
(12) United States Patent
Massand

USOO8381 104B2

US 8,381,104 B2
Feb. 19, 2013

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR PROVIDING
CONTEXT RECOGNITION

(75) Inventor: Deepak Massand, McLeansville, NC
(US)

(73) Assignee: Litera Technologies, LLC,
McLeansville, NC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 302 days.

(21)

(22)

Appl. No.: 12/862,308

Filed: Aug. 24, 2010

(65) Prior Publication Data

US 2011 FO2769 19 A1 Nov. 10, 2011

Related U.S. Application Data
Provisional application No. 61/331,856, filed on May
6, 2010.

(60)

Int. C.
G06F I3/00 (2006.01)
G06F 5/00 (2006.01)
U.S. Cl. .. 715/713; 715/783
Field of Classification Search 715/745 747,

715/781, 784, 779, 841, 783, 840, 713
See application file for complete search history.

(51)

(52)
(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5.990,905 A * 1 1/1999 Chew et al. 345,630
7,870,566 B2 * 1/2011 Zhang et al. T19,318

* cited by examiner

Primary Examiner — Cao “Kevin' Nguyen
(74) Attorney, Agent, or Firm — Finnegan, Henderson,
Farabow, Garrett & Dunner, L.L.P.

(57) ABSTRACT

Systems and methods are disclosed for launching a child
application to perform functions on a document created by a
parent application without the need for integration of the child
application within the parent application. In one implemen
tation, a system detects a child application available for acti
Vation by a processor of a computer and determines what
functions the child application can perform. The system then
determines that the function can operate on an open file, and
once the system receives a selection of the function, the
system launches the child application and performs the func
tion on the open file. In another implementation, the system
determines that the function may operate on a plurality of
open files, creates an interface that allows selection of one of
the plurality of open files, and launches the child application
and performs the function on a selected file.

26 Claims, 10 Drawing Sheets

(N- 805 -

WordFile1.doc Create a Document
-- 805

WordFile2.doc ? 3 New Docurrent
ExCelile1.xls T s Insert Numbering 10

E. Excelfie2.xls 33 Insert Contact ---
C p on of Insert Document D

hend 2 a cons Lorem ipsum dolor sit amet, Consectetur 3. Compare Documents Highlighted
ipsul adipiscing elit. In tincidunt, leo aposuere s omp Functions
ac, te hendrerit, nibh nisi consecteturnisi, wel
enim Consequat nisiest wel serm. Integer C As ge 410
orci, ipsum massa, congue sit amet venenatis Compare MS

c Select Documents to Compare PowerPoint
pla Compare PDF
COS

Original Document Modified Document
9 Manage PDF 1 N- 405

H WordFile:1.doc WordFile 1.doc 810
WordFile2.doc WordFile2.doc Edit PDF
ExCelile 1.xls Exceile1.xls Append
Excelle2.xls ExCelile2.xls Split

Redact
Add Signature

OK CANCEL

CRAE Engine
Selection Screen 400

810

US 8,381,104 B2

-->GLI KIOudew

U.S. Patent

U.S. Patent Feb. 19, 2013 Sheet 3 of 10 US 8,381,104 B2

Initialize the content recognition engine and the
activation engine

2 O 5

Determine which child application functions support
open files

2 1 O

Create a display of available child application
functions

Receive a selection of
a function 2 2 O

a

Determine the open file that will be a parameter of
the Selected function 2 2 5

--

as ceae is a pain

Perform the Selected function with
the open file 2 3 O

-

FIG. 2

U.S. Patent Feb. 19, 2013 Sheet 4 of 10 US 8,381,104 B2

Detect child applications known to and O
available to the processor

5

Determine the functions associated with
each child application 310

Determine the parameters required 15
by each function

Create an interface containing the available child 32O
u applications and the functions

m

FIG. 3

U.S. Patent Feb. 19, 2013 Sheet 6 of 10 US 8,381,104 B2

Litéra DS
Change-Pro
Change-Pro for Excel
LDF
Litera PDF Suite
Metadact
Litéra RM

F.G. 5a

U.S. Patent Feb. 19, 2013 Sheet 7 of 10 US 8,381,104 B2

Settings

Screen Capture

N include cursor
- Copy image to clipboard

F.G. 5b

U.S. Patent Feb. 19, 2013 Sheet 8 of 10 US 8,381,104 B2

610
605

Select the file is a file currently
in focus in focus?

No

615 620
ls there more than

one open file that can be
a parameter of the
Selected function?

Select the One
open file

Yes

Create a display of the open files that can be a
parameter of the selected function

Receive a selection of one of the open files

Start the child application and perform the selected
function On the Selected file

F.G. 6

US 8,381,104 B2 Sheet 9 of 10 Feb. 19, 2013 U.S. Patent

V
V

puoNW SW eueduuOO squeuunood eueduuoºo queuunooq e e?eeu o

381,104 B2 9 US 8

HCid efeueW

O
V

Sheet 10 of 10

L
v

squeuunood eueduuoºo

Feb. 19, 2013

V

Queuunºoq e eqeeuo

U.S. Patent

TE ONVO[×o |

- 805
Focus

Documents Not in

US 8,381,104 B2
1.

SYSTEMIS AND METHODS FOR PROVIDING
CONTEXT RECOGNITION

RELATED APPLICATIONS

This application claims priority from U.S. Provisional
Application Ser. No. 61/331,856, filed May 6, 2010, the dis
closure of which is expressly incorporated herein by refer
CCC.

FIELD

This disclosure generally relates to the management and
integration of Software products and more particularly, to a
method and system for managing child Software applications
that integrate with parent Software applications.

BACKGROUND

For decades a number of software applications have,
become core products used by professionals to manage Vari
ous business operations. For instance, word processing,
spreadsheet, document processing, presentation, and drawing
software applications, such as Microsoft(R) Word, EXCEL(R),
PowerPoint(R), Visio(R, PROJECT, and Adobe R. Acrobat(R),
have become ubiquitous in business and personal computer
usage. Users create, edit, and otherwise manage their docu
ments and other files within these applications. Thus, it these
types of Software applications are referred to herein parent
applications.

Since their inception, parent applications have steadily
gained popularity and now have become the foundation for
most business and personal computing environments. As a
result, third party applications were developed and designed
to integrate with parent applications to provide additional
features that compliment those of the parent applications.
These applications, referred to herein as child applications,
obtained functionality through their integration within a par
ent application or through user navigation from the child
application to a location of a saved file created and/or edited
in a parent application.
The diversity and growth of child applications has resulted

in a computer programming environment where parent appli
cations include multiple child applications that have been
integrated within the parent application and expand the capa
bility of the parent application. When a child application is
integrated with a parent application, the functionality offered
by the child application becomes available from within the
parent application. The parent application may make the child
functionality available through, for example, a button on a
toolbar or through a menu option.

Because, however, the child applications depend on Ser
vices provided by the parent application and may not work by
themselves, the child applications must load when the parent
application loads. For example, a business user's word pro
cessing document might be associated with a number of child
applications, and thus, for example, include in its toolbar
additional buttons relating to the various functionalities of the
child applications. These functionalities may include func
tionalities to (1) compare the document to another; (2) con
vert the document to PDF, (3) format tables of contents and
numbering; (4) add document identification numbers; (5)
manage references and other footnotes included in the docu
ment; (6) enable robust image editing; (7) collaborate with
other users; (8) manage externally designed templates; (9)
integrate with a document management system; (10) track,
manage and clean metadata; (11) conduct and manage

10

15

25

30

35

40

45

50

55

60

65

2
screenshots; and (12) incorporate contacts from a contact
management system. In Scenarios where these twelve func
tionalities need to run, one user of a single parent application
requires a minimum of twelve integrations. In addition, a
minimum of twelve additional functionality buttons must be
added to the interface of the word processing program, thus
crowding the field of the word processing's preexisting tra
ditional functionality buttons.

Integrating child applications in a parent application is
typically done using the native application programming
interface (API) provided by parent applications, such as
COM objects, ODMA integrations, command line integra
tion, DLL integration, or other known methodologies. Unfor
tunately, these multiple integrations create a computing envi
ronment that hinders productivity and causes major delays in
the loading of the parent application because all the integrated
child applications integrations must also be loaded.

Regardless of the method used to create the integrations,
the child applications integration resides within the parent
application. Each time a user starts the parent application, the
integrations, or "add ins' as they are commonly called, have
to load and start. In addition, each time a user closes the parent
application the “add ins' have to unload and stop. Thus, the
greater the number of integrations, the longer the time the
parent application takes to open or close, creating a loss of
productivity for the users. Additionally, the integrated child
applications open the parent application up to a range of
potential errors, bugs, and other technical issues and conflicts
caused by multiple child applications seeking integration
with the parent application.

However, without “addins,” accessing the functionality of
a child application that is dependent upon a parent application
requires multiple steps, leading to lost productivity. For
example, a user wishing to compare two versions of the same
PDF document, in a case where that comparison functionality
is not integrated or “added in as another functionality in the
Word Processing software (e.g., Microsoft(RWORD(R), must
first open the document comparison child application, then
browse to and select the saved versions of the two files to
compare and, finally, Submit a request to process the com
parison of those two files. Often the IT departments of com
pany networks, frustrated by the problems and the conse
quential support burden created by “add ins' remove them.
The “add in removal makes the users’ workflow somewhat
less productive.

Currently, there are only two options for dealing with the
management and integration of child applications with parent
applications. Users may accept the loading and unloading
problems related to integrating “add ins' or remove the “add
ins' and accept the loss of productivity. Both of these are not
ideal options to increase the productivity and efficiency of
computer users. As such, current systems implementing child
and parent applications are dated and have reached their
capacity to improve productivity related to functionality and
workflow efficiency.

Therefore it is desirable to provide users with the function
ality offered by child applications without the inherent prob
lems related to the current integration of those functionalities.
Thus, there is a need for a method and system of software
coupling that does not require child applications to integrate
with and be presented inside of parent applications or require
users to navigate through multiple steps to enable a child
application to use files created in a parent application. Meth
ods and systems consistent with the disclosed embodiments
of the invention address these and other problems of current
child application integrations.

US 8,381,104 B2
3

SUMMARY

Disclosed embodiments provide a context recognition and
activation engine that allows a user to apply the functionality
of one or more child applications to the Subject matter of a
parent application. For example, disclosed embodiments may
give a user the ability to send a word processing document to
one or more child applications, such as meta-data removal or
document comparison applications, for processing.

Consistent with disclosed embodiments, a method is pro
vided for launching a child application without integrating
the child application into parent applications. In one aspect,
the method includes detecting a child application available to
a processor of a computer and determining a function that is
associated with the child application. The method may further
include determining one or more parameters used to perform
the function of the child application and generating informa
tion used to display a representation of the function in an
interface that is separate from a parent application, so that the
function is selectable and launches the child application upon
selection.

Consistent with other disclosed embodiments, a system is
provided for launching a child application without integrating
the child application into a parent application. In one aspect,
the system includes a processor and a memory. The memory
includes instructions that cause the processor to generate
information used to display a representation of a plurality of
functions available in a child application, so that the plurality
of functions are selectable. The memory may further include
instructions that cause the processor to recognize an open file
created by the parent application. The memory further
includes instructions that cause the processor to determine
that one of the plurality of functions can be performed on the
open file, to receive a selection of the representation of the one
of the plurality of functions, and to launch the child applica
tion to perform the one of the plurality of functions on the
open file.

Consistent with other disclosed embodiments, tangible
computer-readable storage media may store program instruc
tions that are executable by a processor to implement any of
the methods, disclosed herein.

It is to be understood that both the foregoing general
description and the following detailed description are exem
plary and explanatory only and are not restrictive of the dis
closed embodiments, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate several
embodiments and together with the description, serve to
explain the disclosed principles. In the drawings:

FIGS. 1a and 1b are diagrams of exemplary context rec
ognition and activation system components that may be used
to implement disclosed embodiments.

FIG. 2 is a flow diagram illustrating an exemplary context
recognition and activation process, consistent with disclosed
embodiments.

FIG. 3 is a flow diagram illustrating an exemplary initial
ization of the context recognition and activation system, con
sistent with disclosed embodiments.

FIG. 4 is an exemplary interface created by a context rec
ognition engine and activation engine, consistent with dis
closed embodiments.

FIGS. 5a and 5b are exemplary child application settings
interfaces created by the context recognition and activation
system, consistent with disclosed embodiments.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 6 is a flow diagram illustrating an exemplary activa

tion engine process, consistent with disclosed embodiments.
FIG. 7 is an exemplary display of a file in focus and the

resulting interface created by a context recognition and acti
Vation system of child applications and functions, consistent
with disclosed embodiments.

FIG. 8 is an exemplary display of selection of one of a
plurality of open files for use as the parameter of a function of
a child application, consistent with disclosed embodiments.

DESCRIPTION OF THE EMBODIMENTS

Disclosed embodiments may enable a context recognition
and activation engine to recognize opened files created from
various parent applications. The activation engine may then
make the functionality of child applications available to a user
outside of a direct integration relationship with parent appli
cations or the multi-step process of navigating to saved loca
tions of those same files. Disclosed embodiments may
accomplish this by, for example, creating an interface, or
another parent application, that includes the API for various
child programs. The interface is configured to recognize the
functions that each child application can perform and the
parent application files the functions can be performed on. In
one embodiment, the context recognition and activation
engine may communicate with an operating system to deter
mine what files are open, what parent application opened
them, and match this information with the child program
API.S.

Reference will now be made in detail to exemplary
embodiments, examples of which are illustrated in the
accompanying drawings. Wherever convenient, the same ref
erence numbers will be used throughout the drawings to refer
to the same or like parts.

FIGS. 1a and 1b are diagrams of exemplary context rec
ognition and activation system components that may be used
to implement disclosed embodiments. The components and
arrangement, however, may vary.

In accordance with certain disclosed embodiments, a con
text recognition engine 130 and activation engine 135 may
run on a computer system including a number of components,
such as a processor 105, nonvolatile storage 110, memory
115, operating system 120, input/output (I/O) devices 125,
and bus 145. In one aspect, a Context Recognition and Acti
vation Engine (CRAE engine 150) may comprise context
recognition engine 130 and activation engine 135. CRAE
engine 150 may reside in memory 115, and may be loaded
from storage 110 or from other external tangible storage
medium (not shown) through I/O devices 125. Instructions in
CRAE engine 150 may be executed by processor 105. In
certain embodiments, as shown in FIG.1b, CRAE engine 150
may comprise a context recognition engine 130 residing on
client terminal 100 and activation engine 135 residing on
server 170, which is connected to client computer or terminal
100 over network 150. In other embodiments, CRAE engine
150 may reside on server 170 and client terminal 100 may use
a thin client to access CRAE engine 150. In disclosed
embodiments activation engine 135 and context recognition
engine 130 may be one software file. CRAE engine 150 may
work with processor 105 or processor 171 to perform features
of disclosed embodiments described below.

In one embodiment, a computer system 100 may imple
ment CRAE engine 150 to perform one or more functions
consistent with certain embodiments. Computer system 100
may be a general purpose or notebook computer, a mobile
device with computing ability, a server, a mainframe com
puter, or any combination of these computers and/or affiliated

US 8,381,104 B2
5

components. Computer system 100 may communicate with
network 150 (not shown in FIG.1a) through I/O devices 125.
For example, computer system 100 may establish a direct
communication link with network 150, such as through a
LAN, a WAN, or other suitable connection that enables com
puter system 100 to send and receive information, as
described herein. Computer system 100 may be a standalone
system or may be part of a Subsystem, which may, in turn, be
part of a larger system, such as a networked desktop emulator.

Processors 105 and 171 may be one or more known pro
cessing devices, such as a microprocessor from the Pen
tiumTM family manufactured by IntelTM or the TurionTM fam
ily manufactured by AMDTM. Memory 115 and 172 may be
one or more storage devices configured to store information
used by processor 105 or 171 to perform certain functions
related to disclosed embodiments. Memory 115 may also
include instructions that enable a parent application to run on
system 100. Alternatively, the instructions that enable a par
ent application to run on system 100 may be stored in external
storage 145 or available from memory 172 over network 150.
Storage 110 may be a volatile or non-volatile, magnetic,
semiconductor, tape, optical, removable, nonremovable, or
other type of storage device or tangible computer-readable
medium.

In one embodiment, memory 115 may include one or more
context recognition, child application, and/or activation pro
grams or subprograms 130-140 loaded from storage 110 or
elsewhere that, when executed by processor 105, perform
various procedures, operations, or processes consistent with
disclosed embodiments. For example, memory 115 may
include context recognition engine 130 that may communi
cate with operating system 120 to (1) determine and recog
nize open files, (2) determine and recognize the parent appli
cation used to open the files, and (3) determine what child
application functions can be performed on the open files.
Memory 115 may also include activation engine 135 that
assists in the identification of a file that will be the object of a
function of a child application, and initiates a call to the child
application for the performance of the function on the iden
tified file. Alternatively, memory 172 may include activation
engine 135. Memory 115 may also include child applications
140 and an integrative Support program that links the other
programs and allows them to use a common database, pro
vides a common user interface, performs basic bookkeeping
tasks, (such as storing the user's input, etc.), and provides user
guidance and help. Memory 115 may also include other pro
grams that perform other functions and processes, such as
programs that provide communication Support, Internet
access, etc. Memory 172 may also include child application
140 and an integrative Support program that allow applica
tions in memory 172 to be accessed by system 100.

Methods, systems, and articles of manufacture consistent
with disclosed embodiments are not limited to separate pro
grams or computers configured to perform dedicated tasks.
For example, memory 115 may be configured with a context
recognition engine 130 that performs one or more functions
when executed by processor 105. For example, memory 115
may include program 130 that performs one or more func
tions of the context recognition engine 130. Alternatively,
memory 115 may include multiple programs that collectively
perform one or more functions of context recognition engine
130. Moreover, processor 105 may execute one or more pro
grams located remotely from system 100. For example, sys
tem 100 may access one or more remote programs, such as
those found in memory 175, that, when executed, perform
functions related to disclosed embodiments.

10

15

25

30

35

40

45

50

55

60

65

6
Memory 115 may be also be configured with operating

system 120 that performs known operating system functions
when executed by system 100. By way of example, operating
system 120 may include Microsoft WindowsTM, UnixTM,
LinuxTM AppleTM Computers type operating systems, Per
Sonal Digital Assistant (PDA) type operating systems, such as
Microsoft CETM, or other types of operating systems. Accord
ingly, embodiments of the disclosed invention will operate
and function with computer systems running any type of
operating system. In one aspect, operating system 120 may
communicate with context recognition engine 130 or activa
tion engine 135 to deliver information about what processes
are currently running and what process currently has focus.

I/O devices 125 may comprise one or more input devices
and one or more output devices that allow data to be received
and/or transmitted by system 100. For example, I/O devices
125 may include one or more input devices, such as a key
board, touch screen, mouse, and the like, that enable system
100 to receive data from a user, such as selection of a active
process, selection of a functionality, selection of one of a
plurality of open processes, etc. Further, system 100 may
include I/O devices 125 that communicate with one or more
output devices, such as a display Screen, CRT monitor, LCD
monitor, plasma display, printer, speaker devices, and the
like, that enable system 100 to present data to a user. I/O
devices 125 may also include one or more digital and/or
analog communication input/output devices that allow sys
tem 100 to communicate with other machines and devices.
The configuration and number of input and/or output devices
incorporated in I/O devices 125 may vary as appropriate for
certain embodiments.
Computer system 100 may also be communicatively con

nected to one or more databases (not shown) locally or
through network 150. The databases store information and
are accessed and/or managed through system 100. By way of
example, the databases may be document management sys
tems, Microsoft SQL database. SharePoint databases,
OracleTM databases, SybaseTM databases, or other relational
databases. The databases may include, for example, data and
information related to the API of child applications, such as
functions performed by the child applications, parent appli
cations compatible with the functions, parameters required
by the functions, etc. Systems and methods of disclosed
embodiments, however, are not limited to separate databases
or even to the use of a database.

FIG. 2 is a flow diagram illustrating an exemplary context
recognition and activation process, consistent with disclosed
embodiments. In certain embodiments, process 200 may be
performed by CRAE engine 150. In an embodiment imple
mented using computer system 100, as shown in step 205 of
FIG. 2, processor 105 may initialize context recognition
engine 130 and/or activation engine 135. Alternatively, pro
cessor 105 may initialize recognition engine 130 and proces
sor 171 may initialize activation engine 135. Once initialized,
in step 210, CRAE engine 150 may communicate with oper
ating system 120 to determine the files that are currently open
in computer system 100, identify the parent applications that
control the open files, and determine one or more available
child application functionalities that Support the open files.
Files include documents. Such as text, graphical, image, and
other data that may be created by a parent application. For
instance, a file may be created and opened with a parent
application and may be displayed in its own window on the
display device. As explained above, parent applications
include word processing programs, spreadsheet programs,
picture editors, presentation programs, and document editors.
Accordingly, examples of files include, but are not limited to,

US 8,381,104 B2
7

word processing documents, spreadsheets, diagrams, presen
tations, JPEG files, BMP files, GIF files, PDF files, and text
files. In certain embodiments, CRAE engine 150 may com
municate with an operating system (not shown) running on
server 170 to determine the files currently open and available
to a user on server 170. CRAE engine 150 may determine the
parent applications that control the open files on server 170
and determine one or more available child application func
tionalities that support the open files on server 170.

In step 215, CRAE engine 150 may generate information
that is used to present on a display device the child application
functions available to system 100. In certain embodiments
this may include files available to system 100 through server
170. In one embodiment, CRAE engine 150 generates repre
sentations of functions performed by child applications, with
functions Supporting any open file highlighted. In another
embodiment, CRAE engine 150 may generate information
for display that may highlight only those functions that Sup
port the file currently in focus. A file in focus may be a file that
a user is currently working with using the computer system.
For example, a file in focus may include a file that is being
manipulated or used by a user, Such as a file that a user has
selected to receive user input. User input may include signals
or data representing the selection of a key on the keyboard or
a mouse click, or the selection of a shortcut key, Such as
<Control-V for “Paste.” In this example, when the file has
focus, the input is sent to the position of the cursor in the file.
As another example, a PDF file may be a file in focus when a
user currently manipulates the PDF file using one or more
commands, short cuts, or other user-input, such as highlight
ing text, inserting a watermark, etc. In general, and as another
example, a computer system running multiple parent appli
cations may generate interfaces that are displayed collec
tively on a display device, such as two windows; one window
for a PDF document, and a second window for a word pro
cessing document. When a user selects the word processing
document to perform some operation, Such as cut and paste,
etc., the word processing document is a file in focus, while the
PDF document is not. Alternatively, if the user selects the
PDF document (e.g., by placing a cursor in the PDF document
window, and thus deselecting the word processing docu
ment), the PDF document is a file in focus, while the word
processing document is not. The previous examples are illus
trative of different types of scenarios to show a file in focus
and are not intended to limit the disclosed embodiments.
Other types of operations, user inputs, and file selections may
be implemented to assign a file in focus that are consistent
with certain aspects related to the disclosed embodiments.

In step 220, CRAE engine 150 may receive a selection of a
child application function. The selection may be responsive to
user input or a processor executing a computer program that
provides a selection of the child application. In step 225,
CRAE engine 150 may determine the open file that will serve
as a parameter of the selected function. In step 230, CRAE
engine 150 may launch the child application and perform the
selected function on the open file that was passed as a param
eter to the function. Launching the child application may
involve opening or starting the child application or may
involve interacting with an already open instance of the child
application. In certain embodiments, launching may involve
opening or starting the child application on a server. In this
exemplary manner, CRAE engine 150 enables the function
ality of a child application to be performed on a file of a parent
application without having to be integrated into the parent
application and without having a user or computer program
independently open the child application to search for the

5

10

15

25

30

35

40

45

50

55

60

65

8
files that the function is performed upon. In certain embodi
ments, CRAE engine 150 may use DirectX(R) to launch the
child application.

FIG. 3 is a flow diagram illustrating an exemplary initial
ization of context recognition engine 130 and activation
engine 135, consistent with disclosed embodiments. CRAE
engine 150 may be programmed to recognize certain child
applications. Thus, in step 305 CRAE engine 150 may detect
the child applications available to system 100 by communi
cating with operating system 120. The child applications may
be available to system 100 because they are accessible to
computer system 100. For example, a child application may
be available to computer system 100 because it is (1) installed
locally, in memory 115, storage 110, or in external storage
145, (2) it is installed on server 170 and available through
network 150, or (3) it is available through a combination of
local installation and remote installation on server 170. Child
applications may be available to system 100 based on other
configurations consistent with the disclosed embodiments.

In step 310, CRAE engine 150 may determine one or more
functions associated with each child application available to
system 100. The types of functions associated with each child
application may vary based on the type of available child
application. For example, a meta-data scrubber application
may be associated with one or more cleaning functions. Such
as a single document cleaning function or a multiple docu
ment cleaning function. A screen capture child application
may include a full screen capture function, a screen region
capture function, or a function that captures an area of an open
window displayed on a display device. The functions associ
ated with a child application may be stored in a data reposi
tory, such as storage 110, external storage 145, or memory
115, as a part of the API for the child application.

In step 315, CRAE engine 150 may determine the param
eters required by each determined child application (e.g.,
what types of files work with a respective function). Once
CRAE engine 150 has identified the child applications and
the functions associated with each child application, CRAE
engine 150 generates in step 320 an interface, such as a
display area, that may include the available child applica
tions. FIG. 4 illustrates an exemplary display area listing the
available child applications. The processes described in steps
305 through 320 are an example of the initialization of con
text recognition engine 130 and activation engine 135
described in step 205 of FIG. 2.

FIG. 4 is an exemplary interface created by a context rec
ognition engine and activation engine, consistent with dis
closed embodiments. In one embodiment, the interface
includes display 400, which may include one or more child
application indications 405 that reflect one or more child
applications available to system 100. For each child applica
tion indication 405, display 400 may include function repre
sentation 410 that represents the function(s) supported by the
child application represented by indication 405. For example,
indication 405 may reflect a document comparison child
application and function representation 410 may reflect one
or more of the functions Supported by the document compari
son application, such as the comparison of WORD docu
ments, comparison of EXCELR documents, or comparison
of PDF documents. Function representation 410 may be
shown as active or inactive. Function representation 410 may
be active when CRAE engine 150 recognizes that the file
currently in focus can be passed to the function as aparameter.
Display 400 may indicate that function representation 410 is
active by using bolding, highlighting, coloring, or some other
visual indication. When active, function representation 410
may also be selectable. When function representation 410 is

US 8,381,104 B2

selected, for example, by clicking on the indication with a
mouse or by placing the cursor on the indication and pressing
the <Enter key, then the child application associated with the
selected function may launch and perform the selected func
tion. 5

Child application indication 405 may also be selectable.
Upon selection, CRAE engine 150 may create a display that
enables selection of any open file. In one embodiment, in
response to a selection of a specific file, CRAE engine 150
may determine which function of the selected child applica
tion indication 405 operates on the selected file, and launch
the determined function.

Display 400 may also include settings indicator 420 that
may allow a user to customize the settings of a child applica
tion and display 400. When settings indicator 420 is selected,
CRAE engine 150 may display modifiable child application
settings, as shown in FIGS. 5a and 5b.

FIGS. 5a and 5b are exemplary child application settings
interfaces created by CRAE engine 150, consistent with dis
closed embodiments. In one embodiment, CRAE engine 150
may generate information that is used to display window 500
that provides mechanisms to enable a user to select the order
of child application indicators 405, as shown in FIG.5a. In
one embodiment, CRAE engine 150 may hide child applica
tion indicators 405 from interface 400 based on selection or
deselection of the child application in the “Buttons' menu
520. In other embodiments, CRAE engine 150 may display
window 505 that enables a user to set parameters for a child
application based on selection of items 510-515. Items 510
515 are settings used by a screen capture child application that
may be applied to functions performed by the child applica
tion. For example, if setting 510 is not selected then the screen
capture child application will exclude the cursor from the
captured image. In this manner, CRAE engine 150 may
receive and set global parameters for a child application that
may apply to all functions of the child application. Global
parameters are settings of the child application that apply to
the functions performed. For example, a global parameter for
a document comparison child application may include the
color of insertions or the color of deletions. A global param
eter for a metadata removal application may be the type of
metadata ignored, or left alone, during the metadata removal
process. As shown in FIG.5b, a global parameter for a screen
capture application may be including the cursor in the cap
tured image. Global parameters may be stored in memory 45
115, storage 110, external storage 145, or in other storage
accessible over network 150.

FIG. 6 is a flow diagram illustrating an exemplary activa
tion engine process, consistent with disclosed embodiments.
In one embodiment, the process may be performed by CRAE 50
engine 150. After a child application function has been
selected, in step 605 CRAE engine 150 may determine
whether an open file currently has focus. If a file is in focus
then, in step 610, CRAE engine 150 selects the file currently
in focus as an object of the selected function. If no file cur- 55
rently has focus then, in step 615, CRAE engine 150 may
determine the number of open files that can be the object of
the selected function. In one embodiment, CRAE engine 150
may determine the number of open files that can be the object
of a selected function by identifying the parent application of 60
the file in focus. In one embodiment, the determination may
be based on the functions of child applications that Support
files opened by specific parent applications. If only one open
file is a candidate for the selected function, then, in step 620,
CRAE engine 150 may select the one file as a parameter for 65
the selected function. Once a file has been selected, in step
640, CRAE engine 150 may start the child application and

10

15

25

30

35

40

10
perform the selected function on the selected file. In certain
embodiments, CRAE engine 150 may start the child applica
tion using DirectX(R).

If more than one open file can be a parameter for the
selected function, then in step 630, CRAE engine 150 may
create a display of the open files able to serve as a parameter
for the selected function. In some embodiments this display
may resemble the display of FIG. 8. In step 635, CRAE
engine 150 may receive a selection of one the documents
displayed by step 630. Finally, in step 640, CRAE engine 150
may start the child application and perform the selected func
tion on the selected file.

In one embodiment, a child application function may
require two files as parameters of the function. In this case,
CRAE engine 150 may select the document in focus as the
first parameter (e.g. steps 605-610) and then continue with
step 630 to select a second file as the second parameter for the
selected function. CRAE engine 150 may repeat this process
for as many files as needed by the selected function. The
processes described in connection with steps 605 through 640
are an example of determining the open file that will serve as
the parameter of the selected function described in step 225 of
FIG 2.

FIG. 7 is an exemplary display of a file in focus and an
interface created by a context recognition and activation sys
tem of child applications and functions, consistent with dis
closed embodiments. In this example, the file in focus is a
PDF document, but it is understood that the file could be any
type of file consistent with the disclosed embodiments.

Consistent with disclosed embodiments and this example,
CRAE engine 150 may recognize the PDF file type and deter
mine the functions that can be performed on a PDF file. As a
result, CRAE engine 150 may update certain function repre
sentations 410 on display 400 as active. As shown in FIG. 7,
the active function representations 410 may be bolded, high
lighted, rendered in italics, or have some other visual indica
tor. In the example of FIG. 7, all of function representations
410 under child application “MANAGE PDF are active. In
addition, function “PDF is active under child application
COMPARE and function SINGLE DOCUMENT is

active under child application “CLEAN METADATA.” Thus,
in the example of FIG. 7, context recognition system may
receive selection of the function REDACT, start the MAN
AGE PDF child application with the REDACT function, and
use the PDF document in focus as the parameter of the
REDACT function.

FIG. 8 is an exemplary display of selection of one of a
plurality of open files for use as the parameter of a function of
a child application, consistent with disclosed embodiments.
Consistent with the example shown in FIG. 8, CRAE engine
150 may determine that no files are in focus and thus deter
mine the child application functions that can be performed on
any currently open files 805. As a result, CRAE engine 150
may render certain function representations 410 on display
400 as active. In the example of FIG.8, WORD and EXCEL(R)
documents are open, so CRAE engine 150 makes the
“WORD" and “EXCEL functions of child application
“COMPARE active. In addition, CRAE engine 150 may also
make the SINGLE DOCUMENT and BATCH CLEAN
functions of child application “CLEAN METADATA” active
because these functions can be performed on WORD and
EXCEL(R) documents.
Once CRAE engine 150 receives a selection of one of the

function representations 410, it may create an interface. Such
as window 810, that allows selection of one or more of the
open documents. In the example of FIG. 8, the COMPARE
function requires two files, so window 810 allows selection of

US 8,381,104 B2
11

two of the open documents. In other embodiments, window
810 may allow selection of one file, or it may allow selection
of three or more files. The number of files selectable from
window 810 may depend on the number of files a selected
function requires as parameters. In the example of FIG. 8,
after both files have been selected, CRAE engine 150 may
start the child application associated with the selected func
tion, causing the child application to perform the selected
function on the two selected files.
The foregoing descriptions have been presented for pur

poses of illustration and description. They are not exhaustive
and do not limit the disclosed embodiments to the precise
form disclosed. Modifications and variations are possible in
light of the above teachings or may be acquired from practic
ing the disclosed embodiments. For example, the described
implementation includes software, but the disclosed embodi
ments may be implemented as a combination of hardware and
Software or in hardware alone. Additionally, although dis
closed aspects are described as being stored in a memory on
a computer, one skilled in the art will appreciate that these
aspects can also be stored on other types of tangible com
puter-readable media, Such as secondary storage devices, like
hard disks, floppy disks, a CD-ROM, or other forms of RAM
or ROM.

Computer programs based on the written description and
disclosed methods are within the capabilities of one of ordi
nary skill in the art. The various programs or program mod
ules can be created using any of the techniques known to one
skilled in the art or can be designed in connection with exist
ing software. For example, program sections or program
modules can be designed in or by means of DirectX, .Net
Framework, .Net Compact Framework (and related lan
guages, such as Visual Basic, C, etc.), XML, Java, C++,
JavaScript, HTML, HTML/AJAX, or any other now known
or later created programming language. One or more of Such
Software sections or modules can be integrated into a com
puter system or existing browser Software.

Other embodiments will be apparent to those skilled in the
art from consideration of the specification and practice of the
embodiments disclosed herein. The recitations in the claims
are to be interpreted broadly based on the language employed
in the claims and not limited to examples described in the
present specification or during the prosecution of the appli
cation, which examples are to be construed non-exclusive.
Further, the steps of the disclosed methods may be modified
in any manner, including by reordering steps and/or inserting
or deleting steps. It is intended, therefore, that the specifica
tion and examples be considered as exemplary only, with a
true scope and spirit being indicated by the following claims
and their full scope equivalents.
What is claimed is:
1. A computer-implemented method for launching a child

application, the method comprising:
detecting a child application available to a processor of a

computer;
performing, by the processor, the operations of

determining a function associated with the child appli
cation;

determining one or more parameters used to perform the
function of the child application;

generating information used to display a representation
of the function in an interface that is separate from a
parent application, so that the representation of the
function is selectable; and

in response to selection of the representation of the func
tion, launching the child application and performing
the function such that the function of the child appli

5

10

15

25

30

35

40

45

50

55

60

65

12
cation is performed without requiring integrating the
child application into the parent application.

2. The method of claim 1, the operations further compris
ing:

receiving a selection of the representation of the function;
determining that an open file has focus; and
launching the child application to perform the function of

the child application on the open file.
3. The method of claim 2, further comprising:
receiving a global parameter for the child application; and
performing the function of the child application on the

open file using the global parameter.
4. The method of claim 2, wherein a server receives the

selection of the representation of the function and launches
the child application to perform the function on the open file.

5. The method of claim 1, wherein the interface includes
information that identifies the child application associated
with the function.

6. The method of claim 5, further comprising:
receiving a request to hide the child application and the

function from the interface; and
generating information used to display the interface,

wherein the representation of the function is not part of
the information generated.

7. The method of claim 1, wherein the generating further
comprises:

identifying a parent application of a file currently in focus;
and

determining that the function may operate on the file cur
rently in focus, wherein the representation of the func
tion indicates the function is active.

8. A system for launching a child application, the system
comprising:

a processor; and
a memory coupled to the processor, the memory storing

instructions to direct the processor to perform operations
comprising:
detecting a child application available to the processor of

a computer,
determining a function associated with the child appli

cation,
determining one or more parameters used to perform the

function of the child application,
generating information used to display a representation

of the function in an interface that is separate from a
parent application, so that the representation of the
function is selectable, and

in response to selection of the representation of the func
tion, launching the child application and performing
the function such that the function of the child appli
cation is performed without requiring integrating the
child application into the parent application.

9. The system of claim 8, the operations further compris
ing:

receiving a selection of the representation of the function;
determining that an open file has focus; and
launching the child application to perform the function of

the child application on the open file.
10. The system of claim 9, the operations further compris

ing:
receiving a global parameter for the child application; and
performing the function of the child application on the

open file using the global parameter.
11. The system of claim 9, wherein a server receives the

selection of the representation of the function and launches
the child application to perform the function on the open file.

US 8,381,104 B2
13

12. The system of claim 8, wherein the interface includes
information that identifies the child application associated
with the function.

13. The system of claim 12, the operations further com
prising:

receiving a request to hide the child application and the
function from the interface; and

generating information used to display the interface,
wherein the representation of the function is not part of
the information.

14. The system of claim 8, wherein the generating further
comprises:

identifying a parent application of a file currently in focus;
and

determining that the function may operate on the file cur
rently in focus, wherein the representation of the func
tion indicates the function is active.

15. A computer-implemented method for launching a child
application, the method comprising:

detecting a child application available to a processor of a
computer, and

performing, by the processor, the operations of
determining a function associated with the child appli

cation,
determining one or more parameters used to perform the

function of the child application,
determining that a plurality of open files may be the

object of the function, and
generating information used to display a representation

of the function in an interface that is separate from a
parent application, so that the representation of the
function is selectable and launches the child applica
tion upon selection without requiring integrating the
child application into the parent application.

16. The method of claim 15, further comprising:
receiving a selection of the function;
determining that one of the plurality of open files has focus;

and
launching the child application to perform the function of

the child application on the one of the plurality of open
files that has focus.

17. The method of claim 15, further comprising:
receiving a selection of the function;
determining that none of the plurality of open files has

focus;
generating information used to enable selection of one of

the plurality of open files;
receiving a selection of one of the plurality of open files;

and
launching the child application to perform the function on

the one of the plurality of open files.
18. The method of claim 17, wherein the launching further

comprises sending the selection of the one of the plurality of
open files and the selection of the function to a server, wherein
the server launches the child application to perform the func
tion on the one of the plurality of open files.

19. A system for launching a child application, the system
comprising:

a processor; and
a memory coupled to the processor, the memory storing

instructions to direct the processor to perform operations
comprising:
detecting a child application available to a processor of a

computer;
determining a function associated with the child appli

cation,

10

15

25

30

35

40

45

50

55

60

65

14
determining one or more parameters used to perform the

function of the child application,
determining that a plurality of open files may be the

object of the function, and
generating information used to display a representation

of the function in an interface that is separate from a
parent application, so that the representation of the
function is selectable and launches the child applica
tion upon selection without requiring integrating the
child application into the parent application.

20. The method of claim 19, the operations further com
prising:

receiving a selection of the function;
determining that one of the plurality of open files has focus;

and
launching the child application to perform the function of

the child application on the one of the plurality of open
files that has focus.

21. The system of claim 19, the operations further com
prising:

receiving a selection of the function;
determining that none of the plurality of open files has

focus;
generating information used to enable selection of one of

the plurality of open files:
receiving a selection of one of the plurality of open files;

and
launching the child application to perform the function on

the one of the plurality of open files.
22. The system of claim 21, wherein the launching further

comprises sending the selection of the one of the plurality of
open files and the selection of the function to a server, wherein
the server launches the child application to perform the func
tion on the one of the plurality of open files.

23. A computer-implemented method for launching a child
application, the method comprising:

performing, by the processor, the operations of
generating information used to display a representation

of a plurality of functions available in a child appli
cation, so that the plurality of functions are selectable;

recognizing an open file created by the parent applica
tion;

determining that the one of the plurality of functions can
be performed on the open file;

allowing selection of a representation of the one of the
plurality of functions,

receiving a selection of the representation of the one of
the plurality of functions, and

in response to receiving the selection, launching the
child application to perform the one of the plurality of
functions on the open file without requiring integrat
ing the child application into the parent application.

24. The method of claim 23, wherein the launching further
comprises sending the selection of the one of the plurality of
functions to a server, wherein the server launches the child
application to perform the function on the open file.

25. A system for launching a child application, the system
comprising:

a processor; and
a memory coupled to the processor, the memory storing

instructions to direct the processor to perform operations
comprising:
generating information used to display a plurality of

representations of a plurality of functions available in
a child application, so that the plurality of represen
tations are selectable,

US 8,381,104 B2
15 16

recognizing an open file created by the parent applica- in response to receiving the selection, launching the
tion; child application to perform the one of the plurality of

functions on the open file without requiring integrat
ing the child application into the parent application.

5 26. The system of claim 25, wherein the launching further
allowing selection of a representation of the one of the comprises sending the selection of the one of the plurality of

plurality of functions, functions to a server, wherein the server launches the child
application to perform the function on the open file.

determining that the one of the plurality of functions can
be performed on the open file,

receiving a selection of the representation of the one of
the plurality of functions, and k

