(54) Title: SEPARATION OR EXTRACTION METHOD USING SUPERCritical FLUIDS ASSISTED BY HIGH-IntENSITY ULTRASOUND

(54) Título: PROCEDIMIENTO DE SEPARACIÓN O EXTRACCIÓN CON FLUIDOS SUPERCRÍTICOS ASISTIDOS POR ULTRASONIDOS DE ALTA INTENSIDAD

Abstract: The invention relates to a method of applying high-intensity ultrasound in order to accelerate and improve the efficiency of the mass transfer method in supercritical fluids. The inventive method comprises the contact separation of a substance containing components that can be extracted with a solvent under supercritical conditions or conditions close to the critical point. The invention also relates to a device which has been developed in order to carry out said method and which is based on the generation of an intense stationary ultrasonic field inside a standard pressurised container for supercritical fluids. The invention further relates to the use of the inventive method for the separation or extraction of natural products which can be used in, for example, the agri-food, chemical, cosmetic and pharmaceutical sectors.

[Continúa en la página siguiente]

(74) Mandatario: REPRESA SÁNCHEZ, Domingo; CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS, OFICINA DE TRANSFERENCIA DE TECNOLOGÍA, C/Serrano, 113, 28006 MADRID (ES).

Publicada: con informe de búsqueda internacional

Para códigos de dos letras y otras abreviaturas, véase la sección “Guidance Notes on Codes and Abbreviations” que aparece al principio de cada número regular de la Gaceta del PCT.
TITULO
PROCEDIMIENTO DE SEPARACIÓN O EXTRACCIÓN CON FLUIDOS SUPERCRÍTICOS ASISTIDOS POR ULTRASONIDOS DE ALTA INTENSIDAD

SECTOR DE LA TECNICA

La presente invención se refiere a un procedimiento basado en la aplicación de los ultrasonidos de alta intensidad para acelerar los procesos de separación o extracción a alta presión (por encima de unos 70 bar) y con temperaturas hasta 80°C de productos naturales utilizando CO₂ u otro disolvente en condiciones supercríticas o no, sin afectar las características y calidad del producto resultante. Dicho procedimiento presenta aplicaciones en el campo agroalimentario, químico, cosmético y farmacéutico.

ESTADO DE LA TECNICA

En la actualidad existen diversos métodos de extracción mediante fluidos supercríticos aplicados en el campo agralimentario, químico, cosmético y farmacéutico. Así se puede citar la extracción de aromas de café a partir del café tostado y molido utilizando como disolvente CO₂ en condiciones supercríticas (Pat. ES 2160490 A1) (2001), la extracción de productos naturales a partir de matrices vegetales o animales macerados en una mezcla de disolventes con una proporción del fluido supercrítico inferior al 50% (Pat. ES 2103238) (1997) y la extracción de antioxidantes naturales con bajo aroma residual a partir de plantas aromáticas (ES 2128996 A1) (1999), etc. En el ámbito europeo e internacional se encuentran un buen número de patentes relacionadas con el uso de fluidos supercríticos o cuasi críticos para distintos fines aparte de los ya mencionados, donde el dióxido de carbono es el fluido más empleado pero no el único (agua, propano, tolueno, etc.). Las más antiguas se refieren al proceso de descafeinado de café (p. Ej. US3806619, US4322444, etc.) y a la separación, extracción selectiva o incluso polimerización de componentes del petróleo y otros combustibles fósiles (p.ej. US4341619, US4465888, etc.), aunque en estos campos han aparecido también patentes recientes (EP0424579A1, EP89-310933, US4911941, US229380, DE 4041097C1, etc). También hay un número importante de patentes sobre la obtención de grasas o materiales con bajo contenido en grasas, colesterol, etc. (US4331695, US5147672,

Uno de los principales problemas de índole práctico presentes en los procesos de extracción con fluidos supercríticos es el de acelerar el proceso de extracción, minimizando los tiempos y, consecuentemente, abaratando los costes. Estos tiempos de extracción son generalmente largos (pueden llegar en algunos casos a las 24 horas) debido principalmente a que no solo la masa transferida en los procesos considerados en la extracción con fluidos supercríticos es generalmente pequeña sino también a las propias resistencias a la transferencia de materia en el proceso.

Con el fin de disminuir la resistencia a la transferencia de materia el procedimiento clásico generalmente utilizado para acelerar los procesos de separación o de extracción con fluidos normales es la aplicación de un sistema de agitación mecánica. En el caso de los fluidos supercríticos las altas presiones complican la utilización de estos sistemas. La instalación de un dispositivo en continuo movimiento en el interior de un recipiente a presión implica diseñar sistemas de cierres complejos que permitan de forma simultánea el movimiento del eje y el mantenimiento de las condiciones de presión y temperatura de trabajo, asegurando la estanqueidad del sistema. El diseño y la construcción de este tipo de sistemas es delicado y presenta serias dificultades, por lo que es necesario considerar otras alternativas. El uso de las ondas ultrasónicas de elevada intensidad en fluidos supercríticos puede representar una manera efectiva de acelerar los procesos de separación o extracción debido a efectos no lineales, tales como la presión de radiación o las corrientes acústicas, presentes durante la propagación de este tipo de ondas.

El único método publicado en la actualidad en el cuál se combinan por primera vez los fluidos supercríticos y los ultrasonidos se refiere a la generación controlada de nanopartículas y micropartículas (Pat. US 2002000681) (2002). Esta invención, sin
embargo, presenta objetivos diferentes a los expuestos en el procedimiento que aquí se propone y que se refiere a la aceleración de los procesos de separación o extracción de productos naturales mediante fluido supercrítico o cercanos al punto crítico (generalmente CO₂) en presencia de campos ultrasónicos de alta intensidad.

DESCRIPCIÓN

Descripción breve

El procedimiento de la presente invención propone la aplicación de los ultrasonidos de alta intensidad (por encima de unos 70 bar) para acelerar y mejorar la eficiencia del proceso de transferencia de materia (extracción, desolvatación, desorción, impregnación, reacción...) en fluidos supercríticos, basado en el proceso de separación por contacto de una sustancia que contiene los componentes extraíbles con un solvente en condiciones supercríticas o cercanas al punto crítico. Para la aplicación de este procedimiento se ha desarrollado un dispositivo basado en la generación de un campo ultrasónico estacionario intenso en el interior de un recipiente a presión convencional para fluidos supercríticos, y que forma parte de la presente invención. El transductor ultrasónico va instalado e integrado en el cabezal del recipiente para fluidos supercríticos frente a la cesta donde se deposita el material del que se desea extraer la sustancia en particular. La configuración interna del reactor, del transductor y de la cesta soporte del material permiten establecer un campo estacionario ultrasónico de elevada intensidad lo que favorece la generación de grandes corrientes acústicas del fluido supercrítico entre los máximos y los nodos del campo ultrasónico (Figura 1). Esto, unido a los microflujos generados a escala de la longitud de onda en las proximidades de la interfase sólido-fluido produce un notable incremento del extracto obtenido durante el mismo periodo de tiempo en presencia de los ultrasonidos de potencia.

Descripción detallada de la invención

Las ondas ultrasónicas de alta intensidad se utilizan como medio de acción con objeto de producir efectos permanentes en el medio tratado. La aplicación de los ultrasonidos de potencia en fluidos y medios multifásicos constituye un área potencial que no ha sido suficientemente explotada. Ello se debe probablemente a los problemas
relativos a la complejidad de los mecanismos básicos involucrados y a las dificultades existentes en la generación de los ultrasonidos de alta intensidad.

Los efectos permanentes producidos en el medio tratado por ondas ultrasónicas de alta intensidad se deben principalmente a una serie de mecanismos ligados a las variaciones de presión de gran amplitud, tales como: presión de radiación, corrientes acústicas, cavitations, calor, agitación, inestabilidades en las interfaces, fricción, difusión y rotura mecánica.

Fenómenos no lineales de los ultrasonidos de potencia

Presión de Radiación: Al propagarse una onda acústica a través de un medio fluido no homogéneo en presencia de obstáculos se ponen de manifiesto fuerzas que actúan sobre los obstáculos y que son conocidas con el nombre de presión de radiación. La presión de radiación está ligada a cualquier proceso ondulatorio y tiene su origen en el cambio del momento que experimenta la onda al llegar a las proximidades del obstáculo. Estas fuerzas son débiles para ondas de amplitud infinitesimal, e intensas para ondas acústicas de elevada potencia (macrosonidos) dando lugar a procesos de arrastre e interacción.

Viento Acústico: Otro efecto no lineal importante generado por la propagación de ondas ultrasónicas de elevada intensidad a través de un fluido, es la generación de corrientes en el mismo. Estas corrientes son producidas tanto dentro del haz ultrasónico como en las proximidades de los obstáculos. En este último caso la capa límite viscosa alrededor del obstáculo juega un papel importante en el desarrollo de estas corrientes. Fuera de la capa límite, en una onda progresiva, el fluido fluye desde la fuente hacia el medio por el centro del haz y en dirección opuesta en la periferia. En una onda estacionaria, una serie de vórtices cerrados se establecen entre los máximos y los nodos. El viento acústico parece ser inducido principalmente por las fuerzas de radiación establecidas por la absorción de las ondas acústicas en el medio. Otros mecanismos como la difracción y las no linealidades del campo acústico pueden contribuir también a este efecto.

La corriente generada en el interior de la capa límite cerca del obstáculo da lugar a vórtices cuyas dimensiones están determinadas por el espesor de la capa límite. La escala de los vórtices en el haz ultrasónico depende del volumen confinado dónde el haz
es generalmente mayor que la longitud de onda. La velocidad de las corrientes es menor que la velocidad de la partícula en una onda ultrasónica.

Cavitación Acústica: Se define como la formación, pulsación y colapso de cavidades de gas o vapor en un líquido generadas durante la propagación de ondas de elevada intensidad. Las ondas ultrasónicas de elevada intensidad aplicadas a un líquido, pueden producir pequeñas cavidades o burbujas debido a las fluctuaciones que producen sobre la presión hidrostática. Se consideran dos tipos de cavitación: la estable y la transitoria. La primera también denominada difusión rectificada se aplica para desgasificar ultrasónica los líquidos: las burbujas crecen de tamaño, atrapan gas disuelto en el líquido y ascienden hacia la superficie del líquido para escapar. La segunda también denominada cavitación inercial es generada por campos acústicos muy intensos produciendo un violento colapso de la burbuja capaz de producir de forma localizada temperaturas (>10.000°C) y presiones muy elevadas (5.000 atmósferas) las cuales son muy importantes en muchos efectos de los ultrasonidos de potencia. Las elevadas presiones producen erosión, dispersión y ruptura mecánica, mientras que las altas temperaturas son responsables de los efectos de sonoluminiscencia y sonoquímica.

Uso de los ultrasonidos de potencia en la mejora de la transferencia de masa en procesos de extracción o separación en fluidos supercríticos.

En el procedimiento de la presente invención se propone la aplicación de los ultrasonidos de potencia para acelerar y mejorar los procesos de extracción con fluidos supercríticos, mediante el aprovechamiento de los efectos de difusión y transferencia de masa que se producen en un fluido por la acción de los ultrasonidos de alta intensidad. Una de las principales dificultades en la aplicación de los fluidos supercríticos como solvente para la extracción es la lentitud de la cinética del proceso. Otro de los problemas del proceso es que tiene una aplicación industrial limitada debido a la dificultad de utilizar sistemas mecánicos de agitación para incrementar los coeficientes de transferencia de masa debido a las altas presiones requeridas al operar con fluidos en condiciones supercríticas.

Como acabamos de indicar la aplicación de los ultrasonidos de potencia producen efectos de arrastre, interacción con los obstáculos, corrientes y microcorrientes...
de fluido, disminución de la capa límite, etc que adecuadamente utilizados pueden conducir a mejorar los coeficientes de transferencia de masa durante la extracción.

Dispositivo experimental desarrollado

Para estudiar la efectividad del procedimiento que aquí se propone se ha diseñado y realizado un dispositivo experimental basado en la integración de un emisor de ultrasonidos de potencia en un autoclave/reactor/extractor(recipiente a presión) extractor mediante fluidos supercríticos. El transductor ultrasónico construido para una frecuencia de aproximadamente 20kHz ha sido del tipo sandwich piezoelectrónico (ver E.A. Neppiras, 1973 “The prestressed piezoelectric sandwich transducer” Ultrasonics International 73, Conference Proceedings, IPC Science and Technology Press, Guildford, Surrey, UK) que es bien conocido en las aplicaciones de potencia. El extractor o recipiente a presión para fluidos supercríticos, utilizado a modo de ejemplo, tiene un volumen total aproximado de 6 L y unas dimensiones interiores aproximadas de 140 mm de diámetro y 390 mm de alto. El dispositivo puede funcionar a contracorriente o en paralelo en relación al campo acústico. Este extractor de acero inoxidable puede trabajar a presiones de hasta 360 bar y temperaturas entre 35 y 100 ºC. Se pueden utilizar otras características de recipiente a presión en función de las necesidades de operación.

Para la excitación de los transductores se ha diseñado y construido un generador de potencia con baja impedancia de salida y una caja de adaptación de impedancias para conseguir la máxima transferencia de energía entre el generador electrónico y el fluido irradiado. Se han caracterizado los transductores simulando las condiciones reales de operación en laboratorio con ayuda de un puente de impedancias. Posteriormente se han caracterizado los prototipos en el extractor en condiciones de operación con CO₂ supercrítico a una temperatura de 55ºC y 300 bares de presión. Hasta alcanzar las condiciones de operación, el proceso de presurización y de recirculación del CO₂ en el extractor es sumamente inestable ya que la densidad del gas cambia con la presión y la temperatura hasta alcanzar valores similares a la densidad del agua. Estas variaciones afectan a la velocidad de propagación del sonido y por ende a la impedancia acústica del medio fluido. Para estabilizar la respuesta del transductor y del equipo generador de
potencia diseñado y realizado al efecto, se desarrolló un software específico de medida y control de los parámetros de la señal de excitación y del reactor.

A modo de ilustración se presenta el esquema del dispositivo realizado en la Figura 1. Para la aplicación de este procedimiento se ha desarrollado un dispositivo basado en la generación de un campo ultrasónico estacionario intenso en el interior de un recipiente a presión convencional para fluidos supercríticos, y que forma parte de la presente invención. El transductor ultrasónico va instalado e integrado en el cabezal del recipiente para fluidos supercríticos frente a la cesta donde se deposita el material del que se desea extraer la sustancia en particular. La configuración interna del reactor, del transductor y de la cesta soporte del material permiten establecer un campo estacionario ultrasónico de elevada intensidad lo que favorece la generación de grandes corrientes acústicas del fluido supercrítico entre los máximos y los nodos del campo ultrasónico (Figura 1). Esto, unido a los microflujos generados a escala de la longitud de onda en las proximidades de la interfase sólido-fluido produce un notable incremento del extracto obtenido durante el mismo periodo de tiempo en presencia de los ultrasonidos de potencia (ver Ejemplo 1).

Por otro lado, el transductor ultrasónico ha demostrado ser muy sensible a las variaciones de densidad y de caudal del CO₂ supercrítico circulante (ver ejemplo 1), lo que permite su uso simultáneamente como instrumento de medida o sensor en el recipiente a presión de las condiciones de proceso.

Por otro lado, indicar que el transductor ultrasónico tiene que ser de alto rendimiento para la generación en fluidos. En este sentido, para obtener la máxima eficiencia y para poder actuar sobre cualquier volumen de trabajo, se deberán emplear transductores del tipo placa escalonada (Pat. USA 5299175, 1994). Es posible también aplicar este procedimiento con transductores tipo sandwich o similares (Pat. Francesas 502913, 505703 y 575435), sin embargo, estos son válidos sólo para extractores de pequeño tamaño.

Finalmente, forma parte de la presente invención el uso del procedimiento descrito en esta invención para la separación ó extracción de productos naturales de utilidad en campos, entre otros, como el agroalimentario, químico, cosmético y farmacéutico.
DESCRIPCION DE LAS FIGURAS
Figura 2.- Cinéticas de extracción de aceite de almendra con y sin la aplicación de ultrasonidos. Influencia del tamaño de partícula.

EJEMPLOS DE REALIZACION DE LA INVENCION

Ejemplo 1.- Extracción de aceite de almendra

Los resultados de la experimentación presentada a modo de ejemplo se han llevado a cabo con almendra natural entera y troceada con diferentes tamaños de partícula. Los procesos de extracción de aceite con CO₂ supercrítico con y sin ultrasonidos se han realizado durante periodos de 9 horas.

En primer lugar se ha estudiado el comportamiento del transductor ultrasónico de potencia instalado dentro del extractor sometido a elevadas presiones. El transductor ultrasónico ha demostrado ser muy sensible a las variaciones de densidad y de caudal del CO₂ supercrítico circulante lo que permite su uso como instrumento de medida en el recipiente a presión. Una vez alcanzadas las condiciones de operación en el extractor la respuesta y comportamiento del transductor se mantienen estables hasta el final del proceso de extracción. En todos los casos estudiados, los resultados experimentales muestran que la aplicación de los ultrasonidos de potencia producen una notable mejora tanto en los tiempos de extracción como en la cantidad de producto final extraído por unidad de material, y que esta mejora depende del tamaño de partícula.

A modo de ejemplo, en la Figura 2 se muestran los resultados de algunas experiencias de extracción de aceite de almendra, realizadas con y sin aplicación ultrasonidos a 280 bar y 55 °C, para distintos tamaños de partícula. Se puede observar que la aplicación de ultrasonidos mejoró el rendimiento de extracción, siendo más apreciable cuanto menor es el tamaño de partícula. Para el tamaño de partícula 9-10 mm, la mejora fue de un 15%, mientras que para partículas de 3-4 mm el porcentaje se incrementó aproximadamente en un 20%.
REIVINDICACIONES

1. Procedimiento para la mejora de transferencia de materia (extracción, desolvatación, desorción, impregnación, reacción…) en fluidos supercríticos caracterizado por la aplicación simultánea de un fluido en condiciones supercríticas o cuasicríticas y un campo ultrasónico de alta intensidad generado en el interior del recipiente a presión mediante un transductor ultrasónico de potencia para uso en fluidos de alta directividad y rendimiento.

2. Procedimiento según reivindicación 1 caracterizado porque la configuración del autoclave/reactor/extractor(recipiente a presión) y la colocación del transductor permiten establecer un campo ultrasónico estacionario que favorece la generación de grandes corrientes y microflujos del fluido.

3. Procedimiento según las reivindicaciones 1 y 2 caracterizado porque para su aplicación en recipientes a presión industriales de gran volumen precisa la utilización de transductores ultrasónicos del tipo placa escalonada. (Pat.USA 5299175, 1994).

4. Procedimiento según una cualquiera de las reivindicaciones 1 a la 3 caracterizado porque el generador electrónico de excitación del transductor va dotado de un sistema de control de la señal de excitación.

5. Procedimiento según una cualquiera de las reivindicaciones 1 a la 4 caracterizado porque el emisor de ultrasonidos de potencia se utiliza además como sensor para la caracterización de las condiciones de proceso en el recipiente a presión.

6. Dispositivo que integra un emisor de ultrasonidos de potencia en un autoclave/reactor/extractor(recipiente a presión) necesario para la puesta a punto de un procedimiento según una cualquiera de las reivindicaciones 1 a la 5 caracterizado por la descripción de la Figura 1 de la presente invención.

7. Uso del procedimiento según una cualquiera de las reivindicaciones 1 a la 5 para la separación ó extracción de productos naturales de utilidad en campos, entre otros, como el agroalimentario, químico, cosmético y farmacéutico.
Figura 1
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B01J 19/10, B03B 5/02
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B01J 19/00, B03B 5/00
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPDOC, WPI, PAJ, CIBEPAT

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>US 2003/0183043 A1 (WAI et al.) 02.10.2003, the whole document.</td>
<td>1-7</td>
</tr>
<tr>
<td>P X</td>
<td>FR 2833618 A1 (EL SHAMY SAVED) 20.06.2003, the whole document.</td>
<td>1-7</td>
</tr>
<tr>
<td>P X</td>
<td>FR 2832703 A1 (E.D.F. SERVICE NATIONAL) 30.05.2003, the whole document.</td>
<td>1-7</td>
</tr>
<tr>
<td>X</td>
<td>ES 2027423 T3 (WOLFGANG STUCKART) 01.06.1992, the whole document.</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>US 2002/0000681 A1 (GUPTA et al.) 03.01.2002, the whole document.</td>
<td>1-7</td>
</tr>
<tr>
<td>X</td>
<td>EP 0770424 A1 (BASF AG) 02.05.1997, the whole document.</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document published on or after the international filing date
 "I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "Q" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search

5 November 2003 05.11.2003

Date of mailing of the international search report

24 NOV 2003 24.11.03

Name and mailing address of the ISA/
S.P.T.O.

Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2003/0183043 A1</td>
<td>02.10.2003</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>FR 2833618 A1</td>
<td>20.06.2003</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>FR 2832703 A1</td>
<td>30.05.2003</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO8809210 A</td>
<td>01.12.1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU1726288 A</td>
<td>21.12.1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO8900219 A</td>
<td>20.03.1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT8701269 A</td>
<td>15.04.1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP0362233 A</td>
<td>11.04.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1037463 A</td>
<td>29.11.1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2503528T T</td>
<td>25.10.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE38655266 G</td>
<td>21.11.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5164094 A</td>
<td>17.11.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO1715398 B</td>
<td>21.12.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA1320151 C</td>
<td>13.07.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU2067079 C1</td>
<td>27.09.1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO02093132 A2</td>
<td>21.11.2002</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 1992)
Informe de Búsqueda Internacional

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD

CIP 7 B01J 19/10, B03B 5/02

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y la CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima consultada (sistema de clasificación, seguido de los símbolos de clasificación)

CIP 7 B01J 19/00, B03B 5/00

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda.

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)

EPDOC, WPI, PAJ, CIBEPAT

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría*</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las reivindicaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>US 2003/0183043 A1 (WAI et al.) 02.10.2003, todo el documento.</td>
<td>1-7</td>
</tr>
<tr>
<td>P,X</td>
<td>FR 2833618 A1 (EL SHAMY SAYED) 20.06.2003, todo el documento.</td>
<td>1-7</td>
</tr>
<tr>
<td>P,X</td>
<td>FR 2832703 A1 (E.D.F. SERVICE NATIONAL) 30.05.2003, todo el documento.</td>
<td>1-7</td>
</tr>
<tr>
<td>X</td>
<td>ES 2027423 T3 (WOLFGANG STUCKART) 01.06.1992, todo el documento.</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>US 2002/0000681 A1 (GUPTA et al.) 03.01.2002, todo el documento.</td>
<td>1-7</td>
</tr>
<tr>
<td>X</td>
<td>EP 0770424 A1 (BASF AG) 02.05.1997, todo el documento.</td>
<td>1-7</td>
</tr>
</tbody>
</table>

☐ En la continuación del recuadro C se relacionan otros documentos ☑ Los documentos de familia de patentes se indican en el anexo

* Categorías especiales de documentos citados:
 "A" Documento que define el estado general de la técnica no considerado como particularmente relevante.
 "E" solicitud de patena o patente anterior pero publicada en fecha de presentación internacional o en fecha posterior.
 "L" documento que puede plausiblemente dudar sobre una reivindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).
 "O" documento que se refiere a una divulgación real, a una utilización, a una exposición o a cualquier otro modo.
 "P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada.

"T" documento anteriormente publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenezca al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.

"X" documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento así considerado.

"Y" documento particularmente relevante; la invención reivindicada no puede considerarse que implique una actividad inventiva cuando el documento se asocia a otro o a otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.

"A" documento que forma parte de la misma familia de patentes.

Fecha en que se ha concluido efectivamente la búsqueda internacional: 5 de noviembre de 2003

Fecha de expedición del informe de búsqueda internacional: 24 NOV 2003

Nombre y dirección postal de la Administración encargada de la búsqueda internacional: O.E.P.M.

C/Ponfriá 1, 28071 Madrid, España.

nº de teléfono: +34 91 3495304

Funcionario autorizado: Manuel Fluvià Rodríguez

Formulario PCT/ISA/210 (segundo hoja) (julio 1998)
<table>
<thead>
<tr>
<th>Documento de patente citado</th>
<th>Fecha de Publicación</th>
<th>Miembro(s) de la familia de patentes</th>
<th>Fecha de Publicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2003/0183043 A1</td>
<td>02.10.2003</td>
<td>NINGUNO</td>
<td></td>
</tr>
<tr>
<td>FR 2833618 A1</td>
<td>20.06.2003</td>
<td>NINGUNO</td>
<td></td>
</tr>
<tr>
<td>FR 2832703 A1</td>
<td>30.05.2003</td>
<td>NINGUNO</td>
<td></td>
</tr>
<tr>
<td>ES2027423T</td>
<td>17.11.1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPO292470 A</td>
<td>23.11.1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO8809210 A</td>
<td>01.12.1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU1726288 A</td>
<td>21.12.1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO0900219 A</td>
<td>20.03.1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT8701269 A</td>
<td>15.04.1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPO362233 A</td>
<td>11.04.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1037463 A</td>
<td>29.11.1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2503528T T</td>
<td>25.10.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPO292470 B</td>
<td>16.10.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE38655266 G</td>
<td>21.11.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5164094 A</td>
<td>17.11.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO1715398 B</td>
<td>21.12.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA1320151 C</td>
<td>13.07.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU2067079 C1</td>
<td>27.09.1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO02093132 A2</td>
<td>21.11.2002</td>
</tr>
</tbody>
</table>