发明名称
一种宽带时分双工蜂窝系统下行同步方法

摘要
本发明公开了一种宽带时分双工蜂窝系统下行同步方法，包括在帧结构中的下行导频时隙内设置一个OFDM符号；用下行同步导频时隙内的一个OFDM符号构造下行同步信道；或用下行导频时隙内的两个OFDM符号构造下行同步信道；UE从接收到的OFDM符号中获取下行同步信息。本发明有利于提高系统的同步性能。
1. 一种宽带时分双工蜂窝系统下行同步方法，包括：
 a. 在帧结构中的下行导频时隙内设置一个 OFDM 符号；
 b. 用下行导频时隙内的一个 OFDM 符号构造下行同步信道；
 c. UE 从接收到的 OFDM 符号中获取下行同步信息。

2. 如权利要求 1 所述的下行同步方法，其特征在于：所述下行同步信道
由下行业务时隙 TS0 的一个或几个 OFDM 符号和下行导频时隙内的 OFDM 符
号构造。

3. 如权利要求 2 所述的下行同步方法，其特征在于：所述 OFDM 符号采
用的子载波间隔与下行业务时隙中传输数据采用的 OFDM 相同。

4. 如权利要求 2 所述的下行同步方法，其特征在于：每个构造下行同步
信道的 OFDM 符号子载波是部分子载波频带或整个 OFDM 子载波频带。

5. 如权利要求 4 所述的下行同步信道，其特征在于：当所述下行同步信
道的带宽采用 OFDM 部分子载波构造时，不同小区或扇区用于构造下行同步
信道的子载波位置相同或不同。

6. 一种宽带时分双工蜂窝系统下行同步方法，包括：
 a. 在帧结构中的下行导频时隙内设置两个 OFDM 符号；
 b. 用下行导频时隙内的两个 OFDM 符号构造下行同步信道；
 c. UE 从接收到的 OFDM 符号中获取下行同步信息。

7. 如权利要求 6 所述的下行同步方法，其特征在于：每个 OFDM 符号的
长度与下行业务时隙中 OFDM 符号的长度相同或不同。

8. 如权利要求 6 所述的下行同步方法，其特征在于：每个构造下行同步
信道的 OFDM 符号子载波是部分子载波频带或整个 OFDM 子载波频带。
一种宽带时分双工蜂窝系统下行同步方法

技术领域

本发明涉及移动通信技术领域，特别是涉及一种宽带时分双工蜂窝系统下行同步方法。

背景技术

TD-SCDMA是第三代移动通信系统的三种大国际标准中唯一采用时分双工（TDD）方式，支持上下行非对称业务传输，在频谱利用上具有较大的灵活性。该系统综合采用了智能天线、上行同步、联合检测和软切换等无线电中的先进技术，使系统具有较高的性能和频谱利用率。随着社会的发展以及技术的进步，人们对移动通信的要求不断提高，希望系统能够提供大容量、高速率、低时延的数据传输服务。为了满足这种日益增长的需求，TD-SCDMA系统同样需要不断演进和提高性能。

在TD-SCDMA的演进方案中，为了得到高速率大容量的服务，需要占用更宽的带宽，我们称其为宽带时分双工蜂窝系统。在宽带时分双工蜂窝系统中，数据部分的传输可以采用OFDM（正交频分复用）方式。OFDM方式已经在宽带无线局域网中得到了应用，在蜂窝移动通信中的应用还需要解决一系列的问题。为了实现OFDM方式下的下行同步，需要在宽带系统的条件下引入新的下行同步信道（Synchronization Channel, SCH）来实现下行同步的方法，并需要在新的情况下设计信号结构和工作方式。而在已有的宽带无线局域网中同步方法不能满足时分双工蜂窝系统多小区工作的要求，在多小区工作时难以快速进行小区搜索和建立上下行链路的同步。

发明内容

因此，本发明的目的在于提供一种宽带时分双工蜂窝系统下行同步方法，该方法采用OFDM符号建立小区下行同步信道，使得UE可以通过该信道实现小区初搜和同步建立。

为达到上述目的，本发明提供了一种宽带时分双工蜂窝系统下行同步方法，包括：

a. 在帧结构中的下行导频时隙内设置一个OFDM符号；
b. 用下行导频时隙内的一个 OFDM 符号构造下行同步信道；

c. UE 从接收到的 OFDM 符号中获取下行同步信息。

所述下行同步信道由下行业务时隙 TS0 的一个或几个 OFDM 符号和下行导频时隙内的 OFDM 符号构造。

所述 OFDM 符号采用的子载间隔与下行业务时隙中传输数据采用的 OFDM 相同。

每个构造下行同步信道的 OFDM 符号子载波是部分子载波频带或整个当所述下行同步信道的带宽采用 OFDM 部分子载波构造时，不同小区或扇区用于构造下行同步信道的子载波位置相同或不同。

本发明提供的另一种宽频分双工蜂窝系统下行同步方法，包括：

a. 在帧结构中的下行导频时隙内设置两个 OFDM 符号；

b. 用下行导频时隙内的两个 OFDM 符号构造下行同步信道；

c. UE 从接收到的 OFDM 符号中获取下行同步信息。

每个 OFDM 符号的长度与下行业务时隙中 OFDM 符号的长度相同或不同。

每个构造下行同步信道的 OFDM 符号子载波是部分子载波频带或整个 OFDM 子载波频带。

与现有技术相比，本发明具有以下优点：

本发明针对宽带时分双工蜂窝系统的需求，提出了基于 OFDM 符号的下行同步信道的设计方法和系统同步工作方式，可以实现系统的有效工作。当下行导频时隙（DwPTS）内放置一个 OFDM 符号时，构造下行同步信道（SCH 信道）的 OFDM 与下行业务时隙的 OFDM 符号的参数相似，便于实现。当下行导频时隙内放置两个 OFDM 符号时，可以使得设计更为灵活，下行导频时隙占用的资源较少，且可提高同步性能。

附图说明

图 1 为 TD-SCDMA 系统的帧结构形式示意图；

图 2 为本发明下行同步方法的下行同步信道采用部分 OFDM 符号的带宽构造的示意图；

图 3 为本发明下行同步方法的下行同步信道采用整个 OFDM 符号的带宽
构造的示意图；

图 4 为本发明下行同步方法的不同小区的 SCH 信道采用不同位置的子载波频带的示意图；

图 5 为本发明下行同步方法中一个 TS0OFDM 符号和 DwPTS 信道的 OFDM 符号构造的下行同步信道的示意图；

图 6 为本发明下行同步方法中的 DwPTS 信道内放置两个短 OFDM 符号来构造下行同步信道的示意图；

图 7 为本发明下行同步方法中的 DwPTS 信道内放置两个 OFDM 符号来构造下行同步信道的示意图。

具体实施方式

下面结合附图对本发明的具体实施方式做详细说明。

本发明的宽带无线双工蜂窝系统下行同步方法当 TD-SCDMA 帧结构的业务时隙 TS0～TS6 的数据传输部分采用 OFDM 方式时，在 TD-SCDMA 帧结构中的下行导频时隙内设置一个 OFDM 符号；用下行导频时隙内的一个 OFDM 符号构造下行同步信道；或用下行导频时隙内的两个 OFDM 符号构造下行同步信道；UE 将接收到的 OFDM 符号的时域接收信号进行差分相关方法获取下行同步信息。

为了更好地说明本发明，首先对 TD-SCDMA 的帧结构进行简要说明。图 1 为 TD-SCDMA 系统的帧结构形式示意图。如图 1 所示，TD-SCDMA 标准在物理层拥有独特的帧结构，每个无线子帧由 7 个业务时隙（TS0～TS6）和三个特殊时隙构成。各帧有两个上、下行转换点，Ts0 为下行时隙、Ts1 为上行时隙，并有 GP、Dwpts、Uppts 三个特殊的时隙。业务时隙用来传送数据，三个特殊时隙分别为 DwPTS（下行导频信道，用于系统的下行同步信息的发送），UpPTS（上行导频信道，用于用户接入的上行同步信息发送），GP（转换保护时隙，用于提供下行发送时隙向上行发送时隙转换的时间间隔）。TD-SCDMA 将每个无线帧分为两个 5ms 的子帧。一子帧中的业务时隙总共为 7 个，除时隙 Ts0 必须用于下行、时隙 Ts1 必须用于上行方向外，其余时隙的方向可变化。TD-SCDMA 系统是一个码片速率为 1.28 Mcps，带宽为 1.6MHz 的系统。其数据部分和上下行的导频部分采用同样的信号格式。在 TD-SCDMA 演进方案
中，带宽可以到 20MHz 以上，同时可以支持不同宽度 1.25MHz、2.5MHz、5MHz、10MHz 和 20MHz 工作。当下行业务时隙数据传输部分采用 OFDM 方式，即相应下行导频特殊时隙部分的信号设计可以采用单载波的信号方式，或者采用多个窄带并行传输的 OFDM 工作方式。本发明给出了在下行导频特殊时隙中采用 OFDM 符号来构造下行同步信道的方法。

根据 TD-SCDMA 的帧结构特点，为了使得 TD-SCDMA 演进系统能够与现有的 TD-SCDMA（1.6MHz）系统之间实现邻频共站址部署，相互之间不造成干扰，DwPTS 的时隙长度是受到限制。即 TD-SCDMA 演进系统的 GP 时隙的中心位置必须与现有 TD-SCDMA 系统的对齐，这样才能保证不会造成邻频干扰。同时，GP 时隙的长度与系统设计的小区最大覆盖范围与联系，必须保证一定的长度，从而使得 DwPTS 时隙长度受限制。在下行导频时隙特殊时隙的时间长度有限的情况下，为了用于 OFDM 的下行同步信道，可以在该特殊时隙内设置一个或多个 FM 符号。

当在下行导频特殊时隙内放置一个 OFDM 符号时，可以用下行导频特殊时隙内的单个 OFDM 符号来构造 SCH，也可以用下行导频特殊时隙内的单个 OFDM 符号和下行业务时隙 TS0 中的一个或多个符号联合组成 SCH。图 2 为本发明下行同步方法的下行同步信道采用部分 OFDM 符号的带宽构造的示意图。当下行业务时隙内放置一个 OFDM 符号，则该 OFDM 符号采用的子载波间隔与下行业务时隙中传输数据采用的 OFDM 相同。该 OFDM 符号的 CP 长度可以与下行业务时隙中 OFDM 符号的 CP 长度相等或不同。用下行导频特殊时隙的单个 OFDM 符号来构造 SCH；在这种方法中，当系统采用的带宽比较大的情况下（如 20MHz），则用于下行同步信道 SCH 的带宽，可以采用整个 OFDM 带宽的一部分，如 1.25MHz、5MHz 等；也可以采用整个 OFDM 符号的带宽。如图 2 所示，下行同步信道采用了部分 OFDM 符号的带宽构造。除了用于下行同步信道的 OFDM 部分带宽外，其他子载波可以用于传输数据或不发数据。

图 3 为本发明下行同步方法的下行同步信道采用整个 OFDM 符号的带宽构造的示意图。如图 3 所示，下行同步信道采用了整个 OFDM 符号构造下行同步信道。除了用于下行同步信道的 OFDM 部分带宽外，其他子载波可以用于传输数据或不发数据。
图 4 为本发明下行同步方法的不同小区的 SCH 信道采用不同位置的子载波频带的示意图。如图 4 所示，当采用 OFDM 部分子载波构造 SCH 信道时，不同小区或扇区用于构造 SCH 信道的子载波位置可以不同，这样可以减少不同小区或扇区间干扰。如图 3 所示，有 A、B、C 三个小区，其用于构造小区 SCH 信道的子载波频带不同。

在这个方案中，UE 可以将接收到的 OFDM 符号的时域接收信号进行差分相关方法获取下行同步信息。如通过对同步信号中子载波的频域信号设计，使得通过 IFFT 后在一个 OFDM 符号的时域上呈现出两个对称信号波形。这样可以通过差分相关进行同步处理。

图 5 为本发明下行同步方法中一个 TS0 时隙的 OFDM 符号和 DwPTS 信道的 OFDM 符号构造的下行同步信道的示意图。如果采用多个 OFDM 构造 SCH 信道，则可以将下行业务时隙 TS0 的一个或几个 OFDM 符号与下行导频特殊时隙内的 OFDM 符号组成一个 SCH 信道，如图 5 所示，在图 5 中给出了一个采用一个 TS0 时隙的 OFDM 符号和 DwPTS 信道的 OFDM 符号构造 SCH 信道的例子。当 DwPTS 时隙内的一个 OFDM 符号与下行业务时隙内多个 OFDM 共同构造 SCH 信道时，可以考虑 DwPTS 时隙内的一个 OFDM 符号与下行业务时隙内的导频符号共同构造 SCH 信道的方法。由于每个下行业务时隙内都有用于进行信道估计的导频符号，这些导频符号是已知，且一般发射功率较高，能够提高下行同步和频偏估计的准确性，以及小区初搜的性能。图 5 是一个 TS0 时隙的 OFDM 符号和 DwPTS 信道的 OFDM 符号构造的 SCH 信道，同样，每个 OFDM 符号可以采用如图 2 或图 3 一样的部分 OFDM 子载波带宽或整个 OFDM 符号子载波带宽来构造 SCH 信道。

当下行导频特殊时隙内放置两个 OFDM 符号时，有两种情况，一种是在下行导频特殊时隙内 OFDM 符号的子载波间隔是其下行业务时隙 OFDM 符号子载波间隔的两倍，另一种是在下行导频特殊时隙内 OFDM 符号的子载波间隔与其他下行业务时隙 OFDM 符号子载波相同。

图 6 为本发明下行同步方法中的 DwPTS 信道内放置两个短 OFDM 符号来构造下行同步信道的示意图。为了和现有 TD-SCDMA 系统实现频差共站址部署，TD-SCDMA 演进系统的 DwPTS 的长度受到限制，如果在 DwPTS 时隙中放置两个 OFDM 符号，则有利于系统构造同步信道，实现快速同步。如图 6
所示，在 DwPTS 时隙内放置了两个 OFDM 符号。由于时隙长度有限，每个 OFDM 符号的长度（不含 CP）是下行业务时隙的 OFDM 符号（不含 CP）的一半。也就是说，这两个 OFDM 符号的子载波间隔是下行业务时隙的 OFDM 符号子载波间隔的两倍。这两个 OFDM 符号的 CP 长度可以与下行业务时隙 OFDM 符号的 CP 长度一致或不一致。在图 6 中，DwPTS 时隙内的两个 OFDM 符号可用于构成 SCH 信道。

图 7 为本发明下行同步方法中的 DwPTS 信道内放置两个 OFDM 符号来构造下行同步信道的示意图。如图 6 所示，在下行导频特殊时隙内放置两个 OFDM 符号, 每个 OFDM 符号的子载波间隔与其他下行业务时隙的 OFDM 符号子载波间隔相同。DwPTS 时隙 OFDM 符号的的 CP 与其他下行业务时隙 OFDM 符号 CP 长度可以相同，也可以不同。

由于 DwPTS 内放置了两个与下行业务时隙相同的 OFDM 符号，则图 7 的 DwPTS 时隙的长度将比图 6 的要长。在图 7 中，DwPTS 时隙内的两个 OFDM 符号可用于构造 SCH 信道。同样，在图 6 和图 7 中，DwPTS 时隙中的两个 OFDM 符号可以采用部分 OFDM 子载波或整个 OFDM 子载波来构造 SCH 信道。UE 通过接收到 SCH 信道中的两个 OFDM 符号的子载波，进行相应的处理，可以实现小区下行同步。

本发明的宽带时分双工蜂窝系统下行同步方法提出基于 OFDM 符号的宽带时分双工蜂窝系统的上下行同步信道，为宽带时分双工蜂窝系统实现系统同步和小区初步搜索提供了有效的解决方案。本发明方法提出了在时分双工 OFDM 系统中，TD-SCDMA 帧结构中的下行同步特殊时隙可以设置一个或两个 OFDM 符号。当 DwPTS 时隙置一个 OFDM 符号时，SCH 信道可以采用该时隙内一个 OFDM 符号来构造 SCH 信道，或采用 DwPTS 内的 OFDM 符号和一个或几个 TS0 时隙内的 OFDM 一起构造 SCH 信道；同时，每个构造 SCH 的 OFDM 符号子载波可以是部分子载波频带或整个 OFDM 子载波频带；当 DwPTS 时隙置一个 OFDM 符号，SCH 信道采用该 OFDM 符号与 TS0 时隙内的一个或几个 OFDM 一起构造 SCH 信道。TS0 时隙内的符号可采用导频符号，用于提高同步和小区初搜性能。

当 DwPTS 时隙置两个 OFDM 符号时，每个 OFDM 符号（不包含 CP）的长度是下行业务时隙的 OFDM 符号（不包含 CP）长度的一半，且 CP 长度可
以不相同; SCH 信道可以采用该时隙内两个 OFDM 进行构造，且每个 OFDM 符号可以采用部分或全部子载波来构造 SCH 信道; 当 DwPTS 时隙内置两个 OFDM 符号来构造 SCH 信道，每个 OFDM 符号（不包含 CP）与下行业务时隙的 OFDM 符号（不包含 CP）长度相同；DwPTS 时隙内 OFDM 符号的 CP 与下行业务时隙的 OFDM 符号的 CP 长度可以相同或不同；且每个 OFDM 符号可以采用部分或全部子载波来构造 SCH 信道; 当 OFDM 部分子载波构造 SCH 信道时，不同小区或扇区用于构造 SCH 信道的子载波位置可以不同，这样可以减少不同小区或扇区间的干扰。

虽然通过实施例描绘了本发明，本领域普通技术人员知道，本发明有许多变形和变化而不脱离本发明的精神，希望所附的权利要求包括这些变形和变化而不脱离本发明的精神。
图 1

图 2