
(19) United States
US 20100141665A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0141665 A1
Madruga et al. (43) Pub. Date: Jun. 10, 2010

(54) SYSTEMAND METHOD FOR
PHOTOREALISTIC MAGINGWORKLOAD
DISTRIBUTION

(75) Inventors: Joaquin Madruga, Round Rock,
TX (US); Barry L. Minor, Austin,
TX (US); Mark R. Nutter, Austin,
TX (US)

Correspondence Address:
IBM Corporation (PEC)
c/o Patrick E. Caldwell, Esq.
The Caldwell Firm, LLC, PO Box 59655
DALLAS, TX 75229-0655 (US)

INTERNATIONAL BUSINESS
MACHINES, Armonk, NY (US)

(73) Assignee:

(21) Appl. No.: 12/329,586

150 150

COMPUTE
SERVER

COMPUTE
SERVER

GRAPHICS
CLIENT

USER
INTERFACE

(22) Filed: Dec. 6, 2008

Publication Classification

(51) Int. Cl.
G06F 5/80 (2006.01)

(52) U.S. Cl. .. 345/.505

(57) ABSTRACT

A graphics client receives a frame, the frame comprising
scene model data. A server load balancing factor is set based
on the scene model data. A prospective rendering factor is set
based on the scene model data. The frame is partitioned into
a plurality of server bands based on the server load balancing
factor and the prospective rendering factor. The server bands
are distributed to a plurality of compute servers. Processed
server bands are received from the compute servers. A pro
cessed frame is assembled based on the received processed
server bands. The processed frame is transmitted for display
to a user as an image.

-
150

COMPUTE
SERVER

DISPLAY

Patent Application Publication Jun. 10, 2010 Sheet 1 of 6 US 2010/0.141665 A1

FIG. I 1OO

150 150 150

COMPUTE COMPUTE COMPUTE
SERVER SERVER SERVER

140

110 120

GRAPHICS
152 CLIENT DISPLAY

130

USER
INTERFACE

132

USER

US 2010/0.141665 A1 Jun. 10, 2010 Sheet 2 of 6 Patent Application Publication

OOZ

HOVHHHINI » HOMIEN

90ZEHOV/O ETT GJOW SDNIONVT\/8 CIVOT ZOZfld TO}}_LNOO

US 2010/0.141665 A1

EHOV/

ERHO_LS T\/OOT]ERHOLS T\/OOT

Jun. 10, 2010 Sheet 3 of 6 Patent Application Publication

Patent Application Publication Jun. 10, 2010 Sheet 4 of 6 US 2010/01.41665 A1

FIG. 4 400
-

405 RECEIVE/GENERATE FRAME COMPRISING
- SCENE MODELDATA

410
RECEIVE USER INPUT

415
SET SERVER LOAD BALANCING FACTOR BASED ON FRAME

420 SET PROSPECTIVE RENDERING FACTOR
BASED ONUSER INPUT AND SCENE MODELDATA

425 PARTITION FRAME INTO BANDS BASED ON SERVER LOAD
BALANCING FACTOR AND PROSPECTIVE RENDERING FACTOR

430
DISTRIBUTE BANDS TO COMPUTE SERVERS

435 RECEIVE COMPRESSED PROCESSED
BANDS FROM COMPUTE SERVERS

440 DECOMPRESS RECEIVED COMPRESSED BANDS

445 ASSEMBLE PROCESSED FRAME
BASED ON DECOMPRESSED BANDS

4
50 STORE PROCESSED FRAME

4.
5 DISPLAY MAGE BASED ON PROCESSED FRAME

460
RECEIVE REPORTED RENDERING TIMES FROM SERVERS

465 MODIFY SERVER LOAD BALANCING FACTOR BASED ON
REPORTED RENDERING TIMES

Patent Application Publication Jun. 10, 2010 Sheet 5 of 6 US 2010/0.141665 A1

FIG. 5 5OO

-
505

RECEIVE RAW DISPLAY BAND FROM GRAPHICS CLIENT

510 PARTITION RAW DISPLAY BAND INTO PE BLOCKS BASED
r ONPE LOAD BALANCING FACTOR

515
DISTRIBUTE PE BLOCKS TO PROCESSINGELEMENTS (PE)

520
EACH PERENDERS PE BLOCK

525
RECEIVERENDERED PE BLOCKS

530 COMBINE RENDERED PE BLOCKS INTO PROCESSED
DISPLAY BAND

535
COMPRESS PROCESSED DISPLAY BAND

540 TRANSMIT COMPRESSED DISPLAY BAND
TO GRAPHICS CLIENT

545
DETERMINE RENDER TIME FOREACH PE

550
REPORTRENDERING TIME TO GRAPHICS CLIENT

555 ADJUST PE LOAD BALANCING FACTOR BASED ON
RENDERING TIME FOREACH PE

US 2010/0.141665 A1 Jun. 10, 2010 Sheet 6 of 6 Patent Application Publication

SHEL^dWOO KOEX HEL?VGV

009

?ŽS Å HOWEW

9 (9 IAI

US 2010/014 1665 A1

SYSTEMAND METHOD FOR
PHOTOREALISTIC MAGINGWORKLOAD

DISTRIBUTION

TECHNICAL FIELD

0001. The present invention relates generally to the field of
computer networking and parallel processing and, more par
ticularly, to a system and method for improved photorealistic
imaging workload distribution.

BACKGROUND OF THE INVENTION

0002 Modern electronic computing systems, such as
microprocessor systems, are often configured to divide a
computationally-intensive task into discrete Sub-tasks. For
heterogeneous systems, some systems employ cache-aware
task decomposition to improve performance on distributed
applications. As technology advances, the gap between fast
local caches and large slower memory widens, and caching
becomes even more important. Generally, typical modern
systems attempt to distribute work across multiple processing
elements (PEs) so as to improve cache hit rates and reduce
data stall times.
0003 For example, ray tracing, a photorealistic imaging
technique, is a computationally expensive algorithm that usu
ally does not have fixed data access patterns. However, ray
tracing tasks can nevertheless have a very high spatial and
temporal locality. As such, a cache aware task distribution for
ray tracing applications can lead to high performance gains.
0004 But typical ray tracing approaches cannot be con
figured to take full advantage of cache aware task distribution.
For example, current ray tracers decompose the rendering
problem by breaking up an image into tiles. Typical ray trac
ers either expressly distribute these tiles among computa
tional units or greedily reserve the tiles for access by the PEs
through work stealing.
0005. Both of these approaches suffer from significant
disadvantages. In typical express distribution systems, the
additional workload required to manage the distribution of
tiles inhibits performance. In some cases, this additional
workload can mitigate any gains achieved through managed
distribution.
0006. In typical work-stealing systems, each PE grabs new

tiles after it has processed its prior allotment. But since the
PEs grab the tiles from a general pool, the tiles are less likely
to have a high spatial locality. Thus, in a work-stealing sys
tem, the PEs regularly flush their caches with new scene data
and are therefore cold for the next frame, completely failing to
take any advantage of the task’s spatial locality.

BRIEF SUMMARY

0007. The following summary is provided to facilitate an
understanding of Some of the innovative features unique to
the embodiments disclosed and is not intended to be a full
description. A full appreciation of the various aspects of the
embodiments can be gained by taking into consideration the
entire specification, claims, drawings, and abstract as a
whole.
0008. A graphics client receives a frame, the frame com
prising scene model data. A server load balancing factor is set
based on the scene model data. A prospective rendering factor
is set based on the scene model data. The frame is partitioned
into a plurality of server bands based on the server load
balancing factor and the prospective rendering factor. The

Jun. 10, 2010

server bands are distributed to a plurality of compute servers.
Processed server bands are received from the compute serv
ers. A processed frame is assembled based on the received
processed server bands. The processed frame is transmitted
for display to a user as an image.
0009. In an alternate embodiment, a system comprises a
graphics client. The graphics client is configured to receive a
frame, the frame comprising scene model data; set a server
load balancing factor based on the scene model data; set a
prospective rendering factor based on the scene model data;
partition the frame into a plurality of server bands based on
the server load balancing factor and the prospective rendering
factor; distribute the plurality of server bands to a plurality of
compute servers; receive processed server bands from the
plurality of compute servers; assemble a processed frame
based on the received processed server bands; and transmit
the processed frame for display to a user as an image.

BRIEF DESCRIPTION OF THE DRAWINGS

0010. The accompanying figures, in which like reference
numerals refer to identical or functionally-similar elements
throughout the separate views and which are incorporated in
and form a part of the specification, further illustrate the
embodiments and, together with the detailed description,
serve to explain the embodiments disclosed herein.
0011 FIG. 1 illustrates a block diagram showing an
improved photorealistic imaging system in accordance with a
preferred embodiment;
0012 FIG. 2 illustrates a block diagram showing an
improved graphics client in accordance with a preferred
embodiment;
0013 FIG. 3 illustrates a block diagram showing an
improved compute server in accordance with a preferred
embodiment;
0014 FIG. 4 illustrates a high-level flow diagram depict
ing logical operational steps of an improved photorealistic
imaging workload distribution method, which can be imple
mented in accordance with a preferred embodiment;
0015 FIG. 5 illustrates a high-level flow diagram depict
ing logical operational steps of an improved photorealistic
imaging workload distribution method, which can be imple
mented in accordance with a preferred embodiment; and
0016 FIG. 6 illustrates a block diagram showing an exem
plary computer system that can be configured to incorporate
one or more preferred embodiments.

DETAILED DESCRIPTION

0017. The particular values and configurations discussed
in these non-limiting examples can be varied and are cited
merely to illustrate at least one embodiment and are not
intended to limit the scope of the invention.
0018. In the following discussion, numerous specific
details are set forth to provide a thorough understanding of the
present invention. Those skilled in the art will appreciate that
the present invention may be practiced without such specific
details. In other instances, well-known elements have been
illustrated in Schematic or block diagram form in order not to
obscure the present invention in unnecessary detail. Addition
ally, for the most part, details concerning network communi
cations, electro-magnetic signaling techniques, user interface
or input/output techniques, and the like, have been omitted
inasmuch as such details are not considered necessary to
obtain a complete understanding of the present invention, and

US 2010/014 1665 A1

are considered to be within the understanding of persons of
ordinary skill in the relevant art.
0019. As will be appreciated by one skilled in the art, the
present invention may be embodied as a system, method or
computer program product. Accordingly, the present inven
tion may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resi
dent Software, micro-code, etc.) or an embodiment combin
ing Software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module’ or “system.” Fur
thermore, the present invention may take the form of a com
puter program product embodied in any tangible medium of
expression having computer usable program code embodied
in the medium.

0020. Any combination of one or more computerusable or
computer readable medium(s) may be utilized. The com
puter-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appara
tus, device, or propagation medium. More specific examples
(a non-exhaustive list) of the computer-readable medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CDROM), an optical storage
device, a transmission media Such as those Supporting the
Internet oran intranet, or a magnetic storage device. Note that
the computer-usable or computer-readable medium could
even be paper or another suitable medium upon which the
program is printed, as the program can be electronically cap
tured, via, for instance, optical scanning of the paper or other
medium, then compiled, interpreted, or otherwise processed
in a suitable manner, if necessary, and then stored in a com
puter memory. In the context of this document, a computer
usable or computer-readable medium may be any medium
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device. The computer-usable
medium may include a propagated data signal with the com
puter-usable program code embodied therewith, either in
baseband or as part of a carrier wave. The computer usable
program code may be transmitted using any appropriate
medium, including but not limited to wireless, wireline, opti
cal fiber cable, RF, etc.
0021 Computer program code for carrying out operations
of the present invention may be written in any combination of
one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++
or the like and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user's computer, partly on the user's computer,
as a stand-alone software package, partly on the user's com
puter and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).
0022. The present invention is described below with ref
erence to flowchart illustrations and/or block diagrams of

Jun. 10, 2010

methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0023 These computer program instructions may also be
stored in a computer-readable medium that can direct a com
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable medium produce an article of
manufacture including instruction means which implement
the function/act specified in the flowchart and/or block dia
gram block or blocks.
0024. The computer program instructions may also be
loaded onto a computer or other programmable data process
ing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer implemented process Such that the
instructions which execute on the computer or other program
mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks.
0025. A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.
0026 Input/output or I/O devices (including but not lim
ited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net
works. Modems, cable modems and Ethernet cards are just a
few of the currently available types of network adapters.
0027. Referring now to the drawings, FIG. 1 is a high-level
block diagram illustrating certain components of a system
100 for improved photorealistic imaging workload distribu
tion, in accordance with a preferred embodiment of the
present invention. System 100 comprises a graphics client
110.

0028 Graphics client 110 is a graphics client module or
device, as described in more detail in conjunction with FIG.2,
below. Graphics client 110 couples to display 120. Display
120 is an otherwise conventional display, configured to dis
play digitized graphical images to a user.
0029 Graphics client 110 also couples to a user interface
130. User interface 130 is an otherwise conventional user
interface, configured to send information to, and receive
information from, a user 132. In one embodiment, graphics

US 2010/014 1665 A1

client 110 receives user input from user interface 130. In one
embodiment, user input comprises a plurality of image
frames, each frame comprising scene model data, the scene
model data describing objects arranged in an image. In one
embodiment, user input also comprises camera movement
commands describing perspective (or 'eye') movement from
one image frame to another.
0030. In the illustrated embodiment, graphics client 110
also couples to network 140. Network 140 is an otherwise
conventional network. In one embodiment, network 140 is a
gigabit Ethernet network. In an alternate embodiment, net
work 140 is an Infiniband network.
0031 Network 140 couples to a plurality of compute serv
ers 150. Each compute server 150 is a compute server as
described in more detail in conjunction with FIG.3, below. In
the illustrated embodiment, graphics client 110 couples to the
compute servers 150 through network 140.
0032. In an alternate embodiment, graphics client 110
couples to one or more computer servers 150 through a direct
link 152. In one embodiment, link 152 is a direct physical
link. In an alternate embodiment, link 152 is a virtual link,
such as a virtual private network (VPN) link, for example.
0033 Generally, in an exemplary operation, described in
more detail below, system 100 operates as follows. User 132,
through user interface 130, directs graphics client 110 to
display a series of images on display 120. Graphics client 110
receives the series of images as a series of digitized image
“frames.” for example, by retrieving the series of frames from
a storage on graphics client 110 or from user interface 130.
Generally, each frame comprises scene model data describing
elements arranged in a scene.
0034) For each frame, graphics client 110 partitions the
frame into a plurality of server bands, each server band asso
ciated with a particular compute server 150, based on a server
load balancing factor and a prospective rendering factor.
Graphics client 110 distributes the server bands to the com
pute servers 150. Each compute server 150 (comprising a
plurality of processing elements (PEs)) divides the received
server bands (received as “raw display bands’) into PE
blocks, each PE block associated with a particular PE, based
on a PE load balancing factor. In some embodiments, the
compute servers 150 divide the server bands into PE blocks
based on the PE load balancing factor and prospective ren
dering information received from the graphics client 110. The
compute servers 150 distribute the PE blocks to their PEs.
0035. The PEs process the PE blocks, rendering the raw
frame data and performing the computationally intensive
work of turning the raw frame data into a form suitable for the
target display 120. In photorealistic imaging processing, ren
dering can include ray tracing, ambient occlusion, and other
techniques. The PEs return the processed PE blocks to their
parent compute server 150, which assembles the processed
PE blocks into a processed display band.
0036. In some embodiments, the compute servers 150
compress the processed display bands for transmission to
graphics client 110. In some embodiments, one or more com
pute servers 150 transmit the processed display bands without
additional compression. Each compute server 150 determines
the time each of its PEs took to render its PE block and the
total rendering time for the entire raw display band.
0037. The compute servers 150 adjust their PE load bal
ancing factor based on the individual rendering times for each
PE. In one embodiment, each compute server 150 also reports
its total rendering time to graphics client 110.

Jun. 10, 2010

0038 Graphics client 110 receives the processed display
bands and assembles the bands into a processed frame.
Graphics client 110 transmits the processed frame to display
120 for display to the user. In one embodiment, graphics
client 110 modifies the load balancing factor based on
reported rendering times received from the compute servers
150.
0039 Thus, as described generally above and in more
detail below, graphics client 110 distributes unprocessed
server bands to compute servers 150 based in part on the
relative load between the servers and in part on prospective
rendering information received from the user. The compute
servers 150 divide the unprocessed server bands into PE
blocks based on the relative load between the PE blocks and
the prospective rendering information. The PEs process the
blocks, which the compute servers 150 combine into pro
cessed bands and return to the graphics client 110. Graphics
client 110 assembles the received processed bands into a form
suitable for display to a user. Both the compute servers 150
and graphics client 110 use rendering times to adjust load
balancing factors dynamically.
0040. As such, system 100 can dynamically distribute the
workload among the elements performing computationally
intensive tasks. As the frame data changes, certain portions of
the frame become more computationally intensive than oth
ers, and the system can respond by reapportioning the tasks so
as to keep the response times roughly equivalent. As one
skilled in the art will understand, roughly equivalent response
times indicate a balanced load and help to reduce idle time for
the PES/servers.
0041 FIG. 2 is a block diagram illustrating an exemplary
graphics client 200 in accordance with one embodiment of
the present invention. In particular, client 200 includes con
trol processing unit (PU) 202. Control PU202 is an otherwise
conventional processing unit, configured as described herein.
In one embodiment, client 200 is a PlayStation3TM (PS3). In
an alternate embodiment, client 200 is an x86 machine. In an
alternate embodiment, client 200 is a thin client.
0042 Client 200 also includes load balancing module 204.
Generally, control PU 202 and load balancing module 204
partition a graphics image frame into a plurality of bands
based on a server load balancing factor and a prospective
rendering factor. In particular, in one embodiment, load bal
ancing module 204 is configured to set and modify a server
load balancing factor based on server response times and user
input. In one embodiment, user input comprises manual
server load balancing settings.
0043. In one embodiment, load balancing module 204
divides the frame into bands comprising the frame data, and
system 200 transmits the divided frame data to the compute
servers for rendering. In an alternate embodiment, client 200
transmits coordinate information demarcating the boundaries
of each band in the frame. In one embodiment, the coordinate
information comprises coordinates referring to a cached (and
commonly accessible) frame.
0044 Load balancing module 204 is also configured to set
and modify a prospective rendering factor based on scene
model data, user input, and server response times. In one
embodiment, user input comprises camera motion informa
tion. In one embodiment, camera motion information com
prises a perspective, or camera'eye', and a movement vector
indicating the speed and direction of a change in perspective.
0045. For example, in one embodiment, client 200 accepts
user input including camera motion information and is there

US 2010/014 1665 A1

fore aware of the direction and speed of the eye's motion. In
an alternate embodiment, client 200 accepts user input
including tracking information for a human user's eye move
ment, Substituting the human user's eye movement for a cam
era eye movement. As such, load balancing module 204 can
adjust the server band partitioning in advance, based on the
expected change in computational load across the frame.
0046 That is, one skilled in the art will understand that
certain parts of the frame are more computationally intensive
than other parts. For example, a frame segment consisting of
only a solid, single-color background is much less computa
tionally intensive than a frame segment containing a disco
ball reflecting light from multiple sources. Thus, for example,
load balancing module 204 could divide the frame into three
bands, one band comprising one-half of the disco ball, and
two bands each comprising the entire background and one
quarter of the disco ball.
0047. Further, when the camera eye changes, the scene
elements in the frame (e.g., the disco ball) occupy more or less
of the frame, in a different location of the frame. In one
embodiment, the camera eye movement information includes
the direction and Velocity of the camera or human eye change,
as a “tracking vector. In an alternate embodiment, the camera
eye movement information includes a target Scene object,
upon which the camera eye is focused, and the target scene
object's relative distance from the current perspective point.
That is, if the system is aware of a specific object that is the
focus of the user's attention, a “target scene object, the
system can predict that the scene will shift to move that
specific object toward the center or near-center of the viewing
window. If, for example, the target scene object is located
upward and rightward of the current perspective, the camera
eye, and therefore the scene, will likely next shift upward and
rightward, and the load balancing module can optimize the
server band partitioning for that tracking vector.
0048. As such, in one embodiment, load balancing module
204 uses the camera eye movement information and the scene
model data to adjust the server band partitioning in advance,
which tends to equalize the computational load across the
compute servers. In one embodiment, load balancing module
204 uses the tracking vector, target scene object, and relative
distance to determine the magnitude of the server band par
titioning adjustments. In one embodiment, the magnitude of
the server band partitioning adjustments is a measure of the
“aggressiveness’ of a server band partitioning.
0049 Generally, having partitioned the frame into server
bands, client 200 distributes the server bands to their assigned
compute servers. Client 200 receives processed display bands
from the compute servers in return. In one embodiment, client
200 determines the response time for each compute server. In
an alternate embodiment, client 200 receives reported
response times from each compute server.
0050 Client 200 also includes cache 206. Cache 206 is an
otherwise conventional cache. Generally, client 200 stores
processed and unprocessed frames, and other information, in
cache 206.
0051 Client 200 also includes decompressor 208. In one
embodiment, client 200 receives compressed processed
server bands from the compute servers. As such, decompres
Sor 208 is configured to decompress compressed processed
server bands.
0052 Client 200 also includes display interface 210, user
interface 212, and network interface 214. Display interface
210 is an otherwise conventional display interface, config
ured to interface with a display, such as display 120 of FIG. 1,
for example. User interface 212 is an otherwise conventional
user interface, configured, for example, as user interface 130

Jun. 10, 2010

of FIG.1. Network interface 214 is anotherwise conventional
network interface, configured to interface with a network,
such as network 140 of FIG. 1, for example.
0053 As described above, client 200 is a graphics client,
such as graphics client 110 of FIG. 1, for example. Accord
ingly, client 200 transmits raw server bands to computer
servers for rendering and receives processed display bands
for display. FIG.3 illustrates an exemplary compute server in
accordance with one embodiment of the present invention.
0054. In particular, FIG. 3 is a block diagram illustrating
an exemplary compute server 300 in accordance with one
embodiment of the present invention. In particular, server 300
includes control processing unit (PU) 302. As illustrated,
control PU302 is an otherwise conventional processing unit,
configured to operate as described below.
0055 Server 300 also includes a plurality of processing
elements (PEs) 310. Generally, each PE 310 is an otherwise
conventional PE, configured with a local store 312. As
described in more detail below, each PE 310 receives a PE
block for rendering, renders the PE block, and returns a ren
dered PE block to the control PU 302.

0056 Server 300 also includes load balancing module
304. Generally, control PU 302 and load balancing module
304 partition a received raw display band into a plurality of
PE blocks based on a PE load balancing factor. In particular,
in one embodiment, load balancing module 304 is configured
to set and modify a PE load balancing factor based on PE
response times. In an alternate embodiment, the PE load
balancing factor includes a prospective rending factor, and
load balancing module 304 is configured to modify the PE
load balancing factor based on PE response times and user
input.
0057. In one embodiment, load balancing module 304
divides the received raw display band into PE blocks com
prising the frame data and control PU 302 transmits the
divided frame data to the PEs for rendering. In an alternate
embodiment, control PU 302 transmits coordinate informa
tion demarcating the boundaries of each PE block. In one
embodiment, the coordinate information comprises coordi
nates referring to a cached (and commonly accessible) frame.
0.058 Generally, having partitioned the raw display bands
into PE blocks, server 300 distributes the PE blocks their
assigned PEs. The PEs 310 render their received PE blocks
and return rendered PE blocks to control PU 302. In one
embodiment, each PE310 stores arendered PE block in cache
306 and indicates to control PU302 that the PE has completed
rendering its PE block.
0059. As such, server 300 also includes cache 306. Cache
306 is an otherwise conventional cache. Generally, server 300
stores processed and unprocessed bands, PE blocks, and other
information, in cache 306.
0060 Server 300 also includes compressor 308. In one
embodiment, the graphics client receives compressed pro
cessed server bands from the compute servers. As such, com
pressor 308 is configured to compress processed display
bands for transmission to the graphics client.
0061 Server 300 also includes network interface 314.
Network interface 314 is an otherwise conventional network
interface, configured to interface with a network, Such as
network 140 of FIG. 1, for example.
0062 Generally, server 300 receives raw display bands
from a graphics client. Control PU 302 and load balancing
module 304 divide the received display band into PE blocks
based on a PE load balancing factor. The PEs 310 render their
assigned blocks and control PU 302 assembles the rendered
PE blocks into a processed display band. Compressor 308

US 2010/014 1665 A1

compresses the processed display band and server 300 trans
mits the processed display band to the graphics client.
0063. In one embodiment, control PU302 adjusts the PE
load balancing factor based on the rendering times for each
PE 310. In one embodiment, control PU302 also determines
a total rendering time for the entire display band and reports
the total rendering time to the graphics client. Thus, generally,
server 300 can modify the PE load balancing factor to adapt to
changing loads on the PEs.
0064. Thus, server 300 can balance the rendering load
between the PEs, which in turn helps improve (minimize)
response time. The operation of the graphics client and the
compute server are described in additional detail below. More
particularly, the operation of an exemplary graphics client is
described with respect to FIG. 4, and the operation of an
exemplary compute server is described with respect to FIG.5.
0065 FIG. 4 illustrates one embodiment of a method for
photorealistic imaging workload distribution. Specifically,
FIG. 4 illustrates a high-level flow chart 400 that depicts
logical operational steps performed by, for example, system
200 of FIG. 2, which may be implemented in accordance with
a preferred embodiment. Generally, control PU202 performs
the steps of the method, unless indicated otherwise.
0066. As indicated at block 405, the process begins,
wherein system 200 receives a digital graphic image frame
comprising scene model data for display. For example, sys
tem 200 can receive a frame from a user or other input. Next,
as illustrated at block 410, system 200 receives user input. As
described above, in one embodiment, user input includes
camera movement information.

0067 Next, as illustrated at block 415, system 200 sets or
modifies a server load balancing factor based on the received
frame. Next, as illustrated at block 420, system 200 sets or
modifies a prospective rendering factor based on received
user input and Scene model data. Next, as illustrated at block
425, system 200 partitions the frame into server bands based
on the server load balancing factor and the prospective ren
dering factor.
0068 Based on the user input and the prospective render
ing factor, system 200 is aware of the direction and speed of
the camera eye's motion. As such, system 200 can pre-adjust
the server workload without having to rely exclusively on
reactive adjustments. For example, if the user “looks up or
down (moving the camera eye vertically), system 200 can
decrease the size of the regions of the compute server on the
leading edge to account for the new model geometry that is
about to be introduced into the scene.
0069. Moreover, system 200 can adjust how aggressively

to rebalance the workload based on the speed of the eye
motion. If the camera eye is moving more quickly, system 200
can adjust the workload more aggressively. If the camera eye
is moving more slowly, system 200 can adjust the workload
less aggressively.
0070 Additionally, system 200 can tailor workload rebal
ancing according to the type of eye movement demonstrated
by the user input. That is, certain types of eye movement
respond best to different adjustment patterns. For example,
Zooming in or moving along the eye vector leads to less of an
imbalance across compute servers. As such, system 200 can
adjust the workload less aggressively in response to a rapid
Zoom function, for example, than in response to a rapid pan
function.

0071. In one embodiment, system 200 partitions the frame
into horizontal server bands. In an alternate embodiment,
system 200 partitions the frame into vertical server bands. In
an alternate embodiment, system 200 partitions the frame into

Jun. 10, 2010

horizontal or vertical server bands, depending on which
alignment yields the more effective (load balancing) parti
tioning.
(0072 Next, as illustrated at block 430, system 200 distrib
utes the server bands to compute servers. Next, as illustrated
at block 435, system 200 receives compressed processed
display bands from the compute servers. Next, as illustrated at
block 440, system 200 decompresses the received com
pressed processed display bands.
(0073. Next, as illustrated at block 445, system 200
assembles a processed frame based on the processed display
bands. Next, as illustrated at block 450, system 200 stores the
processed frame. Next, as illustrated at block 455, system 200
displays an image based on the processed frame. As described
above, in one embodiment, system 200 transmits the pro
cessed frame to a display module for display.
(0074) Next, as illustrated at block 460, system 200
receives reported rendering times from the compute servers.
Next, as illustrated at block 465, system 200 modifies the
server load balancing based on the reported rendering times.
The process returns to block 405, wherein the graphics client
receives a frame for processing.
0075 FIG. 5 illustrates one embodiment of a method for
photorealistic imaging workload distribution. Specifically,
FIG. 5 illustrates a high-level flow chart 500 that depicts
logical operational steps performed by, for example, system
300 of FIG.3, which may be implemented in accordance with
a preferred embodiment. Generally, compute PU 302 per
forms the steps of the method, unless indicated otherwise.
(0076. As illustrated at block 505, the process begins,
wherein a compute server receives a raw display band from a
graphics client. For example, system 300 of FIG.3 receives a
raw display band from a graphics client 200 of FIG. 2. Next,
as illustrated at block 510, system 300 partitions the raw
display band into PE blocks based on a PE load balancing
factor.
0077. In one embodiment, the raw display band includes
camera movement information and system 300 partitions the
raw display band into PE blocks based on a PE load balancing
factor and the camera movement information. In one embodi
ment, system 300 partitions the raw display band in a similar
fashion as does system 200 as described with respect to block
425, above. Accordingly, system 300 can dynamically parti
tion the raw display band to account for prospective changes
in the composition of the frame image, helping to maintain
load balance between the PEs.
(0078 Next, as illustrated at block 515, system300 distrib
utes the PE blocks to the processing elements. For example,
control PU 302 distributes the PE blocks to one or more PES
310. Next, as illustrated at block 520, each PE renders its
received PE block. For example, the PEs 310 render their
received PE blocks.
0079. Next, as illustrated at block 525, control PU 302
receives the rendered PE blocks from the PEs 310. As
described above, in one embodiment, control PU302 receives
a notification from the PEs 310 that the rendered blocks are
available in cache 306. Next, as illustrated at block 530,
system 300 combines the rendered PE blocks into a processed
display band.
0080 Next, as illustrated at block 535, system 300 com
presses the processed display band for transmission to the
graphics client. For example, compressor 308 compresses the
processed display band for transmission to the graphics cli
ent. Next, as illustrated at block 540, system 300 transmits the
compressed display band to the graphics client.
I0081. Next, as illustrated at block 545, system 300 deter
mines arender time for each PE. For example, control PU302

US 2010/014 1665 A1

determines a render time for each PE 310. Next, as illustrated
at block 545, system 300 reports the rendering time to the
graphics client. In one embodiment, system 300 calculates
the total rendering time for the processed display band, based
on the slowest PE, and reports the total rendering time to the
graphics client. In an alternate embodiment, system 300
reports the rendering time for each PE to the graphics client.
I0082 Next, as illustrated at block 555, system 300 adjusts
the PE load balancing factor based on the rendering time for
each PE. As described above, system 300 can set the PE load
balancing factor to divide the workload among the PEs such
that each PE takes approximately the same amount of time to
complete its rendering task.
0083. Accordingly, the disclosed embodiments provide
numerous advantages over other methods and systems. For
example, the disclosed embodiments improve balanced
workload distribution over current approaches, especially
work-stealing systems. Because the disclosed embodiments
better distribute the computational workload, work-stealing
is unnecessary, and the computational units can retain rel
evant cache data without also incurring the penalties inherent
in re-tasking a processing element under common work
stealing schema.
0084 More specifically, the disclosed embodiments pro
vide the balance of photorealistic imaging workload distribu
tion, especially in ray tracing applications. By actively man
aging the computationally intensive regions of a frame, and
stalling the computational units waiting for the next frame,
the rendering system spends less time stalled for data.
0085. Further, the disclosed embodiments offer methods
that maintain focus of a computational unit on a particular
region, even as that region is expanded or reduced to maintain
relative workload. As such, any particular computational unit
is more likely to retain useful frame data in its cache, which
improves cache hit rates. Moreover, the improved cache hit
rates overcome the slightly increased intra-frame stalls,
improving the overall rendering time.
I0086. Additionally, the disclosed embodiments provide a
system and method that dynamically adjusts the workload
based on prospective rendering tasking. As such, the dis
closed embodiments can reduce the performance impact of a
rapidly moving camera eye by anticipating changes in the
computational intensity of regions in the scene. Other tech
nical advantages will be apparent to one of ordinary skill in
the relevant arts.
0087. As described above, one or more embodiments
described herein may be practiced or otherwise embodied in
a computer system. Generally, the term "computer as used
herein, refers to any automated computing machinery. The
term “computer therefore includes not only general purpose
computers such as laptops, personal computers, minicomput
ers, and mainframes, but also devices Such as personal digital
assistants (PDAs), network enabled handheld devices, inter
net or network enabled mobile telephones, and other suitable
devices. FIG. 6 is a block diagram providing details illustrat
ing an exemplary computer system employable to practice
one or more of the embodiments described herein.
0088 Specifically, FIG. 6 illustrates a computer system
600. Computer system 600 includes computer 602. Computer
602 is an otherwise conventional computer and includes at
least one processor 610. Processor 610 is an otherwise con
ventional computer processor and can comprise a single-core,
dual-core, central processing unit (PU), Synergistic PU,
attached PU, or other suitable processors.
I0089. Processor 610 couples to system bus 612. Bus 612 is
an otherwise conventional system bus. As illustrated, the
various components of computer 602 couple to bus 612. For

Jun. 10, 2010

example, computer 602 also includes memory 620, which
couples to processor 610 through bus 612. Memory 620 is an
otherwise conventional computer main memory, and can
comprise, for example, random access memory (RAM). Gen
erally, memory 620 stores applications 622, an operating
system 624, and access functions 626.
0090 Generally, applications 622 are otherwise conven
tional Software program applications, and can comprise any
number of typical programs, as well as computer programs
incorporating one or more embodiments of the present inven
tion. Operating system 624 is an otherwise conventional oper
ating system, and can include, for example, Unix, AIX,
Linux, Microsoft WindowsTM, MacOSTM, and other suitable
operating systems. Access functions 626 are otherwise con
ventional access functions, including networking functions,
and can be include in operating system 624.
0091 Computer 602 also includes storage 630. Generally,
storage 630 is an otherwise conventional device and/or
devices for storing data. As illustrated, storage 630 can com
prise a hard disk 632, flash or other volatile memory 634,
and/or optical storage devices 636. One skilled in the art will
understand that other storage media can also be employed.
0092. An I/O interface 640 also couples to bus 612. I/O
interface 640 is an otherwise conventional interface. As illus
trated, I/O interface 640 couples to devices external to com
puter 602. In particular, I/O interface 640 couples to user
input device 642 and display device 644. Input device 642 is
an otherwise conventional input device and can include, for
example, mice, keyboards, numeric keypads, touch sensitive
screens, microphones, webcams, and other Suitable input
devices. Display device 644 is an otherwise conventional
display device and can include, for example, monitors, LCD
displays, GUI screens, text screens, touch sensitive Screens,
Braille displays, and other suitable display devices.
(0093. A network adapter 650 also couples to bus 612.
Network adapter 650 is an otherwise conventional network
adapter, and can comprise, for example, a wireless, Ethernet,
LAN, WAN, or other suitable adapter. As illustrated, network
adapter 650 can couple computer 602 to other computers and
devices 652. Other computers and devices 652 are otherwise
conventional computers and devices typically employed in a
networking environment. One skilled in the art will under
stand that there are many other networking configurations
suitable for computer 602 and computer system 600.
0094. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0.095 One skilled in the art will appreciate that variations
of the above-disclosed and other features and functions, or
alternatives thereof, may be desirably combined into many

US 2010/014 1665 A1

other different systems or applications. Additionally, various
presently unforeseen or unanticipated alternatives, modifica
tions, variations or improvements therein may be Subse
quently made by those skilled in the art, which are also
intended to be encompassed by the following claims.
What is claimed is:
1. A method, comprising:
receiving, by a graphics client, a frame, the frame compris

ing scene model data;
setting a server load balancing factor based on the scene
model data;

setting a prospective rendering factor based on the scene
model data;

partitioning the frame into a plurality of server bands based
on the server load balancing factor and the prospective
rendering factor;

distributing the plurality of server bands to a plurality of
compute servers;

receiving processed server bands from the plurality of
compute servers;

assembling a processed frame based on the received pro
cessed server bands; and

transmitting the processed frame for display to a user as an
image.

2. The method of claim 1, further comprising:
receiving user input; and
wherein setting the prospective rendering factor further

comprises setting the prospective rendering factor based
on the scene model data and received user input.

3. The method of claim 1, wherein partitioning the frame
further comprises selecting between horizontal server bands
and vertical server bands.

4. The method of claim 1, further comprising:
receiving reported rendering times from at least one of the

plurality of servers; and
wherein setting the server load balancing factor further

comprises setting the server load balancing factor based
on the scene model data and the reported rendering
times.

5. The method of claim 1, wherein assembling a processed
frame band further comprises decompressing the received
processed server bands.

6. A computer program product for processing a digitized
graphic frame, the computer program product stored on a
computer usable medium having computer usable program
code embodied therewith, the computer useable program
code comprising:

computer usable program code configured to receive a
frame, the frame comprising scene model data;

computer usable program code configured to set a server
load balancing factor based on the scene model data;

computerusable program code configured to set a prospec
tive rendering factor based on the scene model data;

computer usable program code configured to partition the
frame into a plurality of server bands based on the server
load balancing factor and the prospective rendering fac
tor;

computer usable program code configured to distribute the
plurality of server bands to a plurality of compute serv
ers;

computer usable program code configured to receive pro
cessed server bands from the plurality of compute serv
ers;

Jun. 10, 2010

computer usable program code configured to assemble a
processed frame based on the received processed server
bands; and

computer usable program code configured to transmit the
processed frame for display to a user as an image.

7. The computer program product of claim 6, further com
prising:

computer usable program code configured to receive user
input; and

wherein setting the prospective rendering factor further
comprises setting the prospective rendering factor based
on the scene model data and received user input.

8. The computer program product of claim 6, wherein
partitioning the frame further comprises selecting between
horizontal server bands and vertical server bands.

9. The computer program product of claim 6, further com
prising:

computer usable program code configured to receiving
reported rendering times from at least one of the plural
ity of servers; and

wherein setting the server load balancing factor further
comprises setting the server load balancing factor based
on the scene model data and the reported rendering
times.

10. The computer program product of claim 1, wherein
assemblingaprocessed frame band further comprises decom
pressing the received processed server bands.

11. A method, comprising:
receiving, by a compute server, a raw displayband, the raw

display band comprising scene model data;
the compute server comprising a plurality of processing

elements (PEs);
partitioning the raw display band into a plurality of PE

blocks based on a PE load balancing factor;
distributing the plurality of PE blocks to the plurality of

PEs:
rendering, by each PE, the PE blocks, to generate rendered
PE blocks;

combining, by the compute server, the rendered PE blocks,
to generate a processed display band;

determining, by the compute server, a rendering time for
each PE;

modifying the PE load balancing factor based on the deter
mined rendering times; and

transmitting the processed display band to a graphics cli
ent.

12. The method of claim 11, wherein transmitting com
prises compressing the processed display band.

13. The method of claim 11, further comprising reporting a
rendering time to the graphics client based on the determined
rendering times.

14. The method of claim 11, further comprising:
wherein the raw display band further comprises prospec

tive rendering input; and
wherein partitioning the raw display band comprises par

titioning based on the PE load balancing factor and the
prospective rendering input.

15. The method of claim 11, wherein modifying the PE
load balancing factor further comprises modifying the PE
load balancing factor based on the determined rendering
times and received prospective rendering input.

16. A computer program product for processing a digitized
graphic frame, the computer program product stored on a

US 2010/014 1665 A1

computer usable medium having computer usable program
code embodied therewith, the computer useable program
code comprising:

computer usable program code configured to receive a raw
display band, the raw display band comprising scene
model data;

computer usable program code configured to partition the
raw display band into a plurality of PE blocks based on
a PE load balancing factor;

computer usable program code configured to distribute the
plurality of PE blocks to a plurality of PEs:

computer usable program code configured to render, by
each PE, the PE blocks, to generate rendered PE blocks;

computer usable program code configured to combine the
rendered PE blocks, to generate a processed display
band;

computer usable program code configured to determine a
rendering time for each PE;

computer usable program code configured to modify the
PE load balancing factor based on the determined ren
dering times; and

computer usable program code configured to transmit the
processed display band to a graphics client.

17. The computer program product of claim 16, wherein
transmitting comprises compressing the processed display
band.

18. The computer program product of claim 16, further
comprising computer usable program code configured to
report a rendering time to the graphics client based on the
determined rendering times.

19. The computer program product of claim 16, further
comprising:

wherein the raw display band further comprises prospec
tive rendering input; and

wherein partitioning the raw display band comprises par
titioning based on the PE load balancing factor and the
prospective rendering input.

20. The computer program product of claim 16, wherein
modifying the PE load balancing factor further comprises
modifying the PE load balancing factor based on the deter
mined rendering times and received prospective rendering
input.

21. A system comprising a graphics client, the graphics
client configured to:

receive a frame, the frame comprising scene model data;
set a server load balancing factor based on the scene model

data;
set a prospective rendering factor based on the scene model

data;
partition the frame into a plurality of server bands based on

the server load balancing factor and the prospective ren
dering factor;

Jun. 10, 2010

distribute the plurality of server bands to a plurality of
compute servers;

receive processed server bands from the plurality of com
pute servers;

assemble a processed frame based on the received pro
cessed server bands; and

transmit the processed frame for display to a user as an
1mage.

22. The system of claim 21, further comprising:
wherein the graphics client is further configured to receive

user input; and
wherein setting the prospective rendering factor further

comprises setting the prospective rendering factor based
on the scene model data and received user input.

23. The system of claim 21, further comprising:
wherein the graphics client is further configured to receive

reported rendering times from at least one of the plural
ity of servers; and

wherein setting the server load balancing factor further
comprises setting the server load balancing factor based
on the scene model data and the reported rendering
times.

24. The system of claim 21, further comprising:
a plurality of compute servers, each compute server

coupled to the graphics client and comprising a plurality
of processing elements (PEs), and each compute server
configured to:
receive a raw display band from the graphics client, the

raw display band comprising scene model data;
partition the raw display band into a plurality of PE

blocks based on a PE load balancing factor; and
distribute the plurality of PE blocks to the plurality of

PEs:
wherein each PE is configured to render the PE blocks, to

generate rendered PE blocks; and
wherein each compute server is further configured to:

combine the rendered PE blocks rendered by that com
pute server's PES, to generate a processed display
band;

determine a rendering time for each of that compute
server's PEs:

modify the PE load balancing factor based on the deter
mined rendering times; and

transmit the processed display band to the graphics cli
ent.

25. The system of claim 24, further comprising:
wherein the raw display band further comprises prospec

tive rendering input; and
wherein partitioning the raw display band comprises par

titioning based on the PE load balancing factor and the
prospective rendering input.

c c c c c

