A calling communication unit (210) transmits a dispatch communication request to a communication infrastructure (202). The dispatch communication request includes at least a dispatch identification of a called communication unit (e.g., 216). In response to the dispatch communication request, the calling communication unit receives from the communication infrastructure a telephone number associated with a voice mail server (222) that provides voice mail service to the called communication unit and an identification of a mailbox at the voice mail server. The calling communication unit then transmits to the voice mail server the identification of the mailbox and a voice communication. Finally, the voice mail server stores the voice communication in the mailbox.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METHOD AND APPARATUS FOR FORWARDING A DISPATCH COMMUNICATION IN A COMMUNICATION SYSTEM

Cross-Reference To Related Application

This application is related to a co-pending application entitled "METHOD AND APPARATUS FOR ALERTING A COMMUNICATION UNIT IN A COMMUNICATION SYSTEM", filed on even date herewith, and assigned to the assignee of the instant application.

Field of the Invention

The present invention relates generally to communication systems and, in particular, to forwarding a dispatch communication in a communication system.

Background of the Invention

A wide variety of communication services are available to consumers today. To simplify a user's access to multiple services, communication systems which provide complimentary communication services are being combined and integrated. This allows a consumer to subscribe to one service provider and buy one device which meets many, if not all, of his or her communication needs.
Communication systems, such as Motorola's "iDEN" system, provide both interconnect and dispatch communication services. The interconnect services are those traditionally provided by cellular systems and include wireless telephone service, voice mail service, and paging or short message service. The dispatch services are those traditionally provided by two-way radio systems and include group call service, private call service, and call alert service.

The dispatch services allow a user to communicate in ways that are difficult or costly using today's cellular systems. The group call service, for example, enables a user to communicate with a group of people simultaneously and instantaneously. Using a cellular system, such a call could not occur instantaneously since either telephone numbers would need to be dialed for a three-way call or arrangements would need to be made to setup a conference call.

Systems which provide both interconnect and dispatch communication services have separate controllers, i.e. interconnect controllers and dispatch controllers. The need to minimize development costs and time-to-market makes such a system architecture desirable. However, in a system with independent controllers, a user of a service supported by one controller may be unable to contact a user involved in a service supported by the other controller. For example, the call alert service, a dispatch service, can alert a dispatch service user of an attempt by the call alert user to communicate; however, the call alert service is not able to alert a user involved in an interconnect service. Thus, a goal of dispatch services, to reach anyone at any time, is not realized.

In addition, a user making a telephone call (i.e., an interconnect service user) to another interconnect service user can be forwarded to
voice mail, since the called user is involved in another interconnect
communication. However, a user group calling or private calling (i.e., a
dispatch service user) an interconnect service user cannot be forwarded
to voice mail. Thus, when using dispatch services a user is unable to alert
or leave a voice mail message for an interconnect service user.

Therefore, a need exists for an apparatus and method to enable a
dispatch service user to alert or leave voice mail for another user
concurrently involved in an interconnect communication.

Brief Description of the Drawings

FIG. 1 is a block diagram depiction of a communication unit in
accordance with a preferred embodiment of the present invention.

FIG. 2 is a block diagram depiction of a communication system in
accordance with a preferred embodiment of the present invention.

FIG. 3 is a block diagram depiction of a communication system in
accordance with an alternate embodiment of the present invention.

FIG. 4 is a logic flow diagram of steps executed by a
communication system in accordance with a preferred embodiment of the
present invention.

FIG. 5 is a logic flow diagram of steps executed by a
communication system to transmit an alert message in accordance with a
preferred embodiment of the present invention.
FIG. 6 is a logic flow diagram of steps executed by a communication system to forward a dispatch communication to a voice mail server in accordance with a preferred embodiment of the present invention.

FIG. 7 is a logic flow diagram of steps executed by a communication system in accordance with an alternate embodiment of the present invention.

Description of a Preferred Embodiment

Generally, the present invention provides an apparatus and method for alerting a communication unit and forwarding a dispatch communication in a communication system. A calling communication unit transmits a dispatch communication request to a communication infrastructure. The dispatch communication request includes at least a dispatch identification of a called communication unit. In response to the dispatch communication request, the calling communication unit may receive from the communication infrastructure a telephone number associated with a voice mail server that provides voice mail service to the called communication unit and an identification of a mailbox at the voice mail server. The calling communication unit then transmits to the voice mail server the identification of the mailbox and a voice communication. Finally, the voice mail server stores the voice communication in the mailbox. Or, in response to the dispatch communication request, the communication infrastructure may generate an alert message that includes a dispatch identification of the calling communication unit and determine a telephone number associated with the called communication unit. The communication infrastructure then transmits the generated alert
message to the called communication unit based on the telephone number associated with the called communication unit.

The user of the calling communication unit is requesting that a dispatch communication be established with the called communication unit. By responding to a dispatch communication request with the telephone number associated with the called communication unit's voice mail server, the communication infrastructure provides the calling communication unit the means for establishing communication with the voice mail server. Likewise, by generating an alert message with the dispatch identification of the calling communication unit, the communication infrastructure provides the called communication unit the means for establishing a dispatch communication with the calling communication unit. So when a dispatch call cannot be established for whatever reason, the present invention enables the user of the calling communication unit to contact the user of the called communication unit via either voice mail or an alert.

The present invention can be more fully understood with reference to FIGs. 1-7. FIG. 1 is a block diagram depiction of a communication unit 100 in accordance with a preferred embodiment of the present invention. The communication unit 100 comprises a receiver 108, a processor 110, and a transmitter 112. The receiver 108 preferably comprises conventional circuitry operated and controlled by routinely developed software, such as the circuitry and software used in amplifiers, demodulators, down-converters, and filters. The transmitter 112 preferably comprises conventional circuitry operated and controlled by routinely developed software, such as the circuitry and software used in amplifiers, modulators, upconverters, and filters. The processor 110 preferably comprises a microprocessor. In the preferred embodiment, the
communication unit 100 is an "iDEN" radiotelephone commercially available from Motorola, Inc. of Schaumburg, Illinois.

Operation of the preferred communication unit 100 in accordance with the present invention occurs substantially as follows. The transmitter 112 transmits a dispatch communication request to a communication infrastructure (not shown) via the communication resource 104. The communication resources 102, 104 are preferably radio frequency, time divisioned channels. The dispatch communication request includes a dispatch identification of a called communication unit (not shown) and requests the communication infrastructure to establish a dispatch communication between the communication unit 100 and the called communication unit.

In response to the dispatch communication request, the receiver 108 receives, via the communication resource 102, a telephone number associated with a voice mail server that provides voice mail service to the called communication unit and an identification of a mailbox at the voice mail server. The processor 110 then instructs the transmitter 112 to transmit the telephone number to the communication infrastructure to enable the communication infrastructure to establish a communication link between the communication unit and the voice mail server. Preferably, once the communication link is established, the processor 110 then instructs the transmitter 112 to transmit the identification of the voice mail server mailbox to the voice mail server.

In an alternate embodiment, the transmitter 112 transmits the dispatch communication request to the communication infrastructure as described above. In response to the dispatch communication request, however, the receiver 108 receives a telephone number associated with the called communication unit. The processor 110 may query the user of
the communication unit 100 whether to generate an alert. If a query is made and the user indicates that an alert should be generated or if no query is made, the processor 110 generates an alert message including the telephone number associated with the called communication unit, a dispatch identification of the communication unit 100, and a user message. To determine the user message, the processor 110 may use a pre-selected message or a default message. Either the pre-selected message or the default message may be empty. The processor 110 may instead display a prompt, on a communication unit display, for example, and generate the user message from user keystrokes, made on a communication unit keypad, for example. Finally, the processor instructs the transmitter 112 to transmit the alert message to the called communication unit via the communication infrastructure. The user of the called communication unit, upon receiving the alert, can use the dispatch identification to initiate a dispatch communication with the communication unit 100.

FIG. 2 is a block diagram depiction of a communication system 200 in accordance with a preferred embodiment of the present invention. The preferable communication system 200 comprises a communication infrastructure 202, communication units 210 and 216, a voice mail server 222, and a public switched telephone network (PSTN) 224. The communication infrastructure 202 preferably comprises a base site 204, a dispatch controller 206, an interconnect controller 208, and a short message processor 209. In a preferred embodiment, the communication system 200 comprises an “iDEN” communication system that is commercially available from Motorola, Inc. of Schaumburg, Illinois. Accordingly, the communication units 210, 216 preferably comprise “iDEN” radiotelephones and the communication infrastructure 202 preferably comprises “iDEN” infrastructure components. Finally, the voice mail server 222 preferably comprises a Glenayre Voice Mail System
commercially available from Glenayre Electronics, Inc. of Charlotte, North Carolina.

Operation of the preferred communication system 200 in accordance with the present invention occurs substantially as follows. The base site 204 receives a dispatch communication request from the calling communication unit 210 via communication resource 212. The communication resources 212, 214, 220 are preferably radio frequency, time divisioned channels. Since the dispatch controller 206 controls dispatch communications for the communication infrastructure 202, the base site 204 forwards the dispatch communication request to the dispatch controller 206.

The dispatch controller 206 determines whether the dispatch communication request can be granted using call processing techniques well-known in the art. When the dispatch communication request cannot be granted, the dispatch controller 206 conveys a telephone number associated with the voice mail server 222 that provides voice mail service to the called communication unit 216 and an identification of a mailbox at the voice mail server 222 to the calling communication unit 210 via the base site 204. The base site 204 transmits the telephone number and mailbox identification to the calling communication unit 210 via the communication resource 214.

Once the calling communication unit 210 receives the telephone number and mailbox identification, the user of the calling communication unit 210 can use the telephone number and mailbox identification to call the voice mail server 222 and leave a message for the user of the called communication unit 216. To call the voice mail server 222, the calling communication unit 210 transmits the telephone number associated with the voice mail server to the base site 204. Since the interconnect
controller 208 controls interconnect communications for the communication infrastructure 202, the base site 204 conveys the telephone number associated with the voice mail server to the interconnect controller 208. The interconnect controller 208, upon receiving the telephone number associated with the voice mail server 222, establishes a communication link between the calling communication unit 210 and the voice mail server 222 via the PSTN 224 using call processing techniques well-known in the art. The user of the calling communication unit 210 can then leave a voice mail message on the voice mail server 222 for the user of the called communication unit 216.

In accordance with the preferred embodiment of the present invention, the base site 204 may receive an alert request and a dispatch identification of the called communication unit 216 from the calling communication unit 210. Since the alert request is a dispatch request, the base site 204 forwards the alert request and dispatch identification to the dispatch controller 206. Obtaining the dispatch identification and alert request from the base site 204, the dispatch controller determines a telephone number associated with the called communication unit 216. Preferably, the dispatch controller has a database that links dispatch identifiers to corresponding telephone numbers. Using the dispatch identification of the called communication unit 216 the telephone number of the called communication unit 216 is extracted from the database. The dispatch controller 206 then generates an alert message that includes the dispatch identification of the calling communication unit 210.

To convey the alert message to the called communication unit 216, the dispatch controller 206 conveys the alert message and the telephone number associated with the called communication unit 216 to a short message processor 209. In the preferred embodiment, the short message processor 209 sends short text messages to communication
units based on communication unit telephone numbers. Such messages may be delivered to communication units even while the communication units are involved in telephone calls. The short message processor 209 receives the alert message and the telephone number associated with the called communication unit 216 from the dispatch controller 206 and conveys the alert message to the called communication unit 216 via the base site 204 and communication resource 220. The alert message is sent based on the telephone number associated with the called communication unit 216. Upon receiving the alert message, the user of the called communication unit 216 can then use the dispatch identification contained in the alert message to initiate a dispatch communication with the calling communication unit 210.

The preferred embodiment of communication system 200, as illustrated in FIG. 2, shows the communication units 210, 216 communicating with the base site 204. In a preferred multi-cell communication system, however, a calling communication unit and a called communication unit may communicate with the communication infrastructure via different base sites that are both coupled to one short message processor. When the short message processor receives an alert message from a dispatch controller, the short message processor conveys the alert message to the called communication unit. Preferably, the short message processor conveys the alert message to the called communication unit via the base site from which the called communication unit is currently receiving infrastructure communications.

FIG. 3 is a block diagram depiction of a communication system 300 in accordance with an alternate embodiment of the present invention. The components of the alternative communication system 300 are in most cases identical to the components of the preferred communication system 200. The alternative communication system 300 comprises a
communication infrastructure 302, communication units 310 and 316, a voice mail server 322, and a public switched telephone network (PSTN) 324. The communication infrastructure 302 comprises a base site 304, a dispatch controller 306, an interconnect controller 308, and a short message processor 309. Like the preferred embodiment, the communication system 300 comprises an “iDEN” communication system that is commercially available from Motorola, Inc. of Schaumburg, Illinois. Accordingly, the communication units 310, 316 comprise “iDEN” radiotelephones and the communication infrastructure 302 comprises “iDEN” infrastructure components. Also, the voice mail server 322 comprises a Glenayre Voice Mail System commercially available from Glenayre Electronics, Inc. of Charlotte, North Carolina.

Operation of the alternative communication system 300 occurs substantially as follows in accordance with the present invention. The base site 304 receives a dispatch communication request from the calling communication unit 310 via communication resource 312. Like the preferred embodiment, the communication resources 312, 314, 320 are radio frequency, time divisioned channels. Since the dispatch controller 306 controls dispatch communications for the communication infrastructure 302, the base site 304 forwards the dispatch communication request to the dispatch controller 306. The dispatch controller 306 obtains the dispatch communication request from the base site 304 and attempts to fulfill the request. Unlike the preferred embodiment, however, when the dispatch communication request cannot be fulfilled, the base site 304 provides a telephone number associated with the called communication unit 316 to the calling communication unit 310 via the base site 304 and communication resource 314.

With the telephone number of the called communication unit 316, the user of the calling communication unit 310 can alert the user of the
called communication unit 316 of his or her failed request to establish a dispatch communication. At the calling communication unit’s user’s request, the calling communication unit 310 generates and transmits an alert message to the base site 304. The alert message includes the telephone number associated with the called communication unit, the dispatch identification of the calling communication unit, and a user message. The user of the calling communication unit 310 can enter or select the user message that is sent. The base site 304 receives the alert message from the calling communication unit 310 and forwards the alert message to the short message processor 309. The short message processor 309 receives from the base site 304 the alert message and then conveys the alert message to the called communication unit 316. Upon receiving the alert message, the user of the called communication unit 316 can then use the dispatch identification contained in the alert message to initiate a dispatch communication with the calling communication unit 310. Thus, a communication unit user may, alternatively, be alerted of a failed attempt by the user of another communication unit to establish communication.

When a dispatch communication request is denied by a dispatch controller, the present invention provides access to interconnect communication services (i.e., voice mail and short message alerting) supported by the communication system. Determining the telephone number associated with the called communication unit enables the called communication unit to be alerted even while involved in another communication. Providing the calling communication unit with the telephone number of a voice mail server which provides voice mail service to the called communication unit and the identification of a mailbox at the voice mail server enables the user of the calling communication unit to leave a voice mail message for the user of the called communication unit. Thus, the present invention improves dispatch services by providing the
dispatch service user with the means to contact an interconnect service user.

FIG. 4 is a logic flow diagram 400 of steps executed by a communication system in accordance with a preferred embodiment of the present invention. The logic flow begins (402) when a calling communication unit transmits (404) to a communication infrastructure a dispatch communication request that includes the dispatch identification of a dispatch target (i.e., a called communication unit or a group of called communication units). Upon receiving the dispatch communication request, the communication infrastructure determines whether the request can be granted.

If the request cannot be granted, the communication infrastructure preferably determines which services related to the dispatch communication request are available to the user of the calling communication unit. Specifically, can the user of the calling communication unit alert the dispatch target, and can the dispatch communication request be forwarded to a voice mail server? The communication infrastructure determines whether the calling communication unit is allowed to receive forwarded dispatch communications, whether the dispatch target allows dispatch communications to be forwarded to a voice mail server, and whether the dispatch target is capable of and allowed to receive an alert message. In the preferred embodiment, the communication infrastructure maintains databases that store the capabilities and purchased options of each communication unit and group of communication units. If the dispatch target is capable of and allowed to receive an alert message, then the alert service is available. If the dispatch target allows dispatch communications to be forwarded to a voice mail server and the calling communication unit is allowed to receive forwarded dispatch
communications, then the voice mail forwarding service is available. Upon determining which services related to the dispatch communication request are available, the communication infrastructure transmits an indication of the available services to the calling communication unit.

The calling communication unit receives (406) the indication of which services related to the dispatch communication request are available. Preferably, the user of the calling communication unit selects one of the available services. When the alert service is selected, the calling communication unit transmits (408) a service request message requesting that the dispatch target (i.e., the called communication unit, since groups of communication units are not alerted in the preferred embodiment) be alerted of an attempt by the calling communication unit to communicate with the dispatch target.

The communication infrastructure receives the service request message and determines (410) that the service request message is an alert request. The communication infrastructure then generates (412) an alert message that preferably includes the dispatch identification of the calling communication unit and a telephone number associated with the calling communication unit. The communication infrastructure determines (414) a telephone number associated with the called communication unit and transmits (416) the alert message to the called communication unit based on the telephone number associated with the called communication unit. Preferably, the alert message comprises a short text message and is transmitted to the called communication unit by a short message processor in the communication infrastructure. The transmission of the alert message to the called communication unit is discussed further with reference to FIG. 5 below.
Upon receiving the preferable alert message, the user of the called communication unit can initiate either a telephone call or a dispatch call to the calling communication unit using the contents of the alert message. If (418) the user instructs the called communication unit to initiate a telephone call, the called communication unit transmits (420) to the calling communication unit a telephone call based on the telephone number associated with the calling communication unit. If (418) the user, instead, instructs the called communication unit to initiate a dispatch call, the called communication unit transmits (422) to the calling communication unit a dispatch call based on the dispatch identification of the calling communication unit.

When the user of calling communication unit selects the voice mail forwarding service instead of the alert service, the calling communication unit transmits a service request message that requests the dispatch communication request to be forwarded to the voice mail server. The communication infrastructure receives the service request message and determines (426) that the service request message is a voice mail forwarding request rather than an alert request, the communication infrastructure forwards (424) the dispatch communication to a voice mail server. The forwarding of the dispatch communication to a voice mail server is discussed further with reference to FIG. 6 below. Upon transmitting (420) a telephone call, transmitting (422) a dispatch call, or forwarding (424) the dispatch communication to a voice mail server, logic flow 400 ends (428).

FIG. 5 is a logic flow diagram 416 of steps executed by a communication system to transmit an alert message in accordance with a preferred embodiment of the present invention. In the preferred embodiment, a communication infrastructure first determines whether a called communication unit is presently engaged in a telephone
communication. If (502) the called communication unit is presently engaged in a telephone communication, the communication infrastructure transmits (504) the alert message to the called communication unit. The called communication unit receives (506) the alert message and then interrupts the telephone communication to provide the alert message to the user of the called communication unit. Preferably, the interruption of the telephone communication involves notifying the user audibly while continuing the telephone communication.

If (502) the user is not presently engaged in a telephone communication, the communication infrastructure preferably transmits (510) a page to the called communication unit and then determines whether the called communication unit responded to the page. When (512) the called communication unit has responded to the page, the communication infrastructure transmits (514) the alert message to the called communication unit. The page is transmitted before the alert message to establish the ability of the called communication unit to receive the alert message.

FIG. 6 is a logic flow diagram of steps executed by a communication system to forward a dispatch communication to a voice mail server in accordance with a preferred embodiment of the present invention. In the preferred embodiment, the communication infrastructure determines whether the dispatch target of the dispatch communication is a single communication unit or a group of communication units. If (602) the dispatch target is a single called communication unit, then the calling communication unit receives (604) from the communication infrastructure a telephone number associated with a voice mail server that provides voice mail service to the called communication unit and an identification of a mailbox at the voice mail server. Preferably, the calling communication unit also receives instructions associated with access to the voice mail
server. The instructions enable the calling communication unit to automatically respond to the voice mail server messages in order to leave a voice mail message for a user of the called communication unit.

To leave such a voice mail message, the user of the calling communication unit instructs the calling communication unit to call the voice mail server using the telephone number received from the communication infrastructure. The calling communication unit transmits (606) to the voice mail server via the communication infrastructure, the identification of the mailbox at the voice mail server, a voice communication, and, preferably, automatic responses to voice mail server messages based on the instructions. In the preferred embodiment, at least a portion of the voice mail server messages are muted as the calling communication unit automatically responds to the voice mail server messages. Finally, upon receiving the voice communication, the voice mail server stores (608) the voice communication in the mailbox.

If (602) the dispatch target is a group of called communication units instead of a single called communication unit, then the calling communication unit receives (610) from the communication infrastructure a telephone number associated with a voice mail server that provides voice mail service to the group of communication units and an identification of a distribution list at the voice mail server associated with the group of communication units. Preferably, the calling communication unit also receives from the communication infrastructure instructions associated with access to the voice mail server and a bitmap indicating a subset of the group of communication units. In the preferred embodiment, a dispatch communication may occur without including all of the members of the called group. For example, group members involved in interconnect calls, at the time the dispatch communication request was made, would not have been included in the dispatch communication. The
bitmap indicates, then, the members of the group of communication units which are determined to have not been included in the dispatch communication.

To leave a voice mail message for the communication units which were not part of the dispatch communication but part of the dispatch target group, the user of the calling communication unit instructs the calling communication unit to call the voice mail server using the telephone number received from the communication infrastructure. The calling communication unit transmits (612) to the voice mail server via the communication infrastructure, the identification of the distribution list, the bitmap, a voice communication, and, preferably, automatic responses to voice mail server messages based on the instructions. In the preferred embodiment, at least a portion of the voice mail server messages are muted as the calling communication unit automatically responds to the voice mail server messages. Upon receiving the bitmap and identification of the distribution list, the voice mail server modifies (614) the distribution list to include only the subset of the group of communication units indicated by the bitmap. The voice mail server then stores (616) the voice communication in the mailbox of each communication unit of the group of communication units indicated by the distribution list.

FIG. 7 is a logic flow diagram 700 of steps executed by a communication system in accordance with an alternate embodiment of the present invention. The steps of logic flow diagram 700 are similar to the steps of logic flow diagram 400. Specifically, the alternate embodiment steps 702, 704, 706, 708, and 710 are the same as the preferred embodiment steps 402, 404, 406, 408, and 410, respectively. Additionally, the alternate embodiment steps 716, 718, 720, 722, 724, 726, and 728 are the same as the preferred embodiment steps 416, 418, 420, 422, 424, 426, and 428 respectively. However, the alternate
embodiment steps 712 and 714 differ from the preferred embodiment as follows.

In the preferred embodiment, when the calling communication unit transmits an alert request to the communication infrastructure, the communication infrastructure generates (412) an alert message and determines (414) the telephone number associated with the called communication unit. Alternatively, the telephone number associated with the called communication unit may be determined by the communication infrastructure and then sent to the calling communication unit. The calling communication unit receives (712) the telephone number associated with the called communication unit and, when instructed by the user of the calling communication unit to alert the called communication unit, generates an alert message. The alert message includes the telephone number associated with the called communication unit, the dispatch identification of the calling communication unit, the telephone number associated with the calling communication unit, and a user message. The user message may be either entered or selected by the user. The alert message is then transmitted (714) from the calling communication unit to the communication infrastructure.

A first alternate embodiment of the present invention was discussed above with reference to FIG. 7. In a second alternate embodiment, the communication infrastructure sends the calling communication unit a telephone number associated with the called communication unit without first sending an indication of which services are available and receiving a service request message in turn. In a third alternate embodiment, the communication infrastructure also sends the calling communication unit a telephone number associated with a voice mail server that provides voice mail service to the called communication unit without first sending an indication of which services are available and
receiving a service request message in turn. The user of the calling
communication unit in the second and third alternate embodiments may
then decide whether to alert the called communication unit or leave voice
mail. Finally, in a forth alternate embodiment, the communication
infrastructure, unable to grant a dispatch communication request,
generates an alert message and transmits the alert message to the called
communication unit automatically. Thus, the user of the called
communication unit is alerted of the failed dispatch communication
attempt promptly and without additional effort by the user of the calling
communication unit.

The present invention encompasses a method and apparatus for
alerting a communication unit and forwarding a dispatch communication in
a communication system. With this invention, a dispatch service user can
alert a communication unit involved in an interconnect communication of
the dispatch service user’s attempt to communicate. In addition, the
dispatch service user can leave a voice mail message for the user of the
communication unit. The present invention provides access to
interconnect services following failed dispatch communication requests,
and thus, improves the system’s dispatch communication services.

While the present invention has been particularly shown and
described with reference to particular embodiments thereof, it will be
understood by those skilled in the art that various changes in form and
details may be made therein without departing from the spirit and scope of
the present invention.

We claim:
Claims

1. A method for a calling communication unit in a communication system to forward a dispatch communication to voice mail, the method comprising the steps of:

 transmitting to a communication infrastructure a dispatch communication request that includes a dispatch identification of a called communication unit;

 receiving from the communication infrastructure, in response to the dispatch communication request, a telephone number associated with a voice mail server that provides voice mail service to the called communication unit and an identification of a mailbox at the voice mail server; and

 transmitting to the voice mail server via the communication infrastructure the identification of the mailbox at the voice mail server and a voice communication that can be stored by the voice mail server in the mailbox.
2. The method of claim 1, further comprising the steps of:
 prior to the step of receiving,
 receiving from the communication infrastructure an
 indication of which services related to the dispatch
 communication request are available to a user of the
 calling communication unit; and
 when the indication indicates that voice mail service is
 available to the user of the calling communication
 unit, transmitting to the communication infrastructure
 a service request message that requests the dispatch
 communication request to be forwarded to the voice
 mail server.

3. The method of claim 1, wherein the step of receiving further
 comprises the step of receiving instructions associated with access to the
 voice mail server; and wherein the step of transmitting the identification of
 the mailbox and the voice communication further comprises the step of
 automatically responding to voice mail server messages based on the
 instructions.
4. A method for a communication infrastructure to forward a dispatch communication request by a calling communication unit to voice mail, the method comprising the steps of:

receiving, from the calling communication unit, the dispatch communication request that includes a dispatch identification of a called communication unit;

transmitting, to the calling communication unit in response to the dispatch communication request, a telephone number associated with a voice mail server that provides voice mail service to the called communication unit and an identification of a mailbox at the voice mail server;

receiving from the calling communication unit, the identification of the mailbox at the voice mail server and a voice communication that can be stored by the voice mail server in the mailbox; and

conveying to the voice mail server the identification of the mailbox at the voice mail server and the voice communication.
5. A method for a calling communication unit in a communication system to forward a dispatch communication to voice mail, the method comprising the steps of:

transmitting to a communication infrastructure a dispatch communication request that includes a dispatch identification of a group of communication units;

receiving from the communication infrastructure, in response to the dispatch communication request, a telephone number associated with a voice mail server that provides voice mail service to the group of communication units and an identification of a distribution list at the voice mail server associated with the group of communication units; and

transmitting to the voice mail server via the communication infrastructure the identification of the distribution list at the voice mail server and a voice communication that can be stored by the voice mail server in a mailbox of each communication unit of the group of communication units indicated by the distribution list.
6. The method of claim 5, further comprising the steps of:
prior to the step of receiving,

receiving from the communication infrastructure, an
indication of which services related to the dispatch
communication request are available to a user of the
calling communication unit; and

when the indication indicates that voice mail service is
available to the user of the calling communication
unit, transmitting to the communication infrastructure
a service request message that requests the dispatch
communication to be forwarded to the voice mail
server.

7. The method of claim 5, further comprising the steps of:

receiving from the communication infrastructure a bitmap indicating
a subset of the group of communication units; and

transmitting to the voice mail server via the communication
infrastructure the bitmap to the voice mail server so that the
voice mail server can modify the distribution list to include
only the subset of the group of communication units
indicated by the bitmap.
8. A method for a communication infrastructure to forward a dispatch communication request by a calling communication unit to voice mail, the method comprising the steps of:
 receiving from the calling communication unit the dispatch communication request that includes a dispatch identification of a group of communication units;
 transmitting to the calling communication unit, in response to the dispatch communication request, a telephone number associated with a voice mail server that provides voice mail service to the group of communication units and an identification of a distribution list at the voice mail server associated with the group of communication units;
 receiving from the calling communication unit the identification of the distribution list at the voice mail server and a voice communication that can be stored by the voice mail server in a mailbox of each communication unit of the group of communication units indicated by the distribution list; and conveying to the voice mail server the identification of the distribution list at the voice mail server and the voice communication.
9. A communication unit comprising:
 a transmitter that transmits a dispatch communication request to a
 communication infrastructure, the dispatch communication
 request including a dispatch identification of a called
 communication unit;
 a receiver that receives, responsive to transmission of the dispatch
 communication request, a telephone number associated
 with a voice mail server that provides voice mail service to
 the called communication unit and an identification of a
 mailbox at the voice mail server; and
 a processor, coupled to the receiver and the transmitter, that
 instructs the transmitter to transmit the telephone number to
 the communication infrastructure to enable the
 communication infrastructure to establish a communication
 link between the communication unit and the voice mail
 server.
10. A communication infrastructure comprising:
 a base site that receives a dispatch communication request from a communication unit;
 a dispatch controller, coupled to the base site, that determines whether the dispatch communication request can be granted, and when the dispatch communication request cannot be granted, conveys a telephone number associated with a voice mail server that provides voice mail service to the communication unit and an identification of a mailbox at the voice mail server to the communication unit via the base site; and
 an interconnect controller, coupled to the base site and a switched telephone network, that receives the telephone number associated with the voice mail server from the communication unit via the base site and establishes a communication link between the communication unit and the voice mail server via the switched telephone network.
FIG. 1

Diagram showing a system with a transmitter, receiver, and processor.

FIG. 2

Diagram showing a system with a communication unit, voice mail server, PSTN, base site, dispatch controller, interconnect controller, and short message processor.
FIG. 3
START

TRANSMIT A DISPATCH COMMUNICATION REQUEST THAT INCLUDES A DISPATCH IDENTIFICATION OF A DISPATCH TARGET FROM A CALLING COMMUNICATION UNIT TO A COMMUNICATION INFRASTRUCTURE

RECEIVE, AT THE CALLING COMMUNICATION UNIT, AN INDICATION OF WHICH SERVICES ARE AVAILABLE TO A USER OF THE CALLING COMMUNICATION UNIT RELATED TO THE DISPATCH COMMUNICATION REQUEST

TRANSMIT, FROM THE CALLING COMMUNICATION UNIT TO THE COMMUNICATION INFRASTRUCTURE, A SERVICE REQUEST MESSAGE REQUESTING ONE OF THE AVAILABLE SERVICES

THE SERVICE REQUEST MESSAGE IS AN ALERT REQUEST FOR THE DISPATCH TARGET, A CALLED COMMUNICATION UNIT?

NO

YES

GENERATE AN ALERT MESSAGE THAT INCLUDES A DISPATCH IDENTIFICATION OF THE CALLING COMMUNICATION UNIT AND A TELEPHONE NUMBER ASSOCIATED WITH THE CALLING COMMUNICATION UNIT

DETERMINE IN THE COMMUNICATION INFRASTRUCTURE A TELEPHONE NUMBER ASSOCIATED WITH THE CALLED COMMUNICATION UNIT

TRANSMIT, USING A SHORT MESSAGE PROCESSOR IN THE COMMUNICATION INFRASTRUCTURE, THE ALERT MESSAGE

FIG. 4A
FIG. 4B
502
THE CALLED COMMUNICATION UNIT
IS PRESENTLY ENGAGED IN A
TELEPHONE COMMUNICATION?

504
TRANSMIT FROM THE COMMUNICATION INFRASTRUCTURE
THE ALERT MESSAGE TO THE CALLED COMMUNICATION UNIT

506
RECEIVE AT THE CALLED COMMUNICATION
UNIT THE ALERT MESSAGE

508
INTERRUPT THE TELEPHONE COMMUNICATION
TO PROVIDE THE ALERT MESSAGE TO A USER
OF THE CALLED COMMUNICATION UNIT

510
TRANSMIT A PAGE FROM THE COMMUNICATION
INFRASTRUCTURE TO THE CALLED COMMUNICATION UNIT

512
THE CALLED COMMUNICATION UNIT
HAS RESPONDED TO THE PAGE?

514
TRANSMIT THE ALERT MESSAGE FROM THE
COMMUNICATION INFRASTRUCTURE TO THE CALLED
COMMUNICATION UNIT

FIG. 5
FIG. 6

602

THE DISPATCH
TARGET IS A CALLED COMMUNICATION
UNIT RATHER THAN A GROUP OF
COMMUNICATION UNITS

NO

YES

604

RECEIVE, FROM THE COMMUNICATION INFRASTRUCTURE AT
THE CALLING COMMUNICATION UNIT, A TELEPHONE NUMBER
ASSOCIATED WITH A VOICE MAIL SERVER THAT PROVIDES
VOICE MAIL SERVICE TO THE CALLED COMMUNICATION UNIT,
AN IDENTIFICATION OF A MAILBOX AT THE VOICE MAIL
SERVER, AND INSTRUCTIONS ASSOCIATED WITH
ACCESS TO THE VOICE MAIL SERVER

606

TRANSMIT, FROM THE CALLING COMMUNICATION UNIT TO
THE VOICE MAIL SERVER, AUTOMATIC RESPONSES TO VOICE
MAIL SERVER MESSAGES BASED ON THE INSTRUCTIONS,
THE IDENTIFICATION OF THE MAILBOX AT THE
VOICE MAIL SERVER, AND A VOICE COMMUNICATION

608

STORE THE VOICE COMMUNICATION IN THE
MAILBOX AT THE VOICE MAIL SERVER

610

RECEIVE, FROM THE COMMUNICATION INFRASTRUCTURE AT
THE CALLING COMMUNICATION UNIT, A TELEPHONE NUMBER
ASSOCIATED WITH A VOICE MAIL SERVER THAT PROVIDES
VOICE MAIL SERVICE TO THE GROUP OF COMMUNICATION
UNITS, AN IDENTIFICATION OF A DISTRIBUTION LIST AT
THE VOICE MAIL SERVER, A BITMAP INDICATING A SUBSET
OF THE GROUP OF COMMUNICATION UNITS, AND INSTRUCTIONS
ASSOCIATED WITH ACCESS TO THE VOICE MAIL SERVER

612

TRANSMIT, FROM THE CALLING COMMUNICATION UNIT TO
THE VOICE MAIL SERVER, AUTOMATIC RESPONSES TO VOICE
MAIL SERVER MESSAGES BASED ON THE INSTRUCTIONS,
THE IDENTIFICATION OF THE DISTRIBUTION LIST AT THE
VOICE MAIL SERVER, THE BITMAP, AND A
VOICE COMMUNICATION

614

MODIFY THE DISTRIBUTION LIST AT THE VOICE MAIL
SERVER TO INCLUDE ONLY THE SUBSET OF THE GROUP
OF COMMUNICATION UNITS INDICATED BY THE BITMAP

616

STORE THE VOICE COMMUNICATION IN A MAILBOX OF EACH
COMMUNICATION UNIT OF THE GROUP OF COMMUNICATION
UNITS INDICATED BY THE DISTRIBUTION LIST
START 702

TRANSMIT A DISPATCH COMMUNICATION REQUEST THAT INCLUDES A DISPATCH IDENTIFICATION OF A DISPATCH TARGET FROM A CALLING COMMUNICATION UNIT TO A COMMUNICATION INFRASTRUCTURE 704

RECEIVE, AT THE CALLING COMMUNICATION UNIT, AN INDICATION OF WHICH SERVICES ARE AVAILABLE TO A USER OF THE CALLING COMMUNICATION UNIT RELATED TO THE DISPATCH COMMUNICATION REQUEST 706

TRANSMIT, FROM THE CALLING COMMUNICATION UNIT TO THE COMMUNICATION INFRASTRUCTURE, A SERVICE REQUEST MESSAGE REQUESTING ONE OF THE AVAILABLE SERVICES 708

THE SERVICE REQUEST MESSAGE IS AN ALERT REQUEST FOR THE DISPATCH TARGET, A CALLED COMMUNICATION UNIT? 710

NO

RECEIVE, AT THE CALLING COMMUNICATION UNIT, A TELEPHONE NUMBER ASSOCIATED WITH THE CALLED COMMUNICATION UNIT 712

YES

TRANSMIT AN ALERT MESSAGE THAT INCLUDES THE TELEPHONE NUMBER ASSOCIATED WITH THE CALLED COMMUNICATION UNIT, A DISPATCH IDENTIFICATION OF THE CALLING COMMUNICATION UNIT, A TELEPHONE NUMBER ASSOCIATED WITH THE CALLING COMMUNICATION UNIT, AND A USER MESSAGE, FROM THE CALLING COMMUNICATION UNIT TO THE COMMUNICATION INFRASTRUCTURE 714

TRANSMIT, USING A SHORT MESSAGE PROCESSOR IN THE COMMUNICATION INFRASTRUCTURE, THE ALERT MESSAGE 716

B 700

FIG. 7A
B

USER INSTRUCTS THE CALLED COMMUNICATION UNIT TO INITIATE A TELEPHONE CALL WITH THE CALLING COMMUNICATION UNIT RATHER THAN A DISPATCH CALL?

YES

TRANSMIT, FROM THE CALLED COMMUNICATION UNIT TO THE CALLING COMMUNICATION UNIT, A DISPATCH CALL BASED ON THE DISPATCH IDENTIFICATION OF THE CALLING COMMUNICATION UNIT

NO

TRANSMIT, FROM THE CALLED COMMUNICATION UNIT TO THE CALLING COMMUNICATION UNIT, A TELEPHONE CALL BASED ON THE TELEPHONE NUMBER ASSOCIATED WITH THE CALLING COMMUNICATION UNIT

END

A

THE SERVICE REQUEST MESSAGE REQUESTS THAT THE DISPATCH COMMUNICATION BE FORWARD TO A VOICE MAIL SERVER?

NO

YES

FORWARD THE DISPATCH COMMUNICATION TO A VOICE MAIL SERVER

END

FIG. 7B
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC(6)</th>
<th>H04Q 7/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>US CL</td>
<td>455/413</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S.: 455/413, 412, 414, 417, 461, 466, 517, 518, 560, 520, 550; 379/88.17, 88.18, 67.1, 68

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

NONE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, E</td>
<td>US 6,002,750 A (ERTZ) 14 December 1999, see whole document.</td>
<td>1-10</td>
</tr>
<tr>
<td>A, P</td>
<td>US 5,966,652 A (COAD ET AL) 12 October 1999, see whole document.</td>
<td>1-10</td>
</tr>
<tr>
<td>A, P</td>
<td>US 5,943,399 A (BANNISTER ET AL) 24 August 1999, see whole document.</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 5,802,466 A (GALLANT ET AL) 01 September 1998 see whole document.</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 5,797,103 A (DUDA) 18 August 1998, see whole document.</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search

29 FEBRUARY 2000

Date of mailing of the international search report

06 APR 2000

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks

Box PCT

Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

WILLIAM TROST

Telephone No. (703) 308-5318

Form PCT/ISA/210 (second sheet)(July 1992)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5,711,011 A (URS ET AL) 20 January 1998, see abstract, Col. 3;1-Col. 7;68.</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 5,623,538 A (PETTY) 22 April 1997, see whole document.</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 5,418,835 A (FROHMAN ET LA) 23 May 1995, see whole document.</td>
<td>1-10</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,109,400 A (PATSIOKAS ET AL) 28 April 1992, see Col. 1;50-Col. 2;55.</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet)(July 1992)☆