (Buckley et al.), WO 98/43658 (Eli Lilly & Co.), EP 0708179-A2 (Eli Lilly & Co.), EP 0969680-A2 (Eli Lilly & Co.), WO 01/98351 (Eli Lilly & Co).

[0061] In one embodiment, the GLP-1 agonist is a derivative of GLP-1(7-36)-amide, GLP-1(7-37), a GLP-1(7-36)-amide analogue or a GLP-1(7-37) analogue, which comprises a lipophilic substituent.

[0062] In this embodiment of the invention, the GLP-1 derivative preferably has three lipophilic substituents, more preferably two lipophilic substituents, and most preferably one lipophilic substituent attached to the parent peptide (i.e., GLP-1(7-36)-amide, GLP-1(7-37), a GLP-1(7-36)-amide analogue or a GLP-1(7-37) analogue), where each lipophilic substituent comprises 4-40 carbon atoms, more preferably 8-30 carbon atoms, even more preferably 8-25 carbon atoms, even more preferably 12-25 carbon atoms, and most preferably 14-18 carbon atoms.

[0063] In one embodiment, the lipophilic substituent comprises a partially or completely hydrogenated cyclopentanophenanthrene skeleton.

[0064] In another embodiment, the lipophilic substituent is a straight-chain or branched alkyl group.

[0065] In yet another embodiment, the lipophilic substituent is an acyl group of a straight-chain or branched fatty acid. Preferably, the lipophilic substituent is an acyl group having the formula CH₃(CH₂)nCO—, wherein n is an integer from 4 to 38, preferably an integer from 12 to 38, and most preferably is CH₃(CH₂)ₙCO—, CH₃(CH₂)ₙCO—, CH₃(CH₂)ₙCO—, CH₃(CH₂)ₙCO—, CH₃(CH₂)ₙCO—, and CH₃(CH₂)ₙCO—. In a more preferred embodiment, the lipophilic substituent is tetradecanoyl. In a most preferred embodiment, the lipophilic substituent is hexadecanoyl.

[0066] In a further embodiment of the present invention, the lipophilic substituent has a group which is negatively charged such as a carboxylic acid group. For example, the lipophilic substituent may be an acyl group of a straight-chain or branched alkane α,ω-dicarboxylic acid of the formula HOOC(CH₂)ₙCO—, wherein m is an integer from 4 to 38, preferably an integer from 12 to 38, and most preferably is HOOC(CH₂)ₙCO—, HOOC(CH₂)ₙCO—, HOOC(CH₂)ₙCO—, or HOOC(CH₂)ₙCO—.

[0067] In the GLP-1 derivatives of the invention, the lipophilic substituent(s) contain a functional group which can be attached to one of the following functional groups of an amino acid of the parent GLP-1 peptide:

[0068] (a) the amino group attached to the alpha-carbon of the N-terminal amino acid,

[0069] (b) the carboxy group attached to the alpha-carbon of the C-terminal amino acid,

[0070] (c) the epsilon-amino group of any Lys residue,

[0071] (d) the carboxy group of the R group of any Asp and Glu residue,

[0072] (e) the hydroxy group of the R group of any Tyr, Ser and Thr residue,

[0073] (f) the amino group of the R group of any Trp, Asn, Gln, Arg, and His residue, or

[0074] (g) the thiol group of the R group of any Cys residue.

[0075] In one embodiment, a lipophilic substituent is attached to the carboxy group of the R group of any Asp and Glu residue.

[0076] In another embodiment, a lipophilic substituent is attached to the carboxy group attached to the alpha-carbon of the C-terminal amino acid.

[0077] In a most preferred embodiment, a lipophilic substituent is attached to the epsilon-amino group of any Lys residue.

[0078] In a preferred embodiment of the invention, the lipophilic substituent is attached to the parent GLP-1 peptide by means of a spacer. A spacer must contain at least two functional groups, one to attach to a functional group of the lipophilic substituent and the other to a functional group of the parent GLP-1 peptide.

[0079] In one embodiment, the spacer is an amino acid residue except Cys or Met, or a dipeptide such as Gly-Lys. For purposes of the present invention, the phrase “a dipeptide such as Gly-Lys” means any combination of two amino acids except Cys or Met, preferably a dipeptide wherein the C-terminal amino acid residue is Lys, His or Trp, preferably Lys, and the N-terminal amino acid residue is Ala, Arg, Asp, Asn, Gly, Gln, Ile, Leu, Val, Phe, Pro, Ser, Tyr, Thr, Lys, His and Trp. Preferably, an amino group of the parent peptide forms an amide bond with a carboxylic group of the amino acid residue or dipeptide spacer, and an amino group of the amino acid residue or dipeptide spacer forms an amide bond with a carboxyl group of the lipophilic substituent.

[0080] Preferred spacers are lysyl, glutamyl, asparagyl, glycy1, beta-alanyl and gamma-aminobutanoyl, each of which constitutes an individual embodiment. Most preferred spacers are glutamyl and beta-alanyl. When the spacer is
Lys, Glu or Asp, the carboxyl group thereof may form an amide bond with an amino group of the amino acid residue, and the amino group thereof may form an amide bond with a carboxyl group of the lipophilic substituent. When Lys is used as the spacer, a further spacer may in some instances be inserted between the \(\epsilon\)-amino group of Lys and the lipophilic substituent. In one embodiment, such a further spacer is Glu or Asp which forms an amide bond with the \(\epsilon\)-amino group of Lys and another amide bond with a carboxyl group present in the lipophilic substituent, that is, the lipophilic substituent is a \(N^\alpha\)-acylated lysine residue.

In another embodiment, the spacer is an unbranched alkane \(\alpha\)-\(\omega\)-dicarboxylic acid group having from 1 to 7 methylene groups, which spacer forms a bridge between an amino group of the parent peptide and an amino group of the lipophilic substituent. Preferably, the spacer is succinic acid.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{CH}_n(\text{CH}_2)_p\text{NH} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 8 to 33, preferably from 12 to 28 and \(p + q\) is an integer from 1 to 6, preferably 2.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{CH}_n(\text{CH}_2)_p\text{CO} - \text{NHCH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 4 to 24, preferably from 10 to 24.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 6 to 24.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 8 to 18.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 4 to 24 and \(p\) is an integer from 1 to 6.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 10 to 16.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 8 to 18.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 4 to 24 and \(p\) is an integer from 1 to 6.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 10 to 16.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 8 to 18.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 4 to 24 and \(p\) is an integer from 1 to 6.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 10 to 16.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 8 to 18.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 4 to 24 and \(p\) is an integer from 1 to 6.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 10 to 16.

In a further embodiment, the lipophilic substituent with the attached spacer is a group of the formula \(\text{NHICH(\text{COO})H} - \text{CO(\text{CH}_2)_q\text{COO}}\), wherein \(n\) is an integer from 8 to 18.
[0094] In yet another embodiment the GLP-1 agonist is a stable GLP-1 analogue/derivative. Throughout this application a “stable GLP-1 analogue/derivative” means a GLP-1 analogue or a derivative of a GLP-1 analogue which exhibits an in vivo plasma elimination half-life of at least 10 hours in man, as determined by the method described below. Examples of stable GLP-1 analogue/derivatives can be found in WO 98/08871 and WO 99/43706. The method for determination of plasma elimination half-life of a compound in man is: The compound is dissolved in an isotonic buffer, pH 7.4, PBS or any other suitable buffer. The dose is injected peripherally, preferably in the abdominal or upper thigh. Blood samples for determination of active compound are taken at frequent intervals, and for a sufficient duration to cover the terminal elimination part (e.g. Pre-dose, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 24 (day 2), 36 (day 2), 48 (day 3), 60 (day 3), 72 (day 4) and 84 (day 4) hours post dose). Determination of the concentration of active compound is performed as described in Wilken et al., Diabetologia 43 (51): A143, 2000. Derived pharmacokinetic parameters are calculated from the concentration-time data for each individual subject by use of non-compartmental methods, using the commercially available software WinNonlin Version 2.1 (Pharsight, Cary, N.C., USA). The terminal elimination rate constant is estimated by log-linear regression on the terminal log-linear part of the concentration-time curve, and used for calculating the elimination half-life.

[0095] Stable GLP-1 analogues and derivatives are disclosed in WO 98/08871 (analogues with lipophilic substituent) and in WO 02/46227 (analogues fused to serum albumin or to Fe portion of an Ig).

[0096] In another embodiment, the GLP-1 agonist is formulated so as to have a half-life in man, as discussed above, of at least 10 hours. This may be obtained by sustained release formulations known in the art.

[0097] In yet another embodiment the GLP-1 agonist is exendin-4 or exendin-3, an exendin-4 or exendin-3 analogue or a derivative of any of these.

[0098] Examples of exendins as well as analogues, derivatives, and fragments thereof to be included within the present invention are those disclosed in WO 97/46584, U.S. Pat. No. 5,424,286 and WO 01/04156. U.S. Pat. No. 5,424,286 describes a method for stimulating insulin release with an exendin polypeptide. The exendin polypeptides disclosed include HEGITFTSDLSKQMEEEAVRLFIEWLKNGGX, wherein X=p or Y, and HD1X2GTITSDLSKQMEEEAVRLFIEWLKNGGXAPPSG, wherein X=2SD (exendin-3) or GEG (exendin-4). WO 97/46584 describes truncated versions of exendin peptide(s). The disclosed peptides increase secretion and biosynthesis of insulin, but reduce those of glucagon. WO 01/04156 describes exendin-4 analogues and derivatives as well as the preparation of these molecules. Exendin-4 analogues stabilized by fusion to serum albumin or Fe portion of an Ig are disclosed in WO 02/46227.

[0099] In one embodiment, the exendin-4 analogue is HEGITFTSDLSKQMEEEAVRLFIEWLKNGGXAPPSG.
pen-like syringe. Alternatively, parenteral administration can be performed by means of an infusion pump. A further option is a composition which may be a powder or a liquid for the administration of a GLP-1 agonist in the form of a nasal or pulmonary spray. As a still further option, the GLP-1 agonist can also be administered transdermally, e.g. from a patch, optionally an iontophoretic patch, or transmucosally, e.g. buccally. The above-mentioned possible ways to administer GLP-1 agonists are not considered as limiting the scope of the invention.

[0109] In one embodiment, the dosage of GLP-1 agonist to be administered to a patient in a method of the invention is from about 0.1 ug/kg/day to about 20 ug/kg/day.

[0110] In another embodiment, the dosage of GLP-1 agonist to be administered to a patient in a method of the invention is from about 0.5 ug/kg/day to about 2 ug/kg/day.

[0111] In one embodiment, a GLP-1 agonist is co-administered together with further therapeutically active compound used in the treatment of obesity or to induce weight loss or to maintain an obtained weight loss, or used in the treatment of diseases or states where obesity is part of the etiology. Examples of further therapeutically active compounds include antidiabetic agents, antihyperlipidemic agents, antiobesity agents, antihyperpertensive agents and agents for the treatment of complications resulting from or associated with diabetes.

[0112] Suitable antidiabetic agents include insulin, GLP-1 (glucagon like peptide-1) derivatives such as those disclosed in WO 98/08871 (Novo Nordisk A/S), which is incorporated herein by reference, as well as orally active hypoglycemic agents.

[0113] Suitable orally active hypoglycemic agents preferably include imidazolines, sulfonylureas, biguanides, meglitinides, oxadiazolidinediones, thiazolidinediones, insulin sensitizers, α-glucosidase inhibitors, agents acting on the ATP-dependent potassium channel of the pancreatic β-cells e.g. potassium channel openers such as those disclosed in WO 97/22625, WO 99/03861 and WO 00/37474 (Novo Nordisk A/S) which are incorporated herein by reference, potassium channel openers, such as ormitigliride, potassium channel blockers such as nateglinide or BMS-67582, glucagon antagonists such as those disclosed in WO 99/01423 and WO 00/39088 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), all of which are incorporated herein by reference, GLP-1 agonists such as those disclosed in WO 00/42026 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase-IV) inhibitors, PTPase (protein tyrosine phosphatase) inhibitors, glucokinase activators, such as those described in WO 02/08209 to Hoffmann La Roche; inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose intake modulators, GSK-3 (glucogen synthase kinase-3) inhibitors, compounds modifying the lipid metabolism such as antihyperlipidemic agents and antilipidemic agents, compounds lowering food intake, and PPAR (peroxisome proliferator-activated receptor) and RXR (retinoid X receptor) agonists such as ALTR-268, LG-1268 or LG-1069.

[0114] Other examples of suitable therapeutically active compounds include insulin or insulin analogues, sulfonylurea e.g. tolbutamide, chlorpropanide, tolazamide, glibenclamide, glipizide, glimepiride, gliclazide, glyburide, biguanide e.g. metformin, meglitinide e.g. repaglinide or nateglinide/nateglinide.

[0115] Other examples of suitable additional therapeutically active compounds include thiazolidinedione insulin sensitizers e.g. troglitazone, ciglitazone, pioglitazone, rosiglitazone, isaglitazone, darglitazone, englitazone, CS-011/C1-1037 or T 174 or the compounds disclosed in WO 97/41097 (DRF-2344), WO 97/41119, WO 97/41120, WO 00/41121 and WO 98/45292 (Dr. Reddy’s Research Foundation), which are incorporated herein by reference.

[0116] Other examples of suitable additional therapeutically active compounds include insulin sensitizers e.g. such as GI 262570, YM-440, MCC-555, JTT-501, AR-H039242, KRP-297, GW-409544, CRE-16336, AR-H049020, LY510929, MBX-102, CLX-0940, GW-501516 or the compounds disclosed in WO 99/19313 (NN622/DRF-2725), WO 00/50414, WO 00/63191, WO 00/63192, WO 00/63193 (Dr. Reddy’s Research Foundation) and WO 00/23425, WO 00/23415, WO 00/23451, WO 00/23445, WO 00/23417, WO 00/23416, WO 00/63153, WO 00/63196, WO 00/63209, WO 00/63190 and WO 00/63189 (Novo Nordisk A/S), which are incorporated herein by reference.

[0117] Other examples of suitable additional therapeutically active compounds include α-glucosidase inhibitor e.g. voglibose, emglicate, miglitol or acarbose.

[0118] Other examples of suitable additional therapeutically active compounds include glycogen phosphorylase inhibitor e.g. the compounds described in WO 97/09040 (Novo Nordisk A/S).

[0119] Other examples of suitable additional therapeutically active compounds include a glucokinase activator.

[0120] Other examples of suitable additional therapeutically active compounds include an agent acting on the ATP-dependent potassium channel of the pancreatic β-cells e.g. tolbutamide, glibenclamide, glipizide, gliclazide, BMS-67582 or repaglinide.

[0121] Other examples of suitable additional therapeutically active compounds include nateglinide.

[0122] Other examples of suitable additional therapeutically active compounds include an antilipidemic agent or a antilipidemic agent e.g. cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.

[0123] Other examples of said additional therapeutically active compounds include antiobesity compounds or appetite regulating agents. Such compounds may be selected from the group consisting of CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC3 (melanocortin 3) agonists, MC4 (melanocortin 4) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, urocortin agonists, β3 adrenergic agonists such as CL-316243, AJ-9677, GW-0604, LY362884, LY377267 or AZ-40140, MSH (melanocyt-stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin reuptake inhibitors (fluoxetine, seroxat or citalopram), serotonin and noradrenaline reuptake inhibitors, 5HT
(serotonin) agonists, bombesin agonists, galanin antagonists, growth hormone, growth factors such as prolactin or placental lactogen, growth hormone releasing compounds, TRH (thyreotropin releasing hormone) agonists, UCP 2 or 3 (uncoupling protein 2 or 3) modulators, chemical uncouplers, leptin agonists, DA (dopamine) agonists (bromocriptin, doprexin), lipase/amylose inhibitors, PPAR modulators, RXR modulators, TR β agonists, adrenergic CNS stimulating agents, AGRP (agouti related protein) inhibitors, H3 histamine antagonists such as those disclosed in WO 00/42023, WO 00/63208 and WO 00/64884, which are incorporated herein by reference, exendin-4, GLP-1 agonists and ciliary neurotrophic factor. Further antiobesity agents are bupropion (antidepressant), topiramate (anticonvulsant), ecopipam (dopamine D1/D5 antagonist), naltrexone (opioid antagonist), and peptide YY3-36 (Batterham et al, Nature 418, 650-654 (2002)).

[0124] In one embodiment, the antiobesity agent is leptin.

[0125] In one embodiment, the antiobesity agent is peptide YY3-36.

[0126] In one embodiment, the antiobesity agent is a serotonin and norepinephrine reuptake inhibitor e.g. sibutramine.

[0127] In one embodiment, the antiobesity agent is a lipase inhibitor e.g. orlistat.

[0128] In one embodiment, the antiobesity agent is an adrenergic CNS stimulating agent e.g. dexamphetamine, amphetamine, phentermine, mazindol phenidmetrazine, diethylpropion, fenfluramine or dexfenfluramine.

[0129] In one embodiment, the antiobesity agent is oxyntomodulin, as disclosed in WO 03/22304 (Imperial College).

[0130] In one embodiment, the antiobesity agent is a ghrelin antagonist, e.g. as disclosed in WO 01/56592.

[0131] In one embodiment, the antiobesity agent is an energy expenditure modifier.

[0132] In one embodiment, the antiobesity agent is a 11β-Hydroxysteroid Dehydrogenase Type I Inhibitor.

[0133] Other examples of suitable additional therapeutically active compounds include antihypertensive agents. Examples of antihypertensive agents are β-blockers such as alpenrolol, atenolol, timolol, pindolol, propranolol and metoprolol, ACE (angiotensin converting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril, calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem and verapamil, and α-blockers such as doxazosin, urapidil, prazosin and terazosin.

Pharmaceutical Compositions

[0134] Pharmaceutical compositions containing GLP-1 agonists such as Arg1-Thre7-Arg1-Lys5-(N6-(γ-Glu(N5-hexadecanoyl)))-GLP-1(7-37) may be prepared by conventional techniques, e.g. as described in Remington’s Pharmaceutical Sciences, 1985 or in Remington: The Science and Practice of Pharmacy, 19th edition, 1995.

[0135] Thus, injectable compositions of GLP-1 agonists, insulin and autoimmune agents can be prepared using the conventional techniques of the pharmaceutical industry which involves dissolving and mixing the ingredients as appropriate to give the desired end product.

[0136] For example, a GLP-1 agonist such as Arg2-Thre7-Arg1-Lys5-(N6-(γ-Glu(N5-hexadecanoyl)))-GLP-1(7-37) may be dissolved in an amount of water which is somewhat less than the final volume of the composition to be prepared. An isotonicity agent, a preservative and a buffer are added as required and the pH value of the solution is adjusted—if necessary—using an acid, e.g. hydrochloric acid, or a base, e.g. aqueous sodium hydroxide as needed. Finally, the volume of the solution is adjusted with water to give the desired concentration of the ingredients.

[0137] In one embodiment of the invention, the formulation of the GLP-1 agonist has a pH in the range from 7.0 to 10. In another embodiment of the invention the formulation has a pH in the range from 7.0 to 9.5. In a further embodiment of the invention the formulation has a pH in the range from 7.0 to 8.5. In yet another embodiment of the invention the formulation has a pH in the range from 7.0 to 8.0, preferably from 7.4 to 7.8. In a further embodiment of the invention the formulation has a pH in the range from 9.0 to 10.

[0138] Examples of isotonic agents to be used in the formulations of the invention are those selected from the group consisting of a salt (e.g. sodium chloride), a polyhydric alcohol (e.g., xylitol, mannitol, sorbitol or glycerol), a monosaccharide (e.g. glucose or maltose), a disaccharide (e.g. sucrose), an amino acid (e.g. L-glutamic, L-histidine, arginine, lysine, isoleucine, aspartic acid, cysteine, threonine), polyethylene glycol (e.g. PEG4000), propylene glycol, or mixtures thereof. In a further embodiment of the invention the isotonic agent is selected from the group consisting of sodium chloride, glycerol, mannitol, glucose, sucrose, L-glutamic, L-histidine, arginine, lysine or mixtures thereof. Each one of these specific isotonic agents constitutes an alternative embodiment of the invention.

[0139] Examples of preservatives to be used in the formulations of the invention are phenol, m-cresol, methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, 2-phenoxyethanol, butyl p-hydroxybenzoate, 2-phenylethanol, benzyl alcohol, chlorobutanol, and thiomersal, or mixtures thereof. Each one of these specific preservatives constitutes an alternative embodiment of the invention. In a preferred embodiment of the invention the preservative is phenol or m-cresol.

[0140] Examples of suitable buffers to be used in the formulations of the invention are sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, and tri(hydroxyethyl)methylaminomethan, or mixtures thereof. Each one of these specific buffers constitutes an alternative embodiment of the invention. In a preferred embodiment of the invention the buffer is glycylglycine, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate or mixtures thereof.

[0141] Further to the above-mentioned components, solutions containing a GLP-1 agonist may also contain a surfactant in order to improve the solubility and/or the stability of the peptide. In a further embodiment of the invention the formulation further comprises a surfactant. In a further
embodiment of the invention the surfactant is selected from a detergent, ethoxylated castor oil, polyglycolized glycerides, acetylated monoglycerides, sorbitan fatty acid esters, poloxamers, such as 188 and 407, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene derivatives such as alkylated and alkoxylated derivatives (tweens, e.g., Tween-20, or Tween-80), monoglycerides or ethoxylated derivatives thereof, diglycerides or polyoxyethylene derivatives thereof, glycerol, cholic acid or derivatives thereof, lecithins, alcohols and phospholipids, glycerophospholipids (lecithins, kohalinis, phosphatidy serine), glycerolglycolipids (galactopyranoside), sphingophospholipids (sphingomyelin), and sphingoglycolipids (ceramides, gangliosides). DSS (docusate sodium, CAS registry no [577-11-7]), docusate calcium, CAS registry no [128-49-4]), docusate potassium, CAS registry no [7491-49-1]), SDS (sodium dodecyl sulfate or sodium lauryl sulfate), dipalmitoyl phosphatidic acid, sodium caprylate, bile acids and salts thereof and glycine or taurine conjugates, ursodeoxycholic acid, sodium cholate, sodium deoxycholate, sodium taurocholate, sodium glycocholate, N-Hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, anionic (alkyl-aryl-sulfonates) monovalent surfactants, palmitoyl lysophosphatidyl-L-serine, lysophosphatic acid (e.g. 1-acyl-sn-glycero-3-phosphates esters of ethanalamine, choline, serine or threonine), alkyl, alkoxy (alkyl ester), alkoxy (alkyl ether)-derivatives of lysophosphatidyl and phosphatidylethanolamines, e.g. lauryl and myristoyl derivatives of lysophosphatidylcholine, dipalmitoylphosphatidylcholine, and modifications of the polar head group, that is cholines, ethanalamines, phosphatidic acid, serines, threonines, glycine, inositol, and the positively charged DODAC, DOTMA, DCP, BISHOP, lysophosphatidyleserine and lysophosphatidyethanolamine, zwitterionic surfactants (e.g. N-alkyl-N,N-dimethylammonio-1-propanesulfonates, 3-cholamido-1-propylidimethylammonio-1-propanesulfonate, dodecyolphosphocholine, myristoyl lysophosphatidylethanolamine, hen egg lysolecithin), cationic surfactants (quaternary ammonium bases) (e.g. cetyltrimethylammonium bromide, cetylpyridinium chloride), non-ionic surfactants, polyethylenoxoide/polypropylenoxoide block copolymers (Pluronics/Tetronics, Triton X-100, Dodecyl β-D-glucopyranoside) or polymeric surfactants (Tweens 40, 80, Brij-35), fusidic acid derivatives (e.g. sodium tauro-di-hydrofusidate etc.), long-chain fatty acids and salts thereof C6-C12 (e.g. oleic acid and caprylic acid), acylamidines and derivatives, Nα-acylated derivatives of lysine, arginine or histidine, or side-chain acylated derivatives of lysine or arginine, Nα-acylated derivatives of dipeptides comprising any combination of lysine, arginine or histidine and a neutral or acidic amino acid, Nα-acylated derivative of a tripeptide comprising any combination of a neutral amino acid and two charged amino acids, or the surfactant may be selected from the group of imidazoline derivatives, or mixtures thereof. Each one of these specific surfactants constitutes an alternative embodiment of the invention.

In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1 mg/ml to 50 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 0.1 mg/ml to 20 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1 mg/ml to 20 mg/ml. In a further embodiment of the invention the GLP-1 agonist is present in a concentration from 1 mg/ml to 10 mg/ml. Each one of these specific concentration ranges constitutes an alternative embodiment of the invention.

[0144] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference in their entirety and to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein (to the maximum extent permitted by law).

[0145] All headings and sub-headings are used herein for convenience only and should not be construed as limiting the invention in any way.

[0146] The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illustrate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0147] The citation and incorporation of patent documents herein is done for convenience only and does not reflect any view of the validity, patentability, and/or enforceability of such patent documents.

[0148] This invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law.

EXAMPLES

Example 1

Diabetes induced obesity (DIO) was introduced over 25 months, by feeding 4 months old rats a diet consisting of chow and 5 alternating kinds of candy (chocolate, chocolate biscuits, sugar). The candy was changed every day, so that the same candy was offered every fifth day. A lean control group was fed chow only. In the DIO group this was followed by a 12-week treatment with liraglutide (0.2 mg/kg s.c. bid, n=10). The candy and chow offer was continued for the whole treatment period also. Vehicle was given to both obese (n=14) and lean control rats (n=15). Food intake, differentiated between chow and candy, was monitored daily.

Liraglutide significantly (p=0.009) reduced total cumulative caloric intake (4452.3±150.6 vs. 5061.2±99.9
This reduction was a selective reduction in calories obtained from candy (2863.3±200.9 vs. 3803.2±110.2 kcal, p=0.017), since there was actually an increase in calories obtained from chow (1589.0±96.9 vs.1248.5±71.6 kcal, p=0.001).

[0151] Liraglutide is the IND name for Arg34, Lys72(Nε(γ-Glu(N3-hexadecanoyl))-GLP-1(7-37)); Candy 1 (sugar): mono-and di-saccharides constituted 100% of the total amount of carbohydrate; candy 2 (chocolate cream filled crackers): Glycemic index 49%, 39% of the total energy stems from fat, mono- and di-saccharides constitute 57% of the total amount of carbohydrates; candy 3 (milk chocolate): Glycemic index 49%, 60% of the total energy stems from fat, mono- and di-saccharides constitute 90% of the total amount of carbohydrates; candy 4 (milk chocolate with nuts): 80% of the total energy stems from fat, mono- and di-saccharides constitute 80% of the total amount of carbohydrates; candy 5 (toffee chocolate): 80% of the total energy stems from fat, mono- and di-saccharides constitute 75% of the total amount of carbohydrates; chow: 15% of the total energy stems from fat, mono- and di-saccharides constitute 15% of the total amount of carbohydrates;

[0152] The data clearly shows that GLP-1 agonists are capable of reducing the intake of calories, and also that GLP-1 agonists induce a dislike for food with a high glycemic index or wherein the mono-and di-saccharides together constitute a large proportion of the total carbohydrate amount.

Example 2

[0153] An experiment showing the effect of GLP-1 agonists in humans may be designed as described here. Human subjects are administered one or several daily dose(s) of a GLP-1 agonist leading to pharmacological active GLP-1-like levels in the blood or a placebo compound. The subjects are given a choice of foods and drink from one or more of the groups A) to D) and one or more from the groups E) to H).

[0154] A) The glycemic index is above 60%

[0155] B) The glycemic index is above 40% and wherein more than 30% of the total amount of energy stems from fat

[0156] C) The amount of mono- or di-saccharides together constitute more than 25% of total carbohydrate content

[0157] D) The amount of mono- or di-saccharides together constitute more than 25% of total carbohydrate content and wherein more than 30% of the total amount of energy stems from fat

[0158] E) The glycemic index is below 60%

[0159] F) The glycemic index is below 40% and wherein less than 30% of the total amount of energy stems from fat

[0160] G) The amount of mono- and di-saccharides together constitute less than 25% of the total carbohydrate content

[0161] H) The amount of mono- and di-saccharides together constitute less than 25% of the total carbohydrate content, and wherein less than 30% of the total amount of energy stems from fat

[0162] The amount eaten and drunk of all groups of food is calculated in terms of energy intake, and the ability of the GLP-1 agonist to selectively decrease intake of the food from one or more of the groups A) to D) (unhealthy food) and increase the intake of food from one or more of the groups E) to H) (healthy food) is calculated.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 6
<210> SEQ ID NO 1
<211> LENGTH: 31
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 1

His Val Glu Gly Thr Phe Thr Ser Asp Thr Ser Ser Tyr Leu Glu Glu 1 5 10 15
Gln Ala Val Lys Glu Phe Ile Ala Trp Leu Ile Lys Gly Arg Gly 20 25 30

<210> SEQ ID NO 2
<211> LENGTH: 31
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 2
His Val Glu Gly Thr Phe Thr Ser Asp Trp Ser Ser Tyr Leu Glu Glu
1
5
10
15
Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Ile Lys Gly Arg Gly
20
25
30

<210> SEQ ID NO 3
<211> LENGTH: 31
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic

<400> SEQUENCE: 3
His Val Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Glu
1
5
10
15
Gln Ala Val Lys Glu Phe Ile Ala Trp Leu Ile Lys Gly Arg Gly
20
25
30

<210> SEQ ID NO 4
<211> LENGTH: 31
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic

<400> SEQUENCE: 4
His Val Glu Gly Thr Phe Thr Ser Asp Trp Ser Ser Tyr Leu Glu Glu
1
5
10
15
Gln Ala Val Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly
20
25
30

<210> SEQ ID NO 5
<211> LENGTH: 31
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (31)...(31)
<223> OTHER INFORMATION: X-P or Y

<400> SEQUENCE: 5
His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1
5
10
15
Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Xaa
20
25
30

<210> SEQ ID NO 6
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Gila Monster
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)...(2)
<223> OTHER INFORMATION: X=S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)...(3)
<223> OTHER INFORMATION: X=D

<400> SEQUENCE: 6
1. A method for reducing intake of food by a subject, wherein said food has a glycemic index above 60%, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

2. A method of reducing intake of food by a subject, wherein said food has a glycemic index above 40%, and wherein more than 30% of the total energy in said food stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

3. A method for reducing intake of food by a subject, wherein mono- and di-saccharides in said food together constitute more than 25% of the total amount of carbohydrate in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

4. The method according to claim 3, wherein more than 30% of the total energy in said food stems from fat.

5. A method of increasing intake of food by a subject, wherein said food has a glycemic index below 60%, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

6. A method of increasing intake of food by a subject, wherein said food has a glycemic index below 40%, and wherein less than 30% of the total energy in said food stems from fat, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

7. A method of increasing intake of food by a subject wherein mono- and di-saccharides in said food together constitute less than 25% of the total carbohydrate content in said food, said method comprising administering to said subject an effective amount of a GLP-1 agonist.

8. The method according to claim 7, wherein less than 30% of the total energy in said food stems from fat.
9. A method for treating a disease or disorder in a subject where the disease or disorder is selected from the group consisting of binge eating, bulimia nervosa and craving for food, the method comprising administering to said subject an amount of a GLP-1 agonist effective to treat said disease or disorder.

10. A method of treating obesity in a subject, wherein said obesity is caused by binge eating disorder, bulimia nervosa, craving for food or snacking, the method comprising administering to said subject an effective amount of a GLP-1 agonist.

11. A method according to claim 1, wherein said GLP-1 agonist is administered in connection with a meal.

12. A method according to claim 1, wherein said subject is a human, a pet animal or a zoo animal.

13. A method according to claim 12, wherein said subject is a human.

14. A kit comprising: (a) a GLP-1 agonist which reduces the intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates in a container; and (b) a notice associated with said container in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by said agency of said GLP-1 compound for human or veterinary administration to reduce intake of food with a high glycemic index or food wherein mono- and di-saccharides together constitute a large proportion of the total amount of carbohydrates.

15. The method according to claim 1, wherein said GLP-1 agonist is a GLP-1(7-36)-amide or GLP-1(7-37).

16. The method according to claim 1, wherein said GLP-1 agonist is an analogue or a derivative of an analogue of GLP-1(7-36)-amide or GLP-1(7-37).

17. The method according to claim 16, wherein said derivative is Arg^{34}, Lys^{80}(N^\gamma-Glu(N^\delta-hexadecanoyl)))-GLP-1(7-37).

18. The method according to claim 1, wherein said GLP-1 agonist is exendin-4, an exendin-4 analogue or a derivative of said exendin-4 or exendin-4 analogue.

19. The method according to claim 18, wherein said GLP-1 agonist is exendin-4.

* * * * *

* * * * *