发明名称
润滑油基础油及其制备方法以及润滑油组合物

摘要
本发明提供一种润滑油基础油，其特征在于，其含有饱和成分90质量％以上，且环状饱和成分和饱和成分在该饱和成分中所占的比例为40质量％以下，其粘度指数为110以上，碘值为2.5。本发明的润滑油基础油的粘度、温度特性和热氧化安定性优秀，同时，当配合添加剂时，还能够更进一步地发挥该添加剂的功能。此外，本发明的润滑油基础油可应用于各种润滑油领域，尤其是该润滑油基础油可以降低所应用的装置中的能量损耗，在实现节能化方面非常有用。
1. 润滑油基础油，其特征在于，含有饱和成分 90 质量%以上，且环状饱和成分在该饱和成分中所占的比例为 40 质量%以下，其粘度指数为 110 以上，碘值为 2.5 以下，

上述环状饱和成分中所含的 1 环饱和成分与 2 环以上的饱和成分的质量比满足下述式

\[M_1 / M_2 \leq 3 \]

式中，\(M_1 \) 表示 1 环饱和成分的质量；\(M_2 \) 表示 2 环以上的饱和成分的质量。

2. 权利要求 1 所述的润滑油基础油，其特征在于，2 环以上的饱和成分在上述饱和成分中所占的比例为 0.1 质量%以上。

3. 权利要求 1 所述的润滑油基础油，其特征在于，含有芳烃族成分 0.1 ～ 7 质量%。

4. 权利要求 1 所述的润滑油基础油，其特征在于，支链烷烃在上述润滑油基础油中所占的比例为 54 ～ 99 质量%。

5. 权利要求 1 ～ 4 任一项所述的润滑油基础油，其特征在于，100°C 时的运动粘度为 3.5 ～ 6mm²/s，粘度指数为 130 以上；且凝固点为 -25°C 以下。

6. 润滑油组合物，其特征在于，含有权利要求 1 ～ 5 任一项所述的润滑油基础油，且 -40°C 时的 MRV 粘度为 20000mPa • s 以下。

7. 内燃机用润滑油组合物，其特征在于，含有：

权利要求 1 ～ 5 任一项所述的润滑油基础油，以组合物总量为准，

按磷元素换算为 0.02 ～ 0.08 质量%的磷类抗磨剂、

0.5 ～ 3 质量%的无灰抗氧化剂，和

3 ～ 12 质量%的无灰分散剂。

8. 权利要求 7 所述的内燃机用润滑油组合物，其特征在于，作为安装有排气后处理装置的车辆的内燃机的润滑油使用，且硫酸灰分为 1.2 质量%以下。

9. 内燃机用润滑油组合物，其特征在于，含有：

权利要求 1 ～ 5 任一项所述的润滑油基础油，不含硫作为组成元素的无灰抗氧化剂，和

选自含有硫作为组成元素的无灰抗氧化剂和有机铜化合物中的至少 1 种。

10. 湿式离合器用润滑油组合物，其特征在于，含有：

权利要求 1 ～ 5 任一项所述的润滑油基础油，以组合物总量为准，

0.5 ～ 3 质量%的无灰抗氧化剂，和

3 ～ 12 质量%的无灰分散剂。

11. 权利要求 10 所述的湿式离合器用润滑油组合物，其特征在于，用于两轮机动车用四冲程内燃机。

12. 传动装置用润滑油组合物，其特征在于，含有：

权利要求 1 ～ 5 任一项所述的润滑油基础油，

聚（甲基）丙烯酸酯类粘度指数提高剂，和

磷类极压剂或磷－硫类极压剂。

13. 权利要求 12 所述的传动装置用润滑油组合物，其特征在于，上述润滑油基础油中，
2 环以上的饱和成分在上述饱和成分中所占的比例为 3 质量%以上。
润滑油基础油及其制备方法以及润滑油组合物

技术领域
[0001] 本发明涉及润滑油基础油及其制备方法、润滑油组合物、内燃机用润滑油组合物、湿式离合器用润滑油组合物，以及传动装置用润滑油组合物。

背景技术
[0002] 以往，在润滑油的领域中，试图通过在高度殊制的矿物油等润滑油基础油中配合各种添加剂，来改善润滑油的粘度-温度特性或热-氧化安定性等特性（例如，参照专利文献1～9）。
[0003] 例如，对于汽车用发动机等内燃机所用的润滑油，要求可在苛刻的条件下长期使用的热-氧化安定性。因此，对以往的内燃机用润滑油中，为了确保热-氧化安定性，普遍采用加氢裂化矿物油等高度精制的基础油或合成油等高性能基础油，并在该基础油中配合二硫代磷酸锌（ZDTP）、二硫化苯基甲酸铵（MoDTC）等具有过氧化物分解能力的含硫化合物、或者酚类或胺类抗氧化剂等无灰抗氧化剂。
[0004] 另一方面，在装设四冲程内燃机的两轮机动车中，内燃机、变速器和湿式离合器的润滑使用相同的润滑油来实现。因此，对于所使用的润滑油，作为汽车用润滑油，除了一般所要求的性能以外，还要求具有适合变速器和湿式离合器的润滑的特性。因此，作为用于上述两轮机动车的润滑油，不适宜直接使用用于四轮汽车的润滑油，所以，人们正在进行适合两轮机动车用的四冲程内燃机的润滑油的改良研究（参照例如专利文献7）。
[0005] 另外，近年来，为了与削减二氧化碳气体的排放量等环境问题相对应，汽车、建设机械、农业机械等的节能化，即省燃耗化，已成为当务之急。变速器、主传动减速齿轮等传动装置，对节能化的要求也越来越强烈。作为传动装置中的省燃耗化方法，有通过使润滑油低粘度化来降低滑动面上的摩擦阻力或摩擦阻力的方法。例如，变速器中的汽车用自动变速器或无级变速器均具有液力变矩器、湿式离合器、齿轮轴承装置、油泵、重压控制装置等，另外，手动变速器或主传动减速齿轮均具有齿轮轴承装置，通过使其中所用的润滑油低粘度化来降低摩擦阻力，就可提高动力的传动效率，达到省燃耗化。然而，由于所述润滑油的低粘度化伴随有机溶剂（耐油性、防烧结性（防发热胶着性）、疲劳寿命等）的降低，有时会对变速器等带来不良影响。另外，当为了确保低粘度化的润滑油的耐油性等而添加磷酸类极压剂时，会使疲劳寿命显著变差。另外，虽然硫化类极压剂对改善疲劳寿命是有效的，但众所周知在低粘度的润滑油基础油中，润滑油基础油对粘度的影响要大于添加剂的影响。因此，当为了省燃耗化的目的而使用润滑油低粘度化时，作为用于确保润滑性的手段，人们正在研究在润滑油基础油中配合的磷系极压剂与硫化类极压剂的组合的最优化（参照例如专利文献8、9）。
[0006] [专利文献1] 特开平4-36391号公报
[0007] [专利文献2] 特开昭63-223094号公报
[0008] [专利文献3] 特开平8-302378号公报
[0009] [专利文献4] 特开平9-003463号公报
发明内容

0015 发明要解决的课题

0016 然而，近年来对润滑油特性的要求日益提高，如上述专利文献 1 ～ 9 中所述的润滑油基础油在粘度 - 温度特性和热 • 氧化安定性方面的说明尚不够充分。另外，当使用这些以往的润滑油基础油时，通过配合添加剂来改善上述特性的效果毕竟是有限的。

0017 本发明正是鉴于上述现状而完成的，其目的是提供一种润滑油基础油及其制备方法，以及润滑油组合物，该润滑油基础油的粘度 - 温度特性和热 • 氧化安定性优良，同时在其中配合添加剂的情况下可以更高水平地发挥该添加剂的功能。

0018 解决课题的手段

0019 为了解决上述课题，本发明提供一种润滑油基础油（下文简称为 “第 1 润滑油基础油”），其特征在于，其中含有饱和成分 90 质量％以上，且环状饱和成分在该饱和成分中所占的比例为 40 质量％以下，其粘度指数为 110 以上，并且为 2.5 以下。

0020 在上述第 1 润滑油基础油中，通过使饱和成分的含量和环状饱和成分在该饱和成分中所占的含量以及粘度指数和碘值分别满足上述条件，就可以实现优良的粘度 - 温度特性和热 • 氧化安定性。另外，当在该润滑油基础油中配合添加剂时，可以使该添加剂保持充分而稳定的溶解于润滑油基础油中，同时能够更高水平地发挥该添加剂的功能。

0021 进而，根据上述第 1 润滑油基础油，由于具有上述优良的粘度 - 温度特性，因此可以降低在实用温度范围内的粘度阻力和搅拌阻力，另外，在配合摩擦调整剂等时，可最大限度地发挥其效果。因此，第 1 润滑油基础油可以降低该润滑油基础油在所应用装置中的能量损耗，在实现节能化方面非常有用。

0022 在上述第 1 润滑油基础油中，环状饱和成分中所含的 1 环饱和成分与 2 环以上的饱和成分的质量比，优选满足下述式 (1) 表示的条件：

\[\frac{M_1}{M_2} \leq 3 \quad (1) \]

式中，\(M_1 \) 表示 1 环饱和成分的质量，\(M_2 \) 表示 2 环以上的饱和成分的质量。

0023 另外，在上述第 1 润滑油基础油中，2 环以上的饱和成分在饱和成分中所占的比例优选为 0.1 质量％以上。

0024 进而，上述第 1 润滑油基础油优选含有芳族族成分 0.1 ～ 7 质量％。

0025 进而，在上述第 1 润滑油基础油中，优选100℃时的运动粘度为 3.5 ～ 6mm²/s，其粘度指数为 130 以上，且凝固点为 -25℃以下。

0026 另外，本发明提供一种润滑油基础油（下文简称为“第 2 润滑油基础油”），其特征在于，100℃时的运动粘度为 3.5 ～ 6mm²/s，其粘度指数为 130 以上，并且凝固点为 -25℃以下。

0027 对于上述第 2 润滑油基础油，通过使其100℃时的运动粘度、粘度指数和凝固点分别满足上述条件，可以实现优良的粘度 - 温度特性和热 • 氧化安定性。另外，根据第 2 润滑油
基础油，可以兼顾 135 以上的高粘度指数和 -35℃以下的低温粘度，特别地，可以使 -40℃时的 MRV 粘度显著降低。并且，当在第 2 润滑油基础油中配合添加剂时，可以使该添加剂保持充分而稳定地溶解于润滑基础油中，同时可以更高水平地发挥该添加剂的功能。

[0030] 进而，根据上述第 2 润滑油基础油，由于具有上述优良的粘度 - 温度特性，因此可以降低在实用温度范围内的粘度阻力和搅拌阻力，另外，在配合摩擦调整剂时，可以最大限度地发挥其效果。因此，第 2 润滑油基础油可以降低该润滑基础油在其应用装置中的能量损耗，在实现节能化方面非常有用。

[0031] 予以说明，近来，润滑油的偏好特性日益提高，上述专利文献 1 ～ 9 中记载的那样的润滑基础油在粘度 - 温度特性和热 - 氧化安定性方面是必不可少的。特别地，在 SAE10 等级的润滑基础油或者含有其作为主成分的润滑油组合物中，难以高水平地兼顾高粘度指数和 -35℃以下的低温粘度（CCS 粘度、MRV 粘度、BF 粘度等），需要并用聚 -α - 烷烃基础油或酯类基础油等合成油或低粘度矿物油等情愿低温粘度优良的润滑基础油。而这，上述合成油的价格高，而低粘度矿物油类基础油一般其粘度指数低，NOACK 蒸发量高，因此，如果配合这些润滑基础油，则润滑油的制造成本增加。另外，难以实现高粘度指数化和低蒸发性。另外，当使用这些以往的润滑基础油时，添加剂的配合对上述特性的改善有限。

[0032] 另一方面，根据上述第 1 或者第 2 润滑油基础油，可以实现粘度 - 温度特性和热 - 氧化安定性优良，即便不使用聚 -α - 烷烃基础油或酯类基础油等合成油或低粘度矿物油类基础油，也可以兼顾高粘度指数和 -35℃以下的低温粘度，特别是润滑油在 -40℃时的 MRV 粘度能够得到显著改善的润滑基础油。

[0033] 另外，本发明提供润滑油基础油的制备方法，该方法是 100℃时的运动粘度为 3.5 ～ 6mm²/s、粘度指数为 130 以上的润滑油基础油的制备方法，其特征在于，对其进行脱蜡处理，使其凝固点成为 -25℃以下。

[0034] 这样，通过脱蜡处理来使润滑油基础油的凝固点成为 -25℃以下，可以有效地获得粘度 - 温度特性和热 - 氧化安定性优良，即便不使用聚 -α - 烷烃基础油或酯类基础油等合成油或低粘度矿物油类基础油，也可以兼顾高粘度指数和 -35℃以下的低温粘度，特别是润滑油在 -40℃时的 MRV 粘度能够得到显著改善的润滑基础油。

[0035] 另外，本发明提供一种润滑油组合物，其特征在于，其中有上述第 1 或者第 2 润滑油基础油，且在 -40℃时的 MRV 粘度为 20,000mPa・s 以下。

[0036] 根据本发明的润滑油组合物，通过含有具有上述优良性能的第 1 或者第 2 润滑油基础油，可以高水平地兼顾粘度 - 温度特性和热 - 氧化安定性，即便不配合聚 -α - 烷烃类基础油或酯类基础油等合成油或低粘度矿物油类基础油，也可以兼顾高粘度指数和 -35℃以下的低温粘度。其结果，能够有效地实现 -40℃时的 MRV 粘度为 20,000mPa・s 以下，这是以往的润滑油难以达到的低温性能。

[0037] 另外，本发明提供一种内燃机用润滑油组合物（以下简称“第 1 内燃机用润滑油组合物”），其特征在于，其中有上述第 1 或者第 2 润滑油基础油、以组合物总量为基准，按磷元素换算为 0.02 ～ 0.08 质量％的磷类抗磨剂，0.5 ～ 3 质量％的无灰氧化剂，3 ～ 12 质量％的无灰分散剂。

[0038] 上述第 1 内燃机用润滑油组合物中所含的第 1 或者第 2 润滑油基础油，其本身的
热・氧化安定性优良。进而，当在该第 1 或者第 2 滑油基础油中配合添加剂时，可以使得该添加剂保持稳定地溶解，同时可以更高水平地发挥其功能。另外，通过在这种具有优良特性的滑油基础油中配合磷类抗磨剂（下文有时将其称为“（A-1）成分”）、无灰抗磨剂（下文有时将其称为“（B-1）成分”）以及无灰分散剂（下文有时将其称为“（C-1）成分”），使它们处于各自的作用范围内，可以实现充分的氧化寿命，同时，可以长期充分保持排气后处理装置的性能。

【0039】 另外，上述第 1 内燃机用组合物中所含的第 1 或者第 2 滑油基础油，其本身的粘度 - 温度特性和摩擦特性优良。进而，第 1 或者第 2 滑油基础油在上述那样对添加剂具有优良的溶解性和效果，在配合摩擦调整剂时，可以高水平地得到摩擦减少的效果。因此，利用这种含有优良的滑油基础油的第 1 内燃机用滑油组合物，可以降低由于滑动部位的摩擦阻力和摩擦阻力等所导致的能量损耗，从而实现充分的节能减排。

【0040】 进而，对于以往的滑油基础油来说，难以兼顾对低温粘度特性的改善和确保抗挥发性，但利用本发明的滑油基础油，可以高水平而平衡良好地实现低温粘度特性和抗挥发性二者。因此，本发明的内燃机用滑油组合物除了能提高氧化寿命、维持排气后处理装置的性能以及节能化以外，在改善低温起动性方面也是有用的。

【0041】 予以说明，对于装备内燃机的车辆，为了净化和捕集排气中的硫氧化物或颗粒物质等有害物质，可以安装三元催化器或颗粒过滤器等排气后处理装置，但当使用以往的滑油时，其一部分进入燃烧室，该燃烧物混入到排气中，往往使排气后处理装置的性能降低。特别是，由于烷基二硫代磷酸锌是含有磷和锌的化合物，因此磷成分使三元催化器中毒，另外，锌成分还会由于形成硫酸锌而存在使过滤器堵塞的不良效果。另外，作为抑制排气后处理装置性能降低的手段，可以考虑在汽油机用滑油油中磷类抗磨剂的含量的方法。然而，在以往的滑油油中，如果减少烷基二硫代磷酸锌之类的化合物作为抗氧化剂功能的添加剂的剂量，则会由于氧化油的氧化寿命降低而导致换油期缩短，废油量增大等，从保护地球环境的观点考虑是不希望的，这是存在的问题。

【0042】 上述第 1 内燃机用滑油组合物，由于具有上述优良的性能，因此，适宜作为装备排气后处理装置的车辆的内燃机的滑油使用。此外，如果本发明的内燃机用滑油组合物的硫酸灰分为 1.2 质量％以下，则能够更长期地维持排气后处理装置的性能，因此是优选的。

【0043】 另外，本发明提供一种内燃机用滑油组合物（下文简称为“第 2 内燃机用滑油组合物”），其特征在于，其中含有上述第 1 或者第 2 滑油基础油和不含硫作为组成元素的无灰抗氧化剂、以及选自含有硫作为组成元素的无灰抗氧化剂和有机铝化合物中的至少 1 种。

【0044】 上述第 2 内燃机用滑油组合物中所含的第 1 或者第 2 滑油基础油，其本身的热・氧化安定性和抗挥发性优良。进而，当在第 1 或者第 2 滑油基础油中配合添加剂时，可以使该添加剂保持稳定地溶解，同时可以更高水平地发挥其功能。另外，当在这种具有优良特性的滑油基础油中含有不含硫作为组成元素的无灰抗氧化剂（下文有时称为“（A-2）成分”）、以及选自含有硫作为组成元素的无灰抗氧化剂和有机铝化合物中的至少 1 种（下文有时称为“（B-2）成分”）这二者时，由于（A-2）、（B-2）成分的协同作用而能最大限度地发挥热・氧化安定性的改善效果。因此，利用第 2 内燃机用滑油组合物，可以实现充分的
长效化。
[0045] 另外，上述第2内燃机用润滑油脂组中所含的第1或者第2润滑油基础油，其本身的密度温度特性和摩擦特性优良。进而，如上所述，第1或者第2润滑油基础油在对添加剂的溶解性和效果方面优良，而在配合摩擦调整剂时，可以高水平地得到摩擦减少的效果。因此，利用含有这种优良的润滑油基础油的第2内燃机用润滑油组合物，可以降低由于滑动部位的摩擦阻力或搅拌阻力等所导致的能量损耗，从而实现充分的节油化。
[0046] 进而，对于以往的润滑油基础油来说，难以兼顾对低温粘度特性的改善和确保抗挥发性，但利用第1或者第2润滑油基础油，可以高水平地保持良好的低温粘度特性和抗挥发性。因此，第2内燃机用润滑油组合物除了能实现内燃机的长效率和节能化以外，还能改善低温起动性。
[0047] 另外，在上述第2内燃机用润滑油组合物中，第1或者第2润滑油基础油优选含有芳香族成分0.1～5质量％。
[0048] 另外，本发明提供湿式离合器用润滑油组合物，其特征在于，其中含有上述第1或者第2润滑油基础油，以及以组合物总量为基准，含有0.5～3质量％的无灰抗氧剂和3～12质量％的无灰分散剂。
[0049] 本发明的湿式离合器用润滑油组合物中所含的第1或者第2润滑油基础油，其本身的热氧化安定性、粘度温度特性和摩擦特性优良。进而，当在该润滑油基础油中配合添加剂时，可以使其保持稳定的溶解，同时可以更高水平地发挥其功能。另外，通过在多种优良特性的第1或者第2润滑油基础油中配合无灰抗氧剂（下文有时称为“A-3成分”）以及无灰分散剂（下文有时称为“B-3成分”），来使它们处于各自的上述范围内，即在用于两轮机动车用四冲程内燃机中时，也可以抑制由于劣化导致的淤积（sludge）或变（varnish）等不溶成分的产生以及该不溶成分导致的湿式离合器的堵塞，可以长期充分维持湿式离合器的摩擦特性和传动性能。
[0050] 予以说明，在以往的润滑油的场合，在润滑油与氮氧化物等燃烧气体接触等润滑油的使用条件非常苛刻的两轮机动车用四冲程内燃机中，不能充分抑制由润滑油劣化导致的油或油渣等不溶成分的产生，热氧化安定性变得不充分。一旦由于润滑油劣化导致产生不溶成分，就会使其作为湿式离合器的摩擦材料一般所使用的多孔质材料的空孔发生堵塞，有可能会引起摩擦特性变差或湿式离合器中的传动性能的降低。
[0051] 另外，本发明提供一种传动装置用润滑油组合物，其特征在于，其中含有上述第1或者第2润滑油基础油，聚（甲基）丙烯酸酯类粘度指数提高剂以及含磷化合物。
[0052] 本发明的传动装置用润滑油组合物中所含的第1或者第2润滑油基础油，与粘度等级为同等程度的以往的润滑油基础油相比，其粘度温度特性、热氧化安定性、以及摩擦特性均更优良。进而，当第1或者第2润滑油基础油中配合有添加剂时，可以使该添加剂保持稳定的溶解，同时还能够更高水平地发挥其功能。并且，通过使具有改良特性的润滑油基础油中含有聚（甲基）丙烯酸酯类粘度指数提高剂（下文有时称为“A-4成分”）和含磷化合物（下文有时称为“B-4成分”），即使是在低粘度化的情况下，利用它们的协同作用也可以最大限度地发挥耐磨性、摩擦特性、防烧结性和疲劳寿命的改善效果、以及剪切安定性的改善效果。因此，根据本发明的传动装置用润滑油组合物，可以兼顾传动装置的省燃耗性和耐久性。
进而，以往的润滑油基础油难以兼顾对低温粘度特性的改善和确保其抗挥发性，但是根据本发明的润滑油基础油，可以高水平而平衡良好地实现低温粘度特性和抗挥发性这两个目的。因此，本发明的传动装置（驱动装置）用润滑油组合物除了能实现传动装置的省能耗化和耐久性以外，还能改善低温起动性。

另外，在本发明的传动用润滑油组合物中所含的第1或者第2润滑油基础油中，2环以上的饱和成分在饱和成分中所占的比例优选为3质量％以上。

另外，在本发明的传动用润滑油组合物中，第1或者第2润滑油基础油优选含有芳香族成分0.1～5质量％。

根据本发明，可以提供这样一类润滑油基础油，该基础油不仅粘度-温度特性和热-氧化安定性优良，而且在配合有添加剂时，可以更高水平地发挥该添加剂的功能。本发明的润滑油基础油可适用于各种润滑油领域，尤其在为了使那些应用该润滑油基础油的装置的能耗降低、实现节能化方面是非常有用的。

另外，根据本发明，可以提供这样一类润滑油基础油以及润滑油组合物，该基础油可以高水平地兼顾粘度-温度特性和热-氧化安定性，即便不使用聚-a-烯烃类基础油或酯类基础油等合成油或低粘度矿物油类基础油，也可以兼顾高粘度指数和35℃以下时的低温粘度，特别是能够显著改善润滑油在-40℃时的MRV粘度。另外，根据本发明的润滑油基础油的制备方法，如上所述，可以高效率地获得具有优良性能的本发明的润滑油基础油。

根据本发明，可以实现氧化寿命足够长，且能够长期充分保持排气后处理装置的性能的内燃机用润滑油组合物。

另外，根据本发明，可以实现热-氧化安定性以及粘度-温度特性、摩擦特性和抗挥发性均优良的内燃机用润滑油组合物。另外，通过将本发明的内燃机用润滑油组合物应用于内燃机中，可以实现长效化和节能化，以及可以改善低温起动性。

另外，根据本发明，可以提供这样一种湿式离合器用润滑油组合物，该湿式离合器用润滑油组合物即使在用于两轮机动车用四冲程内燃机的场合，也可以抑制由于劣化导致的淤渣或漆等不溶成分的产生以及由该不溶成分导致的湿式离合器的堵塞，可以长期充分维持湿式离合器的摩擦特性和传动性能。

另外，根据本发明，即使在低粘度化的情况下，也可以实现长期高水平地实现耐热性、防烧结性及疲劳寿命的传动装置用润滑油组合物。另外，通过使用本发明的传动装置用润滑油组合物，可以兼顾传动装置的省能耗化和耐久性，进而可以改善低温起动性。

具体实施方式

下面，详细地说明本发明的优选实施方案。

本发明的第1实施方案的润滑油基础油，其特征在于，含有饱和成分90质量％以上，且环状饱和成分在该饱和成分中所占的比例为40质量％以下，其粘度指数为110以上，碘值为2.5以下。

第1实施方案的润滑油基础油，只要饱和成分的含量和环状饱和成分在该饱和成分中所占的比例、以及粘度指数和碘值满足上述条件，就没有特殊限制。具体来说，可举出
那些在下述各种基础上之中，饱和成分的含量和环状饱和成分在该饱和成分中所占的比例，以及粘度指数和碱值均满足上述条件的基础上，所述基础上包括通过将所述基础油经过常压蒸馏和/或减压蒸馏而得到的润滑油馏分，采用选自溶剂脱沥青、溶剂抽提、加氢裂化、溶剂脱蜡、催化脱蜡、加氢精制、硫酸洗涤、白土处理等精制处理之中的1种方法单独或者2种以上组合地进行精制而得到的链烷烃类基础油、或者正构烷烃类基础油、异构烷烃类基础油等。这些润滑油基础油可以单独使用1种，另外，也可以将2种以上组合使用。

[0067] 作为第1实施方案的润滑油基础油的优选例，可举出以下述的基础油(1)～(8)为原料，将该原料油和/或从该原料油中回收的润滑油馏分通过指定的精制方法进行精制，回收其中的润滑油馏分而得到的基础油：

[0068] (1) 石蜡基类原油和/或混合基类原油常压蒸馏而得到的馏出油
[0069] (2) 石蜡基类原油和/或混合基类原油的常压蒸馏残渣油经过减压蒸馏而得到的馏出油(WGO)
[0070] (3) 由润滑油脱蜡工序得到的蜡(软蜡等)和/或通过天然气制合成油(GTL)技术等得到的合成蜡(费托合成蜡、GTL蜡等)
[0071] (4) 选自基础油(1)～(3)中的1种或者2种以上的混合油和/或该混合油的缓和加氢裂化处理油
[0072] (5) 选自基础油(1)～(4)中的2种以上混合油
[0073] (6) 基础油(1)、(2)、(3)、(4)或(5)的脱沥青油(DAO)
[0074] (7) 基础油(6)的缓和加氢裂化处理油(MHC)
[0075] (8) 选自基础油(1)～(7)中的2种以上混合油。

[0076] 另外，作为上述指定的精制方法，优选加氢裂化、加氢精制等加氢精制;糠醛溶剂抽提等溶剂精制;溶剂脱蜡或催化脱蜡等脱蜡;利用酸性白土或活性白土等的白土精制;硫酸洗涤、苛性钠洗涤等试剂(酸或碱)洗涤等。在本发明中，既可以单独使用这些精制方法中的1种，也可以将2种以上组合使用。另外，在将2种以上的精制方法组合使用时，其顺序没有特殊限制，可适当选择。

[0077] 进而，作为第1实施方案的润滑油基础油，特别优选是通过对选自上述基础油(1)～(8)中的基础油或者从该基础油中回收的润滑油馏分进行规定处理而得到的下述基础油(9)或(10)。

[0078] (9) 将选自上述基础油(1)～(8)中的基础油或者从该基础油中回收的润滑油馏分进行加氢裂化，对其进行产物或由其产物经蒸馏等而回收的润滑油馏分进行溶剂脱蜡或催化脱蜡等脱蜡处理，或者进行该脱蜡处理后经蒸馏而得到的加氢裂化基础油。

[0079] (10) 对选自上述基础油(1)～(8)中的基础油或者从该基础油中回收的润滑油馏分进行加氢异构化，对其进行产物或由其产物经蒸馏等而回收的润滑油馏分进行溶剂脱蜡或催化脱蜡等脱蜡处理，或者在进行该脱蜡处理后经蒸馏而得到的加氢异构化基础油。

[0080] 另外，在得到上述(9)或(10)的润滑油基础油时，在适当的步骤中，根据需要，还可以设置溶剂精制处理和/或加氢精制处理工序。

[0081] 另外，上述加氢裂化•加氢异构化所用的催化剂没有特殊限制，优选使用在将具有裂解活性的复合氧化物(例如，二氧化硅氧化铝、氧化铝氧化硼、二氧化硅氧化银等)或者将该复合氧化物的1种以上组合，用粘合剂进行粘结而成的载体上负载有具有加氢能力的
金属（例如周期表中第 Vla 族的金属及第 VIII 族的金属等 1 种以上）的加氢裂化催化剂，或者在含有沸石（例如 ZSM-5、沸石 β、SAPO-11 等）的载体上负载有含第 VIII 族金属中的至少 1 种以上的具有加氢能力的金属的加氢异构化催化剂。加氢裂化催化剂和加氢异构化催化剂可以通过层合或混合等而组合使用。

[0082] 加氢裂化-加氢异构化时的反应条件没有特殊限制，但优选设定为：氢分压 0.1～20MPa、平均反应温度 150～450°C、LHSV 0.1～3.0hr⁻¹、氢/油比 50～20000scf/b。

[0083] 作为第 1 实施方案的润滑油基础油的制备方法的优选例，可举出以下所示的制备方法 A。

[0084] 即，本发明所述的制备方法 A 具有以下工序：

[0085] 第 1 工序：准备一种载体，该载体在进行 NH₃ 脱附温度依赖性评价时在 300～800°C 下的 NH₃ 脱附量相对于 NH₃ 的总脱附量的百分比在 80% 以下，使该载体上负载周期表中第 Vla 族金属中的至少 1 种和第 VIII 族金属中的至少 1 种，从而获得加氢裂化催化剂；

[0086] 第 2 工序：在加氢裂化催化剂的存在下，将含有软蜡 50 体积%以上的原料油在氢分压 0.1～14MPa、平均反应温度 230～430°C、LHSV0.3～3.0hr⁻¹、氢油比 50～14000scf/b 的条件下进行加氢裂化；

[0087] 第 3 工序：将第 2 工序所得的裂解生成油进行蒸馏分离，得到润滑油馏分；和

[0088] 第 4 工序：对第 3 工序所得的润滑油馏分进行脱蜡处理。

[0089] 以下，详述上述制备方法 A。

[0090] （原料油）

[0091] 在上述制备方法 A 中，使用含有软蜡 50 体积%以上的原料油。予以说明，本发明中所说的“含有软蜡 50 体积%以上的原料油”，其含义包括仅含有软蜡的原料油以及由软蜡与其他原料油形成的混合油并且其中含有软蜡 50 体积%以上的原料油这两者。

[0092] 软蜡是一类在由石蜡类润滑油馏分制备润滑油基础油时，在溶剂脱蜡工序中副产的含蜡成分，在本发明中，软蜡也包括通过将该含蜡成分进一步实施脱蜡处理而获得的成分。软蜡的主成分为正构烷烃和侧链较少的支链烷烃（异构烷烃），其中的环烷烃成分或芳香族成分较少。在制备原料油时使用的软蜡的运动粘度可根据目标润滑油基础油的运动粘度进行适当选择，在制备作为第 1 实施方案的润滑油基础油的低粘度基础油时，优选采用 100°C 时的运动粘度为 2～25mm²/s 左右，优选为 2.5～20mm²/s 左右，更优选为 3～15mm²/s 左右的、粘度较低的软蜡。另外，软蜡的其他性质也可以是任意的，但熔点优选为 35～80°C，更优选为 45～70°C，进一步优选为 50～60°C。另外，软蜡的油分优选为 60 质量%以下，更优选为 50 质量%以下，进一步优选为 25 质量%以下，特别优选为 10 质量%以下，并且，优选为 0.5 质量%以上，更优选为 1 质量%以上。另外，软蜡的硫成分优选为 1 质量%以下，更优选为 0.5 质量%以下，并且，优选为 0.001 质量%以上。

[0093] 这时，经过充分脱油处理的软蜡（以下称为“软蜡 A”）的油分优选为 0.5～10 质量%，更优选为 1～8 质量%。另外，软蜡 A 的硫成分优选为 0.001～0.2 质量%，更优选为 0.01～0.15 质量%，进一步优选为 0.05～0.12 质量%。另一方面，不经脱油处理、或者脱油处理不充分的软蜡（以下称为“软蜡 B”）的油分优选为 10～60 质量%，更优选为 12～50 质量%，进一步优选为 15～25 质量%。另外，软蜡 B 的硫成分优选为 0.05～1 质量%，更优选为 0.1～0.5 质量%，进一步优选为 0.15～0.25 质量%。予以说明，这些软
说明书

蜡 A、B，也可以根据加氢裂化 / 异构化催化剂的种类和特性，实施脱硫处理，该场合的硫成分，优选为 0.01 质量%以下，更优选为 0.001 质量%以下。

在上述制备方法 A 中，优选使用上述软蜡 A 作为原料，可适当地得到饱和成分的含量以及环状饱和分在该饱和成分中所占的比例，以及粘度指数和密度满足上述条件的第一实施方式的润滑油基础油。另外，按照上述制备方法 A，即便使用油分或硫成分比较高的、纯度较低而廉价的软蜡 B 作为原料，也可以得到粘度指数高、低温特性和热氧化安定性优良的附加价值高的润滑油基础油。

当原料油为软酯和其他原料油的混合油时，作为该其他原料油，只要软蜡在混合油总容量中所占的比例在 50 体积%以上，就没有特殊限制，优选使用原油的重质常压蒸馏馏出油和 / 或减压蒸馏馏出油的混合油。

另外，当原料油为软酯和其他原料油的混合油时，从制备高粘度指数的基础油的粘度指数出发，软酯在混合油中所占的比例更优选在 70 体积%以上，进一步优选在 75 体积%以上。当该比例小于 50 体积%时，所得润滑油基础油中的芳香族成分、环烷烃成分等油分有增大的倾向，而润滑油基础油的粘度指数有降低的倾向。

另一方面，为了提高地确保制得的润滑油基础油的粘度指数，作为与软酯并用的原油的重质常压蒸馏馏出油和 / 或减压蒸馏馏出油，优选是在 300 ~ 570°C 的蒸馏温度范围内具有 60 体积%以上馏出成分的馏分。

（加氢裂化催化剂）

在上述制备方法 A 中，可以采用采用一种加氢裂化催化剂，该催化剂是通过选择那些在进行 NH₃ 脱附温度依赖性评价时在 300 ~ 800°C 下的 NH₃ 脱附量相对于 NH₃ 总脱附量的百分比在 80%以下的载体负载周期表第 VIa 族金属中的至少 1 种和第 VIII 族金属中的至少 1 种而制得的。

此处，“NH₃ 脱附温度依赖性评价”是指文献 (Sawa M., Niwa M., Murakami Y., Zeolites 1990, 10, 532, Karge H.G., Dondur V., J. Phys. Chem. 1990, 94, 765 等) 中介绍的方法，按如下所述步骤进行。首先，将催化剂载体在氢气气氛中，在 400°C 以上的温度下预处理 30 分钟以上以便除去吸附的分子，然后在 100°C 下吸附 NH₃ 至饱和为止。然后，将该催化剂载体在 100 ~ 800°C 的温度范围内按照 10°C / 分钟以下的升温速度升温，以便使 NH₃ 脱附并监测在每个指定温度下由于脱附而分离出来的 NH₃。并且，求出在 300°C ~ 800°C 下的 NH₃ 脱附量相对于 NH₃ 总脱附量 (100 ~ 800°C 下的脱附量) 的百分比。

上述制备方法 A 中所用的催化剂载体，是指在进行上述的 NH₃ 脱附温度依赖性评价时在 300 ~ 800°C 下的 NH₃ 脱附量相对于 NH₃ 的总脱附量的百分比在 80%以下、优选在 70%以下，更优选在 60%以下的载体。通过使用这种载体来构成加氢裂化催化剂，可以对支撑裂解活性的酸性质进行充分的抑制，因此通过加氢裂化作用，也可以使得来原油中的软蜡等中的高分子长正构烷烃裂解所导致的异构烷烃的生成能够高效并确实地进行，而且，还可以充分抑制所生成的异构烷烃化合物的过度裂解。结果，可以在适度的分子量范围内赋予足够量的具有适度支链化学结构的粘度指数高的分子。

作为这种载体，优选为无定形类且具有酸性质的二元氧化物，例如，可举出文献 (《金属氧化物及其催化剂作用》, 清水哲郎, 讲谈社, 1978 年) 等中所例示的二元氧化物。

其中，优选含有作为无定形类复合氧化物的、由选自 Al、B、Ba、Bi、Cd、Ga、La、Mg、
Si、Ti、W、Y、Zn 和 Zr 中的元素的氧化物中的 2 种复合而成的酸性二元氧化物。通过调整这些酸性二元氧化物中的各氧化物的比率等，可得到在上述的 NH₃ 吸附附评价中，符合本目的的酸性载体。予以说明，构成该载体的酸性二元氧化物既可以是上述氧化物中的 1 种，也可以是 2 种以上的混合物。另外，该载体既可以是含有酸性二元氧化物的载体，或者也可以是通过用粘合剂将该酸性二元氧化物粘结而成的载体。

[0104] 进而，该载体优选含有选自无定形二氧化硅・氧化铝、无定形二氧化硅・氧化锆、无定形二氧化硅・氧化镁、无定形二氧化硅・二氧化钛、无定形二氧化硅・氧化硼、无定形二氧化硅・氧化锆、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化锆、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝、无定形二氧化硅・氧化铝、二氧化钛、无定形二氧化硅・氧化铝。作为粘合剂，只要是通常用于制备催化剂的粘合剂，就没有特殊限制，优选选自二氧化硅、氧化铝、氧化镁、二氧化钛、氧化硅、粘土或者它们的混合物等。

[0105] 按照上述的制备方法 A，通过使上述的载体负载周期表第六 I a 族的金属（镓、锆、铪等）中的至少 1 种和第 VIII 族的金属（镍、钴、铑、钯、铂等）中的至少 1 种，便可构成加氢裂化催化剂。这些金属是具有加氢裂化的能力，当通过酸性载体的作用来使链烷烃化合物的裂解反应或者加氢反应终止，生成具有适度分子量和适度支化结构的异构烷烃时，上述金属在这方面担负着重要的作用。

[0106] 作为加氢裂化催化剂中的金属的负载量，第 VI a 族金属的负载量优选为每种金属 5～30 质量％，第 VIII 族金属的负载量优选为每种金属 0.2～10 质量％。

[0107] 进而，在上述制备方法 A 所用的加氢裂化催化剂中，作为第 VI a 族金属的 1 种以上的金属，更优选是含量在 5～30 质量％范围内的镓，另外，作为第 VIII 族金属的 1 种以上的金属，更优选是含量在 0.2～10 质量％范围内的镍。

[0108] 由上述载体和第六 I a 族金属的 1 种以上和第 VIII 族金属的 1 种以上的金属构成的加氢裂化催化剂，优选以硫化状态用于加氢裂化。硫化处理可采用公知的方法来进行。

[0109] （加氢裂化工序）

[0110] 按照上述制备方法 A，通过在上述加氢裂化催化剂的存在下，使含有水氢 50 体积％以上的原料油，在氢分压为 0.1～14MPa、优选为 1～14MPa、更优选为 2～7MPa、平均反应温度为 230～430℃、优选为 330～400℃、更优选为 350～390℃、HHSV 为 0.3～3.0hr⁻¹、优选为 0.5～2.0hr⁻¹；氢油比为 50～14000scf/b、优选为 100～5000scf/b 的条件下，进行加氢裂化。

[0111] 按照上述的加氢裂化工序，在使来自原料油中的水氢的加氢裂化处理的过程中，通过进行向异构烷烃的异构化、可以生成流动点低、且粘度指数高的异构烷烃成分，同时可使原料油中含有的作为高粘度指数化阻碍因子的芳香族化合物裂解为单环芳香族化合物、环烷烃化合物以及链烷烃化合物，并且，可将作为高粘度指数化阻碍因子的多环环烷烃化合物裂解为单环环烷烃化合物或链烷烃化合物。予以说明，从高粘度指数化的观点考虑，优选原料油中的沸点高且粘度指数低的化合物越少越好。
“说明”

[0112] 另外，评价反应速度的裂解率由下式，

\[\text{裂解率} = 100 - \left(\text{产物的沸点在360℃以上的馏分的比例} \right) \]

[0113] 该定义为 3～90 体积%。裂解率小于 3 体积%时，由于原料油中所含的流动

点高的高分子量正构烷烃发生裂解异构化而导致异构烷烃的生成，以及粘度指数低的芳香

族成分、多环烷烃成分的加氢裂化不充分，另外，裂解率超过 90 体积%时，润滑油馏分的

收率变低，因此均不优选。

[0115] (蒸馏分离工序)

[0116] 接着，从上述加氢裂化工序得到的裂解生成油中蒸馏分离出润滑油馏分。此时，往

往也会得到作为轻质成分的燃料油馏分。

[0117] 燃料油馏分是在充分进行脱硫、脱氮，并且充分进行芳香族的加氢后得到的馏分。

其中，石脑油馏分中的正构烷烃成分多，燃料油馏分的烟囱高，另外，柴油馏分的十六烷值高

等，作为燃料油均为高品质。

[0118] 另一方面，当润滑油馏分的加氢裂化不充分时，可以将其中的一部分再次实施加

氢裂化工序。另外，为了得到具有所希望运动粘度的润滑油馏分，可以对润滑油馏分再次进

行减压蒸馏。予以说明，该减压蒸馏分离可以在进行了如下所示的脱蜡处理后进行。

[0119] 蒸发分离工序中，通过将加氢裂化工序中所得的裂解生成油进行减压蒸馏，可以

适当地得到被称为 70 Pale、S＆E10、S＆E20 的润滑油基础油。

[0120] 使用更稀粘度的软蜡作为原料油的体系，适当大生成 70 Pale、S＆E10 馏分，使用

于上述范围内的高粘度的软蜡作为原料油的体系，适当大生成 S＆E20。然而，即便使用高

粘度的软蜡，也可以根据裂解反应的进行程度来选择生成相当量 70 Pale、S＆E10 的条件。

[0121] (脱蜡工序)

[0122] 由于在上述的蒸馏分离工序中，由裂解生成油中馏分出的润滑油馏分的流动点高，

因此为了得到具有所期望的流动点的润滑油基础油，可以进行脱蜡。脱蜡处理可采用溶剂

脱蜡法或者催化脱蜡法等常规的方法进行。其中，溶剂脱蜡法通常可采用 MEK、甲苯的混

合溶剂，也可使用苯、丙酮、MIBK 等溶剂。为了使脱蜡油的流动点达到 -10℃以下，优选

在溶剂 / 油比 1～6 倍、过滤温度 -5～-45℃、优选 -10～-40℃的条件下进行。予以说明，对于

本发明的第实施例或者上述的第实施例中的润滑油基础油，为了使 S＆E10 等级的馏分的脱蜡油

的凝固点为 -25℃以下，优选使溶剂 / 油比为 1～6 倍，另外，优选使过滤温度为 -25℃以下，更

优选为 -26～-45℃，进一步优选为 -27～-40℃，特别优选为 -28～-35℃。予以说明，这里被除去的蜡成分，可以将其作为软蜡，再次用于加氢裂化工序。

[0123] 按照上述制备方法，也可以在脱蜡处理中附加溶剂精制处理和 / 或加氢精制处

理。这些附加处理是为了提高润滑油基础油的紫外光安定性和氧化安定性而进行的，因此

可采用在常规的润滑油精制工程序中使用的方法来进行。

[0124] 在溶剂精制时，一般使用糠醛、苯酚、N-甲基吡咯烷酮等作为溶剂来除去润滑油馏

分中残留的少量芳香族化合物，特别是多环芳香族化合物。

[0125] 另外，加氢精制是为了将烯烃化合物和芳香族化合物加氢而进行的。该工艺对催

化剂没有特别限定，可以使用负载有钼等第 VⅢ族金属中的至少 1 种和钴、镍等第Ⅷ族
金属中的至少一种而形成的氧化铝催化剂，在反应压力（氢分压）7 ～ 16MPa、平均反应温度300 ～ 390℃、LHSV 0.5 ～ 4.0hr⁻¹的条件下进行。

[0126] 另外，作为第1实施方案的润滑油基础油的制备方法的优选例子，可举出以下所示的制备方法B。

[0127] 即，本发明所述的制备方法B具有:

[0128] 在催化剂的存在下，将含有链烷烃类烃的原料油进行加氢裂化和/或加氢异构化的第5工序、和

[0129] 将第5工序中得到的产物或其产物经蒸馏等而回收的润滑油馏分进行脱蜡处理的第6工序。

[0130] 下面详细叙述上述制备方法B。

[0131] （原料油）

[0132] 在上述制备方法B中，可使用含有链烷烃类烃的原料油。予以说明，本发明所谓的“链烷烃类烃”是指链烷烃分子的含有率在70质量%以上的烃。链烷烃类烃的碳数没有特殊限制，通常可使用10 ～ 100左右的链烷烃类烃。另外，链烷烃类烃的制法没有特殊限制，可使用石油类和合成类的各种链烷烃类烃，作为特别优选的链烷烃类烃，可举出通过天然气制合成油（GTL）工艺等得到的合成蜡（费－托合成蜡（FT蜡）、GTL蜡等），其中优选为FT蜡。另外，合成蜡优选含有以碳数优选15 ～ 80,更优选20 ～ 50的正构烷烃为主成分的蜡。

[0133] 在原料油制备中使用的链烷烃类烃的运动粘度可根据目标润滑油基础油的运动粘度来进行适当选择。在制备作为第1实施方案的润滑油基础油的低粘度基础油时，期望在100℃时的运动粘度为2 ～ 25mm²/s左右，优选为2.5 ～ 20mm²/s左右，更优选为3 ～ 15mm²/s左右的，粘度较低的链烷烃类烃。另外，链烷烃类烃的其他性状也可以是任意的，但当链烷烃类烃为FT蜡等合成蜡时，其熔点优选为35 ～ 80℃，更优选为50 ～ 80℃，进一步优选为60 ～ 80℃。另外，合成蜡的油分优选为10质量%以下，更优选为5质量%以下，进一步优选为2质量%以下。另外，合成蜡的硫成分优选为0.01质量%以下，更优选为0.001质量%以下，进一步优选为0.0001质量%以下。

[0134] 当原料油为上述合成蜡和其他原料油的混合油时，作为该其他原料油，只要合成蜡在混合油总量中所占的比例在 50体积%以上，就没有特殊限制，优选使用原油的重质常压蒸馏馏出油和/或常压蒸馏馏出油的混合油。

[0135] 另外，当原料油为上述合成蜡和其他原料油的混合油时，从制备高粘度指数的基础油的观点出发，合成蜡在混合油中所占的比率为优选为70体积%以上，更优选为75体积%以上。该比例小于70 体积%时，所得润滑油基础油中的芳香烃成分、烷烃成分等油分有增大的倾向，而润滑油基础油的粘度指数有下降的倾向。

[0136] 另一方面，为了高度地确保所制备的润滑油基础油的粘度指数，作为与合成蜡并用的原油的重质常压蒸馏馏出油和/或减压蒸馏馏出油，优选在300 ～ 570℃的蒸馏温度范围内具有60体积%以上的馏出成分的馏分。

[0137] （催化剂）

[0138] 制备方法B所用的催化剂没有特殊限制，但优选使用通过在含有硅铝酸盐的载体上负载有作为活性金属成分的选自周期表第VIB族金属和第VIII族金属中的1种以上而
形成的催化剂。

[0139]硅铝酸盐是指由铝、硅和氧这3种元素构成的金属氧化物。另外，在不妨碍本发明效果的范围内也可以与其他金属元素共存。这时，其他金属元素的含量，以其氧化物计，优选为氧化铝和二氧化硅的合计量的5质量%以下，更优选为3质量%以下。作为可共存的金属元素，例如可选出钛、镧、锰等。

[0140]硅铝酸盐的结晶性也可以根据全部铝原子中4配位铝原子的比例来估算，该比例可由27Al固体NMR测定。作为本发明所用的硅铝酸盐，相对于铝的总量，4配位铝的比例优选为50质量%以上，更优选为70质量%以上，进一步优选为80质量%以上。下面将相对于铝总量的4配位铝的比例为50质量%以上的硅铝酸盐称为“结晶性硅铝酸盐”。

[0141]作为结晶性硅铝酸盐，可以使用所谓的沸石。作为优选的例子，可举出Y型沸石、超稳定性Y型沸石（USY型沸石）、β型沸石、丝光沸石、ZSM-5等，其中，特别优选USY沸石。在本发明中，可以单独使用结晶性硅铝酸盐中的一种，也可以将2种以上组合使用。

[0142]作为含有结晶性硅铝酸盐的载体的制备方法，可举出将结晶性硅铝酸盐和粘合剂的混合物成型，再将成型体烧结的方法。所使用的粘合剂没有特殊限定，优选氧化铝、二氧化硅、二氧化硅氧化铝、二氧化钛、氧化镁，其中特别优选氧化铝。粘合剂的使用比例没有特殊限定，通常，以成型体总量为基准，优选为5～99质量%，更优选为20～99质量%。含有结晶性硅铝酸盐和粘合剂的成型体的烧结温度优选为430～470℃，更优选为440～460℃，进一步优选为445～455℃。另外，烧结时间没有特殊限定，通常为1分钟～24小时，优选为10分钟～20小时，更优选为30分钟～10小时。烧结可在空气气氛中进行，但优选在氮气等无氧气氛中进行。

[0143]另外，作为负载于上述载体上的第VIb族金属，可举出铬、钼、钨等，作为第VIII族金属，具体可举出镍、钯、钯、铑等。这些金属可单独使用1种，或者将2种以上组合使用。在将2种以上的金属组合时，可以将铂、钯等贵金属相互组合，也可以将铂、鉨、钯、铑等贱金属相互组合，或者将贵金属和贱金属相互组合。

[0144]另外，金属催化剂的负载可采用将载体浸渍在含有金属的溶液中来进行离子交换等处理的方法。金属的负载量可进行适当选择，通常，以催化剂总量为基准，适宜为0.05～2质量%，优选为0.1～1质量%。

[0145]（加氢裂化/加氢异构化工序）

[0146]在上述制备方法B中，在上述催化剂的存在下，将含有链烷烃类烃的原料油进行加氢裂化/加氢异构化。该加氢裂化/加氢异构化工序可使用固定床反应装置来进行。作为加氢裂化/加氢异构化的条件，例如分别优选温度为250～400℃，氢压为0.5～10MPa、原料油的流时空速（LHSV）为0.5～10h⁻¹。

[0147]（蒸馏分离工序）

[0148]然后，从上述加氢裂化/加氢异构化工序得到的裂解生成油中蒸馏分离出润滑油馏分。予以说明，制备方法B中的蒸馏分离工序与制备方法A中的蒸馏分离工序相同，在此不再重复说明。

[0149]（脱蜡工序）

[0150]然后，将在上述蒸馏分离工序中从裂解生成油中分馏出的润滑油馏分进行脱蜡。该脱蜡工序可采用溶剂脱蜡或者催化脱蜡等以往公知的脱蜡工艺来进行。当在脱蜡之前没
有把裂解 / 异构化生成油中存在的沸点 370℃以下的物质与高沸点物质分离的场合，可以根据裂解 / 异构化生成油的用途，将全部加氢异构化物进行提蜡，或者只将沸点 370℃以上的馏分进行脱蜡。

[0151] 在溶剂脱蜡中，使加氢异构化物与冷却的甲醇（ketone）和丙酮、以及 MEK、MIBK 等其他溶剂相接触，进而冷却，使高沸点物质以蜡质固体的形式沉淀，将该沉淀从作为提余油（raffinate）的含有溶剂的润滑油馏分中分离。进而，将提余油用刮面式冷凝器进行冷却，可除去蜡的固体成分。另外，丙烷等低分子量烃类也可以用于脱蜡。在该场合，可将裂解 / 异构化生成油与低分子量烃类混合，将其中至少一部分气液，再将裂解 / 异构化生成油冷却，使蜡沉淀。蜡可按照过滤、滤膜或者离心分离法等从提余油中分离。然后，从提余油中除去溶剂，将提余油分馏，可得到目标润滑油基础油。

[0152] 另外，进行催化脱蜡（催化剂脱蜡）时，在适当的脱蜡催化剂的存在下，使裂解 / 异构化生成油在一种可使流动点降低的有效条件下与氢反应。在催化脱蜡中，将裂解 / 异构化产物中的一部分高沸点物质转化为低沸点物质，将该低沸点物质从较重的基础油馏分中分离出来，并将基础油馏分分馏，得到 2 种以上的润滑油基础油。低沸点物质的分离可在得到目标润滑油基础油之前或在分馏中进行。

[0153] 作为脱蜡催化剂，主要可使裂解 / 异构化生成油的流动点降低，就没有特殊限制，优选可从裂解 / 异构化生成油中高收率地获得目标润滑油基础油。作为这种脱蜡催化剂，优选为择形分子筛，具体可举出镁碱沸石、丝光沸石、ZSM-5、ZSM-11、ZSM-23、ZSM-35、ZSM-22（也被称为 01 或者 TON）和硅铝磷酸盐类（SAPO）等。这些分子筛优选与催化剂金属成分组合使用，更优选与贵金属组合。作为优选的组合，例如可举出铂和 H-丝光沸石的复合物。

[0154] 脱蜡条件没有特殊限制，分别优选温度为 200 ～ 500℃，氢压为 10 ～ 200 巴 (1MPa ～ 20MPa)。另外，使用流通式反应器时，H₂ 处理速度优选为 0.1 ～ 10kg/l/hr，LHSV优选为 0.1 ～ 10h⁻¹，更优选为 0.2 ～ 2.0h⁻¹。另外，脱蜡优选是通过将裂解 / 异构化生成油所含的通常 40 质量%以下、优选 30 质量%以下的初馏点为 350 ～ 400℃的物质转换为具有小于该初馏点的沸点的物质来进行。

[0155] 以上，对作为第 1 实施方案的润滑油基础油的优选制备方法的制备方法 A 和制备方法 B 进行了说明，但第 1 实施方案的润滑油的基础油的制备方法不局限于此。例如，在上述制备方法 A 中，可采用 FT 蜡、GTL 蜡等合成蜡代替软蜡。并且，在上述制备方法 B 中，可使用含有软蜡（优选软蜡 A、B）的原料油。进而，在制备方法 A、B 中，也可以并用软蜡（优选软蜡 A、B）和合成蜡（优选 FT 蜡、GTL 蜡）。

[0156] 予以说明，当在制备第 1 实施方案的润滑油基础油时所使用的原料油为上述软蜡和 / 或合成蜡与这些蜡以外的原料油的混合油时，软蜡和 / 或合成蜡的含量，以原料油总量为基准，优选为 50 质量%以上。

[0157] 另外，作为用于制备第 1 实施方案的润滑油基础油的原料油，优选含有软蜡和 / 或合成蜡的原料油，其中的油分优选为 60 质量%以下，更优选为 50 质量%以下，进一步优选为 25 质量%以下。

[0158] 另外，第 1 实施方案的润滑油基础油中饱和成分的含量，以润滑油基础油总量为基准，如上所述，为 90 质量%以上，优选为 93 质量%以上，更优选为 95 质量%以上，进一
步优选为 96 质量%以上，特别优选为 97 质量%以上。另外，饱和成分的含量可以为 100 质量%，但从制备成本和添加剂的溶解性的观点考虑，优选为 99.9 质量%以下，更优选为 99.5 质量%以下，进一步优选为 99 质量%以下，特别优选为 98.5 质量%以下。另外，环状饱和成分在该饱和成分中所占的比例，如上所述为 40 质量%以下，优选为 0.1 ～ 40 质量%，更优选为 2 ～ 30 质量%，进一步优选为 5 ～ 25 质量%，特别优选为 10 ～ 21 质量%。通过使饱和成分的含量和环饱和成分在该饱和成分中所占的比例分别满足上述条件，以及使粘度指数和沸点分别满足特定条件，可以实现粘度 - 温度特性和热 - 氧化安定性，另外，当在该润滑油基础油中配合添加剂时，既可以使该添加剂保持充分而稳定地溶解于润滑油基础油中，又可以更高水平地发挥该添加剂的功能。进而，根据第 1 实施方案的润滑油基础油，可以改善润滑油基础油本身的摩擦特性，其结果，可以提高摩擦减少效果，进而，可以实现节能性的提高。

[0159] 另外，当饱和成分的含量小于 90 质量%时，粘度 - 温度特性和热 - 氧化安定性和摩擦特性变得不充分。另外，如果环状饱和成分在饱和成分中所占的比例超过 40 质量%，则当在润滑油基础油中配合添加剂时，该添加剂的效果下降。进而，如果环状饱和成分在饱和成分中所占的比例小于 0.1 质量%时，则在润滑油基础油中配合添加剂时，该添加剂的溶解性降低，导致在润滑油基础油中保持溶解的该添加剂的有效量降低，因此无法有效获得该添加剂的功能。另外，饱和成分的含量可以为 100 质量%，但从制备成本和提高添加剂的溶解性的观点考虑，优选为 99.9 质量%以下，更优选为 99.5 质量%以下，进一步优选为 99 质量%以下，特别优选为 98.5 质量%以下。

[0160] 在第 1 实施方案的润滑油基础油中，环状饱和成分在该饱和成分中所占的比例为 40 质量%以下，相当于非环状饱和成分在饱和成分中所占的为 60 质量%以上。此处，非环状饱和成分包括直链烷烃成分和支链烷烃成分两者。各种罐烃成分在第 1 实施方案的润滑油基础油中所占的比例没有特殊限制，支链烷烃成分的比例，以润滑油基础油总量为基准，优选为 55 ～ 99 质量%，更优选为 57.5 ～ 96 质量%，进一步优选为 60 ～ 95 质量%，更进一步优选为 70 ～ 92 质量%，特别优选为 80 ～ 90 质量%。通过使用支链烷烃成分在润滑油基础油中所占的比例满足上述条件，可以进一步提高粘度 - 温度特性和热 - 氧化安定性，并且，当在该润滑油基础油中配合添加剂时，既可以使该添加剂保持充分而稳定地溶解，同时有可以进一步高水平地发挥该添加剂的功能。另外，直链烷烃成分在润滑油基础油中所占的比例，以润滑油基础油总量为基准，优选为 1 质量%以下，更优选为 0.5 质量%以下，进一步优选为 0.2 质量%以下。通过使用直链烷烃成分的比例满足上述条件，可以获得低温粘度特性更优良的润滑油基础油。

[0161] 另外，在第 1 实施方案的润滑油基础油中，1 环饱和成分和 2 环以上的饱和成分在饱和成分中所占的含量，只要它们的合计量为 40 质量%以下，就没有特殊限制。2 环以上的饱和成分的含量在饱和成分中所占的比例优选为 0.1 质量%以上，更优选为 1 质量%以上，进一步优选为 3 质量%以上，更进一步优选为 5 质量%以上，特别优选为 6 质量%以上，另外，优选为 40 质量%以下，更优选为 20 质量%以下，进一步优选为 15 质量%以下，特别优选为 11 质量%以下。另外，1 环饱和成分和在饱和成分中所占的比例可以为 0 质量%，但优选为 1 质量%以上，更优选为 2 质量%以上，进一步优选为 3 质量%以上，特别优选为 4 质量%以上；另外，优选为 40 质量%以下，更优选为 20 质量%以下，进一步优选为 15 质量%以下，特别
优选为 11 质量%以下。

[0162] 另外，在第 1 实施方案的润滑油基础油中，环状饱和成分所含的 1 环饱和成分的
质量 (M₃) 与 2 环以上的饱和成分的质量 (M₄) 之比 (M₃/M₄)，优选为 20 以下，更优选为 3
以下，进一步优选为 2 以下，特别优选为 1 以下。另外，M₃/M₄ 可以为 0，但优选为 0.1 以上，更
优选为 0.3 以上，进一步优选为 0.5 以上。通过使 M₃/M₄ 满足上述条件，可以进一步高水平地
兼顾粘度 - 温度特性和热・氧化安定性。

[0163] 另外，在第 1 实施方案的润滑油基础油中，环状饱和成分所含的 1 环饱和成分的
质量 (M₃) 与 2 环饱和成分的质量 (M₄) 之比 (M₃/M₄)，优选为 3 以下，更优选为 1.5 以下，进
一步优选为 1.3 以下，特别优选为 1.2 以下。另外，M₃/M₄ 可以为 0，但优选为 0.1 以上，更
优选为 0.3 以上，进一步优选为 0.5 以上。通过使 M₃/M₄ 满足上述条件，可以进一步高水平地
兼顾粘度 - 温度特性和热・氧化安定性。

[0164] 予以说明，本发明中所说的饱和成分的含量是指根据 ASTM 2007-93 测定的值
（单位：质量%）。

[0165] 另外，本发明中所说的环状饱和成分，1 环饱和成分、2 环以上的饱和成分以及非
环状饱和成分在饱和成分所占的比例分别是指根据 ASTM D 2786-91 测定的环烷烃成分
（测定对象：1 环 ~ 6 环环烷烃, 单位：质量%）和链烷烃成分（单位：质量%）。

[0166] 另外，本发明中所说的润滑油基础油中的直链烷烃成分是指，根据上述 ASTM D
2007-93 所述方法进行分离、提取而得到的饱和成分，按以下条件进行色相色谱分析，将该
饱和成分中所含的直链烷烃成分进行鉴定，定量时的测定值以润滑油基础油总量为基准而
换算的值。予以说明，在鉴定、定量时，可采用碳数 5 ~ 50 的直链烷烃的混合样品作为标准
样品，在饱和成分中所含的直链烷烃成分，根据色谱图中与各直链烷烃相当的峰面积的合
计值相对于总的峰面积值（除去来自稀释剂的峰面积值）的比例来求出。

[0167] （气相色谱条件）

[0168] 色谱柱：液相非极性色谱柱（长度 25mm，内径 0.3mm φ，液相膜厚度 0.1 μm）

[0169] 升温条件：50℃ ~ 400℃（升温速度：10°C / 分钟）

[0170] 载气：氮（线速度：40cm/ 分钟）

[0171] 分流比：90/1

[0172] 样品注样量：0.5 μL（用二硫化碳稀释至 20 倍的样品的注入量）

[0173] 另外，润滑油基础油中的支链烷烃成分的比例是指，上述饱和成分中所含的非环
状饱和成分与上述饱和成分中所含的直链烷烃成分之差以润滑油基础油总量为基准换算
的值。

[0174] 予以说明，饱和成分的分离方法、或者对环状饱和成分、非环状饱和成分等进行
组成分析时，可使用能得到同样结果的类似方法。例如，除上述方法以外，可举出 ASTM D
2425-93 中所述的方法、ASTM D 2549-91 中所述的方法、高效液相色谱（HPLC）的方法、或者
将这些方法改良后的方法等。

[0175] 另外，第 1 实施方案的润滑油基础油中的芳香族成分，只要能使饱和成分的含量
和环状饱和成分在该饱和成分中所占的比例、以及粘度指数和硫值满足上述条件，就没有
特殊限制。以润滑油基础油总量为基准，优选为 7 质量%以下，更优选为 5 质量%以下，进一
步优选为 4 质量%以下，特别优选为 3 质量%以下；另外，优选为 0.1 质量%以上，更优选为
0.1 质量%以上，更优选为
0.5质量%以上，进一步优选为1质量%以上，特别优选为1.5质量%以上。芳香族成分的含量超过上述上限值时，粘度-温度特性、热氧化安定性和摩擦特性、以及抗挥发性和低温粘度特性均有降低的倾向，进而，当在润滑油基础油中配合添加剂时，该添加剂的效果有下降的倾向。另外，第1实施方案的润滑油基础油可以不含芳香族成分，但通过使芳香族成分的含量在上述下限值以上，可以进一步提高添加剂的溶解性。

[0176] 予以说明，本发明中所说的芳香族成分是指根据ASTM D2007-93测定的值。芳香族成分中，通常除了烷基苯、烷基萘以外，还包括蒽、菲以及它们的烷基化物、以及四个以上苯环稠合的化合物、吡啶类、喹啉类、苯酚类、萘酚类等具有杂原子的芳香族化合物等。

[0177] 另外，第1实施方案的润滑油基础油的粘度指数，如上所述，为110以上。如果粘度指数小于上述下限值，则粘度-温度特性和热氧化安定性、以及抗挥发性有降低的倾向。予以说明，第1实施方案的润滑油基础油的粘度指数的优选范围，取决于润滑油基础油的粘度等级，因此在下文中对它进行详细描述。

[0178] 另外，第1实施方案的润滑油基础油的碘值，如上所述，为2.5以下，优选为1.5以下，更优选为1以下，进一步优选为0.8以下；另外，可以小于0.01，但从与其相应的影响小的观点以及与经济性的关系考虑，优选为0.01以上，更优选为0.1以上，进一步优选为0.5以上。通过使润滑油基础油的碘值为2.5以下，可以大幅度提高热氧化安定性。予以说明，本发明所说的“碘值”是指采用JIS K0070《化学制品的酸值、皂化值、碘值、羟基值和非皂化值》的指示试剂滴定法测定的碘值。

[0179] 关于第1实施方案的润滑油基础油的其他性状，只要饱和成分的含量和环状饱和成分在该饱和成分中所占的比例、以及粘度指数和碘值满足上述条件，就没有特殊限制，优选第1实施方案的润滑油基础油具有以下所示的各种性状。

[0180] 第1实施方案的润滑油基础油优选满足下述式(2)表示的条件。

\[1.435 \leq n_{20} - 0.002 \times kv100 \leq 1.453 \] (2)

[0181] 式中，\(n_{20} \)表示润滑油基础油在20℃时的折射率，\(kv100 \)表示润滑油基础油在100℃时的运动粘度（\(\text{mm}^2/\text{s} \)）。

[0182] 进而，当第1实施方案的润滑油基础油含有饱和成分95质量%以上，且环状饱和成分在该饱和成分中所占的比例为0.1～15质量%、优选为1～10质量%的润滑油时，\(n_{20} - 0.002 \times kv100 \)优选为1.435～1.450，更优选为1.440～1.449，进一步优选为1.442～1.448，特别优选为1.444～1.447。为了制备具有这种性状的润滑油基础油，作为导入到加氢裂化和/或加氢异构化工序的原料，优选使用上述的以合成蜡和/或软蜡为主成分的原料，优选使用上述的以合成蜡和/或软蜡A为主成分的原料。另外，这时，上述的支链烷烃在润滑油基础油中所占的比例，更优选为95～99质量%，进一步优选为97～99质量%，对于上述的以软蜡A为原料获得的润滑油基础油，支链烷烃在润滑油基础油中所占的比例，优选为82～98质量%，进一步优选为90～95质量%。

[0184] 另外，当第1实施方案的润滑油基础油含有饱和成分90质量%以上，且环状饱和成分在该饱和成分中所占的比例为5～40质量%、优选为10～25质量%的润滑油时，\(n_{20} - 0.002 \times kv100 \)为1.435～1.453，优选为1.440～1.452，进一步优选为1.442～1.451，进一步优选为1.444～1.450。为了制备具有这种性状的润滑油基础油，作为导入到加氢裂化和/或加氢异构化工序的原料，优选使用上述的以合成蜡和/或软蜡为主成分的
原料，更优选使用上述的以软蜡B为主成分的原料。另外，这时，上述的支链烷烃在润滑油
基础油中所占的比例，更优选为54～95质量%，进一步优选为58～92质量%，更进一步
优选为70～90质量%，特别优选为80～90质量%。

通过使n_{20}=0.002×kν100处于上述范围内，可以兼顾粘度－温度特性和热・氧化
安定性。另外，当在该润滑油基础油中配合添加剂时，既可以使该添加剂保持充分而稳
定地溶解于润滑油基础油中，同时又可以更高水平地发挥该添加剂的功能。进而，通过使
n_{20}=0.002×kν100处于上述范围内，可以改善润滑油基础油本身的摩擦特性，其结果，可以
提高摩擦减少效果，进而，可以实现节能性的提高。

予以说明，如果n_{20}≠0.002×kν100超过上述上限值，则粘度－温度特性和热・氧化
安定性及摩擦特性就会变得不充分，进而，当在润滑油基础油中配合添加剂时，该添加剂的
效果有降低的倾向。另外，如果n_{20}≠0.002×kν100小于上述下限值，则在润滑油基础油中配
合添加剂时，该添加剂的溶解性就会变得不充分，用于保持溶解于润滑油基础油中的该添
加剂的有效性下降，因此有无法有效地得到该添加剂的功能的倾向。

予以说明，本发明中所说的在20°C时的折射率（n_{20})是指根据ASTM D 1218-92，在
20°C下测定的折射率。另外，本发明中所说的在100°C时的运动粘度（kν100)是指根据JIS
K 2283-1993，在100°C下测定的运动粘度。

另外，第1实施方案的润滑油基础油的% C_{2}优选为80以上，更优选为82～99，
进一步优选为85～95，更进一步优选为87～93，特别优选为90～93。当润滑油基础油
的% C_{2}小于上述下限值时，粘度－温度特性和热・氧化安定性及摩擦特性均有降低的倾向，
进而，当在润滑油基础油中配合添加剂时，该添加剂的效果有降低的倾向。另外，当润滑油
基础油的% C_{2}超过上述上限值时，添加剂的溶解性有降低的倾向。

另外，第1实施方案的润滑油基础油的% C_{3}优选为3～19，更优选为5～15，进
一步优选为7～13，特别优选为7.5～12。当润滑油基础油的% C_{3}超过上述上限值时，粘
度－温度特性和热・氧化安定性及摩擦特性均有降低的倾向。另外，% C_{3}小于上述下限值
时，添加剂的溶解性有降低的倾向。

另外，第1实施方案的润滑油基础油的% C_{4}优选为5以下，更优选为2以下，更优
选为1.5以下，进一步优选为1以下。当润滑油基础油的% C_{4}超过上述上限值时，粘度－温
度特性和热・氧化安定性及摩擦特性均有降低的倾向。另外，第1实施方案的润滑油基础油
的% C_{4}也可以为0，但通过使% C_{4}为0.1以上，可以进一步提高添加剂的溶解性。

进而，第1实施方案的润滑油基础油中的% C_{p}和% C_{n}的比率，% C_{p}/% C_{n}优选为
5以上，更优选为6以上，进一步优选为7以上。当% C_{p}/% C_{n}小于上述下限值时，粘度－温
度特性和热・氧化安定性及摩擦特性均有降低的倾向，进而，当在润滑油基础油中配合添加
剂时，该添加剂的效果有降低的倾向。另外，% C_{p}/% C_{n}优选为35以下，更优选为20以下，
进一步优选为14以下，特别优选为13以下。通过使% C_{p}/% C_{n}在上述上限值以下，可以进
一步提高添加剂的溶解性。

予以说明，本发明中所说的% C_{p}、% C_{n}和% C_{s}分别是指根据ASTM D 3238-85 的方
法（n-d-M环分析）求出的，链烷烃碳数相对于总碳数的百分比、环烷烃碳数相对于总碳
数的百分比、以及芳香烃碳数相对于总碳数的百分比。总之，上述的% C_{p}、% C_{n}和% C_{s}的
优选范围是根据上述方法求出的值，例如即使是不含环烷烃成分的润滑油基础油，由上述

21
方法求出的% Cₚ有时也显示出大于 0 的值。

[0193] 另外，第 1 实施方案的润滑油基础油中硫成分的含量依赖于其原料的硫成分的含量。例如，当使用由封-托反应成制得的合成汽轮机油成分这样的基本上不含硫的原料时，可得到基本上不含硫的润滑油基础油。另外，当使用在润滑油基础油的精制过程中得到的软碳或精滤过程中得到的微晶蜡等含硫的原料时，所得润滑油基础油中的硫成分通常在 100 质量 ppm 以上。在第 1 实施方案的润滑油基础油中，从进一步提高热氧化安定性和从低硫化的观点出发，硫成分的含量优选为 100 质量 ppm 以下，更优选为 50 质量 ppm 以下，进一步优选为 10 质量 ppm 以下，特别优选为 5 质量 ppm 以下。

[0194] 另外，从减少成本的观点出发，优选使用软碳等作为原料，此时，所得润滑油基础油中的硫成分优选为 50 质量 ppm 以下，更优选为 10 质量 ppm 以下。予以说明，本发明中所说的硫成分是指根据 JIS K 2541-1996 测定的硫成分。

[0195] 另外，第 1 实施方案的润滑油基础油中氮成分的含量没有特殊限制，优选为 5 质量 ppm 以下，更优选为 3 质量 ppm 以下，进而优选为 1 质量 ppm 以下。当氮成分的含量超过 5 质量 ppm 时，热氧化安定性有降低的倾向。予以说明，本发明中所说的氮成分是指根据 JIS K 2609～1990 测定的氮成分。

[0196] 另外，第 1 实施方案的润滑油基础油的运动粘度，只要饱和成分的含量和环状饱和成分在该饱和成分中所占比例、以及粘度指数和碘值分别满足上述条件，就没有特殊限制，其在 100℃时的运动粘度优选为 1.5～20mm²/s，更优选为 2.0～11mm²/s。润滑油基础油在 100℃时的运动粘度小于 1.5mm²/s 时，从蒸发损失方面考虑不优选。另外，若获得在 100℃时的运动粘度超过 20mm²/s 的润滑油基础油时，其收率降低，即便使用重质蜡作为原料的场合，也难以提高裂解率，故而不优选。

[0197] 在第 1 实施方案中，优选将在 100℃时的运动粘度在下述范围内的润滑油基础油通过蒸馏等进行分离和使用。

[0198] (1) 在 100℃时的运动粘度优选为 1.5mm²/s 以上至小于 3.5mm²/s，更优选为 2.0～3.0mm²/s 的润滑油基础油

[0199] (II) 在 100℃时的运动粘度优选为 3.0mm²/s 以上至小于 4.5mm²/s，更优选为 3.5～4.1mm²/s 的润滑油基础油

[0200] (III) 在 100℃时的运动粘度优选为 4.5～20mm²/s，更优选为 4.8～11mm²/s，特别优选为 5.5～8.0mm²/s 的润滑油基础油。

[0201] 另外，第 1 实施方案的润滑油基础油在 40℃时的运动粘度，优选为 6.0～80mm²/s，更优选为 8.0～50mm²/s。第 1 实施方案中，优选将在 40℃时的运动粘度在下述范围内的润滑油馏分通过蒸馏等进行分离和使用。

[0202] (IV) 在 40℃时的运动粘度优选为 6.0mm²/s 以上至小于 12mm²/s，更优选为 8.0～12mm²/s 的润滑油基础油

[0203] (V) 在 40℃时的运动粘度优选为 12mm²/s 以上至小于 28mm²/s，更优选为 13～19mm²/s 的润滑油基础油

[0204] (VI) 在 40℃时的运动粘度优选为 28～50mm²/s，更优选为 29～45mm²/s，特别优选为 30～40mm²/s 的润滑油基础油。

[0205] 通过使上述润滑油基础油 (I) 和 (IV) 的饱和成分的含量和环状饱和成分在该饱
和成分中所占的比例、以及粘度指数和碘值分别满足上述条件，可以使其与粘度等级相同的以往的润滑油基础油相比时，尤其是低温粘度特性更优良、并显著减少粘性阻力和搅拌阻力。另外，通过配合抗凝剂（流动点降低剂），可以使-40℃下的 BF 粘度在 2000mPa • s 以下。予以说明，-40℃下的 BF 粘度是指根据 JIS K5526-99 测定的粘度。

另外，通过使上述润滑油基础油 (I) 和 (V) 的饱和成分的含量和环状饱和成分在该饱和成分中所占的比例、以及粘度指数和碘值分别满足上述条件，可以使其与粘度等级相同的以往的润滑油基础油相比，尤其是低温粘度特性、抗稀释性和润滑性均优良。例如，在润滑油基础油 (II) 和 (V) 中，可以使-35℃下的 CCS 粘度在 3000mPa • s 以下。

另外，通过使上述润滑油基础油 (III) 和 (VI) 的饱和成分的含量和环状饱和成分在该饱和成分中所占的比例、以及粘度指数和碘值分别满足上述条件，可以使其与粘度等级相同的以往的润滑油基础油相比，其低温粘度特性、抗稀释性、热氧化安定性及润滑性均优良。

第 1 实施方案的润滑油基础油的粘度指数也与润滑油基础油的粘度等级有关，即使在上述润滑油基础油 (I) ~ (VI) 任一个场合，也可以使粘度指数为 110 以上。上述润滑油 (I) 和 (IV) 的粘度指数优选为 110 ~ 135，更优选为 115 ~ 130，进一步优选为 120 ~ 130。另外，上述润滑油基础油 (II) 和 (V) 的粘度指数优选为 125 ~ 160，更优选为 130 ~ 150，进一步优选为 135 ~ 150。另外，上述润滑油基础油 (III) 和 (VI) 的粘度指数优选为 135 ~ 180，更优选为 140 ~ 160。当粘度指数小于上述下限值时，粘度 - 温度特性和热氧化安定性、以及抗稀释性均有降低的倾向。另外，粘度指数超过上述上限值时，低温粘度特性有降低的倾向。

予以说明，本发明中所说的粘度指数是指根据 JIS K2283-1993 测定的粘度指数。

另外，第 1 实施方案的润滑油基础油在 20℃时的折射率也与润滑油基础油的粘度等级有关，例如，上述润滑油基础油 (I) 和 (IV) 在 20℃时的折射率优选为 1.440 ~ 1.461，更优选为 1.442 ~ 1.460，进一步优选为 1.445 ~ 1.459。另外，上述润滑油基础油 (II) 和 (V) 在 20℃时的折射率优选为 1.450 ~ 1.465，更优选为 1.452 ~ 1.463，进一步优选为 1.453 ~ 1.462。另外，上述润滑油基础油 (III) 和 (VI) 在 20℃时的折射率优选为 1.455 ~ 1.469，更优选为 1.456 ~ 1.468，进一步优选为 1.457 ~ 1.467。当折射率超过上述上限值时，该润滑油基础油的粘度 - 温度特性和热氧化安定性、以及抗稀释性在低温粘度特性均有降低的倾向；另外，当该润滑油基础油中配合添加剂时，该添加剂的效果有降低的倾向。

另外，第 1 实施方案的润滑油基础油的流动点也与润滑油基础油的粘度等级有关，例如，上述润滑油基础油 (I) 和 (IV) 的流动点优选为 -10℃以下，更优选为 -12.5℃以下，进一步优选为 -15℃以下。另外，上述润滑油基础油 (II) 和 (V) 的流动点优选为 -10℃以下，更优选为 -15℃以下，进一步优选为 -17.5℃以下。另外，上述润滑油基础油 (III) 和 (VI) 的流动点优选为 -10℃以下，更优选为 -12.5℃以下，进一步优选为 -15℃以下。当流动点超过上述上限值时，使用该润滑油基础油的润滑油整体的低温流动性有降低的倾向。予以说明，本发明中所说的流动点是指根据 JIS K 2269-1987 测定的流动点。

另外，第 1 实施方案的润滑油基础油在-35℃时的 CCS 粘度也与润滑油基础油的粘度等级有关，例如，上述润滑油基础油 (I) 和 (IV) 在-35℃时的 CCS 粘度优选为 1000mPa • s
说明书

以下。另外，上述润滑油基础油（Ⅱ）和（Ⅴ）在 -35°C 时的 CCS 粘度优选为 3000mPa•s 以下，更优选为 2400mPa•s 以下，进一步优选为 2200mPa•s 以下，特别优选为 2000mPa•s 以下。另外，上述润滑油基础油（Ⅱ）和（Ⅴ）在 -35°C 时的 CCS 粘度优选为 15000mPa•s 以下，更优选为 10000mPa•s 以下，进一步优选为 8000mPa•s 以下。当在 -35°C 时的 CCS 粘度超过上述上限值时，使用该润滑油基础油的润滑油的低温流动性有降低的倾向。予以说明，本发明中所说的在 -35°C 时的 CCS 粘度是指根据 JIS K 2010-1993 测定的粘度。

【0213】另外，第 1 实施方案的润滑油基础油在 15°C 时的密度 (ρ_{15}, 单位: g/cm^3) 还与润滑油基础油的粘度等级有关，优选为由下述式 (3) 表示的 ρ 值以下，即优选 ρ_{15} ≤ ρ_0.

【0214】ρ = 0.0025 × kv100 + 0.820

【0215】[式中，kv100 表示润滑油基础油在 100°C 时的运动粘度 (mm²/s)]

【0216】予以说明，当 ρ_{15} > ρ 时，粘度 - 温度特性和热 - 氧化安定性、以及抗挥发性和低温粘度特性均有降低的倾向，另外，当在润滑油基础油中配合添加剂时，该添加剂的效果有降低的倾向。

【0217】例如，上述润滑油基础油（Ⅰ）和（Ⅳ）的 ρ_{15} 优选为 0.825g/cm³ 以下，更优选为 0.820g/cm³ 以下。另外，上述润滑油基础油（Ⅰ）和（Ⅴ）的 ρ_{15} 优选为 0.835g/cm³ 以下，更优选为 0.830g/cm³ 以下。另外，上述润滑油基础油（Ⅲ）和（Ⅵ）的 ρ_{15} 优选为 0.840g/cm³ 以下，更优选为 0.835g/cm³ 以下。

【0218】予以说明，本发明中所说的在 15°C 时的密度是指根据 JIS K2249-1995，在 15°C 下测定的密度。

【0219】另外，第 1 实施方案的润滑油基础油的苯胺点 (AP(℃)) 还与润滑油基础油的粘度等级有关，优选为由下述式 (4) 表示的 A 的值以下，即优选 AP ≥ A.

【0220】A = 4.1 × kv100 + 97

【0221】[式中，kv100 表示润滑油基础油在 100°C 时的运动粘度 (mm²/s)]

【0222】予以说明，当 AP < A 时，粘度 - 温度特性和热 - 氧化安定性、以及抗挥发性和低温粘度特性均有降低的倾向，另外，当在润滑油基础油中配合添加剂时，该添加剂的效果有降低的倾向。

【0223】例如，上述润滑油基础油（Ⅰ）和（Ⅳ）的 AP 优选为 108°C 以上，更优选为 110°C 以上，进一步优选为 112°C 以上。另外，上述润滑油基础油（Ⅱ）和（Ⅴ）的 AP 优选为 113°C 以上，更优选为 116°C 以上，进一步优选为 118°C 以上，特别优选为 120°C 以上。另外，上述润滑油基础油（Ⅲ）和（Ⅵ）的 AP 优选为 125°C 以上，更优选为 127°C 以上，进一步优选为 128°C 以上。予以说明，本发明中所说的苯胺点是指根据 JIS K2256-1985 测定的苯胺点。

【0224】另外，第 1 实施方案的润滑油基础油的 NOACK 蒸发量没有特殊限制，例如，上述润滑油基础油（Ⅰ）和（Ⅳ）的 NOACK 蒸发量优选为 20 质量%以上，更优选为 25 质量%以上，进一步优选为 30 质量%以上；并且，优选为 50 质量%以下，更优选为 45 质量%以下，进一步优选为 42 质量%以下。另外，上述润滑油基础油（Ⅱ）和（Ⅴ）的 NOACK 蒸发量优选为 6 质量%以上，更优选为 8 质量%以上，进一步优选为 10 质量%以上；并且，优选为 20 质量%以下，更优选为 16 质量%以下，进一步优选为 15 质量%以下，特别优选为 14 质量%以下。另外，上述润滑油基础油（Ⅲ）和（Ⅵ）的 NOACK 蒸发量优选为 1 质量%以上，更优选为 2 质量%以上；并且，优选为 8 质量%以下，更优选为 6 质量%以下，进一步优选为 4 质量%以
下。当 NOACK 蒸发量为上述下限值时，低温粘度特性有难以改善的倾向。另外，如果 NOACK 蒸发量分别超过上述上限值，则在将润滑油基础油用于内燃机用润滑油等时，润滑油的蒸发损失量变大，随之而来的促进催化剂中毒，故而不优选。予以说明，本发明中所说的 NOACK 蒸发量是指根据 ASTM 5800—95 测定的蒸发损失量。

[0225] 另外，第 1 实施方案的润滑油基础油的蒸馏特性，优选在气相色谱蒸馏中，初馏点 (IBP) 优选为 290～440℃，终馏点 (FBP) 优选为 430～580℃，通过将选自上述蒸馏范围的馏分中的 1 种或 2 种以上的馏分进行精馏，可以获得具有上述优选粘度范围的润滑油基础油 (I)～(III) 和 (IV)～(VI)。

[0226] 例如，对于上述润滑油基础油 (I) 和 (IV) 的蒸馏特性，其初馏点 (IBP) 优选为 260～360℃，更优选为 300～350℃，进一步优选为 310～350℃。另外，10%馏出温度 (T10) 优选为 320～400℃，更优选为 340～390℃，进一步优选为 350～380℃。另外，50%馏出点 (T50) 优选为 350～430℃，更优选为 360～410℃，进一步优选为 370～400℃。另外，90%馏出点 (T90) 优选为 380～460℃，更优选为 390～450℃，进一步优选为 400～440℃。另外，终馏点 (FBP) 优选为 420～520℃，更优选为 430～500℃，进一步优选为 440～480℃。另外，T90～T10 优选为 55～85℃，更优选为 60～70℃。另外，FBP~IBP 优选为 100～250℃，更优选为 110～220℃，进一步优选为 120～200℃。另外，T10~IBP 优选为 10～80℃，更优选为 15～60℃，进一步优选为 20～50℃。另外，FBP~T90 优选为 10～80℃，更优选为 15～70℃，进一步优选为 20～60℃。

[0227] 另外，对于上述润滑油基础油 (II) 和 (V) 的蒸馏特性，其初馏点 (IBP) 优选为 300～380℃，更优选为 320～370℃，进一步优选为 330～360℃。另外，10%馏出温度 (T10) 优选为 340～420℃，更优选为 350～410℃，进一步优选为 360～400℃。另外，50%馏出点 (T50) 优选为 380～460℃，更优选为 390～450℃，进一步优选为 400～460℃。另外，90%馏出点 (T90) 优选为 440～500℃，更优选为 450～490℃，进一步优选为 460～480℃。另外，终馏点 (FBP) 优选为 460～540℃，更优选为 470～530℃，进一步优选为 480～520℃。另外，T90~T10 优选为 50～100℃，更优选为 60～95℃，进一步优选为 80～90℃。另外，FBP~IBP 优选为 100～250℃，更优选为 120～180℃，进一步优选为 130～160℃。另外，T10~IBP 优选为 10～70℃，更优选为 15～60℃，进一步优选为 20～50℃。另外，FBP~T90 优选为 10～50℃，更优选为 20～40℃，进一步优选为 25～35℃。

[0228] 另外，关于上述润滑油基础油 (III) 和 (VI) 的蒸馏特性，其初馏点 (IBP) 优选为 320～480℃，更优选为 350～460℃，进一步优选为 380～440℃。另外，10%馏出温度 (T10) 优选为 420～500℃，更优选为 430～480℃，进一步优选为 440～460℃。另外，50%馏出点 (T50) 优选为 440～520℃，更优选为 450～510℃，进一步优选为 460～490℃。另外，90%馏出点 (T90) 优选为 470～550℃，更优选为 480～540℃，进一步优选为 490～520℃。另外，终馏点 (FBP) 优选为 500～580℃，更优选为 510～570℃，进一步优选为 520～560℃。另外，T90~T10 优选为 50～120℃，更优选为 55～100℃，进一步优选为 55～90℃。另外，FBP~IBP 优选为 100～250℃，更优选为 110～220℃，进一步优选为 115～200℃。另外，T10~IBP 优选为 10～100℃，更优选为 15～90℃，进一步优选为 20～50℃。另外，FBP~T90 优选为 10～50℃，更优选为 20～40℃，进一步优选为 25～35℃。

[0229] 在各种润滑油基础油 (I)～(VI) 中，通过将 IBP、T10、T50、T90、FBP、T90~T10、
FBP-IBP, T10-IBP, FBP-T90 设定在上述优选范围内，可以进一步改善低温粘度，并进一步减少蒸发损失。予以说明，T90-T10, FBP-IBP, T10-IBP 和 FBP-T90 的各种温度，如果将它们的蒸馏范围限定得过窄，则会使润滑油基础油的收率变差，从经济性方面考虑不选用。

予以说明，本发明中所说的 IBP, T10, T50, T90 和 FBP 分别是指根据 ASTM D2887-97 测定的馏出点。

另外，第 1 实施方案的润滑油基础油中的残余金属成分一般是来自制备工艺中不可避免地混入的催化剂及原料中所含的金属成分，优选将该残余金属成分充分除去。例如，Al、Mo、Ni 的含量分别优选为 1 质量 ppm 以下。当这些金属成分的含量超过上述上限值时，润滑油基础油中所配合的添加剂的功能存在受到损害的倾向。

予以说明，本发明中所说的残余金属成分是指根据 JPI-5S-38-2003 测定的金属成分。

另外，根据第 1 实施方案的润滑油基础油，通过使其饱和成分的含量和环状饱和成分在该饱和成分中所占的比例、以及粘度指数和密度分别满足上述条件，可以实现优良的热-氧化安定性，根据其运动粘度，优选显示出以下所示的 RBOT 寿命。例如，上述润滑油基础油 (1) 和 (IV) 的 RBOT 寿命优选为 300 分钟以上，更优选为 320 分钟以上，进一步优选为 330 分钟以上。另外，上述润滑油基础油 (II) 和 (V) 的 RBOT 寿命优选为 350 分钟以上，更优选为 370 分钟以上，进一步优选为 380 分钟以上。另外，上述润滑油基础油 (11) 和 (VI) 的 RBOT 寿命优选为 400 分钟以上，更优选为 410 分钟以上，进一步优选为 420 分钟以上。当 RBOT 寿命低于上述下限值时，润滑油基础油的粘度 - 温度特性和热-氧化安定性有降低的倾向，进而，当在润滑油基础油中配合添加剂时，该添加剂的效果有降低的倾向。

予以说明，本发明中所说的 RBOT 寿命是指对一种通过在润滑油基础油中添加 0.2 质量 % 的酚类抗氧化剂 (2,6- 二叔丁基 - 对 - 甲酚(DBPC) 而成的组合物，根据 JIS K 2514-1996 测定的 RBOT 值。

另外，第 1 实施方案的润滑油基础油的凝固点也与润滑油基础油的粘度等级有关，作为第 1 实施方案的润滑油基础油的优选例，可举出 100°C 时的运动粘度为 3.5～6mm²/s, 粘度指数为 130 以上, 且凝固点为 -25°C 以下的润滑油基础油。这时时的凝固点更优选为 -26°C 以下，进一步优选为 -28°C 以下。予以说明，在 -30°C 左右的温度条件下，即使在润滑油基础油的凝固点超过 -25°C 时，有时也能得到充分的低温特性。为了实现 -35°C 以下时的低温粘度特性 (CCS 粘度、MRV 粘度、BF 粘度) 优良的润滑油，特别是 -40°C 时的 MRV 粘度得到大幅改善的润滑油，使凝固点为 -25°C 以下是重要的，优选为 -26°C 以下。另外，通过使用润滑油基础油的凝固点降低，可以改善低温性能，但粘度指数降低和经济性的观点考虑，凝固点优选为 -45°C 以上，更优选为 -40°C 以上，进一步优选为 -35°C 以上。在本发明中，通过使用润滑油基础油的凝固点在 -35 ～ -26°C 范围内，可以更高水平地兼顾高粘度指数和低温特性，且可以获得经济性优良的润滑油基础油，因此是特别优选的。此处，凝固点为 -25°C 以下的润滑油基础油可以通过进行上述的溶剂脱蜡法或者催化脱蜡法等的脱蜡处理来获得，但只要能够使脱蜡处理后的润滑油基础油的凝固点为 -25°C 以下，也可以采用任一种脱蜡处理方法。

予以说明，本发明中所说的凝固点是指在 JIS K 2269-1987 (JIS 法流动点) 中将
流动点的测定间隙（2.5℃）设定为1℃来进行测定时，比能够观察到样品流动的最低温度
还低1℃的温度。予以说明，按照JIS法流动点，虽然可得到2.5℃间隔的结果，但考虑到该
方法的测定误差、再现精度，在严格控制低温特性的临界点的本发明中是不妥当的。
【0237】另外，对于含有第1实施方案的润滑油基础油的润滑油组合物，-40℃时的MRV粘
度优选为60000mPa·s以下，更优选为30000mPa·s以下，进一步优选为20000mPa·s以
下，特别优选为15000mPa·s以下，也可以使屈服应力为0Pa（无屈服应力）。予以说明，本
发明中所说的-40℃时的MRV粘度和屈服应力是指分别按照ASTMD4684测定的粘度和屈服
应力。
【0238】（第2实施方案）
【0239】本发明的第2实施方案的润滑油基础油，其特征在于，100℃时的运动粘度为
3.5～6mm²/s，其粘度指数为130以上，且凝固点为-25℃以下。
【0240】第2实施方案的润滑油基础油，只要100℃时的运动粘度、粘度指数和凝固点满足
上述条件，就没有特殊限制。具体来说，可举出那些在下述各种基础油之中，100℃时的运动
粘度、粘度指数和凝固点满足上述条件的基础油，所述各种基础油包括通过将那些由原油
通过常压蒸馏和/或减压蒸馏而得的润滑油馏分，采用选自溶剂脱沥青、溶剂抽提、加氢裂
化、溶剂脱蜡、催化脱蜡、加氢精制、硫酸洗涤、白土处理等精制处理之中的1种方法单独地
或者2种以上组合地进行精制而获得的链烷烃类矿物油，或者正构烷烃类基础油、异构烷
烃类基础油等。这些润滑油基础油可以单独使用1种，另外，也可以将2种以上组合使用。
【0241】作为第2实施方案的润滑油基础油的优选例，可举出以上述第1实施方案的说明
中示例的基础油（1）～（8）为原料，将该原料油和/或从该原料油中回收的润滑油馏分通
过指定的精制方法进行精制，回收其中的润滑油馏分而得到的基础油。另外，作为特别优选
的润滑油基础油，可举出在上述第1实施方案的说明中示例的基础油（9）或者（10）。
【0242】另外，对于第2实施方案的润滑油基础油的制备方法、处理方法的说明与上述第1
实施方案的情况相同，在此不再重复说明。在制备第2实施方案的润滑油基础油时，优选使
用上述第1实施方案中的制备方法A、B。
【0243】以下进一步详述第2实施方案的润滑油基础油。
【0244】第2实施方案的润滑油基础油在100℃时的运动粘度，如上所述，为3.5～6mm²/
s，优选为3.7～4.5mm²/s，更优选为3.9～4.2mm²/s。当润滑油基础油在100℃时的运动
粘度小于3.5mm²/s时，蒸发损失量增大，另外，如果超过6mm²/s，测-40℃时的低温粘度特性
大幅度地劣化。
【0245】另外，第2实施方案的润滑油基础油在40℃时的运动粘度没有特殊限制，优选为
12～32mm²/s，更优选为13～19mm²/s，进一步优选为15～17.5mm²/s。当润滑油基础油
在40℃时的运动粘度小于12mm²/s时，蒸发损失量有增大的倾向，另外，如果超过32mm²/s，
则-40℃时的低温粘度特性有劣化的倾向。
【0246】另外，第2实施方案的润滑油基础油的粘度指数，如上所述，为130以上，优选为
135以上，更优选为138以上。当粘度指数小于130时，粘度-温度特性变得不充分。另外，
第2实施方案的润滑油基础油的粘度指数优选为160以下，更优选为150以下。如果粘度
指数超过160，则低温粘度特性也变得不充分的倾向。
【0247】另外，第2实施方案的润滑油基础油的凝固点，如上所述，为-25℃以下，优选

[0248] 根据第 2 实施方案，例如，润滑油基础油在 -35°C 时的 CCS 粘度优选为 2800mpa.s 以下，更优选为 2200mpa.s 以下，进一步优选为 2000mpa.s 以下。

[0249] 另外，对于含有第 2 实施方案的润滑油基础油的润滑油组合物，-40°C 时的 MRV 粘度优选为 60000mpa.s 以下，更优选为 30000mpa.s 以下，进一步优选为 20000mpa.s 以下，特别优选为 15000mpa.s 以下，也可以使屈服应力为 0Pa（无屈服应力）。

[0250] 进而，对于含有第 2 实施方案的润滑油基础油的润滑油组合物，-40°C 时的 BF 粘度优选为 20000mpa.s 以下，更优选为 15000mpa.s 以下，进一步优选为 10000mpa.s 以下，特别优选为 8000mpa.s 以下。

[0251] 第 2 实施方案的润滑油基础油的、其他的各物性和组成（润滑油基础油中的饱和成分的含量、环状饱和成分在饱和成分中所占的比例、支链烷烃成分以及直链烷烃成分在润滑油基础油中所占的比重、1 环饱和成分和 2 环饱和成分在饱和成分中所占的含量、饱和成分中所含的 1 环饱和成分的质量（M₁）、2 环以上的饱和成分的质量（M₂）、2 环饱和成分的质量（M₃）的比例（M₁/M₂，M₂/M₃）、芳香族成分在润滑油基础油中所占的含量、润滑油基础油的密度、由上述式（2）表示的条件、润滑油基础油的% C₆、% C₇、% C₈、% C₉/% Cₓ（硫化成分的含量、氢化成分的含量），只要 100°C 时的运动粘度、粘度指数和凝固点满足上述条件，就没有特殊限制，但是优选为在第 1 实施方案的润滑油基础油的范围中所说明的各物性和组成。在此不再重复说明。

[0252] 另外，第 2 实施方案的润滑油基础油在 20°C 时的折射率，为了满足上述式（2），优选为 1.450 ～ 1.465，更优选为 1.452 ～ 1.463，进一步优选为 1.453 ～ 1.462。

[0253] 另外，第 2 实施方案的润滑油基础油的流动点，优选为 -20°C 以下，更优选为 -22.5°C 以下，进一步优选为 -25°C 以下，更进一步优选为 -27.5°C 以下，特别优选为 -30°C 以下。如果流动点超过上述上限值，则润滑油基础油以及含有该润滑油基础油的润滑油组合物在 -35°C 以下时的低温粘度特性有降低的倾向。

[0254] 另外，第 2 实施方案的润滑油基础油在 15°C 时的密度（ρ₁₅，单位：g/cm³），优选为 0.835g/cm³ 以下，更优选为 0.830g/cm³ 以下，进一步优选为 0.825g/cm³ 以下；另外，优选为 0.810g/cm³ 以上。

[0255] 另外，第 2 实施方案的润滑油基础油的 NOACK 蒸发量没有特殊限制，优选为 20 质量% 以下，更优选为 16 质量% 以下，进一步优选为 15 质量% 以下；另外，优选为 6 质量% 以
上。更优选为 8 质量%以上，进一步优选为 10 质量%以上。当 NOACK 蒸发量为上述下限值时，低温粘度特性有难以改善的倾向。另外，如果 NOACK 蒸发量分别超过上述上限值，则当将润滑脂基础油用于内燃机用润滑脂时，润滑脂的蒸发损失量增多，从而促进催化剂中毒，因此是不优选的。

[0256] 另外，第 2 实施方案的润滑脂基础油的苯胺点 (AP(℃))，优选为 113℃以上，更优选为 116℃以上，进一步优选为 118℃以上，特别优选为 120℃以上。

[0257] 另外，对于第 2 实施方案的润滑脂基础油的蒸馏特性，在气相色谱蒸馏中，其初馏点 (I BP) 优选为 300～380℃，更优选为 320～370℃，进一步优选为 330～360℃。另外，10%馏出温度 (T10) 优选为 340～420℃，更优选为 350～410℃，进一步优选为 360～400℃。另外，50%馏出温度 (T50) 优选为 380～460℃，更优选为 390～450℃，进一步优选为 400～460℃。另外，90%馏出温度 (T90) 优选为 440～500℃，更优选为 450～490℃，进一步优选为 460～480℃。另外，终馏点 (FBP) 优选为 460～540℃，更优选为 470～530℃，进一步优选为 480～520℃。另外，T90-T10 优选为 50～100℃，更优选为 60～95℃，进一步优选为 80～90℃。另外，FBP-IBP 优选为 100～250℃，更优选为 120～180℃，进一步优选为 130～160℃。另外，T10-IBP 优选为 10～70℃，更优选为 15～60℃，进一步优选为 20～50℃。另外，FBP-T90 优选为 10～50℃，更优选为 20～40℃，进一步优选为 25～35℃。通过将 I BP、T10、T50、T90、FBP、T90-T10、FBP-IBP、T10-IBP、FBP-T90 设定在上述优选范围内，可以进一步改善低温粘度，并进一步减少蒸发损失。予以说明，对于 T90-T10、FBP-IBP、T10-IBP 和 FBP-T90 的各种温度，如果将它们的蒸馏范围设定得过窄，则会使润滑脂基础油的收率变差，从而经济性方面考虑不优选。

[0258] 另外，根据第 2 实施方案的润滑脂基础油，通过使 100℃时的运动粘度、粘度指数和凝固点满足上述条件，可以实现优良的热・氧化安定性，其 RBOT 寿命优选为 350 分钟以上，更优选为 370 分钟以上，进一步优选为 380 分钟以上。当 RBOT 寿命分别低于上述下限值时，润滑脂基础油的粘度 - 温度特性和热・氧化安定性有降低的倾向，进而，当在润滑脂基础油中配合添加剂时，该添加剂的效果有降低的倾向。

[0259] 第 2 实施方案的润滑脂组合物，从能够大幅度改善 -40℃以下时的 BF 粘度和 MRV 粘度的观点考虑，优选在上述添加剂中还含有抗凝剂和 / 或粘度指数提高剂。另外，含有抗凝剂和 / 或粘度指数提高剂的润滑脂组合物，优选其流动点为 -60～-35℃，更优选为 -50～-40℃。

[0260] 第 1 实施方案和第 2 实施方案的润滑脂基础油，粘度 - 温度特性和热・氧化安定性优良，同时润滑脂基础油本身的摩擦特性得到改善，并可以实现摩擦减少效果的提高，以及节能性的提高。另外，当在第 1 实施方案和第 2 实施方案的润滑脂基础油中配合添加剂时，可以更高水平地发挥该添加剂的功能 (由抗氧化剂产生的热・氧化安定性提高效果，由摩擦调整剂产生的摩擦减少效果，由抗磨剂产生的耐磨性提高效果等)。因此，第 1 实施方案和第 2 实施方案的润滑脂基础油适合用作各种润滑脂的基础油。作为第 1 实施方案和第 2 实施方案的润滑脂基础油的用途，具体可举出乘用车用汽油发动机、两轮车用汽油发动机、柴油发动机、燃气发动机、燃气泵及发动机、船舶用发动机、发电机等内燃机所用的润滑脂 (内燃机用润滑脂)、自动变速器、手动变速器、无级变速器、主传动减速齿轮等传动装置所用的润滑脂 (传动装置用油)、缓冲器、建设机械等液压装置中使用的液压工作油、压缩机
油、汽轮机油、工业用齿轮油、冷冻机油、防锈油、载热油、储气罐密封油、轴承油、纸机用油、工业机械油、浮动导轨面用油、电绝缘油、切削油、压型油、压延油、热处理油等。通过在上述用途中使用第 1 实施方案和第 2 实施方案的润滑油基础油，可以高水平地实现各润滑油的粘度 - 温度特性、热・氧化安定性、节能性、省燃耗性等特性的改善、以及实现各润滑油的长寿命周期和环境负荷物质的减少。

[0261] 使用第 1 实施方案和第 2 实施方案的润滑油基础油作为润滑油的基础油时，第 1 实施方案或者第 2 实施方案的润滑油基础油既可以单独使用，也可以将第 1 实施方案或者第 2 实施方案的润滑油基础油与其他基础油的 1 种或 2 种以上并用。予以说明，在将第 1 实施方案或者第 2 实施方案的润滑油基础油与其他基础油并用时，第 1 实施方案或者第 2 实施方案的润滑油基础油在这些混合基础油中所占的比例优选为 30 质量％以上，更优选为 50 质量％以上，进一步优选为 70 质量％以上。

[0262] 作为可与第 1 实施方案或者第 2 实施方案的润滑油基础油并用的其他基础油没有特殊限制，作为矿物油类基础油，例如可举出在 100℃时的运动粘度为 1～100mm²/s 的溶剂精制石油油、加氢裂解石油油、加氢精制石油油、溶剂脱蜡基础油等。

[0263] 另外，作为合成类基础油，可举出聚 α-烯烃或其氢化物、异丁烯低聚物或其氢化物，异构烷烃、烷烃基苯、烷烃基苯、二酯（戊二酸二十三烷基酯、己二酸二-2-乙基己酯、己二酸二异癸酯、己二酸二十三烷基酯、癸二酸二-2-乙基己基酯等）、多元醇酯（三羟甲基丙烷辛酸酯、三羟甲基丙烷壬酸酯、季戊四醇二-2-乙基己基酯、季戊四醇壬酸酯等）、聚氧亚烷基二醇、二烷基二苯醚、聚苯醚等，其中，优选聚 α-烯烃。作为聚 α-烯烃，典型地可举出碳数 2～32、优选 6～16 的 α-烯烃的低聚物或者其低聚物（1-辛烯低聚物、癸烯低聚物、乙烯 - 丙烯共低聚物等）以及它们的氢化物。

[0264] 聚 α-烯烃的制法没有特殊限制，例如可举出，在含有三氯化铝或者三氟化硼与水、醇（乙醇、丙醇、丁醇等）、羧酸或者酯的配合物的弗里德尔 - 克拉夫茨 (Friedel-Crafts) 催化剂之类的聚合催化剂的存在下，使 α-烯烃聚合的方法。

[0265] 另外，作为第 1 实施方案和第 2 实施方案的润滑油基础油中配合的添加剂没有特殊限制，可配合润滑油领域中以往使用的任意添加剂。作为这种润滑油添加剂，具体可举出抗氧化剂、无灰分散剂、金属清净剂、极压剂、抗磨剂、粘度指数提高剂、抗凝剂、摩擦调整剂、油性添加剂、防腐剂、防锈剂、抗乳化剂、金属钝化剂、密封溶胀剂、消泡剂、着色剂等。这些添加剂可以单独使用 1 种，也可以将 2 种以上组合使用。

[0266] （第 3 实施方案）

[0267] 本发明的第 3 实施方案的内燃机油用润滑油组合物，其中含有上述第 1 实施方案或者第 2 实施方案的润滑油基础油、以及以组合物总量为基准，（A-1）按磷元素换算计为 0.02 ～ 0.08 质量％的磷类抗磨剂、（B-1）0.5 ～ 3 质量％的无灰抗氧化剂、（C-1）3 ～ 12 质量％的无灰分散剂。予以说明，此处，省略对上述第 1 实施方案或者第 2 实施方案的润滑油基础油的重复说明。另外，第 3 实施方案的内燃机油用润滑油组合物除了含有第 1 实施方案或者第 2 实施方案的润滑油基础油以外，还可以含有在上述第 1 实施方案的说明中例示的矿物油类基础油、合成类基础油等，对于矿物油类基础油、合成类基础油等，此处也不再重复说明。

[0268] 第 3 实施方案的内燃机用润滑油组合物，作为 (A-1) 成分，含有磷类抗磨剂。作为
磷类抗磨剂，可举出不含硫作为构成元素的磷类抗磨剂，含有磷和硫两者的抗磨剂（磷－硫类抗磨剂）等。

【0269】作为不含硫作为构成元素的磷类抗磨剂，可举出磷酸、亚磷酸、磷酸酯类（包括磷酸单酯类、磷酸二酯类和磷酸三酯类）、亚磷酸酯类（包括亚磷酸单酯类、亚磷酸二酯类和亚磷酸三酯类）、以及它们的盐（胺盐或者金属盐）。作为磷酸酯类和亚磷酸酯类，可以使
用具有碳数通常为2～30、优选为碳数3～20的烃基的磷酸酯类和亚磷酸酯类。

【0270】另外，作为磷－硫类极压剂，可举出硫代磷酸、硫代亚磷酸、硫代磷酸酯类（包括硫代磷酸单酯类、硫代磷酸二酯类、硫代磷酸三酯类）、硫代亚磷酸酯类（包括硫代亚磷酸单酯类、硫代亚磷酸二酯类、硫代亚磷酸三酯类），以及它们的盐、以及二硫代磷酸盐等。作为硫代磷酸酯类以及硫代亚磷酸酯类，可以使用具有碳数通常为2～30、优选为碳数3～20的烃基的硫代磷酸酯类或硫代亚磷酸酯类。

【0271】作为磷类抗磨剂，优选从下述通式(4-a)表示的磷化合物、下述通式(4-b)表示的磷化合物，以及它们的金属盐（但是钨盐除外）或者胺盐、以及它们的衍生物中选出的至少1种磷类抗磨剂。

【0272】（化1）

【0273】

\[
R^1\bigg(X^1\bigg)_p\biggarrow PP\biggarrow X^3\biggarrow R^3
\]

【0274】式中，\(R^1\)表示碳数1～30的烃基，\(R^2\)和\(R^3\)各自独立地表示氢原子或者碳数1～30的烃基，\(X^1\)、\(X^2\)和\(X^3\)分别表示氧原子或者硫原子，\(p\)表示0或者1。]

【0275】（化2）

【0276】

\[
R^4\biggarrow X^7\biggarrow R^6
\]

【0277】式中，\(R^4\)表示碳数1～30的烃基，\(R^5\)和\(R^6\)各自独立地表示氢原子或者碳数1～30的烃基，\(X^4\)、\(X^5\)和\(X^6\)各自表示氧原子或者硫原子，\(q\)表示0或者1。]

【0278】上述通式(4-a)、(4-b)中，作为\(R^4 \sim R^6\)表示的碳数1～30的烃基，具体可举出烷基、环烷基、烯基、烷基取代环烷基、芳基、烷基取代芳基、以及芳基烷基。

【0279】作为上述烷基，例如可举出甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基等烷基（这些烷基可以是直链状或支链状）。

【0280】作为上述环烷基，例如可举出，环戊基、环己基、环庚基等碳数5～7的环烷基。另外，作为上述烷基环烷基，例如可举出，甲基环戊基、二甲基环戊基、甲基乙基环戊基、乙烯基环戊基、甲基环已基、甲基环已基、甲基乙烯基环已基、甲基环庚基、二甲基环庚基、甲基乙基环庚基、二乙基环庚基等碳数6～11的烷基环烷基（烷基在环烷基上的取代位置也是任意的）。

【0281】作为上述烯基，例如可举出，丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基、癸
烯基、十一碳烯基、十二碳烯基、十三碳烯基、十四碳烯基、十五碳烯基、十六碳烯基、十七碳烯基、十八碳烯基等烯基，这些烯基可以是直链状或支链状，另外，双键的位置也是任意的。

[0282] 作为上述芳基，例如可举出，苯基、萘基等芳基。另外，作为上述烷基芳基，例如可举出，甲苯基、二甲苯基、乙基苯基、丙基苯基、丁基苯基、戊基苯基、己基苯基、庚基苯基、辛基苯基、壬基苯基、癸基苯基、十一烷基苯基、十二烷基苯基等碳数 7～18 的烷基芳基（烷基可以是直链状或支链状，另外，烷基在芳基上的取代位置也是任意的）。

[0283] 作为上述芳基烷基，例如可举出苄基、苯基乙基、苯基丙基、苯基丁基、苯基戊基、苯基己基等碳数 7～12 的芳基烷基（这些烷基可以是直链状或支链状）。

[0284] 上述 R¹～R³ 表示的碳数 1～30 的烃基，优选为碳数 1～30 的烃基或者碳数 6～24 的芳基，更优选为碳数 3～18 的烃基，进一步优选为碳数 4～12 的烃基。

[0285] 作为通式 (4-a) 表示的磷化合物，例如可举出，具有 1 个上述碳数 1～30 的烃基的亚磷酸单酯、单硫代亚磷酸单酯、二硫代亚磷酸单酯、（烃基）亚磷酸（烃基）单硫代亚磷酸（烃基）二硫代磷酸；具有 2 个上述碳数 1～30 的烃基的亚磷酸二酯、单硫代亚磷酸二酯、二硫代亚磷酸二酯、（烃基）亚磷酸单酯、（烃基）单硫代亚磷酸单酯、（烃基）二硫代亚磷酸单酯；具有 3 个上述碳数 1～30 的烃基的亚磷酸三酯、单硫代亚磷酸三酯、二硫代亚磷酸三酯、（烃基）亚磷酸二酯、（烃基）单硫代亚磷酸二酯、（烃基）二硫代亚磷酸二酯以及它们的衍生物等，在烃基中含有 N、O、S 等杂原子的化合物，三（己硫基乙氧基）亚磷酸酯、三（辛硫基乙氧基）亚磷酸酯，三（十二烷硫基乙氧基）亚磷酸酯、三（十六烷硫基乙氧基）亚磷酸酯，二（己硫基乙氧基）亚磷酸酯、二（辛硫基乙氧基）亚磷酸酯，二（十二烷硫基乙氧基）亚磷酸酯、二（十六烷硫基乙氧基）亚磷酸酯，单（己硫基乙氧基）亚磷酸酯、单（十二烷硫基乙氧基）亚磷酸酯、单（十六烷硫基乙氧基）亚磷酸酯，以及它们的混合物等。

[0286] 在本发明中，作为通式 (4-a) 表示的化合物，优选 X¹～X³ 中的至少 1 个为氧原子的化合物，更优选全部 X¹～X³ 为氧原子的化合物，即上述通式 (4-c) 表示的化合物。

[0287] 一式 3]

[0288] \[\text{R}^1 \text{O} \quad \text{O} \quad \text{P} \quad \text{O} \quad \text{R}^3 \quad \text{O} \quad \text{R}^2 \quad \text{(4-c)}\]

[0289] 一式中，R¹ 表示碳数 1～30 的烃基，R² 和 R³ 可以相同或不同，分别表示氢原子或者碳数 1～30 的烃基，p 表示 0 或者 1。]

[0290] 作为通式 (4-b) 表示的磷化合物，例如可举出，具有 1 个上述碳数 1～30 的烃基的磷酸单酯、单硫代磷酸单酯、二硫代磷酸单酯、（烃基）磷酸（烃基）单硫代磷酸（烃基）二硫代磷酸；具有 2 个上述碳数 1～30 的烃基的磷酸二酯、单硫代磷酸二酯、二硫代磷酸二酯、（烃基）磷酸单酯、（烃基）单硫代磷酸单酯、（烃基）二硫代磷酸单酯；具有 3 个上述碳数 1～30 的烃基的磷酸三酯、单硫代磷酸三酯、二硫代磷酸三酯、（烃基）磷酸二酯、（烃基）单硫代磷酸二酯、（烃基）二硫代磷酸二酯以及它们的衍生物等，在烃基中含有 N、O、S 等杂原子的化合物，三（己硫基乙氧基）磷酸酯、三（辛硫基乙氧基）磷酸酯，三（十二烷硫基乙氧基）磷酸酯、三（十六烷硫基乙氧基）磷酸酯、二（己硫基乙氧基）磷酸酯、二（辛硫基乙氧基）磷酸酯，二（十二烷硫基乙氧基）磷酸酯、二（十六烷硫基乙氧基）磷酸酯，单（己硫基乙氧基）磷酸酯、单（十二烷硫基乙氧基）磷酸酯、单（十六烷硫基乙氧基）磷酸酯，以及它们的混合物等。
（辛硫基乙氧基）磷酸酯、二（十二烷硫基乙氧基）磷酸酯、二（十六烷硫基乙氧基）磷酸酯、单（己硫基乙氧基）磷酸酯、单（辛硫基乙氧基）磷酸酯、单（十二烷硫基乙氧基）磷酸酯、单（十六烷硫基乙氧基）磷酸酯；以及它们的混合物等。

在本发明中，作为通式 (4-b) 表示的化合物，优选 X' 为氧原子的化合物，更优选全部 X' 为氧原子的化合物，即下述通式 (4-d) 表示的化合物。

![化学结构式](4-d)

式中，R' 表示碳数 1～30 的烃基，R^5 和 R^6 可以相同或不同，分别表示氢原子或者碳数 1～30 的烃基，q 表示 0 或 1。

另外，通式 (4-a) 或者 (4-b) 表示的磷化合物的金属盐或者铵盐，可以通过使通式 (4-a) 或者 (4-b) 表示的磷化合物与金属氧化物、金属氢氧化物、金属碳酸盐、金属氯化物等金属盐、氮、碳原子等化合物中仅具有碳数 1～30 的烃基或者含羟基的烃基的胺化合物等氢化合物等发生作用，将残留的酸性氨的一部分或者全部中和来制备。

作为上述磷化合物中的金属，具体可举出锂、钠、钾、铯等碱金属、钙、镁、钡等碱土类金属、锌、铜、铁、铅、镍、铍、铝、铟等重金属等。其中，优选钙、镁等碱土类金属、钼和锌，特别优选锌。

予以说明，上述磷化合物的金属盐的结构随着金属的价数或者磷化合物的 OH 基或者 SH 基的个数的不同而异，因此，对磷化合物的金属盐的结构没有任何限定。例如，当使氧化锌 1mol 与磷酸单酯 (OH 基为 1 个的化合物) 2mol 反应时，可以认为所获的产物以下述式 (4-e) 表示的结构的化合物为主成分，但也存在聚合物化的分子。

![化学结构式](4-e)

式中，R 各自独立地表示氢原子或者碳数 1～30 的烃基。]

另外，例如，当使氧化锌 1mol 与磷酸单酯 (OH 基为 2 个的化合物) 1mol 反应时，可以认为所获的产物以下述式 (4-f) 表示的结构的化合物为主成分，但也存在聚合物化的分子。
[0304] 式中，R表示氢原子或碳数1～30的烃基。

[0305] 另外，作为上述化合物，具体可举出在上述锌-胺配合物的说明中例示的单胺、二胺、多胺、烷醇胺等。另外，也可以使用N-羟基乙酰基胺基甲酰胺等杂环化合物、与胺化合物形成的胺氧化物加成物等。

[0306] 这些化合物中作为优选例，可举出乙胺、十二烷胺胺、三十三烷胺胺、十七烷基胺、十八烷基胺、油溶以及硬脂胺等具有碳数10～20的烷基或烯基的脂肪族胺（它们可以是直链状或支链状）。

[0307] 在本发明中，上述磷类抗磨剂可以单独使用1种，也可以将2种以上组合使用。

[0308] 作为本发明的磷类抗磨剂，优选上述通式（4-c）或者（4-d）表示的磷化合物或其金属盐，其中，优选具有2个碳数3～18的烷基或者芳基的亚磷酸单酯或者钙形成的盐；具有3个碳数3～18的烷基或者芳基，优选碳数6～12的烷基的亚磷酸三酯；具有1个碳数3～18的烷基或者芳基的磷酸的单酯与锌或者钙形成的盐；具有2个碳数3～18的烷基或者芳基的磷酸的二酯与锌或者钙形成的盐；或者具有3个碳数3～18的烷基或者芳基，优选碳数6～12的烷基的磷酸三酯，具有1个碳数1～18的烷基或者芳基的（烃基）亚磷酸单酯与锌或者钙形成的盐，具有2个碳数1～18的烷基或者芳基的（烃基）亚磷酸单酯与锌或者钙形成的盐；具有3个碳数1～18的烷基或者芳基的（烃基）亚磷酸单酯与锌或者钙形成的盐；具有3个碳数1～18的烷基或者芳基的（烃基）亚磷酸单酯与锌或者钙形成的盐。

[0309] 作为上述的（烃基）（亚）磷酸、其金属盐、（烃基）（亚）磷酸单酯、其金属盐、以及（烃基）（亚）磷酸二酯，从油溶性和极压性的观点考虑，烃基的合计碳数优选为12～30，更优选为14～24，进一步优选为16～20。

[0310] 在第3实施方案的内燃机用润滑脂中所含的磷类抗氧化剂的含量，以组合物总量为基准，按磷原子来计算。如上所述，为0.02～0.08质量％，优选为0.02～0.06质量％，特别优选为0.04～0.05质量％。当磷类抗氧化剂的含量增加时，抗氧化性不会增加，另一方面，如果磷类抗氧化剂的含量过低时，抗氧化性能会降低。对于碳原子数，从长油链型到短油链型，碳原子数可以是2～30的脂族烷基，也可以是1～30的脂族烷基。
酚,2,4-二甲基-6-叔丁基苯酚、2,6-二-叔-a-二甲基氨基-对甲酚、2,6-二-叔丁基-4(3N’-二甲基氨基甲基苯酚)、4,4'-硫代双(2-甲基-6-叔丁基苯酚)、4,4'-硫代双(3-甲基-6-叔丁基苯酚)、2,2'-硫代双(4-甲基-6-叔丁基苯酚)、双(3-甲基-4-羟基-5-叔丁基苯基)硫醚、双(3,5-二-叔丁基-4-羟基苯基)硫醚、2,2'-硫代-二亚乙基双(3-(3,5-二-叔丁基-4-羟基苯基)丙酸酯)、3-(3,5-二-叔丁基-4-羟基苯基)丙酸十二烷基酯、季戊四醇-四[3-(3,5-二-叔丁基-4-羟基苯基)丙酸酯]、3-(3,5-二-叔丁基-4-羟基苯基)丙酸十八烷基酯、3-甲基-5-叔丁基-4-羟基苯基取代脂肪酸酯等。它们可以单独使用1种，或者将2种以上混合使用。

[0313] 作为胺类抗氧化剂，例如可举出，苯基-a-萘基胺、烷基苯基-a-萘基胺、以及二烷基二苯胺。它们可以单独使用1种，或者将2种以上混合使用。

[0314] 进而，也可以将上述酚类抗氧化剂与胺类抗氧化剂组合使用。

[0315] 第3实施方案的内燃机用润滑油组合物中的无灰抗氧化剂的含量，以组合物总量为基准，如上所述，为0.5~3质量％，优选为0.8~2质量％。如果无灰抗氧化剂的含量小于0.5质量％，则氧化寿命变得不充分。另外，即使无灰抗氧化剂的含量超过3质量％，也得不到与含量相应的氧化寿命的提高效果。

[0316] 另外，第3实施方案的内燃机用润滑油组合物，含有无灰分散剂作为(C-1)成分。优选还含有无灰分散剂。作为无灰分散剂，可举出由聚烯烃衍生的烯烃齐聚亚胺、烷基硫醚亚胺以及它们的衍生物。代表性的硫醚亚胺可以通过使高分子量的烯基或者烷基取代的硫醚酸酯与每1分子含有平均4~10个(优选5~7个)氮原子的聚亚烷基多胺进行反应来获得。高分子量的烯基或者烷基优选为数均分子量700~5000的聚丁烯(聚异丁烯)，更优选为数均分子量900~3000的聚丁烯(聚异丁烯)。

[0317] 作为第3实施方案的内燃机用润滑油组合物中优选使用的聚丁烯硫醚齐聚亚胺，例如可举出，下述通式(5-a)或者(5-b)表示的化合物。

[0318] [化7]

[0319] ![化学结构式1](5-a)

[0320] [化8]

[0321]
[0322] 通式 (5-a) 或者 (5-b) 中 PIB 表示聚丁烯基，可由通过将高纯度异丁烯或者 1-丁烯与异丁烯的混合物在氟化硼类催化剂或者氯化铝类催化剂的存在下进行聚合而得到的聚丁烯来制得，聚丁烯混合物中通常含有 5 ~ 100mol%末端具有亚乙烯基结构的物质。另外，从淤泥 (sludge) 抑制效果优良的观点考虑，希望 n 为 2 ~ 5 的整数，优选为 3 ~ 4 的整数。

[0323] 作为通式 (5-a) 或者 (5-b) 表示的琥珀酰亚胺的制备法没有特殊限制，例如，可通过将上述聚丁烯的氯化物、优选在氟化硼类催化剂存在下使上述高纯度异丁烯聚合而成的高反应性聚丁烯（聚异丁烯）、更优选使充分除去氯和氨的聚丁烯与马来酰亚胺在 100 ~ 200℃下反应得到的聚丁烯琥珀酰酸与二亚乙基三胺、三亚乙基四胺、三亚乙基五胺、三亚乙基六胺等多胺反应而制得。予以说明，在制备双琥珀酰亚胺时，只要使该聚丁烯琥珀酰酸与 2 倍量（摩尔比）的多胺反应即可，在制备单琥珀酰亚胺时，只要使该聚丁烯琥珀酰酸与多胺按等量（摩尔比）反应即可。其中，从淤泥分散性优良的观考虑，优选为聚丁烯双琥珀酰亚胺。

[0324] 予以说明，在上述制备法所用的聚丁烯中，由于制备过程中的催化剂会引起微量的氯成分或氯成分的残留，因此优选使用利用吸附法或充分水洗等适当的方法充分除去氯成分或氯成分的聚丁烯。作为氯或氯的含量，优选为 50 质量 ppm 以下，更优选为 10 质量 ppm 以下，进一步优选为 5 质量 ppm 以下，特别优选为 1 质量 ppm 以下。

[0325] 予以说明，在上述制备法所用的聚丁烯中，由于制备过程中的催化剂会引起微量的氯成分或氯成分的残留，因此优选使用利用吸附法或充分水洗等适当的方法充分除去氯成分或氯成分的聚丁烯。作为氯或氯的含量，优选为 50 质量 ppm 以下，更优选为 10 质量 ppm 以下，进一步优选为 5 质量 ppm 以下，特别优选为 1 质量 ppm 以下。

[0326] 另外，作为聚丁烯琥珀酰亚胺的衍生物，可使上述通式 (5-a) 或者 (5-b) 表示的化合物与硼酸等硼化合物、或醇、酰、烷基苯酚、环状碳酸酯、有机酸等含氧有机化合物相作用，以水来将残留的氨基和 / 或亚氨基的一部或者全部中和或者酰胺化，作为所谓的改性琥珀酰亚胺使用。尤其是通过与硼酸等硼化合物反应而得到的含硼烯基（或烷基）琥珀酰亚胺在热 - 氧化安定性方面是有利的。

[0327] 作为用于与通式 (5-a) 或者 (5-b) 表示的化合物相作用的硼化合物，可举出硼酸、硼酸盐、硼酸酯类等。作为硼酸，具体地例如可举出原硼酸、偏硼酸和四硼酸等。作为硼酸盐，可举出硼酸的碱金属盐、碱土类金属盐或者铵盐等，更具体地例如可举出偏硼酸钾、四硼酸钾、五硼酸钾、六硼酸钾等硼酸钾；偏硼酸钠、二硼酸钠、四硼酸钠、五硼酸钠、六硼酸钠等硼酸钠；偏硼酸钾、四硼酸钾、五硼酸钾、六硼酸钾、八硼酸钾等硼酸钾。偏
硼酸钙、二硼酸钙、四硼酸三钙、四硼酸五钙、六硼酸钙等硼酸钙；偏硼酸镁、二硼酸镁、四硼酸三镁、四硼酸五镁、六硼酸镁等硼酸镁；以及偏硼酸铵、四硼酸铵、五硼酸铵、八硼酸铵等硼酸铵等。另外，作为硼酸酯，也可举出硼酸与优选碳数 1～6 的烷基醇生成的酯等，更具体地例如可举出，硼酸单甲酯，硼酸单乙酯，硼酸二甲酯，硼酸二乙酯，硼酸甲丙酯，硼酸乙丙酯等。通过与上述硼化合物作用而得到的琥珀酰亚胺衍生物，因耐热性、氧化安定性优良而优选使用。

另外，作为用于与通式 (5-a) 或者 (5-b) 表示的化合物相作用的含氧有机化合物，具体地例如可举出，甲酸、乙酸、丙酸、丁酸、戊酸、己酸、庚酸、辛酸、壬酸、癸酸、十一烷酸、月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、油酸、十九烷酸、二十烷酸等碳数 1～30 的单羧酸，或是草酸、偏二甲酸、偏苯三酸、四苯四甲酸等碳数 2～30 的多元羧酸或者它们的酸酐，或是酯化合物、碳数 2～6 的环氧化物，羟基（聚）氧亚烷基碳酸酯等。通过与这种含氧有机化合物相作用，例如，推测通式 (5-a) 或者 (5-b) 表示的化合物中的氨基或者亚氨基的一部分或者全部变成了如下述通式 (5-c) 所示的结构。

[0329] [化 9]

[0330]

\[\text{R} \text{C}=\text{O} \] \(\text{N} \) \(\text{R}^1 \) (5-c)

[0331] 上述通式 (5-c) 中的 \(R^1 \) 表示氢原子、碳数 1～24 的烷基、碳数 1～24 的烯基、碳数 1～24 的烷氧基或以 -O-(R\text{H})_n 表示的羟基（聚）氧亚烷基，\(R^1 \) 表示碳数 1～4 的亚烷基，\(n \) 表示 1～5 的整数。其中，以使全部氨基或者亚氨基与这些含氧有机化合物相作用而生成的化合物作为主成分的聚丁烯基双琥珀酰亚胺，其羧基分散性优良，而优选使用。这类化合物可通过使例如 (5-a) 式表示的化合物与摩尔与 (n-1) 摩尔的含氧有机化合物相作用而得到。与这类含氧有机化合物相作用而生成的琥珀酰亚胺衍生物，其羧基分散性优良，特别优选的是通过与羟基 (聚) 氧亚烷基碳酸酯相作用而生成的琥珀酰亚胺衍生物。

[0332] 作为本发明所用的无灰分散剂的聚丁烯琥珀酰亚胺和 / 或其衍生物的重均分子量，优选为 3000 以上，更优选为 5000 以上，进一步优选为 6500 以上，更进一步优选为 7000 以上，特别优选为 8000 以上。重均分子量小于 5000 时，非极性基团的聚丁烯基的分子量过小，导致对硅烷分散性差，并且，可能会成为氧化劣化的活性点的极性基团的胺部分相对增多，从而使氧化安定性变差，因此，不能获得本发明这样的长寿命化效果。另一方面，从防止低温粘度特性变差的观点考虑，聚丁烯琥珀酰亚胺和 / 或其衍生物的重均分子量，优选为 20000 以上，特别优选为 15000 以下。予以说明，这里所说的重均分子量是指在下述条件，即在 Waters 公司制的 150-C ALC/GPC 装置中使用 2 根串联的东曹公司制的 GMHHR- M (7.8mm ID×30cm) 的色谱柱，使用四氢呋喃作为溶剂，温度 23℃，流速 1mL/ 分，样品浓度 1 质量 %，样品注入量 75 µL，用检测器差示折射率计 (RI) 测定的按聚苯乙烯换算的重均分子量。

[0333] 予以说明，在本发明中，作为无灰分散剂，除了上述琥珀酰亚胺和 / 或其衍生物以
外，还可以使用烷基或者烯基多胺、烷基或者烯基苄胺、烷基或者烯烃硫醇、烷基以及它们的衍生物等。

【0334】第3实施例的内燃机用润滑油组合物中的无灰分散剂的含量，以组合物总量为基准，如上所述，为3～12质量%，优选为4～10质量%。如果无灰分散剂的含量小于3质量%，则燃烧生成物的分散性变得不充分，另外，如果超过12质量%，则粘度—温度特性变得不充分。

【0335】第3实施例的内燃机用润滑油组合物可以仅含有上述的润滑油基础油、磺化抗磨剂、无灰抗氧化剂以及无灰分散剂，但为了进一步提高其性能，也可以根据需要，进一步含有以下所示的各种添加剂。

【0336】另外，第3实施例的内燃机用润滑油组合物，从进一步改善其摩擦特性的观点考虑，优选含有摩擦调整剂。作为摩擦调整剂，可以使用通常作为润滑油用的摩擦调整剂使用的任意的化合物，例如可举出，于分子中至少具有1个碳数6～30的烷基或者烯基，特别是碳数6～30的直链烷基或者直链烯基的胺化合物、脂肪酸酯、脂肪酰胺、脂肪酸、脂肪醇、脂肪醚、酰肼（油酰肼（oleyl hydrazide）等）、氨基醚、尿素、酰胺、缩二脲等无灰摩擦调整剂等。

【0337】第3实施例的内燃机用润滑油组合物中的摩擦调整剂的含量，以组合物总量为基准，优选为0.01质量%以上，更优选为0.1质量%以上，进一步优选为0.3质量%以上，另外，优选为3质量%以下，更优选为2质量%以下，进一步优选为1质量%以下。如果摩擦调整剂的含量小于上述下限值，则由于其添加带来的摩擦减少效果有变得不充分的倾向，另外，如果超过上述上限值，则磷类抗磨剂等的效果容易被抑制，或者添加剂的溶解性有变差的倾向。

【0338】另外，第3实施例的内燃机用润滑油组合物，从清净性的观点考虑，优选还含有金属类清净剂。作为这种金属类清净剂，优选使用从碱土类金属磺酸盐、碱土类金属酚盐以及碱土类金属偶氮酸盐中选出的至少1种碱土类金属类清净剂。

【0339】作为碱土类金属磺酸盐，是那些通过将分子量300～1,500，优选400～700的烷基芳香族化合物硫化而得到的烷基芳香族磺酸的碱土类金属盐，特别是镁盐和/or钙盐，优选使用钙盐。作为上述烷基芳香族磺酸，具体可举出所谓石油磺酸或合成磺酸等。作为这里所说的石油磺酸，一般可使用在制备矿物油的润滑油馏分的烷基芳香族化合物的磺化产物或制备白油副产物的所谓石油磺酸等。另外，作为合成磺酸，例如可使用那些通过将前作为洗剂原料的烷基苯制备设备中副产的或者用聚烯烃将苯进行烷基化而得到的，具有直链状或支链状的烷基的烷基苯用以磺化而获得的产物，或者通过将二壬基苯等烷基苯进行磺化而获得的产物等。另外，作为将这些烷基芳香族化合物进行磺化时的磺化剂没有特殊限制，通常可采用发烟硫酸或硫酸酐。

【0340】作为碱土类金属酚盐，可举出烷基苯酚、烷基苯酚硫化物、烷基苯酚的曼尼希反应物的碱土类金属盐、尤其是镁盐和/or钙盐，例如可举出下述通式(6-α)、(6-β)、(6-ε)表示的化合物。

【0341】[化10]

【0342】
上述通式 (6-a) ～ (6-c) 中，R³、R¹⁰、R¹¹、R¹²、R¹³ 和 R¹⁴ 可以相同或不同，各自表示碳数 4 ～ 30，优选 6 ～ 18 的直链或支链烷基，M¹、M² 和 M³ 各自表示碱土类金属，优选钙和 / 或镁，x 表示 1 或 2。上式中，作为 R³、R¹⁰、R¹¹、R¹²、R¹³ 和 R¹⁴，具体可举出丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基、二十一烷基、二十二烷基、二十三烷基、二十四烷基、二十五烷基、二十六烷基、二十七烷基、二十八烷基、二十九烷基、三十烷基等，它们是直链或支链均可，并且它们是伯烷基、仲烷基或者叔烷基均可。

上述通式 (6-d) 中，R¹⁵ 表示碳数 1 ～ 30，优选 6 ～ 18 的直链或支链烷基，n 表示 1 ～ 4 的整数，优选 1 或 2，M⁴ 表示碱土类金属，优选钙和 / 或镁。作为 R¹⁵，具体可举出丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基、二十一烷基、二十二烷基、二十三烷基、二十四烷基、二十五烷基、二十六烷基、二十七烷基、二十八烷基、二十九烷基、三十烷基等。
烷基、十四烷基、二十二烷基、二十六烷基、二十八烷基、二十九烷基、三十烷基等，它们是直链或支链均可。并且它们是伯烷基、仲烷基或者叔烷基均可。

[0352] 作为碱土类金属磷酸盐、碱土类金属酸铁和碱土类金属水杨酸盐，不仅包括那些通过使上述的烷基芳族磷酸、烷基苯酚、烷基苯酚硫化物、烷基苯酚的曼尼希反应物、烷基水杨酸等直接与镁和/或钙的碱土金属的有机物或氨氧化物等碱土类金属碱反应，或者通过将钠盐或钾盐等碱金属盐置换为碱土类金属盐而得到的中性（正盐）碱土类金属磷酸盐，中性（正盐）碱土类金属酸铁以及中性（正盐）碱土类金属水杨酸盐；并且还包括那些通过将中性碱土类金属磷酸盐，中性碱土类金属酸铁以及中性碱土类金属水杨酸盐与过量的碱土类金属盐或碱土类金属碱在水的存在下加热而得到的碱性碱土类金属磷酸盐，碱性碱土类金属酸铁以及碱性碱土类金属水杨酸盐。或者通过在中性碱土类金属磷酸盐，中性碱土类金属酸铁以及中性碱土类金属水杨酸盐的存在下，使碱土类金属的氢氧化物与二氧化碳气体或者硼酸反应而得到的过碱性（超碱性）碱土类金属磷酸盐，过碱性（超碱性）碱土类金属酸铁以及过碱性（超碱性）碱土类金属水杨酸盐。

[0353] 在本发明中，可使用上述的中性碱土类金属盐、碱性碱土类金属盐、过碱性（超碱性）碱土类金属盐及其它们的混合物等。其中，从发挥其优良性能的观点考虑，优选使用过碱性磷酸盐或过碱性磷酸酯的组合物，或者过碱性水杨酸，特别优选使用过碱性水杨酸钙。金属类清净剂通常以用轻质润滑油基础油等稀释的状态销售，另外，虽然可以获得，但一般期望使用金属含量为1.0~20质量%，优选为2.0~16质量%的金属类清净剂。本发明中使用的碱土类金属类清净剂的总碱值可以是任意的，但通常希望使用总碱值为500mgKOH/g以下，优选为150~450mgKOH/g的碱土类金属类清净剂。予以说明，这里所说的总碱值是指根据JIS K2501（1992）的“石油制品和润滑油－中和值试验方法”第7节，通过高氯酸法测定的总碱值。

[0354] 第3实施方案的内燃机用润滑油组合物中的金属类清净剂的含量可以是任意的，以组合物总量为基准，该含量期望为0.1~10质量%，优选为0.5~8质量%，更优选为1~5质量%。该含量超过10质量%时，得不到与该含量相近的效果，因此不优选。

[0355] 另外，第3实施方案的内燃机用润滑油组合物，从可以进一步改善粘度－温度特性的观点考虑，优选含有粘度指数提高剂。作为粘度指数提高剂，可举出非分散型或者分散型聚甲基丙烯酸酯类、分散型乙烯-α-烯烃共聚物或其氢化物，聚异丁烯或其氢化物，苯乙烯-二烯氢化共聚物，苯乙烯-马来酸酐共聚物以及聚烯烃苯乙烯等，其中，优选使用重均分子量为10,000~1,000,000，优选为100,000~900,000，更优选为150,000~500,000，进一步优选为180,000~400,000的非分散型粘度指数提高剂和/或分散型粘度指数提高剂。

[0356] 作为非分散型粘度指数提高剂，具体可举出选自下述通式（7-a）、（7-b）和（7-c）表示的化合物中的单体（以下，称为“单体（M-1）”）的均聚物或者单体（M-1）的2种以上的共聚物或其氢化物等。另一方面，作为分散型粘度指数提高剂，具体可举出那些通过向选自通式（7-d）和（7-e）表示的化合物中的单体（以下，称为“单体（M-2）”）的2种以上的共聚物或其氢化物中引入含氧基而获得的物质、或是由选自通式（7-a）（7-c）表示的化合物中的单体（M-1）的1种或者2种以上与选自通式（7-d）和（7-e）表示的化合物中的单体（M-2）的1种或者2种以上形成的共聚物或其氢化物等。
上述通式 (7-a) 中，R^{16} 表示氢原子或者甲基，R^{17} 表示氢原子或者碳数 1～18 的烷基。作为 R^{17} 表示的碳数 1～18 的烷基，具体可举出甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、以及十八烷基等（这些烷基是直链或支链均可）等。

上述通式 (7-b) 中，R^{18} 表示氢原子或者甲基，R^{19} 表示氢原子或者碳数 1～12 的烃基。作为 R^{19} 表示的碳数 1～12 的烃基，具体可举出甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基等的烃基（这些烃基是直链或支链均可）；环戊基、环己基、环庚基等碳数 5～7 的环烷烃；甲基环戊基、二甲基环戊基、甲基乙基环戊基、二乙基环戊基、甲基环己基、二甲基环己基、甲基乙基环己基、二乙基环己基、甲基环庚基、二甲基环庚基、甲基乙基环庚基等碳数 6～11 的烷基环烷烃（这些烷基在环烷烃上的取代位置可以是任意的）。

丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基、癸烯基、十一烯基、十二烯基等烯基（这些烯基是直链或支链均可，双键的位置也可以是任意的）。

苯基、苯基等芳基：甲苯基、二甲苯基、乙苯基、丙苯基、丁苯基、戊苯基、己苯基等碳数 7～12 的芳基（这些芳基是直链或支链均可，并且在芳基上的取代位置也可以是任意的）；苯基、苯乙基、苯丙基、苯丁基、苯戊基、苯己基等碳数 7～12 的芳烷基（这些烷基是直链或支链均可）等。

上述通式 (7-c) 中，X^8 和 X^9 分别表示氢原子，碳数 1～18 的烷氧基（—OR^{20}；R^{20} 表示碳数 1～18 的烷基）或者碳数 1～18 的单烷基氨基（—NHR^{21}；R^{21} 表示碳数 1～18 的烷基）。

41
上述通式(7-d)中，R²表示氢原子或者甲基，R³表示碳数1～18的亚烷基，Y¹表示含有1～2个氮原子、0～2个氧原子的胺残基或者杂环残基，m表示0或1。作为R³表示的碳数1～18的亚烷基，具体可举出，亚甲基、亚丙基、亚丁基、亚戊基、亚己基、亚庚基、亚辛基、亚壬基、亚癸基、亚十一烷基、亚十二烷基、亚十三烷基、亚十四烷基、亚十五烷基、亚十六烷基、亚十七烷基、以及亚十八烷基等(这些亚烷基是直链或支链均可)等。另外，作为Y¹表示的基团，具体可举出二甲氨基、二乙氨基、二丙氨基、二丁氨基、苯胺基、甲苯胺基、二甲苯胺基、乙酰氨基、苯甲酰氨基、吗啉代基、吡咯基、吡咯啉基、吡啶基、甲基吡啶基、吡啶烷基、哌啶基、吗啉基(キノニル基)、吡咯烷酮基(pyrrolidonyl)、吡咯烷酮基(pyrrolidono)、咪唑啉基、以及吡嗪基等。

[0371] [化18]

[0372]

[0373] 上述通式(7-e)中，R⁴表示氢原子或者甲基，Y²表示含有1～2个氮原子、0～2个氧原子的胺残基或者杂环残基。作为Y²表示的基团，具体可举出二甲氨基、二乙氨基、二丙氨基、二丁氨基、苯胺基、甲苯胺基、二甲苯胺基、乙酰氨基、苯甲酰氨基、吗啉代基、吡咯基、吡咯啉基、吡啶基、甲基吡啶基、吡啶烷基、吡啶烷基、哌啶基、吗啉基(キノニル基)、吡咯烷酮基(pyrrolidonyl)、吡咯烷酮基(pyrrolidono)、咪唑啉基、以及吡嗪基等。

[0374] 作为单体(M-1)的优选例，具体可举出碳数1～18的丙烯酸烷基酯、碳数1～18的甲基丙烯酸烷基酯、碳数2～20的烯烃、苯乙烯、甲基苯乙烯、马来酸酐酯、无水马来酸胺以及它们的混合物等。

[0375] 作为单体(M-2)的优选例，具体可举出甲基丙烯酸二甲基甲酯、甲基丙烯酸二乙基甲酯、甲基丙烯酸二甲基乙酯、甲基丙烯酸二乙基乙酯、2-甲基-5-乙烯基吡啶、吗啉代甲基丙烯酸甲酯、吗啉代甲基丙烯酸乙酯、N-乙烯基吡咯烷酮以及它们的混合物等。

[0376] 予以说明，选自上述(M-1)化合物中的1种或者2种以上的单体与选自(M-2)化合物中的1种或者2种以上的单体形成的共聚物的共聚摩尔比，一般为单体(M-1)：单体(M-2)=80：20～95：5左右。并且其制法也可以是任意的，通常通过在氧化催化剂等聚合引发剂的存在下使单体(M-1)与单体(M-2)进行自由基溶液聚合，可容易地获得共聚物。

[0377] 上述的粘度指数提高剂中，从低温流动性的优良的观点考虑，优选甲基丙烯酸酯类粘度指数提高剂。

[0378] 第3实施方案的内燃机用润滑油组合物中粘度指数提高剂的配合量，以组合物总量为基准，优选为0.1～15质量%，更优选为0.5～5质量%。粘度指数提高剂的含量小于0.1质量%时，由该添加产生的粘度-温度特性的改善效果不充分的倾向，另外，超过
质量%时，存在难以长时间维持初期的极压性的倾向。

在第3实施方案的内燃机用润滑油组合物中，为了进一步提高其性能，根据需要，除了上述添加剂以外，还可以单独或配合多种而配合（A-1）成分以外的抗磨剂、（B-1）成分以外的抗氧化剂、防腐剂、防锈剂、抗乳化剂、金属钝化剂、抗凝剂、橡胶溶胀剂、消泡剂、着色剂等各各种添加剂。

作为（A-1）成分以外的抗磨剂，可举出二硫代氨基甲酸盐、二硫代氨基甲酸锌、二硫代氨基甲酸铋、二硫化物、硫化烃类、硫化酯类等硫类抗磨剂。

作为（B-1）成分以外的抗氧化剂，例如可举出铜类、钼类等金属类抗氧化剂。

作为防腐剂，例如可举出苯并三唑类、甲苯三唑类、噻二唑类、以及咪唑类化合物等。

作为防锈剂，例如可举出石油磺酸酯、烷基苯磺酸酯、壬基苯磺酸酯、硼酸酯等。

作为乳化剂，例如可举出聚氧乙烯烷基醚、聚氧乙烯烷基苯基醚、以及聚氧乙烯烷基苯基醚等非离子型表面活性剂等。

作为金属钝化剂，例如可举出咪唑啉、噻唑衍生物、烷基噻唑类、巯基苯并噻唑类、苯并三唑或其他衍生物、1,3,4-噻二唑多硫化物、1,3,4-噻二唑基-2,5-双（二烷基硫代氨基甲酸酯）、2-（烷基硫代）苯并咪唑以及β-（邻羧基苯基硫代）丙腈等。

作为抗凝剂，可根据润滑油基础油的性状任意选择公知的抗凝剂，希望采用重均分子量大于50,000至150,000以下，优选80,000～120,000的聚甲基丙烯酸酯。

作为消泡剂，可使用那些通常作为润滑用消泡剂使用的任意化合物，例如可举出二甲基硅氧烷、氟硅氧烷等硅氧烷类。可以将其中任意选出的1种或者2种以上的化合物任意量配合使用。

作为着色剂，可使用通常使用的任意化合物，并且可以按任意量配合使用，通常，其配合量以组合物总量为基准，为0.001～1.0质量%。

当本发明的润滑油组合物中含有这些添加剂时，其含量以组合物总量为基准，通常，（A-1）成分以外的抗磨剂在0.01～2质量%，（B-1）成分以外的抗氧化剂在0.01～2质量%、防腐剂、防锈剂、抗乳化剂分别在0.005～5质量%、金属钝化剂在0.005～1质量%、抗凝剂在0.05～1质量%、消泡剂在0.0005～1质量%、着色剂在0.001～1.0质量%的范围内进行选择。

另外，第3实施方案的内燃机用润滑油组合物，可含有如上所述的含有硫作为构成元素的添加剂，润滑油组合物的总含硫量（来自润滑油基础油和添加剂的硫成分的合计量），从添加剂的溶解性、以及抑制在高温氧化条件下生成氧化硫所导致的碱值消耗的观点考虑，优选为0.05～0.3质量%，更优选为0.08～0.25质量%，进一步优选为0.1～0.2质量%，特别优选为0.12～0.18质量%。

另外，第3实施方案的内燃机用润滑油组合物在100°C时的运动粘度，通常为4～24mm²/s，从保持用于抑制粘粘（发热胶变）和磨损的油膜厚度的观点考虑，以及从抑制搅拌阻力增加的观点考虑，优选为5～18mm²/s，更优选为6～15mm²/s，进一步优选为7～12mm²/s。

另外，第3实施方案的内燃机用润滑油组合物的硫酸灰分，从维持排气后处理装
置的性能的观点考虑，优选为 1.2 质量% 以下，更优选为 1.0 质量% 以下，进一步优选为 0.9 质量% 以下；如另外，为了水平地维持发动机清洗性和氧化安定性，优选为 0.1 质量% 以上，更优选为 0.4 质量% 以上，进一步优选为 0.7 质量% 以上，特别优选为 0.8 质量% 以上。予以说明，本发明中所述的硫酸灰分是指根据 JIS K 2272-1985 的“原油和石油制品的灰分以及硫酸灰分试验方法”中的“5. 硫酸灰分的试验方法”测定的硫酸灰分量。

[0393] \[3\] 具有上述构成的第 3 实施方案的内燃机用润滑油组合物，其氧化寿命足够长，而且可以长期充分维持排气后处理装置的性能，进而其粘度－温度特性、摩擦特性和抗挥发性均优良。这种具有优良特性的第 3 实施方案的内燃机用润滑油组合物，适合作为两轮车、四轮车、发电用、船舶用等汽油发动机、柴油发动机、使用含有氧化合物燃料的发动机、燃气发动机等内燃机的润滑油使用，特别适用于安装有排气后处理装置的内燃机，具体地说，在作为装有三元催化器的车辆的汽油发动机的润滑油、装有柴油颗粒过滤器 (DPF) 的车辆的柴油发动机的润滑油等用例中可以发挥出优良的效果。另外，其特别优选是使用低硫燃料，例如硫含量优选为 50 质量 ppm 以下，更优选为 30 质量 ppm 以下，特别优选为 10 质量 ppm 以下的汽油或柴油或煤油、或者硫含量为 1 质量 ppm 以下的燃料（LPG、天然气、基本上不含硫成分的氢、二甲基醚、醇、GPL（天然气制合成油）燃料等）的内燃机的润滑油。

[0394] （第 4 实施方案）

[0395] 本发明的第 4 实施方案的内燃机用润滑油组合物，其中含有上述第 1 实施方案或者第 2 实施方案的润滑油基础油、（A-2）不含硫作为构成元素的无灰抗氧化剂，以及（B-2）选自含有硫作为构成元素的无灰抗氧化剂和有机硫化合物中的至少 1 种。予以说明，此处，省略对第 1 实施方案或者第 2 实施方案的润滑油基础油的重复说明。另外，第 4 实施方案的内燃机用润滑油组合物除了含有第 1 实施方案或者第 2 实施方案的润滑油基础油以外，还可以含有在上述第 1 实施方案的说明中例示的矿物油类基础油、合成类基础油等，对于矿物油类基础油、合成类基础油等，此处也不再重复说明。

[0396] 另外，第 4 实施方案的内燃机用润滑油组合物，作为（A-2）成分，含有不含硫作为构成元素的无灰抗氧化剂。作为（A-2）成分，优选使用不含硫作为构成元素的酚类或者胺类的无灰抗氧化剂。

[0397] 作为不含硫作为构成元素的酚类无灰抗氧化剂，具体地例如可举出：4,4’-亚氨基双（2,6-二叔丁基苯酚）、4,4’-双（2,6-二叔丁基苯酚）、4,4’-双（2-甲基-6-叔丁基苯酚）、2,2’-亚甲基双（4-乙基-6-叔丁基苯酚）、2,2’-亚甲基双（4-甲基-6-叔丁基苯酚）、4,4’-亚丁基双（3-甲基-6-叔丁基苯酚）、4,4’-异亚丙基双（2,6-二叔丁基苯酚）、2,2’-亚甲基双（4-甲基-6-壬基苯酚）、2,2’-异亚丁基双（4,6-二甲基苯酚）、2,2’-亚甲基双（4-甲基-6-环己基苯酚）、2,6-二叔丁基-4-甲基苯酚、2,6-二叔丁基-4-乙基苯酚、2,4-二甲基-6-叔丁基苯酚、2,6-二叔-α-二甲氧基-对甲酚、2,6-二叔丁基-4(N,N’-二甲氧基甲基苯酚)、3-（3,5-二叔丁基-4-羟基苯基）丙酸二甲酯、3-（3,5-二叔丁基-4-羟基苯基）丙酸二丁酯、3-（3,5-二叔丁基-4-羟基苯基）丙酸十八烷基酯、3-（3,5-二叔丁基-4-羟基苯基）丙酸酯、3-（3,5二叔丁基-4-羟基苯基）丙酸酯、3-（3-甲基-5-叔丁基-4-羟基苯基）丙酸酯、3-（3-甲基-5-叔丁基-4-羟基苯基）丙酸酯、以及它们的混合物等。其中，优选作为由羟基基取代脂肪酸与碳数 4 ～ 12 的醇生成的酯的羟基基取代酯类抗氧化剂（3-（3,5-二叔丁基-4-羟基苯基）丙酸酯、3-（3-甲基-5-叔丁基-4-羟基苯基）丙酸酯等）
说明 书

以及双酚类抗氧化剂，更优选为苯基取代酚类抗氧化剂。此外，分子量在 240 以上的酚类化合物的裂解温度高，在更高温条件下也能发挥其效果，因此优选。

[0398] 另外，作为不含硫的构成元素的胺类无灰抗氧化剂，具体可举出苯基-a-萘胺、烷基苯基-a-萘胺、烷基苯二胺、烷基苯三胺、N、N’-二苯基对苯二胺以及它们的混合物。作为这些胺类无灰抗氧化剂所具有的烷基，优选碳数 1～20 的直链或支链烷基，更优选碳数 4～12 的直链或支链烷基。

[0399] 第 4 实施方案的内燃机用润滑油脂组合物中的 (A-2) 成分的含量没有特殊限制，以组合物总量为基准，优选为 0.01 质量%以上，更优选为 0.1 质量%以上，进一步优选为 0.5 质量%以上，特别优选为 1.0 质量%以上；另外，优选为 5 质量%以下，更优选为 3 质量%以下，特别优选为 2 质量%以下。其含量小于 0.01 质量%时，润滑油脂组合物的热·氧化安定性变得不充分，尤其往往难以长期维持优良的清净性。另一方面，(A-2) 成分的含量超过 5 质量%时，看到与含量相应的效果的进一步提高，并且润滑油脂组合物的贮存稳定性有降低的倾向。

[0400] 第 4 实施方案的内燃机用润滑油脂组合物中，作为 (A-2) 成分，以组合物总量为基准，特别优选并用酚类无灰抗氧化剂 0.4～2 质量%和胺类无灰抗氧化剂 0.4～2 质量%，或者单独使用胺类抗氧化剂 0.5～2 质量%、更优选 0.6～1.5 质量%，由此可以长期维持优良的清净性。

[0401] 另外，第 4 实施方案的内燃机用润滑油脂组合物，可含有选自 (B-2-1) 含有硫作为构成元素的无灰抗氧化剂和 (B-2-2) 有机硫化合物中的至少 1 种作为 (B-2) 成分。

[0402] 作为 (B-2-1) 含有硫作为构成元素的无灰抗氧化剂，优选硫化脂肪烃、硫化烯烃、二烃基多硫化合物、二硫代氨基甲酸酯类、噻二唑类、以及含有硫作为构成元素的酰类无灰抗氧化剂等。

[0403] 作为硫化脂肪烃，例如可举出，硫化脂肪烃、硫化脂肪酸、硫化脂肪酸、硫化米糠油等油；硫化脂肪酸等硫化脂肪酸；以及硫化脂肪酸甲酯等硫化酯。

[0404] 作为硫化烯烃，例如可举出下述通式 (8) 所示的化合物。

[0405] \[R^m-S-x-R^n \] (8)

[0406] 式 (8) 中，R^{m} 表示碳数 2～15 的烯烃，R^{n} 表示碳数 2～15 的烷烃或者烯烃，x 表示 1～8 的整数。

[0407] 上述通式 (8) 所示的化合物可由碳数 2～15 的烯烃或其 2～4 聚物与硫、氯化硫等硫化剂反应而得到。作为烯烃，优选使用例如，丙烯、异丁烯、二异丁烯等。

[0408] 二烃基多硫化合物为下述通式 (6) 所示的化合物。

[0409] \[R^{m}-S-y-R^n \] (9)

[0410] 式 (9) 中，R^{m} 和 R^{n} 分别表示碳数 1～20 的烷烃（也包括环烷烃）、碳数 6～20 的芳烃、碳数 7～20 的芳烃，它们可以相同或不同，y 表示 2～8 的整数。

[0411] 作为上述 R^{m} 和 R^{n} 的例子，具体可举出甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、各种戊基、各种己基、各种庚基、各种辛基、各种壬基、各种癸基、各种十二烷基、环己基、苯基、甲苯基、二甲苯基、苯并基、以及苯乙基等。

[0412] 作为二烃基多硫化物的优选例，具体可举出二苯基多硫化物、二苯基多硫化物、双十二烷基多硫化物、二芳基多硫化物、二苯基多硫化物、以及二环己
基多硫化物等。
[0413] 作为二硫代氨基甲酸酯类的优选具体例，可举出下述通式 (10) 或者 (11) 所示的化合物。

\[\text{Chemical Structure (10)} \]

\[\text{Chemical Structure (11)} \]

[0418] 通式 (10) 和 (11) 中，R^{29}、R^{30}、R^{31}、R^{32}、R^{33} 和 R^{34} 分别表示碳数 1～30、优选 1～20 的烃基，R^{35} 表示氢原子或者碳数 1～30 的烃基，优选氢原子或者碳数 1～20 的烃基，a 表示 0～4 的整数，b 表示 0～6 的整数。

[0419] 作为上述碳数 1～30 的烃基，例如可举出，烷基、环烷基、烷基环烷基、烯基、芳基、烯芳基、以及烷基硅。

[0420] 作为噻二唑类，例如可举出，下述通式 (12) 所示的 1,3,4-噻二唑化合物、通式 (13) 所示的 1,2,4-噻二唑化合物以及通式 (14) 所示的 1,4,5-噻二唑化合物。

\[\text{Chemical Structure (12)} \]

\[\text{Chemical Structure (13)} \]

[0427] 通式 (12) ～ (14) 中，R^{36}、R^{37}、R^{38}、R^{39}、R^{40} 和 R^{41} 可以各自相同或不同，分别表示氢原子或者碳数 1～30 的烃基，c、d、e、f、g 和 h 各自表示 0～8 的整数。
作为上述碳数1~30的烃基，例如可举出，烷基、环烷基、烷基环烷基、烯基、芳基、烷芳基、以及芳基烷基。

另外，作为含有硫作为构成元素的化合物无灰抗氧化剂，可举出4,4’-硫代双(2-甲基-6-叔丁基苯酚)、4,4’-硫代双(3-甲基-6-叔丁基苯酚)、2,2’-硫代双(4-甲基-6-叔丁基苯酚)、双(3-甲基-4-羟基-5-叔丁基苯基)硫醚、双(3,5-二叔丁基-4-羟基苯基)硫醚、2,2’-硫代-二亚乙基双[3-(3,5-二叔丁基-4-羟基苯基)丙酸酯]等。

上述(B-2-1)成分中，为了获得更优良的热氧化安定性，优选使用二烃基多硫化物、二硫代槟甲酸酯类和噻二唑类。

当使用(B-2-1)含有硫作为构成元素的无灰抗氧化剂作为第4实施方式的(B-2)成分时，其含量可以特殊指定，以组合物总量为基准，按硫元素来计，优选为0.001质量%以上，更优选为0.005质量%以上，进一步优选为0.01质量%以上，另外，优选为0.2质量%以上，更优选为0.1质量%以上，特别优选为0.04质量%以下。其含量小于上述下限值时，润滑油脂组合物的热氧化安定性变得不充分，尤其往往难以长期维持优良的清净性。另一方面，当超过上述上限值时，润滑油脂组合物的高硫化可能对排气净化装置产生十分不良的影响。

另外，作为(B-2)成分的(B-2-2)有机钼化合物包括(B-2-2a)含有硫作为构成元素的有机钼化合物和(B-2-2b)不含硫作为构成元素的有机钼化合物这两者。

作为(B-2-2a)含有硫作为构成元素的有机钼化合物，例如可举出，二硫代磷酸钼、二硫代槟甲酸钼等有机钼配合物。

作为二硫代磷酸钼，具体地例如可举出，下述通式(15)表示的化合物。

\[\text{(15)} \]

在上述通式(12)中，\(R^{12}, R^{13}, R^{44} \)和\(R^{16} \)可以各自相同或不同地表示碳数2~30，优选碳数5~18，更优选碳数5~12的烷基，或者碳数6~18，优选碳数10~15的(烷基)芳基等烃基。并且，\(Y^1, Y^2, Y^3 \)和\(Y^4 \)分别表示硫原子或氧原子。

作为烷基的优选例，可举出乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基等，它们是烷烃基、仲烷烃基或者叔烷烃基，而且是直链或支链均可。

作为芳基的优选例，可举出苯基、甲苯基、乙基苯基、丙基苯基、丁基苯基、戊基苯基、己基苯基、庚基苯基、辛基苯基、壬基苯基、癸基苯基、十一烷基苯基、十二烷基苯基等，这些烃基是烷烃基、仲烷烃基或者叔烷烃基，而且是直链或支链均可。进而，这些(烷基)芳基包括那些烷基在芳基上的取代位置不同的所有取代异构体。

作为优选的二硫代磷酸钼，具体可举出硫化二乙基二硫代磷酸钼、硫化二丙基二硫代磷酸钼、硫化二丁基二硫代磷酸钼、硫化二戊基二硫代磷酸钼、硫化二己基二硫代磷酸钼、硫化二辛基二硫代磷酸钼、硫化二癸基二硫代磷酸钼、硫化双十二烷基二硫代磷酸钼、
硫化二（丁基苯基）二硫代磷酸钼、硫化二（壬基苯基）二硫代磷酸钼、硫化二（乙基二硫代磷酸钼、硫化二（丙基二硫代磷酸钼、硫化二（丁基二硫代磷酸钼、硫化二（戊基二硫代磷酸钼、硫化二（己基二硫代磷酸钼、硫化二（庚基二硫代磷酸钼、硫化二（辛基二硫代磷酸钼、硫化二（壬基二硫代磷酸钼、硫化二（癸基二硫代磷酸钼、硫化二（十一烷基二硫代磷酸钼、硫化二（十二烷基二硫代磷酸钼、硫化二（十三烷基二硫代磷酸钼、硫化二（十四烷基二硫代磷酸钼、硫化二（十五烷基二硫代磷酸钼、硫化二（十六烷基二硫代磷酸钼、硫化二（十七烷基二硫代磷酸钼、硫化二（十八烷基二硫代磷酸钼。予以说明，作为这些二硫代磷酸钼，也可优选使用 1 分子中具有不同碳数和 / 或结构的烃基的化合物。

作为二硫代氨基甲酸钼，具体地可以使用例如，下述通式 (16) 表示的化合物。

![通式 (16)](image)

上述通式 (16) 中，R^6，R^7，R^8 和 R^9 可以各自相同或不同地表示碳数 2 ~ 24，优选碳数 4 ~ 13 的烷基，或者碳数 6 ~ 24，优选碳数 10 ~ 15 的（烷基）芳基等烃基。并且，Y^6，Y^7，Y^8 和 Y^9 分别表示硫原子或氧原子。

作为烷基的优选例，可举出乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基等，它们可以是伯烷基、仲烷基或者叔烷基，而且是直链或支链均可。

作为 （烷基） 芳基的优选例，可举出苯基、甲苯基、乙苯基、丙苯基、丁苯基、戊苯基、己苯基、庚苯基、辛苯基、壬苯基、癸苯基、十一烷基苯基、十二烷基苯基等，这些烷基是伯烷基、仲烷基或者叔烷基均可，而且是直链或支链均可。进而，这些（烷基）芳基包括烷基在芳基上的取代位置不同的所有取代异构体。另外，作为上述结构以外的二硫代氨基甲酸钼，可举出 WO98/26030 或者 WO99/31113 中公开的具有在硫代或者多硫代 - 三核钼上配位有二硫代氨基甲酸酯基结构的物质等。

作为优选的二硫代氨基甲酸钼，具体可举出硫化二乙基二硫代氨基甲酸钼、硫化二丙基二硫代氨基甲酸钼、硫化二丁基二硫代氨基甲酸钼、硫化二戊基二硫代氨基甲酸钼、硫化二己基二硫代氨基甲酸钼、硫化二丁基二硫代氨基甲酸钼、硫化二癸基二硫代氨基甲酸钼、硫化二（丁基苯基）二硫代氨基甲酸钼、硫化二（壬基苯基）二硫代氨基甲酸钼、硫化二（乙基二硫代氨基甲酸钼、硫化二（丙基二硫代氨基甲酸钼、硫化二（丁基二硫代氨基甲酸钼、硫化二（戊基二硫代氨基甲酸钼、硫化二（己基二硫代氨基甲酸钼、硫化二（庚基二硫代氨基甲酸钼、硫化二（辛基二硫代氨基甲酸钼、硫化二（壬基二硫代氨基甲酸钼、硫化二（癸基二硫代氨基甲酸钼。予以说明，作为这些二硫代氨基甲酸钼，也可优选使用 1 分子中具有不同碳数和 / 或结构的烃基的化合物。

另外，作为除此以外的含有硫的有机钼配合物，可举出钼化合物（例如，二氧化钼、三氧化钼等氧化钼，原钼酸、仲钼酸、（多）硫化钼酸等钼酸、这些钼酸的金属盐，铵盐等
钼酸盐；二硫化钼、三硫化钼、五硫化钼、多硫化钼等硫化钼；硫化钼酸、硫化钼酸的金属盐或者酸盐；氯化钼等卤化钼等）、含硫有机化合物（例如，硫代黄原酸酯基等、硫基噻二唑、硫代碳酸酯、四烃基秋兰姆硫化物、双（二硫化）烃基二硫代磷酯等）硫化物、有机（多）硫化物、硫化酯等）或者与其他有机化合物的配合物等，或者是上述硫化钼、硫化钼酸等含硫钼化合物与烯烃基酯亚胺的配合物等。

[0449] 当使用（B-2-2a）含有硫作为构成元素的有机钼化合物为第4实施例的（B-2）成分时，除了可获得热氧化安定性的改善效果外，还可以得到摩擦减少效果，因此是优选的，其中特别优选二硫代氨基甲酸钼。

[0450] 另外，作为（B-2-2b）不含硫作为构成元素的有机钼化合物，具体可举出钼–胺配合物、钼–磷酸酯亚胺配合物、有机酸的钼盐、醇的钼盐等，其中，优选钼–胺配合物、有机酸的钼盐以及醇的钼盐。

[0451] 作为构成上述钼–胺配合物的钼化合物，可举出三氧化钼或者其水合物（MoO₃·nH₂O）、钼酸（H₂MoO₄）、钼酸碱金属盐（MₓMoO₄·mM 表示碱金属）、钼酸铵（（NH₄）ₓMoO₄, 或者（NH₄）ₓ[Mo₂O₇]·4H₂O）、MoCl₃、MoOCl₂、MoO₂Cl₂、MoO₂Br₂、MoO₂Cl₆等不含硫的钼化合物。这些钼化合物中，从钼–胺配合物的收率的观点考虑，优选6价的钼化合物。进而，从容易获得的观点考虑，在6价的钼化合物中，优选三氧化钼或其水合物、钼酸、钼酸碱金属盐和钼酸铵。

[0452] 另外，作为构成钼–胺配合物的氮化合物没有特殊限制，可举出氨、单胺、二胺、多胺。更具体可举出甲胺、乙胺、丙胺、丁胺、戊胺、己胺、庚胺、辛胺、壬胺、癸胺、十一烷胺、十二烷胺、十三烷胺、十四烷胺、十五烷胺、十六烷胺、十七烷胺、十八烷胺、二甲胺、二乙胺、二丙胺、二丁胺、二戊胺、二己胺、二庚胺、二辛胺、二壬胺、二癸胺、双（十一烷基）胺、双（十二烷基）胺、双（十三烷基）胺、双（十四烷基）胺、双（十五烷基）胺、双（十六烷基）胺、双（十七烷基）胺、双（十八烷基）胺、甲乙胺、甲丙胺、甲丁胺、乙丙胺、乙丁胺、以及丙丁胺等具有碳数 1～30 的烷基（这些烷基是直链或支链均可）的烷基胺；乙基苯胺、丙烯基胺、丁烯基胺、辛烯基胺、以及油胺等具有碳数 2～30 的烯基（这些烯基是直链或支链均可）的烯基胺；甲醇胺、乙醇胺、丙醇胺、丁醇胺、戊醇胺、己醇胺、庚醇胺、辛醇胺、壬醇胺、甲醇乙醇胺、甲醇丙醇胺、甲醇丁醇胺、乙醇丙醇胺、乙醇丁醇胺、以及丙醇丁醇胺等具有碳数 1～30 的烷醇基（这些烷醇基是直链或支链均可）的烷醇胺；亚甲基二胺、乙二胺、丙二胺、以及丁二胺等具有碳数 1～30 的烷酰基胺或氨基二胺；二亚乙基三胺、三亚乙基四胺、四亚乙基五胺、五亚乙基六胺等多胺；十一烷基二乙胺、十一烷基二丙胺、十二烷基三丙胺、油酰基二乙醇胺、油酰基丙基二硫代三亚乙基五胺等的上述单胺、二胺、多胺上具有碳数 8～20 的烷基或者烯基的化合物或 N—烃基油烯基噻唑啉等环五元化合物;这些化合物的环氧氧化物加成物;以及它们的混合物等。其中，优选伯胺、仲胺和烷醇胺。

[0453] 构成钼-胺配合物的胺化合物所具有的烯基的碳数优选为 4 以上，更优选为 4～30，特别是优选为 8～18。当胺化合物的烯基的碳数小于 4 时，溶解性有变差的倾向。另外，通过使胺化合物的碳数在 30 以下，可以相对地提高钼-胺配合物中钼的含量，只要配合少量就可以较大地提高本发明的效果。

[0454] 另外，作为钼-琥珀酰亚胺配合物，可举出在上述钼-胺配合物的说明中例示的由不含硫的钼化合物与具有碳数 4 以上的烷基或烯基的琥珀酰亚胺形成的配合物。作为琥珀
酰亚胺，可举出在分析中至少具有 1 个碳数 40 ～ 400 的烷基或者烯基的琥珀酰亚胺或者其衍生物，或者具有碳数 4 ～ 39、优选碳数 8 ～ 18 的烷基或者烯基的琥珀酰亚胺等。当琥珀酰亚胺中的烷基或者烯基的碳数小于 4 时，溶解性有变差的倾向。另外，虽然也可以使用具有碳数大于 30 至 400 以下的烷基或者烯基的琥珀酰亚胺，但通过使该烷基或者烯基的碳数在 30 以下，可以相对地提高 - 琥珀酰亚胺配合物的稳定性，只要配合少量就可以较大地提高本发明的效果。

[0455] 另外，作为有机酸的钾盐，可举出在上述胺 - 胺配合物的说明中例示的氧化镧或者氢氧化镧、碳酸镧或者氯化镧等铵碱与有机酸形成的盐。作为有机酸，优选是在上述第 3 实施方案的说明中例示的通式 (4-c) 或者 (4-d) 表示的磷化合物和羧酸。

[0456] 另外，作为构成羧酸的铵盐的羧酸，为一元酸或者二元酸均可。

[0457] 作为一元酸，可采用碳数通常为 2 ～ 30、优选为 4 ～ 24 的脂肪酸，该脂肪酸为直链或支链均可，并且为饱和或不饱和均可。具体地例如可举出，乙酸、丙酸、直链状或支链状的丁酸、直链状或支链状的戊酸、直链状或支链状的己酸、直链状或支链状的庚酸、直链状或支链状的辛酸、直链状或支链状的壬酸、直链状或支链状的癸酸、直链状或支链状的十一烷酸、直链状或支链状的十二烷酸、直链状或支链状的十三烷酸、直链状或支链状的十四烷酸、直链状或支链状的十五烷酸、直链状或支链状的十六烷酸、直链状或支链状的十七烷酸、直链状或支链状的十八烷酸、直链状或支链状的羟基十八烷酸、直链状或支链状的十九烷酸、直链状或支链状的二十烷酸、直链状或支链状的二十一烷酸、直链状或支链状的二十二烷酸、直链状或支链状的二十三烷酸、直链状或支链状的二十四烷酸等饱和脂肪酸、丙烯酸、直链状或支链状的丁烯酸、直链状或支链状的戊烯酸、直链状或支链状的己烯酸、直链状或支链状的庚烯酸、直链状或支链状的辛烯酸、直链状或支链状的壬烯酸、直链状或支链状的癸烯酸、直链状或支链状的十一碳烯酸、直链状或支链状的十二碳烯酸、直链状或支链状的十三碳烯酸、直链状或支链状的十四碳烯酸、直链状或支链状的十五碳烯酸、直链状或支链状的十六碳烯酸、直链状或支链状的十七碳烯酸、直链状或支链状的十八碳烯酸、直链状或支链状的羟基十八碳烯酸、直链状或支链状的十九碳烯酸、直链状或支链状的二十二碳烯酸、直链状或支链状的二十二碳烯酸、直链状或支链状的二十三碳烯酸、直链状或支链状的二十四碳烯酸等饱和脂肪酸，以及它们的混合物等。

[0458] 另外，作为一元酸，除了上述脂肪酸以外，还有可以采用单环或者多环羧酸（也可以具有羟基），其碳数优选为 4 ～ 30，更优选为 7 ～ 30。作为单环或者多环羧酸，可举出具有 0 ～ 3 个、优选 1 ～ 2 个碳数 1 ～ 30，优选碳数 1 ～ 20 的直链状或支链状的烷基的芳香族羧酸或者烷烃羧酸等，更具体可举出（烷基）苯羧酸、甲苯基羧酸等。作为单环或者多环羧酸的优选例，可举出苯甲酸、水杨酸、苯基苯甲酸、烷基水杨酸、环己烷羧酸等。

[0459] 另外，作为多元酸，可举出二元酸、三元酸、四元酸等。多元酸是链状多元酸、环状多元酸均可。另外，在链状多元酸的场合，为直链状、支链状均可，而且为饱和、不饱和的均可。作为链状多元酸，优选碳数 2 ～ 16 的链状二元酸，具体地例如可举出，乙二酸、丙二酸、直链状或支链状的丁二酸、直链状或支链状的戊二酸、直链状或支链状的已二酸、直链状或支链状的庚二酸、直链状或支链状的辛二酸、直链状或支链状的壬二酸、直链状或支链状的
癸二酸、二甲基或支链状的十二碳十二酸、二甲基或支链状的二十二碳二酸、二甲基或支链状的三十三碳二酸、二甲基或支链状的十四碳二酸、二甲基或支链状的二十碳二酸（ヘプタデカン）二酸、二甲基或支链状的十六碳二酸、二甲基或支链状的己烯二酸、二甲基或支链状的庚烯二酸、二甲基或支链状的辛烯二酸、二甲基或支链状的壬烯二酸、二甲基或支链状的癸烯二酸、二甲基或支链状的十一碳二酸、二甲基或支链状的十二碳二酸、二甲基或支链状的十三碳二酸、二甲基或支链状的十四碳二酸、二甲基或支链状的十五碳二酸（ヘプタデセン）二酸、二甲基或支链状的十六碳二酸、二甲基或支链状的十七碳二酸以及它们的混合物等。另外，作为环状多元酸，可举出1,2-环己烷二羧酸、4-环己烯-1,2-二羧酸的脂环式二羧酸、苯二甲酸等芳香族二羧酸、偏苯三酸等芳香族三羧酸、苯并四甲酸等芳香族四羧酸等。

[0460] 另外，作为上述酯的钡盐，可举出在上述酯-胺配合物的说明中例示的不含硫的钼化合物与醇的盐，醇为1元醇、多元醇、多元醇的偏酯或者偏酯化合物、具有羟基的氮化合物（酸酯胺等）等可溶。予以说明，钡酸为强酸，它可与醇反应形成酯，该钡酸与醇的酯也包括在本发明中所说的酯的钡盐中。

[0461] 作为一元醇，可采用碳数通常为1～24，优选1～12，更优选1～8的醇，作为这类醇，为直链或支链醇均，而且为饱和或不饱和均可。作为碳数1～24的醇，具体地例如可举出，甲醇、乙醇、直链状或支链状的丙醇、直链状或支链状的丁醇、直链状或支链状的戊醇、直链状或支链状的己醇、直链状或支链状的庚醇、直链状或支链状的辛醇、直链状或支链状的壬醇、直链状或支链状的癸醇、直链状或支链状的十一烷醇、直链状或支链状的十二烷醇、直链状或支链状的十三烷醇、直链状或支链状的十四烷醇、直链状或支链状的十五烷醇、直链状或支链状的十六烷醇、直链状或支链状的十七烷醇、直链状或支链状的十八烷醇、直链状或支链状的十九烷醇、直链状或支链状的二十烷醇、直链状或支链状的二十一烷醇、直链状或支链状的二十三烷醇、直链状或支链状的二十四烷醇以及它们的混合物等。

[0462] 另外，作为多元醇，可采用通常为2～10元，优选2～6元的醇。作为2～10元的多元醇，具体地例如可举出，乙二醇、二甘醇、聚乙二醇（乙二醇的3～15聚合物）、丙二醇、二丙二醇、聚丙二醇（丙二醇的3～15聚合物）、1,3-丙二醇、1,2-丙二醇、1,3-丁二醇、1,4-丁二醇、2-甲基-1,2-丙二醇、2-甲基-1,3-丙二醇、1,2-戊二醇、1,3-戊二醇、1,4-戊二醇、1,5-戊二醇、新戊二醇等2元醇；甘油、聚甘油（甘油的2～8聚合物，例如二甘油、三甘油、四甘油等）、三羟甲基烷烃（三羟甲基乙烷、三羟甲基丙烷、三羟甲基丁烷）以及它们的2～8聚合物、1,3,5-戊三醇、1,2,4-丁三醇、1,3,5-戊三醇、1,2,6-己三醇、1,2,3,4-丁四醇、山梨糖醇、脱水山梨糖醇、山梨醇甘油缩合物、阿达糖醇、阿拉伯糖醇、木糖醇、甘露糖醇等多元醇；木糖、阿拉伯糖、核糖、鼠李糖、葡萄糖、果糖、半乳糖、甘露糖、山梨糖、纤维二糖、麦芽糖、异麦芽糖、海藻糖、蔗糖等糖类以及它们的混合物等。

[0463] 另外，作为多元醇的偏酯，可举出在上述多元醇的说明中例示的多元醇所具有的部分羟基被烃基酯化的化合物等。其中，优选甘油单氧酸酯、甘油二氧酸酯、脱水山梨糖醇单氧酸酯、脱水山梨糖醇二氧酸酯、季戊四醇单氧酸酯、聚乙二醇单氧酸酯、聚甘油单氧酸酯。

[0464] 另外，作为多元醇的偏醚（partial ether），可举出在上述多元醇的说明中例示的多元醇所具有的部分羟基被烃基醚化的化合物。通过多元醇彼此缩合形成醚键的化合物（脱水山梨糖醇缩合物等），其中，优选3-十八烷氧基-1,2-丙二醇、3-十八烷氧基-1,2-丙二醇。
基-1,2-丙二醇, 极苯二醇烷基醚等。

[0465] 另外, 作为具有羟基的氢化合物, 可举出在上述铝-胺配合物的说明中例示的烷
醇胺、以及该烷醇的氨基被酰胺化的烷醇酰胺 (二乙醇酰胺等) 等, 其中, 优选硬脂基二乙
醇胺、聚乙二醇硬脂胺、聚乙二醇二油胺、羟基月桂胺、油酸二乙醇酰胺等。

[0466] 当使用 (B-2-2b) 不含硫作为构成元素的有机铝化合物作为第 4 实施方案的 (B-2) 成
分时, 可以提高润滑油组合物的高温清净性和碱值保持性, 另外, 从可以长时间维持初期的
摩擦减少效果的观点考虑是优选的, 其中特别优选铝-胺配合物。

[0467] 另外, 在第 4 实施方案中, 也可以并用 (B-2-2a) 含有硫作为构成元素的有机铝化
合物和 (B-2-2b) 不含硫作为构成元素的有机铝化合物。

[0468] 使用有机铝化合物作为第 4 实施方案的 (B-2) 成分时, 其含量没有特殊限制, 以组
合物总量为基准, 按铝元素换算计, 优选为 0.001 质量％以上, 更优选为 0.005 质量％以上,
进一步优选为 0.01 质量％以上, 另外, 优选为 0.2 质量％以下, 更优选为 0.1 质量％以下,
特别优选为 0.04 质量％以下。其含量小于 0.001 质量％时, 润滑油组合物的热氧化安定
性变得不充分, 尤其是往往无法长期维持优良的清净性。另一方面, 该含量超过 0.2 质量％
时, 也得不到与含量相应的效果, 并且润滑油组合物的贮存稳定性有降低的倾向。

[0469] 第 4 实施方案的内燃机用润滑油组合物可以仅含有上述的润滑油基础油和
(A-2) 、 (B-2) 成分, 但为了进一步提高其性能, 根据需要, 还可以含有以下所示的各种添加
剂。
基，优选为碳数1～24的直链状或支链状的烷基、碳数3～24的直链状或支链状的烯基、碳数5～13的环烷基或者直链状或支链状的烷基环烷基、碳数6～18的芳基或者直链状或支链状的烷芳基，以及碳数7～19的芳烷基等。另外，烷基或烯基为伯、仲和叔烷基或烯基均可。

作为R°，R1°，R2°和R3°，具体可举出，苯基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基、二十一烷基、二十二烷基、二十三烷基和二十四烷基等烷基；丙烯基、异丙烯基、丁烯基、丁二烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基、癸烯基、十一碳烯基、十二碳烯基、十三碳烯基、十四碳烯基、十五碳烯基、十六碳烯基、十七碳烯基和油烯基等十八碳烯基、十九碳烯基、二十碳烯基、二十一碳烯基、二十二碳烯基、二十三碳烯基和二十四碳烯基等烯基；环戊基、环己基和环庚基等环烷基；甲基环戊基、二甲基环戊基、乙基环戊基、丙基环戊基、乙基甲基环戊基、三甲基环戊基、二乙基环戊基、乙基二甲基环戊基、丙基甲基环戊基、丙基乙基环戊基、二丙基环戊基、丙基乙基甲基环戊基、甲基环己基、二甲基环己基、乙基环己基、丙基环己基、乙基甲基环己基、三甲基环己基、二乙基环己基、乙基二甲基环己基、丙基甲基环己基、丙基乙基环己基、二丙基环己基、丙基乙基甲基环己基、甲基环庚基、二甲基环庚基、乙基环庚基、丙基环庚基、乙基甲基环庚基、三甲基环庚基、二乙基环庚基、乙基二甲基环庚基、丙基甲基环庚基、丙基乙基环庚基、二丙基环庚基和丙基乙基甲基环庚基等烷基环烷基；苯基和苯基等芳基；甲苯基、二甲苯基、乙基苯基、丙基苯基、乙基甲苯基、三甲基苯基、丁基苯基、丙基甲基苯基、二乙基苯基、乙基二甲基苯基、四甲基苯基、戊基苯基、己基苯基、庚基苯基、辛基苯基、壬基苯基、癸基苯基、十一烷基苯基和十二烷基苯基等芳基；苄基、甲基苄基、二甲基苄基、苯乙基和二甲基苯乙基等芳烷基等。予以说明，上述烃基中，包括能考虑到的所有的直链状结构和支链状结构，另外，烯基的双键位置、烷基在环烷基上的键合位置、烷基在芳基上的键合位置、以及芳基在烷基上的键合位置都是任意的。

作为上述二硫代磷酸锌的优选具体例，例如可举出，二异丙基二硫代磷酸锌、二异丁基二硫代磷酸锌、二仲丁基二硫代磷酸锌、二仲戊基二硫代磷酸锌、二正己基二硫代磷酸锌、二仲己基二硫代磷酸锌、二辛基二硫代磷酸锌、二-2-乙基己基二硫代磷酸锌、二正癸基二硫代磷酸锌、二正十二烷基二硫代磷酸锌、二异十三烷基二硫代磷酸锌、以及由它们任意组合而成的混合物等。

上述二硫代磷酸锌的制备方法没有特殊限定，可采用以往的任意方法来制备。具体而言，例如，可将具有与上述式(17)中的R°，R1°，R2°和R3°相对应的烃基的醇或者醇与五硫化二磷反应，生成二硫代磷酸，再将其用氧化钠中和来合成。予以说明，所使用的原料醇等不同时，上述二硫代磷酸锌的结构也不同。

另外，上述二硫代磷酸锌的含量没有特殊限制，从抑制排气净化装置的催化剂中毒的观点考虑，以组合物总量为基准，按磷元素换算计，优选为0.2质量％以下，更优选为0.1质量％以下，进一步优选为0.08质量％以下，特别优选为0.06质量％以下。另外，更优选为0.06质量％以下。另外，二硫代磷酸锌的含量，从能够起到耐磨性添加剂作用效果的磷酸金属盐的形成的观点考虑，以组合物总量为基准，按磷元素换算计，优选为0.01质量％以上，更优选为0.02质量％以上，进一步优选为0.04质量％以上。二硫代磷酸锌的
含量小于上述下限值时，其添加所产生的耐摩耐提高效果有不充分的倾向。
[0482] 另外，第4实施方案的内燃机用润滑油组合物，从清净性和湿浊分散性折的观点考
虑，优选还含有无灰分散剂。有灰分散剂的具体例如优选例，与上述第3实施方案的说明中
作为（C-1）成分示例的无灰分散剂的情况相同，在此不再重复说明。
[0483] 第4实施方案的内燃机用润滑油组合物中的无灰分散剂的含量，以组合物总量为
基准，按氮元件换算计，优选为0.005质量%以上，更优选为0.01质量%以上，进一步优选
为0.05质量%以上，另外，优选为0.3质量%以下，更优选为0.2质量%以下，进一步优选
为0.015质量%以下。无灰分散剂的含量小于上述下限值时，不能充分发挥清净性效果，
另一方面，其含量超过上述上限值时，其低温粘度特性变差以及抗乳化性变差，因此均不优
选。予以说明，使用重均分子量为6500以上的硼酰亚胺类无灰分散剂时，能够充分发
挥湿浊分散性，低温粘度特性优良的观点考虑，其含量以组合物总量为基准，按氮元件换算
计，优选为0.005 ～ 0.05质量%，更优选为0.01 ～ 0.04质量%。
[0484] 另外，使用高分子量的无灰分散剂时，其含量以组合物总量为基准，按氮元件换算
计，优选为0.005质量%以上，更优选为0.01质量%以上，另外，优选为0.1质量%以下，更
优选为0.05质量%以下。高分子量的无灰分散剂的含量小于上述下限值时，不能充分发
挥清净性效果，另一方面，其含量超过上述上限值时，其低温粘度特性变差以及抗乳化性变
差，因此均不优选。
[0485] 另外，使用硼化合物改性的无灰分散剂时，其含量以组合物总量为基准，按硼元
素换算计，优选为0.005质量%以上，更优选为0.01质量%以上，进一步优选为0.02质
量%以上，另外，优选为0.2质量%以下，更优选为0.1质量%以下。硼化合物改性的无
灰分散剂的含量小于上述下限值时，不能充分发挥清净性效果，另一方面，其含量超过上述
上限值时，其低温粘度特性变差以及抗乳化性变差，因此均不优选。
[0486] 另外，第4实施方案的内燃机用润滑油组合物，从可以进一步改善其摩擦特性的
观点考虑，优选含有无灰摩擦调整剂。无灰摩擦调整剂的具体例、优选例以及含量与上述第
3实施方案中无灰摩擦调整剂的情况相同，在此不再重复说明。
[0487] 另外，第4实施方案的内燃机用润滑油组合物，从清净性的观点考虑，优选还含有
金属类清净剂。金属类清净剂的具体例、优选例以及含量，与上述第3实施方案中金属类清
净剂的情况相同，在此不再重复说明。
[0488] 另外，第4实施方案的内燃机用润滑油组合物，从进一步改善粘度降低温度特性的
观点考虑，优选含有粘度指数提高剂。粘度指数提高剂的具体例和含量与上述第3实施方案
中的粘度指数提高剂相同，在第4实施方案中，优选使用重均分子量为50,000以下，优选为
40,000以下，最优选为10,000 ～ 35,000的非分散型粘度指数提高剂和/或分散型粘度指
数提高剂。另外，使其低温流动性更优良的观点考虑，优选聚甲基丙烯酸酯类粘度指数提高
剂。
[0489] 第4实施方案的内燃机用润滑油组合物，为了进一步提高其性能，根据需要，除
了上述添加剂以外，还可以单独地或者数种类组合地配合防腐剂、防锈剂、抗乳化剂、金属
钝化剂、抗凝剂、橡胶溶胀剂、消泡剂、着色剂等各种添加剂。这些添加剂的具体例与上述第
3实施方案的情况相同，在此不再重复说明。
[0490] 第4实施方案的内燃机用润滑油组合物，虽然能够含有包含硫作为构成元素的添
说明 书

添加剂，但润滑油组合物的总硫含量（润滑油基础油和添加剂带来的硫成分的合计量），从添加剂的溶解性以及抑制在高温氧化条件下氧化硫的生成导致的碱值消耗的观点考虑，优选为 0.05～0.3 质量%，更优选为 0.1～0.2 质量%，特别优选为 0.12～0.18 质量%。

另外，第 4 实施方案的内燃机用润滑油组合物在 100℃时的运动粘度，通常为 4～24mm²/s，从保持用于抑制烧结和磨损的油膜厚度的观点考虑，以及从抑制搅拌阻力增加的观点考虑，优选为 5～18mm²/s，更优选为 6～15mm²/s，进一步优选为 7～12mm²/s。

具有上述构成的第 4 实施方案的内燃机用润滑油组合物，其热・氧化安定性以及粘度・温度特性和摩擦特性和抗挥发热性均优良，在作为两轮车、四轮车、电车、船舶等汽油发动机、柴油发动机、使用含有含氧化合物燃料的发动机、燃气发动机等内燃机用润滑油使用时，可以充分实现长寿命和节能化。

第 5 实施方案

本发明的第 5 实施方案的湿式离合器用润滑油组合物，其中含有上述第 1 实施方案或者第 2 实施方案的润滑油基础油，并且以组合物总量为基准，含有 (A-3) 0.5～3 质量%的无灰抗氧剂，(B-3) 3～12 质量%的无灰分散剂。予以说明，此处，省略对第 1 实施方案或者第 2 实施方案的润滑油基础油的重复说明。另外，第 5 实施方案的内燃机用润滑油组合物除了含有第 1 实施方案或者第 2 实施方案的润滑油基础油以外，还可以含有上述第 1 实施方案的说明中例示的矿物油类基础油、合成类基础油等，对于矿物油类基础油、合成类基础油等，此处也不再重复说明。

在第 5 实施方案的湿式离合器用润滑油组合物中，作为 (A-3) 无灰抗氧剂，可以使用磷酸抗氧剂或胺类抗氧剂等的润滑油中通常使用的链终止型的无灰抗氧剂。磷酸抗氧剂和胺类抗氧剂的具体例与上述第 3 实施方案等的情况相同，在此不再重复说明。

第 5 实施方案的湿式离合器用润滑油组合物中的无灰抗氧剂的含量，以组合物总量为基准，如上所述，为 0.5～3 质量%，优选为 0.8～2 质量%。如果无灰抗氧剂的含量少于 0.5 质量%，则热・氧化安定性变得不充分，难以抑制由于劣化而导致的淤渣或胶等的生成。另外，即使无灰抗氧剂的含量超过 3 质量%，也得不到与含量相应的热・氧化安定性的提高效果。

另外，第 5 实施方案的湿式离合器用润滑油组合物含有无灰分散剂作为 (B-3) 成分。无灰分散剂的具体例与上述第 3 实施方案的情况相同，在此不再重复说明。

第 5 实施方案的湿式离合器用润滑油组合物中的无灰分散剂的含量，以组合物总量为基准，如上所述，为 3～12 质量%，优选为 4～10 质量%。如果无灰分散剂的含量少于 3 质量%，则燃烧生成物的分散性变得不充分，另外，如果超过 12 质量%，则粘度・温度特性变得不充分。

第 5 实施方案的湿式离合器用润滑油组合物，可以仅含有第 1 实施方案或者第 2 实施方案的润滑油基础油，(A-3) 无灰抗氧剂和 (B-3) 无灰分散剂，但为了进一步提高其性能，也可以根据需要进一步含有以下所示的各种添加剂。

第 5 实施方案的湿式离合器用润滑油组合物，从能够进一步提高疲劳寿命、极压性和耐磨性的观点考虑，优选含有磷类抗磨剂（包括磷类极压剂）。作为磷类抗磨剂，优选使用不含硫作为构成元素的磷类抗磨剂以及含有磷和硫二者的抗磨剂（磷－硫类抗磨剂）。
作为磷类抗磨剂，可举出磷酸、亚磷酸、具有碳数1～30、优选碳数3～20的烃基的磷酸酯类、亚磷酸酯类、以及它们的盐。另外，作为磷-硫类抗磨剂，可举出硫代磷酸、硫代亚磷酸、具有碳数1～30、优选碳数3～20的烃基的硫代磷酸酯类、硫代亚磷酸酯类以及它们的盐，以及二硫代磷酸酯等。

作为上述碳数1～30的烃基的例子，可举出烷基、环烷基、烷环烷基、烯基、芳基、烷芳基、以及芳烷基。

作为烷基，例如可举出，乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、以及十八烷基等烷基（这些烷基是直链或支链均可）。

作为环烷基，例如可举出，环戊基、环己基、以及环庚基等碳数5～7的环烷基。

作为烷基环烷基，例如可举出，甲基环戊基、二甲基环戊基、甲基乙基环戊基、二乙基环戊基、甲基环己基、二甲基环己基、甲基乙基环己基、二乙基环己基、甲基环庚基、二甲基环庚基、甲基乙基环庚基、以及二乙基环庚基等碳数6～11的烷基环烷基（烷基在烷环基上的取代位置也是任意的）。

作为烯基，例如可举出丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基、癸烯基、十一碳烯基、十二碳烯基、十三碳烯基、十四碳烯基、十五碳烯基、十六碳烯基、十七碳烯基、以及十八碳烯基等烯基（这些烯基是直链或支链均可，并且双键的位置也是任意的）。

作为芳基，例如可举出苯基、萘基等芳基。

作为烷芳基，例如可举出甲苯基、二甲苯基、乙苯基、丙苯基、丁苯基、戊苯基、己苯基、庚苯基、辛苯基、壬苯基、癸苯基、十一烷苯基、以及十二烷苯基等苯基7～18的烷芳基（烷基是直链或支链均可，并且在芳基上的取代位置也是任意的）。

作为芳烷基，例如可举出苄基、苯基乙基、苯基丙基、苯基丁基、苯基戊基、苯基己基等碳数7～12的芳烷基（这些烷基是直链或支链均可）等。

在第5实施方案的湿式离合器用润滑脂组合物中，作为磷类抗磨剂，优选使用选自亚磷酸、亚磷酸单酯类、亚磷酸二酯类、亚磷酸三酯类以及它们的盐中的至少1种。另外，作为磷-硫类抗磨剂，优选使用选自硫代亚磷酸、硫代亚磷酸单酯类、硫代亚磷酸二酯类、硫代亚磷酸三酯类、二硫亚磷酸、二硫亚磷酸单酯类、二硫亚磷酸二酯类、二硫代亚磷酸三酯类、三硫代亚磷酸、三硫亚磷酸单酯类、三硫代亚磷酸二酯类等多种酯类，以及它们的盐等，其中，优选为亚磷酸酯类抗磨剂，特别优选为亚磷酸二酯类抗磨剂。

另外，作为磷-硫类抗磨剂的优选例，具体可举出磷酸单丁酯、磷酸单辛酯、磷酸单月桂基酯、磷酸二丁酯、磷酸二辛酯、磷酸二月桂基酯、磷酸二苯酯、磷酸三丁酯、磷酸辛酯、磷酸三月桂基酯、磷酸三苯酯、亚磷酸单丁酯、亚磷酸单辛酯、亚磷酸单月桂基酯、亚磷酸二丁酯、亚磷酸二辛酯、亚磷酸二月桂基酯、亚磷酸二苯酯、亚磷酸三丁酯、亚磷酸三辛酯、亚磷酸三月桂基酯、亚磷酸三苯酯，以及它们的盐等，其中，优选为亚磷酸酯类抗磨剂，特别优选为亚磷酸二酯类抗磨剂。
三丁酸、硫代磷酸三辛酯、硫代磷酸三苯酯、硫代磷酸三月桂基酯，硫代亚磷酸单丁酯、硫代亚磷酸单辛酯、硫代磷酸二月桂基酯、硫代磷酸二丁酯、硫代磷酸二辛酯、硫代磷酸二月桂基酯、硫代磷酸二苯酯、硫代磷酸三丁酯、硫代磷酸三辛酯、硫代磷酸三苯酯、硫代磷酸三月桂基酯，以及其他它们的盐等，其中，优选为硫代磷酸酯类抗磨剂，特别优选为十二烷基磷酸酯类抗磨剂。

[0513] 予以说明，作为（硫代）磷酸酯类、（硫代）亚磷酸酯类的盐的例子，可举出那些通过使（硫代）磷酸单酯、（硫代）磷酸二酯、（硫代）亚磷酸单酯、（硫代）亚磷酸二酯等与氢或者在分子中仅含有碳数1～8的烃基或者含烃基的烃基的胺类化合物等氢化化合物或者氧化锌、氯化物等的碱金属作用，借此将残留的酸性氢的一部分或者全部中和而生成的盐等。

[0514] 作为上述氢化化合物，具体可举出氢：单甲胺、单乙胺、单丙胺、单丁胺、单戊胺、单己胺、单庚胺、单辛胺、二甲胺、甲基乙胺、乙二胺、甲基丙胺、二丙胺、甲基丁胺、乙基丁胺、丙基丁胺、二丁胺、二戊胺、二己胺、二庚胺、二辛胺等烷基胺（烷基是直链或支链均可）；单甲醇胺、单乙醇胺、单丙醇胺、单丁醇胺、单戊醇胺、单己醇胺、单庚醇胺、单辛醇胺、单壬醇胺、二甲醇胺、甲醇乙胺、乙醇二胺、乙醇丙胺、乙醇丁胺、乙醇乙醇胺、二甲醇胺、二乙醇胺、二丙醇胺、二丁醇胺、二己醇胺、二庚醇胺、二辛醇胺等烷醇胺（烷醇基是直链或支链均可）以及它们的混合物等。

[0515] 作为本发明中使用的磷类抗磨剂，从能够提高疲劳寿命和热・氧化安定性观点考虑，优选使用亚磷酸二-2-乙基己基酯这样的亚磷酸二酯类抗磨剂，从能够提高疲劳寿命观点考虑，优选使用三硫化亚磷酸三月桂基酯这样的三硫化亚磷酸酯类抗磨剂，从能够提高热・氧化安定性观点考虑，优选使用二烷基二硫代磷酸酯。

[0516] 本发明中磷类抗磨剂的含量没有特殊限制，从疲劳寿命、极压性、耐热性和氧化安定性等观点考虑，以组合物总量为基准，按磷元素换算计，优选为0.01～0.2质量％，更优选为0.02～0.15质量％。

[0517] 另外，在第5实施方式的湿式离合器用润滑脂组合物中，也可以使用不含磷作为构成元素的硫类抗磨剂。作为硫类抗磨剂，可举出硫化油酯类、硫化烯烃类、二烃基硫化物类、二硫化亚氨基甲酸酯类、酚二唑类、苯并噻唑类等，其中，优选选自硫化油酯类、硫化烯烃类、二烃基硫化物类、二硫代氨基甲酸酯类、酚二唑类和苯并噻唑类中的至少1种硫类抗磨剂。

[0518] 硫化油酯类、硫化烯烃、二烃基硫化物、二硫代氨基甲酸酯类、酚二唑类的具体例分别与第4实施方式的情况相同，在此不再重复说明。

[0519] 第5实施方式的湿式离合器用润滑脂组合物中硫类抗磨剂的含量没有特殊限制，从疲劳寿命、极压性、耐热性和氧化安定性等观点考虑，以组合物总量为基准，按硫元素换算计，优选为0.01～3质量％，更优选为0.1～3质量％，更进一步优选为0.5～2.5质量％，特别优选为1.5～2.5质量％。

[0520] 另外，第5实施方式的湿式离合器用润滑脂组合物，从进一步改善其摩擦特性的观点考虑，优选含有摩擦调整剂。摩擦调整剂的具体例与第3实施方式的情况相同，在此不再重复说明。

[0521] 第5实施方式的湿式离合器用润滑脂组合物中摩擦调整剂的含量，以组合物总量为基准，优选为0.01质量％以上，更优选为0.1质量％以上，更进一步优选为0.3质量％以上。
上，另外，优选为 3 质量%以下，更优选为 2 质量%以下，进一步优选为 1 质量%以下。如果摩擦调整剂的含量小于上述下限值，则由于其添加导致的摩擦减少效果变得不充分，另外，如果超过上述上限值，则磷类抗磨剂等的效果容易受到抑制，或者添加剂的溶解性有恶化的倾向。

[0522] 另外，第 5 实施方案的湿式离合器用润滑油组合物，从清净性的观点考虑，优选还含有金属类清净剂。金属类清净剂的具体例、优选例以及含量与上述第 3 实施方案的情况相同，在此不再重复说明。

[0523] 另外，第 5 实施方案的湿式离合器用润滑油组合物，从进一步改善粘度-温度特性的观点考虑，优选含有粘度指数提高剂。粘度指数提高剂的具体例、优选例以及含量与上述第 3 实施方案的情况相同，在此不再重复说明。

[0524] 在第 5 实施方案的湿式离合器用润滑油组合物中，为了进一步提高其性能，根据需要，除了上述添加剂以外，还可以单独地或者数种组合地配合 (A-3) 成分以外的抗氧化剂、防腐剂、防锈剂、乳化剂、金属钝化剂、抗凝剂、橡胶溶胀剂、消泡剂、着色剂等各种添加剂。作为 (A-3) 成分以外的抗氧化剂，例如可举出，铜系、钼系等金属类抗氧化剂。其他添加剂的具体例与上述第 3 实施方案的情况相同，在此不再重复说明。

[0525] 当本发明的润滑油组合物中含有上述添加剂时，其含量以组合物总量为基准，通常，(A-3) 成分以外的抗氧化剂在0.01～2质量%、防腐剂、防锈剂、乳化剂、金属钝化剂、抗凝剂、橡胶溶胀剂、消泡剂、着色剂等各种添加剂。作为 (A-3) 成分以外的抗氧化剂，例如可举出，铜系、钼系等金属类抗氧化剂。其他添加剂的具体例与上述第 3 实施方案的情况相同，在此不再重复说明。

[0526] 另外，第 5 实施方案的湿式离合器用润滑油组合物在 100℃时的运动粘度，优选为 2～20mm²/s，更优选为 4～15mm²/s，进一步优选为 5～10mm²/s。

[0527] 具有上述构成的第 5 实施方案的湿式离合器用润滑油组合物，其热-氧化安定性足够高，并且其粘度-温度特性、摩擦特性和抗挥发性均优良。这种具有优良特性的第 5 实施方案的湿式离合器用润滑油组合物，从能够充分抑制由于劣化而导致的剥落等不溶成分的生成以及该不溶成分导致的湿式离合器的堵塞的观点考虑，优选作为具有湿式离合器装置的两轮机动车用四冲程内燃机的润滑油使用。另外，本发明的湿式离合器用润滑油，还可以作为自动变速器、无级变速器、双离合器变速箱等变速器使用。

[0528] （第 6 实施方案）

[0529] 第 6 实施方案的传动装置用润滑油组合物含有上述第 1 实施方案或者第 2 实施方案的润滑油基础油、(A-4) 聚(甲基) 丙烯酸酯类粘度指数提高剂，以及 (B-4) 含磷化合物。予以说明，此处，省略对第 1 实施方案或者第 2 实施方案的润滑油基础油的重复说明。另外，第 5 实施方案的内燃机用润滑油组合物除了含有第 1 实施方案或者第 2 实施方案的润滑油基础油以外，还可以含有在上述第 1 实施方案的说明中例示的矿物油类基础油、合成类基础油等，对于矿物油类基础油、合成类基础油等，此处也不再重复说明。

[0530] 第 6 实施方案的传动装置用润滑油组合物中，通过将 (A-4) 聚(甲基) 丙烯酸酯类粘度指数提高剂与上述第 1 实施方案或者第 2 实施方案的润滑油基础油组合，除了润滑油基础油本身所具有的优良的粘度-温度特性以外，还能有效地发挥出粘度指数的提高效果、低温下的增粘抑制效果、以及抗凝（流动点降低）作用等，因此可以实现高水平的低温特性。
[0531] 作为第 6 实施方案中使用的聚（甲基）丙烯酸酯类粘度指数提高剂没有特殊限制，可以使用那些作为润滑燃油的粘度指数提高剂使用的非分散型或者分散型的聚（甲基）丙烯酸酯化合物。作为非分散型的聚（甲基）丙烯酸酯类粘度指数提高剂，可举出下述通式（18）表示的化合物的聚合物。

[0532]

\[
\begin{align*}
 &CH_3 \\
 &CH_2=CH \\
 &COOR^{54}
\end{align*}
\]

(18)

[0534] 上述通式（18）中，R^{54} 表示碳数 1～30 的烷基。R^{54} 所示的烷基是直链或支链均可。具体可举出甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十二烷基、二十一烷基、二十二烷基、二十三烷基、二十四烷基、二十五烷基、二十六烷基、二十七烷基、二十八烷基、二十九烷基、三十烷基等（这些烷基是直链或支链均可）。

[0535] 另外，作为分散型的聚（甲基）丙烯酸酯类粘度指数提高剂的具体优选例，例如可举出，通过将选自上述通式（18）表示的化合物中的 1 种或者 2 种以上的单体与选自下述通式（19）或者（20）表示的化合物中的 1 种或者 2 种以上的含氮单体进行共聚而得到的共聚物等。

[0536]

[0537]

\[
\begin{align*}
 &CH_2=CH \\
 &COO-(R^{56})_1-X^1
\end{align*}
\]

(19)

[0538]

[0539]

\[
\begin{align*}
 &CH_2=CH \\
 &COO-(R^{57})_2-X^2
\end{align*}
\]

(20)

[0540] 上述通式（19）、（20）中，R^{56} 和 R^{57} 各自表示氢原子或者甲基。R^{56} 表示碳数 1～30 的烷基，具体可举出甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十二烷基、二十一烷基、二十二烷基、二十三烷基、二十四烷基、二十五烷基、二十六烷基、二十七烷基、二十八烷基、二十九烷基、三十烷基等（这些烷基是直链或支链均可）。a 表示 0 或 1 的整数，X^1 和 X^2 各自表示含有 1～2 个氮原子、0～2 个氧原子的胺残基或者杂环残基。作为该 X^1 和 X^2 的优选例，具体可举出二甲氨基、二乙氨基、二丙氨基、二丁氨基、苯胺基、甲苯胺基、二甲苯
胺基、乙酰氨基、苯甲酰氨基、吗啉代基、吡咯基、吡咯啉基、甲基吡啶基、吡咯烷基、
哌啶基、嘧啶基、吡喃烷酮基（pyrrolidonyl）、吡喃烷酮基（pyrrolidono）、咪唑啉基、吡啶基
等。

【0541】作为通式（19）或者（20）表示的含氮单体的优选例，具体可举出甲基丙烯酸二甲
氨基甲酯、甲基丙烯酸二乙氨基甲酯、甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙
酯、2-甲基-5-乙烯基吡啶、吗啉代甲基丙烯酸甲酯、吗啉代甲基丙烯酸乙酯、N-乙烯基吡
啶烷酮以及它们的混合物等。

【0542】第6实施例中使用的环（甲基）丙烯酸酯类粘度指数提高剂，如上所述为分散型
或者非分散型均可。优选使用非分散型的环（甲基）丙烯酸酯类粘度指数提高剂，更优选
下述（A-4-1）～（A-4-3）所示的聚合物。

【0543】（A-4-1）以通式（18）中的R^5为甲基或碳数12～15的直链烷基的单体作为主成
分的聚合物

【0544】（A-4-2）以通式（18）中的R^5为甲基或碳数12～15、16、18的直链烷基的单体作
为主成分的聚合物

【0545】（A-4-3）通式（18）中的R^5为甲基或碳数12～15、16、18的直链烷基的单体与通
式（18）中的R^6为碳数20～30的直链或支链烷基的单体的聚合物。

【0546】进而，在上述聚合物（A-4-1）～（A-4-3）中，从提高疲劳寿命的观点考虑，特别优
选聚合物（A-4-2）和（A-4-3）。另外，在聚合物（A-4-3）中，优选含有通式（18）中的R^5为
碳数22～28的直链烷基（更优选为22～28烷基十四烷基）的单体作为构成单元。

【0547】第6实施例中使用的环（甲基）丙烯酸酯类粘度指数提高剂的重均分子量没有特殊
限制，优选为5,000～100,000，更优选为10,000～60,000，进一步优选为15,000～24,000。环（甲基）丙烯酸酯类粘度指数提高剂的重均分子量小于5,000时，
由于粘度指数提高剂所产的增粘效果不充分，另外，超过100,000时，疲劳寿命、耐磨性、剪切安定性变得不充分。予以说明，这里所说的重均分子量是指在下述条
件下，即在Waters公司制的150-C ALC/GPC装置中安装有2支串联的东曹公司制色谱柱
GMHR-M（7.8mm×ID×30cm），使用4氯化联苯作为溶剂，使用差示折射率计（RI）作为检测器，
温度23℃，流速1ml/min，样品浓度1质量％，样品注入量75μL的条件下测定的按聚苯乙烯
换算的重均分子量。

【0548】第6实施例的传动装置用润滑油组合物中的环（甲基）丙烯酸酯类粘度指数提
高剂的含量，以组合物总量为基准，优选为0.1～20质量％，更优选为1～15质量％。环（甲基）丙烯酸酯类粘度指数提高剂的含量小于0.1质量％时，其添加所产的增粘效果和
低温流动性的改善效果不充分的倾向，另外，超过20质量％时，润滑油组合物的粘度增
加，难以省燃油化，另外，剪切安定性有降低的倾向。予以说明，当在润滑油基础油中添加环
（甲基）丙烯酸酯类粘度指数提高剂时，为了提高润滑性和操作性，一般是使环（甲基）丙
烯酸酯类粘度指数提高剂溶解于5～95质量％的稀释剂中，然后将所获混合物添加到润滑油
基础油中，这里所说的溶（甲基）丙烯酸酯类粘度指数提高剂的含量是指环（甲基）丙
烯酸酯类粘度指数提高剂与稀释剂的合计量。

【0549】另外，第6实施例的传动装置用润滑油组合物含有含磷化合物作为（B-4）成分。
作为含磷化合物，优选使用磷酸极压剂和磷酸—硫类极压剂。磷酸极压剂和磷酸—硫类极压剂
的制备例和优选例于上述第6实施方案的说明中作为磷类抗磨剂例示的相同，在此不再重复说明。

第6实施方式中的含磷化合物的含量没有特殊限制，从疲劳寿命、极压性、耐磨性和氧化安定性等观点考虑，以组合物总量为基准，按磷元素换算计，优选为0.01～0.2质量％，更优选为0.02～0.15质量％。含磷化合物的含量小于上述下限值时，润滑性有不充分的倾向。另外，当使用润滑油脂组合物作为手动变速器用润滑油脂时，同步特性（一种使减缓比不同的齿轮装置良好地咬合的功能，可利用润滑作用来发挥这种功能）有不充分的倾向。另一方面，含磷化合物的含量超过上述上限值时，疲劳寿命有不充分的倾向。另外，使用润滑油脂组合物作为手动变速器用润滑油脂时，热・氧化安定性有不充分的倾向。

第6实施方式的传动装置用润滑油脂组合物可以仅含有上述的润滑油脂基础油、(A-4)聚(甲基)丙烯酸酯类粘度指数提高剂和(B-4)磷化合物，但是根据需要，还可以含有以下所示的各种添加剂。

第6实施方式的传动装置用润滑油脂组合物，从可以进一步提高疲劳寿命、极压性和耐磨性的观点考虑，优选还含有上述的磷・硫类极压剂以外的硫类极压剂。硫类极压剂的具体例和优选例与上述第5实施方案中作为硫类抗磨剂例示的相同，在此不再重复说明。

第6实施方式的传动装置用润滑油脂组合物中的硫类极压剂的含量没有特殊限制，但从疲劳寿命、极压性、耐磨性和氧化安定性等观点考虑，以组合物总量为基准，按硫元素换算计，优选为0.01～3质量％，更优选为0.1～3质量％，进一步优选为0.5～2.5质量％，特别优选为1.5～2.5质量％。硫类极压剂的含量小于上述下限值时，润滑性有不充分的倾向。另外，使用润滑油脂组合物作为手动变速器用润滑油脂时，同步特性（一种使减缓比不同的齿轮装置良好地咬合的功能，可利用润滑作用来发挥这种功能）有不充分的倾向。另一方面，硫类极压剂的含量超过上述上限值时，疲劳寿命有不充分的倾向。另外，当使用润滑油脂组合物作为手动变速器用润滑油脂时，热・氧化安定性有不充分的倾向。另外，尤其是使用第6实施方案的传动装置用润滑油脂组合物作为手动减缓齿轮用润滑油脂时，必须较大地提高极压性，因此硫类极压剂的含量，以组合物总量为基准，按硫元素换算计，优选为0.5～3质量％，更优选为1.5～2.5质量％。

另外，第6实施方式的传动装置用润滑油脂组合物，如上所述，含有(A-4)聚(甲基)丙烯酸酯类粘度指数提高剂，还可以含有(A-4)聚(甲基)丙烯酸酯类粘度指数提高剂以外的粘度指数提高剂（下文有时将其称为(C-4)成分）。作为(C-4)成分，可举出分散型乙烯-a-烯烃共聚物或其氢化物、聚异丁烯或其氢化物、苯乙烯-二烯烃共聚物、苯乙烯-马来酸酐酯共聚物以及聚烯烃基苯乙烯等。

使用(C-4)成分时，其含量以组合物总量为基准，通常在0.1～10质量％的范围内选择。

另外，第6实施方式的传动装置用润滑油脂组合物，从可以进一步提高耐磨性、热・氧化安定性和摩擦特性的观点考虑，优选还含有(D-4)无灰分散剂。作为(D-4)无灰分散剂，例如可举出下述的氯化合物(D-4-1)～(D-4-3)。它们可以单独使用或者两种以上组合使用。

(D-4-1)在分子中具有至少1个碳数40～400的烷基或者烯基的琥珀酰亚胺、或
其衍生物

(0558) (D-4-2) 在分子中具有至少 1 个碳数 40～400 的烷基或者烯基的苯胺，或其衍生物

(0559) (D-4-3) 在分子中具有至少 1 个碳数 40～400 的烷基或者烯基的酰胺，或其衍生物。

(0560) 作为 (D-4-1) 琥珀酰胺酸，具体可举出下述通式 (15) 或者 (16) 所示的化合物等。

(0561) [化 30]

(0562)

R^{58}
\begin{align*}
\text{N-} \ensuremath{(CH_{2}CH_{2}NH)_{j}} \text{H} \\
\text{O}
\end{align*}
(21)

(0563) [化 31]

(0564)

R^{59}
\begin{align*}
\text{N-} \ensuremath{(CH_{2}CH_{2}NH)_{k}} \text{CH}_{2}CH_{2} \text{N} \\
\text{O}
\end{align*}
(22)

(0565) 通式 (21) 中，R^{58} 表示碳数 40～400，优选 60～350 的烷基或者烯基，j 表示 1～5，优选 2～4 的整数。

(0566) 通式 (22) 中，R^{59} 和 R^{60} 各自表示碳数 40～400，优选 60～350 的烷基或者烯基，k 表示 0～4，优选 1～3 的整数。

(0567) 上述琥珀酰胺酸包括那些通过酰胺化来使多胺的一端加成有琥珀酸酐的形态的通式 (21) 所示的所谓单型的琥珀酰胺酸和使多胺的两端加成有琥珀酸酐的形态的通式 (22) 所示的所谓双型的琥珀酰胺酸，第 6 实施方案的传动装置用润滑油组合物中，上述的任一种以及它们的混合物均可使用。

(0568) 作为 (D-4-2) 苯胺，具体可举出下述通式 (17) 所示的化合物等。

(0569) [化 32]

(0570)

R^{51}
\begin{align*}
\text{CH}_{2}NH\text{-} \ensuremath{(CH_{2}CH_{2}NH)_{m}} \text{H} \\
\text{O}
\end{align*}
(23)

(0571) 通式 (23) 中，R^{51} 表示碳数 40～400，优选 60～350 的烷基或者烯基，m 表示 1～
5. 优选 2～4 的整数。

[0572] 上述三胺，例如，可通过使聚烯烃（例如，丙烯低聚物、聚丙烯、乙烯-a-烯烃共聚物等）与苯酚反应生成烷基苯酚后，再使其与甲醛和多胺（例如，二亚乙基三胺、三亚乙基四胺、四亚乙基五胺、五亚乙基六胺等）通过曼尼希反应进行反应来获得。

[0573] 作为 (0-4-3) 的多胺，更具体可举出下述通式 (24) 所示的化合物等。

[0574]

\[\text{R}^\text{II}-\text{NH}-\left(\text{CH}_2\text{CH}_3\text{NH}\right)_\text{m}-\text{H} \] (24)

[0575] 通式 (24) 中，\(\text{R}^\text{II} \) 表示碳数 40～400，优选 60～350 的烷基或烯基，\(m \) 表示 1～5，优选 2～4 的整数。

[0576] 上述多胺，例如，可通过将聚烯烃（例如，丙烯低聚物、聚丙烯、乙烯-a-烯烃共聚物等）氯化后，再使其与氯或多胺（例如，乙二胺、二亚乙基三胺、三亚乙基四胺、四亚乙基五胺、五亚乙基六胺等）反应来获得。

[0577] 上述氮化合物中的氯含量可以是任意的，从耐磨性、氧化安定性和摩擦特性等观点考虑，通常希望使用其氯含量优选 0.01～10 质量%，更优选 0.1～10 质量%的氮化合物。

[0578] 作为上述氮化合物的衍生物，可举出那些例如通过使上述的氯化合物与碳数 2～30 的单羧酸（脂肪酸等）或草酸、邻苯二甲酸、偏苯三酸、均苯四甲酸等碳数 2～30 的多元羧酸相作用，借此将残留的氨基和 / 或亚氨基的一部分或者全部中和或进行酰胺化而获得的所谓酰胺改性化合物；通过使上述的氯化合物与硼酸相作用，借此将残留的氨基和 / 或亚氨基的一部分或者全部中和或进行酰胺化而获得的所谓酰胺改性化合物；通过使上述的氯化合物与硫化合物相作用而获得的硫改性化合物；以及通过使上述的氯化合物经由选自酸改性、酰胺改性、硫改性中的一种以上改性方法组合而获得的改性化合物等。

[0579] 当第 6 实施方案的传动装置用润滑油组合物中含有 (0-4) 无灰分散剂时，其含量没有特殊限定，以组合物总量为基准，优选为 0.5～10.0 质量%，更优选为 1～8.0 质量%。无灰分散剂的含量小于 0.5 质量%时，疲劳寿命和极压性的提高效果不充分，而在超过 10.0 质量%时，组合物的低温流动性大幅度地变差，因此均不优选。另外，尤其是使用第 6 实施方案的传动装置用润滑油组合物作为自动变速器用或者无级变速器用润滑油时，无灰分散剂的含量，以组合物总量为基准，优选为 1～6 质量%。另外，尤其是使用第 6 实施方案的传动装置用润滑油组合物作为手动变速器用润滑油时，无灰分散剂的含量，以组合物总量为基准，优选为 0.5～6 质量%，更优选为 0.5～2 质量%。

[0580] 另外，第 6 实施方案的传动装置用润滑油脂组合物，从进一步提高摩擦特性的观点考虑，优选还含有金属类清净剂。金属类清净剂的具体例和优选例与上述第 3 实施方案的情况相同，在此不再重复说明。

[0581] 当第 6 实施方案的传动装置用润滑油脂组合物中含有金属类清净剂时，其含量没有特殊限定，以组合物总量为基准，按金属元素换算计，优选为 0.005～0.5 质量%，更优选为 0.008～0.3 质量%，进一步优选为 0.01～0.2 质量%。金属类清净剂的含量，按金属元素换算计，小于 0.005 质量%时，摩擦特性提高效果有不充分的倾向，另一方面，超过 0.5 质量%时，有可能会对混式离合器的摩擦材料产生不良影响。另外，尤其是使用第 6 实施方案的传动装置用润滑油脂组合物作为自动变速器用或者无级变速器用润滑油时，金属类清净剂的含量，以组合物总量为基准，按金属元素换算计，优选为 0.005～0.2 质量%，更优选为
0.008 ～ 0.02 质量％。另外，尤其是使用第6实施方案的传动装置用润滑油组合物作为自动变速器用润滑油时，金属类清净剂的含量，以组合物总量为基准，按金属元素换算计，优选为 0.05 ～ 0.5 质量％，更优选为 0.1 ～ 0.4 质量％，进一步优选为 0.2 ～ 0.35 质量％。

另外，第6实施方案的传动装置用润滑油组合物，从进一步提高热・氧化安定性的观点考虑，优选含有抗氧化剂。作为抗氧化剂，只要使用润滑油领域一般使用抗氧剂即可，优选使用酚类抗氧剂和 / 或胺类抗氧剂，特别优选将酚类抗氧剂与胺类抗氧剂并用。酚类抗氧剂和胺类抗氧剂的具体例与上述第3实施方案等的情况相同，在此不再重复说明。

第6实施方案的传动装置用润滑油组合物中抗氧化剂的含量没有特殊限制，以组合物总量为基准，优选为 0.01 ～ 5.0 质量％。

另外，第6实施方案的传动装置用润滑油组合物，从进一步提高变速器中湿式离合器的摩擦特性的观点考虑，优选还含有摩擦调整剂。作为摩擦调整剂，可以使用润滑油领域中通常作为摩擦调整剂使用的任意的化合物，优选使用那些在分子中至少具有 1 个碳数 6 ～ 30 的烷基或烯基，尤其是碳数 6 ～ 30 的直链烷基或直链烯基的胺化合物、酰亚胺化合物、脂肪酸酯、脂肪酸胺、脂肪酸金属盐等。

作为酰胺化合物，可举出碳数 6 ～ 30 的直链状或支链状，优选直链状的脂肪酰胺、直链状或支链状，优选直链状的脂肪酸多胺，或者这些脂肪酰胺的氧化物加合物等。作为酰胺化合物，可举出碳数 6 ～ 30 的直链状或支链状的烷基或烯基的琥珀酰亚胺和 / 或其氯磺酸、砜磺酸、磺酸、硫酸等改性而成的改性化合物等。作为脂肪酸酯，可举出由碳数 7 ～ 31 的直链状或支链状，优选直链状的脂肪酸与脂肪族 1 元醇或者脂肪族多元醇形成的酯等。作为脂肪酰胺，可举出由碳数 7 ～ 31 的直链状或支链状，优选直链状的脂肪酸与脂肪族单胺或者脂肪族多胺形成的酰胺等。作为脂肪酸金属盐，可举出碳数 7 ～ 31 的直链状或支链状，优选直链状的脂肪酸的碱土类金属盐（镁盐、钙盐等）或锌盐等。

在第6实施方案中，优选含有选自胺类摩擦调整剂、酯类摩擦调整剂、酰胺类摩擦调整剂、脂肪酸类摩擦调整剂中的 1 种或者 2 种，进而，从进一步提高疲劳寿命的观点考虑，特别优选含有选自胺类摩擦调整剂、脂肪酸类摩擦调整剂和酰胺类摩擦调整剂中的 1 种或者 2 种以上。另外，尤其是使用第6实施方案的传动装置用润滑油组合物作为自动变速器用或者无级变速器用润滑油时，从显著提高防振（shudder）寿命的观点考虑，特别优选含有酰亚胺类摩擦调整剂。

第6实施方案中，可以按任意的量含有从上述摩擦调整剂中任意选出的 1 种或者 2 种以上的化合物。摩擦调整剂的含量，以组合物总量为基准，优选为 0.01 ～ 5.0 质量％，更优选为 0.03 ～ 3.0 质量％。另外，尤其是使用第6实施方案的传动装置用润滑油组合物作为自动变速器用或者无级变速器用润滑油时，从必须进一步提高摩擦特性的观点考虑，摩擦调整剂的含量，以组合物总量为基准，优选为 0.5 ～ 5 质量％，更优选为 2 ～ 4 质量％。另外，尤其是使用第6实施方案的传动装置用润滑油组合物作为自动变速器用润滑油组合物，摩擦调整剂的含量，以组合物总量为基准，优选为 0.1 ～ 3 质量％，更优选为 0.5 ～ 1.5 质量％。
说明书记

钝化剂、抗凝剂、橡胶溶液剂、消泡剂、着色剂等各种添加剂。这些添加剂的具体例，与上述第3实施方案的情况相同，在此不再重复说明。

【0589】当第6实施方案的传动装置用润滑油耗组合物中含有的这些添加剂时，其含量以组合物总量为基准，通常，防腐剂、防锈剂、抗乳化剂各为在0.005～5质量%、金属钝化剂在0.005～1质量%、抗凝剂在0.05～1质量%、消泡剂在0.0005～1质量%、着色剂在0.001～1.0质量%的范围进行选择。

【0590】根据上述构成的第6实施方案的传动装置用润滑油耗组合物，即使在低粘度的状况下，因长期高水水平地实现耐磨损、防烧结性及疲劳寿命，并可以兼顾传动装置的省燃耗性和耐久性，进而可以改善低温起动性。作为除第6实施方案的传动装置用润滑油耗组合物的传动装置具有特殊限制，具体可举出自动变速器、无级变速器、手动变速器等变速器、主传动减速齿轮、动力分配・调整装置等。以下，作为本发明的优选实施方案，详细描述

I）自动变速器用或者无级变速器用润滑油耗组合物、II）手动变速器用润滑油耗组合物、以及III）主传动减速齿轮用润滑油耗组合物。

【0591】在I）自动变速器用或者无级变速器用润滑油耗组合物中，第1实施方案或者第2实施方案的润滑油基础油在100℃时的运动粘度优选为2～8mm²/s，更优选为2.6～4.5mm²/s，进一步优选为2.8～4.3mm²/s，特别优选为3.3～3.8mm²/s。如果该运动粘度小于上述下限值，则润滑性有不充分的倾向，另外，如果超过上述上限值，则低温流动性有不充分的倾向。

【0592】另外，在I）自动变速器用或者无级变速器用润滑油耗组合物中，第1实施方案或者第2实施方案的润滑油基础油在40℃时的运动粘度优选为15～50mm²/s，更优选为20～40mm²/s，进一步优选为25～35mm²/s。如果该运动粘度小于上述下限值，则润滑性有不充分的倾向，另外，如果超过上述上限值，则由于搅拌阻力增大而导致省燃耗性有不充分的倾向。

【0593】另外，在I）自动变速器用或者无级变速器用润滑油耗组合物中，第1实施方案或者第2实施方案的润滑油基础油的粘度指数优选为120～160，更优选为125～150，进一步优选为130～145。如果该粘度指数在上述范围内，则可以进一步提高粘度－温度特性。

【0594】另外，作为I）自动变速器用或者无级变速器用润滑油耗组合物中所含的含磷化合物，优选为选自磷酸、磷酸酯类、亚磷酸、亚磷酸酯类、硫代磷酸、硫代磷酸酯类、硫代亚磷酸和硫代亚磷酸酯类以及它们的盐中的至少1种，更优选为选自磷酸、磷酸酯类、亚磷酸和亚磷酸酯类以及它们的盐中的至少1种，进一步优选为选自磷酸酯类和亚磷酸酯类以及它们的盐中的至少1种。

【0595】另外，I）自动变速器用或者无级变速器用润滑油耗组合物中的含磷化合物的含量，以组合物总量为基准，按磷元素换算计，优选为0.005～0.1质量%，更优选为0.01～0.05质量%，进一步优选为0.02～0.04质量%。如果含磷化合物的含量小于上述下限值，则润滑性有不充分的倾向，另外，如果超过上述上限值，则湿式摩擦特性和疲劳寿命有不充分的倾向。

【0596】另外，I）自动变速器用或者无级变速器用润滑油耗组合物在-40℃时的BF粘度优选为20,000mPa·s以下，更优选为15,000mPa·s以下，进一步优选为10,000mPa·s以下，更进一步优选为8,000mPa·s以下，特别优选为7,000mPa·s以下。如果该BF粘度超过上
述上限值，则低温起动性有不充分的倾向。

【0597】另外，（I）自动变速器用或者无级变速器用润滑油组合物的粘度指数优选为100～250，更优选为150～250，进一步优选为170～250。如果粘度指数小于上述下限值，则省燃耗性有不充分的倾向。另外，超过上述上限值的组合物，其聚（甲基）丙烯酸酯类粘度指数提高剂的含量过多，剪切安定性有不充分的倾向。

【0598】另外，在（II）手动变速器用润滑油组合物中，第1实施方案或者第2实施方案的润滑油基础油在100°C时的运动粘度优选为3.0～20mm²/s，更优选为3.3～15mm²/s，进一步优选为3.3～8mm²/s，更进一步优选为3.8～6mm²/s，特别优选为4.3～5.5mm²/s。如果该运动粘度小于上述下限值，则润滑性有不充分的倾向，另外，如果超过上述上限值，则低温流动性有不充分的倾向。

【0599】另外，在（II）手动变速器用润滑油组合物中，第1实施方案或者第2实施方案的润滑油基础油在40°C时的运动粘度优选为10～200mm²/s，更优选为15～80mm²/s，进一步优选为20～70mm²/s，特别优选为23～60mm²/s。如果该运动粘度小于上述下限值，则润滑性有不充分的倾向，另外，如果超过上述上限值，则由于搅拌阻力增大而导致省燃耗性有不充分的倾向。

【0600】另外，在（II）手动变速器用润滑油组合物中，第1实施方案或者第2实施方案的润滑油基础油的粘度指数优选为130～170，更优选为135～165，进一步优选为140～160。如果该粘度指数为上述范围内，则可以进一步提高粘度－温度特性。

【0601】另外，作为（II）手动变速器用润滑油组合物中所含有的含磷化合物，优选为选自硫代磷酸、硫代磷酸酯类、硫代亚磷酸和硫代亚磷酸酯类中的至少1种，更优选为选自硫代磷酸酯类和硫代亚磷酸酯类中的至少1种，特别优选为二硫代磷酸酯。

【0602】另外，（II）手动变速器用润滑油组合物中的含磷化合物的含量，以组合物总量为基准，按磷元素换算计，优选为0.01～0.2质量%，更优选为0.05～0.15质量%，进一步优选为0.09～0.14质量%。如果含磷化合物的含量小于上述下限值，则润滑性和同步特性有不充分的倾向，另外，如果超过上述上限值，则热氧化安定性和疲劳寿命有不充分的倾向。

【0603】另外，（II）手动变速器用润滑油组合物在-40°C时的BF粘度优选为20,000mPa·s以下，更优选为15,000mPa·s以下，进一步优选为10,000mPa·s以下，更进一步优选为9,000mPa·s以下，特别优选为8,000mPa·s以下。如果该BF粘度超过上述上限值，则低温起动性有不充分的倾向。

【0604】另外，（II）手动变速器用润滑油组合物的粘度指数优选为100～250，更优选为140～250，进一步优选为150～250。如果粘度指数小于上述下限值，则省燃耗性有不充分的倾向。另外，超过上述上限值的组合物，其聚（甲基）丙烯酸酯类粘度指数提高剂的含量过多，剪切安定性有不充分的倾向。

【0605】另外，在（III）主传动轴齿轮用润滑油组合物中，第1实施方案或者第2实施方案的润滑油基础油在100°C时的运动粘度优选为3.0～20mm²/s，更优选为3.3～15mm²/s，进一步优选为3.3～8mm²/s，更进一步优选为3.8～6mm²/s，特别优选为4.3～5.5mm²/s。如果该运动粘度小于上述下限值，则润滑性有不充分的倾向，另外，如果超过上述上限值，则低温流动性有不充分的倾向。
[0606] 另外，在 (III) 主传动减速齿轮用润滑油组合物中，第 1 实施方案或者第 2 实施方案的润滑油基础油在 40℃时的运动粘度优选为 15 ～ 200 mm²/s，更优选为 20 ～ 150 mm²/s，进一步优选为 23 ～ 80 mm²/s。如果该运动粘度小于上述下限值，则润滑性有不充分的倾向；另外，如果超过上述上限值，则由于搅拌阻力增大而导致省燃耗性有不充分的倾向。

[0607] 另外，在 (III) 主传动减速齿轮用润滑油组合物中，第 1 实施方案或者第 2 实施方案的润滑油基础油的粘度指数优选为 130 ～ 170，更优选为 135 ～ 165，进一步优选为 140 ～ 160。如果该粘度指数在上述范围内，则可以进一步提高粘度 - 温度特性。

[0608] 另外，在 (III) 主传动减速齿轮用润滑油组合物中所含有的含磷化合物，优选为选自磷酸酯类、亚磷酸酯类、硫代磷酸酯类、硫代亚磷酸酯类以及它们的盐中的至少 1 种，更优选为选自磷酸酯类、亚磷酸酯类以及它们的胺盐中的至少 1 种，进一步优选为选自磷酸酯类、其胺盐以及磷酸酯类中的至少 1 种。

[0609] 另外，在 (III) 主传动减速齿轮用润滑油组合物中的含磷化合物的含量，以组合物总量为基准，按磷元素换算计，优选为 0.01 ～ 0.2 质量％，更优选为 0.05 ～ 0.15 质量％，进一步优选为 0.1 ～ 0.14 质量％。如果含磷化合物的含量小于上述下限值，则润滑性有不充分的倾向；另外，如果超过上述上限值，则疲劳寿命有不充分的倾向。

[0610] 另外，在 (III) 主传动减速齿轮用润滑油组合物在 -40℃时的 BF 粘度优选为 100,000 mPa·s 以下，更优选为 50,000 mPa·s 以下，进一步优选为 20,000 mPa·s 以下，进一步优选为 10,000 mPa·s 以下。如果该 BF 粘度超过上述上限值，则低温起动性有不充分的倾向。

[0611] 另外，在 (III) 自动变速器用或者无级变速器用润滑油组合物的粘度指数优选为 100 ～ 250，更优选为 120 ～ 250，进一步优选为 125 ～ 250。如果粘度指数小于上述下限值，则省燃耗性有不充分的倾向。另外，超过上述上限值的组合物，其聚（甲基）丙烯酸酯类粘度指数提高剂的含量过多，切切实定性有不充分的倾向。

[0612] 实施例

[0613] 以下，根据实施例和比较例更具体地说明本发明，但本发明并不局限于以下的实施例。

[0614] [实施例 1 ～ 3]

[0615] 将在溶剂精制基础油的精制工序中通过减压蒸馏分离出的馏分用糠醛进行溶剂抽提后进行加氢处理，然后，用丁酮 + 甲苯混合溶剂进行溶剂脱蜡。对该溶剂脱蜡时除去的软蜡再进行脱油，将得到的蜡成分（以下称为“WAX1”）用作润滑油基础油的原料。WAX1 的性状示于表 1 中。

[0616] [表 1]

<table>
<thead>
<tr>
<th>原料蜡的名称</th>
<th>WAX1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100℃时的运动粘度 (mm²/s)</td>
<td>6.8</td>
</tr>
<tr>
<td>熔点（℃）</td>
<td>58</td>
</tr>
<tr>
<td>油分（质量％）</td>
<td>6.3</td>
</tr>
<tr>
<td>硫成分（质量 ppm）</td>
<td>900</td>
</tr>
</tbody>
</table>

[0618] 然后，在加氢裂化催化剂的存在下，在氢分压 5 MPa、平均反应温度 350℃、LHSV 1 hr⁻¹ 的条件下，对 WAX1 进行加氢裂化。作为加氢裂化催化剂，将在无定形类二氧化硅 - 氧
化铝载体（二氧化硅：氧化铝＝20：80（质量比））上负载有3质量%镍和15质量%钼的催化
剂进行硫化，在此状态下使用。

[0619] 然后，将上述的加氢裂解所得的裂解产物通过减压蒸馏，得到相对于原料油为26
体积%的润滑油馏分。对该润滑油馏分，使用丁酮－甲苯混合溶剂，在溶剂／油比为4 倍、
过滤温度－25℃的条件下进行溶剂脱蜡，得到粘度等级不同的实施例 1～3 的润滑油基础油
(D1 ～ D3)。

[0620] [实施例 4 ～ 6]

[0621] 将 USY 型沸石 800g 和氧化铝粘合剂 200g 进行混合混炼，成型为直径 1/16 英寸
（约 1.6mm）、高 6mm 的圆柱状。将得到的成型体在 450℃下焙烧 3 小时，得到载体。使该载体
浸渍于按计算值计为载体的 0.8 质量%的量的二氯四胺合铂（II）的水溶液，在 120℃
下干燥 3 小时，再在 400℃下焙烧 1 小时，由此获得目的催化剂。

[0622]接着，将得到的催化剂 200ml 填充到固定型的流通式反应器中，使用该反应器，进
行含有链烷烃类烃的原料油的加氢裂化／加氢异构化。在本工序中，作为原料油，使用链烷
烃含量为 95 质量%、具有 20 ～ 80 的碳数分布的 FT 蜡（以下称为“WAX2”）。WAX2 的性状
示于表 2 中。另外，加氢裂化的条件设定为，氢压为 3MPa，反应温度为 350℃、LHSV 为 2.0h⁻¹，
得到相对于原料，沸点 380℃以下的馏分（裂解产物）为 30 质量%（裂解率 30%）的裂化
／异构化生成油。

[0623] [表 2]

<table>
<thead>
<tr>
<th>原料蜡的名称</th>
<th>WAX2</th>
</tr>
</thead>
<tbody>
<tr>
<td>100℃时的运动粘度 (mm²/s)</td>
<td>5.8</td>
</tr>
<tr>
<td>熔点（℃）</td>
<td>70</td>
</tr>
<tr>
<td>油分（质量%）</td>
<td><1</td>
</tr>
<tr>
<td>硫成分（质量ppm）</td>
<td><0.2</td>
</tr>
</tbody>
</table>

[0625]接着，将上述在加氢裂化／加氢异构化工序中得到的裂化／异构化生成油进行减
压蒸馏，由此获得润滑油馏分。对该润滑油馏分，使用丁酮－甲苯混合溶剂，在溶剂／油比
为 4 倍、过滤温度－25℃的条件下进行溶剂脱蜡，得到粘度等级不同的实施例 4～6 的润滑油
基础油（D4 ～ D6）。

[0626] [实施例 7 ～ 15]

[0627] 将在溶剂精制基础油的精制工序中通过减压蒸馏分离出的馏分用碘醛进行溶剂
抽提后进行加氢处理，然后，用丁酮－甲苯混合溶剂进行溶剂脱蜡。对该溶剂脱蜡时除去的
软蜡再进行脱油，将得到的蜡成分（以下称为“WAX3”）用作润滑油基础油的原料。WAX3 的
性状示于表 3 中。

[0628] [表 3]

<table>
<thead>
<tr>
<th>原料蜡的名称</th>
<th>WAX3</th>
</tr>
</thead>
<tbody>
<tr>
<td>100℃时的运动粘度 (mm²/s)</td>
<td>6.3</td>
</tr>
<tr>
<td>熔点（℃）</td>
<td>53</td>
</tr>
<tr>
<td>油分（质量%）</td>
<td>19.9</td>
</tr>
<tr>
<td>硫成分（质量ppm）</td>
<td>1900</td>
</tr>
</tbody>
</table>

[0630] 然后，在加氢裂解催化剂的存下，在氢分压 5MPa、平均反应温度 350℃、LHSV
1hr⁻¹的条件下，对 WAX3 进行加氢裂解。作为加氢裂解催化剂，将在无定形类二氧化硅・氧
化铝载体（二氧化硅：氧化铝＝20:80（质量比））上负载有3质量％镍和15质量％钼的催化剂以硫化状态进行使用。

[0631] 然后，将上述的加氢裂解所得的裂解产物通过减压蒸馏，得到相对于原料油为26体积％的润滑油馏分。对该润滑油馏分，使用丁酮－甲苯混合溶剂，在溶剂／油比为4倍、过滤温度－25℃的条件下进行溶剂脱蜡，得到粘度等级不同的实施例7～9、10～12、13～15的润滑油基础油（D7～D9、D10～D12、D13～D15）。

[0632] 将实施例1～15的润滑油基础油的各种性状和性能评价试验结果示于表4～6。另外，作为比较例1～9，将以往的高粘度指数基础油R1～R9的各种性状和性能评价试验结果示于表7～9。

[0633] [表4]

[0634]
<table>
<thead>
<tr>
<th>基础油名称</th>
<th>实施例 1</th>
<th>实施例 4</th>
<th>实施例 7</th>
<th>实实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>饱和成分</td>
<td>98.2</td>
<td>99.2</td>
<td>96.8</td>
<td>99.6</td>
<td>95.8</td>
</tr>
<tr>
<td>芳环族成分</td>
<td>0.9</td>
<td>0.3</td>
<td>3.1</td>
<td>0.3</td>
<td>3.9</td>
</tr>
<tr>
<td>碳氧化合物成分</td>
<td>0.9</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>饱和成分的详细项目</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>环烷烃成分</td>
<td>5.6</td>
<td>1.0</td>
<td>14.2</td>
</tr>
<tr>
<td>非环烷烃成分</td>
<td>94.4</td>
<td>99.0</td>
<td>85.8</td>
</tr>
<tr>
<td>直链烷烃成分</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>支链烷烃成分</td>
<td>92.6</td>
<td>98.1</td>
<td>83.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EI-MS 饱和成分分析</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 环饱和成分</td>
<td>1.3</td>
<td>0.0</td>
<td>5.1</td>
</tr>
<tr>
<td>2 环饱和成分</td>
<td>1.8</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>3 超环饱和成分</td>
<td>4.3</td>
<td>1.0</td>
<td>9.1</td>
</tr>
<tr>
<td>1 环饱和成分/2 环饱和成分 (质量比)</td>
<td>0.7</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td>1 环饱和成分/2 环饱和成分 (质量比)</td>
<td>0.3</td>
<td>0.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n-d-m 差分分析</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>%CO</td>
<td>92.2</td>
<td>94.5</td>
<td>87.9</td>
</tr>
<tr>
<td>%CN</td>
<td>7.8</td>
<td>5.5</td>
<td>11.3</td>
</tr>
<tr>
<td>%Cn</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
</tr>
<tr>
<td>%Cn/%CO</td>
<td>11.8</td>
<td>17.2</td>
<td>7.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>硫成分配</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>质量 ppm</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>折射率 (20°C)</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>nD0</td>
<td>1.4497</td>
<td>1.4502</td>
<td>1.4535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>运动粘度 (40°C)</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²/s</td>
<td>10.4</td>
<td>10.6</td>
<td>9.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>运动粘度 (100°C)</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²/s</td>
<td>2.8</td>
<td>2.8</td>
<td>2.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>恢复指数</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>115</td>
<td>125</td>
<td>114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>密度 (15°C)</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/cm³</td>
<td>0.809</td>
<td>0.809</td>
<td>0.816</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>流动点</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>-22.5</td>
<td>-22.5</td>
<td>-25</td>
<td>-25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>酸值</th>
<th>实施例 7</th>
<th>实实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.88</td>
<td>0.51</td>
<td>2.10</td>
<td>1.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>苯胺点</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>114</td>
<td>116</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>残留性状</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>100[T]</td>
<td>336</td>
<td>340</td>
<td>328</td>
</tr>
<tr>
<td>T10[T]</td>
<td>360</td>
<td>362</td>
<td>358</td>
</tr>
<tr>
<td>T50[T]</td>
<td>388</td>
<td>387</td>
<td>394</td>
</tr>
<tr>
<td>T90[T]</td>
<td>426</td>
<td>426</td>
<td>426</td>
</tr>
<tr>
<td>FBP[T]</td>
<td>467</td>
<td>462</td>
<td>453</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCS 换算 (0°C)</th>
<th>实施例 7</th>
<th>实实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²/s</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOACK 蒸发量 (250°C, 1小时)</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>质量 %</td>
<td>35.7</td>
<td>34.2</td>
<td>39.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RBOT 寿命 (150°C)</th>
<th>实施例 7</th>
<th>实实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>分钟</td>
<td>330</td>
<td>340</td>
<td>325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>残留金属成分</th>
<th>实施例 7</th>
<th>实施例 8</th>
<th>实施例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mo</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Ni</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>实施例</td>
<td>实施例</td>
<td>实施例</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>基础油名称</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原料油的名称</td>
<td>WAX1</td>
<td>WAX2</td>
<td>WAX3</td>
</tr>
<tr>
<td>基础油组成</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(以基础油总重为基准)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>饱和成分</td>
<td>99.6</td>
<td>99.5</td>
<td>97.7</td>
</tr>
<tr>
<td>芳香族成分</td>
<td>0.8</td>
<td>0.2</td>
<td>2.1</td>
</tr>
<tr>
<td>极性化合物成分</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>饱和成分的显性</td>
<td>5.6</td>
<td>1.2</td>
<td>13.7</td>
</tr>
<tr>
<td>(以饱和成分总重为基准)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非饱和饱和成分</td>
<td>95.4</td>
<td>98.8</td>
<td>86.3</td>
</tr>
<tr>
<td>直链烷烃成分</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>支链烷烃成分</td>
<td>94.0</td>
<td>98.2</td>
<td>84.2</td>
</tr>
<tr>
<td>EI-MC 饱和成分分析</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>饱和成分的显性</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 环烷烃成分</td>
<td>2.1</td>
<td>0.0</td>
<td>4.8</td>
</tr>
<tr>
<td>2 环烷烃成分</td>
<td>1.9</td>
<td>0.4</td>
<td>4.0</td>
</tr>
<tr>
<td>2 环以上的饱和及成</td>
<td>3.5</td>
<td>1.2</td>
<td>8.9</td>
</tr>
<tr>
<td>(质量比)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 环烷烃成分/2 环烷烃成分</td>
<td>1.1</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>1 环烷烃成分/2 环烷烃成分 (质量比)</td>
<td>0.6</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>n-d-M环分析</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%C</td>
<td>89.1</td>
<td>93.3</td>
<td>91.3</td>
</tr>
<tr>
<td>%O</td>
<td>10.6</td>
<td>6.7</td>
<td>8.7</td>
</tr>
<tr>
<td>%N</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>%C/,%N</td>
<td>8.4</td>
<td>13.9</td>
<td>10.5</td>
</tr>
<tr>
<td>硫成分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>质量 ppm</td>
<td>2</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>氢成分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>质量 ppm</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>密度 (20℃) ρ</td>
<td>1.4537</td>
<td>1.4538</td>
<td>1.4565</td>
</tr>
<tr>
<td>运动粘度 (40℃) ν</td>
<td>17.3</td>
<td>16.7</td>
<td>16.6</td>
</tr>
<tr>
<td>运动粘度 (100℃) kv100</td>
<td>4.1</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>粘度指数</td>
<td>143</td>
<td>131</td>
<td>144</td>
</tr>
<tr>
<td>100℃ - 0.002 × kv100</td>
<td>1.415</td>
<td>1.446</td>
<td>1.449</td>
</tr>
<tr>
<td>密度 (15℃) ρ</td>
<td>0.825</td>
<td>0.815</td>
<td>0.821</td>
</tr>
<tr>
<td>流动点</td>
<td>-20</td>
<td>-20</td>
<td>-22.5</td>
</tr>
<tr>
<td>稀值</td>
<td>0.63</td>
<td>0.21</td>
<td>1.35</td>
</tr>
<tr>
<td>轻质点</td>
<td>120</td>
<td>121</td>
<td>119</td>
</tr>
<tr>
<td>精确性状</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I B P (℃)</td>
<td>353</td>
<td>350</td>
<td>356</td>
</tr>
<tr>
<td>T I P (℃)</td>
<td>386</td>
<td>384</td>
<td>398</td>
</tr>
<tr>
<td>T S P (℃)</td>
<td>432</td>
<td>431</td>
<td>431</td>
</tr>
<tr>
<td>T 90 (℃)</td>
<td>470</td>
<td>467</td>
<td>479</td>
</tr>
<tr>
<td>F B P (℃)</td>
<td>499</td>
<td>495</td>
<td>508</td>
</tr>
<tr>
<td>CCS(℃) 10 (℃)</td>
<td>1890</td>
<td>1970</td>
<td>1810</td>
</tr>
<tr>
<td>NOACK（240℃，1小时）</td>
<td>13.5</td>
<td>14.9</td>
<td>12.5</td>
</tr>
<tr>
<td>RBOT（℃）</td>
<td>380</td>
<td>398</td>
<td>390</td>
</tr>
<tr>
<td>残留金属成分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 (质量 ppm)</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mo (质量 ppm)</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Ni (质量 ppm)</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

[0637] [表6]

[0638]
<table>
<thead>
<tr>
<th>基础油名称</th>
<th>实施例3</th>
<th>实施例6</th>
<th>实施例13</th>
<th>实施例14</th>
<th>实施例15</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料油的名称</td>
<td>D3</td>
<td>D6</td>
<td>D13</td>
<td>D14</td>
<td>D15</td>
</tr>
<tr>
<td></td>
<td>WAX1</td>
<td>WAX2</td>
<td>WAX3</td>
<td>WAX3</td>
<td>WAX3</td>
</tr>
<tr>
<td>基础油组成</td>
<td>饱和成分</td>
<td>质量%</td>
<td>97.8</td>
<td>99.3</td>
<td>95.7</td>
</tr>
<tr>
<td>(以基础油总量为基准)</td>
<td>芳香族成分</td>
<td>质量 %</td>
<td>1.3</td>
<td>0.2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>极性化合物成分</td>
<td>质量 %</td>
<td>1.1</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>饱和成分的明细项</td>
<td>非环状饱和成分</td>
<td>质量%</td>
<td>13.0</td>
<td>1.4</td>
<td>24.1</td>
</tr>
<tr>
<td>(以饱和成分总量为基准)</td>
<td>非环状饱和成分</td>
<td>质量%</td>
<td>87.0</td>
<td>98.6</td>
<td>75.9</td>
</tr>
<tr>
<td></td>
<td>直链烷烃成分</td>
<td>质量%</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>支链烷烃成分</td>
<td>质量%</td>
<td>84.8</td>
<td>97.8</td>
<td>72.5</td>
</tr>
<tr>
<td>非环状饱和成分的含量</td>
<td>1 环饱和成分</td>
<td>质量%</td>
<td>5.9</td>
<td>0.0</td>
<td>11.8</td>
</tr>
<tr>
<td>(以基础油总量为基准)</td>
<td>2 环饱和成分</td>
<td>质量%</td>
<td>4.8</td>
<td>0.6</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>2 环以上的饱和成分</td>
<td>质量%</td>
<td>7.1</td>
<td>1.4</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>1 环饱和成分/2 环饱和成分 (质量比)</td>
<td>质量%</td>
<td>1.4</td>
<td>0.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>1 环饱和成分/2 环以上的饱和成分 (质量比)</td>
<td>质量%</td>
<td>0.8</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>EI-MS饱和成分分析</td>
<td>n-d-M环分析</td>
<td>%C</td>
<td>94.9</td>
<td>95.3</td>
<td>88.1</td>
</tr>
<tr>
<td>环状饱和成分的明细项 (以饱和成分总量为基准)</td>
<td>%C1</td>
<td>5.1</td>
<td>4.7</td>
<td>11.8</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>%C2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>%C1/%C2</td>
<td>18.6</td>
<td>20.3</td>
<td>7.5</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>锡成分</td>
<td>质量 ppm</td>
<td>2</td>
<td><1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>氧成分</td>
<td>质量 ppm</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td></td>
<td>折射率(20℃) nD</td>
<td>1.4583</td>
<td>1.4593</td>
<td>1.4600</td>
<td>1.4590</td>
</tr>
<tr>
<td></td>
<td>运动粘度(40℃)</td>
<td>mm²/s</td>
<td>38.2</td>
<td>37.2</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td>运动粘度(100℃) kη100</td>
<td>mm²/s</td>
<td>7.2</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>粘度指数</td>
<td>155</td>
<td>152</td>
<td>148</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>nD=0.002×kη100</td>
<td>1.444</td>
<td>1.445</td>
<td>1.448</td>
<td>1.446</td>
</tr>
<tr>
<td></td>
<td>密度(15℃)</td>
<td>g/cm³</td>
<td>0.826</td>
<td>0.826</td>
<td>0.833</td>
</tr>
<tr>
<td></td>
<td>液体点</td>
<td>°C</td>
<td>-15</td>
<td>-15</td>
<td>-15</td>
</tr>
<tr>
<td></td>
<td>烷值</td>
<td>0.56</td>
<td>0.19</td>
<td>0.77</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>蒸气点</td>
<td>°C</td>
<td>135</td>
<td>133</td>
<td>128</td>
</tr>
<tr>
<td>蒸发性能状</td>
<td>IBT(℃)</td>
<td>°C</td>
<td>424</td>
<td>421</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>T10(℃)</td>
<td>°C</td>
<td>453</td>
<td>450</td>
<td>446</td>
</tr>
<tr>
<td></td>
<td>T50(℃)</td>
<td>°C</td>
<td>485</td>
<td>483</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>T90(℃)</td>
<td>°C</td>
<td>513</td>
<td>510</td>
<td>508</td>
</tr>
<tr>
<td></td>
<td>FBP(℃)</td>
<td>°C</td>
<td>541</td>
<td>537</td>
<td>536</td>
</tr>
<tr>
<td>CCS粘度(-35℃)</td>
<td>mPa·s</td>
<td>9900</td>
<td>14500</td>
<td>7200</td>
<td>8800</td>
</tr>
<tr>
<td>NOACK蒸发量(250℃，1小时)</td>
<td>质量%</td>
<td>2.0</td>
<td>2.0</td>
<td>3.7</td>
<td>3.2</td>
</tr>
<tr>
<td>RBOT寿命(150℃)</td>
<td>分钟</td>
<td>440</td>
<td>433</td>
<td>430</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>AI</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Mo</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

[0639] [表7]
[0640]
<table>
<thead>
<tr>
<th></th>
<th>比较例 1</th>
<th>比较例 2</th>
<th>比较例 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础油名称</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>原料磺的名称</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>基础油组成（以基础油总量为基准）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>饱和成分</td>
<td>R1</td>
<td>93.8</td>
<td>99.3</td>
</tr>
<tr>
<td>芳香族成分</td>
<td>R2</td>
<td>6.0</td>
<td>0.5</td>
</tr>
<tr>
<td>极性化合物成分</td>
<td>R3</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>饱和成分的明细项（以饱和成分总量为基准）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>环状饱和成分</td>
<td></td>
<td>46.5</td>
<td>42.1</td>
</tr>
<tr>
<td>非环状饱和成分</td>
<td></td>
<td>53.5</td>
<td>57.9</td>
</tr>
<tr>
<td>非环状饱和成分的含量（以基础油总量为基准）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>直链烷烃成分</td>
<td></td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>支链烷烃成分</td>
<td></td>
<td>49.8</td>
<td>57.4</td>
</tr>
<tr>
<td>EI-MS饱和成分分析</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>环状饱和成分的明细项（以饱和成分总量为基准）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1环饱和成分</td>
<td></td>
<td>16.6</td>
<td>14.6</td>
</tr>
<tr>
<td>2环饱和成分</td>
<td></td>
<td>10.0</td>
<td>10.2</td>
</tr>
<tr>
<td>2环以上的饱和成分</td>
<td></td>
<td>30.3</td>
<td>127.5</td>
</tr>
<tr>
<td>1环饱和成分/2环饱和成分（质量比）</td>
<td>1.6</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1环饱和成分/2环以上的饱和成分（质量比）</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>n-d-M环分析</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%C<sub>1</sub></td>
<td></td>
<td>75.4</td>
<td>72.9</td>
</tr>
<tr>
<td>%C<sub>2</sub></td>
<td></td>
<td>23.2</td>
<td>26.0</td>
</tr>
<tr>
<td>%C<sub>3</sub></td>
<td></td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>%C<sub>1</sub>/ %C<sub>2</sub></td>
<td>3.3</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>硫成分</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>氮成分</td>
<td>质量 ppm</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>折射率（20℃）n<sub>20</sub></td>
<td>1.4597</td>
<td>1.4606</td>
<td>1.4611</td>
</tr>
<tr>
<td>运动粘度（40℃）</td>
<td>mm<sup>2</sup>/s</td>
<td>9.4</td>
<td>9.7</td>
</tr>
<tr>
<td>运动粘度（100℃）kv100</td>
<td>mm<sup>2</sup>/s</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>粘度指数</td>
<td></td>
<td>109</td>
<td>98</td>
</tr>
<tr>
<td>n<sub>20</sub>-0.002×kv100</td>
<td>1.455</td>
<td>1.455</td>
<td>1.455</td>
</tr>
<tr>
<td>密度（15℃）</td>
<td>g/cm<sup>3</sup></td>
<td>0.829</td>
<td>0.831</td>
</tr>
<tr>
<td>流动点</td>
<td>°C</td>
<td>-27.5</td>
<td>-17.5</td>
</tr>
<tr>
<td>碘值</td>
<td></td>
<td>5.10</td>
<td>5.40</td>
</tr>
<tr>
<td>苯胺点</td>
<td>°C</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>蒸馏性状</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBP[°C]</td>
<td>°C</td>
<td>243</td>
<td>249</td>
</tr>
<tr>
<td>T10[°C]</td>
<td>°C</td>
<td>312</td>
<td>317</td>
</tr>
<tr>
<td>T50[°C]</td>
<td>°C</td>
<td>377</td>
<td>386</td>
</tr>
<tr>
<td>T90[°C]</td>
<td>°C</td>
<td>418</td>
<td>425</td>
</tr>
<tr>
<td>FBP[°C]</td>
<td>°C</td>
<td>492</td>
<td>499</td>
</tr>
<tr>
<td>CCS粘度（-35℃）</td>
<td>mPa·s</td>
<td><1000</td>
<td><1000</td>
</tr>
<tr>
<td>NOACK蒸发量（250℃，1小时）</td>
<td>质量 %</td>
<td>51.9</td>
<td>62.7</td>
</tr>
<tr>
<td>RBOT寿命（150℃）</td>
<td>分钟</td>
<td>280</td>
<td>265</td>
</tr>
<tr>
<td>残留金属成分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mo</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Ni</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

[0641] [表8]
[0642]
<table>
<thead>
<tr>
<th>基础油名称</th>
<th>比较例 4</th>
<th>比较例 5</th>
<th>比较例 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料蜡的名称</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>基础油组成（以基础油总量为基准）</td>
<td>饱和成分</td>
<td>94.8</td>
<td>94.8</td>
</tr>
<tr>
<td></td>
<td>芳香族成分</td>
<td>5.2</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>极性化合物成分</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>饱和成分的明细项（以饱和成分总量为基准）</td>
<td>环状饱和成分</td>
<td>46.8</td>
<td>42.3</td>
</tr>
<tr>
<td></td>
<td>非环状饱和成分</td>
<td>53.2</td>
<td>57.7</td>
</tr>
<tr>
<td>非环状饱和成分的含量（以基础油总量为基准）</td>
<td>直链烷烃成分</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>支链烷烃成分</td>
<td>50.3</td>
<td>54.6</td>
</tr>
<tr>
<td>EI-MS 饱和成分分析</td>
<td>1 环饱和成分</td>
<td>16.9</td>
<td>16.1</td>
</tr>
<tr>
<td>环状饱和成分的明细项（以饱和成分总量为基准）</td>
<td>2 环饱和成分</td>
<td>13.3</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>2 环以上的饱和成分</td>
<td>29.9</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>1 环饱和成分/2 环饱和成分（质量比）</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>1 环饱和成分/2 环以上的饱和成分（质量比）</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>n-d-M 环分析</td>
<td>% C9</td>
<td>78.0</td>
<td>78.1</td>
</tr>
<tr>
<td></td>
<td>% C8</td>
<td>20.7</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td>% C7</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>% C6/ % C7</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>硫成分</td>
<td>质量 ppm</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>氯成分</td>
<td>质量 ppm</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>折射率（20℃）n20</td>
<td>1.4640</td>
<td>1.4633</td>
<td>1.4625</td>
</tr>
<tr>
<td>运动粘度（40℃）</td>
<td>mm²/s</td>
<td>18.7</td>
<td>18.1</td>
</tr>
<tr>
<td>运动粘度（100℃）kν100</td>
<td>mm²/s</td>
<td>4.1</td>
<td>4.0</td>
</tr>
<tr>
<td>粘度指数</td>
<td></td>
<td>121</td>
<td>119</td>
</tr>
<tr>
<td>n20-0.002×kν100</td>
<td></td>
<td>1.456</td>
<td>1.454</td>
</tr>
<tr>
<td>密度（15℃）</td>
<td>g/cm³</td>
<td>0.839</td>
<td>0.836</td>
</tr>
<tr>
<td>流动点</td>
<td>℃</td>
<td>-22.5</td>
<td>-27.5</td>
</tr>
<tr>
<td>硫值</td>
<td>2.78</td>
<td>2.65</td>
<td>2.55</td>
</tr>
<tr>
<td>萘胺点</td>
<td>℃</td>
<td>112</td>
<td>112</td>
</tr>
<tr>
<td>蒸馏性状</td>
<td>IBP[℃]</td>
<td>℃</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>T10[℃]</td>
<td>℃</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>T50[℃]</td>
<td>℃</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>T90[℃]</td>
<td>℃</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>FBP[℃]</td>
<td>℃</td>
<td>495</td>
</tr>
<tr>
<td>CCS 粘度（-35℃）</td>
<td>mPa·s</td>
<td>3500</td>
<td>2900</td>
</tr>
<tr>
<td>NOACK 蒸发量（250℃，1小时）</td>
<td>质量 %</td>
<td>16.1</td>
<td>16.5</td>
</tr>
<tr>
<td>RBOT 寿命（150℃）</td>
<td>分钟</td>
<td>300</td>
<td>330</td>
</tr>
<tr>
<td>残留金属成分</td>
<td>A1</td>
<td>质量 ppm</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Mo</td>
<td>质量 ppm</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>质量 ppm</td>
<td><1</td>
</tr>
</tbody>
</table>
说明书

<table>
<thead>
<tr>
<th>基础油名称</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7</td>
<td>R8</td>
<td>R9</td>
<td></td>
</tr>
</tbody>
</table>

| 原料油的名称 | - | - | - |

<table>
<thead>
<tr>
<th>基础油组成</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>饱和成分</td>
<td>93.3</td>
<td>99.5</td>
<td>99.5</td>
</tr>
<tr>
<td>含量%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>芳香族成分</td>
<td>6.6</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>极性化合物成分</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>饱和成分的明细项</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>合成饱和成分</td>
<td>47.2</td>
<td>42.7</td>
<td>46.4</td>
</tr>
<tr>
<td>含量%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非饱和成分</td>
<td>52.8</td>
<td>57.3</td>
<td>53.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>非饱和成分的含量</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>直链烷烃成分</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>含量%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>支链烷烃成分</td>
<td>49.2</td>
<td>50.9</td>
<td>53.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EI-MS 饱和成分分析</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>环烷酸成分</td>
<td>29.8</td>
<td>25.2</td>
<td>23.5</td>
</tr>
<tr>
<td>含量%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 环烷酸成分</td>
<td>17.4</td>
<td>17.5</td>
<td>23.0</td>
</tr>
<tr>
<td>2 环烷酸成分</td>
<td>13.5</td>
<td>13.2</td>
<td>14.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n-d-M 环分析</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>硫含量</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>氮含量</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>折射率 (20℃) nD</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4685</td>
<td>1.46695</td>
<td>1.4657</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>运动粘度 (100℃)</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.455</td>
<td>1.454</td>
<td>1.453</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>密度 (25℃)</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.847</td>
<td>0.838</td>
<td>0.841</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>流动点</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>-17.5</td>
<td>-17.5</td>
<td>-17.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>恢复</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.30</td>
<td>4.52</td>
<td>3.95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>蒸馏点</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>123</td>
<td>123</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>蒸馏性状</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBP</td>
<td>317</td>
<td>308</td>
<td>310</td>
</tr>
<tr>
<td>T10</td>
<td>412</td>
<td>420</td>
<td>422</td>
</tr>
<tr>
<td>T50</td>
<td>477</td>
<td>469</td>
<td>472</td>
</tr>
<tr>
<td>T90</td>
<td>525</td>
<td>522</td>
<td>526</td>
</tr>
<tr>
<td>FBP</td>
<td>576</td>
<td>566</td>
<td>583</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCS 粘度 (35℃)</th>
<th>比较例 7</th>
<th>比较例 8</th>
<th>比比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10000</td>
<td>>10000</td>
<td>>10000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOACK 蒸发量 (250℃, 1 小时)</th>
<th>比较例 7</th>
<th>比比较例 8</th>
<th>比比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>9.7</td>
<td>8.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RBOT 寿命 (150℃)</th>
<th>比较例 7</th>
<th>比比较例 8</th>
<th>比比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>390</td>
<td>370</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>残留金属成分</th>
<th>比较例 7</th>
<th>比比较例 8</th>
<th>比比较例 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mo</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Ni</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

[0645] 光稳定性评价试验
[0646] 首先，作为测定样品，准备实施例 1 ～ 3 和比较例 1, 2, 4, 5, 7, 8 的各润滑油基础油、以及在各种润滑油基础油中添加有 0.2 质量%酚类抗氧化剂（2,6-二叔丁基-4-甲酚，DBPC）的组合物。其次，使用耐光耐候试验机（sunshine weather meter），对各润滑油基础
油或者组合物照射 70 小时波长范围 400 ～ 750nm 的光，以使平均温度达到 40℃。按照 ASTM D 156-00 中规定的赛波特色度评价光照射前后各润滑油基础油的色度（色相）。所得结果示于表 5～7。

表 10

<table>
<thead>
<tr>
<th>基础油名称</th>
<th>实施例 1</th>
<th>比较例 1</th>
<th>比较例 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>光照前</td>
<td>D1</td>
<td>R1</td>
<td>R2</td>
</tr>
<tr>
<td>光照后</td>
<td>+30</td>
<td>+26</td>
<td>+30</td>
</tr>
</tbody>
</table>

表 11

<table>
<thead>
<tr>
<th>基础油名称</th>
<th>实施例 2</th>
<th>比较例 4</th>
<th>比较例 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>光照前</td>
<td>D2</td>
<td>R4</td>
<td>R5</td>
</tr>
<tr>
<td>光照后</td>
<td>+26</td>
<td>+24</td>
<td>+25</td>
</tr>
</tbody>
</table>

表 12

<table>
<thead>
<tr>
<th>基础油名称</th>
<th>实施例 3</th>
<th>比较例 7</th>
<th>比较例 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>光照前</td>
<td>D3</td>
<td>R7</td>
<td>R8</td>
</tr>
<tr>
<td>光照后</td>
<td>+24</td>
<td>+22</td>
<td>+23</td>
</tr>
</tbody>
</table>

从表 4～9 所示的结果看出，实施例 1～15 的润滑油基础油与比较例 1～9 的润滑油基础油相比，其粘度指数高，粘度 - 温度特性优良。另外，通过表 4～9 所示的 RBOT 寿命的实施例 1、4、7～9 与比较例 1～3 的比较，实施例 2、5、10～12 与比较例 4～6 的比较，实施例 3、6、13～15 与比较例 7～9 的比较，以及表 10～12 所示的光稳定性试验的实施例 1 与比较例 1～2、实施例 2 与比较例 4、5、实施例 3 与比较例 7、8 的比较看出，对于各粘度等级，实施例 1～15 的润滑油基础油的寿命更长，在热・氧化安定性和抗氧化剂的添加效果方面更优良。

实施例 16

在实施例 16 中，在加氢裂化催化剂的存在下，加氢分压 5MPa，平均反应温度
350℃，LHSV 1hr⁻¹ 的条件下，对 WAX1 进行加氢裂化。作为加氢裂化催化剂，将在无定形类
二氧化硅 • 氧化铝载体（二氧化硅：氧化铝 = 20:80（质量比））上负载有 3 质量％镍和 15
质量％钼的催化剂进行硫化，在此状态下使用。

【0656】然后，将上述的加氢裂解所得的裂解产物通过减压蒸馏，得到 100℃时的运动粘度
为 4mm²/s 的润滑油馏分。对该润滑油馏分，使用丁酮 - 甲苯混合溶剂，在溶剂 / 油比为 4
倍、按照能使所获溶剂脱蜡油的凝固点达到 -29℃的条件进行溶剂脱蜡，得到实施例 1 的润
滑油基础油 (D16)。予以说明，此时的脱蜡温度为 -32℃。

【0657】[实施例 17]
【0658】将 USY 型沸石 800g 和氧化铝粘合剂 200g 进行混合混炼，成型为直径 1/16 英寸
（约 1.6mm）、高 6mm 的圆柱状。将得到的成型体在 450℃下焙烧 3 小时，得到载体。使该载
体浸渍按铂换算值计为载体 0.8 质量％的二氯四胺合铂 (II) 的水溶液，在 120℃下干
燥 3 小时，在 400℃下焙烧 1 小时，由此获得目的催化剂。

【0659】接着，将得到的催化剂 200ml 填充到固定型流通式反应器中，使用该反应器，进行
含有链烷烃烃类的原料油的加氢裂化 / 加氢异构化。在本工序中，使用 WAX2 作为原料油。
另外，将加氢裂化的条件设定为，氢压为 3MPa，反应温度为 350℃，LHSV 为 2.0hr⁻¹，得到相对
于原料，沸点 380℃以下的馏分（裂解产物）为 30 质量％（裂解率 30％）的裂化 / 异构化
生成油。

【0660】接着，将上述加氢裂化所得的裂解产物通过减压蒸馏，得到 100℃时的运动粘度为
4mm²/s 的润滑油馏分。对该润滑油馏分，使用丁酮 - 甲苯混合溶剂，在溶剂 / 油比为 4 倍、
按照能使所获溶剂脱蜡油的凝固点达到 -25℃的条件进行溶剂脱蜡，得到实施例 2 的润
滑油基础油 (D17)。予以说明，此时的脱蜡温度为 -25℃。

【0661】[实施例 18]
【0662】在实施例 18 中，在加氢裂化催化剂的存在下，在氢分压 5MPa，平均反应温度
350℃，LHSV 1hr⁻¹ 的条件下，对 WAX3 进行加氢裂化。作为加氢裂化催化剂，将在无定形类
二氧化硅 • 氧化铝载体（二氧化硅：氧化铝 = 20:80（质量比））上负载有 3 质量％镍和 15
质量％钼的催化剂进行硫化，在此状态下使用。

【0663】然后，将上述加氢裂解所得的裂解产物通过减压蒸馏，得到 100℃时的运动粘度为
4mm²/s 的润滑油馏分。对该润滑油馏分，使用丁酮 - 甲苯混合溶剂，在溶剂 / 油比为 4 倍、
按照能使所获溶剂脱蜡油的凝固点达到 -29℃的条件进行溶剂脱蜡，得到实施例 3 的润
滑油基础油 (D18)。予以说明，此时的脱蜡温度为 -32℃。

【0664】实施例 16 ～ 18 的润滑油基础油的各类型和性能评价试验结果示于表 13。另
外，作为比较例 10 ～ 12，以往的高粘度指数基础油 R10 ～ R12 的各种类型和性能评价试验
结果示于表 14。

【0665】[表 13]

【0666】
<table>
<thead>
<tr>
<th></th>
<th>实施例 16</th>
<th>实施例 17</th>
<th>实施例 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础油名称</td>
<td>D16</td>
<td>D17</td>
<td>D18</td>
</tr>
<tr>
<td>原料蜡的名称</td>
<td>WAX1</td>
<td>WAX2</td>
<td>WAX3</td>
</tr>
<tr>
<td>基础油组成 (以基础油总量为基准)</td>
<td>饱和成分</td>
<td>质量 %</td>
<td>98.6</td>
</tr>
<tr>
<td></td>
<td>芳香族成分</td>
<td>质量 %</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>极性化合物成分</td>
<td>质量 %</td>
<td>0.4</td>
</tr>
<tr>
<td>饱和成分的明细项 (以饱和成分总量为基准)</td>
<td>环状饱和成分</td>
<td>质量 %</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>非环状饱和成分</td>
<td>质量 %</td>
<td>93.9</td>
</tr>
<tr>
<td>非环状饱和成分的含量 (以基础油总量为基准)</td>
<td>直链烷烃成分</td>
<td>质量 %</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>支链烷烃成分</td>
<td>质量 %</td>
<td>92.5</td>
</tr>
<tr>
<td>RI-MS 饱和成分分析</td>
<td>1 环饱和成分</td>
<td>质量 %</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>2 环饱和成分</td>
<td>质量 %</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>2 环以上的饱和成分</td>
<td>质量 %</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>1 环饱和成分/2 环饱和成分 (质量比)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>n-d-M 环分析</td>
<td>% C1</td>
<td>92.1</td>
<td>93.3</td>
</tr>
<tr>
<td></td>
<td>% C2</td>
<td>7.9</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>% C3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>% C4</td>
<td>11.7</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>质量 ppm</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>折射率 (20°C) nD</td>
<td>1.4549</td>
<td>1.4538</td>
<td>1.4559</td>
</tr>
<tr>
<td>运动粘度 (40°C) mm²/s</td>
<td>16.3</td>
<td>16.7</td>
<td>16.8</td>
</tr>
<tr>
<td>运动粘度 (100°C) kη100</td>
<td>3.9</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>粘度指数</td>
<td>140</td>
<td>131</td>
<td>140</td>
</tr>
<tr>
<td>n = 0.002 × kη100</td>
<td>1.4474</td>
<td>1.4464</td>
<td>1.4448</td>
</tr>
<tr>
<td>密度 (25°C) g/cm³</td>
<td>0.819</td>
<td>0.816</td>
<td>0.820</td>
</tr>
<tr>
<td>凝固点</td>
<td>−29</td>
<td>−29</td>
<td>−29</td>
</tr>
<tr>
<td>流动点</td>
<td>−27.5</td>
<td>−20</td>
<td>−25</td>
</tr>
<tr>
<td>硬值</td>
<td>0.63</td>
<td>0.21</td>
<td>1.35</td>
</tr>
<tr>
<td>苯胺点</td>
<td>119</td>
<td>121</td>
<td>118</td>
</tr>
<tr>
<td>蒸馏性状</td>
<td>IBP [°C]</td>
<td>347</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>T10 [°C]</td>
<td>391</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>T50 [°C]</td>
<td>437</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>T90 [°C]</td>
<td>463</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>FBP [°C]</td>
<td>487</td>
<td>497</td>
</tr>
<tr>
<td>CCS 粘度 (−35°C) mPa·s</td>
<td>1820</td>
<td>1970</td>
<td>1790</td>
</tr>
<tr>
<td>NOACK 蒸发量 (250°C, 1 小时)</td>
<td>质量 %</td>
<td>12.4</td>
<td>14.9</td>
</tr>
<tr>
<td>RBOT 寿命 (150°C) 分钟</td>
<td>380</td>
<td>398</td>
<td>390</td>
</tr>
<tr>
<td>残留金属成分</td>
<td>Al</td>
<td>质量 ppm</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Mo</td>
<td>质量 ppm</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>质量 ppm</td>
<td><1</td>
</tr>
</tbody>
</table>

[0667] [表 14]
[0668]
<table>
<thead>
<tr>
<th>基础油名称</th>
<th>比较例 10</th>
<th>比较例 11</th>
<th>比较例 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料油的名称</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>饱和成分的质量%</td>
<td>94.8</td>
<td>94.8</td>
<td>99.9</td>
</tr>
<tr>
<td>芳香族成分的质量%</td>
<td>5.2</td>
<td>5.0</td>
<td>0.1</td>
</tr>
<tr>
<td>极性化合物成分的质量%</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>环状饱和成分的质量%</td>
<td>46.8</td>
<td>42.3</td>
<td>46.0</td>
</tr>
<tr>
<td>非环状饱和成分的质量%</td>
<td>53.2</td>
<td>57.7</td>
<td>54.0</td>
</tr>
<tr>
<td>直链烷烃成分的质量%</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>支链烷烃成分的质量%</td>
<td>50.3</td>
<td>54.6</td>
<td>53.8</td>
</tr>
<tr>
<td>1环饱和成分的质量%</td>
<td>16.9</td>
<td>16.1</td>
<td>20.1</td>
</tr>
<tr>
<td>2环饱和成分的质量%</td>
<td>13.3</td>
<td>12.2</td>
<td>14.2</td>
</tr>
<tr>
<td>2环以上的饱和成分的质量%</td>
<td>29.9</td>
<td>26.2</td>
<td>25.9</td>
</tr>
<tr>
<td>摩尔比</td>
<td>0.6</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>n-d-M环分析</td>
<td>78.0</td>
<td>78.1</td>
<td>80.7</td>
</tr>
<tr>
<td>% C&C</td>
<td>20.7</td>
<td>20.6</td>
<td>19.3</td>
</tr>
<tr>
<td>% C</td>
<td>1.3</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>% C/C</td>
<td>3.8</td>
<td>3.8</td>
<td>4.2</td>
</tr>
<tr>
<td>硫成分</td>
<td>2</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>氯成分</td>
<td>4</td>
<td>3</td>
<td><3</td>
</tr>
<tr>
<td>折射率(20℃)n</td>
<td>1.4640</td>
<td>1.4633</td>
<td>1.4625</td>
</tr>
<tr>
<td>运动粘度(40℃)</td>
<td>18.7</td>
<td>18.1</td>
<td>1.9</td>
</tr>
<tr>
<td>运动粘度(100℃)</td>
<td>119</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>粘度指数</td>
<td>1.456</td>
<td>1.454</td>
<td>1.454</td>
</tr>
<tr>
<td>密度(25℃)</td>
<td>0.839</td>
<td>0.836</td>
<td>0.835</td>
</tr>
<tr>
<td>凝固点</td>
<td>-24</td>
<td>-29</td>
<td>-20</td>
</tr>
<tr>
<td>流动点</td>
<td>-22.5</td>
<td>-27.5</td>
<td>-17.5</td>
</tr>
<tr>
<td>碘值</td>
<td>2.78</td>
<td>2.65</td>
<td>2.55</td>
</tr>
<tr>
<td>苯胺点</td>
<td>112</td>
<td>112</td>
<td>116</td>
</tr>
<tr>
<td>蒸馏特性</td>
<td>325</td>
<td>309</td>
<td>314</td>
</tr>
<tr>
<td>IBT(℃)</td>
<td>383</td>
<td>385</td>
<td>393</td>
</tr>
<tr>
<td>T10(℃)</td>
<td>420</td>
<td>425</td>
<td>426</td>
</tr>
<tr>
<td>T50(℃)</td>
<td>458</td>
<td>449</td>
<td>459</td>
</tr>
<tr>
<td>T90(℃)</td>
<td>495</td>
<td>489</td>
<td>505</td>
</tr>
<tr>
<td>CCS粘度(-35℃)</td>
<td>3500</td>
<td>2900</td>
<td>3000</td>
</tr>
<tr>
<td>NOACK蒸发量(250℃,1小时)</td>
<td>16.1</td>
<td>16.5</td>
<td>14.5</td>
</tr>
<tr>
<td>RBOT寿命(150℃)</td>
<td>300</td>
<td>330</td>
<td>340</td>
</tr>
<tr>
<td>残留重金属成分</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>A</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mo</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Ni</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

从表13,14所示的结果看出，实施例16～18的润滑油基础油与比较例10～12的润滑油基础油相比，其粘度指数高，低温粘度特性（在-35℃时的CCS粘度）优良。另外，通过表13,14所示的RBT寿命的实施例16～18与比较例10～12的比较看出，实施例16～
18 的润滑油基础油的寿命更长。在热氧化安定性和抗氧化剂的添加效果方面更优良。

[0670] 实施例 20 ～ 22. 比较例 13 ～ 15]

[0671] 在实施例 20 ～ 22 和比较例 13 ～ 15 中，分别使用含有润滑油基础油 D16 ～ D18，
R10 ～ R12，以及以下所示的添加剂的 0W-20 发动机用组合添加剂 (0W-20 添加剂 PKG)，
配制具有表 15、16 所示组成的润滑油组合物。得到的润滑油组合物的各种性质一并示于表
15、16。

[0672] (抗凝剂)

[0673] A1-1 : 聚甲基丙烯酸酯

[0674] (粘度指数提高剂)

[0675] B1-1 : 分散型聚甲基丙烯酸酯

[0676] (金属类清净剂)

[0677] C1-1 : 硫酸钙

[0678] (分散剂)

[0679] D1-1 : 硼酸酯亚胺和硼酸改性的烯琥珀酰亚胺

[0680] (抗磨剂)

[0681] E1-1 : 仲烷基型二硫代磷酸锌

[0682] (抗氧化剂)

[0683] F1-1 : 烷基二苯胺和钼 - 胺配合物。

[0684] [表 15]

[0685]

<table>
<thead>
<tr>
<th>基础油的组成</th>
<th>实施例 20</th>
<th>实施例 21</th>
<th>实施例 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>[质量 %]</td>
<td>D16</td>
<td>D17</td>
<td>D18</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>润滑油组合物的组成</td>
<td>基础油</td>
<td>0W-20 添加剂 PKG</td>
<td></td>
</tr>
<tr>
<td>[质量 %]</td>
<td>余量</td>
<td>18.0</td>
<td>余量</td>
</tr>
<tr>
<td></td>
<td>余量</td>
<td>18.0</td>
<td>余量</td>
</tr>
</tbody>
</table>

100℃时的运动粘度 [mm²/s]	8.9	8.8	8.7
粘度指数	220	218	225
凝固点 [℃]	-45	-42.5	-45
-40℃时的 MRV 粘度 [mPa·s]	11000	12000	10600
-40℃时的屈服应力 [Pa]	0	0	0

[0686] [表 16]

[0687]
从表 15、16 所示的结果看出，实施例 20 ～ 22 的润滑油组合物，其粘度指数高，
-40℃时的 MRR 粘度低，屈服应力为 0Pa，因此，低温粘度特性格外优良。

[0689] [润滑油基础油的制备]

[0690] [基础油 D19]

在加氢裂化催化剂的存在下，在氢分压 5MPa、平均反应温度 350℃、LHSV 1hr⁻¹ 的
条件下，对该表 1 所示的 WAX1 进行加氢裂化。作为加氢裂化催化剂，将在无定形类二氧化
硅 氧化铝载体（二氧化硅：氧化铝 = 20:80 (质量比)）上负载有 3 质量%镍和 15 质量% 钼的催化剂进行硫化，在此状态下使用。

然后，将上述加氢裂解所得的裂解产物通过常压蒸馏，得到 26 体积%的润滑油馏
分。对该润滑油馏分，使用丁酮-甲苯混合溶剂，在溶剂/油比为 4 倍、过滤温度 -25℃的条
件下进行溶剂脱蜡，得到目的润滑油基础油（以下称为“基础油 D19”）。基础油 D19 的各种
性状和性能评价试验结果示于表 17。另外，对于以往的高粘度指数基础油的基础油 R4，其
各种性状和性能评价试验结果一并示于表 17。
<table>
<thead>
<tr>
<th>基础油名称</th>
<th>D19</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料的名称</td>
<td>WAX1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>基础油组成</th>
<th>饱和成分</th>
<th>质量%</th>
<th>98.5</th>
<th>94.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>芳香族成分</td>
<td>质量%</td>
<td>1.0</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>极性化合物成分</td>
<td>质量%</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>饱和成分的细列项</th>
<th>环状饱和成分</th>
<th>质量%</th>
<th>4.8</th>
<th>46.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>非环状饱和成分</td>
<td>质量%</td>
<td>95.2</td>
<td>53.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>非环状饱和成分的细列项</th>
<th>直链烷烃成分</th>
<th>质量%</th>
<th>0.1</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>支链烷烃成分</td>
<td>质量%</td>
<td>98.4</td>
<td>50.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EI-MS 饱和成分分析</th>
<th>1环饱和成分</th>
<th>质量%</th>
<th>1.8</th>
<th>16.9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2环饱和成分</td>
<td>质量%</td>
<td>1.7</td>
<td>13.3</td>
</tr>
<tr>
<td>环状饱和成分的细列项</td>
<td>2环以上的饱和成分</td>
<td>质量%</td>
<td>3.0</td>
<td>29.9</td>
</tr>
<tr>
<td></td>
<td>1环饱和成分/2环饱和成分</td>
<td>质量%</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>1环饱和成分/2环以上的饱和成分</td>
<td>质量%</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n-d-M 环分析</th>
<th>Cn</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92.8</td>
<td>78.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td>20.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.85</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>硫成分</th>
<th>质量 ppm</th>
<th><1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>氮成分</td>
<td>质量 ppm</td>
<td><3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>折射率 (20°C) nD</th>
<th>1.4555</th>
<th>1.4640</th>
</tr>
</thead>
<tbody>
<tr>
<td>运动粘度 (40°C)</td>
<td>mm²/s</td>
<td>16.9</td>
</tr>
<tr>
<td>运动粘度 (100°C)</td>
<td>mm²/s</td>
<td>4.0</td>
</tr>
<tr>
<td>粘度指数</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>nD 0.002 x kv(100)</td>
<td>1.4475</td>
<td>1.4560</td>
</tr>
<tr>
<td>密度 (15°C)</td>
<td>g/cm³</td>
<td>0.820</td>
</tr>
<tr>
<td>流动点</td>
<td>°C</td>
<td>-25</td>
</tr>
<tr>
<td>硫值</td>
<td></td>
<td>0.61</td>
</tr>
</tbody>
</table>

| 苯胺点 | °C | 120 | 112 |

<table>
<thead>
<tr>
<th>蒸馏性状</th>
<th>IBP(℃)</th>
<th>°C</th>
<th>363</th>
<th>325</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T10(℃)</td>
<td>°C</td>
<td>390</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>T50(℃)</td>
<td>°C</td>
<td>435</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>T90(℃)</td>
<td>°C</td>
<td>475</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>FBP(℃)</td>
<td>°C</td>
<td>502</td>
<td>495</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCS 粘度 (−35°C)</th>
<th>mPa·s</th>
<th>1980</th>
<th>3500</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOACK 蒸发量 (250°C, 1 小时)</td>
<td>质量%</td>
<td>13.2</td>
<td>16.1</td>
</tr>
<tr>
<td>RBOT 寿命 (150°C)</td>
<td>分钟</td>
<td>392</td>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>残留金属成分</th>
<th>A1</th>
<th>质量 ppm</th>
<th><1</th>
<th><1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mo</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

[0695] 实施例 23 ～ 25，比较例 16.17
[0696] 在实施例 23 ～ 25 中，使用基础油 D19、以下所示的添加剂，配制具有表 18 所示组成的润滑油组合物。另外，在比较例 16.17 中，使用基础油 R4、以下所示的添加剂，配制具有表 18 所示组成的润滑油组合物。
[0697] （磷类抗磨剂）
[0698] A2-1: 二烷基二硫代磷酸锌（磷含量: 7.2 质量%、烷基: 仲丁基或仲己基的混合物）
[0699] A2-2: 单及二烷基磷酸锌（磷含量: 10.0 质量%、烷基: 伯辛基）
（无灰抗氧化剂）

B2-1:烷基二苯胺（烷基:丁基或者辛基）

B2-2:4,4’-亚甲基双(2,6-二-叔丁基苯酚)

（无灰分散剂）

C2-1:聚丁烯琥珀酰亚胺（聚丁烯基的数均分子量:1300,氮含量:1.8质量％）

C2-2:硼酸改性聚丁烯琥珀酰亚胺（聚丁烯基的数均分子量:1300,氮含量:1.8质量％,硼含量:0.77质量％）

（金属类清净剂）

D2-1:水杨酸钙

D2-2:磺酸钙

（（A）成分以外的抗磨剂）

E2-1:二硫代氨基甲酸铵

（摩擦调整剂）

F2-1:甘油单油酸酯

（防腐剂）

G2-1:苯并三唑

（其他）

H2-1:含有粘度指数提高剂、抗凝剂、消泡剂等的组合

（硫酸灰分的测定）

对实施例23～25和比较例16、17的润滑油组合物，按照JIS K2272-1985测定硫酸灰分。所得结果示于表18。

（NOx吸收试验）

采用按照日本摩擦学(tribology)会议预稿集1992、10、465的方法，测定当向试验油中吹入含NOx的气体以使其强制劣化时的碱值（盐酸法）和酸值的经时变化。本试验中的试验温度为140℃，含NOx的气体中的NOx浓度为1200ppm，O2浓度为85％。从吹入NOx气体开始96小时后的酸值增加量示于表18。表中所见，酸值增加量越小，在如同在内燃机中使用那样有NOx存在下，氧化寿命越长。
<table>
<thead>
<tr>
<th>组成（质量％）</th>
<th>实施例 23</th>
<th>实施例 24</th>
<th>实施例 25</th>
<th>比较例 16</th>
<th>比较例 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础油 D19</td>
<td>余量</td>
<td>余量</td>
<td>余量</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>基础油 R4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>余量</td>
<td>余量</td>
</tr>
<tr>
<td>A2-1 (磷元素价正)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>-</td>
<td>(0.10)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>A2-2 (磷元素价正)</td>
<td>-</td>
<td>-</td>
<td>(0.05)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B2-1</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>B2-2</td>
<td>1.0</td>
<td>-</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>C2-1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>C2-2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>D2-1 (钙元素价正)</td>
<td>(0.2)</td>
<td>-</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>D2-2 (钙元素价正)</td>
<td>-</td>
<td>(0.2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E2-1</td>
<td>0.07</td>
<td>0.07</td>
<td>-</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>F2-1</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G2-1</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>H2-1</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>硫酸灰分（质量％）</td>
<td>0.88</td>
<td>0.88</td>
<td>0.78</td>
<td>1.02</td>
<td>0.89</td>
</tr>
<tr>
<td>亚碱增加量（mgKOH/g）</td>
<td>4.4</td>
<td>4.4</td>
<td>2.9</td>
<td>5.0</td>
<td>7.7</td>
</tr>
</tbody>
</table>

[0723] 如表 18 所示，实施例 23～25 的润滑油脂组合物的硫酸灰分和亚碱增加量均显示出较小的值。从上述结果可知，实施例 23～25 的润滑油脂组合物的抗氧化寿命足够长，而且可以长期充分维持排气后处理装置的性能。

[0724] 另一方面，比较例 16、17 的润滑油脂组合物，与实施例 23～25 的润滑油脂组合物相比，其硫酸灰分和亚碱增加量均显示出较大的值。对于比较例 16 的润滑油脂组合物来说，其硫酸灰分较多，而且，尽管其中具有抗氧化功能的二硫代磷酸锌（A2-1）的含量比实施例 23、24 的多，但其亚碱增加量却较大，因此认为，比较例 16 不能获得充分的抗氧化性。另外，对于二硫代磷酸锌（A2-1）的含量与实施例 23、24 的润滑油脂组合物相同的比较例 17 的润滑油脂组合物来说，虽然硫酸灰分为等程度，但亚碱增加量较大，因此认为，比较例 17 不能获得充分的抗氧化性。

[0725] [实施例 26～29、比较例 18～21]

[0726] 在实施例 26～29 中，使用基础油 D19，以及以下所示的添加剂，配制具有表 19 所示组成的润滑油脂组合物。另外，在比较例 18～21 中，使用基础油 R4，以及以下所示的添加剂，配制具有表 20 所示组成的润滑油脂组合物。

[0727] （不含硫作为构成元素的无灰抗氧化剂）

[0728] A3-1：烷基二苯胺（烷基：丁基或者辛基）

[0729] A3-2：4,4’-亚甲基双（2,6-二-叔丁基苯酚）

[0730] （含有硫作为构成元素的无灰抗氧化剂和有机铝化合物）

[0731] B3-1：无灰二硫代氨基甲酸酯（硫含量:29.4 质量％）

[0732] B3-2：钼的双三烷基胺配合物（钼含量：10.0 质量％）
[0733] （抗磨剂）
[0734] C3-1：烷基二硫代磷酸锌（磷含量：7.2 质量%，烷基：仲丁基或者仲己基的混合物）
[0735] C3-2：烷基磷酸锌（磷含量：10.0 质量%，烷基：辛基）
[0736] （无灰分散剂）
[0737] D3-1：聚丁烯琥珀酰亚胺（聚丁烯基的数均分子量：1300,氮含量：1.8 质量%）
[0738] D3-2：烷酸改性聚丁烯琥珀酰亚胺（聚丁烯基的数均分子量：1300,氮含量：1.8 质量%、氮含量：0.77 质量%）
[0739] （金属类清净剂）
[0740] E3-1：水杨酸钙
[0741] E3-2：磺酸钙
[0742] （防腐剂）
[0743] F3-1：苯并三唑
[0744] （消泡剂）
[0745] G3-1：含有粘度指数提高剂、抗凝剂、消泡剂等的组合
[0746] ［NOx 吸收试验］
[0747] 采用按照日本摩擦学会会议预稿集 1992.10.465 的方法，测定当向试验油中吹入含 NOx 的气体以使其强制劣化时的碱值（盐酸法）以及酸值的经时变化。本试验的试验温度为 140℃,含 NOx 的气体中的 NOx 浓度为 1200ppm, O2 浓度为 85%。从吹入 NOx 气体开始 168 小时后的运动粘度比（将 168 小时后的 100℃时的运动粘度除以新油的 100℃时的运动粘度所得的值）以及酸值增加显示于表 19,20。表中示出,运动粘度比越小,并且,酸值增加量越小,则在如同在内燃机中使用那样有 NOx 存在下,氧化寿命越长。
[0748] ［表 19］
[0749]
表 20

<table>
<thead>
<tr>
<th>组成（质量％）</th>
<th>实施例26</th>
<th>实施例27</th>
<th>实施例28</th>
<th>实施例29</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础油 D19</td>
<td>余量</td>
<td>余量</td>
<td>余量</td>
<td>余量</td>
</tr>
<tr>
<td>基础油 R4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A3-1</td>
<td>-</td>
<td>1.5</td>
<td>1.5</td>
<td>-</td>
</tr>
<tr>
<td>A3-2</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>B3-1（钼元素换算值）</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>-</td>
</tr>
<tr>
<td>B3-2（钼元素换算值）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.02)</td>
</tr>
<tr>
<td>C3-1（磷元素换算值）</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>-</td>
</tr>
<tr>
<td>C3-2（磷元素换算值）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.10)</td>
</tr>
<tr>
<td>D3-1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>D3-2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>E3-1（钙元素换算值）</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>-</td>
<td>(0.2)</td>
</tr>
<tr>
<td>E3-2（钙元素换算值）</td>
<td>-</td>
<td>-</td>
<td>(0.2)</td>
<td>-</td>
</tr>
<tr>
<td>F3-1</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G3-1</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
<td>6.4</td>
</tr>
</tbody>
</table>

100℃时的运动粘度（mm²/s）

<table>
<thead>
<tr>
<th></th>
<th>比较例18</th>
<th>比较例19</th>
<th>比较例20</th>
<th>比较例21</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘度指数</td>
<td>241</td>
<td>241</td>
<td>241</td>
<td>242</td>
</tr>
<tr>
<td>运动粘度比</td>
<td>1.4</td>
<td>1.6</td>
<td>1.7</td>
<td>1.3</td>
</tr>
<tr>
<td>酸值增加量（mgKOH/g）</td>
<td>9.3</td>
<td>10.5</td>
<td>11.1</td>
<td>7.3</td>
</tr>
</tbody>
</table>

[0750] 如表19所示，实施例26～29的润滑油脂组合物在NOx吸收试验中的运动粘度比以
及酸值增加量均显示出较小的值，由此看出，其长效性优良。

[0753] 另一方面，比较例 18 ～ 21 的润滑组合物与实施例 26 ～ 29 的润滑组合物相比，在 NOx 吸收试验中的运动粘度比以及酸化增加量均显示出较大的值。特别地，当使用比较例 20、21 的润滑组合物时，在 NOx 存在下的劣化显著。因此，从吹入 NOx 气体开始，在经过 168 小时之前就中止了试验。

[0754] [实施例 30、比较例 22]

[0755] 在实施例 30 中，使用基础油 D19、以及以下所示的添加剂，配制具有表 21 所示组成的润滑组合物。另外，在比较例 22 中，使用基础油 R4、以及以下所示的添加剂，配制具有表 21 所示组成的润滑组合物。

[0756] (无灰抗氧化剂)

[0757] A4-1：烷基三苯胺（烷基：丁基或者辛基）

[0758] A4-2：4，4’-亚甲基双 (2，6- 二 - 叔丁基苯酚）

[0759] (无灰分散剂）

[0760] B4-1：聚丁烯琥珀酸酯胺（聚丁烯基的数均分子量：1300，氮含量：1.8 质量％）

[0761] B4-2：硼酸改性聚丁烯琥珀酸酯胺（聚丁烯基的数均分子量：1300，氮含量：1.8 质量％，硼含量：0.77 质量％）

[0762] (磷 - 硫类抗磨剂)

[0763] C4-1：二烷基二硫化磷酸酯（磷酸含量：7.2 质量％，烷基：仲丁基或者仲己基的混合物）

[0764] (金属类清净剂)

[0765] D4-1：磺酸钙

[0766] (硫类抗磨剂)

[0767] E4-1：二硫化氨基甲酸钼

[0768] (摩擦调整剂）

[0769] F4-1：甘油单油酸酯

[0770] (消泡剂）

[0771] G4-1：含有粘度指数提高剂、抗凝剂、消泡剂等的组合

[0772] [NOx 吸收试验]

[0773] 采用按照日本摩擦学会顶稿集 1992，10，465 的方法，测定当向试验油中吹入含 NOx 的气体以使其强制劣化时的不溶成分的生成量的经时变化。本试验的试验温度为 140℃，含 NOx 的气体中的 NOx 浓度为 1200ppm，O2 浓度为 85%。从吹入 NOx 气体开始 168 小时后的不溶成分的生成量显示于表 21。

[0774] [表 21]

[0775]
<table>
<thead>
<tr>
<th>组成（质量%）</th>
<th>实施例 30</th>
<th>比较例 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础油 D19</td>
<td>余量</td>
<td>-</td>
</tr>
<tr>
<td>基础油 R4</td>
<td>-</td>
<td>余量</td>
</tr>
<tr>
<td>A4-1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>A4-2</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>B4-1</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>B4-2</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>C4-1（磷元素换算值）</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>D4-1（钙元素换算值）</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>B4-1</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>F4-1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>G4-1</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>不溶成分的生成量（质量%）</td>
<td>0.04</td>
<td>3.53</td>
</tr>
</tbody>
</table>

[0776] 如表 21 所示，实施例 30 的润滑剂组合物，其 NOx 吸收试验中的不溶成分的生成量少，在丙烯酸用四冲程内燃机等用途中，具有充分的热・氧化安定性。

[0777] [润滑剂基础油的制造]

[0778] 在加氢裂化催化剂的存在下，在液化气 5MPa、平均反应温度 350℃、LHSV 1hr⁻¹ 的条件下，对表 1 所示的 WAX1 进行加氢裂化。作为加氢裂化催化剂，将在无定形类二氧化硅・氧化铝载体（氧化硅：氧化铝 = 20:80（质量比））上负载有 3% 硫酸和 15% 硫酸的催化剂进行硫化，在此状态下使用。

[0779] 然后，将上述加氢裂化所得的裂解产物通过减压蒸馏，得到 26 体积%的润滑剂馏分。对该润滑剂馏分，使用丁酮 - 甲苯混合液，将溶剂 / 油比为 4 倍、过滤温度 -25℃的条件下进行溶剂脱蜡，得到粘度等级不同的润滑剂基础油（基础油 D20、D21 和 D22）。各润滑剂基础油的各种性状和性能评价试验结果示于表 22。

[0780] [表 22]

[0781]
<table>
<thead>
<tr>
<th>项目</th>
<th>D20</th>
<th>D21</th>
<th>D22</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础油名称</td>
<td>WAX1</td>
<td>WAX1</td>
<td>WAX1</td>
</tr>
<tr>
<td>原料油的名称</td>
<td>饱和成分</td>
<td>质量 %</td>
<td>98.3</td>
</tr>
<tr>
<td></td>
<td>芳烃质成分</td>
<td>质量 %</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>极性化合物成分</td>
<td>质量 %</td>
<td>0.5</td>
</tr>
<tr>
<td>基础油组成</td>
<td>环状饱和成分</td>
<td>质量 %</td>
<td>3.5</td>
</tr>
<tr>
<td>(以基础油总量为基准)</td>
<td>非环状饱和成分</td>
<td>质量 %</td>
<td>96.5</td>
</tr>
<tr>
<td>饱和和成分的细致项</td>
<td>直链烷烃成分</td>
<td>质量 %</td>
<td>0.1</td>
</tr>
<tr>
<td>(以饱和和成分总量为基准)</td>
<td>支链烷烃成分</td>
<td>质量 %</td>
<td>98.2</td>
</tr>
<tr>
<td>非环状饱和成分的含量</td>
<td>环状饱和成分/2环饱和成分</td>
<td>质量 %</td>
<td>0.9</td>
</tr>
<tr>
<td>1环饱和成分</td>
<td>2环饱和成分</td>
<td>质量 %</td>
<td>1.2</td>
</tr>
<tr>
<td>2环以上的饱和成分</td>
<td>3环以上的饱和成分</td>
<td>质量 %</td>
<td>2.6</td>
</tr>
<tr>
<td>1环饱和成分/2环饱和成分 (质量比)</td>
<td>0.8</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>1环饱和成分/2环以上的饱和成分 (质量比)</td>
<td>0.3</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>n-d-M环分析</td>
<td>%C</td>
<td>91.4</td>
<td>92.8</td>
</tr>
<tr>
<td></td>
<td>%Cn</td>
<td>8.5</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>%Cn / %C</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>%Cn / %C</td>
<td>10.75</td>
<td>13.85</td>
</tr>
<tr>
<td>硫成分</td>
<td>质量 ppm</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>氮成分</td>
<td>质量 ppm</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>折射率 (20℃)</td>
<td>1.4498</td>
<td>1.4555</td>
<td>1.4610</td>
</tr>
<tr>
<td>运动粘度 (40℃)</td>
<td>mm²/s</td>
<td>10.3</td>
<td>16.9</td>
</tr>
<tr>
<td>运动粘度 (100℃)</td>
<td>mm²/s</td>
<td>2.9</td>
<td>4.0</td>
</tr>
<tr>
<td>粘度指数</td>
<td>125</td>
<td>140</td>
<td>150</td>
</tr>
<tr>
<td>νn-0.002 × kv100</td>
<td>1.4440</td>
<td>1.4475</td>
<td>1.4478</td>
</tr>
<tr>
<td>密度 (15℃)</td>
<td>g/cm³</td>
<td>0.810</td>
<td>0.820</td>
</tr>
<tr>
<td>流动点</td>
<td>°C</td>
<td>-25</td>
<td>-25</td>
</tr>
<tr>
<td>硫值</td>
<td>0.79</td>
<td>0.61</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>120</td>
<td>124</td>
</tr>
<tr>
<td>蒸馏性状</td>
<td>IBP[℃]</td>
<td>323</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>T10[℃]</td>
<td>355</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>T50[℃]</td>
<td>382</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>T90[℃]</td>
<td>425</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>FBP[℃]</td>
<td>470</td>
<td>502</td>
</tr>
<tr>
<td>CCS粘度 (−35℃)</td>
<td>mPa·s</td>
<td><1000</td>
<td>1980</td>
</tr>
<tr>
<td>NOACK蒸发量 (250℃, 1小时)</td>
<td>质量 %</td>
<td>35.3</td>
<td>13.2</td>
</tr>
<tr>
<td>RBOT寿命 (150℃)</td>
<td>分钟</td>
<td>347</td>
<td>392</td>
</tr>
<tr>
<td>残留金属成分</td>
<td>Al</td>
<td>质量 ppm</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Mo</td>
<td>质量 ppm</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>质量 ppm</td>
<td><1</td>
</tr>
</tbody>
</table>

[0782] 在实施例 31 ～ 33 中，比较例 24 ～ 26：自动变速器用润滑油组合物的配制。在实施例 31 ～ 33 中，使用上述基础油 D20、D21、以及下述的基础油 R13 和添加剂 A5-1、A5-2、B5-1、C5-1，配制具有表 23 所示组成的润滑油组合物。另外，在比较例 24 ～ 26 中，使用上述表 7 所示基础油 R1 和上述表 8 所示基础油 R4、以及下述的基础油 R13 和添加剂 R24 ～ 26 中，使用上述表 7 所示基础油 R1 和上述表 8 所示基础油 R4、以及下述的基础油 R13 和添加剂

89
剂 A5-1, A5-2, B5-1, C5-1, 配制具有表 24 所示组成的润滑油组合物。得到的润滑油组合物在 40℃和 100℃时的运动粘度、粘度指数以及磷含量示于表 23, 24。

[0784]（基础油）

[0785] 基础油 R13: 链烯烃类溶剂精制基础油（饱和成分: 60.1 质量％，芳香族成分: 35.7 质量％，树脂成分: 4.2 质量％，硫成分: 0.51 质量％，100℃时的运动粘度: 32mm²/s，粘度指数: 95）

[0786]（粘度指数提高剂）

[0787] A5-1: 非分散型聚甲基丙烯酸酯（以通式 (18) 中的 R₆₄ 为甲基、碳数 12 ~ 15 的直链烷基的单体为主成分的共聚物，聚合份子量: 25,000）

[0788] A5-2: 分散型聚甲基丙烯酸酯（以通式 (18) 中的 R₆₄ 为甲基、碳数 12, 14, 16, 18 的直链烷基的单体为主成分，含有通式 (55) 或者 (56) 表示的含氢单体的共聚物，聚合份子量: 40,000）

[0789]（含磷化合物）

[0790] B5-1: 亚磷酸与亚磷酸酯的混合物

[0791]（组合添加剂）

[0792] C5-1: 组合添加剂（向润滑油组合物中的添加量: 12.5 质量％，在润滑油组合物中，香分为分散剂: 4.0 质量％，碱土类金属磷酸盐: 0.01 质量％（碱土类金属元素换算值），防腐剂: 0.1 质量％，抗氧化剂: 0.2 质量％，摩擦调整剂: 3.5 质量％，橡胶溶胀剂: 1.0 质量％，沉降剂: 0.003 质量％，稀释剂: 余量）。

[0793] 然后，使用实施例 31 ~ 33 和比较例 24 ~ 26 的自动变速器用润滑油组合物，进行以下的评价试验。

[0794]【低温流动性试验】

[0795] 根据 ASTM D 2983, 测定各润滑油组合物在-40℃时的 BF 粘度。所得结果示于表 23, 24 中。本试验中，BF 粘度的值越小，意味着低温流动性越优良。

[0796]【剪切安定性试验】

[0797] 根据 JASO M347-95, 在上述条件下进行超声波剪切试验，测定试验后的各润滑油组合物在 100℃时的运动粘度。所得结果示于表 23, 24。本试验中，经超声波剪切后的粘度的降低越小，在 100℃时的运动粘度越高，意味着剪切安定性越优良。

[0798]（试验条件）

[0799] 试验油量: 30ml

[0800] 超声波频率: 10kHz

[0801] 试验油温度: 40℃

[0802] 试验时间: 1 小时。

[0803]【耐磨性试验】

[0804] 根据 JPI-55-32-90, 在上述条件下进行四球试验，测定试验后的磨痕直径。所得结果示于表 23, 24。在本试验中，磨痕直径越小，意味着耐磨性越优良。

[0805]（试验条件）

[0806] 旋转数: 1800rpm

[0807] 负荷: 392N
试验油量：75℃
试验时间：1小时。

【热・氧化安定性试验】
首先，测定各润滑组合物的酸值。然后，根据JIS K 2514，用ISO-T，在165℃、144小时的条件下，使各润滑组合物强制劣化，测定其酸值，由试验前后的酸值的测定值求出酸值的增加量。所得结果示于表23、24。在本试验中，酸值的增加量越小，意味着热・氧化安定性越优良。

表23

<table>
<thead>
<tr>
<th>润滑油基础油的组成 [质量%]</th>
<th>实施例31</th>
<th>实施例32</th>
<th>实施例33</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础油 D20</td>
<td>35</td>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>基础油 D21</td>
<td>65</td>
<td>65</td>
<td>15</td>
</tr>
<tr>
<td>基础油 R13</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>润滑油基础油的运动粘度 [mm²/s]</th>
<th>实施例31</th>
<th>实施例32</th>
<th>实施例33</th>
</tr>
</thead>
<tbody>
<tr>
<td>40℃</td>
<td>14.1</td>
<td>14.1</td>
<td>14.3</td>
</tr>
<tr>
<td>100℃</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6</td>
</tr>
</tbody>
</table>

表24

<table>
<thead>
<tr>
<th>润滑油组合物的组成 [质量%]</th>
<th>实施例31</th>
<th>实施例32</th>
<th>实施例33</th>
</tr>
</thead>
<tbody>
<tr>
<td>基础油</td>
<td>余量</td>
<td>余量</td>
<td>余量</td>
</tr>
<tr>
<td>A5-1</td>
<td>6.9</td>
<td>-</td>
<td>6.5</td>
</tr>
<tr>
<td>A5-2</td>
<td>-</td>
<td>7.0</td>
<td>-</td>
</tr>
<tr>
<td>B5-1（磷元素换算值）</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>C5-1</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>润滑油组合物的运动粘度 [mm²/s]</th>
<th>实施例31</th>
<th>实施例32</th>
<th>实施例33</th>
</tr>
</thead>
<tbody>
<tr>
<td>40℃</td>
<td>25.3</td>
<td>28.8</td>
<td>25.8</td>
</tr>
<tr>
<td>100℃</td>
<td>5.8</td>
<td>6.8</td>
<td>5.8</td>
</tr>
</tbody>
</table>

低温流动性能（-40℃时的BF粘度[mPa·s]）
<table>
<thead>
<tr>
<th>实施例31</th>
<th>实施例32</th>
<th>实施例33</th>
</tr>
</thead>
<tbody>
<tr>
<td>5800</td>
<td>6800</td>
<td>7600</td>
</tr>
</tbody>
</table>

剪切安定性（100℃时的运动粘度[mm²/s]）
<table>
<thead>
<tr>
<th>实施例31</th>
<th>实施例32</th>
<th>实施例33</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>6.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

耐磨性（摩擦直径[mm]）
<table>
<thead>
<tr>
<th>实施例31</th>
<th>实施例32</th>
<th>实施例33</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.44</td>
<td>0.44</td>
<td>0.45</td>
</tr>
</tbody>
</table>

热・氧化安定性（酸值的增加量[mgKOH/g]）
<table>
<thead>
<tr>
<th>实施例31</th>
<th>实施例32</th>
<th>实施例33</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.24</td>
<td>1.26</td>
<td>1.35</td>
</tr>
<tr>
<td>润滑油基础油的组成 [质量%]</td>
<td>比较例 24</td>
<td>比较例 25</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>基础油 R13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>基础油 R1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>基础油 R4</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>润滑油基础油的运动粘度 [mm²/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40℃</td>
<td>15.5</td>
<td>15.5</td>
</tr>
<tr>
<td>100℃</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>润滑油基础油的粘度指数</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>润滑油组合物的组成 [质量%]</td>
<td>基础油</td>
<td>余量</td>
</tr>
<tr>
<td>A5-1</td>
<td>6.6</td>
<td>-</td>
</tr>
<tr>
<td>A5-2</td>
<td>-</td>
<td>6.8</td>
</tr>
<tr>
<td>B5-1（磷元素换算值）</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>C5-1</td>
<td>12.5</td>
<td>12.5</td>
</tr>
<tr>
<td>润滑油组合物的运动粘度 [mm²/s]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40℃</td>
<td>27.2</td>
<td>30.8</td>
</tr>
<tr>
<td>100℃</td>
<td>5.8</td>
<td>6.8</td>
</tr>
<tr>
<td>润滑油组合物的粘度指数</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>162</td>
<td>190</td>
</tr>
<tr>
<td>低温流动性（-40℃时的BP粘度[mPa·s]）</td>
<td>10500</td>
<td>13200</td>
</tr>
<tr>
<td>剪切安定性（100℃时的运动粘度[mm²/s]）</td>
<td>5.4</td>
<td>6.3</td>
</tr>
<tr>
<td>磨损性 [摩擦直径[mm]]</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>热氧化安定性 [酸值的增加量[mgKOH/g]]</td>
<td>1.82</td>
<td>1.68</td>
</tr>
</tbody>
</table>

[0816] 实施例 34、35、比较例 27、28：手动变速器用润滑油组合物的配制

[0817] 在实施例 34、35 中，使用上述基础油 D21、D22 和添加剂 A5-1、以及下述添加剂 A5-3、B5-2、C5-2，配制具有表 25 所示组成的润滑油组合物。另外，在比较例 27、28 中，使用上述表 8 所示的基础油 R4 和添加剂 A1，以及上述表 9 所示的基础油 R7 和添加剂 A5-3、B5-2、C5-2，配制具有表 25 所示组成的润滑油组合物。所得润滑油组合物在 40℃和 100℃时的运动粘度、粘度指数以及磷含量示于表 6。

[0818] （粘度指数提高剂）

[0819] A5-3：非分散型聚甲基丙烯酸酯（以通式（5）中的 R 为甲基、碳数 12、14、16、18 的直链烷基的单体为基体的单体混合物的共聚物，重均分子量 :60,000）

[0820] （含磷化合物）

[0821] B5-2：二烷基二硫代磷酸酯（Pri-ZDTP 与 Sec-ZDTP 的混合物）

[0822] （组合添加剂）

[0823] C5-2：组合添加剂（向润滑油组合物中的添加量：6.0 质量% 在润滑油组合物中，碱土类金属磷酸盐：0.25 质量%（碱土类金属元素换算值）、防腐剂：0.1 质量% 抗氧化剂：0.5 质量% 摩擦调整剂：1.0 质量% 橡胶膨胀剂：0.5 质量% 消泡剂：0.001 质量%、稀释剂：余量）。

[0824] 然后，对实施例 34、35 和比较例 27、28 的手动变速器用润滑油组合物，进行与实施例 31 ～ 33 和比较例 24 ～ 26 的自动变速器用润滑油组合物同样的试验，评价低温流动性、剪切安定性和耐久性。所得结果示于表 6。

[0825] [表 25]

[0826]
<table>
<thead>
<tr>
<th>润滑油基础油的组成</th>
<th>实施例 34</th>
<th>实施例 35</th>
<th>比较例 27</th>
<th>比较例 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>[质量%]</td>
<td>基础油 D21</td>
<td>75</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>基础油 22</td>
<td>25</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>基础油 R4</td>
<td>-</td>
<td>-</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>基础油 R7</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>润滑油基础油的运动粘度</td>
<td>40℃</td>
<td>20.2</td>
<td>20.2</td>
<td>21.6</td>
</tr>
<tr>
<td>[mm²/s]</td>
<td>100℃</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>润滑油基础油的粘度指数</td>
<td></td>
<td>143</td>
<td>143</td>
<td>124</td>
</tr>
<tr>
<td>润滑油组合物的组成</td>
<td>基础油</td>
<td>余额</td>
<td>余额</td>
<td>余额</td>
</tr>
<tr>
<td>[质量%]</td>
<td>A5-1</td>
<td>4.0</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>A5-3</td>
<td></td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5-2（磷元素换算值）</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>C5-2</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>润滑油组合物的运动粘度</td>
<td>40℃</td>
<td>28.0</td>
<td>58.5</td>
<td>29.7</td>
</tr>
<tr>
<td>[mm²/s]</td>
<td>100℃</td>
<td>6.1</td>
<td>12.8</td>
<td>6.1</td>
</tr>
<tr>
<td>润滑油组合物的粘度指数</td>
<td></td>
<td>173</td>
<td>225</td>
<td>160</td>
</tr>
<tr>
<td>润滑油组合物的磷含量[质量%]</td>
<td></td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>低温流动性（-40℃时的 BF 粘度 [mPa·s]）</td>
<td>7900</td>
<td>14500</td>
<td>15200</td>
<td>41000</td>
</tr>
<tr>
<td>剪切安定性（100℃时的运动粘度 [mm²/s]）</td>
<td>5.9</td>
<td>12.0</td>
<td>5.8</td>
<td>11.5</td>
</tr>
<tr>
<td>耐磨性（磨损直径 [mm]）</td>
<td>0.37</td>
<td>0.34</td>
<td>0.44</td>
<td>0.37</td>
</tr>
</tbody>
</table>