
US 2004OO646O1A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0064601 A1

Swanberg (43) Pub. Date: Apr. 1, 2004

(54) ATOMIC MEMORY MIGRATION Publication Classification
APPARATUS AND METHOD

(51) Int. Cl." ... G06F 13/28
(75) Inventor: Randal Craig Swanberg, Round Rock, (52) U.S. Cl. .. 710/22

TX (US)
(57) ABSTRACT

Correspondence Address:
Duke W. Yee An atomic memory migration apparatus and method are
Carstens, Yee & Cahoon, LLP provided. With the apparatus and method, all active DMA
P.O. BOX 802.334 mappings to a given physical page of memory are identified
Dallas, TX 75380 (US) and future mappingS/unmappings to the physical page are

Serialized with migrations of current mappings. The identi
(73) Assignee: International Business Machines Cor- fied DMA mappings are then disabled at the bus level and

poration, Armonk, NY the physical page is migrated to a new memory page. All
existing DMA mappings are also migrated to the new page.

(21) Appl. No.: 10/261,864 After migration is completed, the DMA mappings, which
have now been migrated to the new page, are reenabled at

(22) Filed: Sep. 30, 2002 the bus level.

REQUEST TO DISABLE
DMA CAPABILITY

REQUEST TO REENABLE
DMA CAPABILITY

260

PLATFORM
MECHANISMS

YN
MEMORY MIGRATION

PENDING NOTIFICATION
PAGE QUERY

PAGE MIGRATE START NOTIFICATION
PAGE MIGRATE END NOTIFICATION

MEMORY MIGRATION COMPLETE NOTIFICATION

REGISTER DMA MAPPER 210
UNREGISTER DMA MAPPER

Y.

DMA
MAPPER 270

DMA
MAPPER 290

DMA
MAPPER 280

Patent Application Publication Apr. 1, 2004 Sheet 1 of 8 US 2004/006.4601 A1

p
102 108 104 116

HOST/PCI MAIN AUDIO PROCESSORKD CACHE/ KRC

BUS

106

SCSI HOST LAN Brison GRAPHICS AUDIO/VIDEO
BUS ADAPTER ADAPTER || || ADAPTER || ADAPTER

112 126 110 114 118 119

128
KEYBOARD AND

CD-ROM - 120-MOUSEASAFFERI MODEM | MEMORY
f FIC. 122 124

Patent Application Publication Apr. 1, 2004 Sheet 2 of 8 US 2004/006.4601 A1

201

NORMAL
OPERATION

MEMORY
MGRATION
COMPLETE

MEMORY
MIGRATION
PENDING

FIC. 2A
2O3

PAGE
MIGRATE
END

205 PAGE
MIGRATE
START

204

REQUEST TO DISABLE
DMA CAPABILITY

REQUEST TO REENABLE
DMA CAPABILITY

260

PLAFORM
MECHANISMS

\-
MEMORY MIGRATION

PENDING NOTIFICATION
PAGE QUERY

PAGE MIGRATE START NOTIFICATION
PAGE MIGRATE END NOTIFICATION

HIC. 2B MEMORY MIGRATION COMPLETE NOTIFICATION

REGISTER DMA MAPPER 210
UNREGISTER DMA MAPPER

DMA
MAPPER 270

DMA
MAPFER 290

DMA
MAPPER 280

DMA
MAPPER 295

Patent Application Publication Apr. 1, 2004 Sheet 3 of 8 US 2004/006.4601 A1

301 DMA MAPPER RECEIVES REQUEST
TO MAP BUFFER FOR DMA FROM

SPECIFIED DMA POOL

DMA MAPPER SERIALIZES WITH
302 KERNEL'S MEMORY REMOVE FIC. 3

OPERATION BY DISABLING ITS
CPU FROM RESPONDING TO
INTERPROCESSOR INTERRUPTS

303

315

IS MEMORY
MIGRATE SERIALIZATION

REQUIRED?

YES

RELEASE LOCK FOR 314
YES THIS DMA POOL

ACQUIRE LOCK FOR
THIS DMA POOL RE-ENABLE INTERRUPTS 315

IN THIS CPU

END

NO

IS MEMORY
MIGRATE SERIALIZATION

REQUIRED?

NO

ALL YES C END D
PAGES OF BUFFER 309

MAPPED?

305 NO RECORD THIS MAPPING IN I/O
LOOK UP INFORMATION FOR VIRTUAL-TO-RPN ADDRESS TABLE
VIRTUAL PAGE, INCLUDING

306-1 PHYSICAL TRANSLATION AND IS
STATE BITS MEMORY MIGRATE NO

IN PROGRESS2

-3. PAGE IN MIGRATE IS
THIS PAGE

WITHN RANGE BEING
MIGRATED

p

STATE
307 NO

ESTABLISH DMA I/O VIRTUAL
508-1ADDRESS MAPPING FOR THIS PAGE

RECORD THIS MAPPING IN
RPN-TO-I/O VIRTUAL ADDRESS TABLE

Patent Application Publication Apr. 1, 2004 Sheet 4 of 8 US 2004/0064601 A1

FIC 4

DMA MAPPER RECEIVES REMOVE I/O VIRTUAL 414
MAPPINGS FOR ALL PAGES 401 REQUEST TO UNMAP

DMA BUFFER FROM
PEC SPECIFIED POOL REMOVE ENTRIES FROM THE 415

I/O VIRTUAL-TO-RPN TABLE DMA MAPPER SERIALIZES
WITH KERNEL'S MEMORY 416

4- REMOVEOPERATION BY DISABLING ITS CPU IS MEMORY NO
FROM RESPONDING TO MGRATE SERIALIZATION

INTERPROCESSOR REQUIRED?
INTERRUPTS

405 RELEASE LOCK FOR THIS DMA POOL
IS

NO MEMORY
MIGRATE SERIALIZATION

REQUIRED
RE-ENABLE INTERRUPTS ON THIS CPU-18

END
YES

ACQUIRE LOCK FOR 408
THIS DMA POOL IS I/O

VIRTUAL IN MIGRATE
STATE

SET DEFERRED
UNMAP STATE
FOR I/O
VIRTUAL
ADDRESS

IS
MEMORY MIGRATE

IN PROGRESS
REMOVE I/O

VIRTUAL MAPPING

REMOVE ENTRY FROM
I/O VIRTUAL-TO-RPN

TABLE
409

ALL
PAGES OF BUFFER

PROCESSED? IS
RPN IN RANGE

OF MEMORY BEING
MIGRATED?

REMOVE ENTRY FROM
RPN-TO-I/O VIRTUAL TABLE

LOOK UP I/O
VIRTUAL-TO-RPN

TABLE INDEXED BY I/O
VIRTUAL ADDRESS

Patent Application Publication Apr. 1, 2004 Sheet 5 of 8 US 2004/006.4601 A1

START FIG. 5A

KERNEL STARS MEMORY 501
MGRATE OPERATION

KERNEL SETS MEMORY 502
503 REMOVE IN PROGRESS FLAG

KERNEL SENDS INTERPROCESSOR
INTERRUPTS TO ALL CPUS

504

KERNEL
RECEIVED ACKNOWLEDGE
OF INTERRUPT FROM ALL

CPUs?

509

HAVE THE SPECIFIED PAGE MAPPED FOR DMA

<3> MIGRATE MAPPINGS2 THE
PAGE

ES Y

DELAY TO ALLOWSHORT 511
TERM MAPPINGS TO EXPRE

513
MORE

QUERY AT TMPS
p

NOTIFY ALL DMA
MAPPERS THAT THE PAGE 514

IS NOW MIGRATING;
MAPPERS RETURN LIST
OF ACTIVE MAPPINGS

YES

KERNEL KNOWS THAT THE
MEMORY MIGRATE IN

PROGRESS FLAG IS NOW
VISIBLE TO ALL NEW

DISABLED CRITICAL SECTIONS

ALL
DMA MAPPINGS
PROCESSED

60 5.15
DETERMINE I/O BRIDGE

FOR DMA MAPPING 516

DISABLE DMA CAPABILITY
FOR THE I/O BRIDGE 517

MIGRATE THE PAGE (COPY
KERNEL CLEARS MEMORY FROM CONTENTS TO NEW PAGE)Y518

MIGRATE IN PROGRESS FLAG FIG. 5B

524 END
TO

C END D 5 FIG. 5B

KERNEL NOTIFIES ALL DMA SET PAGE
MAPPERS OF MEMORY RANGE STATE TO

BEING REMOVED IN-MIGRATE

YES

506 508

NO ALLPAGES
IN THE RANGE
MIGRATED?

YES 507
KERNE NOTIFEES ALL OMA

MAPPERS THAT MEMORY MIGRATE
OPERATION IS COMPLETE

523

Patent Application Publication Apr. 1, 2004 Sheet 6 of 8 US 2004/006.4601 A1

FIC.. 6 FIC. 6B
FROM

FIG. 5A
601 DMA MAPPER RECEIVES NOIFICATION

OF MEMORY RANGE TO BE MICRATED
UPDATE OMA

MAPPING TO POINT
TO NEW PAGE DMA MAPPER ALLOCATES RPN-TO-I/O 602Y VIRTUAL ADDRESS TABLE FOR MEMORY

RANGE BEING MIGRATED

605 SETS FLAG TO REQUIRE
MEMORY MIGRATE SERALIZATION

604 SENDS INTERPROCESSOR
INTERRUPT TO ALL CPUs

605
ALL

CPUS ACKNOWLEDGED
INTERRUPT

YES

606 ACQUIRE LOCK FOR THIS DMA POOL

STORE MEMORY RANGE MIGRATION TO
607 INFORMATION IN PRIVATE MEMORY FIG. 5A

A.
ACTIVATE

MAPPINGS RECORDED IN THE
I/O VIRTUAL-TO-RPN TABLE

519
ALL

DMA MAPPINGS
PROCESSED

p

RE-ENABLE DMA. ON
ALL I/O BRIDGES

PREVIOUSLY DISABLED

KERNE NOTIFIES ALL DMA
MAPPERS THAT THIS PAGE
MIGRATE IS COMPLETE

YES

PROCESSED RELEASE LOCK FOR
p THIS DMA POOL 611

END
IS

RPN OF MAPPNG YES
WITHIN THE MEMORY RANGE

BEING MICRATED
RECORD MAPPING IN THE

RPN-TO-I/O VIRTUAL TABLE Y610

Patent Application Publication Apr. 1, 2004 Sheet 7 of 8 US 2004/006.4601 A1

DMA MAPPER RECEIVES
REQUEST ASKING IF THE
SPECIFIED PAGE (RPN)
IS MAPPED FOR DMA

ACQUIRE LOCK FOR
THIS DMA POOL

INDEX INTO RPN-TO-I/O
VIRTUAL TABLE USING RPN

704
ARE

THERE ACTIVE NO
MAPPINGS

p
706

SET COUNT OF
ACTIVE MAPPINGS

RELEASE LOCK FOR
THIS DMA POOL

RETURN COUNT OF ACTIVE
MAPPINGS TO KERNEL

701

702

705
DMA MAPPER RECEIVES
NOTIFICATION THAT THE
SPECIFIED PAGE (RPN)
IS STARTING MIGRATION

ACQUIRE LOCK FOR
THIS DMA POOL

INDEX INTO RPN-TO-I/O
VIRTUAL TABLE USING RPN

RECORD ALL I/O
VIRTUAL ADDRESSES

MAPPING THAT RPN TO
PROVIDE TO KERNEL

801 SET COUNT OF
ACTIVE MAPPNG

TO AERO

802
707

803

708

804
FIC. 7

SET IN-MIGRATE STATE
BITS FOR EACH OF THOSE
I/O VIRTUAL ADDRESSES

RELEASE LOCK

805

806

FIC. 8

Patent Application Publication

DMA MAPPER RECEIVES NOTIFICATION
THAT THE SPECIFIED PAGE (RPN)

MIGRATION IS COMPLETE

ACQUIRE LOCK FOR THIS DMA POOL

INDEX INTO RPN-TO-I/O
VIRTUAL TABLE USING RPN

INVALIDATE I/O VIRTUAL
RECORDS FOR THE OLD RPN

UPDATE I/O VIRTUAL-TO-RPN TABLE
ENTRIES TO POINT TO THE NEW PAGE

CLEAR THE IN-MIGRATE STATE FOR
AFFECTED I/O VIRTUAL ADDRESSES

901

902

903

904

905

906

IS
DEFERRED UNMAP

SET2

REMOVE I/O VIRTUAL MAPPING

REMOVE ENTRY FROM I/O
VIRTUAL-TO-RPN TABLE

RELEASE LOCK

NO

908

909

910

FIC. 9

Apr. 1, 2004 Sheet 8 of 8

DMA MAPPER RECEIVES
1001 NOTIFICATION THAT

MEMORY MIGRATED
OPERATION IS COMPLETE

1002 ACQUIRE LOCK FOR
THIS DMA POOL

CLEAR MEMORY
1003 N MIGRATED INFORMATION

IN PRIVATE MEMORY

CLEAR FLAG
1004 REQUIRING MEMORY

MIGRATE SERIALIZATION

1005 RELEASE LOCK

FREE STORAGE USED
1006 FOR RPN-TO-I/O

VIRTUAL ADDRESS TABLE

FIC. 1 O

US 2004/006.4601 A1

US 2004/0064601 A1

ATOMIC MEMORY MIGRATION APPARATUS
AND METHOD

BACKGROUND OF THE INVENTION

0001) 1. Technical Field
0002 The present invention is directed to an atomic
memory migration method and apparatus. More Specifically,
the present invention is directed to a method of migrating
memory that is the target of a Direct Memory AcceSS
(DMA), i.e. memory-to-memory, operation.
0003 2. Description of Related Art
0004. The migration of memory is a key building block
used to Support Such operations as dynamic removal of
memory or dynamic accumulation of physically contiguous
page frames. For memory pages that are only referenced by
central processing units (CPUs), there are Straightforward
methods for ensuring atomic access to the memory page,
Such as removing all translations to the page and Spinning in
fault handlers if the page is undergoing migration. However,
pages that are also the targets of Direct Memory AcceSS
(DMA) operations by external input/output (I/O) agents are
far more difficult to manage.
0005 The difficulty in migrating memory that is the
target of DMA operations is that the DMA operations are not
performed by the CPUs and thus, the CPU cannot simply be
placed in a fault handler Spin State during the migration
period. It is necessary to ensure that all possible Outstanding
DMA operations by I/O agents on the page that is Subject to
migration, are Suspended during the period of the migration.
This is difficult because I/O agents in the System represent
autonomous processing units that can asynchronously read
and write System memory. The operating System is physi
cally executed on the System's central processing units
(CPUs) and can Synchronously control the access to System
memory from CPUs. The operating system has no direct
control over the external I/O agents.
0006 Thus, it would be beneficial to have a method and
apparatus for migrating memory that is the target of DMA
operations.

SUMMARY OF THE INVENTION

0007. The present invention provides an atomic memory
migration apparatus and method. With the present invention,
all active DMA mappings to a given physical page of
memory are identified and future mappingS/unmappings to
the physical page are Serialized with migrations of current
mappings. The identified DMA mappings are then disabled
at the bus level and the physical page is migrated to a new
memory page. All existing DMA mappings are also
migrated to the new page. After migration is completed, the
DMA mappings, which have now been migrated to the new
page, are reenabled at the bus level.
0008. With the present invention DMA mappers, i.e.
DMA Support layerS Such as drivers and management Soft
ware for bus bridges or the like that are responsible for
handling DMA operations, register with the operating Sys
tem kernel as a DMA mapper. The DMA mappers include an
event handler that is called for various page migration State
transitions and adapts the DMA mappers to conform to the
page migration State machine of the present invention.

Apr. 1, 2004

0009. The page migration state machine has six primary
States: normal operation, memory migration pending, page
query, page migrate start, page migrate end, and memory
migration complete. In normal operation, the DMA mappers
have their own registered set of devices/drivers for which
they are managing DMA operations/mappings. In this mode,
no explicit Serialization is performed by the DMA mapper as
it executes only in the context of the device driver which
calls it, which is already Serialized with respect to this device
and DMA pool. The DMA mapper keeps a record of all
active DMA mappings on a per-device granularity.
0010. In response to a request to migrate a portion of
memory identified by a range of addresses, the State machine
transitions to the memory migration pending State. In the
memory migration pending State, notification that there will
be memory migration requests is Sent from the operating
system kernel to the DMA mappers. This notification
informs the DMA mappers to incur the cost of building and
maintaining mapping information data in order to track all
DMA mappings to the Specific address range. In addition,
the notification causes the DMA mapper to incurlocking and
Serialization overhead that is not required during the normal
operation State.
0011. In response to receiving the notification that
memory migration requests will be sent, the DMA mapper
Sets a flag indicating that locking is required in all mapping
paths and issues a Synchronous interprocessor interrupt to all
CPUs in the system. The interrupt is sent at an interrupt level
less favored than the interrupt level of DMA operations.
Thus, once all CPUs in the system have acknowledged the
interrupt, the DMA mapper knows that all DMA critical
operations have exited and new critical Sections will See the
flag requiring Serialization.
0012. The DMA mapper then serializes with the mapping
and unmapping paths and Scats the outstanding DMA map
pings for mappings within the range of the migration target
address range. The DMA mapper then establishes data
Structures to manage each of these DMA mappings that fall
within the target address range.
0013 The state machine transitions to the page query
State in response to a query from the operating System,
which is driving the page migration, as to whether the DMA
mapper has a particular page mapped for DMA operations.
In response to receiving this query, the DMA mapper
Serializes with new mappingS/unmappings and looks to See
if the specified page is DMA mapped. If the page is DMA
mapped by the DMA mapper, a predetermined time period
may be allowed to expire before the transition to the next
State, page migrate Start, is performed in order to allow for
transient DMA mappings to expire.
0014. Once the operating system kernel has performed all
the necessary queries to the registered DMA mappers, the
operating System kernel sends a notification to the DMA
mappers that a Specified page is now in a migration State and
the state machines of the event handlers of the DMA
mapperS transition to the page migrate Start State. In
response to receiving this notification, the DMA mapper Sets
internal State So that any unmap attempts to the in-migrate
page are deferred. The DMA mapper then accumulates all
remaining active DMA mappings to the page and reports
them to the operation System kernel. The operating System
kernel, after accumulating all the mappings for the page

US 2004/0064601 A1

from all DMA mappers in the system, utilizes a platform
specific facility to disable DMA arbitration for each DMA
mapping found, migrate the old page to the new page, update
each DMA mapping with the new page, and then re-enable
DMA arbitration.

0.015. Once the page migration is completed, the operat
ing system kernel notifies the DMA mappers of the end of
the page migration, whether or not the page migration was
completed Successfully or not. Receipt of this notification
causes the state machine of the event handlers of the DMA
mappers to transition to the page migrate end State. The
DMA mapper performs any deferred unmaps that might
have been initiated when the page was in migrate State. The
DMA mapper also updates internal data Structures to reflect
the DMA mappings that now map to the new memory page.
The previous query-migrate Start-migrate end States are
repeated for each page in the range that was communicated
in the migrate pending State, prior to the migrate complete
State.

0016. The operating system kernel then notifies the DMA
mappers that there will be no more memory migration
requests and the DMA mapperS transition to the memory
migration complete State. The DMA mapper relaxes the
Serialization and locking that was turned on during the
memory migrate pending State and frees any additional data
structures that were allocated in order to track DMA map
pings to the Specified memory address range. The comple
tion of this State is a return to the normal operation State.
0017 Thus, the present invention provides a mechanism
for atomically migrating a memory page with active DMA
mappings. Furthermore, the present invention provides a
mechanism for atomically migrating a memory page with
concurrent DMA activity.
0.018. These and other features and advantages of the
present invention will be described in, or will become
apparent to those of ordinary skill in the art in View of, the
following detailed description of the preferred embodi
mentS.

BRIEF DESCRIPTION OF THE DRAWINGS

0019. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood
by reference to the following detailed description of an
illustrative embodiment when read in conjunction with the
accompanying drawings, wherein:
0020 FIG. 1 is an exemplary block diagram of a data
processing apparatus in which the present invention may be
implemented;
0021 FIG. 2A is an exemplary diagram illustrating a
State machine according to the present invention;
0022 FIG. 2B is an exemplary diagram illustrating the
interaction of the primary operational components of the
present invention;
0023 FIG.3 is a flowchart outlining an exemplary DMA
mapping operation of a DMA mapper in accordance with the
present invention;
0024 FIG. 4 is a flowchart outlining an exemplary DMA
unmap operation of a DMA mapper in accordance with the
present invention;

Apr. 1, 2004

0025 FIGS. 5A-5B are flowcharts outlining an exem
plary operation for performing atomic memory migration in
accordance with the present invention;
0026 FIG. 6 is a flowchart outlining an exemplary
operation of a DMA mapper for a memory migration pend
ing State;
0027 FIG. 7 is a flowchart outlining an exemplary
operation of a DMA mapper for a page query State;
0028 FIG. 8 is a flowchart outlining an exemplary
operation of a DMA mapper for a page migrate Start State;
0029 FIG. 9 is a flowchart outlining an exemplary
operation of a DMA mapper for a page migrate end State;
and

0030 FIG. 10 is a flowchart outlining an exemplary
operation of a DMA mapper for a memory migration com
plete State.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0031. With reference now to FIG. 1, a block diagram of
a data processing System is shown in which the present
invention may be implemented. Data processing system 100
is an example of a computer in which code or instructions
implementing the processes of the present invention may be
located. Data processing System 100 employs a peripheral
component interconnect (PCI) local bus architecture.
Although the depicted example employs a PCI bus, other
bus architectures such as Accelerated Graphics Port (AGP)
and Industry Standard Architecture (ISA) may be used.
Processor 102 and main memory 104 are connected to PCI
local bus 106 through PCI bridge 108. PCI bridge 108 also
may include an integrated memory controller and cache
memory for processor 102. Additional connections to PCI
local bus 106 may be made through direct component
interconnection or through add-in boards.
0032. In the depicted example, local area network (LAN)
adapter 110, Small computer system interface SCSI hostbus
adapter 112, and expansion bus interface 114 are connected
to PCI local bus 106 by direct component connection. In
contrast, audio adapter 116, graphics adapter 118, and audio/
video adapter 119 are connected to PCI local bus 106 by
add-in boards inserted into expansion slots. Expansion bus
interface 114 provides a connection for a keyboard and
mouse adapter 120, modem 122, and additional memory
124. SCSI host bus adapter 112 provides a connection for
hard disk drive 126, tape drive 128, and CD-ROM drive 130.
Typical PCI local bus implementations will support three or
four PCI expansion slots or add-in connectors.
0033. An operating system runs on processor 102 and is
used to coordinate and provide control of various compo
nents within data processing system 100 in FIG. 1. The
operating System may be a commercially available operating
system such as Windows XP, which is available from
MicroSoft Corporation. An object oriented programming
System Such as Java may run in conjunction with the
operating System and provides calls to the operating System
from Java programs or applications executing on data pro
cessing system 100. “Java” is a trademark of Sun Micro
Systems, Inc. Instructions for the operating System, the
object-oriented programming System, and applications or

US 2004/0064601 A1

programs are located on Storage devices, Such as hard disk
drive 126, and may be loaded into main memory 104 for
execution by processor 102.
0034) Those of ordinary skill in the art will appreciate
that the hardware in FIG. 1 may vary depending on the
implementation. Other internal hardware or peripheral
devices, Such as flash read-only memory (ROM), equivalent
nonvolatile memory, or optical disk drives and the like, may
be used in addition to or in place of the hardware depicted
in FIG. 1. Also, the processes of the present invention may
be applied to a multiprocessor data processing System.

0035. For example, data processing system 100, if
optionally configured as a network computer, may not
include SCSI hostbus adapter 112, hard disk drive 126, tape
drive 128, and CD-ROM 130. In that case, the computer, to
be properly called a client computer, includes Some type of
network communication interface, Such as LAN adapter 110,
modem 122, or the like. AS another example, data processing
system 100 may be a stand-alone system configured to be
bootable without relying on Some type of network commu
nication interface, whether or not data processing System
100 comprises some type of network communication inter
face. As a further example, data processing System 100 may
be a personal digital assistant (PDA), which is configured
with ROM and/or flash ROM to provide non-volatile
memory for Storing operating System files and/or user
generated data.

0.036 The depicted example in FIG. 1 is not meant to
imply architectural limitations. For example, data process
ing system 100 also may be a notebook computer or hand
held computer in addition to taking the form of a PDA. Data
processing system 100 also may be a kiosk or a Web
appliance.

0037. The processes of the present invention are per
formed by processor 102 using computer implemented
instructions, which may be located in a memory Such as, for
example, main memory 104, memory 124, or in one or more
peripheral devices 126-130.
0.038 AS previously stated above, the present invention
provides an atomic memory migration apparatus and method
for migrating memory regions that are the target of DMA
operations. With the present invention DMA mappers, i.e.
DMA Support layerS Such as drivers and management Soft
ware for bus bridges or the like that are responsible for
handling DMA operations, register with the operating Sys
tem kernel as a DMA mapper. The act of registering involves
the DMA mapper providing the operating System kernel
with the function pointer for the DMA mapper's state
machine notification handler. The operating System kernel
then maintains a list of DMA mapper functions to invoke
upon each State transition.
0.039 The DMA mappers include an event handler that is
called for various page migration State transitions and adapts
the DMA mappers to conform to the page migration State
machine of the present invention. As shown in FIG. 2A, the
page migration State machine has six primary States: normal
operation 201, memory migration pending 202, page query
203, page migrate Start 204, page migrate end 205, and
memory migration complete 206. In normal operation 201,
the DMA mappers have their own registered set of devices/
drivers for which they are managing DMA operations/

Apr. 1, 2004

mappings. In this mode, no explicit Serialization is per
formed by the DMA mapper as it executes only in the
context of the device driver which calls it, which is already
serialized with respect to this device and DMA pool. The
DMA mapper keeps a record of all active DMA mappings on
a per-device granularity.
0040. In response to a request to migrate a portion of
memory identified by a range of addresses, the State machine
transitions to the memory migration pending State 202. In
the memory migration pending State, notification that there
will be memory migration requests is sent from the operat
ing System kernel to the DMA mappers. This notification
informs the DMA mappers to incur the cost of building and
maintaining mapping information data in order to track all
DMA mappings to the Specific address range. In addition,
the notification causes the DMA mapper to incurlocking and
Serialization overhead that is not required during the normal
operation State.
0041. In response to receiving the notification that
memory migration requests will be sent, the DMA mapper
Sets a flag indicating that locking is required in all mapping
paths and issues a Synchronous interprocessor interrupt to all
CPUs in the system. The interrupt is sent at an interrupt level
less favored than the interrupt level of DMA operations,
allowing DMA mapping critical Sections to hold off this
interrupt until the mapping operation is complete. Thus,
once all CPUs in the system have acknowledged the inter
rupt, the DMA mapper knows that all DMA critical opera
tions have exited and new critical Sections will see the flag
requiring Serialization.
0042. The DMA mapper then serializes with the mapping
and unmapping paths and Scans the outstanding DMA
mappings for mappings within the range of the migration
target address range. The DMA mapper then establishes data
Structures to manage each of these DMA mappings that fall
within the target address range.
0043. The state machine transitions to the page query
State 203 in response to a query from the operating System,
which is driving the page migration, as to whether the DMA
mapper has a particular page mapped for DMA operations.
In response to receiving this query, the DMA mapper
Serializes with new mappingS/unmappings and looks to See
if the specified page is DMA mapped. If the page is DMA
mapped by the DMA mapper, a predetermined time period
may be allowed to expire in between a predetermined
number of query State retries before the transition to the next
State, page migrate Start, is performed in order to allow for
transient DMA mappings to expire.
0044. Once the operating system kernel has performed all
the necessary queries to the registered DMA mappers, the
operating System kernel sends a notification to the DMA
mappers that a Specified page is now in a migration State and
the state machines of the event handlers of the DMA
mapperS transition to the page migrate Start State 204. In
response to receiving this notification, the DMA mapper Sets
internal State So that any unmap attempts to the in-migrate
page are deferred. The DMA mapper then accumulates all
remaining active DMA mappings to the page and reports
them to the operating System kernel. The operating System
kernel, after accumulating all the mappings for the page
from all DMA mappers in the system, utilizes a platform
specific facility to disable DMA arbitration for each DMA

US 2004/0064601 A1

mapping found, migrate the old page to the new page, update
each DMA mapping with the new page, and then re-enable
DMA arbitration.

0.045 Once the page migration is completed, the operat
ing system kernel notifies the DMA mappers of the end of
the page migration, whether or not the page migration was
completed Successfully or not. Receipt of this notification
causes the state machine of the event handlers of the DMA
mappers to transition to the page migrate end State 205. The
DMA mapper performs any deferred unmaps that might
have been initiated when the page was in migrate State. The
DMA mapper also updates internal data Structures to reflect
the DMA mappings that now map to the new memory page.
The states 203-205 repeate for each page in the address
range that is being migrated.
0046) The operating system kernel then notifies the DMA
mappers that there will be no more memory migration
requests and the DMA mapperS transition to the memory
migration complete state 206. The DMA mapper relaxes the
Serialization and locking that was turned on during the
memory migrate pending State and frees any additional data
structures that were allocated in order to track DMA map
pings to the Specified memory address range. The comple
tion of this State is a return to the normal operation State.
0047 Thus, the present invention provides a mechanism
for atomically migrating a memory page with active DMA
mappings. Furthermore, the present invention provides a
mechanism for atomically migrating a memory page with
concurrent DMA activity.
0.048 FIG. 2B is an exemplary diagram illustrating the
interaction of the primary components of the present inven
tion. As shown in FIG. 2B, the primary components of the
present invention are the operating system kernel 210, DMA
mappers 220-250, and platform mechanisms 260. The DMA
mappers 220-250 have event handlers 270-295 that are used
to implement the State machine of the present invention.
0049. The DMA mappers 220-250 are DMA support
layer entities that handle DMA mapping for devices under
neath a particular bus bridge. For example, the DMA map
pers 220-250 may be drivers and management software for
bus bridges, e.g., PCI bus bridges, MicroChannel bus con
trollers, Shared Memory Architecture (SMA) controllers,
Infiniband Host Bus Controllers, and the like.
0050. The platform mechanisms 260 are platform spe
cific mechanisms for disabling and re-enabling DMA arbi
tration for a particular I/O Bridge on a particular platform.
For example, the platform Specific mechanisms 260 may
include a platform abstraction layer (PAL) that insulates the
operating System kernel from the platform architecture. This
PAL may receive requests for disabling or re-enabling DMA
arbitration and instruct a platform Specific facility, Such as a
hypervisor, to perform the actual functions of disabling or
re-enabling DMA arbitration on an I/O bridge.
0051. In accordance with the present invention, the oper
ating system kernel 210 sends notifications to the DMA
mappers 220-250 for changing the state, and hence the
operation, of the DMA mappers 220-250. The event han
dlers 270-295 of the DMA mappers 220-250 receive these
notifications and perform State transitions and orchestrate
the various operations of the DMA mappers 220-250 based
on these State transitions, as discussed previously and

Apr. 1, 2004

detailed hereafter. Through the use of the notifications sent
by the operating System kernel 210 and the State machine
operations implemented by the event handlers 270-295 of
the DMA mappers 220-250, atomic migration of pages of
memory may be performed even if the pages of memory are
the target of DMA operations or are targeted for DMA
operations during the migration of the pages of memory.
0.052 The DMA mappers 220-250 register and unregister
pages of memory for use with DMA operations of the
devices to which they are associated. FIG. 3 is a flowchart
outlining an exemplary DMA mapping operation for regis
tering a buffer for DMA operations in accordance with the
present invention. As shown in FIG. 3, the operation starts
with the DMA mapper receiving a request from a dependent
device driver to map a buffer for DMA operations from a
specified DMA memory page pool (step 301). The DMA
pool is a range of I/O virtual addresses that a particular
device beneath the I/O bridge is allocated to use.
0053. The DMA mapper serializes with the operating
System kernel's memory migration operation by disabling its
CPU from responding to interprocessor interrupts (Step
302). Disabling interrupts is CPU architecture specific. On
PowerPC architectures, the disabling is performed by dis
abling external interrupts by clearing a bit in the machine
Status register.
0054) A determination is then made as to whether
memory migration serialization is required (step 303). The
key point of the Serialization is that normal operation does
not require any explicit Serialization on the DMA pool. All
serialization is handled implicitly by the device driver
Serialization for the device requesting the DMA mapping
operation. Thus, in normal operation, the DMA mapping and
unmapping flags do not need to acquire any lockS. Serial
ization is turned on by block 603 in FIG. 6, described
hereafter, of the DMA mapper notification of migration
pending. The act of turning on locking itself is accomplished
in a consistent way with the use of the interrupt processor
interrupt and acknowledgment mechanisms of blocks 604
and 605 in FIG. 6, discussed hereafter. The serialization is
now explicitly required within the DMA mapper as it will be
called regarding the Same DMA pool not only by the owning
device driver, but by the operating System kernel memory
migration State machine notifications.
0055. If memory migration serialization is required, a
lock is acquired for the DMA pool (step 304). Thereafter, or
if memory migration Serialization is not required, a deter
mination is made as to whether all pages of the buffer have
been mapped for DMA (step 305). If not, a lookup of the
information for a virtual memory page is performed (Step
306) by querying the operating System kernel's Software
page table. This information includes the CPU virtual to
physical address translation and State bits.
0056. A determination is then made as to whether the
physical memory page is in a migrate State (step 307). This
determination may be performed based on the page State Set
by the kernel, such as in block 508 of FIG. 5A, described
hereafter. If the page is in a migrate State, the operation
continues to check the State until the page is no longer in a
migrate State. If the page is not in a migrate State, a DMAI/O
Virtual address mapping for this page is established (Step
308). This mapping is recorded in the I/O virtual address to
physical address table (step 309).

US 2004/0064601 A1

0057 The DMA I/O virtual address mapping is platform
and I/O bridge specific. In a preferred embodiment, the I/O
bridge utilizes an I/O page table to translate I/O reads/writes
from its bus into System memory addresses to forward to the
system bus. In some implementations, the DMA I/O virtual
address mapping may be one to one with System memory.
Thus, the establishment of a DMA I/O virtual address
mapping in the preferred embodiment may Store the I/O
Virtual to physical mapping in the I/O bridge's I/O page
table. The DMA mapper records all I/O virtual to physical
address mappings in its own data Structure tables in memory.

0.058 A determination is then made as to whether
memory migration is in progress (Step 310), i.e. whether
memory migration according to the present invention is
being performed. This may be determined based on the
memory migration flag Set by the operating System kernel as
discussed hereafter. If memory migration is not in progress,
the operation returns to step 305. Otherwise, if a memory
migration is in progress, a determination is made as to
whether the page is within the address range of the memory
that is being migrated (step 311). If not, the operation again
returns to step 305. However, if this page is within the
address range of memory being migrated, the mapping for
this page is recorded in the physical to I/O virtual address
table created by the DMA mapper to track DMA targeted
pages, as discussed hereafter (step 312).
0059) If all of the pages of the buffer are mapped (step
305), a determination is made as to whether memory migra
tion serialization is required (step 313) similar to step 303
above. If so, then the lock for the DMApool is released (step
314). Thereafter, or if memory migration serialization is not
required, the interrupts in the CPU are re-enabled (step 315)
and the operation ends. Enabling and disabling interrupts is
CPU architecture specific. In the PowerPC architecture,
disabling/enabling interrupts involves clearing/setting an
enable bit in the machine Status register. In IA64, for
example, disabling/enabling interrupts involves clearing/
Setting an enable bit in the processor Status register.

0060 FIG. 4 is a flowchart outlining an exemplary DMA
unmap operation of a DMA mapper in accordance with the
present invention. As shown in FIG. 4, the operation starts
with the DMA mapper receiving a request to unmap a DMA
mapped buffer from a specified memory pool (step 401). The
DMA mapper Serializes with the operating System kernel's
memory migration operation by disabling its CPU from
responding to interprocessor interrupts (step 402). A deter
mination is then made as to whether memory migration
Serialization is required (step 403). If memory migration
Serialization is required, a lock is acquired on the Specified
DMA pool (step 404). Thereafter, or if memory migration
Serialization is not required, a determination is made as to
whether a memory migration is in progress (step 405).
0061. If a memory migration is in progress, a determi
nation is made as to whether all pages of the buffer have
been processed (step 406). If not, the I/O virtual to physical
mapping is looked up in the I/O virtual to physical address
table (step 407). A determination is then made as to whether
the I/O virtual address is in a migrate state (step 408). In this
case (unmap of a previously performed mapping), this check
coincides with block 805 of the migration start in FIG. 8,
described hereafter. The migration of a physical memory
page that is mapped for DMA results in two migrations: the

Apr. 1, 2004

first is the physical page contents are migrated to Some new
physical page and the Second is the I/O virtual to physical
address mapping is migrated to point to the new physical
page. Step 408 refers to the Second migration.
0062) If the I/O virtual address is in a migrate state, a
deferred unmap state is set for the I/O virtual address (step
409). This step essentially puts the unmap operation on hold
until the memory migration is completed.

0063. If the I/O virtual address is not in a migrate state,
the I/O virtual mapping is removed (step 410) and the I/O
virtual to physical address table entry is removed (step 411).
A determination is then made as to whether the physical
address is in the address range of the memory being
migrated (step 412). If not, the operation returns to step 406.
If the physical address is in the address range, the entry for
the physical to I/O virtual address translation in the physical
to I/O virtual address table is removed (step 413) and the
operation returns to step 406.
0064. If the a memory migration is not in progress
(returning to step 405), the I/O virtual to physical address
mappings for all pages of the buffer are removed (step 414)
and the entries in the I/O virtual to physical address trans
lation table for all of the pages of the buffer are removed
(step 415). Thereafter, of if all pages of the buffer have been
process (returning to step 406), a determination is made as
to whether memory migration Serialization is required (Step
416) similar to step 403 above. If so, the lock on the DMA
pool is released (step 417). Thereafter, or if memory migra
tion Serialization is not required, interrupts on the CPU are
re-enabled (step 418) and the operation terminates.
0065. The above flowcharts in FIGS. 3 and 4 illustrate
how the DMA mappers may add and remove I/O virtual to
physical address translations to the address translation tables
used to manage virtual memory for DMA targeted memory
regions, or pages. The following flowcharts will outline the
kernel and DMA mapper operations necessary to perform
the actual memory migration of DMA targeted memory
regions according to the present invention.
0066. As discussed above, the memory migration is per
formed using various States: normal operation, memory
migration pending, page query, page migrate start, page
migrate end, and memory migration complete. The functions
of the operating System kernel and DMA mapperS for each
of these states is illustrated in FIGS. 5A-10 hereafter.

0067 FIGS. 5A-5B are flowcharts outlining an exem
plary operation for performing atomic memory migration in
accordance with the present invention. As shown in FIGS.
5A-5B, the operation starts with the operating system kernel
initiating a memory migration operation (Step 501). The
operating System kernel may initiate a memory migration for
many different reasons including, for example:

0068 (1) receiving a request to move memory from
one logical partition to another;

0069 (2) in response to predictive memory failure
analysis,

0070 (3) based on NUMA node level memory affin
ity/locality;

0071 (4) the assembly of contiguous physical
memory page frames (for a variety of reasons Such as
creating large pages, I/O restrictions, etc.).

US 2004/0064601 A1

0.072 The kernel then sets a memory migration progress
flag (step 502) which is a system global variable. The kernel
then sends interprocessor interrupts to all the CPUs of the
system (step 503).
0073. A determination is then made as to whether the
kernel receives acknowledgments of the interrupt from all of
the CPUs (step 504). If not, the operation continues to wait
until it receives an acknowledgment of the interrupt from all
of the CPUs. Once all of the CPUs acknowledge the
interrupt, the kernel knows that that memory migration in
progreSS flag is now Visible to all new disabled critical
sections (step 505). The kernel then notifies the DMA
mappers of the memory address range being migrated (Step
506). A “disabled critical section” is the logic executed after
having Serialized with the operating System kernel's
memory migration operation. After Setting this flag, Sending
interrupts to all CPUs, and receiving all acknowledgments,
the operating System kernel knows that any Subsequent
(new) entries into these critical Sections will see the new
State of the memory migration in progreSS flag.

0.074. A determination is made as to whether all pages in
the specified address range have been migrated (step 507).
If not, the page State of the next page in memory to be
migrated is set to in-migrate (step 508). A query is then sent
to the DMA mappers to See if they have the Specified page
mapped for DMA operations (step 509).
0075. A determination is made as to whether any of the
DMA mappers have the specified page mapped for DMA
operations (step 510). If not, the page is migrated (step 511)
and the operation is returned to step 507. The migration of
the page may include copying the page contents from an old
physical page to a new physical page.

0.076 If there are any DMA mappers that have the
Specified page mapped for DMA operations, a delay of the
start of migration is scheduled so that if the DMA operations
are only transient, they may expire and the Specified page
will no longer be mapped for DMA operations (step 512). A
determination is then made as to whether there are more
query attempts to be performed (step 513), for example, due
to repeatedly querying all DMA mapperS for the same page.
If so, the operation returns to step 509. Otherwise, if there
are not more query attempts, the DMA mappers are notified
that the Specified page is now in a migrating State and the
DMA mapperS return a list of active mappings to that page
(step 514).
0077. A determination is made to see if all DMA map
pings to the specified page have been processed (step 515).
If not, then long term DMA mappings are Still active and the
kernel determines the I/O bridges for the active DMA
mappings (Step 516). The kernel then sends instructions to
the platform Specific mechanisms to disable the DMA capa
bility for the I/O bridges (step 517) and returns to step 515.
0078. Once all DMA mappings are processed, the page is
migrated, i.e. The contents of the page are copied to a new
page in memory (step 518). A determination is then made as
to whether all DMA mappings that pointed to the migrated
page have been updated to point to the new page (step 519).
If not, the next DMA mapping that pointed to the migrated
page is updated to point to the new page (step 520) and the
operation returns to step 519. If all DMA mappings have
been updated, DMA arbitration is re-enabled on all I/O

Apr. 1, 2004

bridges previously disabled (step 521) and the kernel notifies
all the DMA mappers that the migration of the Specified page
is complete (Step 522). The operation then returns to Step
507.

0079. Once all pages in the address range have been
migrated (returning to step 507), the kernel notifies all of the
DMA mappers that the memory migration operation is
complete (step 523). The kernel then clears the memory
migration in progress flag that was initially set (Step 524)
and the operation terminates.
0080 FIG. 6 is a flowchart outlining an exemplary
operation of a DMA mapper for a memory migration pend
ing state. When the kernel sends the DMA mapper a
notification of the memory range that is to be migrated (see
step 506 of FIG. 5A), the event handler of the DMA mapper
transitions to the memory migration pending State which
causes the functions described in FIG. 6 to be performed. As
shown in FIG. 6, the operation starts with the DMA mapper
receiving the notification of the memory address range to be
migrated (step 601). The DMA mapper allocates a physical
to I/O virtual mapping address table for the memory range
being migrated (step 602). This physical to I/O virtual
mapping address table is created So as to keep track of those
portions of memory that are in the I/O virtual to physical
address mapping table of the DMA mapper that are within
the address range of the memory being migrated.
0081. The DMA mapper then sets the flag to require
memory migration serialization (step 603) in a per DMA
pool data structure. The DMA mapper then sends an inter
processor interrupt to all the CPUS in the computing System
(step 604). A determination is then made as to whether all of
the CPUs have acknowledged the interrupt (step 605). If not,
the operation continues to wait until all CPUs acknowledge
the interrupt. This process essentially serializes the DMA
mapper with the migration operation being performed by the
kernel.

0082 The DMA mapper then acquires a lock for this
DMA pool (step 606), i.e. the DMA pool for which a call to
the DMA mapper State handler is made. Memory range
migration information is then Stored in a private memory
associated with the DMA mapper (step 607). The memory
range migration information may include, for example, the
Starting physical page address and number of pages repre
Senting the physical memory range to be migrated. The
DMA mapper stores this information in a per DMA pool data
Structure.

0083. A determination is then made as to whether all
active mappings recorded in the I/O virtual to physical
address mapping table of the DMA mapper have been
processed (step 608). If not, the next mapping in the table is
Selected and a determination is made as to whether the
physical address for the mapping is within the memory
address range that is being migrated (step 609). If not, the
operation returns to step 608. Otherwise, if the physical
address is within the address range being migrated, the
mapping is recorded in the physical to I/O virtual address
mapping table created in Step 602 and the operation returns
to step 608.
0084. Once all active mappings in the I/O virtual to
physical address mapping table of the DMA mapper are
processed, the lock on the DMA pool is released (step 611)
and the operation ends.

US 2004/0064601 A1

0085 Prior to initiating the migration of the memory
address region, the operating System kernel queries the
registered DMA mappers to determine if any of the DMA
mapperS have pages in the memory address region that is
going to be migrated, mapped for DMA operations. This is
the page query State described previously and outlined in
FIG. 7 below.

0.086 FIG. 7 is a flowchart outlining an exemplary
operation of a DMA mapper for a page query State. AS
shown in FIG. 7, the operation starts with the DMA mapper
receiving a request asking if a page, i.e. Physical page
address, is mapped for DMA (step 701). A lock is acquired
on the DMA pool (step 702), i.e. the DMA pool for which
the call to the DMA mapper state handler is made. And the
physical address of the page is used to indeX into the
physical to I/O virtual address translation table stored by the
DMA mapper (step 703).
0087. A determination is made as to whether there are
any physical to I/O virtual address translations active for the
page (step 704). This may be determined, for example, by
reading the table that was originally initialized by Steps
608-610 and maintained by steps 311-312 and 412–413.
0088. If not, the count of active mappings is set to zero
(step 705). If there are active mappings for the page, the
count of active mappings is Set equal to the number of active
mappings for the page (step 706). The lock on the DMA pool
is then released (step 707) and a count of the active map
pings is returned to the kernel (step 708). The operation then
ends.

0089. Once the operating system kernel receives the
counts of active mappings from the DMA mappers, the
operating System kernel sends a notification to the DMA
mappers that a Specified page is starting migration. This is
the page migrate Start State which is described above and
outlined in FIG. 8 below.

0090 FIG. 8 is a flowchart outlining an exemplary
operation of a DMA mapper for a page migrate Start State.
As shown in FIG. 8, the operation starts with the DMA
mapper receiving a notification that a Specified page is
Starting migration (step 801). The DMA mapper acquires a
lock for this DMA pool (step 802) and the physical address
for the page is then used to indeX into the physical to I/O
virtual address translation table (step 803). Then, all I/O
Virtual addresses mapping to that physical address are
recorded in a data structure and provided to the operating
system kernel (step 804). Each of the mappings in the
physical to I/O virtual address translation table that have I/O
Virtual addresses mapping to the physical address for the
page then have their state bits set to an in-migrate State (step
805). The lock on the DMA pool is then released (step 807)
and the operation ends.
0.091 In an exemplary embodiment, the I/O bridge with
the active mappings may be identified by identifying the
owning I/O bridge logical bus number from the I/O virtual
address mapping. The physical I/O bridge may then be
identified from System topology data Structures. The active
mappings may then be disabled by clearing the I/O bridge
specific DMA arbitration enable bit on the physical I/O
bridge.

0092. Once the DMA mappers have been notified of the
Start of the migration operation, and they have reported the

Apr. 1, 2004

I/O virtual addresses mapping to the physical address of the
page (step 804), the operating System kernel may then
migrate the page by using a platform Specific migration
mechanism to disable identified I/O bridges DMA arbitra
tion, copy the contents of the page to a new page in memory,
and reenable identified I/O bridges DMA arbitration. The
operating System kernel then sends a notification to the
DMA mapperS that the migration of that page has ended.
This initiates the page migrate end State in the DMA
mappers as described above and outlined in FIG. 9 below.
0093 FIG. 9 is a flowchart outlining an exemplary
operation of a DMA mapper for a page migrate end State. A
shown in FIG. 9, the operation starts with the DMA mapper
receiving a notification from the operating System kernel
that the specified page migration is complete (step 901). The
DMA mapper then acquires a lock for the DMA pool (step
902) and uses the old physical address for the page to index
into the physical to I/O virtual address translation table (step
903). The DMA mapper then invalidates the records in the
physical to I/O virtual address translation table that map I/O
virtual addresses to this old physical address (step 904).
0094) The DMA mapper then updates the I/O virtual to
physical address translation table entries to point to the new
page to which the data was migrated (step 905). The
in-migrate state for the affected I/O virtual addresses is then
cleared (step 906).
0095 A determination is then made as to whether there is
a deferred unmap operation Set for an I/O virtual mapping to
the old page (step 907). If so, the I/O virtual mapping is
removed from the I/O page table (step 908) and is removed
from the I/O virtual to physical address translation table
(step 909). The lock obtained on the DMA pool is then
released (step 910) and the operation ends.
0096) The operation shown in FIG. 9 is used update the
mappings to the old page to point to the new page. The
operations of FIGS. 7-9 may be repeated for each page of
memory that is being migrated. Once all of the pages that are
to be migrated have been migrated and the mappings to these
pages updated, the operating System kernel Sends a notifi
cation to the DMA mappers that there will not be any more
migrations. This causes the DMA mappers to transition to
the memory migration complete State described above and
outlined in FIG. 10 below.

0097 FIG. 10 is a flowchart outlining an exemplary
operation of a DMA mapper for a memory migration com
plete state. As shown in FIG. 10, the operation starts with
the DMA mapper receiving a notification that the memory
migration operation is complete (step 1001). The DMA
mapper then acquires a lock for this DMA pool (step 1002)
and clears the memory migration information in the private
memory (step 1003). The DMA mapper then clears the flag
requiring memory migration Serialization (step 1004) and
releases the lock on the DMA pool (step 1005). The stored
used for the physical to I/O virtual address translation table
is then freed (step 1006) and the operation ends.
0098. Thus, the present invention provides a mechanism
for atomically migrating memory that is targeted for DMA
operations. The apparatus and method of the present inven
tion allows for notifying DMA mappers of the migration,
Serializing DMA operations on the memory being migrated,
inhibiting DMA mappings on I/O bridges during the migra

US 2004/0064601 A1

tion, and updating DMA mappings to reflect the new page to
which the data was migrated once the migration is ended.
0099] It is important to note that while the present inven
tion has been described in the context of a fully functioning
data processing System, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of instructions and a variety of forms and
that the present invention applies equally regardless of the
particular type of Signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media Such a floppy disc, a hard
disk drive, a RAM, and CD-ROMs and transmission-type
media Such as digital and analog communications linkS.
0100. The description of the present invention has been
presented for purposes of illustration and description, but is
not intended to be exhaustive or limited to the invention in
the form disclosed. Many modifications and variations will
be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best
explain the principles of the invention, the practical appli
cation, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with
various modifications as are Suited to the particular use
contemplated.

What is claimed is:
1. A method of migrating a memory page, comprising:
Sending a State notification from an operating System

kernel to a Direct Memory Access (DMA) mapper;
modifying a page migration State of a State machine

associated with the DMA mapper based on the state
notification; and

performing one or more page migration operations based
on the modification of the State of the State machine.

2. The method of claim 1, wherein the state machine has
at least the following defined States: normal operation,
memory migration pending, page query, page migrate start,
page migrate end and memory migration complete.

3. The method of claim 1, wherein modifying the page
migration State includes transitioning from a normal opera
tion State to a memory migration pending State in response
to a request to migrate a portion of memory.

4. The method of claim 3, wherein, in response to
transitioning from a normal operation to a memory migra
tion pending State, the DMA mapper establishes one or more
data Structures for tracking DMA mappings to the memory
page.

5. The method of claim 3, wherein, in response to
transitioning from a normal operation to a memory migra
tion pending State, the DMA mapper Sets a flag indicating
that locking is required in all mapping paths and issues an
interprocessor interrupt.

6. The method of claim 1, wherein modifying the page
migration State includes transitioning from a memory migra
tion pending State to a page query State in response to a query
from an operating System kernel requesting whether the
DMA mapper has the memory page mapped for DMA
operations.

7. The method of claim 6, wherein, in response to
transitioning from a memory migration pending State to a
page query State, the DMA mapper determines if it has the

Apr. 1, 2004

memory page mapped for DMA operations and returns a
result to the operating System kernel based on the determi
nation.

8. The method of claim 1, wherein modifying the page
migration State includes transitioning from a page query
State to a page migration Start State in response to receiving
a notification from an operating System kernel that migration
of the memory page has started.

9. The method of claim 8, wherein unmap attempts on the
memory page are deferred while the State machine is in a
page migration Start State.

10. The method of claim 8, wherein, in response to
transitioning from the page query State to the page migration
Start State, the operating System kernel retrieves all active
DMA mappings from the DMA mapper and disables DMA
arbitration for each active DMA mapping.

11. The method of claim 10, wherein the DMA arbitration
for each active DMA mapping is disabled by clearing an
arbitration enabled bit of an I/O bridge associated with the
active DMA mapping.

12. The method of claim 1, wherein modifying the page
migration State includes transitioning from a page migration
Start State to a page migration complete State in which any
deferred unmap operations are performed.

13. The method of claim 12, wherein, in response to
transitioning from the page migration Start State to the page
migration complete State, DMA mapper data Structures are
updated to reflect mappings to a new memory page to which
the memory page was migrated.

14. The method of claim 1, wherein modifying the page
migration State includes transitioning from a page migration
complete State to a migration complete State in response to
a determination that all memory pages have been migrated.

15. The method of claim 1, wherein the one or more page
migration operations include:

disabling DMA operations for one or more input/output
(I/O) bridges having active DMA mappings to the
memory page,

migrating the memory page to a new memory page;
reenabling DMA operations for the one or more I/O

bridges, and
updating mappings to the memory page to reflect the

migration to the new memory page.
16. The method of claim 1, wherein the one or more page

migration operations includes:
notifying the DMA mapper that the memory page is to be

migrated; and
determining if the DMA mapper has the memory page

targeted for DMA operations.
17. The method of claim 16, wherein if the DMA mapper

has the memory page targeted for DMA operations, a
predetermined time period is allowed to expire before
migration of the memory page is performed.

18. The method of claim 17, wherein, after expiration of
the predetermined time period, a determination is made as to
whether the DMA mapper continues to have the memory
page mapped for DMA operations and, in response to a
determination that the DMA mapper continues to have the
memory page mapped for DMA operations, DMA arbitra
tion is disabled on an I/O bridge associated with a mapping
of the memory page for DMA operations.

US 2004/0064601 A1

19. A computer program product in a computer readable
medium for migrating a memory page, comprising:

first instructions for Sending a State notification from an
operating System kernel to a Direct Memory AcceSS
(DMA) mapper;

Second instructions for modifying a page migration State
of a State machine associated with the DMA mapper
based on the State notification; and

third instructions for performing one or more page migra
tion operations based on the modification of the State of
the State machine.

20. The computer program product of claim 19, wherein
the State machine has at least the following defined States:
normal operation, memory migration pending, page query,
page migrate Start, page migrate end and memory migration
complete.

21. The computer program product of claim 19, wherein
the Second instructions for modifying the page migration
State include instructions for transitioning from a normal
operation State to a memory migration pending State in
response to a request to migrate a portion of memory.

22. The computer program product of claim 21, wherein,
in response to transitioning from a normal operation to a
memory migration pending State, the DMA mapper estab
lishes one or more data Structures for tracking DMA map
pings to the memory page.

23. The computer program product of claim 21, wherein,
in response to transitioning from a normal operation to a
memory migration pending State, the DMA mapper sets a
flag indicating that locking is required in all mapping paths
and issues an interprocessor interrupt.

24. The computer program product of claim 19, wherein
the Second instructions for modifying the page migration
State include instructions for transitioning from a memory
migration pending State to a page query State in response to
a query from an operating System kernel requesting whether
the DMA mapper has the memory page mapped for DMA
operations.

25. The computer program product of claim 24, wherein,
in response to transitioning from a memory migration pend
ing State to a page query State, the DMA mapper determines
if it has the memory page mapped for DMA operations and
returns a result to the operating System kernel based on the
determination.

26. The computer program product of claim 19, wherein
the Second instructions for modifying the page migration
State include instructions for transitioning from a page query
State to a page migration Start State in response to receiving
a notification from an operating System kernel that migration
of the memory page has started.

27. The computer program product of claim 26, wherein
unmap attempts on the memory page are deferred while the
State machine is in a page migration Start State.

28. The computer program product of claim 26, wherein,
in response to transitioning from the page query State to the
page migration Start State, the operating System kernel
retrieves all active DMA mappings from the DMA mapper
and disables DMA arbitration for each active DMA map
ping.

29. The computer program product of claim 28, wherein
the DMA arbitration for each active DMA mapping is
disabled by clearing an arbitration enabled bit of an I/O
bridge associated with the active DMA mapping.

Apr. 1, 2004

30. The computer program product of claim 19, wherein
the Second instructions for modifying the page migration
State include instructions for transitioning from a page
migration Start State to a page migration complete State in
which any deferred unmap operations are performed.

31. The computer program product of claim 30, wherein,
in response to transitioning from the page migration Start
State to the page migration complete State, DMA mapper
data structures are updated to reflect mappings to a new
memory page to which the memory page was migrated.

32. The computer program product of claim 19, wherein
the Second instructions for modifying the page migration
State include instructions for transitioning from a page
migration complete State to a migration complete State in
response to a determination that all memory pages have been
migrated.

33. The computer program product of claim 19, wherein
the third instructions for performing one or more page
migration operations include:

instructions for disabling DMA operations for one or
more input/output (I/O) bridges having active DMA
mappings to the memory page;

instructions for migrating the memory page to a new
memory page,

instructions for reenabling DMA operations for the one or
more I/O bridges; and

instructions for updating mappings to the memory page to
reflect the migration to the new memory page.

34. The computer program product of claim 19, wherein
the third instructions for performing one or more page
migration operations include:

instructions for notifying the DMA mapper that the
memory page is to be migrated; and

instructions for determining if the DMA mapper has the
memory page targeted for DMA operations.

35. The computer program product of claim 34, wherein
if the DMA mapper has the memory page targeted for DMA
operations, a predetermined time period is allowed to expire
before migration of the memory page is performed.

36. The computer program product of claim 35, wherein,
after expiration of the predetermined time period, a deter
mination is made as to whether the DMA mapper continues
to have the memory page mapped for DMA operations and,
in response to a determination that the DMA mapper con
tinues to have the memory page mapped for DMA opera
tions, DMA arbitration is disabled on an I/O bridge associ
ated with a mapping of the memory page for DMA
operations.

37. An apparatus for migrating a memory page, compris
ing:
means for Sending a State notification from an operating

system kernel to a Direct Memory Access (DMA)
mapper,

means for modifying a page migration State of a State
machine associated with the DMA mapper based on the
State notification; and

means for performing one or more page migration opera
tions based on the modification of the state of the state
machine.

