

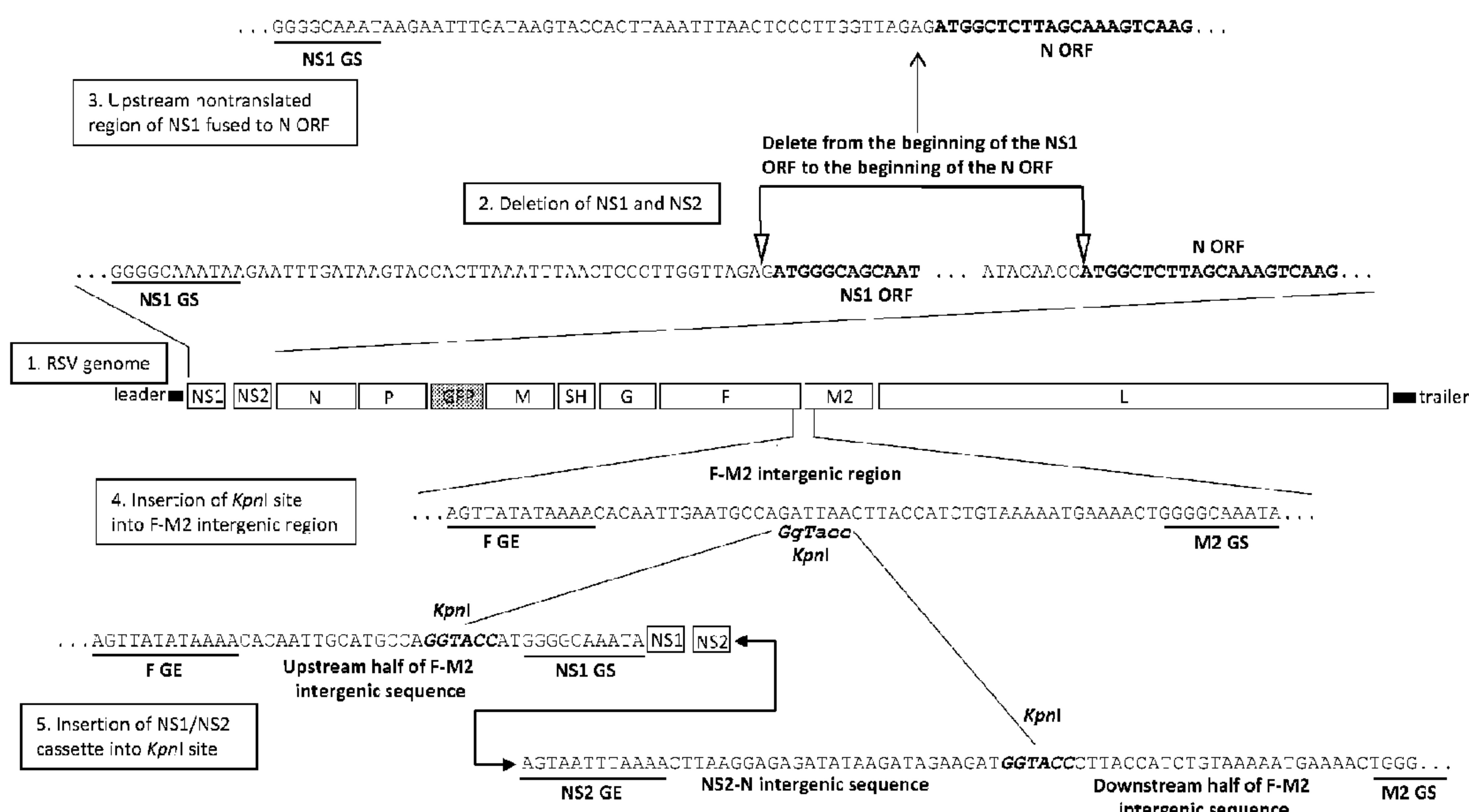


(12) **DEMANDE DE BREVET CANADIEN**  
**CANADIAN PATENT APPLICATION**

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2016/12/12  
(87) Date publication PCT/PCT Publication Date: 2017/06/15  
(85) Entrée phase nationale/National Entry: 2018/06/05  
(86) N° demande PCT/PCT Application No.: US 2016/066142  
(87) N° publication PCT/PCT Publication No.: 2017/100756  
(30) Priorité/Priority: 2015/12/11 (US62/266,206)

(51) Cl.Int./Int.Cl. *C12N 7/04* (2006.01),  
*A61K 39/155* (2006.01), *C12N 15/45* (2006.01),  
*C12N 5/10* (2006.01)


(71) **Demandeur/Applicant:**  
THE UNITED STATES OF AMERICA, AS  
REPRESENTED BY THE SECRETARY,  
DEPARTMENT OF HEALTH AND HUMAN  
SERVICES, US

(72) **Inventeurs/Inventors:**  
COLLINS, PETER L., US;  
MCCARTY, THOMAS CHARLES, US

(74) **Agent:** SMART & BIGGAR

(54) Titre : SOUCHES DE VIRUS RESPIRATOIRES SYNCYTIAUX RECOMBINES COMPRENANT DES DECALAGES  
DES GENES NS1 ET NS2  
(54) Title: RECOMBINANT RESPIRATORY SYNCYTIAL VIRUS STRAINS COMPRISING NS1 AND NS2 GENE SHIFTS

**FIG. 1**



Generation of the RSV 6120/NS12FM2/GFP virus, in which the NS1 and NS2 genes are shifted from their native positions 1 and 2 in the genome to positions 7 and 8

(57) **Abrégé/Abstract:**

Reported herein are novel recombinant respiratory syncytial viruses (RSV) having an attenuated phenotype in which the native positions of the NS1 and/or NS2 genes in the RSV genome are shifted to a higher position, that is at positions that are more distal to the promoter. The changes in the gene positions may be present in combination with mutations at other loci to achieve desired levels of attenuation and immunogenicity. The recombinant RSV strains described here are suitable for use as live- attenuated RSV vaccines. Also provided are polynucleotide sequences capable of encoding the described viruses, as well as methods for producing and using the viruses.

## (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date  
15 June 2017 (15.06.2017)(10) International Publication Number  
WO 2017/100756 A1

## (51) International Patent Classification:

*C12N 7/04* (2006.01)      *C12N 5/10* (2006.01)  
*C12N 15/45* (2006.01)      *A61K 39/155* (2006.01)

## (21) International Application Number:

PCT/US2016/066142

## (22) International Filing Date:

12 December 2016 (12.12.2016)

## (25) Filing Language:

English

## (26) Publication Language:

English

## (30) Priority Data:

62/266,206 11 December 2015 (11.12.2015) US

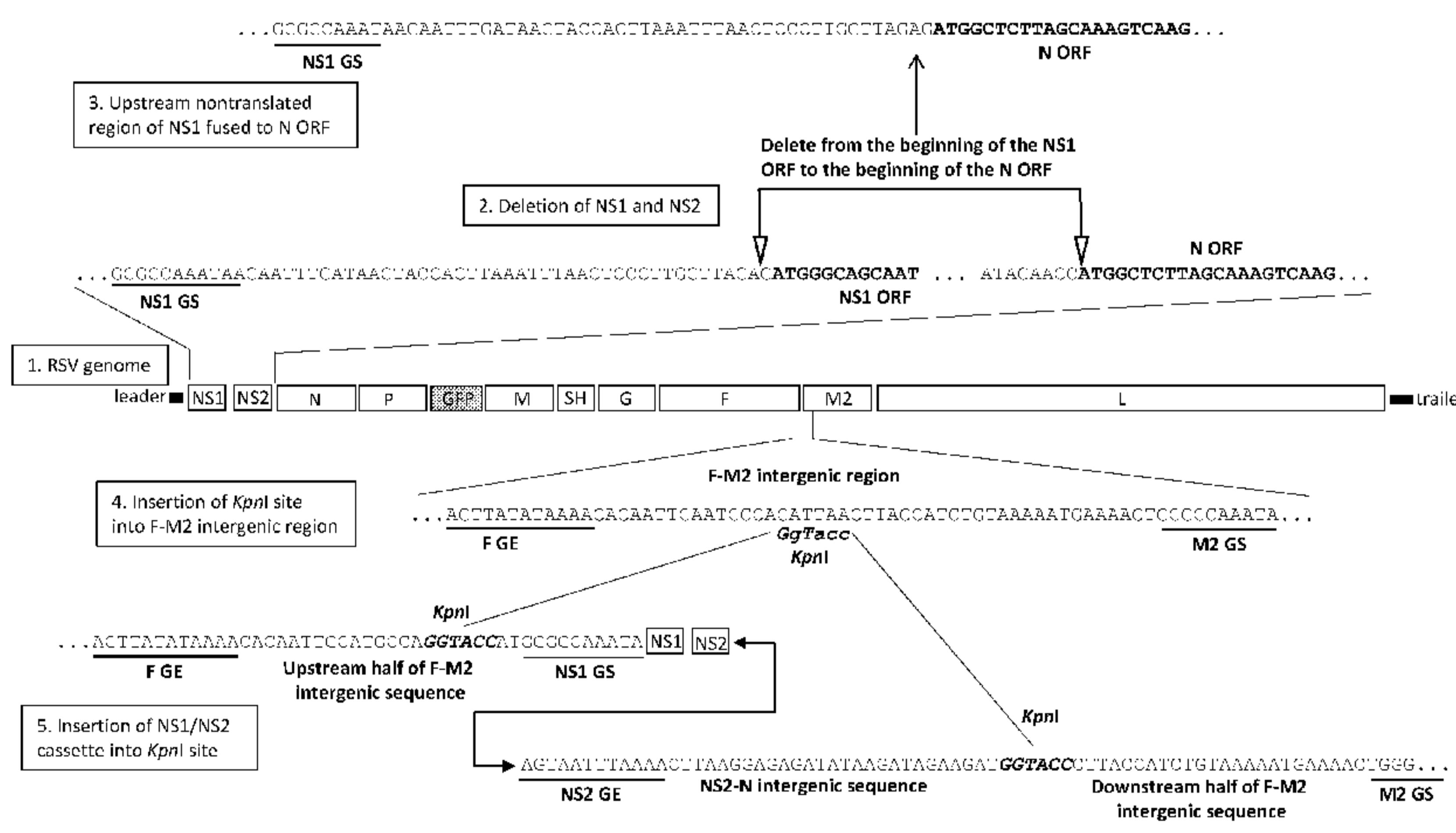
(71) **Applicant:** THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES [US/US]; National Institutes of Health, Office of Technology Transfer, 6011 Executive Boulevard, Suite 325, MSC 7660, Bethesda, MD 20852-7660 (US).

(72) **Inventors:** COLLINS, Peter, L.; 2921 Woodstock Ave., Silver Spring, MD 20910 (US). MCCARTY, Thomas, Charles; 6416 Tisdale Terrace, Bethesda, MD 20817 (US).

(74) **Agent:** SCOTT, Gregory, K.; Klarquist Sparkman, LLP, One World Trade Center, Suite 1600, 121 SW Salmon Street, Portland, OR 97204 (US).

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.


(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

**Published:**

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

## (54) Title: RECOMBINANT RESPIRATORY SYNCYTIAL VIRUS STRAINS COMPRISING NS1 AND NS2 GENE SHIFTS

FIG. 1



Generation of the RSV 6120/NS12FM2/GFP virus, in which the NS1 and NS2 genes are shifted from their native positions 1 and 2 in the genome to positions 7 and 8

WO 2017/100756 A1

(57) **Abstract:** Reported herein are novel recombinant respiratory syncytial viruses (RSV) having an attenuated phenotype in which the native positions of the NS1 and/or NS2 genes in the RSV genome are shifted to a higher position, that is at positions that are more distal to the promoter. The changes in the gene positions may be present in combination with mutations at other loci to achieve desired levels of attenuation and immunogenicity. The recombinant RSV strains described here are suitable for use as live-attenuated RSV vaccines. Also provided are polynucleotide sequences capable of encoding the described viruses, as well as methods for producing and using the viruses.

**RECOMBINANT RESPIRATORY SYNCYTIAL VIRUS STRAINS  
COMPRISING NS1 AND NS2 GENE SHIFTS**

**RELATED APPLICATION**

5        This application claims priority to U.S. Provisional Application No. 62/266,206, filed December 11, 2015, which is incorporated by reference in its entirety.

**FIELD**

10      The subject matter disclosed herein relates to respiratory syncytial virus (RSV) and attenuated, mutant strains thereof suitable for use as vaccines.

**BACKGROUND**

15      Human respiratory syncytial virus (RSV) infects nearly everyone worldwide early in life and is responsible for considerable mortality and morbidity. In the United States alone, RSV is responsible for 75,000-125,000 hospitalizations yearly, and conservative estimates indicate that RSV is responsible worldwide for 64 million pediatric infections and 160,000 or more pediatric deaths each year. Another notable feature of RSV is that severe infection in infancy frequently is followed by lingering airway dysfunction, including a predisposition to airway reactivity, that in some individuals lasts for years and can extend into adolescence and beyond. RSV infection exacerbates asthma and may be involved in 20 initiating asthma.

RSV is a member of the Paramyxoviridae family and, as such, is an enveloped virus that replicates in the cytoplasm and matures by budding at the host cell plasma membrane. The genome of RSV is a single, negative-sense strand of RNA of 15.2 kilobases that is transcribed by the viral polymerase into 10 mRNAs by a sequential stop-start mechanism that initiates at a single viral promoter at the 3' end of the genome. Each mRNA encodes a single major protein, with the exception of the M2 mRNA that has two overlapping open reading frames (ORFs) encoding two separate proteins M2-1 and M2-2. The 11 RSV proteins are: the RNA-binding nucleoprotein (N), the phosphoprotein (P), the large polymerase protein (L), the attachment glycoprotein (G), the fusion protein (F), the small hydrophobic (SH) surface glycoprotein, the internal matrix protein (M), the two nonstructural proteins NS1 and NS2, and the M2-1 and M2-2 proteins. The RSV gene order is: 3'-NS1-NS2-N-P-M-SH-G-F-M2-L. Each gene is flanked by short conserved transcription signals called the gene-start (GS) signal, present on the upstream end of each gene and involved in initiating transcription of the respective gene, and the gene-end (GE) signal, present at the downstream end of each gene and involved in directing synthesis of a polyA tail followed by release of the mRNA. Transcription initiates at a single promoter at the 3' end and 25 proceeds sequentially.

30      The development of RSV vaccines has been in progress since the 1960's but has been complicated by a number of factors. For example, immunization of RSV-naïve infants with inactivated RSV has been shown to prime for enhanced disease upon subsequent natural RSV infection, and studies 35

in experimental animals indicate that disease enhancement also is associated with purified RSV subunit vaccines.

Another obstacle to immune protection is that RSV replicates and causes disease in the superficial cells of the respiratory airway lumen, where immune protection has reduced effectiveness.

5 Thus, immune control of RSV infection is inefficient and often incomplete, and it is important for an RSV vaccine to be as immunogenic as possible. Another obstacle to RSV vaccines is that the magnitude of the protective immune response is roughly proportional to the extent of virus replication (and antigen production). Thus, the attenuation of RSV necessary to make a live vaccine typically is accompanied by a reduction in replication and antigen synthesis, and a concomitant reduction in immunogenicity, and 10 therefore it is beneficial to identify a level of replication that is well tolerated yet satisfactorily immunogenic.

Another obstacle is that RSV grows only to moderate titers in cell culture and is often present in long filaments that are difficult to purify. RSV can readily lose infectivity during handling. Another obstacle is the difficulty in identifying and developing attenuating mutations. Appropriate mutations 15 must be attenuating *in vivo*, but should be minimally restrictive to replication *in vitro*, since this is preferred for efficient vaccine manufacture. Another obstacle is genetic instability that is characteristic of RNA viruses, whereby attenuating mutations can revert to the wild-type (wt) assignment or to an alternative assignment that confers a non-attenuated phenotype. Instability and de-attenuation are particularly problematic for point mutations.

20 Taking these factors together, there is a need for live attenuated RSV strains that replicate efficiently *in vitro*, are maximally immunogenic, are satisfactorily attenuated, and are refractory to de-attenuation.

## SUMMARY

25 Reported herein are novel recombinant RSV having an attenuated phenotype in which the position of the NS1 and/or NS2 gene in the RSV genome or antigenome is shifted to a position that is more distal to the promoter. The changes in the gene positions may be present in combination with mutations at other loci to achieve desired levels of attenuation and immunogenicity. The recombinant RSV strains described here are suitable for use as live-attenuated RSV vaccines.

30 In some embodiments, a recombinant RSV is provided that is attenuated by one or more modifications to the genome of the RSV. In some embodiments, the one or more modifications comprise a shift of the NS1 gene and the NS2 gene from gene positions 1 and 2 to gene positions 7 and 8 of the RSV genome, respectively. In some embodiments, the one or more modifications comprise a shift of the NS1 and NS2 genes from gene positions 1 and 2 (of a native RSV genome) to gene positions 9 and 10 of the genome of the recombinant RSV, respectively. In some embodiments, the one or more modifications comprise a shift of the NS1 gene to a gene position higher than position 1 (for example, to gene position 7 or 9). In some embodiments, the one or more modifications comprise a shift of the NS2 gene to a gene position higher than position 2. In some embodiments, the one or more modifications comprise a shift of

the NS1 gene to a gene position higher than position 1, and the NS2 gene to a gene position higher than position 2.

In addition to the modification that shifts the gene position of the NS1 gene and/or the NS2 gene, the genome of the recombinant RSV can comprise further modifications to increase or decrease viral 5 attenuation, or other properties of the recombinant virus, such as deletion of all or part of the NS1, the NS2 gene, and/or the M2-2 gene.

In some embodiments, the RSV genome comprises the one or more modifications as discussed above, and comprises a nucleotide sequence corresponding to a positive-sense sequence at least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 2 (6120/NS12FM2), SEQ ID NO: 4 10 (6120/NS12Ltr), SEQ ID NO: 6 (6120/NS12FM2/ΔNS2), or SEQ ID NO: 8 (6120/NS12Ltr/ΔNS2). For example, the RSV genome can comprise or consist of a nucleotide sequence corresponding to a positive-sense sequence denoted by SEQ ID NO: 2 (6120/NS12FM2), SEQ ID NO: 4 (6120/NS12Ltr), SEQ ID NO: 6 (6120/NS12FM2/ΔNS2), or SEQ ID NO: 8 (6120/NS12Ltr/ΔNS2).

In some embodiments, the RSV genome further comprises a reporter gene, such as gene 15 encoding Green Fluorescent Protein (GFP). In some embodiments, the RSV genome comprises the one or more modifications as discussed above and the reporter gene, and comprises a nucleotide sequence corresponding to a positive-sense sequence to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7, or a nucleotide sequence corresponding to a positive-sense sequence at least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7.

20 In some embodiments, the recombinant RSV exhibits one or more of (a) reduced expression of the NS1 gene and/or NS2 gene compared to an RSV having the NS1 gene in gene position 1 and the NS2 gene in gene position 2, (b) reduced transcription of the NS1 gene and/or NS2 gene compared to an RSV having the NS1 gene in gene position 1 and the NS2 gene in gene position 2; and/or (c) reduced inhibition of host interferon response compared to an RSV having the NS1 gene in gene position 1 and 25 the NS2 gene in gene position 2. In some embodiments, the recombinant RSV is increasingly susceptible to restriction in cultured cells that can produce interferons in response to viral infection. In some embodiments, the recombinant RSV retains replication efficiency in cultured cells that cannot produce interferons in response to viral infection.

The embodiments of recombinant RSV disclosed herein can be subtype A RSV or a subtype B 30 RSV. The embodiments of recombinant RSV disclosed herein are infectious, attenuated, and self-replicating.

Also provided herein are methods and compositions related to the expression of the disclosed viruses. For example, isolated polynucleotide molecules that include a nucleic acid sequence encoding the genome or antigenome of the described viruses are disclosed.

35 Pharmaceutical compositions including the recombinant RSV are also provided. The compositions can further include an adjuvant. Methods of eliciting an immune response in a subject by administering an immunogenically effective amount of a disclosed recombinant RSV to the subject are also disclosed. In some embodiments, the subject is a human subject, for example, a human subject

between 1 and 6 months of age, or between 1 and 12 months of age, or between 1 and 18 months of age, or older.

The foregoing and other features and advantages of this disclosure will become more apparent from the following detailed description of several embodiments which proceeds with reference to the 5 accompanying drawings.

### BRIEF DESCRIPTION OF THE DRAWINGS

**FIG. 1** shows schematic diagrams illustrating the creation of the recombinant RSV 6120/NS12FM2/GFP in which NS1 and NS2 genes were shifted to gene positions 7 and 8. Note that the 10 GFP gene is not included in the gene position numbering. The sequences shown (from top to bottom) are SEQ ID NO: 9, SEQ ID NOs: 10 and 11, SEQ ID NO: 12, and SEQ ID NOs: 13 and 14, respectively.

**FIG. 2** shows schematic diagrams illustrating the creation of the recombinant RSV 6120/NS12Ltr/GFP virus in which the NS1 and NS2 genes were shifted to positions 9 and 10. The sequences shown (from top to bottom) are SEQ ID NO: 9, SEQ ID NOs: 10 and 11, SEQ ID NO: 15, and SEQ ID 15 NOs: 16 and 17, respectively.

**FIG. 3** shows replication of RSV 6120/NS12FM2/GFP, RSV  $\Delta$ NS1/ $\Delta$ NS2/GFP and wt RSV/GFP in African green monkey Vero cells.

**FIG. 4** shows replication of RSV 6120/NS12FM2/GFP, RSV  $\Delta$ NS1/ $\Delta$ NS2/GFP and wt RSV/GFP in human airway A549 cells.

**FIG. 5** shows replication of RSV 6120/NS12Ltr/GFP, RSV  $\Delta$ NS1/ $\Delta$ NS2/GFP and wt RSV/GFP in African green monkey Vero cells.

**FIG. 6** shows replication of RSV 6120/NS12Ltr/GFP, RSV  $\Delta$ NS1/ $\Delta$ NS2/GFP and wt RSV/GFP in human airway A549 cells.

**FIG. 7** shows schematic diagrams illustrating the deletion of the NS2 gene from RSV 6120/NS12FM2/GFP. The upper sequence line shows SEQ ID NOs: 18 and 19. The lower sequence line shows SEQ ID NOs: 20 and 21.

**FIG. 8** shows schematic diagrams illustrating the deletion of the NS2 gene from RSV 6120/NS12Ltr/GFP. The upper sequence line shows SEQ ID NOs: 18 and 22. The lower sequence line shows SEQ ID NOs: 23 and 24.

**FIG. 9** shows replication of RSV 6120/NS12FM2/ $\Delta$ NS2/GFP, RSV 6120/NS12FM2/GFP, RSV  $\Delta$ NS1/ $\Delta$ NS2/GFP and wt RSV/GFP in African green monkey Vero cells.

**FIG. 10** shows replication of RSV 6120/NS12FM2/ $\Delta$ NS2/GFP, RSV 6120/NS12FM2/GFP, RSV  $\Delta$ NS1/ $\Delta$ NS2/GFP and wt RSV/GFP in human airway A549 cells.

35

### SEQUENCE LISTING

The nucleic and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids, as defined in 37 C.F.R. 1.822. The Sequence Listing is submitted as an ASCII text file in the form of the file

named "Sequence.txt" (~164 kb), which was created on December 9, 2016 which is incorporated by reference herein. In the accompanying sequence listing:

**SEQ ID NO: 1** is the antigenomic cDNA sequence for recombinant RSV strain 6120/NS12FM2GFP.

5       **SEQ ID NO: 2** is the antigenomic cDNA sequence for recombinant RSV strain 6120/NS12FM2.

**SEQ ID NO: 3** is the antigenomic cDNA sequence for recombinant RSV strain 6120/NS12LtrGFP.

**SEQ ID NO: 4** is the antigenomic cDNA sequence for recombinant RSV strain 6120/NS12Ltr.

**SEQ ID NO: 5** is the antigenomic cDNA sequence for recombinant RSV strain 10 6120/NS12FM2/ΔNS2/GFP.

**SEQ ID NO: 6** is the antigenomic cDNA sequence for recombinant RSV strain 6120/NS12FM2/ΔNS2.

**SEQ ID NO: 7** is the antigenomic cDNA sequence for recombinant RSV strain 6120/NS12Ltr/ΔNS2/GFP.

15      **SEQ ID NO: 8** is the antigenomic cDNA sequence for recombinant RSV strain 6120/NS12Ltr/ΔNS2.

**SEQ ID NOs: 9-24** are fragments of recombinant RSV antigenomic cDNA sequences shown in FIGs. 1-2 and 7-8.

**SEQ ID NOs: 25 and 26** are the nucleotide sequences of gene-start transcription signals.

20

#### DETAILED DESCRIPTION

Disclosed herein are mutations that are useful in producing recombinant strains of human RSV exhibiting a range of attenuation phenotypes. The mutations of the present invention are based on shifting of the NS1 and/or NS2 genes from their native positions in the RSV genome or antigenome to a 25 higher position i.e. a position that is more distal to the promoter. Also disclosed herein are recombinant RSV strains that include such mutations and are suitable for use as attenuated, live vaccines. Further disclosed herein are methods and compositions related to the expression of the disclosed viruses. For example, isolated polynucleotide molecules that include a nucleic acid sequence encoding the genome or antigenome of the described viruses are disclosed.

30      The recombinant RSV strains of the present invention comprise a wt RSV genome or antigenome containing modifications or mutations as described in detail below. The wt RSV genome or antigenome encodes the following 11 proteins: the RNA-binding nucleoprotein (N), the phosphoprotein (P), the large polymerase protein (L), the attachment surface glycoprotein (G), the fusion surface glycoprotein (F), the small hydrophobic surface glycoprotein (SH), the internal matrix protein (M), the two nonstructural 35 proteins NS1 and NS2, and the M2-1 and M2-2 proteins. The complete amino acid sequences of these proteins are known in the art. The genome of RSV is a single strand of negative sense RNA of 15.2 kb comprising 10 genes encoding 10 mRNAs. Each mRNA encodes a single protein, except for the M2 mRNA which encodes two separate proteins M2-1 and M2-2. The RSV gene order is: 3'-NS1-NS2-N-P-

M-SH-G-F-M2-L with a single viral promoter located at the 3' end. Thus, in the native RSV genome NS1 is at position 1, NS2 at position 2, N at position 3, P at position 4, M at position 5, SH at position 6, G at position 7, F at position 8, M2 at position 9 and L at position 10. This organization is shown schematically in FIG. 1, top panel.

5 As reported herein, moving NS1 and/or NS2 from their native positions as promoter-proximal genes to a higher gene position, that is a position further distal to the promoter, results in their decreased transcription and expression. For nonsegmented negative strand RNA viruses, the transcription gradient is an important factor in regulating viral gene expression. One recent study showed that expression of a foreign gene was four-fold higher when it was placed between the F and M2 genes in the RSV genome  
10 compared to between the L gene and trailer, a difference of two gene positions (Kwilas AR et al 2010 J Virol 84:7770-7781). Another recent study with the related parainfluenza virus type 3 revealed that expression of a foreign gene from gene position 1, 2, or 3 was 30-69-fold, 15-29-fold, and 5-6-fold higher compared to gene position 6 (Liang et al 2014 J Virol 88:4237-4250). This illustrates that moving  
15 one or more genes to positions that are progressively more distal to the promoter can provide incremental reductions in gene expression that, when over a range of multiple gene positions, can be substantial.

The NS1 and NS2 proteins antagonize host innate responses including interferon and apoptosis. This antagonistic effect is particularly prominent for NS1. Recombinant RSV in which NS1 and/or NS2 are deleted, in particular NS1 deletion mutant, show reduced virus replication *in vitro* due to increased apoptosis, an effect that also is observed in Vero cells used in the manufacture of live RSV vaccines  
20 (Bitko et al, 2007 J Virol 81:1786-1795). For example, efforts to manufacture an RSV  $\Delta$ NS2 virus as a live vaccine have been unsuccessful due to unsatisfactorily low yields (unpublished results). A  $\Delta$ NS2/ $\Delta$ NS2 virus also appears to be over-attenuated in African green monkeys (Jin et al 2003 Vaccine 21:3647-3652). In contrast, the RSV recombinant viruses of the present invention comprising NS1 and/or NS2 gene shift mutations did not exhibit growth restriction in Vero cells. This indicates that the  
25 levels of NS1 and NS2 that are produced by either mutant control apoptosis sufficiently to obtain efficient viral replication, a surprising result that could not have been predicted. However, these viruses were attenuated in interferon competent cells, indicating that the expected decreased expression of NS1 and/or NS2 indeed rendered the virus increasingly susceptible to restriction.

Thus, NS1 and/or NS2 gene-shift provides a novel means to avoid the over-attenuation  
30 associated with gene-deletion. The ability to place the genes in incrementally distal locations relative to the promoter provides a means to incrementally change the magnitude of attenuation. Gene-shift can be combined with other previously described attenuating mutations. Additionally, since NS1 (in particular) and NS2 inhibit the host interferon response, reducing their expression may increase viral immunogenicity due to the adjuvant effects of increased interferon expression. For example, in the  
35 bovine model, bovine RSV mutants with NS deletions were shown to have increased immunogenicity in the natural host (Valarcher et al 2003 J Virol 77:8426-8439). Increased apoptosis, as would result from decreased expression of the RSV NS1 and/or NS2 proteins, also has the potential to increase immunogenicity (Pulmanausahakul et al 2001 J Virol 75:10800-10807).

Since there are 8 other RSV genes, NS1 and/or NS2 may be moved to a number of different higher gene positions in different combinations to provide different levels of transcription and expression. The NS1 and/or NS2 genes may be moved to an intergenic region between other genes, or into other non-coding regions.

5 In some embodiments, the NS1 and NS2 genes may be moved in tandem to higher gene positions or progressively more distal gene positions to provide a graded set of increasing attenuated phenotypes. Thus, in some embodiments, NS1 and NS2 may be at gene positions 2 and 3, 3 and 4, 4 and 5, 5 and 6, 6 and 7, 7 and 8, 8 and 9, or 9 and 10 respectively. In some embodiments, the NS1 and NS2 genes may be moved in tandem from gene positions 1 and 2, respectively, to gene positions 7 and 8, respectively. In 10 some embodiments, the NS1 and NS2 genes may be moved in tandem from gene positions 1 and 2, respectively, to gene positions 9 and 10, respectively. The gene position numbers of genes prior to shift refer to their positions in the native RSV genome before the shift, and the gene position numbers of the genes post-shift refer to their positions in the modified RSV genome.

15 Alternatively, the NS1 and NS2 may be moved singly or independently of each other. For example, only one of the NS1 or NS2 gene may be moved to a higher gene position. Thus, in some 20 embodiments. NS1 gene may be at gene position 1 and NS2 may be at position 3, 4, 5, 6, 7, 8, 9 or 10. In some embodiments, NS2 gene may be at gene position 2 and NS1 may be at position 3, 4, 5, 6, 7, 8, 9 or 10. In some embodiments each NS1 and NS2 may be moved to a different higher position independently. For example, NS1 may be at any one of positions 2, 3, 4, 5, 6, 7, 8, 9 or 10 and NS2 may be at any one of positions 3, 4, 5, 6, 7, 8, 9 or 10.

In one exemplary embodiment described in Example 1 and shown in FIG. 1, the NS1 and NS2 genes were moved to positions 7 and 8 in the intergenic region between the F and M2 genes so that the gene order in the recombinant virus construct was 3' N-P-M-SH-G-F-NS1-NS2-M2-L. This recombinant construct is named RSV 6120/NS12FM2. The polynucleotide sequence of this construct is shown in SEQ 25 ID NO:2. Some embodiments comprise a polynucleotide sequence that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and 100%, and any number in between, identical to SEQ ID NO: 2.

30 In some embodiments, the recombinant RSV comprises a RSV genome comprising the 6120 and NS12FM2 mutations as described herein, and a positive-sense sequence denoted by a sequence that is at least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 2 (6120/NS12FM2).

In another exemplary embodiment described in Example 2 and shown in FIG. 2, the NS1 and NS2 genes were moved to positions 9 and 10 so that the gene order in the recombinant virus construct was 3' N-P-M-SH-G-F-M2-L-NS1-NS2. This recombinant construct is named RSV 6120/NS12LTr. The polynucleotide sequence of this construct is shown in SEQ ID NO: 4. Some embodiments comprise a 35 polynucleotide sequence that is at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and 100%, and any number in between, identical to SEQ ID NO: 4.

In some embodiments, the recombinant RSV comprises a RSV genome comprising the 6120 and NS12Ltr mutations as described herein, and a positive-sense sequence denoted by a sequence that is at

least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 4 (6120/NS12Ltr).

In some embodiments, the RSV genome or antigenome comprises one or more mutations in the NS1 and/or NS2 gene, in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively). The mutation may be a point mutation, a substitution or a deletion. The deletion may be partial or complete. Some exemplary embodiments are described in Examples 5 and 6 and shown in FIGs. 7 and 8. These include the constructs 6120/NS12M2F/ΔNS2 (SEQ ID NO: 6) and 6120/NS12Ltr/ΔNS2 (SEQ ID NO: 8). Design and construction of these constructs is described in Examples 5 and 6.

In some embodiments, the recombinant RSV comprises a RSV genome comprising the 6120, 10 NS12FM2, and ΔNS2 mutations as described herein, and a positive-sense sequence denoted by a sequence that is at least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 6 (6120/NS12FM2/ΔNS2).

In some embodiments, the recombinant RSV comprises a RSV genome comprising the 6120, NS12Ltr, and ΔNS2 mutations as described herein, and a positive-sense sequence denoted by a sequence 15 that is at least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 8 (6120/NS12Ltr/ΔNS2).

In several embodiments, the genome of the recombinant RSV comprises the one or more mutations as discussed herein, and any remaining sequence difference of the genome of the recombinant RSV compared to the genomic sequence of D46 RSV (GenBank accession number KT992094, which is incorporated by reference herein) is biologically insignificant (for example, the remaining sequence 20 differences do not include changes to the wild-type genomic sequence that modify a known cis-acting signal or change amino acid coding, or measurably affect in vitro replication or plaque size of the virus).

In another exemplary embodiment, the antigenome cDNA may be modified to contain a reporter gene, for instance a gene encoding enhanced green fluorescent protein (GFP). The GFP gene could be inserted between the RSV P and M genes (Munir et al 2008 J Virol 82:8780-8796), or as the first gene in 25 the genome (Zhang et al 2002 J Virol 76:5654-5666), or between any pair of genes. The insertion of a GFP gene in the first gene position had little or no effect on RSV replication or pathogenesis in cell lines and in an *in vitro* human airway epithelium (HAE) culture (Zhang et al 2002 J Virol 76:5654-5666), and the same appeared to be the case for GFP inserted between the P and M genes (Munir et al 2008 J Virol 82:8780-8796). One purpose of expressing GFP from the viral genome is to facilitate monitoring 30 infection in initial experiments, because it allows visualization of infections in live cells without interfering with the infection. GFP is often used in this fashion in initial experiments. Note that, when used, GFP is not included in the gene position numbering in this disclosure. While GFP expression can be helpful in initial pre-clinical studies, it typically would not be included in products for human use. Some exemplary embodiments are described herein. These are RSV 6120/NS12FM2/GFP (SEQ ID NO: 35 1), 6120/NS12Ltr/GFP (SEQ ID NO: 3), 6120/NS12M2F/ΔNS2/GFP (SEQ ID NO: 5) and 6120/NS12Ltr/ΔNS2/GFP (SEQ ID NO: 7). Design and construction of these constructs is described in Examples 1, 2, 5 and 6 and shown in FIGs. 1, 2, 7 and 8.

Additional mutations may be introduced to construct additional viral strains with desired characteristics. For example, the added mutations may specify different magnitudes of attenuation, and thus give incremental increases in attenuation. Thus, candidate vaccine strains may be further attenuated by incorporation of at least one, and preferably two or more different attenuating mutations, for example 5 mutations identified from a panel of known, biologically derived mutant RSV strains. A number of such mutations are discussed here as examples. From this exemplary panel a large “menu” of attenuating mutations can be created, in which the NS1 and/or NS2 gene shift mutation may be combined with any other mutation(s) within the panel for calibrating the level of attenuation and other desirable phenotypes. Additional attenuating mutations may be identified in non-RSV negative stranded RNA viruses and 10 incorporated in RSV mutants of the invention by mapping the mutation to a corresponding, homologous site in the recipient RSV genome or antigenome and mutating the existing sequence in the recipient to the mutant genotype (either by an identical or conservative mutation). Additional useful mutations can be determined empirically by mutational analysis using recombinant minigenome systems and infectious 15 virus as described in the references incorporated herein. Attenuation also can be achieved by codon-pair-deoptimization, which does not depend on identification of specific attenuating lesions, but rather alters gene expression by general mechanisms such reducing the efficiency of mRNA translation, among other effects (Le Nouen et al 2014 Proc Natl Acad Sci USA 111:13169-13174). A number of exemplary additional mutations are described below. These are for exemplary purposes only and are not meant to 20 limit the scope of the present invention.

20 The recombinant RSV constructs of the present invention comprising the NS1 and/or NS2 gene shift exhibit reduced expression of the NS1 and/or NS2 gene as compared to an RSV having the NS1 and NS2 genes in their native positions 1 and 2. The term “expression” as used herein refers to is intended to encompass the entire process of protein production, including transcription, translation, post-translational modification, and physical stability required to form and accumulate a functional protein.

25 The recombinant RSV constructs exhibit reduced inhibition of host interferon response i.e., the cells carrying such viruses exhibit increased expression of host interferon mRNAs and/or proteins, and/or decreased viral inhibition of interferon-mediated effects. In interferon competent cells i.e. cultured cells that can produce interferons in response to viral infection, e.g., human airway epithelial A549 cells, ATCC CCL-185, the recombinant RSV constructs of the present invention are increasingly susceptible to 30 restriction. On the other hand, in interferon incompetent cells i.e. cultured cells that cannot produce interferons in response to viral infection, e.g., African green monkey Vero cells, ATCC CCL-81, the recombinant RSV constructs of the present invention retains replication efficiency.

35 The ability of a live RSV vaccine candidate to replicate efficiently in Vero cells is beneficial because this is a cell substrate often used for vaccine manufacture. This is relevant in the case of the NS1 and NS2 genes because deletion of either or both from RSV results in more rapid and more extensive apoptosis when cells are infected with the NS-deletion viruses, compared to wild type RSV (Bitko, et al. 2007. J Virol 81:1786-1795). Embodiments of the disclosed recombinant RSV provide the ability to reduce the expression (and interferon antagonism) of NS1 and/or NS2 without completely losing

expression, and this provides the advantage of unrestricted growth in Vero cells. In addition, shifting of the NS1 and NS2 genes to higher gen positions in the RSV genome provides a means to derive a range of incrementally-increasing attenuation phenotypes.

5 *Additional mutations*

In some embodiments, RSV genome or antigenome comprises one or more mutations in one or more of the N, P, M, SH, G, F, M2 (M2-1 ORF or M2-2 ORF) and L genes, in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively). For example, the RSV genome or antigenome may comprise a mutation in the M2-2 ORF of the M2 gene which 10 ablates or reduces the expression of the M2-2 protein, in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively). Such mutation may comprise one or more point mutations, a partial deletion of the M2-2 ORF, or a complete deletion of the M2-2 protein.

In some embodiments, the recombinant RSV strains of the present invention comprises a deletion 15 of the non-translated sequences in genes, in the intergenic regions, and in the trailer region, in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively). In one embodiment, such deletion occurs in the downstream end of the SH gene, resulting in a mutation called the “6120 Mutation” herein. It involves deletion of 112 nucleotides of the downstream non-translated region of the SH gene and the introduction of five translationally-silent point 20 mutations in the last three codons and the termination codon of the SH gene (Bukreyev, *et al.* 2001. J Virol 75:12128-12140). The 6120 mutation stabilizes the antigenomic cDNA in bacteria so that it can be more easily manipulated and prepared. In wt RSV, this mutation was previously found to confer a 5-fold increase in replication efficiency *in vitro* (Bukreyev, *et al.* 2001. J Virol 75:12128-12140), whereas it was not thought to increase replication efficiency *in vivo*.

25 In some embodiments the recombinant RSV strains may comprise the “cp” mutation, in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively). This mutation refers to a set of five amino acid substitutions in three proteins (N (V267I), F (E218A and T523I), and L (C319Y and H1690Y)) that together (on their own) confer an approximate 10-fold reduction in replication in seronegative chimpanzees, and a reduction in illness (Whitehead, *et al.* 1998. J Virol 72:4467-4471). The cp mutation was previously shown to be associated with a moderate 30 attenuation phenotype (Whitehead, *et al.* 1999. J Virol 72:4467-4471).

In addition, previous analysis of 6 biological viruses that had been derived by chemical 35 mutagenesis of cpRSV and selected for the temperature-sensitive (ts) phenotype yielded a total of 6 independent mutations that each conferred a ts attenuation phenotype and could be introduced in the recombinant viruses of the present invention, in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively). Five of these were amino acid substitutions in the L protein, which were named based on virus number rather than sequence position: “955” (N43I), “530” (F521L), “248” (Q831L), “1009” (M1169V), and “1030” (Y1321N) (Juhasz, *et al.* 1999. Vaccine

17:1416-1424; Collins, *et al.* 1999. *Adv Virus Res* 54:423-451; Firestone, *et al.* 1996. *Virology* 225:419-422; Whitehead, *et al.* 1999. *J Virol* 73:871-877). The sixth mutation (called "404") was a single nucleotide change in the gene-start transcription signal of the M2 gene (GGGGCAAATA, SEQ ID NO: 25 to GGGGCAAACA, SEQ ID NO: 26, mRNA-sense) (Whitehead, *et al.* 1998. *Virology* 247:232-239).

5 Reverse genetics was recently used to increase the genetic stability of the 248 and 1030 mutations (Luongo, *et al.* 2009. *Vaccine* 27:5667-5676; Luongo, *et al.* 2012. *J Virol* 86:10792-10804). Another attenuating mutation comprises a deletion of codon 1313 in the L protein and combining it with an I1314L substitution to confer increased genetic stability (Luongo, *et al.* 2013. *J Virol* 87:1985-1996).

In some embodiments, the recombinant RSV strains may comprise one or more changes in the F protein, e.g. the "HEK" mutation, which comprises two amino acid substitutions in the F protein namely K66E and Q101P (described in Connors, *et al.* 1995. *Virology* 208:478-484; Whitehead, *et al.* 1998. *J Virol* 72:4467-4471), in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively). The introduction of the HEK amino acid assignments into the strain A2 F sequence of this disclosure results in an F protein amino acid sequence that is identical to that of an early-passage (human embryonic kidney cell passage 7, HEK-7) of the original clinical isolate of strain A2 ( Connors, *et al.* 1995. *Virology* 208:478-484; Whitehead, *et al.* 1998. *J Virol* 72:4467-4471). It results in an F protein that is much less fusogenic and is thought to represent the phenotype of the original A2 strain clinical isolate (Liang *et al.* *J Virol* 2015 89:9499-9510). The HEK F protein also forms a more stable trimer (Liang *et al.* *J Virol* 2015 89:9499-9510). This may provide a more authentic and immunogenic form of the RSV F protein, possibly enriched for the highly immunogenic pre-fusion conformation (McLellan *et al.* *Science* 2013 340(6136):1113-7; *Science* 2013 342(6158):592-8.). Thus, mutations can be introduced with effects additional to effects on the magnitude of virus replication.

In some embodiments the recombinant strains may comprise one or more changes in the L protein, e.g. the stabilized 1030 or the "1030s" mutation which comprises 1321K(AAA)/S1313(TCA) (Luongo, *et al.* 2012. *J Virol* 86:10792-10804), in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively).

In some embodiments the recombinant strains may comprise one or more changes in the N protein, e.g. an amino substitution such as T24A, or in the NS protein, e.g. an amino acid substitution such as K51R, in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively).

In some embodiments, the viral strains comprise a deletion in the SH gene, in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively). For example, in some embodiments, the viral strains comprise a 419 nucleotide deletion at position 4197-4615 (4198-4616 of SEQ ID NO: 1), denoted herein as the "ΔSH" mutation. This deletion results in the deletion of M gene-end, M/S<sub>H</sub> intergenic region, and deletion of the SH ORF.

The F and/or G protein amino acid sequences of the disclosed recombinant RSV strains can be modified to represent currently-circulating strains (in addition to the shift in the position of the NS1/NS2 genes, for example to positions 7 and 8, or 9 and 10, respectively), which can be particularly relevant in

the case of the divergent G protein, or to represent early-passage clinical isolates. Deletions or substitutions may be introduced into the G protein to obtain improved immunogenicity or other desired properties. For example, the CX3C fractalkine motif in the G protein might be ablated to improve immunogenicity (Chirkova *et al.* J Virol 2013 87:13466-13479). In some embodiments, the nucleotide sequence encoding the G protein of the RSV may be replaced with nucleotide sequence G001 from the clinical isolate A/Maryland/001/11 (“G001”). In some embodiments, the nucleotide sequence encoding the F protein of the RSV may be replaced with the nucleotide sequence F001 from the clinical isolate A/Maryland/001/11 (“F001”).

In some embodiments, a native or naturally occurring nucleotide sequence encoding a protein of the RSV may be replaced with a codon optimized sequence designed for increased expression in a selected host, in particular the human, in addition to the shift in the position of the NS1/NS2 genes (for example to positions 7 and 8, or 9 and 10, respectively). Alternatively, a sequence can be designed to be suboptimal on the codon or codon-pair level.

In addition to the above described mutations, recombinant RSV according to the invention can incorporate heterologous, coding or non-coding nucleotide sequences from any RSV or RSV-like virus, e.g., human, bovine, ovine, murine (pneumonia virus of mice), or avian (turkey rhinotracheitis virus) pneumovirus, or from another enveloped virus, e. g., parainfluenza virus (PIV). Exemplary heterologous sequences include RSV sequences from one human RSV strain combined with sequences from a different human RSV strain. In yet additional aspects, one or more human RSV coding or non-coding polynucleotides are substituted with a counterpart sequence from a heterologous RSV or non-RSV virus to yield novel attenuated vaccine strains. Alternatively, the recombinant RSV may incorporate sequences from two or more, wild-type or mutant human RSV subgroups, for example a combination of human RSV subgroup A and subgroup B sequences. RSV exists as two antigenic subgroups, A and B, which have substantial sequence and antigenic differences, in particular for the G protein. It is common for A and B strains to alternate predominance in 1- to 2-year cycles, suggesting that the antigenic differences are sufficient to facilitate re-infection by a heterologous subgroup strain (Hall *et al* 1990 J Infect 162:1283-1290; Wattis 1991 J Infect Dis 163:464-469; Peret *et al* 1998 J Gen Virol 79:2221-2229). Therefore, the recombinant RSV may incorporate sequences from the heterologous subgroup in order to increase the breadth of protection. For example, the F and/or G proteins of an attenuated RSV of one subgroup might be swapped with those of the second subgroup in order to make a new vaccine matched to the heterologous subgroup (Whitehead *et al* 1999 J Virol 73:9773-9780). As another example, the G protein of the heterologous subgroup can be expressed as an additional gene. In this way, an RSV vaccine could be designed with one or more components that represent both antigenic subgroups.

In addition to the recombinant RSVs having the particular mutations described herein, the disclosed viruses may be modified further as would be appreciated by those skilled in the art. For example, the recombinant RSVs may have one or more of its proteins deleted or otherwise mutated or a heterologous gene from a different organism may be added to the genome or antigenome so that the recombinant RSV expresses or incorporates that protein upon infecting a cell and replicating.

Furthermore, those skilled in the art will appreciate that other previously defined mutations known to have an effect on RSV may be combined with one or more of any of the mutations described herein to produce a recombinant RSV with desirable attenuation or stability characteristics.

In some embodiments, the disclosed recombinant RSV vaccine strains can be produced using a recombinant DNA-based technique called reverse genetics (Collins, *et al.* 1995. Proc Natl Acad Sci USA 92:11563-11567). This system allows *de novo* recovery of infectious virus entirely from cDNA in a qualified cell substrate under defined conditions. Reverse genetics provides a means to introduce predetermined mutations into the RSV genome via the cDNA intermediate. Specific attenuating mutations were characterized in preclinical studies and combined to achieve the desired level of attenuation. Derivation of vaccine viruses from cDNA minimizes the risk of contamination with adventitious agents and helps to keep the passage history brief and well documented. Once recovered, the engineered virus strains propagate in the same manner as a biologically derived virus. As a result of passage and amplification, the vaccine viruses do not contain recombinant DNA from the original recovery.

The Examples in the present disclosure utilized RSV strain A2 of antigenic subgroup A, which is the most widely used experimental strain and also is the parent of numerous live attenuated RSV vaccine candidates that have been evaluated in clinical studies. Given that a variety of additional RSV strains exist (e.g., RSV B1, RSV Long, RSV Line 19), those skilled in the art will appreciate that certain strains of RSV may have nucleotide or amino acid insertions or deletions that alter the position of a given residue. For example, if a protein of another RSV strain had, in comparison with strain A2, two additional amino acids in the upstream end of the protein, this would cause the amino acid numbering of downstream residues relative to strain A2 to increase by an increment of two. However, because these strains share a large degree of sequence identity, those skilled in the art would be able to determine the location of corresponding sequences by simply aligning the nucleotide or amino acid sequence of the A2 reference strain with that of the strain in question. Therefore, it should be understood that the amino acid and nucleotide positions described herein, though specifically enumerated in the context of this disclosure, can correspond to other positions when a sequence shift has occurred or due to sequence variation between virus strains. In the comparison of a protein, or protein segment, or gene, or genome, or genome segment between two or more related viruses, a “corresponding” amino acid or nucleotide residue is one that is thought to be exactly or approximately equivalent in function in the different species.

Unless context indicates otherwise, the numbering used in this disclosure is based on the sequence of the wild-type RSV A2 strain (GenBank accession number M74568) and viral genomic sequences described are in positive-sense.

In some embodiments of the present invention, the recombinant RSV strains were derived from the recombinant version of strain A2 that is called D46. The complete sequence of D46 is shown in US patent 6,790,449 and is being made available as GenBank accession number KT992094. (In some instances and publications, the parent virus and sequence is called D53 rather than D46, a book-keeping

difference that refers to the strain of bacteria used to propagate the antigenomic cDNA and has no other known significance or effect. For the purposes of this disclosure, D46 and D53 are interchangeable.) The nucleotide sequence of D46 differs from the sequence of RSV A2 strain M74568 in 25 nucleotide positions, which includes a 1-nucleotide insert at position 1099.

5 With regard to sequence numbering of nucleotide and amino acid sequence positions for the described viruses, a convention was used whereby each nucleotide or amino acid residue in a given viral sequence retained the sequence position number that it has in the original 15,222-nucleotide biological wt strain A2 virus (Genbank accession number M74568), irrespective of any modifications. Thus, although a number of genomes contain deletions and/or insertions that cause changes in nucleotide length, and in 10 some cases amino acid length, the numbering of all of the other residues (nucleotide or amino acid) in the genome and encoded proteins remains unchanged. It also is recognized that, even without the expedient of this convention, one skilled in the art can readily identify corresponding sequence positions between viral genomes or proteins that might differ in length, guided by sequence alignments as well as the 15 positions of open reading frames, well-known RNA features such as gene-start and gene-end signals, and amino acid sequence features.

Recombinant viruses may be evaluated in cell culture, rodents and non-human primates for 20 infectivity, replication kinetics, yield, efficiency of protein expression, and genetic stability using the methods known in the art. While these semi-permissive systems may not reliably detect every difference in replication, substantial differences in particular may be detected. Also recombinant strains may be evaluated successively in adults, seropositive children, and seronegative children. In some cases, where a 25 previous similar strain has already been shown to be well-tolerated in seronegative children, a new strain may be evaluated directly in seronegative children. Evaluation may be done, for example, in groups of 10 vaccine recipients and 5 placebo recipients, which is a small number that allows simultaneous evaluation of multiple candidates. Candidates may be evaluated in the period immediately post-immunization for 30 vaccine virus infectivity, replication kinetics, shedding, tolerability, immunogenicity, and genetic stability, and the vaccinees may be subjected to surveillance during the following RSV season for safety, RSV disease, and changes in RSV-specific serum antibodies, as described in Karron, *et al.* 2015, *Science Transl Med* 2015 7(312):312ra175, which is incorporated herein in its entirety. Thus, analysis of selected representative viruses may provide for relatively rapid triage to narrow down candidates to identify the most optimal.

Reference to a protein or a peptide includes its naturally occurring form, as well as any fragment, 35 domain, or homolog of such protein. As used herein, the term "homolog" is used to refer to a protein or peptide which differs from a naturally occurring protein or peptide (*i.e.*, the "prototype" or "wild-type" protein) by minor modifications to the naturally occurring protein or peptide, but which maintains the basic protein and side chain structure of the naturally occurring form. Such changes include, but are not limited to: changes in one or a few amino acid side chains; changes in one or a few amino acids, including deletions (e.g., a truncated version of the protein or peptide) insertions and/or substitutions; changes in stereochemistry of one or a few atoms; and/or minor derivatizations, including but not limited

to: methylation, glycosylation, phosphorylation, acetylation, myristylation, prenylation, palmitation, amidation. A homolog can have either enhanced, decreased, or substantially similar properties as compared to the naturally occurring protein or peptide. A homolog of a given protein may comprise, consist essentially of, or consist of, an amino acid sequence that is at least about 50%, or at least about 55%, or at least about 60%, or at least about 65%, or at least about 70%, or at least about 75%, or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99% identical (or any percent identity between 45% and 99%, in whole integer increments), to the amino acid sequence of the reference protein.

In one aspect of the invention, a selected gene segment, such as one encoding a selected protein or protein region (e.g., a cytoplasmic tail, transmembrane domain or ectodomain, an epitopic site or region, a binding site or region, an active site or region containing an active site, etc.) from one RSV, can be substituted for a counterpart gene segment from the same or different RSV or other source, to yield novel recombinants having desired phenotypic changes compared to wild-type or parent RSV strains. For example, recombinants of this type may express a chimeric protein having a cytoplasmic tail and/or transmembrane domain of one RSV fused to an ectodomain of another RSV. Other exemplary recombinants of this type express duplicate protein regions, such as duplicate immunogenic regions. As used herein, “counterpart” genes, gene segments, proteins or protein regions, are typically from heterologous sources (e.g., from different RSV genes, or representing the same (*i.e.*, homologous or allelic) gene or gene segment in different RSV strains). Typical counterparts selected in this context share gross structural features, e.g., each counterpart may encode a comparable structural “domain,” such as a cytoplasmic domain, transmembrane domain, ectodomain, binding site or region, epitopic site or region, etc. Counterpart domains and their encoding gene segments embrace an assemblage of species having a range of size and amino acid (or nucleotide) sequence variations, which range is defined by a common biological activity among the domain or gene segment variants. For example, two selected protein domains encoded by counterpart gene segments within the invention may share substantially the same qualitative activity, such as providing a membrane spanning function, a specific binding activity, an immunological recognition site, etc. More typically, a specific biological activity shared between counterparts, e.g., between selected protein segments or proteins, will be substantially similar in quantitative terms, *i.e.*, they will not vary in respective quantitative activity profiles by more than 30%, preferably by no more than 20%, more preferably by no more than 5-10%.

In alternative aspects of the invention, the infectious RSV produced from a cDNA-expressed genome or antigenome can be any of the RSV or RSV-like strains, e.g., human, bovine, murine, etc., or of any pneumovirus or metapneumovirus, e.g., pneumonia virus of mice or avian metapneumovirus. To engender a protective immune response, the RSV strain may be one which is endogenous to the subject being immunized, such as human RSV being used to immunize humans. The genome or antigenome of endogenous RSV can be modified, however, to express RSV genes or gene segments from a combination of different sources, e.g., a combination of genes or gene segments from different RSV species, subgroups, or strains, or from an RSV and another respiratory pathogen such as human parainfluenza

virus (PIV) (see, e.g., Hoffman *et al.* *J. Virol.* 71:4272-4277 (1997); Durbin *et al.* *Virology* 235(2):323-32 (1997); Murphy *et al.* U.S. Patent Application Ser. No. 60/047,575, filed May 23, 1997, and the following plasmids for producing infectious PIV clones: p3/7(131) (ATCC 97990); p3/7(131)2G(ATCC 97889); and p218(131) (ATCC 97991); each deposited Apr. 18, 1997 under the terms of the Budapest Treaty with the American Type Culture Collection (ATCC) of 10801 University Blvd., Manassas, Va. 20110-2209, USA., and granted the above identified accession numbers.

In certain embodiments of the invention, recombinant RSV are provided wherein individual internal genes of a human RSV are replaced with, e.g., a bovine or other RSV counterpart, or with a counterpart or foreign gene from another respiratory pathogen such as PIV. Also, human RSV cis-acting sequences, such as promoter or transcription signals, can be replaced with, e.g., their bovine RSV counterpart. Reciprocally, means are provided to generate live attenuated bovine RSV by inserting human attenuating genes or cis-acting sequences into a bovine RSV genome or antigenome background.

Thus, infectious recombinant RSV intended for administration to humans can be a human RSV that has been modified to contain genes from, e.g., a bovine RSV or a PIV, such as for the purpose of attenuation. For example, by inserting a gene or gene segment from PIV, a bivalent vaccine to both PIV and RSV is provided. Alternatively, a heterologous RSV species, subgroup or strain, or a distinct respiratory pathogen such as PIV, may be modified, e.g., to contain genes that encode epitopes or proteins which elicit protection against human RSV infection. For example, the human RSV glycoprotein genes can be substituted for the bovine glycoprotein genes such that the resulting bovine RSV, which now bears the human RSV surface glycoproteins and would retain a restricted ability to replicate in a human host due to the remaining bovine genetic background, elicits a protective immune response in humans against human RSV strains.

The ability to analyze and incorporate other types of attenuating mutations into infectious RSV for vaccine development extends to a broad assemblage of targeted changes in RSV clones. For example, any RSV gene which is not essential for growth may be ablated or otherwise modified to yield desired effects on virulence, pathogenesis, immunogenicity and other phenotypic characters.

As used herein, “heterologous genes” refers to genes taken from different RSV strains or types or non-RSV sources. These heterologous genes can be inserted in whole or in part, the order of genes changed, gene overlap removed, the RSV genome promoter replaced with its antigenome counterpart, portions of genes removed or substituted, and even entire genes deleted. Different or additional modifications in the sequence can be made to facilitate manipulations, such as the insertion of unique restriction sites in various intergenic regions or elsewhere. Nontranslated gene sequences can be removed to increase capacity for inserting foreign sequences.

Deletions, insertions, substitutions and other mutations involving changes of whole viral genes or gene segments in recombinant RSV of the invention yield highly stable vaccine candidates, which may be relevant in the case of immunosuppressed individuals. Many of these mutations will result in attenuation of resultant vaccine strains, whereas others will specify different types of desired phenotypic changes. For example, certain viral genes are known which encode proteins that specifically interfere

with host immunity (see, e.g., Kato *et al.*, EMBO J. 16:578-87 (1997). Ablation of such genes in vaccine viruses is expected to reduce virulence and pathogenesis and/or improve immunogenicity.

Other mutations within RSV of the present invention involve replacement of the 3' end of genome with its counterpart from antigenome, which is associated with changes in RNA replication and transcription. In addition, the intergenic regions (Collins *et al.*, Proc. Natl. Acad. Sci. USA 83:4594-4598 (1986)) can be shortened or lengthened or changed in sequence content, and the naturally-occurring gene overlap (Collins *et al.*, Proc. Natl. Acad. Sci. USA 84:5134-5138 (1987)) can be removed or changed to a different intergenic region by the methods described herein.

In another embodiment, a sequence surrounding a translational start site (preferably including a nucleotide in the -3 position) of a selected RSV gene is modified, alone or in combination with introduction of an upstream start codon, to modulate RSV gene expression by specifying up- or down-regulation of translation.

Alternatively, or in combination with other RSV modifications disclosed herein, RSV gene expression can be modulated by altering a transcriptional GS signal of a selected gene(s) of the virus. In one exemplary embodiment, the GS signal of M2 is modified to include a defined mutation to superimpose a ts restriction on viral replication.

Yet additional RSV clones within the invention incorporate modifications to a transcriptional GE signal. For example, RSV clones are provided which substitute or mutate the GE signal of the NS1 and NS2 genes for that of the N gene, resulting in decreased levels of readthrough mRNAs and increased expression of proteins from downstream genes. The resulting recombinant virus exhibits increased growth kinetics and increased plaque size, providing but one example of alteration of RSV growth properties by modification of a cis-acting regulatory element in the RSV genome.

In another aspect, expression of the G protein may be increased by modification of the G mRNA. The G protein is expressed as both a membrane bound and a secreted form, the latter form being expressed by translational initiation at a start site within the G gene translational open reading frame. The secreted form may account for as much as one-half of the expressed G protein. Ablation of the internal start site (e.g., by sequence alteration, deletion, etc.), alone or together with altering the sequence context of the upstream start site yields desired changes in G protein expression. Ablation of the secreted form of the G protein also will improve the quality of the host immune response to exemplary, recombinant RSV, because the soluble form of the G protein is thought to act as a "decoy" to trap neutralizing antibodies. Also, soluble G protein has been implicated in enhanced immunopathology due to its preferential stimulation of a Th2-biased response.

In yet other embodiments, RSV useful in a vaccine formulation may be conveniently modified to accommodate antigenic drift in circulating virus. Typically the modification will be in the G and/or F proteins. The entire G or F gene, or the segments encoding particular immunogenic regions thereof, is incorporated into the RSV genome or antigenome cDNA by replacement of the corresponding region in the infectious clone or by adding one or more copies of the gene such that several antigenic forms are represented.

In addition to the above described modifications to recombinant RSV, different or additional modifications in RSV clones can be made to facilitate manipulations, such as the insertion of unique restriction sites in various intergenic regions or elsewhere. Nontranslated gene sequences can be removed to increase capacity for inserting foreign sequences.

5 Introduction of the foregoing, defined mutations into an infectious RSV clone can be achieved by a variety of well-known methods. By “infectious clone” is meant cDNA or its product, synthetic or otherwise, which can be transcribed into genomic or antigenomic RNA capable of producing an infectious virus. The term “infectious” refers to a virus or viral structure that is capable of replicating in a cultured cell or animal or human host to produce progeny virus or viral structures capable of the same 10 activity. Thus, defined mutations can be introduced by conventional techniques (e.g., site-directed mutagenesis) into a cDNA copy of the genome or antigenome. The use of antigenome or genome cDNA subfragments to assemble a complete antigenome or genome cDNA is well-known by those of ordinary skill in the art and has the advantage that each region can be manipulated separately (smaller cDNAs are easier to manipulate than large ones) and then readily assembled into a complete cDNA. Thus, the 15 complete antigenome or genome cDNA, or any subfragment thereof, can be used as template for oligonucleotide-directed mutagenesis. A mutated subfragment can then be assembled into the complete antigenome or genome cDNA. Mutations can vary from single nucleotide changes to replacement of large cDNA pieces containing one or more genes or genome regions.

Recombinant RSV may be produced by the intracellular coexpression of a cDNA that encodes 20 the RSV genomic RNA, together with those viral proteins necessary to generate a transcribing, replicating nucleocapsid. Plasmids encoding other RSV proteins may also be included with these essential proteins. Alternatively, RNA may be synthesized in *in vitro* transcription reactions and transfected into cultured cells.

Accordingly, also described herein are isolated polynucleotides that encode the described 25 mutated viruses, make up the described genomes or antigenomes, express the described genomes or antigenomes, or encode various proteins useful for making recombinant RSV *in vitro*. The nucleic acid sequences of a number of exemplary polynucleotides are also provided. Included within the scope of the invention are polynucleotides comprising sequences that consist or consist essentially of any of the aforementioned nucleic acid sequences. Further included are polynucleotides that possess at least about 30 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 percent or more identity, or any number in between, to any of the aforementioned sequences or SEQ ID NOs, as well as polynucleotides that hybridize to, or are the complements of the aforementioned molecules.

These polynucleotides can be included within or expressed by vectors in order to produce a 35 recombinant RSV. Accordingly, cells transfected with the isolated polynucleotides or vectors are also within the scope of the invention and are exemplified herein.

In related aspects of the invention, compositions (e.g., isolated polynucleotides and vectors incorporating an RSV-encoding cDNA) and methods are provided for producing an recombinant RSV.

Included within these aspects of the invention are novel, isolated polynucleotide molecules and vectors incorporating such molecules that comprise a RSV genome or antigenome which is modified as described herein. Also provided is the same or different expression vector comprising one or more isolated polynucleotide molecules encoding the RSV proteins. These proteins also can be expressed 5 directly from the genome or antigenome cDNA. The vector(s) are preferably expressed or coexpressed in a cell or cell-free lysate, thereby producing an infectious mutant RSV particle or subviral particle.

In one aspect, the invention includes a method for producing one or more purified RSV protein(s) which involves infecting a host cell permissive of RSV infection with a recombinant RSV strain under conditions that allow for RSV propagation in the infected cell. After a period of replication 10 in culture, the cells are lysed and recombinant RSV is isolated therefrom. One or more desired RSV protein(s) is purified after isolation of the virus, yielding one or more RSV protein(s) for vaccine, diagnostic and other uses.

The above methods and compositions yield infectious viral or subviral particles, or derivatives thereof. An infectious virus is comparable to the authentic RSV virus particle and is infectious as is. It 15 can directly infect fresh cells. An infectious subviral particle typically is a subcomponent of the virus particle which can initiate an infection under appropriate conditions. For example, a nucleocapsid containing the genomic or antigenomic RNA and the N, P, L and M2-1 proteins is an example of a subviral particle which can initiate an infection if introduced into the cytoplasm of cells. Subviral particles provided within the invention include viral particles which lack one or more protein(s), protein 20 segment(s), or other viral component(s) not essential for infectivity.

In other embodiments the invention provides a cell or cell free lysate containing an expression vector which comprises an isolated polynucleotide molecule encoding mutant RSV genome or antigenome as described above, and an expression vector (the same or different vector) which comprises one or more isolated polynucleotide molecules encoding the N, P, L and RNA polymerase elongation 25 factor proteins of RSV. One or more of these proteins also can be expressed from the genome or antigenome cDNA. Upon expression the genome or antigenome and N, P, L, and RNA polymerase elongation factor proteins combine to produce an infectious RSV viral or sub-viral particle.

The recombinant RSV of the invention are useful in various compositions to generate a desired immune response against RSV in a host susceptible to RSV infection. Attenuated mutant RSV strains of 30 the invention are capable of eliciting a protective immune response in an infected human host, yet are sufficiently attenuated so as to not cause unacceptable symptoms of severe respiratory disease in the immunized host. The attenuated virus or subviral particle may be present in a cell culture supernatant, isolated from the culture, or partially or completely purified. The virus may also be lyophilized, and can be combined with a variety of other components for storage or delivery to a host, as desired.

35 In another aspect of the invention, the recombinant mutants may be employed as “vectors” for protective antigens of other pathogens, particularly respiratory tract pathogens such as parainfluenza virus (PIV). For example, recombinant RSV may be engineered which incorporate, sequences that encode protective antigens from PIV to produce infectious, attenuated vaccine virus.

In related aspects, the invention provides a method for stimulating the immune system of an individual to elicit an immune response against RSV in a mammalian subject. The method comprises administering an immunogenic formulation of an immunologically sufficient amount of an attenuated, recombinant mutant RSV in a physiologically acceptable carrier and/or adjuvant.

5 The invention further provides novel vaccines comprising a physiologically acceptable carrier and/or adjuvant and an isolated attenuated mutant RSV particle or subviral particle.

To select candidate vaccine viruses from the host of recombinant RSV strains provided herein, the criteria of viability, efficient replication *in vitro*, attenuation *in vivo*, immunogenicity, and phenotypic stability are determined according to well-known methods. Viruses which will be most desired in 10 vaccines of the invention should maintain viability, should replicate sufficiently *in vitro* well under permissive conditions to make vaccine manufacture possible, should have a stable attenuation phenotype, should be well-tolerated, should exhibit replication in an immunized host (albeit at lower levels), and should effectively elicit production of an immune response in a vaccine sufficient to confer protection against serious disease caused by subsequent infection from wild-type virus.

15 To propagate a RSV virus for vaccine use and other purposes, a number of cell lines which allow for RSV growth may be used. RSV grows in a variety of human and animal cells. Preferred cell lines for propagating attenuated RS virus for vaccine use include DBSFRhL-2, MRC-5, and Vero cells. Highest virus yields are usually achieved with epithelial cell lines such as Vero cells. Cells are typically inoculated with virus at a multiplicity of infection ranging from about 0.001 to 1.0, or more, and are 20 cultivated under conditions permissive for replication of the virus, e.g., at about 30-37°C and for about 3-10 days, or as long as necessary for virus to reach an adequate titer. Temperature-sensitive viruses often are grown using 32°C as the “permissive temperature.” Virus is removed from cell culture and separated from cellular components, typically by well-known clarification procedures, e.g., centrifugation, and may be further purified as desired using procedures well known to those skilled in the art.

25 RSV which has been attenuated as described herein can be tested in various well known and generally accepted *in vitro* and *in vivo* models to confirm adequate attenuation, resistance to phenotypic reversion, and immunogenicity for vaccine use. In *in vitro* assays, the modified virus, which can be a multiply attenuated, biologically derived or recombinant RSV, is tested for temperature sensitivity of virus replication or “ts phenotype,” and for the small plaque phenotype. Modified virus also may be 30 evaluated in an *in vitro* human airway epithelium (HAE) model, which appears to provide a means of ranking viruses in the order of their relative attenuation in non-human primates and humans (Zhang et al 2002 J Virol 76:5654-5666; Schaap-Nutt et al 2010 Vaccine 28:2788-2798; Ilyushina et al 2012 J Virol 86:11725-11734). Modified viruses are further tested in animal models of RSV infection. A variety of animal models (e.g., murine, cotton rat, and primate) have been described and are known to those skilled 35 in the art.

In accordance with the foregoing description and based on the Examples below, the invention also provides isolated, infectious RSV compositions for vaccine use. The attenuated virus which is a component of a vaccine is in an isolated and typically purified form. By isolated is meant to refer to RSV

which is in other than a native environment of a wild-type virus, such as the nasopharynx of an infected individual. More generally, isolated is meant to include the attenuated virus as a component of a cell culture or other artificial medium. For example, attenuated RSV of the invention may be produced by an infected cell culture, separated from the cell culture and added to a stabilizer.

5 RSV vaccines of the invention contain as an active ingredient an immunogenically effective amount of RSV produced as described herein. Biologically derived or recombinant RSV can be used directly in vaccine formulations. The biologically derived or recombinantly modified virus may be introduced into a host with a physiologically acceptable carrier and/or adjuvant. Useful carriers are well known in the art, and include, e.g., water, buffered water, 0.4% saline, 0.3% glycine, hyaluronic acid and 10 the like. The resulting aqueous solutions may be packaged for use as is, or in frozen form that is thawed prior to use, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration, as mentioned above. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, which include, but are not limited to, pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like, for 15 example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sucrose, magnesium sulfate, phosphate buffers, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer, sorbitan monolaurate, and triethanolamine oleate. Acceptable adjuvants include incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum, which are materials well known in the art. Preferred adjuvants also include Stimulon™ QS-21 (Aquila Biopharmaceuticals, Inc., 20 Worcester, Mass.), MPL™ (3-O-deacylated monophosphoryl lipid A; RIBI ImmunoChem Research, Inc., Hamilton, Mont.), and interleukin-12 (Genetics Institute, Cambridge, Mass.).

Upon immunization with a RSV vaccine composition, the host responds to the vaccine by producing antibodies specific for RSV virus proteins, e.g., F and G glycoproteins. In addition, innate and cell-mediated immune responses are induced, which can provide antiviral effectors as well as regulating 25 the immune response. As a result of the vaccination the host becomes at least partially or completely immune to RSV infection, or resistant to developing moderate or severe RSV disease, particularly of the lower respiratory tract.

The vaccine compositions containing the attenuated RSV of the invention are administered to a subject susceptible to or otherwise at risk of RSV infection in an "immunogenically effective dose" 30 which is sufficient to induce or enhance the individual's immune response capabilities against RSV. An RSV vaccine composition may be administered by any suitable method, including but not limited to, via injection, aerosol delivery, nasal spray, nasal droplets, oral inoculation, or topical application. In the case of human subjects, the attenuated virus of the invention is administered according to well established human RSV vaccine protocols (Karron *et al.* JID 191:1093-104, 2005). Briefly, adults or children are 35 inoculated intranasally via droplet with an immunogenically effective dose of RSV vaccine, typically in a volume of 0.5 ml of a physiologically acceptable diluent or carrier. This has the advantage of simplicity and safety compared to parenteral immunization with a non-replicating vaccine. It also provides direct stimulation of local respiratory tract immunity, which plays a major role in resistance to RSV. Further,

this mode of vaccination effectively bypasses the immunosuppressive effects of RSV-specific maternally-derived serum antibodies, which typically are found in the very young. Also, while the parenteral administration of RSV antigens can sometimes be associated with immunopathologic complications, this has not been observed with a live virus.

5 In some embodiments, the vaccine may be administered intranasally or subcutaneously or intramuscularly. In some embodiments, it may be administered to the upper respiratory tract. This may be performed by any suitable method, including but not limited to, by spray, droplet or aerosol delivery. Often, the composition will be administered to an individual seronegative for antibodies to RSV or possessing transplacentally acquired maternal antibodies to RSV.

10 In all subjects, the precise amount of RSV vaccine administered and the timing and repetition of administration will be determined by various factors, including the patient's state of health and weight, the mode of administration, the nature of the formulation, etc. Dosages will generally range from about 3.0  $\log_{10}$  to about 6.0  $\log_{10}$  plaque forming units ("PFU") or more of virus per patient, more commonly from about 4.0  $\log_{10}$  to 5.0  $\log_{10}$  PFU virus per patient. In one embodiment, about 5.0  $\log_{10}$  to 6.0  $\log_{10}$  PFU per patient may be administered during infancy, such as between 1 and 6 months of age, and one or more additional booster doses could be given 2-6 months or more following the first dose. In another embodiment, young infants could be given a dose of about 5.0  $\log_{10}$  to 6.0  $\log_{10}$  PFU per patient at approximately 2, 4, and 6 months of age, which is the recommended time of administration of a number of other childhood vaccines. In yet another embodiment, an additional booster dose could be 15 administered at approximately 10-15 months of age. In any event, the vaccine formulations should provide a quantity of attenuated RSV of the invention sufficient to effectively stimulate or induce an anti-RSV immune response (an "effective amount").

20 In some embodiments, the vaccine may comprise attenuated recombinant virus that elicits an immune response against a single RSV strain or antigenic subgroup, e.g. A or B, or against multiple RSV strains or subgroups. In this regard, the recombinant mutant RSV can be combined in vaccine 25 formulations with other RSV vaccine strains or subgroups having different immunogenic characteristics for more effective protection against one or multiple RSV strains or subgroups. They may be administered in a vaccine mixture, or administered separately in a coordinated treatment protocol to elicit 30 more effective protection against one RSV strain, or against multiple RSV strains or subgroups.

35 The resulting immune response can be characterized by a variety of methods. These include taking samples of nasal washes or sera for analysis of RSV-specific antibodies, which can be detected by tests including, but not limited to, complement fixation, plaque neutralization, enzyme-linked immunosorbent assay, luciferase-immunoprecipitation assay, and flow cytometry. In addition, immune responses can be detected by assay of cytokines in nasal washes or sera, ELISPOT of immune cells from either source, quantitative RT-PCR or microarray analysis of nasal wash or serum samples, and restimulation of immune cells from nasal washes or serum by re-exposure to viral antigen *in vitro* and analysis for the production or display of cytokines, surface markers, or other immune correlates measures

by flow cytometry or for cytotoxic activity against indicator target cells displaying RSV antigens. In this regard, individuals are also monitored for signs and symptoms of upper respiratory illness.

The level of attenuation of vaccine virus may be determined by, for example, quantifying the amount of virus present in the respiratory tract of an immunized host and comparing the amount to that produced by wild-type RSV or other attenuated RS viruses which have been evaluated as candidate vaccine strains. For example, the attenuated virus of the invention will have a greater degree of restriction of replication in the upper respiratory tract of a highly susceptible host, such as a chimpanzee, compared to the levels of replication of wild-type virus, e.g., 10- to 1000-fold less. In order to further reduce the development of rhinorrhea, which is associated with the replication of virus in the upper respiratory tract, an ideal vaccine candidate virus should exhibit a restricted level of replication in both the upper and lower respiratory tract. However, the attenuated viruses of the invention must be sufficiently infectious and immunogenic in humans to confer protection in vaccinated individuals. Methods for determining levels of RSV in the nasopharynx of an infected host are well known in the literature. Specimens are obtained by aspiration or washing out of nasopharyngeal secretions and virus quantified in tissue culture or other by laboratory procedure. See, for example, Belshe *et al.*, J. Med. Virology 1:157-162 (1977), Friedewald *et al.*, J. Amer. Med. Assoc. 204:690-694 (1968); Gharpure *et al.*, J. Virol. 3:414-421 (1969); and Wright *et al.*, Arch. Ges. Virusforsch. 41:238-247 (1973). The virus can conveniently be measured in the nasopharynx of host animals, such as chimpanzees.

In summary, the materials, information, and methods described in this disclosure provide an array of attenuated strains with graded attenuation phenotypes, and provide guidance in selecting suitable vaccine candidate strains based on clinical benchmarks. The following examples are provided by way of illustration, not limitation.

### Additional embodiments

Clause 1. An isolated polynucleotide molecule encoding a recombinant respiratory syncytial virus (RSV) variant having an attenuated phenotype comprising a RSV genome or antigenome sequence, wherein the RSV genome or antigenome comprises a modification selected from the group consisting of:

- (a) the NS1 gene is in a gene position higher than position 1;
- (b) the NS2 gene is in a gene position higher than position 2; and
- (c) a combination of (a) and (b),  
optionally, further comprising a reporter gene.

Clause 2. The isolated polynucleotide molecule of clause 1, wherein the modification is a combination of (a) and (b).

Clause 3. The isolated polynucleotide molecule of clause 2, wherein the NS1 gene is in gene position 7 and the NS2 gene is in gene position 8.

Clause 4. The isolated polynucleotide molecule of clause 2, wherein the NS1 gene is in gene position 9 and the NS2 gene is in gene position 10.

Clause 5. The isolated polynucleotide molecule of clause 1, wherein the modification is (a).

Clause 6. The isolated polynucleotide molecule of clause 5, wherein the NS1 gene is in gene position 7 or 9.

Clause 7. The isolated polynucleotide molecule of clause 1, wherein the modification is (b).

Clause 8. The isolated polynucleotide molecule of clause 5 or 6 or 7, wherein the RSV genome or antigenome further comprises a deletion of all or part of the NS1 or NS2 gene.

Clause 9. The isolated polynucleotide molecule of any one of clause 1-8, further comprising a deletion of all or part of the M2-2 gene.

Clause 10. The isolated polynucleotide molecule of clause 1, wherein the RSV genome or antigenome has a positive-sense sequence denoted by a sequence that is at least 90% identical to SEQ ID 10 NO:2.

Clause 11. The isolated polynucleotide molecule of clause 1, wherein the RSV genome or antigenome has a positive-sense sequence denoted by SEQ ID NO:2.

Clause 12. The isolated polynucleotide molecule of clause 1, wherein the RSV genome or antigenome has a positive-sense sequence denoted by a sequence that is at least 90% identical to SEQ ID 15 NO:4.

Clause 13. The isolated polynucleotide molecule of clause 1, wherein the RSV genome or antigenome has a positive-sense sequence denoted by SEQ ID NO:4.

Clause 14. The isolated polynucleotide molecule of clause 8, wherein the RSV genome or antigenome has a positive-sense sequence denoted by a sequence that is at least 90% identical to a 20 sequence selected from the group consisting of SEQ ID NO:6 and SEQ ID NO:8.

Clause 15. The isolated polynucleotide molecule of clause 1, wherein the reporter gene encodes Green Fluorescent Protein (GFP).

Clause 16. The isolated polynucleotide molecule of clause 15, wherein the RSV genome or antigenome has a positive-sense sequence denoted by a sequence that is at least 90% identical to a 25 sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5 and SEQ ID NO:7.

Clause 17. The isolated polynucleotide molecule of any one of clauses 1-16, which exhibits reduced expression of the NS1 gene and/or NS2 gene compared to an RSV having the NS1 gene in gene position 1 and the NS2 gene in gene position 2.

Clause 18. The isolated polynucleotide molecule of any one of clauses 1-17, which exhibits reduced transcription of the NS1 gene and/or NS2 gene compared to an RSV having the NS1 gene in gene position 1 and the NS2 gene in gene position 2.

Clause 19. The isolated polynucleotide molecule of any one of clauses 1-16, which exhibits reduced inhibition of host interferon response compared to an RSV having the NS1 gene in gene position 35 1 and the NS2 gene in gene position 2.

Clause 20. The isolated polynucleotide molecule of any one of clauses 1-16, wherein the RSV variant is increasingly susceptible to restriction in cultured cells that can produce interferons in response to viral infection.

Clause 21. The isolated polynucleotide molecule of any one of clauses 1-16, wherein the RSV variant retains replication efficiency in cultured cells that cannot produce interferons in response to viral infection

Clause 22. A vector comprising the isolated polynucleotide molecule of any one of clauses 1 - 5 21.

Clause 23. A cell comprising the isolated polynucleotide of any one of clauses 1 - 21.

Clause 24. A pharmaceutical composition comprising an immunologically effective amount of the recombinant RSV variant encoded by the isolated polynucleotide molecule of any one of clauses 1- 21.

10 Clause 25. The pharmaceutical composition of clause 24 further comprising an adjuvant.

Clause 26. A method of vaccinating a subject against RSV comprising administering the pharmaceutical composition of clause 24.

Clause 27. The method of clause 26, wherein the pharmaceutical composition is administered intranasally.

15 Clause 28. The method of clause 26 or 27, wherein the pharmaceutical composition is administered via injection, aerosol delivery, nasal spray or nasal droplets.

### Exemplary Sequences

#### Antigenomic cDNA sequence of RSV 6120/NS12FM2GFP (SEQ ID NO: 1)

```

ACGGGAAAAAATGCGTACAACAACTTGCATAAACCAAAAAATGGGGCAAATAAGAATTGATAAGTACCACTTAA
ATTTAACCTCCCTGGTTAGAGATGGCTTCTAGCAAAGTCAGTTGAATGATACTCAACAAAGATCAACTTCTGTC
ATCCAGCAAATACACCATCCAACGGAGCACAGGAGATAGTATTGATACTCCTAATTATGATGTGCAGAAACACATCA
ATAAGTTATGTGGCATGTTATTAAATCACAGAAGATGCTAATCATAAATTCACTGGGTTAATAGGTATGTTATATGCG
ATGTCTAGGTTAGGAAGAGAACACCATAAAAATACTCAGAGATGCGGGATATCATGTAAGCAAATGGAGTAGA
TGTAACAACACATCGTCAAGACATTAATGGAAAAGAAATGAAATTGAAAGTGTAAACATTGGCAAGCTAACAACTG
AAATTCAAATCAACATTGAGATAGAATCTAGAAAATCCTACAAAAAAATGCTAAAAGAAATGGGAGAGGTAGCTCCA
GAATACAGGCATGACTCTCCTGATTGTGGGATGATAATATTATGTATAGCAGCATTAGTAATAACTAAATTAGCAGC
AGGGGACAGATCTGGTCTTACAGCCGTGATTAGGAGAGCTAATAATGTCCTAAAAATGAAATGAAACGTTACAAAG
GCTTACTACCCAAGGACATAGCCAACAGCTCTATGAAGTGTGTTGAAAACATCCCCACTTATAGATGTTTTGTT
CATTGTTGATAGCACAATCTTCTACCAGAGGTGGCAGTAGAGTTGAAGGGATTTGCAGGATTGTTATGAATG
CTATGGTGCAGGGCAAGTGTACGGTGGGAGTCTTAGCAAATCAGTTAAAATATTATGTTAGGACATGCTA
GTGTGCAAGCAGAAATGGAACAAGTTGTTGAGGTTATGAATATGCCAAAATGGGTGGTGAAGCAGGATTCTAC
CATATATTGAACAACCCAAAAGCATCATTATTATCTTGCACCAATTCTCCACTCTCCAGTGTAGTATTAGGCAA
TGCTGCTGGCCTAGGCATAATGGGAGAGTACAGAGGTACACCGAGGAATCAAGATCTATATGATGCGAGCAAAGGCAT
ATGCTGAACAACCTCAAAGAAAATGGTGTGATTAACACTACAGTGTACTAGACTTGACAGCAGAAGAACTAGAGGCTATC
AAACATCAGCTTAATCCAAAAGATAATGATGTAGAGCTTGAGTTAATAAAAATGGGCAAATAATCATCATGGA
AAAGTTGCTCCTGAATTCCATGGAGAAGATGCAAACAAACAGGGCTACTAAATTCTAGAATCAATAAGGGCAAAT
TCACATCACCCAAAGATCCAAGAAAAAGATAGTATCATCTGTCAACTCAATAGATATAGAAGTAACCAAAGAA
AGCCCTATAACATCAAATTCAACTATTATCAACCCAAACAATGAGACAGATGATACTGCAGGGAAACAGCCAAATTA
TCAAAGAAAACCTCTAGTAAGTTCAAAGAAGACCCCTACACCAAGTGTATAATCCCTTCTAAACTATACAAGAAA
CCATAGAAACATTGATAACAAATGAAGAAGAATCCAGCTATTCAACAGAAGAAATAATGATCAGACAAACGATAAT
ATAACAGCAAGATAGATAGGATTGATGAAAAATTAGTGAAGATACTAGGAATGCTTCACACATTAGTAGTGGCAAG
TGCAGGACCTACATCTGCTGGGATGGTATAAGAGATGCCATGGTTGGTTAAGAGAAGAAAATGATAGAAAAATCA
GAACGTGAAAGCATTAAATGACCAATGACAGATTAGAAGCTATGGCAAGACTCAGGAATGAGGAAAGTGAAGAAGATGGCA
AAAGACACATCAGATGAAGTGTCTCAATCCAACATCAGAGAAATTGAACAAACCTATGGAAGGGAAATGATAGTGA
CAATGATCTACTGAAAGATTCTGATTAGTTACCAATCTCACATCAACACACAATACCAACAGAAGACCAACA
AACTAACCAACCCAAATCATCAACAAACATCCATCCGCAATCAGCCAAACAGCCAACAAAACAACCAGCCAATCC
AAAACCAACCCGGAAAAATCTATAATATAGTTACAAAAAAAGGAATCGATGGGCAAATAAGTATGGTGAG
CAAGGGCGAGGAGCTGTTACCGGGGTGGTGCCTACGGTCAAGCTGGACGGCGACGTAAACGCCACAAGTTCA
GCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCTGAAGTTCATCTGCACCACCGGCAAGCTG

```



AACATGCTATACTGATAAATTAAACATTTAACTAATGCTTGGCTAAGGCAGTGATACATACAATCAAATTGAATG  
 GCATTGTGTTGTGCATGTTATTACAAGTAGTGTATTTGCCCTAATAATAATTGTAGTAAAATCCAATTTCACA  
 ACAATGCCAGTACTACAAATGGAGGTATATATGGGAAATGATGGAATTAAACACATTGCTCTCAACCTAATGGTCT  
 ACTAGATGACAATTGTGAAATTAAATTCTCCAAAAACTAAGTGATTCACAAATGACCAATTATGAATCAATTAT  
 CTGAATTACTGGATTGATCTTAATCCATAAATTATAATTAAATCAACTAGCAAATCAATGTCACAAACACCATT  
 AGTTAATATAAACTTAACAGAAGACAAAATGGGCAAATAATCAATTCAAGCAGCCAAACCATGGACACAACCC  
 ACAATGATAATACACCACAAAGACTGATGATCACAGACATGAGACCCTGACTTGAGACCAATAAACATCACTA  
 ACCAGAGACATCATAACACACAAATTATAACTTGATAAATCATGAATGCATAGTGAGAAAATTGATGAAAGACA  
 GGCCACATTACATTCCCTGGTCAACTATGAAATGAAACTATTACACAAAGTAGGAAGCCTAAATATAAAATATA  
 CTGAATACAACACAAATATGGCCTTCCCTATGCCAATATTCAATCATGATGGGTTCTTAGAATGCATTGGC  
 ATTAAGCCTACAAAGCATACTCCCATAATAACAGTATGATCTCAATCCATAAATTCAACACAATATTACACAA  
 TCTAAAACAACAACTCTATGCATAACTATACTCCATAGTCCAGATGGAGCCTGAAAATTATAGTAATTAAAACCTA  
 AGGAGAGATATAAGATAGAAGATGGTACCCCTTACCATCTGTAAAAATGAAAATTGGGCAAATATGTCACGAAGGAA  
 TCCTTGCAAATTGAAATTGAGGTCTTAAATGGTAAGAGGTGTCTTTAGTCATAATTATTGAAATGGC  
 CACCCCATGCACTGCTGTAAAGACAAAATTATGTTAAACAGAATACTTAAGTCTATGGATAAAAGTATAGATACC  
 TTATCAGAAATAAGTGGAGCTGCAGAGTTGGACAGAACAGAACAGAGTATGCTCTGGTAGTTGGAGTGTAGAGAG  
 TTATATAGGATCAATAAACAAATAACTAACAAATCAGCATGTGTTGCCATGAGCAAACCTCCTCACTGAACCTAATA  
 GTGATGATATCAAAAAGCTGAGGGACAATGAAGAGCTAAATTACCCAAAGATAAGAGTGTACAATACTGTCATATCA  
 TATATTGAAAGCAACAGGAAAACAATAACAAACTATCCATCTGTAAAGGATTGACACAATTCAAAATTTCACAAACATCTAGGT  
 ATTATTGAGGATATATAACATAATAATTAGTGTCTAACACTCAATTCTAACACTCACCACATCGTTACATTA  
 TTAATTCAAACAAATTCAAGTTGGGACAAAATGGATCCCATTATTAAATGGAAATTCTGCTAATGTTATCTAACCG  
 ATAGTTATTAAAAGGTGTATCTCTTCAGAGTGTAAATGCTTAGGAGTTACATATTCAATGGCCTTATCTC  
 AAAATGATTATACCAACTTAATTAGACAAAATCCATTAAAGAACACATGAATCTAAAGAAAATAACATATAAC  
 ACAGTCCTTAATATCTAAGTATCATAAGGTGAAATAAAATTAGAACACACTTATTTCTAGTCATTACTTATGA  
 CATAACAAGAGTATGACCTCGTCAGAACAGATTGCTACCAACTATTAAAGATAATAAGAGCTATAGAA  
 ATAAGTGTCAAAGTCTATGCTATATTGAATAAAACTAGGGCTTAAAGAAAAGGACAAGATTAAACAAATGG  
 ACAAGATGAAGACAACTCAGTTATTGACCCATAATCAAAGATGATATACTTCTAGCTGTAAAGATAATCAATCTC  
 ATCTTAAAGCAGACAAAATCACTCTACAAAACAAAAGACACAATCAAACACACTCTTGAAGAAATTGATGTGT  
 TCAATGCAACATCCTCCATGGTTAACATGGTTAACATTACACAAAATTAAACACATATTACACAGTA  
 TCGATCAAATGAGGTTAAACATGGGTTACATTGATAGATAATCAAACACTTCTAGTGGATTCAATTGACATGG  
 ACCAATATGGGTATAGTTATCATAAGGAACCTCAAAGAATTACTGTGACAACCTATAATCAATTCTGACATGG  
 AAAGATATTAGCCTTAGTAGATTAAATGTTGTTAACATGGATTAGTAACGTGCTGAACACATTAAATAAAAG  
 CTTAGGCTTAAGATGCGGATTCAATAATGTTATCTGACACAACATTCTTATGGAGATTGTATACTAAAGCTAT  
 TTCACAATGAGGGTTCTACATAATAAAAGAGGTAGAGGATTATTGTCTTAATTTAAATAACAGAAGAA  
 GATCAATTCAAACGATTTATAATAGTATGCTCAACACATCACAGATGCTGCTAATAAGCTCAGAAAAATCT  
 GCTATCAAGAGTATGTCTACATTAGATAAGACAGTGTCCGATAATAATAAAATGGCAGATGGATAATTCTAT  
 TAAGTAAGTTCTAAATTAAAGCTTAAAGGTTAACATGGCTAACATCTGAGTGAACATTGTTGACATGG  
 AGAATATTGGACACCAATGGTAGATGAAAGACAAGCCATGGATGCTTAAAGATTAAATTGCAATGAGACCAAATT  
 TTACTGTTAACGAGTCTGAGTATGTTAACAGGTGCCTTATATAGAATTAAAGGGTTGTAAATAATTACA  
 ACAGATGGCTACTTTAAGAAATGCTATTGTTACCCCTTAAGATGGTTACTACTATAAAACTAAACACTTATCT  
 TCTTGTGGAACCTACAGAAAGAGATTGATTGTCTACAGGACTACGTTCTATCGTGAGTTCGGTTGCCTAA  
 AAAAGGATCTGAAATGATTATAAGCTATATCACCTCTAAATTGATATGGACTAGTTCCCTA  
 GAAATTACATGCCATCACACATAACAAACTATAGAACATGAAAAATTAAATTCCGAGAGTGTAAATCAAGA  
 AGAGTATTAGAGTATTATAAGAGATAACAAATTCAATGAATGTGATTATAACACTGTGTAGTTAACAGTTA  
 TCTCAACAAACCTAATCATGGTATCATTGACAGGCAAAGAAAGAGAAACTCAGTGTAGGTAGAATGTTGCAATGC  
 AACCGGGATGTCAGACAGGTTCAAATATGGCAGAGAAAATGATAGCTGAAACATTTACAATTCTTCTGAA  
 AGTCTACAAGATATGGTGTAGACTACAAAAAATTAGAACAGTGAAGCAGGAATAAGTAACAAATCAAATCG  
 CTACAATGATAATTACAACAAATTACATTAGTAAGTGCTCTATCATCACAGATCTCAGCAAATTCAATCAAGCATT  
 GATATGAAACGTCTGAGTGTGCTGGATGAACTGCTGATGGTGTACAATCTTCTATTTCCTGGTTACAT  
 TTAACATTCTCATGTCACAATAATATGCACATATAGGCATGCACCCCTATATAGGAGATCATATTGTAGATCT  
 TAACAATGTAGATGAAACAAAGTGGATTATAAGATATCACATGGTGGCATCGAAGGGTGGTGTAAAACATGGA  
 CCATAGAAGCTATTCAGGATCTAATATCTCAAAAGGAAATTCTCAATTACTGCTTAAATTATGGTAC  
 AATCAATCAATAGATAAAAGCAACCAATCAGACTCATGGAAAGGTCAAACCTCATGCTCAAGCAGATTATTGCTAGC  
 ATTAAATAGCCTAAATTACTGTATAAAGAGTATGCAAGGCATAGGCCACAAATTAAAGGAACGTGAGACTTATAT  
 CACGAGATATGCAATTATGAGTAAACAAATTCAACATAACGGTGTATATTACCCAGCTAGTATAAAGAAAGTCCTA  
 AGAGTGGGACCGTGGATAAACACTATACTTGATGATTCAAAGTGAGTCTAGAATCTATAGGTAGTTGACACAAGA  
 ATTAGAATATAGAGGTGAAAGTCTATTGCACTTAATTTAGAAATTGTTATATAATCAGATTGCTCTAC  
 AATTAAAAAATCATGCATTATGTAACAATAACTATATTGGACATATTAAAGGTTCTGAAACACCTTAAACACCTT  
 TTAATCTGATAATTGATACAGCATTAAACATTGTATATGAATTACCCATGTTATTGGTGGTGTGATCCCAA  
 CTTGTTATATCGAAGTTCTATAGAAGAACACTCCTGACTTCCTCACAGAGGCTAGTCACTCTGTTACTTA

GTTATTATACAAACCATGACTAAAAGATAAAACTCAAGATCTGTCAGATGATAGATTGAATAAGTTCTAACATGC  
 ATAATCACGTTGACAAAAACCTAATGCTGAATTGTAACATTGATGAGAGATCCTCAAGCTTAGGGCTGAGAG  
 ACAAGCTAAAATTACTAGCGAAATCAATAGACTGGCAGTTACAGAGGTTGAGTACAGCTCCAAACAAATATTCT  
 CCAAAAGTGCACAACATTATACTACTACAGAGATAGATCTAAATGATATTATGAAACAAATAGAACCTACATATCCT  
 CATGGGCTAAGAGTTGTTATGAAAGTTACCCTTATAAAGCAGAGAAAATAGTAATCTTATTCAGGTACAAA  
 ATCTATAACTAACATACTGGAAAAACTCTGCCATAGACTAACAGATATTGATAGAGCCACTGAGATGATGAGGA  
 AAAACATAACTTGCTTATAAGGAACTTCCATTGGATTGTAACAGAGATAAAAGAGAGATATTGAGTATGGAAAAC  
 CTAAGTATTACTGAATTAAGCAAATATGTTAGGGAAAGATCTTGGTCTTATCCAATATAGTTGGTGTACATCACC  
 CAGTATCATGTATACAATGGACATCAAATATACTACAAGCACTATCTAGTGGCATAATTATAGAGAAATATAATG  
 TTAACAGTTAACACGTGGTGAGAGAGGACCCACTAAACCATGGGTTGGTCATCTACACAAGAGAAAAAAACAATG  
 CCAGTTATAATAGACAAGCTTAACCAAAAAACAGAGAGATCAAATAGATCTTACAGCAAATTGGATTGGGTGTA  
 TGCATCTATAGATAACAAGGATGAATTGAAAGACTCAGCATAGGAACCCTGGGTTAACATATGAAAAGGCCA  
 AGAAAATTATTCACAATATTAAGTGTCAATTATTGCATCGCCTACAGTCAGTAGTAGACCAGTGAATTCCCT  
 GCATCAATACCAAGCTTATAGAACAAATTACTACACTTGCACACTAGCCCTATTACGCATATTACAGAAAAGTA  
 TGGTGATGAAGATATTGACATAGTATTCCAAAATGTATAAGCTTGGCCTTAGTTAATGTCAGTAGTAGAACAAAT  
 TTACTAATGTATGCTAACAGAATTCTCATAACCTAACGTTAATGAGATACATTGATGAAACCTCCCATTTC  
 ACAGGTGATGTTGATATTACAAGTTAAAACAAGTGTACAAAAACAGCATATGTTTACCAAGACAAAATAAGTT  
 GACTCAATATGTGAAATTCTTAAGTAATAAAACACTCAAATCTGGATCTCATGTTAATTCTAATTAAATATTGG  
 CACATAAAATATCTGACTATTTCTATAACTTACATTAAAGTACTAATTAGCTGGACATTGGATTCTGATTATA  
 CAACTTATGAAAGATTCTAAAGGTATTTGAAAAAGATTGGGAGAGGGATATAACTGATCATATGTTTATTAA  
 TTTGAAAGTTCTCAATGCTTAAAGACCTATCTTGTGTTTCATAAAGGTTATGGCAAAGCAAGCTGGAGT  
 GTGATATGAACACTTCAGATCTCTATGTGATTGAAATTAGACAGTAGTTATTGGAAGTCTATGCTAAGGTA  
 TTTTAGAACAAAAAGTTATCAAATACATTCTTAGCCAAGATGCAAGTTACATAGAGTAAAGGATGTCATAGCTT  
 CAAATTATGGTTCTAAACGTCTTAATGTTAGCAGAATTCAAGCTTGGCCCTGGGTTAACATAGATTATC  
 CAACACATATGAAAGCAATATTAACCTATAGATCTTGTAGAATGGGATTGATAAAATAGATAGAACACATT  
 AAAAATAAACACAAATTCAATGATGAATTTATACTTCTAATCTCTACATTAACTTCTCAGATAATAC  
 TCATCTATTAACATAAACATATAAGGATTGCTAATTCTGAATTAGAAAATAATTACAACAAATTATCATC  
 CACAGAAACCCCTAGAGAATATACTAGCCAATCCGATTTAAAGTAATGACAAAAAGACACTGAATGACTATTG  
 AAAAATGTTGACTCAATAATGTTACCAATTGTTATCTAATAAGAAGCTTATTAAATCGTCTGCAATGATT  
 TTACAGCAAACAAGATTGTATAATTATTCCCTATGGTGTGATTGATAGAATTATAGATCATTAGGCAATACAG  
 CCAAATCCAACCAACTTACACTACTTCCCACCAAATATCCTTAGTGCACAATAGCACATCACTTACTGCATG  
 CTTCCCTGGCATCATATTAAATAGATTCAATTGTATTAGCATAGGTGAAGGAGCAGGGATTATTATT  
 AAAAGATCTTAAATTAAAGATCCAATTGTATAGCATTCTAGGTGAAGGAGCAGGGATTATTATT  
 TAGTGGAACTTCATCCTGACATAAGATATTTACAGAAGTCTGAAAGATTGCAATGATCATAGTTACCTATTGAG  
 TTTTAAGGCTGTACAATGGACATATCACACATTGATTATGGGAAAATTGACCATTCTGCTACAGATGCAACCAA  
 CAACATTCTGGCTTATTACATATAAAGTTGCTGAACCTATCAGTCTTGTGATGCCGAATTGTCTG  
 TAACAGTCACCTGGAGTAAATTATAATAGATGCTCAAGATGATATTGATTCTAACATAGGTCTGCAAT  
 AAATGTATGTTAATAGTAAATTATCATGCTCAAGATGATATTGATTCTAACATTAGACAATATAACT  
 TTATGTATGCTTAGGCAGTAAGTTAAAGGGATCGGAGGTTACTTAGCCTTACAATAGGTCTGCAAT  
 CAGTATTAAATGTAGTACAAATGCTAAATTGATACTATCAAGAACAAAATTCTACATGCCTAAC  
 AAAGAGTCTATTGATGCAAATTAAAGTTGATACTTGTGTTACCCCTTTGTTACCCCTATAACAAAAAAGGA  
 AAACATGCTAAACTAAAGAGTGTGTTAGGGAGATATACTATCATATTCTATAGCTGGACGTAATGAAGTTCA  
 GCAATAAAACTTAAATCATAAGCATATGAAACATCTTAAATGGTCAATCATGTTAAATTCA  
 CTAACACTATAACCATTATATGGTAGAATCTACATATCCTTACCTAACGTTAAACAGCTTGACAAACCAA  
 TGAACCTAAAAACTGATTAAACATCACAGGTAGTCTGTTACAAACTTCTACATGAATAATGAATAAGATCTT  
 AATAAAATTCCCAGCTACACTAACACTGTATTCAATTAGTTATTAAATTAAACATATAATT  
 AAATAACTTTAGTGAACTAATCTTAAAGTATCATTAAATCTTGGAGGAATAAATTAAACCTAAC  
 TTTATATGTGTATTAACATTACGAGATATTAGTTGACACTTTTCTCGT

### Antigenomic cDNA sequence of RSV 6120/NS12FM2 (SEQ ID NO: 2)

ACGGGAAAAATGCGTACAACAAACTGCATAAACCAAAAAATGGGCAAATAAGAATTGATAAGTACCACTTAA  
 ATTTAACCTCCCTGGTTAGAGATGGCTCTAGCAAAGTCAGTTGAATGATACTCAACAAAGATCAACTCTGTC  
 ATCCAGCAAATACACCCTCAACGGAGCACAGGAGATAGTATTGATACTCTTAATTATGATGTGAGAAACACATCA  
 ATAAGTTATGTGGCATGTTATTAAATCACAGAAAGATGCTAATCATAAATTCACTGGGTTAATAGGTATGTTATGCG  
 ATGTCTAGGTTAGGAAGAGAAGACACCATAAAATACTCAGAGATGCGGGATATCATGTAAGCAAATGGAGT  
 TGAACAAACACATCGTCAAGACATTAATGGAAAAGAAATTGAAAGTTGTTAACATTGGCAAGCTAACACTG  
 AAATTCAAATCAACATTGAGATAGAATCTAGAAAATCCTACAAAAAAATGCTAAAGAAATGGGAGAGGTAGCTCCA  
 GAATACAGGCATGACTCTCCTGATTGTGGGATGATAATATTGTATAGCAGCATTAGTAATAACTAAATTAGCAGC  
 AGGGGACAGATCTGGCTTACAGCCGTATTAGGAGAGCTAATAATGCTTACAAAAATGAAATGAAACGTTACAAAG  
 GCTTACTACCCAAAGGACATAGCCAACAGCTCTATGAAGTGTGTTGAAAACATCCCCACTTATAGATGTT  
 CATTGGTATAGCACAATCTTCTACCAAGAGGTGGCAGTAGAGTTGAAGGGATTGGCAGGATTGTTATGAATGC

CTATGGTGCAGGGCAAGTGTACGGTGGGGAGTCTTAGCAAAATCAGTAAAAAATTATGTTAGGACATGCTA  
 GTGTGCAACCAGAAAATGGAACAAGTTGTGAGGTTATGAATATGCCAAAAATTGGGTGGTGAAGCAGGATTCTAC  
 CATATATTGAACAACCCAAAAGCATCATTATTATCTTGACTCAATTCCCTCACTTCTCCAGTGTAGTATTAGGCAA  
 TGCTGCTGGCCTAGGCATAATGGGAGAGTACAGAGGTACACCGAGGAATCAAGATCTATATGATGCAGCAAAGGCAT  
 ATGCTGAACAACCTAAAGAAAATGGTGTGATTAACACTACAGTGTACTAGACTGACAGCAGAAGAACTAGAGGCTATC  
 AACATCAGCTTAATCCAAAAGATAATGATGTAGAGCTTGTAGTTAATAAAAATGGGCAAATAATCATCATGGA  
 AAAGTTGCTCCTGAATTCCATGGAGAAGATGCAAACACAGGGCTACTAAATTCTAGAATCAATAAAGGGCAAAT  
 TCACATCACCCAAAGATCCCAAGAAAAAGATAGTATCATATCTGTCAACTCAATAGATATAGAAGTAACCAAAGAA  
 AGCCCTATAACATCAAATTCAACTATTCAACCCAAACAAATGAGACAGATGATACTGCAGGGAAACAGCCAAATTA  
 TCAAAGAAAACCTCTAGTAAGTTCAAAGAAGACCCCTACACCAAGTGTAGATAATCCCTTTCTAAACTATACAAAGAAA  
 CCATAGAAACATTGATAACAATGAAGAAGAATCCAGCTATTCAACAGAAATAATGATCAGACAAACGATAAT  
 ATAACAGCAAGATTAGATAGGATTGATAAGAAATACTAGGAATGCTCACACATTAGTAGTGGCAAG  
 TGCAGGACCTACATCTGCTCGGGATGGTATAAGAGATGCCATGGTTGGTTAAGAGAAGAAATGATAGAAAAATCA  
 GAACTGAAGCATTAAATGACCAATGACAGATTAGAAGCTATGCCAAGACTCAGGAATGAGGAAAGTGAAGAGATGGCA  
 AAAGACACATCAGATGAAGTGTCTCAATCCAACATCAGAGAAATTGAACAAACCTATTGGAGGGATGATAGTGA  
 CAATGATCTATCACTGAAGATTCTGATTAGTTACCAATCTCACATCAACACACAATACAAACAGAACAGCAAC  
 AACTAACCAACCCAAATCCAACAAACATCCATCCGCCAATCAGCCAAACAGCCAAACAAACACCAGCAATCC  
 AAAACTAACCAACCCGAAAAATCTATAATATAGTTACAAAAAAAGGAAAGGGTGGGCAAATATGGAAACATACGT  
 GAACAAGCTTCAGAAGGCTCCACATACACAGCTGCTGTTCAATACAATGTCTAGAAAAAGACGATGACCCCTGCAT  
 CACTTACAATATGGTGCCATGTCCAATCATCTATGCCAGCAGATTACTTATAAAAGAAACTAGCTAATGTCAAC  
 ATACTAGTGAACAAATATCCACACCAAGGGACCTCACTAAAGAGTCATGATAAAACTCAAGAAGTCAGTGCTAGC  
 ACAAAATGCCAGCAAATTACCATATGCGCTAATGTGCTCTGGATGAAAGAAGCAAACACTGCATATGATGTAACCA  
 CACCTGTGAAATCAAGGCATGTAGCTAACATGCCCTAAATCAACAGTCAATTCTGAGGTTACACTGAAAGATCTC  
 ATGAAAGACACTCAACCCATACATGATATTATTGCTTATGTGAATTGAAACATAGTAACATCAAAAAAGTCAT  
 AATACCAACATACCTAACGATCCATCAGTGTCAAGAAATAAGATCTGAACACACTGAAACATATAACACCAGCAAT  
 TCAAAAATGCTATCACAATGCAAATCATCCCTACTCAGGATTACTATTAGTCATCACAGTGAACACAA  
 GGAGCATTCAAATACATAAGCCACAAAGTCATTAGATCTGGAGCTTACACTGAAAGATCTGAAACATAGTATA  
 TTATGTTACCACAAATTGGAAGCACACAGCTACAGATTGCAATCAAACCCATGGAAGGATTAACCTTTCTCT  
 CATCAGTGTGTTAATTCAACAAACTTCTACCTACATTCTCACCTCACCAATCACAAACACTCTGTGGTT  
 CAACCAATCAAACAAACTTATCTGAAGTCCCAGATCATCCCAAGTCATTGTTATCAGATCTAGTACTCAAATAAG  
 TTAATAAAAATACACATGGGCAAATAATCATTGGAGGAAATCCAACAACTACAAATATCTGTTAACATAGACA  
 AGTCCACACACCACAGAACATCAACCAATGAAAATACATCCATAACAAATAGAATTCTCAAGCAAATTCTGGCCTA  
 CTTTACACTAACACATGATCACAAACATAATCTCTTGTCAATCATAATCTCCATCATGATTGCAATACTAAACA  
 AACTTGTGAATATAACGTATTCCATAACAAACCTTGTAGTTACCAAGAGCTCGAGTTAATACTGATAAAAGTAGT  
 TAATTAAAAATAGTCATAACAAATGAACACTAGGATATCAAGACTAACATAACATTGGGCAAATGCAAACATGTCAA  
 AAACAAGGACCAACGCACCGCTAACGACATTAGAAAGGACCTGGGACACTCTCAATCATTATTATCATCATCGT  
 GCTTATATAAGTTAAATCTTAAATCTGTAGCACAAATCACATTCTGCAATGATAATCTCAACTTCACCT  
 ATAATTGCAGCCATCATTCATAGCCTCGCAACACCACAAAGTCACACCAACACTGCAATCATACAAGATGCAAC  
 AAGCCAGATCAAGAACACAACCCAAACATACCTCACCCAGAACATCCTCAGCTGGAAATCAGTCCCTCTAACCGTCTG  
 AAATTACATCACAAATCACCAACTAGCTCAACAAACACCAGAACAGCCCACCAAGCCAAACAAACACCACCAAG  
 CAAACCCAAATAATGATTTCACTTGAAGTGTCAACTTGTACCCCTGCAGCATATGCAGCAACAATCCAACCTGCT  
 GGGCTATGCAAAGAACAAACAAAAACAGGAAAGAAAACCACTACCAAGCCACAAAAACAGCCACAGAGGCC  
 AAGACAACCAAAAGATCCAAACCCACTAAATCAAAGGAAGTACCCACCAAGCCACAGAGGCC  
 AACCATCAACACCACAAACAAACATCATAACTACACTACTCACCTCCAAACACCACAGGAAATCCAGAAACTCACAA  
 GTCAAATGGAAACCTTCACTCAACTTCCCTCGAAGGCAATCCAAGCCCTCTCAAGTCTCTACAACATCCAGTAC  
 CCATCACAACTTCATCTCACACACCAGCTAGTTACTAAAAACATATTACACAAAGGCCTTGAC  
 CAACTTAAACAGAACATCAAATAACTCTGGGCAAATAACAATGGAGTTGCTAATCCTCAAAGCAAATGCAATTACC  
 ACAATCCTCACTGCAGTCACATTGTTTGTCTGGTCAAACATCACTGAAGAATTTCATCAATCACATGCAG  
 TGCAGTTAGCAAGGCTATCTTAGTGTCTGAGAAGTGGTTGATACAGTGTATAACTATAGAATTAGTAATA  
 TCAAGAAAAATAAGTGTAAATGGAACAGATGCTAAGGTTAAATGATAAAACAAAGAATTAGATAAAATAAAAATGCT  
 GTAACAGAATTGCAAGTGTGTCATGCAAAGCACACAAGAACATCGAGGCCAGAAGAGAACTACCAAGGTTAT  
 GAATTATACACTCAACAAATGCCAAAAACCAATGTAACATTAAGCAAGAAAAGGAAAGAAGATTCTTGTGTTTT  
 TGTTAGGTGTTGGATCTGCAATGCCAGTGGCGTTGCTGTATCTAAGGTCTGCACCTAGAAGGGAAAGTGAACAAG  
 ATCAAAAGTGTCTACTATCCACAAACAGGCTGTAGTCAGCTTACAAATGGAGTTAGTGTGTTAACCAAGCAAAGT  
 GTTAGACCTCAAAACTATAGATAAACAAATTGTTACCTATTGTGAAACAAGCAAAGCTGCAGCATATCAAATATAG  
 AAACATGTGATAGAGTCCAACAAAGAACAAACAGACTACTAGAGATTACCAAGGAAATTAGTGTAAATGCAGGCC  
 ACTACACCTGTAAGCACTTACATGTTAACTAATAGTAATTGTGATTAATCAATGATATGCCTATAACAAATGA  
 TCAGAAAAAGTTAACATGTCACAAATGTTAACTAGTTAGACAGCAAAGTTACTCTATCATGTCATAATAAAAGAGG  
 AAGTCTTAGCATATGTAGTACAATTACCACTATATGGTTAGTACACCCCTGTTGGAAACTACACACATCC  
 CTATGTACAACCAACACAAAGAAGGGTCAAACATCTGTTAACAGAAACTGACAGAGGATGGTACTGTGACAATGC  
 AGGATCAGTATCTTCTTCCCACAGCTGAAACATGTAAGGTTCAATCAAATCGAGTATTTGTGACACAATGAACA  
 GTTTAACATTACCAAGTGAAGTAAATCTGCAATGTTGACATATTCAACCCAAATATGATTGAAAATTATGACT  
 TCAAAAACAGATGTAAGCAGCTCCGTTATCACATCTTAGGAGCCATTGTCATGCTATGGCAAACAACTAAATGTAC

AGCATCCAATAAAATCGTGGAAATCATAAAGACATTCTAACGGGTGCGATTATGTATCAAATAAAGGGTGGACA  
 CTGTGTCTGTAGGTAAACACATTATATTGTAAATAAGCAAGAAGGTAAAAGTCTATGTAAAAGGTGAACCAATA  
 ATAAATTCTATGACCCATTAGTATTCCCTCTGATGAATTGATGCATCAATATCTCAAGTCACGAGAAGATTAA  
 CCAGAGCCTAGCATTATCGTAAATCCGATGAATTATTACATAATGTAATGCTGGTAAATCCACCACAAATATCA  
 TGATAACTACTATAATTAGTATTAGTAATATTGTTATCATTATTGCTGTGGACTGCTCTACTGTAAAG  
 GCCAGAAGCACACCAGTCACACTAAGCAAAGATCAACTGAGTGGTATAAATAATTGCTATTAGTAACATAA  
 AATAGCACCTAATCATGTTACAATGGTTACTATCTGCTCATAGACAACCCATCTGTCATTGGATTTCTTAA  
 ATCTGAACCTCATCGAAACTCTCATATAAACCATCTCACCTACACTATTAAGTAGATTCTAGTTATAGTTAT  
 ATAAAACACAATTGCATGCCAGGTACCATGGGCAAATAAGAATTGATAAGTACCACTAAATTAACTCCCTGG  
 TTAGAGATGGCAGCAATTCAATTGAGTATGATAAAAGTTAGATTACAAAATTGTTGACAATGATGAAGTAGCATT  
 GTTAAAAATAACATGCTACTGATAAAATTAAACATTAAACTATGCTTGGCTAAGGCAGTGATAACATAATCA  
 AATTGAATGGCATGTGTTGATGTTATTACAAGTAGTGTATTGCTTAATAATAATTGTTAGTAAATCC  
 AATTTCACAACAATGCCAGTACTACAAAATGGAGGTATATATGGGAAATGATGGAATTACACATTGCTCTCAACC  
 TAATGGCTACTAGATGACAATTGAAATTAAATTCTCCAAAAACTAAGTGATTCAACAAATGACCAATTATGAA  
 ATCAATTATCTGAATTACTGGATTGATCTTAATCCATAAATTATAATTCAACTAGCAAATCAATGTCACT  
 AACACCATTAGTTAATATAAAACTTAACAGAAGACAAAATGGGCAAATAATCAATTGCAACACCAACCATGG  
 ACACAACCCACAATGATAATACACCACAAAGACTGATGATCACAGACATGAGACCCTGACTTGAGACCATAATA  
 ACATCACTAACAGAGACATCATAACACACAAATTATACCTGATAATCATGAATGCATAGTGAGAAAACCTG  
 TGAAAGACAGGCCACATTACATTCTGGTCAACTATGAAATGAAACTATTACACAAAGTAGGAAGCCTAAATATA  
 AAAAATATACTGAATACAACACAAAATATGGCACTTCCCTATGCCAATATTCAATCATGATGGTTCTTAGAA  
 TGCATTGGCATTAAAGCTACAAAGCATACTCCCATAATACAGTATGATCTCAATCCATAAATTCAACACAATA  
 TTCACACAATCTAAAACAACAACTCTATGCTAACTATACCTCCATAGTCCAGATGGAGCCTGAAAATTATGAA  
 TAAAACCTAAGGAGAGATAAGATAGAAGATGGTACCCCTACCATCTGTTAAAATGAAAATGGGCAAATATGTC  
 ACGAAGGAATCCTGCAAATTGAAATTGAGGTACTGCTTAAATGGTAAGAGGTGTCATTTAGTCATAATTATT  
 TTGAATGCCACCCATGCACTGCTTGTAAAGACAAAACCTTATGTTAAACAGAAACTTAAGTCTATGGATAAAAGT  
 ATAGATACTTATCAGAAATAAGTGGAGCTGCAGAGTTGGACAGAACAGAACAGAGTATGCTCTGGTAGTTGGAGT  
 GCTAGAGAGTTATAGGATCAATAACAAATAACTAAACAAATCAGCATGTGTTGCCATGAGCAAACCTCCTCACTG  
 AACTCAATAGTGTGATATCAAAAGCTGAGGGACAATGAAGAGCTAAATTCAACCAAGATAAGAGTGTACAATACT  
 GTCATATCATATTGAAAGCAACAGGAAAACAATAACAAACTATCCATCTGTTAAAAGATTGCCAGCAGACGT  
 ATTGAAGAAAACCATCAAAACACATTGGATATCCATAAGAGCATAACCATCAACAAACCCAAAAGAATCAACTGTTA  
 GTGATACAAATGACCATGCCAAAATAATGATACTACCTGACAAATATCCTTAGTATAACTTCCATACTAATAAC  
 AAGTAGATGTAGAGTTACTATGTTAAATCAAAAGAACACACTATATTCAATCAAACACCCAAAATAACCATATGT  
 ACTCACCAGATCAAACATTCAATGAAATCCATTGGACCTCTCAAGAATTGATTGACACAATTCAAACATTCTACAA  
 CATCTAGGTATTATTGAGGATAATAACAAATAATTAGTGTATAACACTCAATTGAAATTCTGCTAATGTT  
 GTTACATTATTCAAACAAATTCAAGTTGTGGACAAAATGGATCCCATTATTAAATGAAATTCTGCTAATGTT  
 ATCTAACCGATAGTTATTAAAAGGTGTATCTCTTAGTGTAAATGCTTACAGTGTTAGGAAGTTACATATTCAATGGT  
 CCTTATCTCAAAATGATTACCAACTTAATTAGTAGACAAAATCCATTAAATAGAACACATGAATCTAAAGAAACT  
 AAATATAACACAGTCCTAATATCTAAGTATCATAAAGGTGAAATAAAATTAGAACACCTACTTATTTCAGTCAT  
 TACTTATGACATACAAGAGTATGACCTCGTCAGAACAGATTGCTACCACTAATTACTTAAAGATAATAAGAAGA  
 GCTATAGAAATAAGTGTCAAAGTCTATGCTATATTGAATAAAACTAGGGCTTAAAGAAAAGGACAAGATTAAATC  
 CAACAATGGACAAGATGAAGACAACTCAGTTACCGACCAATCAAAGATGATATACTTCACTGTTAAAGATA  
 ATCAATCTCATCTTAAAGCAGACAAAATCACTACAAAACAAAAGACACAATCAAACACACTCTTGAAGAAA  
 TTGATGTGTTCAATGCAACATCCTCATGGTTAACATACATTGGTTAACATTGATAGATAATCAAACCTTACTGTTCAAT  
 TTATTTGAACCAATATGGTTGTAGTTATCATAAGGAACCTAAAGAACATTACTGTGACAACCTATAATCAATTC  
 TTGACATGGAAAGATATTAGCCTTAGTAGATTAAATGTTAACATTACATGGATTAGTAACTGCTTGAACACATT  
 AAATAAAAGCTTAGGCTTAAAGATGCGGATTCAATAATGTTATCTGACACAAACTATTCTTATGGAGATTGTATAC  
 TAAAGCTATTTCACAATGAGGGTTCTACATAATAAAAGAGGTAGAGGGATTATTATGTCCTAATTAAATATA  
 ACAGAAGAAGATCAATTCAAGAAACGATTATAATAGTATGCTCAACAAACATCACAGATGCTGTAATAAGCTCA  
 GAAAATCTGCTATCAAGAGTATGTCATACATTAGATAAGACAGTGTCCGATAATATAATAATGGCAGATGGA  
 TAATTCTATTAAAGTAAAGTCTTAAATTAAATTAAGCTTGTGAGGTGACAATAACCTTAACAATCTGAGTGAACCTAT  
 TTTTGTTCTAGAATATTGGACACCCATTGGTAGATGAAAGACAAGCCATTGGATGCTTAAATTGAAATGCAATGA  
 GACCAATTCTACTGTTAGCAGTGTGAGTATGTTAAAGAGGTGCTTATATATAAGAATTATAAAAGGTTGTAA  
 ATAATTACAACAGATGGCCTACTTAAAGAAATGCTATTGTTACCCCTAAGATGGTAACTTACTATAAAACTAAC  
 ACTTATCCTCTTGTGGAACTTACAGAAAGAGATTGATTGTTACAGGACTACGTTCTATCGTGAGTTCG  
 GTTGCCTAAAAAGTGGATCTGAAATGATTAAATGATAAGCTATATCACCTCTTAAATTGATATGGACTA  
 GTTCCCTAGAAATTACATGCCATCACACATAACAAAACCTATATAGAACATGAAAATTAAATTCTGAGAGTGAT  
 AAATCAAGAAGAGTATTAGAGTATTAAAGAGATAACAAATTCAATGAATGTGATTATAACACTGTGAGTTAA  
 TCAAAGTTATCTCAACAAACCTAATCATGTGGTATCATTGACAGGCAAGAAAGAGAAACTCAGTGTAGGTAGAATGT  
 TTGCAATGCAACCGGAATGTTCAGACAGGTTCAAATTGGCAGAGAAAATGATAGCTGAAAACATTTCACATTC  
 TTCTGAAAGTCTTACAAGATATGGTATCTAGAACTACAAAAAATTAGAAACTGAAAGCAGGAATAAGTAACAA  
 ATCAAATCGCTACAATGATAATTACAACATTAGTAAGTGTCTATCATCACAGATCTCAGCAAATTCAATC  
 AAGCATTGATATGAAACGTATGTATTGTTAGTGTGCTGGATGAACTGCACTGGTACAATCTCTATTTC  
 TGGTTACATTAACTATTCTCATGTCACAATAATGACACATAGGCATGCACCCCCCTATATAGGAGATCATAT

TGTAGATCTAACAAATGTAGATGAACAAAGTGGATTATAGATATCACATGGGTGGCATCGAAGGGTGGTCAAA  
 AACTATGGACCATAGAACGCTATACACTATGGATCTAATACTCTCAAAGGGAAATTCTCAATTACTGCTTTAATT  
 AATGGTGACAATCAATCAATAGATATAAGCAAACCAATCAGACTCATGGAAGGTCAAACACTCATGCTCAAGCAGATTA  
 TTTGCTAGCATTAAATAGCCTAAATTACTGTATAAAGAGTATGCAGGCATAGGCCACAAATTAAAAGGAAGTGAGA  
 CTTATATATCACGAGATATGCAATTATGAGTAAAACAATTCAACATAACGGGTATATTACCCAGCTAGTATAAAG  
 AAAGTCCTAACAGAGTGGGACCGTGGATAAACACTATACTTGATGATTCAAAGTGAGTCAGAATCTATAGGTAGTT  
 GACACAAGAATTAGAATATAGAGGTGAAAGTCTATTATGCAGTTAATATTAGAAATGTATGGTTATATAATCAGA  
 TTGCTCTACAATTAAAAATCATGCATTATGTAACAATAACTATATTGGACATATTAAAGGTTCTGAAACACTTA  
 AAAACCTTTTAATCTTGATAATTGATACAGCATTAAACATTGTATATGAATTTACCCATGTTATTGGTGGTGG  
 TGATCCCAACTTGTATATCGAAGTTCTATAGAAGAACTCCTGACTCCTCACAGAGGCTATAGTCACTCTGTGT  
 TCATACTTAGTTATTATACAAACCATGACTAAAAGATAAACTCAAGATCTGTCAGATGATAGATTGAATAAGTC  
 TTAACATGCATAATCACGTTGACAAAACCCATTGCTGAATTGTAACATTGATGAGAGATCCTCAAGCTTACGG  
 GTCTGAGAGACAAGCTAAAATTACTAGCGAAATCAATAGACTGGCAGTTACAGAGGTTTGAGTACAGCTCCAAACA  
 AAATATTCTCCAAAAGTGCACAACATTACTACAGAGATAGATCTAAATGATATTGCAAAATATAGAACCT  
 ACATATCCTCATGGGCTAACAGAGTTTACCTTTATAAGCAGAGAAAATAGTAAATCTTATATC  
 AGGTACAAAATCTATAACTAACATACTGGAAAAACTCTGCCATAGACTTAACAGATATTGATAGAGCCACTGAGA  
 TGATGAGGAAAAACATAACTTGCTTATAAGGATACTTCCATTGGATTGTAACAGAGATAAAAGAGAGATATTGAGT  
 ATGGAAAACCTAACAGTATTACTGAATTAAAGCAAATATGTTAGGGAAAGATCTTGGTCTTATCCAATATAGTTGGTGT  
 TACATCACCCAGTATCATGTATAACATGGACATCAAATATACTACAAGCACTATATCTAGTGGCATAATTATAGAGA  
 AATATAATGTTAACAGTTAACACAGTGGTGGAGAGAGGACCCACTAAACCATGGGTTGGTCATCTACACAAGAGAAA  
 AAAACAATGCCAGTTATAATAGACAAGTCTAACCAAAAAACAGAGAGATCAAATAGATCTATTAGCAAAATTGGA  
 TTGGGTGTATGCATCTATAGATAACAAGGATGAATTGGAAGAACTCAGCATAGGAACCCTGGGTTAACATATG  
 AAAAGGCCAAGAAATTATTCCACAATTAAAGTGTCAATTATTGCACTGCCTTACAGTCAGTAGAGACCATGT  
 GAATTCCCTGCATCAATACCAGCTTATAGAACAAATTACTTCACTTGCACACTAGCCCTATTAAATCGCATATTAAAC  
 AGAAAAGTATGGTGTGAAGATATTGACATAGTATTCCAAAACGTATAAGCTTGGCCTTAGTTAATGTCAGTAG  
 TAGAACAAATTACTAATGTATGTCTAACAGAATTATTCTCATACCTAACAGCTTAATGAGATACTTGTGAAACCT  
 CCCATATTCAACAGGTGATGTTGATATTCAACAGTTAAACAAACTGATAACAAAACAGCATATGTTTACAGACAA  
 AATAAGTTGACTCAATATGGAATTATTCTTAAGTAATAAAACACTCAAATCTGGATCTATGTTAATTCTAATT  
 TAATATTGGCACATAAAATATCTGACTATTTCATAATACTACATTAAAGTACTAATTAGCTGGACATTGGATT  
 CTGATTATACAACATTGAAAGATTCTAAAGGTATTGGAAAAGATTGGGAGAGGGATATATAACTGATCATAT  
 GTTTATTAAATTGAAAGTTCTCAATGCTTATAAGACCTATCTGTGTTTCATAAAGGTTATGGCAAAGCAA  
 AGCTGGAGTGTGATGAAACACTTCAGATCTCTATGTGTTGGAAATTAGACAGTAGTTATTGGAAAGTCTATG  
 TCTAAGGTATTGGACTCAATATGGAATTATTCTTAAGTAATAAAACACTCAAATCTGGATCTATGTTAATTCTAATT  
 TCATAGCTCAAATTATGGTTCTAACAGCTTAAATGTGAGCAGATTCTAGCCAAGATGCAAGTTACATAGAGTAAAGGATG  
 ATTATCATCCAACACATATGAAAGCAATTAAACTTATAGATCTTGTAGGAATTGGGATTGATAAAATAGATAGA  
 ATACACATTAAAAATAACACAAATTCAATGATGAATTCTACTTCTAACTCTTCTACATTAATTATAACTTCTC  
 AGATAATACTCATTAACAAACATATAAGGATTGCTAATTCTGAATTAGAAAATAATTACAACAAATTATATC  
 ATCCTACACCAGAAACCCTAGAGAATATACTAGCCAATCCGATTAAAGTAATGACAAAAAGACACTGAATGACTAT  
 TGTATAGGTTAAAGTGTGACTCAATAATGTTACCTTGTATCTAATAAGAAGCTTATTAAATCGTCTGCAATGAT  
 TAGAACCAATTACAGCAAACAAAGATTGTATAATTCTCATGGCTTACAGTGTGAGGATATTAGACATTAGCTCAG  
 GCAATACAGCCAAATCCAACCAACTTACACTACTTCCCACCAATATCCTTAGTGCACAATAGCACATCCT  
 TACTGCATGCTCCTGGCATCATATTAAATAGATTCAATTGGTATTAGTCTACAGGTTGTAAAATTAGTATAGA  
 GTATATTAAAGATCTTAAAGATCCAAATTGTATAGCATTAGGTGAAGGAGCAGGGATTATT  
 TCGTACAGTAGTGGAACTTCATCTGACATAAGATATTACAGAAGTCTGAAAGATTGCAATGATCATAGTTA  
 CCTATTGAGTTTAAGGCTGTACAATGGACATATCAACATTGATTAGGTGAAAGATTGACCATTCTGCTACAGA  
 TGCAACCAACAAACATTGGCTTATTACATATAAAGTTGCTGAACCTATCAGCTTTGTGATGCCG  
 AATTGTCTGTAACAGTCAACTGGGTTAAAGTATAATAGAATGGAGCAAGCATGTAAGAAAGTGCAGTACTGTTCC  
 TCAGTTAATAATGTATGTTAATAGTAAAATATCATGCTCAAGATGATATTGATTCAAATTAGACAATATAACTAT  
 ATTAAAAACTTATGTATGCTTAGGCAGTAAGTTAAAGGGATGGAGGTTACTTAGTCCTACAATAGGTCTGCGA  
 ATATATTCCAGTATTAAATGTAGTACAAATTGCTAAATTGATACTATCAAGAACCAAAATTTCATCATGCCTAAG  
 AAAGCTGATAAAGAGTCTATTGATGCAAATATTAAAGTTGATACCCCTTCTGTACCCCTATAACAAAAAAAGG  
 AATTAAATACTGCATTGTCAAACAACTAAAGAGTGTGTTAGTGGAGATATACTATCATATTCTATAGCTGGACGTAATG  
 AAGTTTCAGCAATAAACTTATAATCATAAGCATATGAACATCTTAAATGGTCAATCATGTTAAATTTCAGA  
 TCAACAGAAACTAAACATATAACCATTATATGGTACAATCTACATATCCTACCTAAGTGAATTGTTAACAGCCT  
 GACAACCAATGAACCTAAAAACTGATTAACACAGGTAGTCTGTTATACAACATTTCATAATGAATAATGAATAA  
 AGATCTTATAATAAAATTCCCATAGCTATACACTAACAGTATTCAATTAGTTATTAAAGTTAAACCTAA  
 TAATTGTTAAATAACTTGTGACTAATCCTAAAGTTATCATTAAATCTGGAGGAATAAATTAAACCCCTAA  
 TCTAATTGGTTATATGTGTTAAACTAAATTACGAGATATTAGTTGACACTTTCTCGT

### Antigenomic cDNA sequence of RSV 6120/NS12LtrGFP (SEQ ID NO: 3)

ACGGGAAAAATGCGTACAACAAACTTGCATAAACCAAAAAATGGGCAAATAAGAATTGATAAGTACCACTTAA  
 ATTAACTCCCTGGTAGAGATGGCTTTAGCAAGTCAAGTTGAATGATACTCAACAAAGATCAACTCTGTC

ATCCAGCAAATACACCATCCAACGGAGCACAGGAGATAGTATTGATACTCTAATTATGATGTGCAGAAACACATCA  
 ATAAGTTATGTGGCATGTTATTAAATCACAGAAGATGCTAATCATAAATTCACTGGGTTAATAGGTATGTATATGCG  
 ATGTCTAGGTTAGGAAGAGAACACCATAAAAATACTCAGAGATGCAGGATATCATGTAAGTGTAAACATTGGCAAGCTTAACAACTG  
 TGTAACAACACATCGTCAAGACATTAATGGAAAAGAAATGAAATTGAAAGTGTAAACATTGGCAAGCTTAACAACTG  
 AAATTCAAATCAACATTGAGATAGAATCTAGAAAATCCTACAAAAAATGCTAAAAGAAATGGGAGAGGTAGCTCA  
 GAATACAGGCATGACTCTCCTGATTGTGGGATGATAATATTGTATAGCAGCATTAGTAATAACTAAATTAGCAGC  
 AGGGGACAGATCTGGTCTTACAGCCGTGATTAGGAGAGCTAATAATGTCCTAAAAAATGAAATGAAACGTTACAAAG  
 GCTTACTACCCAAAGGACATAGCCAACAGCTCTATGAAGTGTGAAAACATCCCCACTTATAGATGTTTTGTT  
 CATTGTTATAGCACAATCTTCTACCAGAGGTGGCAGTAGAGTTGAAGGGATTTGCAGGATTGTTATGAATGC  
 CTATGGTGCAGGGCAAGTGATGTTACGGTGGGAGTCTTAGCAAAATCAGTTAAAATATTATGTTAGGACATGCTA  
 GTGTGCAAGCAGAAATGGAACAAGTTGTTAGGTTATGAATATGCCAAAAATTGGTGGTGAAGCAGGATTCTAC  
 CATATATTGAACAACCCAAAAGCATCATTATTATCTTACTCAATTCTCCTACTTCTCCAGTGTAGTATTAGGCAA  
 TGCTGCTGGCCTAGGCATAATGGGAGAGTACAGAGGTACACCGAGGAATCAAGATCTATATGATGCGAGCAAAGGCAT  
 ATGCTGAACAACCTAAAGAAAATGGTGTGATTAACACTACAGTGTACTAGACTTGACAGCAGAAGAACTAGAGGCTATC  
 AACATCAGCTTAATCCAAAAGATAATGATGTAGAGCTTGTAGTTAAATAAAAATGGGCAAATAATCATCATGGA  
 AAAGTTGCTCTGAATTCCATGGAGAAGATGCAAACACAGGGCTACTAAATTCTAGAATCAATAAAGGGCAAAT  
 TCACATCACCAGAAAGATCCAAAGAAAAAGATAGTATCATATCTGTCAACTCAATAGATAAGAAGTAACCAAAGAA  
 AGCCCTATAACATCAAATTCAACTATTATCAACCCAAACAATGAGACAGATGATACTGCAGGGAAACAGCCAAATTA  
 TCAAAGAAAACCTCTAGTAAGTTCAAAGAAGACCCCTACACCAAGTGATAATCCCTTCTAAACTATACAAAGAAA  
 CCATAGAAACATTGATAACAATGAAGAAGAATCCAGCTATTCAACAGAAATAATGATCAGACAAACGATAAT  
 ATAACAGCAAGATTAGATAGGATTGATGAAAAATTAGTGAAGAAATACTAGGAATGCTCACACATTAGTAGTGGCAA  
 TGCAGGACCTACATGCTCGGGATGGTATAAGAGATGCCATGGTTAGAAGAAGAAATGATAGAAGAAAATCA  
 GAACTGAAGCATTAAATGACCAATGACAGATTAGAAGCTATGCAAGACTCAGGAATGAGGAAAGTGAAAGATGGCA  
 AAAGACACATCAGATGAAGTGTCTCAATCCAACATCAGAGAAATTGAACACCTATTGGAGGGAAATGATAGTGA  
 CAATGATCTACTGAAAGATTCTGATTAGTTACCAATCTCACATCAACACACAATACAAACAGAACAGAAC  
 AACTAACCAACCCAAATCATCCAACAAACATCCATCCGCCAATCAGCAAACAGCCAAACAAACACCAGCCAATCC  
 AAAACTAACCAACCCGAAAAATCTATAATATAGTTACAAAAAAAGGAATCGATGGGCAAATACAAGTATGGTGA  
 CAAGGGCGAGGAGCTGTTACCGGGGTGGTGCCTACCTGGTCAGCTGGAGCTGGAGCGACGTAAACGGCACAAGTTCA  
 GCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCTACGGCGTGCAGTGCTCAGCCGCTACCCGACCACATGAA  
 GCAGCAGCAGTTCTCAAGTCCGCATGCCGAAGGCTACGTCAGGAGCGCACCACCTTCTCAAGGACGACGGCA  
 ACTACAAGACCCGCCGAGGTGAAGTTCGAGGGCGACACCCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTC  
 AAGGAGGACGGCAACATCCTGGGCACAAGCTGGAGTACAACATACAACAGCCACAACGCTATATCATGCCGACAA  
 GCAGAAGAACGGCATCAAGGTGAACCTCAAGATCCGCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCA  
 ACCAGCAGAACACCCCCATCGCGACGGCCCCGTGCTGCTGGAGTTGCTGACCGCCGCCGGGATCACTCGGCAT  
 AGCAAAGACCCCAACGAGAACGCGATCACATGGTCTGCTGGAGTTGCTGACCGCCGCCGGGATCACTCGGCAT  
 GGACGAGCTGTACAAGTAAAAGTAGTTACTTAAAGTCGACGGTGGGCAAATATGAAACATACGTGAACAAAGCT  
 TCACGAAGGCTCCACATACACAGCTGCTGTCATAACATGTCTTAGAAAAAGACGATGACCTGCTCATCACTTACAA  
 TATGGGTGCCATGTTCAAATCATCTATGCCAGATTACTTATAAAAGAAACTAGCTAATGTCAACATACTAGTG  
 AAACAAATATCCACACCAAGGGACCTTCACTAAGAGTCATGATAAAACTCAAGAAGTGCAGTGCTAGCACAAATGCC  
 CAGCAAATTACCATATGCGCTAATGTGCTTGGATGAAAGAAGCAAACACTAGCATATGATGTAACCACACCCCTGTG  
 AAATCAAGGCATGTAGTCTAACATGCCTAAAATCAAAATATGTTACTACAGTTAAAGATCTCAGTAAAGAC  
 CTCAACCCCTACACATGATATTATTGTTATGTGAATTGAAAACATAGTAACATCAAAAGTCATAATACCAAC  
 ATACCTAACAGATCCATCAGTGTCAAAGAAATAAGATCTGAAACACACTTGAAAATATAACAAACACTGAATTCAA  
 CTATCACAAATGCAAAATCATCCCTACTCAGGATTACTATTAGTCATCACAGTGTACTGACAAACAAAGGAGCATTC  
 AAATACATAAAGCCACAAAGTCATTACAGTGTAGATCTGGAGCTTACCTAGAAAAAGAAAGTATATATTGTTAC  
 CACAAATTGGAAGCACACAGCTACACGATTGCAATCAAACCCATGGAAGATTAACTTTCTCTACATCAGTGT  
 GTTAATTCTACACAAACTTCTACCTACATTCTCCTACCTCACCACATCAAATCACAATACAGTGTAAACATAGACA  
 AAACAAAACCTTCTGAAAGTCCCAGATCATCCCAAGTCATTGTTATCAGATCTAGTACTCAAATAAGTTAA  
 AATATACACATGGGCAAATAATCATTGGAGGAATCCAACATCACAATATCTGTTAACATAGACAAGTCCACAC  
 ACCATACAGAACCAACATGGAAAATACATCCATAACAATAGAATTCTCAAGCAAATCTGGCCTACTTACACT  
 AATACACATGATCACAACATAATCTTGTCAATCATAATCTCCATCATGATTGCAATACTAAACAAACTTTGTG  
 AATATAACGTATTCCATAACAAAACCTTGTAGTTACCAAGAGCTCGAGTTAACATTGATAAAGTAGTTAA  
 ATAGTCATAACAAATGAACCTAGGATATCAAGACTAACATAACATTGGGCAAATGCAAACATGTCCAAAACAAGGA  
 CCAACGCACCGCTAAGACATTAGAAAGGACCTGGGACACTCTCAATCATTATTATCATCATCGTGTATATA  
 AGTTAACATCTTAAATCTGTAGCACAAATCACATTCTGGCAATGATAATCTCAACTTCACTTACATTGCA  
 GCCATCATATTCTGCTCGGCAAACCCACAAAGTCACACCAACACTGCAATCATAAGATGCAACAAAGCCAGAT  
 CAAGAACACAACCCAAACATACCTCACCCAGAATCCTCAGCTGGAAATCAGTCCCTCTAATCCGTCTGAAATTACAT  
 CACAAATCACCACCATAGCTCAACAAACACCAGGAGTCAGTCACCCCTGCAATCCACAAACAGTCAGAAC  
 AACACAACAACACTCAAACACAAACCCAGCAAGCCCACCACAAACACGCAAACAAACACCAGCAAGAAC  
 TAATGATTTCACTTGAAGTGTCAACTTGTACCTGCTGAGCATATGCAAGCAACAACTCAACCTGCTGGCTATCT  
 GCAAAGAATACCAAACAAAAACCAAGGAAAGAAAACCACTACCAAGCCCACAAAAACCAACCTCAAGACA  
 AAAAGATCCAAACCTCAAACCAACTAAATCAAAGGAAGTACCCACCAAGCCCACAGAACGCAACCATCAA  
 CACCACCAAAACAAACATCATAACTACTCACCTCAACACACCACAGGAAATCCAGAACACTCACAA  
 AGTCAAATG

AACCTTCCACTCAACTCCTCCGAAGGCAATCCAAGCCCTCTCAAGTCTACAAACATCCGAGTACCCATCACAA  
 CCTTCATCTCCACCCAACACACACCACGCCAGTAGTTACTTAAAAACATATTATCACAAAAGGCCTGACCAACTAA  
 CAGAATCAAATAAACTCTGGGCAAATAACAATGGAGTTGCTAATCCTCAAAGCAAATGCAATTACCAATCCTC  
 ACTGCAGTCACATTTGTTGCTCTGGTCAAACACATCACTGAAGAATTTCATCAATCAACATGCAGTCAGTTAG  
 CAAAGGCTATCTTAGTGCTCTGAGAACTGGTTGGTACCACTGTTATAACTATAGAATTAGTAATATCAAGAAA  
 ATAAGTGTAAATGGAACAGATGCTAAGTAAATTGATAAAACAAGAATTAGATAAAATATAAAAGCTGTAAACAGAA  
 TTGCAGTTGCTCATGCAAAGCACACAAGCAACAAACAATCGAGCCAGAAGAGAACTACCAAGGTTATGAATTATAC  
 ACTCAACAAATGCCAAAAACCAATGTAACATTAAGCAAGAAAAGGAAAAGAAGATTCTTGTTTTGTTAGGTG  
 TTGGATCTGCAATGCCAGTGGCGTGTGCTATCTAAGGTCCTGCACCTAGAAGGGAAAGTGAACAAAGATCAAAGT  
 GCTCTACTATCCACAAACAAGGCTGTAGTCAGCTTATCAAATGGAGTTAGTGTAAACCAGCAAAGTGTAGACCT  
 CAAAAACTATATAGATAAAACAATTGTTACCTATTGTGAACAAGCAAAGCTGCAGCATACTAAATATAGAAACTGTGA  
 TAGAGTTCCAACAAAAGAACAAACAGACTACTAGAGATTACCAAGGGATTAGTGTAAATGCAGGCGTAACACACCT  
 GTAAGCAGTTACATGTTAACTAATAGTGAATTATTGTCATTAATCAATGATATGCCATAACAAATGATCAGAAAAA  
 GTTAATGTCCAACAAATGTTAAATAGTACAGCAAAGTTACTCTATCATGCCATAATAAAAGAGGAAGTCTTAG  
 CATATGTTAGTACAATTACCACTATATGGTGTATAGATAACCCCTGTGAAACTACACACATCCCCTATGTACA  
 ACCAACACAAAAGAAGGGCCAACATCTGTTAACAGAACTGACAGAGGATGGTACTGTGACAATGCAGGATCAGT  
 ATCTTCTCCCACAAGCTGAAACATGTAAGTTCAATCAAATCGAGTATTGTGACACAATGAACAGTTAACAT  
 TACCAAGTGAAGTAAATCTGCAATGTTGACATATTCAACCCAAATATGATTGTAAAATTATGACTTCAAAAACA  
 GATGTAAGCAGCTCCGTTATCACATCTCTAGGAGCCATTGTGTCATGCTATGCCAAACTAAATGTACAGCATCCAA  
 TAAAATCGTGGAAATCATAAAGACATTCTAACGGGTGCGATTATGTATCAAATAAAGGGTGGACACTGTGTC  
 TAGGTAACACATTATATTGTAATAAGCAAGAAGGTTAAAGTCTATGTAAAGGTGACCAATAATAATTTC  
 TATGACCCATTAGTATTCCCTCTGATGAATTGATGCATCAATATCTCAAGTCAACGAGAAGATTAACCAGAGCCT  
 AGCATTATTGTAATCCGATGAATTATTACATAATGTAATGCTGGTAAATCCACCAAAATATCATGATAACTA  
 CTATAATTATAGTGAATTAGTAATATTGTTATCATTAAATTGCTGGACTGCTCTTAACTGTAAAGGCTAGAAGC  
 ACACCAAGTCACACTAACAGAACTGAGTGGTAAATAATATTGCTATTAGTAACTAAATAAAATAGCACC  
 TAATCATGTTCTACAATGGTTACTATCTGCTCATAGACAACCCATCTGTCATTGGATTCTAAATCTGAAC  
 TCATCGAAACTCTCATCTATAACCATCTCACTTACACTATTAAAGTAACTGCTATTAGTAACTTAAAGTAA  
 AATTGCATGCCAGATTAACCTACCATCTGTTAAAGGAAACTGGGCAAATATGTCACGAAGGAATCCTTGCAAAT  
 TTGAAATTGAGGTCAATTGCTTAATGGTAAGAGGTGTCATTAGTCATAATTATTGAAATGCCACCCATGCA  
 CTGCTGTAAGACAAAACCTTATGTTAAACAGAAACTTAAGTCTATGGTAAAGGATAGTGTAGAGGTTATAGGAT  
 CAATAAACAAATAACTAAACAATCAGCATGTGTCATGAGCAAACCTCCTCACTGAACACTCAATAGTGTAT  
 AAAAGCTGAGGGACAATGAAGAGCTAAATCACCAGATAAGAGTGTACAATACTGTCATATCATATATTGAAAG  
 CAACAGGAAAACAATAACAAACTATCCATCTGTTAAAAGATTGCCAGCAGACGTATTGAAGAAAACCATCAAAA  
 ACACATTGGATATCCATAAGAGCATAACCATCAACAAACCCAAAAGAATCAACTGTTAGTGACACAAATGACCATGCC  
 AAAAATAATGATACTACCTGACAAATATCCTGAGTATAACTTCCATACTAAACAAGTAGATGTAGAGTTACTA  
 TGTATAATCAAAGAACACACTATATTCAATCAAACACCAAAATAACCATATGTACTCACCAGTCAAACATTC  
 AATGAAATCCATTGGACCTCTCAAGAATTGACACAATTCAAACAAATTTCACACATCTAGGTATTATTGAGGA  
 TATATATACAATATATTAGTGTACATAACACTCAATTCTAACACTCACCACATCGTTACATTATTCAAAC  
 AATTCAAGTTGTGGACAAAATGGATCCCATTATTAATGGAAATTCTGCTAATGTTATCTAACCGATAGTTATT  
 AAAGGTGTTATCTCTCAGAGTGTAAATGCTTAGGAAATTGATACATTCAATGGCTTATCTCAAATGATTA  
 TACCAACTTAATTAGACAAAATCCATTAATAGAACACATGAATCTAAAGAAACTAAATAACACAGTCCTAA  
 TATCTAACGTATCATAAAGGTGAAATAAAATTAGAACCTACTTATTCAGTCATTACTTATGACATACAAGAGT  
 ATGACCTCGTCAGAACAGATTGCTACCACTAATTACTTAAAGGATAATAAGAAGAGCTATAGAAATAAGTGT  
 CAAAGTCTATGCTATATTGAAATAACTAGGGCTTAAAGAAAAGGACAAGGATTAACCAACAAATGGACAAGATGAAG  
 ACAACTCAGTTATTACGACCATAATCAAAGATGATAACTTCAGCTGTTAAAGATAATCAATCTCATCTAAAGCA  
 GACAAAAACTACCTACAAAACAAAAGACACAATCAAACACACTCTGAAAGAAATTGATGTGTCATGCAAC  
 TCCTCCATCATGGTTAACATACATTGGTTAACTTATACACAAAATTAAACAACATATTAAACACAGTATCGATCAAATG  
 AGGTAAAAACCATGGTTACATTGATAGATAATCAAACCTTACTGTTAGGATTCAATTATTGAAACCAATATGGT  
 TGTAGTTATCATAAAGGAACTCAAAGAATTACTGTGACAAACCTATACTCAATTCTGACATGGAAAGATATTAG  
 CCTTAGTAGATTAAATGTTGTTAAATTACATGGATTAGTAACTGCTGTAACACATTTAAAGCTTAGGCTTAA  
 GATGCGGATTCAATAATGTTATCTGACACAATTCCATTGGAGATTGTACTAAAGCTATTCAACATGAG  
 GGGTCTACATAATAAAAGAGGTAGAGGGATTATTATGTCCTAATTAAATATAACAGAAGATCAATTGAG  
 AAAACGATTTTATAATAGTATGCTAACACATCACAGATGCTGCTAATAAGCTCAGAAAATCTGCTATCAAGAG  
 TATGTACATACATTAGATAAGACAGTGTCCGATAATATAATAATGGCAGATGGATAATTCTATTAGTAAGTTC  
 CTTAAATTAAAGCTTGCAGGTGACAATAACCTAACAACTCTGAGTAACTATTTGTTGAGAATATTG  
 ACACCCAAATGGTAGATGAAAGACAAGCCATGGATGCTTAAAGGTTAACTTAAACACTTATCCTCTTGTGGA  
 ACTTACAGAAAGAGATTGATTGTTATCAGGACTACGTTCTATCGTGAGTTCGGTTGCCTAAAAAGTGGATC  
 TTGAAATGATTATAATGATAAAAGCTATATCACCTCCTAAAGGTTGATATTGACTAGTTCCCTAGAAATTACATG  
 CCATCACACATACAAAACATATAAGAACATGAAAATTAACTTCGAGAGTGTAAATCAAGAGTATTAGA  
 GTATTATTAAAGAGATAACAAATTCAATGAATGTGATTATAACACTGTGAGTTAATCAAAGTTATCTCAACAA  
 CTAATCATGTGGTATCATTGACAGGCAAAGAGAACTCAGTGTAGGTAGAATGTTGCAATGCAACCGGGAAATG

TTCAGACAGGTTCAAATATTGGCAGAGAAAATGATAGCTGAAAACATTACAATTCTTCTGAAAGTCTTACAAG  
 ATATGGTGTCTAGAACTACAAAAAATATTAGAACTGAAAGCAGGAATAAGTAACAAATCAAATCGCTACAATGATA  
 ATTACAACAATTACATTAGTAAGTGTCTATCATCACAGATCTCAGCAAATTCAATCAAGCATTGATATGAAACG  
 TCATGTATTGTAGTGATGTGCTGGATGAACTGCATGGTGTACAATTCTATTTCCTGGTTACATTAACTATTCC  
 TCATGTACAATAATGCACATAAGGCATGCACCCCTATAGGAGATCATTTGTAGATCTAACATGTAG  
 ATGAACAAAGTGGATTATAGATATCACATGGTGGCATCGAAGGGTGGTCAAAACTATGGACCAGAAGCT  
 ATATCACTATTGGATCTAATATCTCAAAGGGAAATTCTCAATTACTGCTTAATTAAATGGTACAATCAAT  
 AGATATAAGCAAACCAATCAGACTATGGAAGGTCAAACACTCATGCTCAAGCAGATTGGCTAGCATTAAATAGCC  
 TTAAATTACTGTATAAGAGTATGCAGGCATAGGCCACAAATTAAAGGAACGTGAGACTTATATCACGAGATATG  
 CAATTATGAGTAAAACAATTCAACATAACGGTGTATTACCCAGCTAGTATAAGAAAGTCTAACAGAGTGGGACC  
 GTGGATAAACACTATCTGATGATTCAAAGTGAGTCTAGAATCTAGGTAGTTGACACAAGAATTAGAATATA  
 GAGGTGAAAGTCTATTATGCAGTTAATATTAGAAATGTATGGTTATATAATCAGATTGCTCTACAATTAAAAAAT  
 CATGCATTATGTAACAATAAACTATATTGGACATATTAAAGGTTCTGAAACACTTAAACCTTTTAATCTTGA  
 TAATATTGATAACAGCATTAAACATTGTATATGAATTACCCATGTTATTGGTGGTGGTACCTGTTATATC  
 GAAGTTCTATAGAAGAACCTGACTTCCTCACAGAGGCTATAGTCACTCTGTGTTCTACTTAGTTATTATACA  
 AACCATGACTTAAAGATAAACTCAAGATCTGTAGATGAGATTGAATAAGTCTAACATGCATAATCACGTT  
 TGACAAAAACCTAATGCTGAATTGTAACATTGATGAGAGATCCTCAAGCTTAGGGTCTGAGAGACAAGCTAAA  
 TTACTAGCGAAATCAATAGACTGGCAGTTACAGAGGTTTGAGTACAGCTCCAAACAAATTCTCCTAACAGTGA  
 CAACATTACTACTACAGAGATAGATCTAAATGATATTGCAAACATATAGAACCTACATATCCTCATGGCTAAG  
 AGTTGTTATGAAAGTTACCTTTATAAAGCAGAGAAAATAGTAAATCTTATATCAGGTACAAATCTATAACTA  
 ACATACTGGAAAAACTCTGCCATAGACTAACAGATATTGATAGAGCCACTGAGATGATGAGGAAAACATAACT  
 TTGCTTATAAGGATACTCCATTGGATTGTAACAGAGATAAAAGAGAGATATTGAGTATGGAAACCTAAGTATTAC  
 TGAATTAGCAAATATGTTAGGGAAAGATCTGGTCTTTATCCAATATAGTTGGTGTACATCACCAGTATCATGT  
 ATACAATGGACATCAAATATACTACAAGCACTATAGTCAGTGGCATAATTATAGAGAAATATAATGTTAACAGTTA  
 ACACGTGGTGGAGAGAGGACCCACTAAACCATGGTTGGTCATCTACACAAGAGAAAAAACATGCCAGTTATAA  
 TAGACAAGTCTAACCAAAAAACAGAGAGATCAAATAGATCTTACAGAGAAATTGGATTGGGTATGCATCTATAG  
 ATAACAAGGATGAATTGAAAGACTCAGCATAGGAACCTGGTTAACATATGAAAAGGCCAAGAAATTATT  
 CCACAATATTAAGTGTCAATTATTGATCGCCTACAGTCAGTAGAGCCATGTGAATTCCCTGCATCAATACC  
 AGCTTATAGAACAAACATTACTTGCACACTAGCCCTATTACGATATTACAGAAAGTATGGTGTGAAG  
 ATATTGACATAGTATTCCAAAAGTGTATAAGCTTGGCCTAGTTAATGTCAGTAGTAGAACAAATTACTAATGTA  
 TGTCTAACAGAATTATTCTCATACCTAACGTTAATGAGATACATTGATGAAACCTCCATATTACAGGTGATGT  
 TGATATTGACAAGTTAAACAAAGTGTATAACAAACAGCATATTGGATCTCATGTTAATTCTAATTAAATATTGG  
 TGAATTATTCTTAAGTAATAAAACACTCAAATCTGGATCTCATGTTAATTCTAATTAAATATTGGCACATAAAATA  
 TCTGACTATTTCTATAACTACATTAAAGTACTAATTAGCTGGACATTGGATTCTGATTACAAACTTATGAA  
 AGATTCTAAAGGTATTTGAAAAAGATTGGGAGAGGGATAATAACTGATCATATTGTTATTAAATTGAAAGTT  
 TCTTCAATGCTATAAGACCTATCTCTGTGTTCTAAAGGTTATGGCAAAGCAAAGCTGGAGTGTGATATGAAC  
 ACTTCAGATCTCTATGTGATTGAAATTAGACAGTAGTTATTGGAAGTCTATGCTCTAAGGTATTTAGAAC  
 AAAAGTTCAAAACATTCTAGCCAAGATGCAAGTTACATAGAGAAAAGGATGTCATAGCTCAAATTATGGT  
 TTCTTAAACGTCTTAATGTCAGCAGATTACAGCTTGGCCTGGGTGTTAACATAGATTATCATCCAACACATATG  
 AAAGCAATATTAAACTTATAGATCTTGTAGGATAATTGAGGATTGATAAATAGATAGAACACATTAAACAA  
 CAAATTCAATGATGAATTTATACTTCTAACATTCTCTACATTAAACTTCTCAGATAACTCATCTATTAA  
 CTAACATATAAGGATTGCTAATTCTGAATTAGAAAATAATTACAACAAATTATCATCCTACACCAGAAACCTA  
 GAGAATATACTAGCCAATCCGATTAAAGTAATGACAAAAAGACACTGAATGACTATTGTATAGGTAAAATGTT  
 CTCAATAATGTTACCATTGTTATCTAACAGGTTATTAAACGCTCTGCAATGATTAGAACCAATTACAGCAAAC  
 AAGATTGTATAATTCTCATGGTGTGATTGATAGAATTATAGATCATTGAGGAATACAGCAAATCCAAC  
 CAACTTACACTACTTCCCACCAAATATCCTTAGTGCACAATAGCACATCACTTACTGCATGCTCCTGGCA  
 TCATATTAAATAGATTCAATTGTTAGGTTACAGGTTAAAATTAGTATAGAGTATATTAAAGATCTTA  
 AAATTAAAGATCCAATTGATAGCATTACAGGTGAAGGAGCAGGGAAATTATTGCGTACAGTAGTGGAACTT  
 CATCCTGACATAAGATATTACAGAAGTCTGAAAGATTGCAATGATCATAGTTACCTATTGAGTTTAAGGCT  
 GTACAATGGACATATCAACATTGATTGTTAGGAAAATTGACCATTCTGCTACAGATGCAACCAACAACTCATT  
 GGTCTTATTACATATAAGTTGCTGAAACCTATCAGTCTTTGTGATGCCAATTGCTGTAACAGTCAC  
 TGGAGTAAAATTATAATAGAATGGAGCAAGCATGTAAGAAAGTGCAGTACTGTTCTCAGTTAATAATGTT  
 AATAGTAAAATATCATGCTCAAGATGATATTGATGTTAACATTAGACAATAACTATATTAAAGTATGTATGCT  
 TAGGCAGTAAGTTAAAGGGATGGAGGTTACTTAGTCCTACAATAGGTCTGCGAATATATTCCAGTATTAA  
 GTAGTACAAATGCTAAATTGATACTATCAAGAACCAAAATTTCATCATGCTAACAGAAAGCTGATAAAGAGTCT  
 TGATGCAAATATTAAAGTTGATACCTTCTTGTACCTATAACAAAAAAGGAATTAAACTGCTATTGCTAA  
 AACTAAAGAGTGTGTTAGGGAGATATACTATCATATTCTATAGCTGGACGTAATGAAGTTTCAGCAATAACT  
 ATAAATCATAGCATATGAACATCTTAAAGGTTCAATCATGTTAAATTCAAGATCAACAGAAACTAAACTATAA  
 CCATTATATGTTAGAATCTACATATCCTTACCTAACGTGAATTGTTAACAGCCTGACAACCAATGAACCTAAA  
 AACTGATTAACACAGGTAGTCTGTTACAAACTTCTACATGAATAATGAATAAGATCTTATAATAAAATTC  
 CCATAGCTACACTAACACTGTATTCAATTAGTTATAAAATTGGTACCATGGGGCAAATAAGAATT  
 GATAAGTACCAACTAAATTAACTCCCTGGTTAGAGATGGCAGCAATTGAGTATGATAAAAGTTAGATTAC  
 AAAATTGTTGACAATGATGAAGTAGCATGTTAAAATAACATGCTACTGATAAATTACATTTACTAAT  
 GCTTGGCTAAGGCAGTGATACATACAATCAAATTGAATGGCATTGTTGTGATGTTTACAAGTAGTGTAT

TTGCCCTAATAATAATTGTAGTAAAATCCAATTCAACAACATGCCAGTACTACAAAATGGAGGTTATATGGG  
 AAATGATGGAATTAAACACATTGCTCTCAACCTAATGGTCTACTAGATGACAATTGTGAAATTAAATTCTCCAAAAAA  
 CTAAGTATTCAACAATGACCAATTATATGAATCAATTATCTGAATTACTTGGATTGATCTTAATCCATAAATTAT  
 AATTAATATCAACTAGCAAATCAATGTCACTAACACCATTAGTTAATATAAAACTTAACAGAAGACAAAAATGGGGC  
 AAATAAATCAATTCAAGCCAAACCATGGACACAACCCACAATGATAATACACCACAAAGACTGATGATCACAGA  
 CATGAGACCCTGTCATTGAGACCATAATAACATCACTAACAGAGACATCATAACACACAAATTATACTTGA  
 TAAATCATGAATGCATAGTGAGAAAATTGATGAAAGACAGGCCACATTACATTCTGGTCAACTATGAAATGAAA  
 CTATTACACAAAGTAGGAAGCACTAAATATAAAATATACTGAATACAACACAAAATATGGCACTTCCTATGCC  
 AATATTCAATCATGATGGTTCTAGAATGCATTGGCATTAAGCCTACAAAGCATACTCCCATAATATACAAGT  
 ATGATCTCAATCCATAAATTCAACACAATATTCACACAATCTAAAACAACACTCTATGCATAACTATACTCCATA  
 GTCCAGATGGAGCCTGAAAATTATAGTAATTAAACTTAAGGAGAGATAAGATAGAAGATGGTACCAATTGTTA  
 AATAACTTTAGTGAACTAATCCTAAAGTTATCATTAACTTGAAGGAGAATAATTAAACCTTAATCTAATTGGT  
 TTATATGTGTATTAACATTACGAGATATTAGTTTGACACTTTTCTCGT

**Antigenomic cDNA sequence of RSV 6120/NS12Ltr (SEQ ID NO: 4)**

ACGgAAAAAAATGCGTACAACAAACTGCATAAACCAAAAAATGGGCAAATAAGAATTGATAAGTACCACTTAA  
 ATTTAACTCCCTGGTTAGAGATGGCTCTAGCAAAGTCAGTTGAATGATACTCAACAAAGATCAACTCTGTC  
 ATCCAGCAAATACACCCTCAACGGCACAGGAGATAGTATTGATACTCCTAATTATGATGTGCAGAAACACATCA  
 ATAAGTTATGTGGCATGTTATTAAATCACAGAAGATGCTAATCATAAATTCACTGGTTAATAGGTATGTTATATGCG  
 ATGTCAGGTTAGGAAGAGACACCATAAAATACTCAGAGATGCGGGATATCATGTAAGCAAATGGAGTAGA  
 TGTAACACACATCGTCAAGACATTAATGGAAAAGAAATGAAATTGAAAGTGTAACTTGGCAAGCTAACAACTG  
 AAATTCAAATCAACATTGAGATAGAATCTAGAAAATCCTACAAAAAAATGCTAAAAGAAATGGGAGAGGTAGCTCCA  
 GAATACAGGCATGACTCTCCTGATTGTGGATGATAATATTATGTATAGCAGCATTAGTAATAACTAAATTAGCAGC  
 AGGGGACAGATCTGGTCTACAGCCGTATTAGGAGAGCTAATAATGCTCTAAAAATGAAATGAAACGTTACAAAG  
 GCTTACTACCCAAAGGACATAGCCAACAGCTCTATGAAGTGTGAAACATCCCCACTTATAGATGTTTGT  
 CATTGGTATAGCACAATCTCTACAGAGGTGGCAGTAGAGTTGAAGGGATTTCAGGATTGTTATGAATGC  
 CTATGGTCAGGGCAAGTGTACGGTGGGAGTCTTAGCAAATCAGTTAAAATATTATGTTAGGACATGCTA  
 GTGTGCAAGCAGAAATGGAACAAGTTGTTGAGGTTATGAATATGCCAAAATGGGTGGTGAAGCAGGATTCTAC  
 CATATATTGAACAACCCAAAAGCATCATTATTCTTGACTCAATTCCCTACTTCTCCAGTGTAGTATTAGGCAA  
 TGCTGCTGGCTAGGCATAATGGGAGAGTACAGAGGTACCCAGGAATCAAGATCTATATGATGCAGCAAAGGCAT  
 ATGCTGAACAACCTCAAAGAAAATGGTGTATTAACACTACAGTGTACTAGACTGACAGCAGAAAGACTAGAGGCTATC  
 AAACATCAGCTTAATCCAAAAGATAATGATGTAGAGCTTGAAGTAAATAAAAATGGGCAAATAATCATCATGGA  
 AAAGTTGCTCTGAATTCCATGGAGAAGATGCAAACACAGGGCTACTAAATTCTAGAATCAATAAAGGGCAAAT  
 TCACATCACCCTAAAGATCCCAAGAAAAAGATAGTATCATATCTGTCAACTCAATAGATATAGAAGTAACCAAAGAA  
 AGCCCTATAACATCAAATTCAACTATTCAACCCAAACAATGAGACAGATGATACTGCAGGGAAACAAGCCAAATT  
 TCAAAGAAAACCTCTAGTAAGTTCAAAGAAGACCCCTACCCAAGTGTATAATCCCTTCTAAACTATACAAGAAA  
 CCATAGAAACATTGATAACAAATGAAGAAGAATCCAGCTATTCAAGAAGAAATAATGATCAGACAAACGATAAT  
 ATAACAGCAAGATTAGATAGGATTGATGAAAATTAAAGTGAATACTAGGAATGCTCACACATTAGTAGTGGCAAG  
 TGCAGGACCTACATGCTGGGATGGTATAAGAGATGCCATGGTTAGAGAAGAAATGATAGAAAAATCA  
 GAACTGAAGCATTATGACCAATGACAGATTAGAAGCTATGGCAAGACTCAGGAATGAGGAAAGTGAAGATGGCA  
 AAAGACACATCAGATGAAGTGTCTCAATCCAACATCAGAGAAATTGAACAAACCTATTGGAGGGAAATGATAGTGA  
 CAATGATCTATCACTGAAGATTCTGATTAGTTACCAATCTCACATCAACACACAATACCAACAGAAGACCAACA  
 AACTAACCAACCCAAATCCAACAAACATCCATCGCCAATCAGCCAAACAGCCAAACAAACACCAGCCAATCC  
 AAAACTAACCAACCGGAAAAATCTATAATATAGTTACAAAAAAAGGAAagGGTGGGCAAATATGGAAACATACGT  
 GAACAAGCTCACGAAGGCTCCACATACACAGCTGTTCAATACAATGTCTTAGAAAAAGACGATGACCCCTGCAT  
 CACTTACAATATGGTGCCATGTTCAATCATCTATGCCAGCAGATTACTTATAAAAGAAACTAGCTAATGTCAAC  
 ATACTAGTGAACAAATATCCACACCCAAAGGGACCTCACTAAGAGTCATGATAAAACTCAAGAAGTGCAGTGCTAGC  
 ACAAAATGCCAGCAAATTACCATATGCGCTAATGTGTCTGGATGAAAGAAGCAAACACTGATATGATGTAACCA  
 CACCTGTGAAATCAAGGCATGTTCAACATGCCCTAAATCAAAATATGTTACTACAGTTAAAGATCTCACT  
 ATGAAGACACTCAACCTACACATGATATTATTGCTTATGTGAATTGAAAACATAGTAACATCAAAAAAGTCAT  
 AATACCAACATACCTAACAGATCCATCAGTGTAGAAATAAGATCTGAACACACTGAAAATATAACAACCACTGAAT  
 TCAAAAATGCTATCACAAATGCAAATCATCCCTACTCAGGATTACTATTAGTCATCACAGTGAATGACAACAA  
 GGAGCATTCAAATACATAAAGCCACAAAGTCATTAGTAGATCTGGAGCTTACCTAGAAAAAGAAAGTATA  
 TTATGTTACCACAAATTGGAAGCACACAGCTACACGATTGCAATCAAACCCATGGAGGATTAACCTTTCTCTA  
 CATCAGTGTGTTATTCAACAAACTTCTACCTACATTCTCACCTACCAATCACAACACTCTGTGGTT  
 CAACCAATCAAACAAACTTATGAAAGTCCCAGATCATCCAAGTCATTGTTATCAGATCTAGTACTCAAAATAAG  
 TTAATAAAAATATACACATGGGCAAATAATCATTGGAGGAAATCCAACATACTACAATATCTGTTAACATAGACA  
 AGTCCACACACCACAGAACATGAAAGAACATCCATAACAATAGAATTCTCAAGCAAATTCTGGCCTTA  
 CTTTACACTAATACACATGATCACAACATAATCTCTTGTAACTCATATACTCCATCATGATTGCAATACTAAACA  
 AACTTTGTGAATATAACGTATTCCATAACAAAACCTTGTGAGTTACCAAGAGCTCGAGTTAATACTTGATAAAAGTAGT  
 TAATTAAAAATAGTCATAACAATGAACTAGGATATCAAGACTAACATAACATTGGGCAAATGCAAACATGTCCAA

AAACAAGGACCAACGCACCGCTAAGACATTAGAAAGGACCTGGGACACTCTCAATCATTATTATTCATATCATCGT  
 GCTTATATAAGTAAATCTAAATCTGTAGCACAAATCACATTATCCATTCTGGCAATGATAATCTAACCTCACCT  
 ATAATTGCAGCCATCATATTCATAGCCTCGGAAACCACAAAGTCACACCAACTGCAATCATACAAGATGCAAC  
 AAGCCAGATCAAGAACACAACCCCCAACATACCTCACCCAGAATCCTCAGCTTGAATCAGTCCCTCTAACCGTCTG  
 AAATTACATCACAAATCACCACCAACTAGCTCAACAACACCAGGAGTCAAGTCAACCCGCAATCCACAACAGTC  
 AAGACCAAAAACACAACAACTCAAACACAAACCCAGCAAGCCCACCACAAACAGCCAAACAAACCAAG  
 CAAACCCAATAATGATTTCACTTGAAGTGTCAACTTGTACCCCTGCAGCATATGCAGCAACAATCCAACCTGCT  
 GGGCTATCTGCAAAGAATACCAACAAAAACAGGAAAGAAAACCACTACCAAGCCCACAAAAACCAACCC  
 AAGACAACCAAAAAGATCCAAACCAACTAAATCAAAGGAAGTACCCACCACCAAGGCCACAGAAGAGCC  
 AACCATCAACACCACAAACAAACATCATAACTACACTCACCCTCAACACCACAGGAAATCCAGAACTCACAA  
 GTCAAATGGAAACCTTCCACTCAACTTCCTCCGAAGGCAATCCAAGCCCTCTCAAGTCTCTACAACATCCGAGTAC  
 CCATCACAAACCTTCATCTCCACCCAACACACACCAGCTAGTTACTTAAACATATTACACAAAGGCCTTGAC  
 CAACTTAAACAGAATCAAATAAACTCTGGGGCAAATAACAATGGAGTTGCTAATCCTCAAAGCAAATGCAATTAC  
 ACAATCCTCACTGCAGTCACATTGTTGCTCTGGTCAAACATCACTGAAGAATTATCAATCAACATGCAG  
 TGCAGTTAGCAAAGGCTATCTTAGTGCTGTGAGAAGTGGTTGTTACAGTGTATAACTATAGAATTAGTAATA  
 TCAAGAAAAATAAGTGTAAATGGAACAGATGCTAAGGTAACATGATAAAACAAGAATTAGATAAAATAAAAATGCT  
 GTAACAGAATTGCAAGTGTGCTCATGCAAAGCACACAAGCAACAAACATCGAGCCAGAAGAGAACTACCAAGGTTAT  
 GAATTATACACTCAACAATGCCAAAAACCAATGTAACATTAAGCAAGAAAAGGAAAAGAAGATTCTGGTTTT  
 TGTTAGGTGTTGGATCTGCAATGCCAGTGGCGTTGCTGTATCTAAGGTCTGCACCTAGAAGGGAAAGTGAACAAG  
 ATCAAAAGTGCTCTACTATCCACAAACAAGGCTGTAGTCAGTTATCAAATGGAGTTAGTGTAAACCAGCAAAGT  
 GTTAGACCTCAAAACTATAGATAAACAAATTGTTACCTATTGTAACAGCAAAGCTGCAGCATATCAAATAATAG  
 AAACGTGATAGAGTCCAACAAAGAACACAGACTACTAGAGATTACCAAGGAAATTAGTGTAAATGCAGGCGTA  
 ACTACACCTGTAAGCACTTACATGTTAACTAATAGTGAATTATTGTCATTAATCAATGATATGCCTATAACAAATGA  
 TCAGAAAAAGTTAATGTCACAAATGTTAAATAGTTAGACAGCAAAGTTACTCTATCATGTCCATAATAAAAGAGG  
 AAGTCTTAGCATATGTAGTACAATTACCACTATATGGTTATAGATAACCCCTGTTGAAACTACACACATCCCCT  
 CTATGTACAACCAACACAAAGAAGGGTCAAACATCTGTTAACAGAAACTGACAGAGGATGGTACTGTGACAATGC  
 AGGATCAGTATCTTCTTCCACAGCTGAAACATGTAAGGTTCAATCAAATCGAGTATTTGTGACACAATGAACA  
 GTTTAACATTACCAAGTGAAGTAAATCTGCAATGTTGACATATTCAACCCAAATATGATTGAAATTATGACT  
 TCAAAACAGATGTAAGCAGCTCCGTTATCACATCTTAGGAGCCATTGTCATGCTATGGCAAACAACTAAATGTAC  
 AGCATTCAACAAATCGGAAATCATAAGACATTCTAACGGGTGCGATTATGTATCAAATAAAAGGGTGGACA  
 CTGTGTCTGTAGGTAACACATTATATTGTAATAAGCAAGAAGGTTAAAGTCTCTATGTTAAAGGTGAACCAATA  
 ATAAATTCTATGACCCATTAGTATTCCCTCTGATGAATTGATGCATCAATATCTCAAGTCAACGAGAAGATTAA  
 CCAGAGCCTAGCATTATCGTAAATCCGATGAAATTATTACATAATGTAATGCTGGTAAATCCACCAACAAATATCA  
 TGATAACTACTATAATTAGTGTATTAGTAAATATTGTTATCATTAAATTGCTGGACTGCTCTTAACTGTAA  
 GCCAGAACACACCAGTCACACTAACAGAAAGATCAACTGAGTGGTATAAATAATTGCAATTAGTAACTAAATAA  
 AATAGCACCTAACATCATGTTTACAATGGTTACTATCTGCTCATAGACAACCCATCTGTCATTGGATTCTTAA  
 ATCTGAACCTCATCGAAACTCTCATCTAAACCACATCTCACTTAAAGTAACTGGCTTAGTTAGTCAAATTATTTGA  
 ATGGCCA  
 CCCCAGTCAACTGCTGTAAAGACAAAACCTTATGTTAACAGAAACTTAAGTCTATGGATAAAAGTATAGATA  
 ATCAGAAATAAGTGGAGCTGCAGAGTTGGACAGAACAGAACAGAGTATGCTCTGGTAGTTGGAGTGCTAGAGGTT  
 ATATAGGATCAATAACAAATAACTAAACAATCAGCATGTGTTGCCATGAGCAAACCTCCTCACTGAACATCAATAGT  
 GATGATATCAAAAGCTGAGGGACAATGAAGAGCTAAATTACCAAGATAAGAGTGTACAATACTGTCAATCATA  
 TATTGAAAGCAACAGGAAAACAATAACAAACTATCCATCTGTTAAAGGTTAAAGGAGTGTCAATTAGGTTAGTAA  
 CCATCAAAACACATTGGATATCCATAAGAGCATAACCATCAACAAACCCAAAAGAACACTGTTAGTGTAA  
 GACCATGCCAAAAATAATGATAACTACCTGACAAATATCCTGTTAGTATAACTCCATACAAACAGTGTAA  
 GAGTTACTATGTATAATCAAAGAACACACTATATTCAATCAAACAAACCCAAATAACCATATGTACTCACCGAAT  
 CAAACATTCAATGAAATCCATTGGACCTCTCAAGAATTGATTGACACAATTCAAACAAATTCTACAAACATCTAGGTAT  
 TATTGAGGATATATAACATATAATTAGTGTCAAACACTCAATTCTAACACTCACCACATCGTTACATTATT  
 AATTCAAACAAATTCAAGTTGGACAAAATGGATCCATTATTAAATGAAATTCTGCTAATGTTATCTAACCGAT  
 AGTTATTAAAAGGTGTTATCTCTTCTCAGAGTGTAAATGCTTAGGAAAGTTACATATTCAATGGCTTATCTCAA  
 AAATGATTACCAACTTAATTAGTAGACAAAATCCATTAAATAGAACACATGAATCTAAAGAAACTAAATATAACAC  
 AGTCCTTAATATCTAAGTATCATAAGGTGAAATAAAATTAGAACAGCTACTTATTTCAGTGTAAAGATAATCAATCTCAT  
 TACAAGAGTATGACCTCGTCAGAACAGATTGCTACCACTAAATTACTTAAAGGATAATAAGAACAGCTATAGAAAT  
 AAGTGTGCAAAGTCTATGCTATATTGAATAACTAGGGCTTAAAGAAAAGGACAAGGATAATCCAACATGGAC  
 AAGATGAAGACAACCTCAGTTATTACGACCAATAACAGATGATATACTTCTAGTGTAAAGATAATCAATCTCAT  
 CTTAAAGCAGACAAAATCACTCTACAAAACAAAAGACACAATCAAACACACTCTTGAAGAAAATTGATGTGTT  
 AATGCAACATCCTCCATCATGGTTAACATACATTGGTTAACTTACACAAAATTAAACACATATTAACACAGTATC  
 GATCAAATGAGGTTAAACCATGGGTTACATTGATAGATAATCAAACCTTACTGTGACAACCTATAATCAATTCTGAC  
 CAATATGGTTAGTTATCATAAGGAACCTAAAGAACATTACTGTGACAACCTATAATCAATTCTGACATGGAA  
 AGATATTAGCCTTAGTGTAAATGTTGTTAAATTACATGGATTAGTAACTGCTGAACACATTAACAAAGAGCT  
 TAGGCTTAAGATGCGGATTCAATAATGTTATCTGACACAACATTCCCTTATGGAGATTGTACTAAAGCTATT  
 CACAATGAGGGTCTACATAATAAAAGAGGTAGAGGGATTATTATGTCATAATTAAATATAACAGAAGAAGA  
 TCAATTCAAGAAAACGATTATATAATAGTATGCTCAACACATCACAGATGCTGCTAATAAGCTCAGAAAAACTG



GTATTTAATGTAGTACAAAATGCTAAATTGATACTATCAAGAACCAAAAATTCATCATGCCTAAGAAAGCTGATAA  
AGAGTCTATTGATGCAAATATTAAAAGTTGATACCCTTCTTGTACCCATAACAAAAAAGGAATTAATACG  
CATTGTCAAAACTAAAGAGTGTGTTAGTGGAGATACTATCATATTCTATAGCTGGACGTAATGAAGTTTCAGC  
AATAAAACTATAAAATCATAAGCATATGAACATCTAAAATGGTTCAATCATGTTAAATTCAACAGAACT  
AAACTATAACCATTATATGGTAGAATCTACATATCCTTACCTAAGTGAATTGTTAAACAGCTGACAACCAATG  
AACTTAAAAAAACTGATTAAAATCACAGGTAGTCTGTTACAAACTTCATAATGAATAATGAATAAGATCTTATAA  
TAAAAATTCCCATACTAAACACTGTATTCAATTATAGTTATAAAATTAAAAATggtaaccATGGGGCAAA  
TAAGAATTGATAAGTACCACTAAATTAACTCCCTGGTTAGAGATGGCAGCAATTGAGTATGATAAAAG  
TTAGATTACAAAATTGTTGACAATGATGAAGTAGCATTGTTAAAAATAACATGCTACTGATAAAATTAAATACAT  
TTAACTAATGCTTGGCTAAGGCAGTGATACATACAATCAAATTGAATGGCATTGTGTTGCATGTTATTACAAG  
TAGTGATATTGCCCTAATAATAATTGTAGAAAATCCAATTTCACAAACAATGCCAGTACTACAAATGGAGGTT  
ATATATGGGAAATGATGGAATTAAACACATTGCTCTCAACCTAATGGCTACTAGATGACAATTGTGAAATTAAATT  
TCCAAAAAAACTAAGTGATTCAACAAATGACCAATTATATGAATCAATTATCTGAATTACTTGGATTGATCTTAATCC  
ATAAAATTATAATTAAATCAACTAGCAAATCAATGTCACTAACACCATTAGTTAATATAAAACTTAACAGAAGACAA  
AAATGGGGCAAATAAATCAATTGCCAACCAACCATTGGACACAAACCCACAATGATAATACACCACAAAGACTGAT  
GATCACAGACATGAGACCGTTGTCACCTGAGACCATAATAACATCACTAACCAAGACATCATAACACACAAATT  
TAACTTGATAAAATCATGAATGCATAGTGAGAAAATTGATGAAAGACAGGCCACATTACATTCTGGTCAACTAT  
GAAATGAAACTATTACACAAAGTAGGAAGCCTAAATATAAAATATACTGAATACAAACACAAATATGGCACTTT  
CCCTATGCCAATATTCAATCATGATGGTTCTAGAATGCATTGGCATTAGCCTACAAAGCATACTCCCATAA  
TATACAAGTATGATCTCAATCCATAAAATTCAACACAATTACACACAATCTAAACAAACTCTATGCATAACTA  
TACTCCATAGTCCAGATGGAGCCTGAAAATTAGTAATTAAAACCTAAGGAGAGATATAAGATAGAAGATggta  
cATTTTAAATAACTTTAGTGAACATCCTAAAGTTATCATTAAATCTGGAGGAATAAAATTAAACCCATAAT  
CTAATTGGTTATATGTGTTAAACTAAATTACGAGATATTAGTTTGACACTTTCTCGT

## Antigenomic cDNA sequence of RSV 6120/NS12FM2/ΔNS2GFP (SEQ ID NO: 5)

ACGGGAAAAAATGCGTACAACAAACTGCATAAACCAAAAAAATGGGGCAAATAAGAATTGATAAGTACCACTTAA  
ATTAACTCCCTGGTAGAGAGTGGCTCTAGCAAAGTCAAGTTGAATGATAACTCAACAAAGATCAACTCTGTC  
ATCCAGCAAATACACCATCCAACGGACAGGAGATAGTATTGATACTCCTAATTATGATGTGCAGAACACATCA  
ATAAGTTATGTGGCATGTTATTAAATCACAGAAGATGCTAATCATAAATTCACTGGGTTAATAGGTATGTTATGCG  
ATGCTAGGTTAGGAAGAGAACCCATAAAAATACTCAGAGATGCGGGATATCATGTAAGCAGGAGT  
TGTAACAAACACATCGTCAAGACATTAATGGAAAAGAAATGAAATTGAAAGTGTAAACATTGGCAAGCTTAACAACTG  
AAATTCAAATCAACATTGAGATAGAATCTAGAAAATCCTACAAAAAAATGCTAAAAGAAATGGGAGAGGTAGCTCCA  
GAATACAGGCATGACTCTCCTGATTGTGGATGATAATATTATGTATAGCAGCATTAGTAATAACTAAATTAGCAGC  
AGGGACAGATCTGGCTTACAGCCGTGATTAGGAGAGCTAATAATGTCCTAAAAAAATGAAACGTTACAAAG  
GCTTACTACCCAAAGGACATAGCCAACAGCTTCTATGAAGTGTGTTGAAAAACATCCCCACTTATAGATGTTTGT  
CATTGGTATAGCACAATCTTCTACCAGAGGTGGCAGTAGAGTTGAAGGGATTTCAGGATTGTTATGAATGC  
CTATGGTGCAGGGCAAGTGATGTTACGGTGGGAGTCTTAGCAAAATCAGTTAAAATATTATGTTAGGACATGCTA  
GTGTGCAAGCAGAAATGGAACAAGTTGAGGTTATGAATATGCCAAAAATTGGTGGTGAAGCAGGATTCTAC  
CATATATTGAACAAACCCAAAAGCATCATTATTCTTGACTCAATTCTCACTTCTCCAGTGTAGTATTAGGCAA  
TGCTGCTGGCTAGGCATAATGGGAGAGTACAGAGGTACACCGAGGAATCAAGATCTATATGATGCAGCAAAGGCAT  
ATGCTGAACAACTCAAAGAAAATGGTGTGATTAACTACAGTGTACTAGACTTGACAGCAGAAACTAGAGGCTATC  
AACATCAGCTTAATCCAAAAGATAATGATGTAGAGCTTGAGTTAATAAAAATGGGCAAATAATCATCATGGA  
AAAGTTGCTCCTGAATTCCATGGAGAAGATGCAAACACAGGGCTACTAAATTCTAGAATCAATAAGGGCAAAT  
TCACATCACCAAAGATCCCAAAGAAAAAGATAGTATCATATCTGCAACTCAATAGATATAGAAGTAACCAAAGAA  
AGCCCTATAACATCAAATTCAACTATTATCAACCCAAACAAATGAGACAGATGATACTGCAGGGAAACAGCCAAATT  
TCAAAGAAAACCTCTAGTAAGTTCAAAGAAGACCCCTACACCAAGTGATAATCCCTTTCTAAACTATACAAAGAAA  
CCATAGAAACATTGATAACAATGAAGAAGAATCCAGCTATTCTACGAAGAAATAATGATCAGACAAACGATAAT  
ATAACAGCAAGATTAGATAGGATTGATGAAAAATTAAAGTGAAAACTAGGAATGCTTCACACATTAGTAGTGGCAAG  
TGCAGGACCTACATCTGCTCGGGATGGTATAAGAGATGCCATGGTTGGTTAAGAGAAGAAATGATAGAAAAATCA  
GAACGTAAAGCATTAAATGACCAATGACAGATTAGAAGCTATGGCAAGACTCAGGAATGAGGAAAGTGAAGAAGTGGCA  
AAAGACACATCAGATGAAGTGTCTCAATCCAACATCAGAGAAATTGAACAAACCTATTGGAAGGGATGATAGTGA  
CAATGATCTATCACTTGAAGATTCTGATTACCAATCTCACATCAACACACAATACCAACAGAACAGCAAC  
AACTAACCAACCCAAATCATCCAACAAACATCCATCCGCCAATCAGCCAAACAGCCAAACAAACACCAGCCAAATCC  
AAAACTAACCACCGGAAAAATCTATAATAGTTACAAAAAAAGGAATCGATGGGCAAATACAAGTATGGTGA  
CAAGGGCGAGGAGCTGTTACCGGGGTGGTCCCATTCTGGTCGAGCTGGACGGCGACGTAAACGCCACAAGTTCA  
GCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCTGAAGTTCATCTGCACCAAGCT  
CCCGTGCCCTGGCCCACCCCTCGTGACCAACCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCGACCACATGAA  
GCAGCACGACTTCTCAAGTCCGCCATGCCGAAGGCTACGTCCAGGAGCGACCATTCTCTCAAGGACGACGGCA  
ACTACAAGACCCGCCGAGGTGAAGTTGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTC  
AAGGAGGACGGCAACATCCTGGGGACAAGCTGGAGTACAACACTACAACAGCCACAACGTCTATATCATGCCGACAA  
GCAGAAGAACGGCATCAAGGTGAACATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACT  
ACCAAGCAGAACACCCCCATCGGCCGACGGCCCCGTGCTGCCGACAACCAACTACCTGAGCACCCAGTCCGCCGTG

AGCAAAGACCCCAACGAGAAGCGCGATCACATGGCCTGCTGGAGTCGTGACGCCGCCGGATCACTCTGGCAT  
GGACGAGCTGTACAAGTAAAGTAGTTACTTAAAGTCGACGGTGGGCAAATATGGAAACATACGTGAACAAGCT  
TCACGAAGGCTCCACATACACAGCTGCTGTTCAATACAATGTCTTAGAAAAAGACGATGACCTGCATCACTTACAA  
TATGGGTGCCATGTTCCAATCATCTATGCCAGCAGATTACTTATAAAAGAAACTAGCTAATGTCAACATACTAGTG  
AAACAAATATCCACACCCAAGGGACCTCACTAAGAGTCATGATAAACTCAAGAAGTGCAGTGCTAGCACAAATGCC  
CAGCAAATTACCATATGCGCTAATGTGCTTGGATGAAAGAAGCAAACACTGCATATGATGTAACCACACCCTGTG  
AAATCAAGGCATGTAGCTAACATGCCTAAATCAAAAAATATGTTGACTACAGTTAAAGATCTCACTATGAAGACA  
CTCAACCCTACACATGATATTATTGCTTATGTGAATTGAAAACATAGTAACATCAAAAAAGTCATAATACCAAC  
ATACCTAAGATCCATCAGTGTCAAGAAATAAGATCTGAACACACTTGAAAATATAACAACCAACTGAATTCAAAATG  
CTATCACAAATGCAAAATCATCCCTACTCAGGATTACTATTAGTCATCACAGTGACTGACAACAAAGGAGCATT  
AAATACATAAAGCCACAAAGTCATTCAATAGTAGATCTGGAGCTTACCTAGAAAAAGAAAGTATATATTATGTTAC  
CACAAATTGGAAGCACACAGCTACACGATTGCAATCAAACCCATGGAAGATTAAACCTTTCTACATCAGTGT  
GTTAATTACATAAAACTTCTACCTACATTCTCACCATCACAATCACAAACACTCTGTGGTCAACCAATC  
AAACAAAACCTATCTGAAGTCCCAGATCATCCAAAGTCATTGTTATCAGATCTAGTACTCAAATAAGTTAATAAAA  
AATATACACATGGGCAAATAATCATTGGAGGAAATCCAACAACTCACAAATCTGTTAACATAGACAAGTCCACAC  
ACCATACAGAATCAACCAATGGAAAATACATCCATAACAATAGAATTCTCAAGCAAATTCTGGCCTTACTTACACT  
AATACACATGATCACACAAATAATCTTTGCTAATCATAATCTCCATCATGATTGCAAAACTAAACAAACTTTGTG  
AATATAACGTATTCCATAACAAAACCTTGAGTTACCAAGAGCTCGAGTTAACACTGATAAAAGTAGTTAATTTAAA  
ATAGTCATAACAAATGAACACTGGATATCAAGACTAACATAACATTGGGCAAATGCAAACATGTCAAAACAAAGGA  
CCAACGCACCGCTAAGACATTAGAAAGGACCTGGGACACTCTCAATCATTATTATTATCATACTCGTGCTTATATA  
AGTTAAATCTTAAATCTGTAGCACAAATCACATTATCCATTCTGGCAATGATAATCTCAACTTCACTTATAATTGCA  
GCCATCATATTCTAGCCTCGGCAAACCACAAAGTCACACCAACAACTGCAATCATAAGATGCAACAAAGCCAGAT  
CAAGAACACAACCCAACATACCTCACCCAGAACATCCTCAGCTTGGAAATCAGTCCCTCTAATCCGTCTGAAATTACAT  
CACAAATCACCACCAACTAGCTCAACAAACACCAGGAGTCAGTCAACCCCTGCAATCCACAAACAGTCAGAACCAA  
AACACAAACAACAACTCAAACACAAACCCAGCAAGCCCACCACAAACAGCCAAACAAACACCAGCAAGCAAACCAA  
TAATGATTTCACTTGAAGTGTCAACTTGTACCCCTGCAGCATATGCAGCAACAACTCCAACTGCTGGCTATCT  
GCAAAAGAATACCAAACAAAACCAGGAAAGAAAACCACCTACCAAGGCCCACAAAAACCAACCCCTCAAGACAACC  
AAAAAAGATCCAAACCTCAAACCAACTAAATCAAAGGAAGTACCCACCAAGGCCCACAGAAGAGCCAACCATCAA  
CACCACCAAAACAAACATCATAACTACACTACTCACCTCCAACACCACAGGAAATCCAGAACTCACAGTCAAATGG  
AAACCTTCACTCAACTTCCCGAAGGCAATCCAAGCCCTCTCAAGTCTTACAAACATCCGAGTACCCATCACAA  
CCTTCATCTCCACCCAACACACCACGCCAGTAGTTACTTAAACATATTACACAAAGGCCTTGACCAACTAAA  
CAGAATCAAATAAAACTCTGGGCAAATAACAATGGAGTTGCTAATCCTCAAAGCAAATGCAATTACCAATCCTC  
ACTGCAGTCACATTGTTGCTCTGGTCAAAACATCACTGAAGAATTTCATCAACATGCAGTGCAAGTTAG  
CAAAGGCTATCTTAGTGTCTGAGAACTGGTGGTATACCAGTGTATAACTATAGAATTAGATAAAATATAAAATGCTGTAACAGAA  
ATAAGTGTAAATGGAACAGATGCTAAGGTAAAATTGATAAAACAAGAATTAGATAAAATATAAAATGCTGTAACAGAA  
TTGCAGTTGCTCATGCAAAGCACACAAGCAACAAACAATCGAGCCAGAAGAGAACTACCAAGGTTATGAATTATAC  
ACTCAACAAATGCCAAAAAAACCAATGTAACATTAAAGCAAGAAAAGGAAAAGAAGATTCTTGTGTTTTGTTAGGTG  
TTGGATCTGCAATGCCAGTGGCGTTGCTGTATCTAAGGTCTGCACCTAGAAGGGGAAGTGAACAAGATCAAAGT  
GCTCTACTATCCACAAACAAGGCTGTAGTCAGTTATCAAATGGAGTTAGTGTGTTAACAGCAAAGTGTAGACCT  
CAAAACTATATAGATAAAACAATTGTTACCTATTGTGAACAAGCAAAGCTGCAGCATATCAAATATAGAAACTGTGA  
TAGAGTTCCAACAAAAGAACAAACAGACTACTAGAGATTACCAGGGAATTAGTGTGTTAACAGCGTAACACACCT  
GTAAGCACTTACATGTTAACTAATAGTGAATTATTGTCATTAATCAATGATATGCCTATAACAAATGATCAGAAAAAA  
GTTAATGTCCAACAATGTTCAAATAGTTAGACAGCAAAGTTACTCTATCATGTCATAATAAAAGAGGAAGTCTTAG  
CATATGTAGTACAATTACCACTATATGGTGTATAGATAACCCCTGTGGAAACTACACACATCCCCTCTATGTACA  
ACCAACACAAAGAAGGGTCCAACATCTGTTAACAGAAACTGACAGAGGATGGTACTGTGACAATGCAGGATCAGT  
ATCTTCTCCCACAAGCTGAAACATGTAAGTTCAATCAAATCGAGTATTGTCACAAATGAAACAGTTAACAT  
TACCAAGTGAAGTAAATCTGCAATGTTGACATATTCAACCCAAATATGATTGTTAAAGTCAAAAC  
GATGTAAGCAGCTCCGTTATCACATCTTAGGAGCCATTGTGTCATGCTATGGCAAACAAACTAAATGTACAGCATCCAA  
AAAAAATCGTGAATCATAAGACATTTCATAACGGGTGCGATTATGTATCAAATAAAGGGTGGACACTGTGCTG  
TAGGTAACACATTATATTGTAAATAAGCAAGAAGGTAAAAGTCTCTATGTAAAAGGTGAACCAATAATAAATTTC  
TATGACCCATTAGTATTCCCTCTGATGAATTGATGCATCAATATCTCAAGTCAGGAGAAGATTAACCAGAGCCT  
AGCATTATTGCTAAATCCGATGAATTATTACATAATGTAAGTAAATGCTGGTAAATCCACCAAAATATCATGATAACTA  
CTATAATTATAGTATTAGTAATATTGTTATCATTAATTGCTGTTGGACTGCTTACTGTGAAAGGCCAGAAGC  
ACACCAGTCACACTAACAGAAAGATCAACTGAGTGGTATAAATAATATTGCTTACTGTGTTAGAGATG  
TAATCATGTTTACAATGGTTACTATCTGCTCATAGACAACCCATCTGTCATTGGATTTCATAAAACTGAACT  
TCATCGAAACTCTCATATAAACCATCTCACTTACACTATTIAAGTAGATTCTCTAGTTATAGTTATATAAAACAC  
AATTGCATGCCAGGTACCATGGGCAAATAAGAATTGATAAGTACCACTTAAATTAACTCCCTGGTTAGAGATG  
GGCAGCAATTCTGAGTATGATAAAAGTTAGATTACAAATTGTTGACAATGATGAAGTAGCATTGTTAAAAAT  
AACATGCTATACTGATAAAATTAACTAACATTAAACTATGCTTGGCTAAGGCAGTGACATACAAATCAAATTGAAATG  
GCATTGTGTTGTCATGTTAACAGTACTGATATTGCCCTAATAATAATTGTTAGTAAACATCCAAATTGCTCT  
ACAATGCCAGTACTACAAAGGTTATATGGGAAATGATGGAATTAAACACATTGCTCTAACCTAATGGTCT  
ACTAGATGACAATTGTGAAATTAAATTCTCAAAACTAAGTGAATTCAACATGACCAATTATGAATCAATT  
CTGAATTACTGGATTGATCTTAATCCATAAAATTATAATTCAACTAGCAAATCAATGTCACTAACACCATT  
AGTTAATATAAAACTTAAACAGAAGACAAAAATGGGGCAAATATGTCACGAGGAATTCTTGCAAAATTGAAATTGCA

GGTCATTGCTTAAATGGTAAGAGGTGTCATTTAGTCATAATTATTGAATGGCCACCCCATGCACTGCTTGTAAAG  
 ACAAAACTTATGTTAAACAGAATACTTAAGTCTATGGATAAAAGTATAGATACCTTATCAGAAATAAGTGGAGCTG  
 CAGAGTTGGACAGAACAGAAGAGTATGCTTGGTAGTTGGAGTCTAGAGAGTTATAGGATCAATAAACAAAT  
 ATAACAAACAAATCAGCATGTGCCATGAGCAAACCTCTCACTGAACACTCAATAGTGTATGATCAAAAGCTGAG  
 GGACAATGAAGAGCTAAATTCAACCAAGATAAGAGTGTACAATACTGTATCATATATTGAAAGCAACAGGAAA  
 ACAATAACAAACATCCATCTGTTAAAAGATTGCCAGCAGACGTATTGAAGAAAACCATAAAACACATTGGAT  
 ATCCATAAGAGCATAACCATAACAAACCCAAAAGAATCAACTGTTAGTGTATACAAATGACCATGCCAAAATAATGA  
 TACTACCTGACAAATATCCTGTAGTATAACTCCATACTAATAACAAGTAGATGTAGAGTTACTATGTATAATCAA  
 AAGAACACACTATATTCAATCAAAACACCCAAATAACCATACTGACTCACCAGATAACACATTCAATGAAATCCA  
 TTGGACCTCTCAAGAATTGACACAATTCAAAATTTCTACAAACATCTAGGTATTATTGAGGATATATACAA  
 TATATATATTAGTGTATAACACTCAATTCTAACACTCACCACATCGTTACATTATTAAATTCAAACAAATTCAAGTG  
 TGGGACAAAATGGATCCCATTATTAAATGGAAATTCTGCTAATGTTATCTAACCGATAAGTTATTAAAGGTGTTAT  
 CTCTTCAGAGTGTAAATGCTTGGAGTTACATATTCAATGGTCCTATCTCAAAATGATTATACCAACTTAA  
 TTAGTAGACAAAATCCATTAAATAGAACACATGAATCTAAAGAAACTAAATAACACAGTCCTTAATATCTAAGTAT  
 CATAAAGGTGAAATAAAATTAGAACACCTACTTATTCTAGTCATTACTTATGACATACAAGAGTATGACCTCGTC  
 AGAACAGATTGCTACCACTAATTACTTAAAGATAATAAGAAGAGCTATAGAAATAAGTGTGAAAGTCTATG  
 CTATATTGAATAAAACTAGGGCTTAAAGAAAAGACAAGATTAAATCAAACAAATGGACAAGATGAAGACAACCTAGTT  
 ATTACGACCATAATCAAAGATGATATACTTCAGCTGTTAAAGATAATCAATCTCATCTTAAAGCAGACAAAATCA  
 CTCTACAAAACAAAAGACACAATCAAACACACTCTGAAAGAAATTGATGTTCAATGCAACATCCTCCATCAT  
 GTTAATACATTGGTTAACTTATACACAAAATTAAACACATATTAAACACAGTATCGATCAAATGAGGTTAAAC  
 CATGGGTTACATTGATAGATAATCAAACCTTAGTGGATTCAATTATTGAAACCAATATGGTGTTAGTTA  
 TCATAAGGAACCTAAAGAATTACTGTGACAACCTATAATCAATTCTGACATGGAAAGATATTAGCCTAGTAGAT  
 TAAATGTTGTTAAATTACATGGATTAGTAACTGCTGAACACATTAAATAAGCTTACAGCTTAAAGATGCAGGATT  
 AATAATGTTATCTGACACAACATTCTTATGGAGATTGTTACTAAAGCTTACAGCTTAAAGATGAGGGTTCTACAT  
 AATAAAAGAGGTAGAGGGATTATTATGTCCTAATTAAATATAACAGAAGAAGATCAATTAGCAGAAACGATT  
 ATAATAGTATGCTCAACACATCACAGATGCTGCTAATAAGCTCAGAAAATCTGCTATCAAGAGTATGTCATA  
 TTATTAGATAAGACAGTGTCCGATAATATAAAATGGCAGATGGATAATTCTATTAAAGTAAGTTCTTAAATTAA  
 TAAGCTTGAGGTGACAATAACCTTAACAATCTGAGTGAACATATTGTTCTGAGAATATTGGACACCAATGG  
 TAGATGAAAGACAAGCCATGGATGCTTAAATTAAATTGCAATGAGACCAATTGTTACTTGTAAAGCAGTCTGAGT  
 ATGTTAAGAGGTGCCTTATATATAGAATTATAAAAGGGTTGTTAAATAATTACAACAGATGGCCTACTTAAAGAAA  
 TGCTATTGTTACCCCTTAAGATGGTTAACTTACTATAAAACTAAACACTTATCCTTGTGAAAGTCTACAGAAA  
 GAGATTGATTGTTATCAGGACTACGTTCTATCGTGAGTTCGGTTGCCTAAAAAGTGGATCTGAAATGATT  
 ATAAATGATAAAAGCTATATCACCTCTAAAATTGATATGGACTAGTTCCCTAGAAATTACATGCCATCACACAT  
 ACAAAACTATATAGAACATGAAAATTAAATTCCGAGAGTGATAATCAAGAGTATTAGAGTATTATTAA  
 GAGATAACAAATTCAATGAATGTGATTATACAACACTGTGTTAGTTAATCAAAGTTATCTCAACAAACCTAATCATGT  
 GTATCATTGACAGGCAAAGAAAGAGAACTCAGTGTAGGTAGAATGTTGCAATGCAACCGGAATGTTCAGACAGGT  
 TCAAATATTGGCAGAGAAAATGATAGCTGAAAACATTTCACATTCTTGTGAAAGTCTACAGATGAAAGTATGGTGATC  
 TAGAACTACAAAAAATTAGAACTGAAAGCAGGAATAAGTAACAAATCAAATCGCTACAATGATAATTACAACAAAT  
 TACATTAGTAAGTGTCTATCATCACAGATCTCAGCAAATTCAATCAAGCATTGATATGAAACGTATGTATTG  
 TAGTGTATGTGCTGGATGAACTGCATGGTAGTACAATCTCTATTTCCTGGTTACATTAACTATTCTCATGTCACAA  
 TAATATGCACATATAGGCATGCACCCCTATATAGGAGATCATATTGTAGTATCTTAAACATGTAGATGAACAAAGT  
 GGATTATATAGATATCACATGGTGGCATCGAAGGGTGGTCAAAAACATATGGACCATAGAAGCTATACACTATT  
 GGATCTAATATCTCTCAAAGGGAAATTCTCAATTACTGCTTAAATTATGGTACAATCAATAGATATAAGCA  
 AACCAATCAGACTCATGGAAGGTCAAACACTCATGCTCAAGCAGATTATTGCTAGCATTAAATAGCCTTAAATTACTG  
 TATAAAGAGTATGCAAGGCATAGGCCACAAATTAAAGGAACATGAGACTTATATATCAGGAGATATGCAATTATGAG  
 TAAAACAATTCAACATAACGGTGTATTACCCAGCTAGTATAAAGAAAGTCTTAAGAGTGGGACCGTGGATAAAC  
 CTAACTTGATGATTCAAAGTGTAGTAAATCTAGGTAGTTGACACAAAGAATTAGAATATAGAGGTGAAAGT  
 CTATTATGCAGTTAAATTAGAAATGTATGGTTATATAATCAGATTGCTCTACAATTAAAAATCATGCATTATG  
 TAACAATAAACTATATTGGACATATTAAAGGTTCTGAAACACTTAAACCTTTTAATCTGATAATTGATA  
 CAGCATTAAACATTGTATATGAATTACCCATGTTATTGGTGGTGGTACATCCAACTTGTATATCGAAGTTCTAT  
 AGAAGAACTCCTGACTTCCTCACAGAGGCTATGTCACCTGTGTTCACTTAGTTATTATACAAACCATGACTT  
 AAAAGATAAAACTCAAGATCTGTCAGATGATAGATTGAATAAGTTCTAACATGCATAATCACGTTGACAAAAACC  
 CTAATGCTGAATTGCTAACATTGATGAGAGATCCTCAAGCTTAGGGTCTGAGAGACAAGCTAAATTACTAGCGAA  
 ATCAATAGACTGGCAGTTACAGAGGTTTGAGTACAGCTCCAAACAAATATTCTCCAAAAGTGCACAACATTATAC  
 TACTACAGAGATAGATCTAAATGATATTGCAAATATAGAACCTACATATCCTCATGGCTAAGAGTTGTTATG  
 AAAGTTACCCCTTATATAAGCAGAGAAAATAGTAAATCTTATATCAGGTACAAATCTATAACTAACATACTGGAA  
 AAAACTCTGCCATAGACTTAACAGATATTGATAGAGGCCACTGAGAGTGATGAGGAAAACATAACTTGTATAAG  
 GATACTCCATTGGATTGTAACAGAGATAAAAGAGAGATATTGAGTATGGAAAACCTAAGTATTACTGAATTAGCA  
 AATATGTTAGGGAAAGATCTGGTCTTATCCAATATAGTTGGTGTACATCACCCAGTATCATGTATAACATGGAC  
 ATCAAATATACTACAAGCACTATATCTAGTGGCATAATTATAGAGAAATATAATGTTAACAGTTAACACGTGGTGA  
 GAGAGGACCCACTAAACCATGGGTTGGTCATCTACACAAGAGAAAAACATAATGCCAGTTATAATAGACAAGTCT  
 TAACCAAAAACAGAGAGATCAAATAGATCTATTAGCAAATTGGATTGGGTGATGCACTATAGATAACAAGGAT  
 GAATTGATGGAAGAACTCAGCATAGGAACCTGGGTTAACATATGAAAAGGCCAAGAAATTATTCACAATATT  
 AAGTGTCAATTATTGCACTGCCTACAGTCAGTAGACCATGTGAATTCCCTGCATCAATACCAGCTTATAGAA

CAACAAATTATCACTTGACACTAGCCCTATTAATCGCATATTAACAGAAAAGTATGGTATGAAGATATTGACATA  
 GTATTCCAAAAGTGTATAAGCTTGGCCTAGTTAATGTCAGTAGAACAATTACTAATGTATGTCCTAACAG  
 AATTATTCTCATACTAACGTTAATGAGATACATTGATGAAACCTCCCATATTCACAGGTATGTTGATATTACA  
 AGTTAAAACAAGTGTACAACAAACAGCATATGTTTACCAAGACAAAATAAGTTGACTCAATATGTGGAATTATTC  
 TTAAGTAATAAAACACTCAAATCTGGATCTCATGTTAATTCTAATTAAATTGGCACATAAAATCTGACTATT  
 TCATAACTTACATTAAAGTACTAATTAGCTGGACATTGGATTCTGATTATAACAACATTGAAAGATTCTAAAG  
 GTATTTGAAAAGATTGGGAGAGGGATATATAACTGATCATATGTTATTAAATTGAAAGTTCTCAATGCT  
 TATAAGACCTATCTCTGTGTTCATAAAGTTATGGCAAAGCTGGAGTGTGATATGAACACTTCAGATCT  
 TCTATGTGATTGGAATTAAAGACAGTAGTTATTGGAGTCTAGTCTAAGGTATTTAGAACAAAAGTTATCA  
 AATACTCTTAGCCAAGATGCAAGTTACATAGAGTAAAGGATGTCATAGCTCAAATTATGGTTCTAACAGT  
 CTTAATGTAGCAGAATTACAGTTGCCCTGGGTTAACATAGATTATCCAACACATATGAAAGCAATATT  
 AACTTATATAGATCTGTTAGAATGGGATTGATAAAATAGATAGAACACATTAAAATAACACAAATTCAATG  
 ATGAATTTATACTCTAATCTCTACATTAATTATAACTCTCAGATAACTCATCTATTAACTAACATATA  
 AGGATTGCTAATTCTGAATTAGAAAATAATTACAACAAATTATCATCCTACACCAGAAACCCAGAGAACAT  
 AGCCAATCCGATTAAGTAATGACAAAAGACACTGAATGACTATTGTATAGGTTAAAGTGTACTCAATAATGT  
 TACCATGTTATCTAATAAGAAGCTTATTAAATCGTCTGCAATGATTAGAACCAATTACAGCAAACAGATTGT  
 AATTATTCCCATGGTGTGATTGATAGAATTATAGATCATTAGGAATACAGCAAATCCAACCAACTTACAC  
 TACTACTCCCACAAATATCCTAGTGCACAATAGCACATCACTTACTGCATGCTTCTGGCATCATATTAA  
 GATTCAATTGTTAGTCTACAGGTTGAAATTAGTATAGAGTATTTAAAGATCTAAAATTAAAGAT  
 CCCAATTGTATAGCATTAGGTGAAGGAGCAGGGATTATTATTAGCGTACAGTAGGAACTTCATCCTGACAT  
 AAGATATATTACAGAAGTCTGAAAGATTGCAATGATCATAGTTACCTATTGAGTTTAAGGCTGTACAATGGAC  
 ATATCAACATTGATTATGGTAAAATTGACCATTCTGCTACAGATGCAACCAACAAACATTGATGGTCTATTAA  
 CATATAAAGTTGCTGAACCTATCAGTCTTGTGATGCCATTGCTGTAACAGTCAACTGGAGTAAAAT  
 TATAATAGAATGGAGCAAGCATGTAAGAAAGTCAAGTACTGTTCTCAGTTAATAATGTATGTTAATAGTAAAAT  
 ATCATGCTCAAGATGATATTGATTCAAATTAGACAATATAACTATATTAAAACATTGATGCTTAGGCAGTAAG  
 TTAAAGGGATCGGAGGTTACTTAGTCCTACAATAGGTCTGCAATTACCTTACAGATGCAACAAACTAAAGAGT  
 TGCTAAATTGATACTATCAAGAACAAAATTCTCATGCTTAAGAAAGCTGATAAAGAGTCTATTGATGCAAATA  
 TTAAAGTTGATACCCTTCTGTTACCCCTATAACAAAAAAAGGAAATTAAACTGCATTGCTCAAACACTAAAGAGT  
 GTGTTAGTGGAGATACTATCATATTCTATAGCTGGACGTAATGAAGTTTCAGCAATAACTTATAATCATAA  
 GCATATGAACATCTAAATGGTCAATCATGTTAAATTCTAGATCAACAGACTAAACTATAACCATTATATA  
 TGGTAGAATCTACATATCCTTACCTAAGTGAATTGTTAAACAGCTTACAGAACCAATGAACCTAAAGTATTAAA  
 ATCACAGGTAGTCTGTTACAACATTCTATAATGAATAATGAATAAGATCTTATAATAAAATTCCCTAGCTATA  
 CACTAACACTGTATTCAATTATAGTTATTAAAATTACATATAATTTTAAACTTTAGTGAACTAAT  
 CCTAAAGTTATCATTTAATCTGGAGGAATAATTAAACCTAATCTAATTGTTATATGTATTAAACTAAAT  
 TACGAGATATTAGTTTGACACTTTCTCGT

### Antigenomic cDNA sequence of RSV 6120/NS12FM2/ΔNS2 (SEQ ID NO: 6)

ACGGGAAAAATGCGTACAACAAACTGCATAAACCAAAAAATGGGCAAATAAGAATTGATAAGTACCACTTAA  
 ATTAACTCCCTGGTTAGAGATGGCTTACGAAAGTCAGTTGAATGATACTCAACAAAGATCAACTCTGTC  
 ATCCAGCAAATACACCCTAACACGGACACAGGAGATAGTATTGATACTCCTAATTATGATGTGCAAGAACACATCA  
 ATAAGTTATGTGGCATGTTATTAAATCACAGAAGATGCTAATCATAAATTCACTGGTTAATAGGTATGTTATGCG  
 ATGCTAGGTTAGGAAGAGAACACCATAAAATACTCAGAGATGCGGGATATCATGTTAAAGCAAATGGAGTGA  
 TGTAACACACATCGTCAAGACATTAATGGAAAAGAAATTGAAATTGAGTTAACATTGGCAAGCTTAACAACTG  
 AAATTCAAATCAACATTGAGATAGAATCTAGAAAATCCTACAAAAAAATGCTAAAGAAATGGGAGAGGTAGCTCCA  
 GAATACAGGCATGACTCTCTGATTGTTGGATGATAATATTGTATAGCAGCATTAGTAATAACTAAATTAGCAGC  
 AGGGACAGATCTGGTCTACAGCGTATTAGGAGAGCTAATAATGCTCTAAAAATGAAACGTTACAAAG  
 GCTTACTACCCAAAGGACATAGCCAACAGCTCTATGAAGTGTGTTGAAAACATCCCCACTTATAGATGTTTGT  
 CATTGGTATAGCACAATCTCTACAGAGGTGGCAGTAGAGTTGAAGGGATTGGCAGGATTGTTATGAATGC  
 CTATGGTCAGGGCAAGTGTATTACGGTGGGAGTCTTAGCAAATCAGTTAAATATTGTATAGGACATGCTA  
 GTGTGCAAGCAGAAATGGAACAAGTTGTTGAGGTTATGAATATGCCAAAATTGGGTGGTGAAGCAGGATTCTAC  
 CATATATTGAACAACCAAAAGCATCATTATTATCTTGCATCAATTCTCACTCTCCAGTGTAGTATTAGGCAA  
 TGCTGCTGGCCTAGGCATAATGGGAGAGTACAGAGGTACCCGAGGAATCAAGATCTATGATGCAGCAAAGGCAT  
 ATGCTGAACAACCTCAAAGAAAATGGTGTGATTAACATACAGTGTACTAGACTGACAGCAGAACACTAGAGGCTATC  
 AACATCAGCTTAATCCAAAAGATAATGATGTAGAGCTTGTAGTTAAATAAAATGGGCAAATAATCATGGA  
 AAAGTTGCTCTGAATTCCATGGAGAAGATGCAAACACAGGGCTACTAAATTCTAGAATCAATAAGGGCAAAT  
 TCACATCACCCAAAGATCCAAGAAAAAGATAGTATCATATCTGTCAACTCAATAGATATAGAAGTAACCAAGAA  
 AGCCCTATAACATCAAATTCAACTATTATCAACCAACAAATGAGACAGATGATACTGCAGGGAAACAAGCCAAATT  
 TCAAAGAAAACCTCTAGTAAGTTCAAAGAAGACCCCTACACCAAGTGTATAATTCTTCTAAACTATACAAAGAAA  
 CCATAGAAACATTGATAACAAATGAAGAAGAATCCAGCTATTCTACAGAAGAAATAATGATCAGACAAACGATAAT  
 ATAACAGCAAGATTAGATAGGATTGATGAAAAATTAAAGTGAATAACTAGGAATGCTCACACATTAGTAGTGGCAAG  
 TGCAGGACCTACATCTGCTGGGATGGTATAAGAGATGCCATGGTTAGAGAAGAAATGATAGAAAAATCA  
 GAACGTGAAGCATTAAATGACCAATGACAGATTAGAAGCTATGGCAAGACTCAGGAATGAGGAAAGTGAAGATGGCA

AAAGACACATCAGATGAAGTGTCTCAATCCAACATCAGAGAAATTGAACACACCTATTGGAAGGGAATGATAGTGA  
 CAATGATCTATCACTGAAGATTCTGATTAGTACCAATCTCACATCAACACACAATACCAACAGAAGACCAACA  
 AACTAACCAACCCAAATCATCCAACAAACATCCATCCGCCAATCAGCCAAACAGCCAAACAAAACAACCAGCCAATCC  
 AAAACTAACCAACCCGGAAAAAAATCTATAATATAGTTACAAAAAAAGGAAAGGGTGGGGCAAATATGGAAACATACGT  
 GAACAAGCTTCACGAAGGCTCCACATACACAGCTGCTCAATACAATGTCTAGAAAAAGACGATGACCCCTGCAT  
 CACTTACAATATGGGTGCCATGTTCAATCATCTATGCCAGCAGATTACTTATAAAGAACTAGCTAATGTCAAC  
 ATACTAGTGAACAAATATCCACACCAAGGGACCTCACTAACAGTCATGATAAAACTCAAGAAGTGCAGTGCTAGC  
 ACAAAATGCCAGCAAATTACCATATGCGCTAATGTGTCCTGGATGAAAGAAGCAAACAGCATATGATGTAACCA  
 CACCTGTGAAATCAAGGCATGTAGTCTAACATGCCTAAACATCAAAATATGTTGACTACAGTTAAAGATCTCACT  
 ATGAAGACACTCAACCCATACATGATATTATTGCTTATGTAATTGAAAACATAGTAACATCAAAAGTCAT  
 AATACCAACATACCTAACAGATCCATCAGTGTAGAAATAAGATCTGAACACACTGAAATATAACAACCAACTGAAT  
 TCAAAAATGCTATCACAAATGCAAAATCATCCCTACTCAGGATTACTATTAGTCATCACAGTGACTGACAACAAA  
 GGAGCATTCAAATACATAAGCCACAAAGTCATTAGTCAGTACAGCTTACCTAGGCTTACCTAGAAAAAGAAAGTATATA  
 TTATGTTACCACAAATTGGAAGCACACAGTACACGATTGCAATCAAACCCATGGAAGGATTAACCTTTCTCTA  
 CATCAGTGTGTTAATTCTACAAACTTCTACCTACATTCTCACCTACCAATCACAAACACTGTGGTT  
 CAACCAATCAAACAAACTTATCTGAAGTCCCAGATCATCCAAGTCATTGTTATCAGATCTAGTACTCAAATAAG  
 TTAATAAAAATACACATGGGCAAATAATCATTGGAGGAAATCCAACAAATCACAATATCTGTTAACATAGACA  
 AGTCCACACACCACAGAACATGCAAAATACATCCATAACAAACATGAAATAGAATTCTCAAGCAAATTCTGGCTTA  
 CTTTACACTAATACACATGATCACAAACATAATCTCTGCTAATCATAATCTCCATCATGATTGCAAAACTAAACA  
 AACTTTGTGAATATAACGTATTCCATAACAAACCTTGTAGTTACCAAGAGCTCGAGTTAATACTGATAAAAGTAGT  
 TAATTAAAAATAGTCATAACAAATGAAACTAGGATATCAAGACTAACATAACATTGGGCAAATGCAAACATGTCAA  
 AAACAAGGACCAACGCACCGCTAACAGACATTAGAAAGGACCTGGGACACTCTCAATCATTATTATCATATCATCGT  
 GCTTATATAAGTAAATCTTAAATCTGTAGCACAAATCACATTATCCATTCTGGCAATGATAATCTCAACTTCACCT  
 ATAATTGAGCCATCATATTCTAGCCTCGGCAAACCAACACCTCACCCAGAACATCCTCAGCTGGAAATCAGTCCCTTAATCCGTCTG  
 AAATTACATCAAACATCACCACCAACTAGCTTCAACAAACACCAGGAGTCAGTCAACCCCTGCAATCCACAACAGTC  
 AAGACAAAAACACAACAAACTCAAACACAAACCCAGAACATCCTCACCCAGAACAGCCACCAACAAACAAACCCACCAAG  
 CAAACCCATAATGATTTCACTTGAAGTGTCAACTTGTACCTCTGCGATATGCAGCAACAATCCAACCTGCT  
 GGGCTATCTGCAAAGAATACCAAACAAAAACAGGAAAGAAAACCAACTACCAAGCCCACAAAAACCAACCCCTC  
 AAGACAACAAAAAGATCCAAACCCACTAAATCAAAGGAAGTACCCACCACCAAGCCCACAGAAGAGGC  
 AACCATCAACACCACAAACAAACATCATAACTACACTCACCTCCAACACCACAGGAAATCCAGAAACTCACA  
 GTCAAATGGAAACCTTCCACTCAACTTCCTCCGAAGGCAATCCAAGCCCTCTCAAGTCTCTACAACATCCGAGTAC  
 CCATCACAACCTTCATCTCCACCCACACACCAGCCAGTAGTTACTTAAACATATTACACAAAGGCCTTGAC  
 CAACTAAACAGAAATCAAACAAACTCTGGGGCAAATAACATGGAGTTGCTAATCCTCAAAGCAAATGCAATTACC  
 ACAATCCTCACTGCAGTCACATTGTTCTGCTCTGGTCAAACATCACTGAAGAATTTTATCAATCAAACATGCAG  
 TGCAGTTAGCAAAGGCTATCTTAGTGCTCTGAGAACTGGTTGGTATACAGTGTATAACTATAGAATTAAAGTAATA  
 TCAAGAAAAATAAGTGAATGGAACAGATGCTAAGGTAATTGATAAAACAAGAATTAGATAAAATAAAAATGCT  
 GTAACAGAATTGCAAGTGTCAAGCACAAGCAACAAACAATCGAGCCAGAAGAGAAACTACCAAGGTTAT  
 GAATTATAACTCAAACATGCCAAAAACCAATGTAACATTAAGCAAGAAAAGGAAAGAAGATTCTGGTTTT  
 TGTTAGGTGTGGATCTGCAATGCCAGTGGCGTTGTATCTAAGGTCTGCACCTAGAAGGGGAAGTGAACAAG  
 ATCAAAAGTGTCTACTATCCACAAACAGGCTGTAGTCAGCTTATCAAATGGAGTTAGTGTGTTAACAGCCTATA  
 GTTACCTCAAAACTATATAGATAAAACATTGTTACCTATTGTGAAACAAGCAAAGCTGCAGCATATCAAATATAG  
 AACTGTGATAGAGTCCAACAAAGAACACAGACTACTAGAGATTACCAAGGAAATTAGTGTGTTAACAGCGTA  
 ACTACACCTGTAAGCACTTACATGTTACTAATAGTGAATTATTGTCATTAAATCAATGATATGCCTATAACAAATGA  
 TCAGAAAAAGTTAATGTCAAACATGTTAAATAGTACAGACAGCAAAGTACTCTATCATGTCCATAATAAAAGAGG  
 AAGTCTTAGCATAATGTAGTACAATTACCACTATATGGTTAGATAACACCCGTGAAACTACACACATCCCCT  
 CTATGTACAACCAACACAAAGAAGGGTCAAACATGTGTTAACAGAAACTGACAGAGGATGGTACTGTGACAATGC  
 AGGATCAGTATCTTCTTCCCACAGCTGAAACATGTAAGGTTCAATCAAATCGAGTATTTGTGACACAATGAACA  
 GTTTAACATTACCAAGTGAAGTAAATCTGCAATGTTGACATATTCAACCCCAAATATGATTGAAATTATGACT  
 TCAAAAACAGATGTAAGCAGCTCCGTTATCACATCTTAGGAGCCATTGTCATGCTATGGCAAACAAACTAAATGTAC  
 AGCATCCAATAAAACAGTGGAAATCATAAAGACATTCTAAGGGTGCAGTATGTGAAATAAAAGGGTGGACA  
 CTGTGTCTGTAGGTAAACACATTATATTGTAATAAGCAAGAAGGTTAAAGTCTATGTTAAAGGTGAACCAATA  
 ATAAATTCTATGACCCATTAGTATTCCCTCTGATGAATTGATGCAATATCTCAAGTCACAGAGAAGATTAA  
 CCAGAGCCTAGCATTATCGTAAATCCGATGAAATTATTACATAATGTAATGCTGGTAAATCCACCAACAAATATCA  
 TGATAACTACTATAATTAGTGAATTAGTAATTGTTATCATTAAATTGCTGGACTGCTCTTAACTGTGAA  
 GCCAGAAGCACACCAGTCACACTAACAGAAAGATCAACTGAGTGGTATAAATAATTGCTATTAGTAACTAAATAA  
 AATAGCACCTAATCATGTTCTACAATGGTTACTATCTGCTCATAGACAACCCATCTGTCATTGGATTCTTAA  
 ATCTGAACCTCATCGAAACTCTCATCTATAAACCATCTCACTTACACTATTAAAGTAGATTCTAGTTATAGTT  
 ATAAAACACAATTGCAATGCCAGGTACCATGGGCAAATAAGAATTGATAAGTACCACTTAAACTTAACTCCCTGG  
 TTAGAGATGGCAGCAATTCTAGTGTGATGAAATTGTTGACAATGATGAAAGTAGCATT  
 GTTAAAAATAACATGCTACTGATAAAATTACATTAACAGTAGTGTGTTGACAATGATGAAAGTAGCATT  
 AATTGAATGGCATGTTGTCATGTTATTACAGTAGTGTGTTGACAATGATGAAAGTAGCATT  
 AATTTCACAACAAATGCCAGTACTACAAATGGAGGTTATATGGAAATGATGGAATTACACACATTGCTCTCAACC  
 TAATGGTCTACTAGATGACAATTGCAAAACTAAGTGAATTAACTTCAACATGACCAATTATGTA

ATCAATTATCTGAATTACTGGATTGATCTTAATCCATAAATTATAATTAAATCAACTAGCAAATCAATGTCACT  
 AACACCATTAGTTAATATAAAACTAACAGAAGACAAAATGGGCAAATATGTCACGAAGGAATCCTGCAAATT  
 GAAATTGAGGTCAATTGCTAAATGGTAAGAGGTGTCATTAGTCATAATTATTTGAATGCCACCCATGCACT  
 GCTTGTAAGACAAAACCTTATGTTAAACAGAATACTTAAGTCTATGGATAAAAGTATAAGATAACCTTATCAGAAATAA  
 GTGGAGCTGCAGAGTTGGACAGAACAGAAGAGTATGCTCTGGTAGTGGAGTGCTAGAGAGTTATAGGATCA  
 ATAAACAAATAACTAAACAATCAGCATGTGTCATGAGCAAACCTCCTCACTGAACACTCAATAGTGTGATATCAA  
 AAAGCTGAGGGACAATGAAGAGCTAAATTCAACCAAGATAAGAGTGACAAATACTGTCATATCATATTGAAAGCA  
 ACAGGAAAAACAAATAACAAACTATCCATCTGTTAAAAGATTGCCAGCAGACGTATTGAAGAAAACCATAAAAC  
 ACATTGGATATCCATAAGAGCATAACCATAACAAACCCAAAAGAATCAACTGTTAGTGATACAAATGACCATGCCAA  
 AAATAATGATACTACCTGACAAATATCCTGTTAGTATAACTCCATAACTAAACAAGTAGATGTAGAGTTACTATG  
 TATAATCAAAGAACACACTATATTCAATCAAACAAACCCAAATAACCATATGTTACTCACCAGTACAAACATTCAA  
 TGAAATCCATTGGACCTCTCAAGAATTGATTGACACAATTCAAACATTCTACAACATCTAGGTATTATTGAGGATA  
 TATATACAATATATATTAGTGTCTAAACACTCAATTCTAACACTCACCACATCGTTACATTATTAAATTCAAACAA  
 TTCAAGTTGTGGACAAAATGGATCCCATTATTAAATGGAATTCTGCTAATGTTATCTAACCGATAGTTATTAA  
 AGGTGTTATCTCTCAGAGTGTAAATGCTTAGGAAGTTACATATTCAATGGCCTTATCTCAAACATTGATTATA  
 CCAACTTAATTAGACAAAATCCATTAAATAGAACACATGAATCTAAAGAAACTAAATATAACACAGTCCTAATA  
 TCTAAGTATCATAAAGGTGAAATAAAATTAGAACCTACTTATTTCTAGTCATTACTTATGACATAAGAGTAT  
 GACCTCGCAGAACAGATTGCTACCAACTTAAAGATAATAAGAACAGCTATAGAAATAAGTGTGTC  
 AAGTCTATGCTATATTGAATAAAACTAGGGCTTAAAGAAAAGGACAAGATTAAATCCAACAATGGACAAGATGAAGAC  
 AACTCAGTTATTACGACCATAATCAAAGATGATACTTCTAGCTGTAAAGATAATCAATCTCATCTAAAGCAGA  
 CAAAATCACTCTACAAAACAAAAGACACAATCAAACACTCTGAAGAAATTGATGTGTCATGCAACATC  
 CTCCATCATGGTTAATACATTGGTTAACTTATACACAAAATTAAACACATATTACACAGTATCGATCAAATGAG  
 GTAAAAAACCATGGTTACATTGATAGATAATCAAACCTCTTAGTGGATTTCATTTGAACCAATATGGTTG  
 TATAGTTATCATAAGGAACCTAAAGAATTACTGTGACAACCTATAATCAATTCTGACATGGAAAGATAATTAGCC  
 TTAGTAGATTAAATGTTTAATTACATGGATTAGTAACTGCTGAACACATTAAAGCTTAGGCTTAAGA  
 TCGGGATTCAATAATGTTATCTGACACAACATTCCATTGGAGATTGTACTAAAGCTATTTCACAATGAGGG  
 GTTCTACATAATAAAAGAGGTAGAGGGATTATTATGCTCTAAATTAAATATAACAGAAGAGATCAAATCAGAA  
 AACGATTTTATAATAGTATGCTAACACATCACAGATGCTGAATAAGCTCAGAAAAATCTGCTATCAAGAGTA  
 TGTCTACATTATTAGATAAGACAGTGTCCGATAATATAATAATGGCAGATGGATAATTCTATTAGTCT  
 TAAATTAAATAGCTTGCAGGTGACAATAACCTTAAACATCTGAGTGAACATTAGGTTCTCAGAAATTGGAC  
 ACCCAATGGTAGATGAAAGACAAGCCATGGATGCTTAAAGATTAAATGCAATGAGACCAAATTTCAGTTGAA  
 AGTCTGAGTATGTTAAGAGGTGCCTTATATAGAATTATAAAAGGGTTGAAATAATTACAACAGATGGCCTAC  
 TTTAAGAAATGCTATTGTTACCCCTTAAAGATGGTTACTTACTATAAAACTAAACACTTATCCTCTTGTGGAAC  
 TTACAGAAAGAGATTGATTGTGTTACGGACTACGTTCTACGTGAGTTCGGTTGCCTAAAAAGGATCTT  
 GAAATGATTATAATGATAAAAGCTATATCACCTCTAAAATTGATAATGGACTAGTTCCCTAGAAATTACATGCC  
 ATCACACATAAAACTATAGAACATGAAAAATTAAAATTCCGAGAGTGTGATAAAATCAAGAAGAGTATTAGAGT  
 ATTATTAAAGAGATAACAAATTCAATGAATGTGATTATACAACCTGTGAGTTAATCAAAGTTATCTAACACCCT  
 AATCATGTGGTATCATTGACAGGCAAAGAACAGAAACTCAGTGTAGGTAGAATGTTGCAATGCAACCGGGAAATT  
 CAGACAGGTTCAAATATTGGCAGAGAAAATGATAGCTGAAAACATTTACAATTCTTCTGAAAGTCTACAGA  
 ATGGTGACTAGAACTACAAAAATTAGAACTGAAAGCAGGAATAAGTAACAAATCGCTACATGATAAT  
 TACAACAAATTACATTAGTAAGTGTCTATCATCACAGATCTCAGCAAATTCAATCAAGCATTGATATGAAACGTC  
 ATGTATTGAGTGTGCTGGATGAACTGCATGGTGTACAATCTCTATTTCCTGGTTACATTAACTATTCTC  
 ATGTCACAATAATGCACATATAGGCATGCACCCCCCTATAAGGAGATCATTTGTAGTCTTAACAATGTAGAT  
 GAACAAAGTGGATTATAGATATCACATGGTGGCATGAAGGGTGTGAAACACTAAACCTTTTAATCTGATA  
 ATCACTATTGGATCTAATATCTCTAAAGGGAAATTCTCAATTACTGCTTAAATTATGGTACAATCAATAG  
 ATATAAGCAAACCAATCAGACTCATGGAAGGTCAAACACTGCTCAAGCAGATTATTGCTAGCATTAAATAGCCT  
 AAATTACTGTATAAAGAGTATGCAAGGCATAAGGCCACAAATTAAAGGAACCTGAGACTTATATATCACGAGATATGCA  
 ATTATGAGTAAACAAATTCAACATAACGGTGTATATTACCCAGCTAGTATAAAAGAAAGTCCTAAGAGTGGGACCGT  
 GGATAAACACTATACTGATGATTCAAAGTGTAGCTAGAATCTATAGGTAGTTGACACAAGAATTAGAATATAGA  
 GGTGAAAGTCTATTAGCAGTTAATTAGAAATGTATGGTTATATAATCAGATTGCTCTACAATTAAAAATCA  
 TGCATTATGTAACAATAAAACTATATTGGACATATTAAAGGGTCTGAAACACTAAACCTTTTAATCTGATA  
 ATATTGATACAGCATTAAACATTGTATATGAATTACCATGTTATTGGTGGTGTACCCAACTTGTATATCGA  
 AGTTCTATAGAAGAACTCCTGACTTCCTCACAGAGGCTATAGTCACTCTGTGTTCTACTTAGTTATTACCAA  
 CCATGACTAAAGATAAAACTCAAGATCTGTCAGATGATAGATTGAATAAGTCTTAACATGCATAATCACGTTG  
 ACAAAAACCTAATGCTGAATTGTAACATTGATGAGAGATCCTCAAGCTTAGGGTGTGAGAGACAAGCTAAAATT  
 ACTAGCGAAATCAATAGACTGGCAGTTACAGAGGTTGAGTACAGCTCCAAACAAATTCTCCAAAAGTGCACA  
 ACATTATACTACTACAGAGATAGATCTAAATGATATTATGCAAATATAGAACCTACATATCCTCATGGCTAAGAG  
 TTGTTATGAAAGTTACCCATTAAAGCAGAGAAAATGTAATCTTATATCAGGTACAAATCTATAACTAAC  
 ATACTGGAAAAACTTCTGCCATAGACTTAACAGATATTGATAGAGGCCACTGAGATGAGTGGAGAAAACATAACTT  
 GCTTATAAGGATACTCCATTGGATTGTAACAGAGATAAAAGAGAGATATTGAGTATGGAAAACCTAAGTATTACTG  
 AATTAAGCAAATATGTTAGGGAAAGATCTTGGTCTTATCCAATATAGTGGTGTACATCACCAAGGAGAAAAACAAATGCCAGTTATAATA  
 ACGTGGTGTGAGAGAGGACCCACTAAACCATGGTGGTCATCTACACAAGAGAAAAACAAATGCCAGTTATAATA  
 GACAAGTCTAACCAAAAAACAGAGAGTCAAATAGATCTATTGAAAGTGGATTGGGTGTATGCATATAGAT

AACAAAGGATGAATTGAGAAGAACTCAGCATAGGAACCCCTGGGTTAACATATGAAAAGGCCAAGAAATTATTTCC  
 ACAATATTAAAGTGTCAATTATTGCATGCCCTACAGTCAGTAGTAGACCATGTGAATTCCCTGCATCAATACCAAG  
 CTTATAGAACAAACAAATTACTTGCACACTAGCCCTATTAATCGCATATTAACAGAAAAGTATGGTATGAAGAT  
 ATTGACATAGTATTCCAAAACGTATAAGCTTGGCCTAGTTAATGTCAGTAGTAGAACAAATTACTAATGTATG  
 TCCTAACAGAATTATTCTACCTAACGCTTAATGAGATACATTGATGAAACCTCCCATATTCACAGGTATGTG  
 ATATTCAAGTTAAAACAAGTGTACAAAAACAGCATATGTTTACCAAGACAAAATAAGTTGACTCAATATGTG  
 GAATTATTCTTAAGTAATAAAACACTCAAATCTGGATCTCATGTTAATTCTAATTAAATTGGCACATAAAATAC  
 TGACTATTTCATAAACTACATTAAAGTACTAATTAGCTGGACATTGGATTCTGATTACAAACTATGAAAG  
 ATTCTAAAGGTATTGAAAAAGATTGGGAGAGGGATATATAACTGATCATGTTATTAAATTGAAAGTTTC  
 TTCAATGCTTATAAGACCTATCTCTGTGTTTCATAAAGGTATGGCAAAGCAGCTGGAGTGTGATATGAACAC  
 TTCAGATCTCTATGTGATTGAAATTAGACAGTAGTTATTGAAAGTCTATGCTAAGGTATTGAAACAAA  
 AAGTTATCAAATACATTCTAGCCAAGATGCAAGTTACATAGAGTAAAGGATGTCATAGCTCAAATTATGGTT  
 CTTAAACGTCTTAATGTCAGATTACAGTTGCCCTGGGTTGTTAACATAGATTATCATCCAACACATATGAA  
 AGCAATATTAACCTATAGATCTGTTAGAATGGGATTGATAAAATAGATAGAACACATTAAAAATAACACA  
 AATTCAATGATGAATTTATACTTCTAATCTCTACATTAATTATAACTCTCAGATAATACACTCATATTAACT  
 AACATATAAGGATTGCTAATTCTGAATTAGAAAATAATTACAACAAATTATATCATCCTACACCAGAAACCC  
 GAATATACTAGCCAATCCGATTAAAAGTAATGACAAAAAGACACTGAATGACTATTGATAGTAAAGTGT  
 CAATAATGTTACCTGTTCTAATAAGAAGCTTATTAAATCGTCTGCAATGATTAGAACCAATTACAGCAA  
 GATTGTTATAATTATTCCCTATGGTGTGATTGATAGATTAGATCATTAGGCAATACAGCCAAATCCA  
 ACTTTACACTACTTCCCACCAAATATCCTAGTGCACAATAGCACATCACTTACTGCATGCTCCTGGC  
 ATATTAAATAGATTCAATTGTTATTAGTTCTACAGGTTGAAAATTAGTATAGAGTATATTAAAGATCTTAA  
 ATTAAAGATCCCATTGTATAGCATTCTAGGTGAAGGAGCAGGGATTATTATTGCGTACAGTAGTGGAA  
 TCTGACATAAGATATTTACAGAAGTCTGAAAGATTGCAATGATCATAGTTACCTATTGAGTTTAAGGCTG  
 ACAATGGACATATCAACATTGATTGGTAAAATTGACCATTCTGCTACAGATGCAACCAACATTG  
 TCTTATTACATATAAGTTGCTGAACCTATCAGTCTTGTGATGCCGAATTGCTGTAACAGTC  
 GAGTAAAATTATAAGGATGGAGCAAGCATGTAAGAAAGTCAAGTACTGTTCTCAGTTAATAATGTATG  
 TAGTAAAATTATCATGCTCAAGATGATATTGATTCAAATTAGACAATATAACTATATTAAA  
 ACTTATGTTAAAGGCTTACAGGTTAGTGGAGATATACTATCATATTCTAGCTGGACGTAATGA  
 AGTAAAGAGTGTGTTAGTGGAGATATACTATCATATTCTAGCTGGACGTAATGAAGTTTCAGCA  
 AAATCATAAGCATATGAACATCTAAAATGTTCAATCATGTTAAATTTCAGATCAACAGAA  
 ACTAAACTATAACCATTATGTTAGAATCTACATATCCTACCTAAGTGAATTGTTAAACAGCT  
 AAATTCAGGTTAGTGGAGATATACTATCATATTCTAGCTGGACGTAATGAATAAGATCTTAA  
 ATGCTTACACTAACACTGTATTCAATTATAGTTATTAAAATTCAATTGTTAAACTTAA  
 TGAACATACTAAAGTTATCATTAAATCTTGGAGGAATAATTAAACCTAATCTAATTGTTATATGT  
 TAACAAATTACGAGATATTGTTGACACTTTCTCGT

### Antigenomic cDNA sequence of RSV 6120/NS12Ltr/ΔNS2/GFP (SEQ ID NO: 7)

ACGGGAAAAATCGTACAACAACTGCTAAACCAAAAAATGGGCAAATAAGAATTGATAAGTACCACTTAA  
 ATTTAACCCCTGGTTAGAGATGGCTCTAGCAAAGTCAGTTGAATGATACTCAACAAAGATCAACTTCTGTC  
 ATCCAGCAAATACACCCTCAACGGAGCACAGGAGATAGTATTGATACTCCTAATTATGATGTGAGAAACACATCA  
 ATAAGTTATGTGGCATGTTATTAAATCACAGAAGATGCTAATCATAAATTCACTGGGTTAATAGGTATGTTATGCG  
 ATGTCTAGGTTAGGAAGAGAACACCATAAAACTCAGAGATGCGGGATATCATGTTAAAGCAAATGGAGTAGA  
 TGTAACAACACATCGTCAAGACATTGAAAAGAAATTGAAATTGAGTTAACATTGGCAAGCTTAACAACTG  
 AAATTCAAATCAACATTGAGATAGAATCTAGAAAATCCTACAAAAAATGCTAAAGAAATGGGAGAGGTAGCTCCA  
 GAATACAGGCATGACTCTCTGATTGTGGGATGATAATTATGTATAGCAGCATTAGTAATAACTAAATTAGCAGC  
 AGGGGACAGATCTGGCTTACAGCCGTATTAGGAGAGCTAATATGCTTAAAGAAATGAAACGTTACAAAG  
 GCTTACTACCCAAAGGACATAGCCAACAGCTTATGAAGTGTGTTGAAAACATCCCCACTTATAGATGTT  
 CATTGGTATAGCACAATTCTCTACAGAGGTGGCAGTAGAGTTGAAGGGATTGTCAGGATTGTTATGAATGC  
 CTATGGTGCAGGGCAAGTGTACGGTGGGAGTCTAGGTTAAAGGAAATTGTTGAGGACATGCTA  
 GTGTGCAAGCAGAAATGGAACAAGTTGAGGTTATGAATATGCCAAAATTGGGTTGAAGCAGGATTCTAC  
 CATATATTGAACAACCAAAGCATCATTATTCTTACTCAATTCTCCACTTCTCCAGTGTAGTATTAGGCAA  
 TGCTGCTGGCTAGGCATAATGGGAGAGTACAGAGGTACACCGAGGAATCAAGATCTATGATGCAGCAAAGGCAT  
 ATGCTGAACAACCTCAAAGAAAATGGTGTATTAACAGTGTACTAGACTGACAGCAGAAACTAGAGGCTATC  
 AACATCAGCTTAATCCAAAAGATAATGATGTAGAGCTTGTAGTTAAATAAAAATGGGCAAATAATCATCATGGA  
 AAAGTTGCTCTGAATTCCATGGAGAAGATGCAAACAAACAGGGCTACTAAATTCTAGAATCAATAAGGGCAA  
 TCACATCACCAAAGATCCCAAAGAAAAAGATAGTATCATATCTGTCAACTCAATAGATATAGAACCTAAAGGAA  
 AGCCCTATAACATCAAATTCAACTATTATCAACCCAAACAATGAGACAGATGATACTGCAGGGAAACAAGCC  
 TCAAAGAAAACCTCTAGTAAGTTCAAAGAAGACCCACACCAAGTGTATAATTCCCTTCTAAACTATACAAAG  
 CCATAGAAACATTGATAACAAATGAAGAAGAATCCAGCTATTCTACAGAACAAATGATCAGACAAACGATA  
 ATAACAGCAAGATTAGATAGGATTGAAATTAGTGAATGAAACTAGGAATGCTCACACATTAGTAGTGGCAAG

TGCAGGACCTACATCTGCTGGATGGTATAAGAGATGCCATGGTGGTTAAGAGAAGAAAATGATAGAAAAATCA  
 GAACTGAAGCATTAAATGACCAATGACAGATTAGAAGCTATGCAAGACTCAGGAATGAGGAAAGTGAAGAATGGCA  
 AAAGACACATCAGATGAAGTGTCTCAATCCAACATCAGAGAAATTGAACAACTATTGGAAGGGATGATAGTGA  
 CAATGATCTATCACTGAAGATTCTGATTAGTACCAATCTCACATCAACACACAATACCAACAGAACACA  
 AACTAACCAACCCAAATCCAACAAACATCCATCCGCCATCAGCAAACAGCAAACAAAACAACCAGCAAATCC  
 AAAACTAACCAACCCGAAAAATCTATAATATAGTTACAAAAAAGGAATCGATGGGCAAATACAAGTATGGTGAG  
 CAAGGGCGAGGAGCTGTTACCAGGGTGGTGCACCTCTGGTCAGCTGGACGGCGACGTAAACGCCACAAGTTCA  
 GCGTGTCCGGCGAGGGCGATGCCACCTACGGCAAGCTGACCTGAAGTTCATCTGCACCACCGCAAGCTG  
 CCCGTGCCCTGGCCCACCCCTCGTGACCAACCTGACCTACGGCGTGCAGTGCTCAGCCGCTACCCGACCACATGAA  
 GCAGCAGCAGCTTCAAGTCCGCCATGCCGAAGGCTACGCCAGGAGCGCACCATCTTCAAGGACGACGGCA  
 ACTACAAGACCCGCCGAGGTGAAGTTGAGGGCGACACCCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTC  
 AAGGAGGACGGCAACATCTGGGACAAGCTGGAGTACAACCTACAAACAGCCACAACGTCTATATCATGGCGACAA  
 GCAGAAGAACGGCATCAAGGTGAACCTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCAC  
 ACCAGCAGAACACCCCCATGGCGACGGCCCCGTGCTGCCGACAACCACACTCGAGGACCCAGTCCGCCCTG  
 AGCAAAGACCCCAACGAGAACGCGATCACATGGCCTGCTGGAGTTGACCGGCCGGGATCACTCTGGCAT  
 GGACGAGCTGTACAAGTAAAGTAGTTACTTAAAGTCGACGGTGGGCAAATATGAAACATACGTGAACAAAGCT  
 TCACGAAGGCTCCACATACACAGCTGTCATACAATGTCTTAGAAAAAGACGATGACCTGCATCACTTACAA  
 TATGGGTGCCATGTTCAATCATCTATGCCAGCAGATTACTTAAAGACTAGCTAATGTCAACATACTAGTG  
 AAACAAATATCCACACCCAAAGGACCTCACTAAGAGTCATGATAAAACTCAAGAAGTGCAGTGCTAGCACAAATGCC  
 CAGCAAATTACCATATGCCCTAAATGTGCTCTGGATGAAAGAACGAAACTAGCATATGATGTAACCACACCTGTG  
 AAATCAAGGCATGTAGCTAACATGCCCTAAACATGAAAGATCTGAACACACTTGAAAATATAACAAACACTGAATTCAAAATG  
 CTATCACAAATGCAAAATCATCCCTACTCAGGATTACTATTAGTCATCACAGTGACTGACAAACAAGGAGCATTC  
 AAATACATAAAGCCACAAAGTCATTCACTAGTAGATCTGGAGCTTACCTAGAAAAAGAAAGTATATATTATGTTAC  
 CACAAATTGGAAGCACACAGCTACACGATTGCAATCAAACCCATGGAAAGATTAACCTTTCTACATCAGTGT  
 GTTAATTACATACAAACTTCTACCTACATTCTCCTACATTGCAATCACATCAGATCTAGTACTCAAATAAGTTAA  
 AACACAAACTTATCTGAAGTCCCAGATCATCCCAAGTCATTGTTATCAGATCTAGTACTCAAATAAGTTAA  
 AATATACACATGGGCAAATAATCATTGGAGGAAATCCAACTAATCACAATATCTGTTAACATAGACAAGTCCACAC  
 ACCATACAGAACATCAACCAATGGAAAATACATCCATAACAATAGAATTCTCAAGCAAATTCTGGCTTACTTACACT  
 AATACACATGATCACACAAATAATCTCTTGCTAATCATAATCTCCATCATGATTGCAATACTAAACAAACTTGTG  
 AATATAACGTATTCCATAACAAACCTTGTAGTTACCAAGAGCTCGAGTTAACACTTGATAAAAGTAGTTAA  
 ATAGTCATAACAAATGAACTAGGATATCAAGACTAACATAACATTGGGCAAATGCAAACATGTCCAAAACAAGGA  
 CCAACGCACCGCTAACAGACATTAGAAAGGACCTGGGACACTCTCAATCATTATTATCATCATCGTGTATATA  
 AGTTAAATCTTAAATCTGTAGCACAATCACATTCTGCAATGATAATCTCAACTTCACTTATAATTGCA  
 GCCATCATATTACATGCCGCAAACCACAAAGTCACACCAACACTGCAATCACAGATGCAACAAAGCCAGAT  
 CAAGAACACAACCCAAACATACCTCACCCAGAACATCCTCAGCTGGAAATCAGTCCCTCTAATCCGCTGAAATTACAT  
 CACAAATCACCACCAACTAGCTCAACAAACACCAGGAGTCAGTCAACCCCTGCAATCACAACAGTCAGACCAA  
 AACACAAACAACAACTCAAACACAAACCCAGAACAGCCACACAAACAGCCAAAACAACACCAGAACAGCAA  
 TAATGATTTCACTTGAAGTGTCAACTTGTACCTGCAGCATATGCAGCAACAATCCAACCTGCTGGCTATCT  
 GCAAAAGAATACAAACAAAAACAGGAAAGAAAACCACCTACCAAGCCCACAAAAACCAACCCCTCAAGACAACC  
 AAAAAAGATCCCAAACCCACTAAAGGAAGTACCCACCAAGCCCACAGAACAGCCAAACCATCAA  
 CACCAACAAACAAACATCATAAACTACACTACTCACCTCCAAACACCACAGGAAATCCAGAAACTCACAAGTCAAATGG  
 AAACCTTCACTCAACTTCCCGAAGGCAATCCAAGCCCTCTCAAGTCTACAAACATCCGAGTACCCATCAA  
 CCTTCACTCCACCCAAACACACCAGCCAGTAGTTACTTAAACATATTACACAAAGGCCTGACCAACTTAA  
 CAGAATCAAATAACTCTGGGCAAATAACATGGAGTTGCAATCCTCAAAGCAAATGCAATTACCAATCCTC  
 ACTGCAGTCACATTGTTGCTCTGGTCAAAACATCACTGAAGAATTTCATCAACATGCAGTGAGTTAG  
 CAAAGGCTACTTACTGCTCTGAGAACTGGTGGTACCGAGTTACTGTTAACATAGAATTAGATAAAATGCTGAA  
 ATAAGTGTAAATGGAACAGATGCTAAGTAAATTGATAAAACAAGAATTAGATAAAATGCTGAA  
 TTGAGTTGCTCATGCAAAGCACACAAGCAACAAACAATCGAGCCAGAACAGAACACTACCAAGGTTATGAATTATAC  
 ACTCAACAAATGCCAAAAACCAATGTAACATTAAAGCAAGAAAAGGAAAAGAAGATTCTGGTTTTGTTAGGTG  
 TTGGATCTGCAATGCCAGTGGCGTTGCTGTATCTAAGGTCTGCACCTAGAAGGGGAAGTGAACAAGATCAAAGT  
 GCTCTACTATCCACAAACAGGCTGAGTCAGCTTACAAATGGAGTTAGTGTAACTGTTAACAGCAGTGTAGACCT  
 CAAAAACTATATAGATAAAACAATTGTTACCTATTGTAACAGCAAAGCTGCAGCATATCAAATATAGAAACTGTGA  
 TAGAGTTCAAACAAAGAACACAGACTACTAGAGATTACCAAGGGAAATTAGTTGTTAACAGCGTAACACACCT  
 GTAAGCACTTACATGTTAACTAATAGTGAATTATTGTCATTAATCAATGATATGCCCTATAACAAATGATCAGAAAA  
 GTTAATGTCCAACAAATGTTAAATAGTTAGACAGCAAAGTTACTCTATCATGTCATAATAAGAGGAAGTCTTAG  
 CATATGTTAGTACAATTACCACTATGGTGTATAGATAACCCCTGTTGGAAACTACACACATCCCCTATGTACA  
 ACCAACACAAAGAAGGGCCAACATCTGTTAACAGAAACTGACAGAGGATGGTACTGTGACAATGCAGGATCAGT  
 ATCTTCTCCCACAAGCTGAAACATGTAAGTCAATCAAATGCAAGTGTGAGTATTTGTGACACAATGAACAGTTAACAT  
 TACCAAGTGAAGTAAATCTGCAATGTTGACATATTCAACCCCAAATATGATTGTTAAATTGACTTCAAAACAA  
 GATGTAAGCAGCTCCGTTACACATCTCTAGGAGCCATTGTCATGCTATGGCAAACAAACTAAATGTACAGCATCCAA  
 TAAAAATCGTGGAAATCATAAAGACATTCTAACGGGTGCGATTATGTTACAAATAAGGGTGGACACTGTGTCTG  
 TAGGTAACACATTATATTGTAATAAGCAAGAAGTAAAGTCTCTATGTTAAAGGTGAACCAATAATAATTTC

TATGACCCATTAGTATTCCCCTGTGATGAATTGATGCATCAATATCTCAAGTCAACGAGAAGATTAACCAGAGCCT  
 AGCATTATTGTAATCCGATGAATTATTACATAATGTAATGCTGTAATCCACCAAAATCATGATAACTA  
 CTATAATTATAGTGATTATAGTAATATTGTATCATTAATTGCTGTTGGACTGCTCTTACTGTAAAGGCCAGAAGC  
 ACACCAAGTCACACTAACGAAAGATCAACTGAGTGGTAAATAATATTGATTAGTAACAAATAAAATAGCACC  
 TAATCATGTTACAATGGTTACTATCTGCTCATAGACAACCCATCTGTCATTGGATTTCTAAAATCTGA  
 ACTTCATCGAAACTCTCATCTATAAACCATCTCACTTACACTATTAAAGTAGATTCTAGTTATAGTTATATAAAACAC  
 AATTGCATGCCAGATTAACCTTACCATCTGTAATAAGGAACTGGGCAAATATGTCACGAAGGAATCCTGCAAAT  
 TTGAAATTGAGGTCAATTGCTTAATGGTAAGAGGTGTCAATTAGTCATAATTATTGAATGCCACCCATGCA  
 CTGCTGTAAGACAAAACCTTATGTTAAACAGAATACTTAAGTCTATGGATAAAAGTATAGATACCTTACAGAAAT  
 AAGTGGAGCTGCAGAGTGGACAGAACAGAAGAGTATGCTCTGGTAGTTGGAGTGCTAGAGAGTTATAGGAT  
 CAATAAACAAATAACTAAACAATCAGCATGTGCCATGAGCAAACCTCACTGAACACTCAATAGTGTATGATAC  
 AAAAGCTGAGGGACAATGAAGAGCTAAATTCAACCAAGATAAGAGTGTACAATACTGTCATATCATATATTGAAAG  
 CAACAGGAAAACAATAACAAACTATCCATCTGTTAAAAGATTGCCAGCAGACGTATTGAAGAAAACCATCAAAA  
 ACACATTGGATATCCATAAGAGCATAACCATCAACAAACCCAAAAGAATCAACTGTTAGTGATAACAAATGACCATGCC  
 AAAAATAATGATACTACCTGACAAATATCCTGAGTATAACTCCATACTAAACAAGTAGATGTTAGAGTTACTA  
 TGTATAATCAAAAGAACACACTATATTCAATCAAACACCAAAATAACCATATGTACTCACCGAATCAAACATTC  
 AATGAAATTCCATTGGACCTCTCAAGAATTGACACAATTCAAAATTCTACACATCTAGGTATTATTGAGGA  
 TATATATACAATATATATTAGTGTCAACACTCAATTCTAACACTCACCACATCGTTACATTATTAAATTCAAAC  
 AATTCAAGTTGTGGACAAAATGGATCCCATTATTAAATGGAATTCTGCTAATGTTATCTAACCGATAGTTATT  
 AAAGGTGTTATCTTTCTCAGAGTGTAAATGCTTAGGAAGTTACATATTCAATGGCTTATCTCAAAAATGATTA  
 TACCAACTTAATTAGTAGACAAAATCCATTAATAGAACACATGAATCTAAAGAAACTAAATAACACAGTCCTAA  
 TATCTAAGTATCATAAAAGGTGAAATAAAATTAGAACACTTATTTCAGTCATTACTATGACATACAAGAGT  
 ATGACCTCGTCAGAACAGATTGCTACCACTAATTACTTAAAGGAAAGATAATAAGAGCTATAGAAATAAGTGT  
 CAAAGTCTATGCTATATTGAATAAAACTAGGGCTTAAAGAAAAGACAAGATTAACCAACAATGGACAAGATGAAG  
 ACAACTCAGTTATTACGACCATAATCAAAGATGATATACTTCAGCTGTTAAAGATAATCAATCTCATCTAAAGCA  
 GACAAAATCACTACAAAACAAAAGACACAATCAAACACACTCTGAAAGAAATTGATGTGTTCAATGCAACA  
 TCCTCCATCATGGTTAATACATTGGTTAACTTACACAAATAACACATATTAAACACAGTATCGATCAAATG  
 AGTAAAGGAAACCATGGTTACATTGATAGATAATCAAACCTTACTGTTAGTGGATTCAATTATTATTTGAACCAATATGG  
 TGTATAGTTATCATAAGGAACCTAAAGAATTACTGTGACAACCTATAATCAATTCTGACATGGAAAGATATTAG  
 CCTTAGTAGATTAAATGTTGTTAAATTACATGGATTAGTAACCTGCTGAACACATTAAATAAGCTTAGGCTTAA  
 GATGCGGATTCAATAATGTTATCTGACACAACATTCTTATGGAGATTGTACTAAAGCTATTCTACAATGAG  
 GGGTTCTACATAATAAAAGAGGTAGAGGGATTATTATGCTCTAATTAAATAACAGAAGAAGATCAATTCTAG  
 AAAACGATTTATAATAGTATGCTCAACACATCACAGATGCTGTAATAAGCTCAGAAAATCTGCTATCAAGAG  
 TATGTCATACATTATTAGATAAGACAGTGTCCGATAATATAATAATGGCAGATGGATAATTCTATTAGTAAGTTC  
 CTTAAATTAAAGCTTGCAGGTGACAATAACCTTAACAACTGAGTGAACATATTGTTGTCAGAATATTG  
 ACACCCAAATGGTAGATGAAAGACAAGCCATGGATGCTGTTAAAGGTTAACTTACTATAAAACTAAACACTTATCCTCTTGT  
 ACTTACAGAAAGAGATTGATTGTTATCAGGACTACGTTCTATCGTGAGTTCGGTTGCCTAAAAAGTGGATC  
 TTGAAATGATTATAATGATAAAAGCTATATCACCTCCTAAAGGTTAACTTACTATAAAACTAAACACTTATCCTCTTGT  
 CCATCACACATAAAACTATAGAACATGAAAATTAAATTTCAGGAGACTCAGTGTAGGTAGAATGTTGCAATGCAACCGGGAA  
 TTCAGACAGGTTCAAATATTGGCAGAGAAAATGATAGCTGAAAACATTACAAATTCTTCCCTGAAAGCTTACAAG  
 ATATGGTAGCTAGAACTACAAAAAATTAGAACCTGAAAGCAGGAATAAGTAACAAATCAAATCGCTACAATGATA  
 ATTACAACAATTACATTAGTAAGTGTCTATCATCACAGATCTCAGCAAATTCAATCAAGCATTGATATGAAAC  
 TCATGTATTGTTAGTGATGCTGGATGAACTGCATGGTGACAATCTCTATTTCCTGGTTACATTAACTATTCC  
 TCATGTCACAATAATATGCACATATAGGCATGCACCCCCCTATATAGGAGATCATATTGTTAGATCTTAACAATG  
 ATGAAACAAAGTGGATTATAGATATCACATGGTGGCATCGAAGGGTGGTCAAAAACATGGACCATAGAAGCT  
 ATATCACTATTGGATCTAATATCTCAAAGGGAAATTCTCAATTACTGCTTAAATTAGGTGACAATCAATCA  
 AGATATAAGCAAACCAATCAGACTCATGGAAGGTCAAACACTCATGCTCAAGCAGATTATTGCTAGCATTAAATAGCC  
 TTAAATTACTGTATAAAGAGTATGCAGGCATAGGCCACAAATTAAAGGAACCTGAGACTTATATACAGGAGATATG  
 CAATTATGAGTAAACAACTCAACATAACGGTATATTACCCAGCTAGTAAAGAAAGCTTAAAGACTG  
 GTGGATAAACACTACTTGATGATTCAAAGTGAGTCTAGAATCTATAGGTAGTTGACACAAGAATTAGAATATA  
 GAGGTGAAAGTCTATTATGAGTTAAATTAGAAATGTATGGTTATAATCAGATTGCTCTACAATTAA  
 CATGCATTATGTAACAATAAAACTATTTGGACATATTAAAGGTTCTGAAACACTTAAACCTTTTAATCTGA  
 TAATATTGATAACGCATTAACATTGTATATGAATTACCCATGTTATTGGTGGTGGTGAATCCAACTTGT  
 GAAGTTCTATAGAAGAACTCCTGACTTCCTCACAGAGGCTATAGTCACTCTGTTCATACTTAGTTATTACA  
 AACCATGACTAAAGATAAAACTCAAGATCTGTCAGATGATAGATTGAATAAGTTCTTAACATGCATAATCAC  
 TGACAAAAACCTAATGCTGAATTGTAACATTGATGAGAGATCCTCAAGCTTAGGGCTGAGAGACAAGCTAAA  
 TTACTAGCGAAATCAATAGACTGGCAGTTACAGAGGTTGAGTACAGCTCCAAACAAATTCTCCAAAGTG  
 CAACATTATACTACTACAGAGATAGATCTAAATGATATTGAAACACTACATATCCTCATGGCTAAG  
 AGTTGTTATGAAAGTTACCTTTATAAAGCAGAGAAAATAGTAAATCTTATATCAGGTACAAATCTATAACTA  
 ACATACTGGAAAAACTCTGCCATAGACTTAACAGATATTGATAGAGCCACTGAGATGATGAGGAAAACATAACT

TTGCTTATAAGGATACTTCCATTGGATTGTAACAGAGATAAAAGAGAGATATTGAGTATGGAAAACCTAAGTATTAC  
 TGAATTAAGCAAATATGTTAGGGAAAGATCTTGGCTTATCCAATATAGTTGGTACATCACCCAGTATCATGT  
 ATACAATGGACATCAAATATACTACAAGCACTATCTAGTGGCATAATTATAGAGAAATATAATGTTAACAGTTA  
 ACACGTGGTGAGAGAGGACCCACTAAACCAGGGTTGTCATCTACACAAGAGAAAAAAACAATGCCAGTTATAA  
 TAGACAAGTCTAACCAAAAAACAGAGAGATCAAATAGATCTATTAGCAAAATTGGATTGGGTATGCATCTATAG  
 ATAACAAGGATGAATTGAGAAACTCAGCATAGGAACCCTGGGTTACATATGAAAAGGCCAAGAAATTATTT  
 CCACAATATTAAGTGTCAATTATTGCATCGCCTACAGTCAGTAGTAGACCATGTGAATTCCCTGCATCAATACC  
 AGCTTATAGAACAAACAAATTACTACCTTGACACTAGCCCTATTAATCGCATATTAACAGAAAAGTATGGTATGAAG  
 ATATTGACATAGTATTCCAAAAGTATAAGCTTGGCCTAGTTAATGTCAGTAGTAGAACAAATTACTAATGTA  
 TGCCTAACAGAATTATTCTACACCTAACGTTAATGAGATACATTGATGAAACCTCCATATTCACAGGTGATGT  
 TGATATTCAACAAGTAAAACAAGTGATAACAAAACAGCATATGTTTACAGACAAAATAAGTTGACTCAATATG  
 TGGAAATTATTCTAACAGTAAATAAAACACTCAAATCTGGATCTCATGTTAATTCTAATTAAATATTGGCACATAAAATA  
 TCTGACTATTTCTACATACACTACATTAAAGTACTAATTGACATTGGACATTGGATTCTGATTATACAACATTGAA  
 AGATTCTAAAGGTATTTGAAAAAGATTGGGAGAGGGATATAACTGATCATATGTTATTAAATTGAAAGTT  
 TCTTCAATGCTTATAAGACCTATCTCTGTGTTTCTAAAGGTTATGGCAAAGCAAGCTGGAGTGTGATATGAAC  
 ACTTCAGATCTCTATGTGATTGAAATTAAAGACAGTAGTTATTGAAAGTCTATGCTAACGGTATTTAGAAC  
 AAAAGTTATCAAATACATTCTAGCCAAGATGCAAGTTACATAGAGTAAAGGATGTCATAGCTCAAATTATGGT  
 TTCTTAAACGTCTAACGTTAGCAGAATTACAGTTGGCCTGGGTTAACATAGATTATCATCCAACACATATG  
 AAAGCAATATTAACCTATAGATCTGTTAGAATGGGATTGATAATAGATAGAACACATTAAAATAAAC  
 CAAATTCAATGATGAATTTATACTTCTAACATTCTACATTAAATTATAACTCTCAGATAACTCATCTATTAA  
 CTAACATATAAGGATTGCTAACCTGAAATTAGAAAATTACACAAATTATCATCCTACACCAGAAACCTA  
 GAGAATATACTAGCCAATCCGATTAAAAGTAATGACAAAAAGACACTGAATGACTATTGTATAGGTAAAATGTTGA  
 CTCATAATGTTACCATTGTTATCTAACAGGCTTATTAAATCGTCTGCAATGATTAGAACCAATTACAGCAAAC  
 AAGATTGTATAATTATCCCTATGGTGTGATTGATAATTAGATCATTAGGCAATACAGCAAATCCAAC  
 CAACTTACACTACTTCCCACCAAATATCCTAGTCACAATAGCACATCACTTACTGCATGCTCCTGGCA  
 TCATATTAAAGATTCAATTGTTAGCTACAGGTTAACATGCAAGTCTTACAGGTTGAAAATTAGTATAGGTATTTAAAGATCTTA  
 AAATTAAAGATCCAATTGTTAGCTACAGGTTAACATGCAAGTCTTACAGGTTGAAAATTAGTATAGGTATTTAAAGATCTTA  
 CATCCTGACATAAGATATTTACAGAAGTCTGAAAGATTGCAATGATCATAGTTACCTATTGAGTTTAAGGCT  
 GTACAATGGACATATCAACATTGATTATGGTAAAATTGACCATTCTGCTACAGATGCAACCAACAACTCATT  
 GGTCTATTACATATAAGTTGCTGAACCTATCAGTCTTGTGATGCCGAATTGCTGTAACAGTCAAC  
 TGGAGTAAATTATAATAGATGGAGCAAGCATGTAAGAAAGTCAAGTACTGTTCTCAGTTAACATGTTAGT  
 AATAGTAAAATATCATGCTCAAGATGATATTGATTCAAATTAGACAATATAACTATATTAAAACCTATGTATGCT  
 TAGGCAGTAAGTTAAAGGGATGGGAGTTACTTAGTCCTAACATAGGTCTGCAATATATTCCAGTATTAA  
 GTAGTACAAAATGCTAAATTGATACTATCAAGAACAAAATTCTACATGCCTAACAGAAAGCTGATAAGAGTCTAT  
 TGATGCAAATTAAAGTTGATACCCTTCTTGTACCCCTAACAGGAAATTACTGCAATTGCTAA  
 AACTAAAGAGTGTGTTAGTGGAGATATACTCATATTCTACAGTGTAAATTGAGTAAACAGGAAATTACTGCAATT  
 ATAAATCATAAAGCATATGAACATCTTAAATGGTCAATCATGTTAACATTGAGTAAACAGAAACTAAACTATAA  
 CCATTATATGTTAGAATCTACATATCCTTACCTAACAGTGAATTGTTAACACAGCTTGACAACCAATGAAC  
 AACTGATTAAAATCACAGGTAGTCTGTTACAAACTTCTACATATGAATAATGAATAAAGATCTTATAAAACT  
 CCATAGCTATACACTGTATTCAATTAGTTAACATTAAAGGTTACCATGGGCAAATAAGAATT  
 GATAAGTACCAACTAAATTAACTCCCTGGTTAGAGATGGCAGCAATTGAGTATGATAAAAGTTAGATTAC  
 AAAATTGTTGACAATGATGAAGTAGCATGTTAACATTAAACATGCTACTGATAAAATTACATTTAACT  
 GCTTGGCTAAGGCAGTGTACATACAATCAAATTGAATGGCATTGTGTTGTCATGTTATTACAAGTAGT  
 TTGCCCTAATAATAATTGTTAGTAAATTCAATTCTACAAACATGCCAGTACTACAAATGGAGGTTATATGG  
 AAATGATGGAATTAAACACATTGCTCTAACCTAACGTTACTAGATGACAATTGAAATTAAATTCTCCAAAAAA  
 CTAAGTGATTCAACATGACCAATTATGAATCAATTCTGAAATTACTGGATTGATCTTAATCCATAATT  
 AATTAAATATCAACTAGCAAATCAATGTCACAAACACCATTAGTTAATATAAACTTAACAGAACAAAATCTAA  
 GGAGAGATATAAGATAGAAGATGGTACCATTTTAAATAACTTTAGTGAACTAATCCTAAAGTTATCATTAA  
 CTTGGAGGAATAATTAAACCTAACCTAACATTGTTATATGTATTAAACTAAATTACGAGATATTGTTGA  
 CACTTTTCTCGT

**Antigenomic cDNA sequence of RSV 6120/NS12Ltr/ΔNS2 (SEQ ID NO: 8):**

ACGGGAAAAATGCGTACAACAAACTTGCATAAACCAAAAAATGGGCAAATAAGAATTGATAAGTACCACTTAA  
 ATTTAACTCCCTGGTTAGAGATGGCTCTAGCAAAGTCAGTTGAATGATACTCAACAAAGATCAACTCTGTC  
 ATCCAGCAAATACACCCTACACGACAGGAGATAGTATTGATACTCCTAATTATGATGTGCAAGAACACATCA  
 ATAAGTTATGTGGCATGTTATTAAATCACAGAAGATGCTAACATCAAATTCACTGGGTTAACAGGTATGTTATATGCG  
 ATGTCAGGTTAGGAAGAGAACACCATAAAACTCAGAGATGCCGGATATCATGTTAACAGCAAATGGAGT  
 TGTAACACACATCGTCAAGACATTAAATGGAAAAGAAATGAAATTGAAAGTGTAAACATTGGCAAGCTAACACTG  
 AAATTCAAATCAACATTGAGATAGAATCTAGAAAATTCTACAAAAAAATGCTAACAGAAATGGGAGGTTAGCTCCA  
 GAATACAGGCATGACTCTCCTGATTGTTGAGTAAATTATGTATAGCAGCATTAGTAATAACTAAATTAGCAGC  
 AGGGGACAGATCTGGTCTACAGCCGTGATTAGGAGAGCTAACATGTCCTAAAAATGAAATGAAACGTACAAAG  
 GCTTACTACCCAAGGACATAGCCAACAGCTTATGAAGTGTAAACATTACGAGATATTGTTGA  
 CACTTTTCTCGT

CATTTGGTATAGCACAATCTTCTACCAGAGGTGGCAGTAGAGTTGAAGGGATTTGCAGGATTGTTATGAATGC  
 CTATGGTGCAGGGCAAGTGTACGGTGGGAGCTTAGCAAAATCAGTAAAAAATTATGTTAGGACATGCTA  
 GTGTGCAAGCAGAAATGGAACAAGTTGAGGTTATGAATATGCCAAAATTGGGTGGTGAAGCAGGATTCTAC  
 CATATATTGAACAACCCAAAAGCATTATTATCTTGACTCAATTCTCACTTCTCCAGTGTAGTATTAGGCAA  
 TGCTGCTGGCCTAGGCATAATGGGAGAGTACAGAGGTACACCGAGGAATCAAGATCTATGATGCAGCAAAGGCAT  
 ATGCTGAACAACCTCAAAGAAAATGGTGTGATTAACACTACAGTGTACTAGACTTGACAGCAGAAGAACTAGAGGCTATC  
 AACATCAGCTTAATCCAAAAGATAATGATGTAGAGCTTGAGTTAATAAAAAATGGGCAAATAATCATCATGGA  
 AAAGTTGCTCCTGAATTCCATGGAGAAGATGCAAACAACAGGGCTACTAAATTCTAGAATCAATAAAGGGCAAAT  
 TCACATCACCCAAAGATCCAAGAAAAAGATAGTATCATCTGTCAACTCAATAGATATAGAAGTAACCAAAGAA  
 AGCCCTATAACATCAAATTCAACTATTATCAACCCAAACAAATGAGACAGATGATACTGCAGGGAAACAGCCAAATTA  
 TCAAAGAAAACCTCTAGTAAGTTCAAAGAAGACCCACACCAAGTGTATAATCCCTTCTAAACTATACAAAGAAA  
 CCATAGAAACATTGATAACAATGAAGAAGAATCCAGCTATTCACTACAGAAGAAATAATGATCAGACAAACGATAAT  
 ATAACAGCAAGATTAGATAGGATTGATGAAAAATTAGTGAATACTAGGAATGCTTCACACATTAGTAGTGGCAAG  
 TGCAGGACCTACATCTGCTGGGATGGTATAAGAGATGCCATGGTGGTTAAGAGAAGAAATGATAGAAAAATCA  
 GAACTGAAGCATTATGACAGATTAGCAGACTGGCAAGACTCAGGAATGAGGAAAGTGAAGATGGCA  
 AAAGACACATCAGATGAAGTGTCTCAATCCAACATCAGAGAAATTGAACAAACCTATTGGAGGGAAATGATAGTGA  
 CAATGATCTATCACTGAAGATTCTGATTAGTACCAATCTCACATCAACACACAATACCAACAGAACCAACA  
 AACTAACCAACCCATATCCAACCAAACATCCATCCGCCAATCAGCCAAACAGCCAACAAAACAACCAGCCAATCC  
 AAAACTAACCAACCGGAAAAATCTATAATATAGTTACAAAAAAAGGAAAGGGTGGGCAAATATGGAAACATACGT  
 GAACAAAGCTCACGAAGGCTCCACATACACAGCTGCTGTTCAATACAATGTCTTAGAAAAAGACGATGACCTG  
 CACTTACAATATGGGTGCCATGTTCAATCATCTATGCCAGCAGATTACTTATAAAAGAACTAGCTAATGTCAAC  
 ATACTAGTGAACAAATATCCACACCAAGGGACCTCACTAACAGTCAAGACTCATGATAAAACTCAAGAAGTGCAGTG  
 ACAAAATGCCAGCAAATTACATGCGCTAATGTGCTTGGATGAAAGAAGCAAACAGTCAATGATGTAACCA  
 CACCTGTGAAATCAAGGCATGTTAGCTAACATGCCCTAAATCAAAATATGTTGACTACAGTTAAAGATCTCACT  
 ATGAAGACACTCAACCCATACATGATATTATTGCTTATGAAATTGAAACATAGTAAACATCAAACAAAGTCA  
 AATACCAACATACCTAACAGATCCATCAGTGTCAAAGAAATAAGATCTGAACACACTGAAACATACCA  
 TCAAAATGCTATCACAAATGCCCTACTCAGGATTACTATTAGTCATCACAGTCACTGACAACAA  
 GGAGCATTCAAATACATAAGCCACAAAGTCATTGATAGTCTGGAGCTTACCTAGAAAAAGAAAGTATA  
 TTATGTTACCACAAATTGGAAGCACACAGCTACACGATTGCAATCAAACCCATGGAGATTAACTTCTCT  
 CATCAGTGTGTTAATTCAACAAACTTCTACCTACATTCTCACTTCACCACAAATCACAAACACTCTGTGG  
 CAACCAATCAAACAAACTTATGAAAGTCCCAGATCATCCAAGTCATTGTTATCAGATCTAGTACTCAAATAAG  
 TTAATAAAAATACACATGGGCAAATAATCATTGGAGGAATCCAACAAATCACATCTGTTAACATAGACA  
 AGTCCACACACCACAGAACATCAACCAATGGAAATACATCCATAACAATAGAATTCTCAAGCAAATTCTGG  
 CTTTACACTAATACACATGATCACAAACATACTCTGCTAATCATCATTCTCATGATTGCAATACTAAACA  
 AACTTGTGAATATAACGTATTCCATAACAAACCTTGTAGTTACCAAGAGCTCGAGTTAACACTGATAAAAGTAGT  
 TAATTAAAAATAGTCATAACAAATGAACTAGGATATCAAGACTAACATAACATTGGGCAAATGCAAACATGT  
 AAACAAGGACCAACGCACCGCTAACAGACATTAGAAAGGACCTGGACACTCTCAATCATTATTATCATCGT  
 GCTTATATAAGTTAAATCTTAAATCTGTAGCACAAATCACATTCTGCAATGATAATCTCAACTTCAC  
 ATAATTGAGCCATCATATTCAAGCCTCGGCAAACCACAAAGTCACACCAACAATGCAATCATACAAGATG  
 AAGCCAGATCAAGAACACAACCCAAACATACTCACCAGAACATCCTCAGCTTGAATCAGTCCCTCAATCC  
 AAATTACATCAAACATCACCACCAACTAGCTCAACACACCAGCAAGGCCACCACAAAACAAGC  
 AAGACCAAAACACAACAAACTCAAACACACCCAGCAAGGCCACCACAAAACAAGC  
 CAAACCCAAATAATGATTTCACTTGAAGTGTCAACTTGTACCTGCAGCATATGCAACAAATCCA  
 GGGCTATGCAAAGAATACCAAACAAAACCAGGAAAGAAAGCCTACCAAGGCCACAAAAACCA  
 AAGACAACCAAAAGATCCAAACCTCAAACCAACTAAATCAAAGGAAGTACCCACCACCAAGGCCACAGAAGGCC  
 AACCATCAACACCACCAAACAAACATCATAACTACACTCACCTCCAACACCACAGGAAATCC  
 GTCAAATGGAAACCTCCACTCAACTCCTCGAAGGCAATCCAAGCCCTCTCAAGTCTCTACA  
 CCATCACAACCTTCATCTCCACCCAAACACACCAGCCAGTAGTTACTAAAAACATATT  
 CAACTTAAACAGAAATCAAACAAACTCTGGGCAAATAACAAATGGAGTTGCTAAT  
 ACAATCCTCACTGCAGTCACATTGTTCTGCTTCTGGTCAAACATCAACTGAAGAATT  
 TGCAGTTAGCAAAGGCTATCTTAGTGCTGTGAGAACTGGTGGTATAACAGTGT  
 TATAACTATAGAATTAGTAATAAGTAAAGTAAACAGATGCTAAGGTTAA  
 TCAAGAAAAATAAGTGTAAATGGAACAGATGCTAAGGTTAAACAGAATT  
 AGATAAGTAAACAGGAAATTAGTAAATGATAAAAGAATTAGATAAAAT  
 TAAAGTGTAAAGGTTAT  
 GTAAACAGAATTGCAAGTGTGCTCATGCAAAGCACACAAGCAACAAACAA  
 ATCGAGCCAGAAGAGAAACTACCAAGGTTAT  
 GAATTATAACACTCAAACAAATGCCAAAAACCAATGTAACATTAAG  
 CAAGAAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGG  
 TGTAGGTGTTGGATCTGCAATGCCAGTGGCGTTGCTGTATCTAAG  
 GTCTGCACCTAGAAGGGAAAGTGAACAA  
 ATCAAAAGTGTCTACTATCCACAAACAGGCTGTAGTCAGCTTAT  
 CAAATGGAGTTAGTGTGTTAACCAGCAAAGT  
 GTTACCTGCTAAACATGTTACCTATTGTAACAGCAAGCTACTCT  
 ATCATGTCCATAATAAAAGAGG  
 AAGTCTTAGCATAATGTAGTACAATTACCACTATATGGTGT  
 TATAGATAACCCCTGTTGAAACTACACACACATCCC  
 CTATGTACAACCAACACAAAAGAAGGGTCCAACATCTGTT  
 AACAGAAGCTGAAACATGTAAGTTCAATCAAATCGAGT  
 ATTGAGTGTGACACAATGAACAA  
 GTTTAACATTACCAAGTGAAGTAAATCTGCAATGTTGACATATT  
 CAACCCCAAATATGATTGTTAAATTGACT

TCAAAAACAGATGTAAGCAGCTCCGTATCACATCTAGGAGCCATTGTCATGCTATGGCAAAACTAAATGTAC  
 AGCATCCAATAAAATCGTGGATCATAAAGACATTCTAACGGGTGCGATTGTCATCAAATAAAGGGTGGACA  
 CTGTGTCTGTAGGTAAACACATTATATTGTAATAAGCAAGAAGGTAAAAGTCTCTATGTAAGGTGAACCAATA  
 ATAAATTCTATGACCCATTAGTATTCCCCCTGTGATGAATTGATGCATCAATATCTCAAGTCACGAGAAGATTAA  
 CCAGAGCCTAGCATTATCGTAATCCGATGAATTATTACATAATGTAATGCTGGTAAATCCACCAAAATATCA  
 TGATAACTACTATAATTAGTATTGTTATGCTTACATTAAATTGCTGGTACTGCTCTTACTGTAAG  
 GCCAGAAGCACACCAGTCACACTAAGCAAAGATCAACTGAGTGGTATAAATAATATTGCAATTAGTAACTAAATAA  
 AATAGCACCTAATCATGTTCTACAATGGTTACTATCTGCTCATAGACAACCCATCTGTCATTGGATTCTTAA  
 ATCTGAACCTCATCGAAACTCTCATCTATAAACCCTCCTACACTATTAAAGTAGATTCTAGTTATAGTTAT  
 ATAAAACACAATTGCATGCCAGATTAACCTACCATCTGTAAGGAACTGGGCAAATATGTCACGAAGGAATC  
 CTTGCAAATTGAAATTGAGGTCAATTGCTTAAATGGTAAGAGGTGTCATTAGTCATAATTATTTGAATGGCA  
 CCCCAGTGCAGTGCTTAAGACAAAACCTTATGTTAAACAGAAACTTAAGTCTATGGATAAAAGTATAGATAACCTT  
 ATCAGAAATAAGTGGAGCTGCAGAGTGGACAGAACAGAAGAGTATGCTCTGGTAGTTGGAGTGCTAGAGAGTT  
 ATATAGGATCAATAAACAAATATAACTAAACAAATCAGCATGTTGCCATGAGCAAACCTCCTCACTGAACCTAATAGT  
 GATGATATCAGGAACTGAGGGACAATGAAGAGCTAAATTACCCAGATAAGAGTGTACAATACTGTCATATCATA  
 TATTGAAAGCAACAGGAAAACAATAACAAACTATCCATCTGTTAAAAGATTGCCAGACAGTATTGAAGAAA  
 CCATCAAAACACATTGGATATCCATAAGAGCATAACCATCAACAAACCCAAAAGAATCAACTGTTAGTGAACAA  
 GACCATGCCAAAATAATGATACTACCTGACAAATATCCTGTTAGTATAACTCCATACTAATAACAAAGTAGATGTA  
 GAGTTACTATGTATAATCAAAAGAACACACTATATTCAATCAAAACACCAATAACCATATGTCACCGAAT  
 CAAACATTCAATGAAATCCATTGGACCTCTCAAGAATTGATGACACAATTCAAAATTCTACAAACATCTAGGTAT  
 TATTGAGGATATATACAATAATATTAGTGTATAACACTCAATTCTACACCACATCGTTACATTATT  
 AATTCAAACAATTCAAGTTGGACAAAATGGATCCCATTATTAAATGGAAATTCTGCTAATGTTATCTAACCGAT  
 AGTTATTAAAAGGTGTTATCTCTTCAGAGTGTAAATGCTTGTAGGAAAGTTACATATTCAATGGCCTTATCTCAA  
 AAATGATTATACCAACTAATTAGTAGACAAAATCCATTAAATAGAACACATGAATCTAAAGAAACTAAATATAACAC  
 AGTCCTTAATATCTAAGTATCATAAGGTGAAATAAAATTAGAACACCTACTTATTCAGTCATTACTTATGACA  
 TACAAGAGTATGACCTCGTCAGAACAGATTGCTACCACTAATTACTTAAAGATAATAAGAAGAGCTATAGAAAT  
 AAGTGTCAAAGTCTATGCTATATTGAATAAAACTAGGGCTTAAAGAAAAGGACAAGATTAACTCAACAAATGGAC  
 AAGATGAAGACAACCTAGTTATTACGACCATATCAAAGATGATATACTTTCAGCTGTAAAGATAATCAATCTCAT  
 CTTAAAGCAGACAAAATCACTCTACAAAACAAAAGACACAATCAAAACACACTCTGAAAGAAATTGATGTGTC  
 AATGCAACATCCTCCATCATGGTTAACACATTGGTTACTATGATAGATAATCAAACACTTAAACACATATTAACACAGTATC  
 GATCAAATGAGGTTAAACCATGGTTACATTGATAGATAATCAAACACTTAAACACATATTAACACAGTATC  
 CAATATGGTTAGTTATCATAAGGAACCTCAAAGAAATTACTGTGACACACCTATAATCAATTCTGACATGGAA  
 AGATATTAGCCTAGTAGATTAAATGTTGTTAAATTACATGGATTAGTAGTAACTGCTTGACACACATTAAATAAGCT  
 TAGGCTTAAGATGCGGATTCAATAATGTTATCTGACACAACATTCCCTTATGGAGATTGTATACTAAAGCTATT  
 CACAATGAGGGTCTACATAATAAAAGAGGTAGAGGGATTATTATGTCCTAATTAAATATAACAGAAGAAGA  
 TCAATTCAAAACGATTTATAATAGTATGCTCAACACATCACAGATGCTGTAATAAAAGCTCAGAAAATCTGC  
 TATCAAGAGTATGTCATACATTAGATAAGACAGTGTCCGATAATATAATAATGGCAGATGGATAATTCTATT  
 AGTAAGTCCCTAAATTAAATTAAGCTTGAGGTGACAATAACCTTAACAATCTGAGTGAACATATTGTTGTCAG  
 AATATTGGACACCAATGGTAGATGAAAGACAAGCCATGGATGCTGTTAAAATTAAATTGCAATGAGACCAAATT  
 ACTTGTAAAGCAGTCTGAGTATGTTAACCTTAAGATGGTTAACTTACTATAAAACTAAACACTTATCCTTC  
 TTTGTTGGAACCTACAGAAAGAGATTGATTGTATCAGGACTACGTTCTATCGTGAGTTCGGTTGCCTAAAA  
 AAGTGGATCTGAAATGATTAAATGATAAGCTATACACCTCCTAAATTGATATGGACTAGTTCCCTAGA  
 AATTACATGCCATCACACATAAAACTATAGAACATGAAAAATTAAATTCCGAGAGTGTAAATCAAGAAG  
 AGTATTAGAGTATTATTAAGAGATAACAAATTCAATGAATGTGATTATACAACACTGTGAGTTAATCAAAGTTATC  
 TCAACACCTAATCATGTGGTATCATTGACAGGCAAAGAGAAACTCAGTGTAGGTAGAATGTTGCAATGCAA  
 CCGGAATGTTCAGACAGGTTCAAATATTGGCAGAGAAAATGATAGCTGAAACACATTACAAATTCTTCTGAAAG  
 TCTTACAAGATATGGTAGACTAGAAACTACAAAAAATTAGAACACTGAAAGCAGGAATAAGTAACAAATCAAATCGCT  
 ACAATGATAATTACAACATTACATTAGTAAGTGTCTATCATCACAGATCTCAGCAAATTCAACAGCATTGCA  
 TATGAAACGTATGTATTGAGTGTGCTGGATGAACTGCTGTTACAATCTTATTTCTGGTTACATT  
 AACTATTCTCATGTCACAATAATATGCACATATAGGCATGCCACCCCTATATAGGAGATCATATTGAGTCTTA  
 ACAATGTAGATGAACAAAGTGGATTATAGATATCACATGGTGGCATCGAAGGGTGGTCAAAAACATGGACC  
 ATAGAAGCTATATCACTATTGGATCTAATATCTCAAAGGAAATTCTCAATTACTGCTTAAATTAGGTGACAA  
 TCAATCAATAGATATAAGCAAACCAATCAGACTCATGGAAGGTCAAACACTCATGCTCAAGCAGATTATTGCTAGCAT  
 TAAATAGCCTTAAATTACTGTATAAAGAGTATGCAGGCATAGGCCACAAATTAAAGGAACGTGAGACTTATATCA  
 CGAGATATGCAATTATGAGTAAACAACTCAACATAACGGTGTATTACCCAGCTAGTATAAGAAAGTCCTAAG  
 AGTGGGACCGTGGATAAACACTTACCTGATGATTCAAAGTGGAGTCTAGAATCTATAGGTAGTTGACACAGAAT  
 TAGAATATAGAGGTGAAAGTCTATTGAGTTAAATTAGAACATTAAAGGTCTGAAACACTTAAACACCTTT  
 TAATCTGATAATTGATACAGCATTAAACATTGTATATGAATTACCCATTGTTATTGGTGGTGGTCAACCT  
 TGTTATATCGAAGTTCTATAGAAGAACTCCTGACTCCTCACAGAGGCTATAGTCACCTGTGTTCAACTTAGT  
 TATTATACAAACCATGACTAAAGATAAAACTCAAGATCTGTCAGATGATAGATTGAATAAGTCTTAAACATGCA  
 AATCACGTTGACAAAACCTAATGCTGAATTGTAACATTGATGAGAGATCCTCAAGCTTGTAGGCTGAGAGAC  
 AAGCTAAAATTACTAGCGAAATCAATAGACTGGCAGTTGAGTACAGAGGTTGAGTACAGCTCCAAACAAATTCTCC

AAAAGTGCACAACATTATACTACTACAGAGATAGCTAAATGATATTGCAAAATATAGAACCTACATATCCTCA  
 TGGGCTAAGAGTTGTTATGAAAGTTACCCCTTATAAAGCAGAGAAAATAGTAAATCTTATATCAGGTACAAAAT  
 CTATAACTAACATACTGGAAAAACTCTGCCATAGACTTAACAGATATTGATAGAGCCACTGAGATGATGAGGAAA  
 AACATAACTTGCCTATAAGGAACTTCCATTGGATTGTAACAGAGATAAAAGAGAGATATTGAGTATGGAAAACCT  
 AAGTATTACTGAATTAAGCAAATATGTTAGGGAAAGATCTGGCTTATCCAATATAGTTGGTGTACATCACCA  
 GTATCATGTATACAATGGACATCAAATATACTACAAGCACTATCTAGTGGCATAATTATAGAGAAATATAATGTT  
 AACAGTTAACACGTGGTGAGAGAGGACCCACTAAACCATGGGTTGGTCATCTACACAAGAGAAAAAACAAATGCC  
 AGTTATAATAGACAAGTCTAACCAAAAAACAGAGAGATCAAATAGATCTATTAGCAAAATTGGATTGGGTGTATG  
 CATCTATAGATAACAAGGATGAATTCACTGGAAAGAACTCAGCATAAGAACCCCTGGGTTAACATATGAAAAGGCCAAG  
 AAATTATTCCACAATATTAAGTGTCAATTATTGCATCGCCTTACAGTCAGTAGTAGACCAGTGAATTCCCTGC  
 ATCAATACCAGCTTATAGAACAAATTACTTACACTTGACACTAGCCTTAAATCGCATATTAAACAGAAAAGTATG  
 GTGATGAAGATATTGACATAGTATTCCAAAAGTGTATAAGCTTGGCCTAGTTAATGTCAGTAGTAGAACAAATT  
 ACTAATGTATGTCTAACAGAATTATTCTACACCTAACGTTAATGAGATACATTGATGAAACCTCCCATTTCAC  
 AGGTGATGTTGATATTCAAAGTAAAACAAGTGTACAAAAACAGCATATGTTTACCAAGACAAAATAAGTTGA  
 CTCAATATGTGGAATTATTCTTAAGTAATAAAACACTCAAATCTGGATCTCATGTTAATTCTAATTAAATATTGGCA  
 CATAAAATATCTGACTATTTCATAATACTTACATTAAAGTACTAATTAGCTGGACATTGGATTCTGATTATA  
 ACTTATGAAAGATTCTAAAGGTATTTGAAAAAGATTGGGAGAGGGATATAACTGATCATATGTTATTAAATT  
 TGAAAGTTTCTCAATGCTTATAAGACCTATCTGTGTTTCATAAGGTTATGGCAAAGCAAAGCTGGAGTGT  
 GATATGAACACTTCAGATCTCTATGTGTATTGGAATTAAAGACAGTAGTTATTGGAAGTCTATGTCTAAGGTATT  
 TTAGAACAAAAAGTTATCAAATACATTCTAGCCAAGATGCAAGTTACATAGAGTAAAAGGATGTCATAGCTTCA  
 AATTATGGTTCTAAACGTCTTAAACGTTAATGTAGCAGAATTCACAGTTGGCCTTGGGTTGTTAACATAGATTATC  
 ACACATATGAAAGCAATATTAACATTATAGATCTGTAGAATGGGATTGATAAATAGATAGAACACATTAA  
 AAATAAACACAAATTCAATGATGAAATTAACTTACTTCTAATCTCTTACATTAAATTAAACTCTCAGATAATACT  
 ATCTATTAAACTAACATATAAGGATTGCTAATTCTGAATTAGAAAATAATTACAACAAATTATATCATCCTACACCA  
 GAAACCCTAGAGAATATACTAGCCAATCCGATTAAGTAATGACAAAAAGACACTGAATGACTATTGTATAGGTA  
 AAATGTTGACTCAATAATGTTACCATGTTATCTAATAAGAACGCTTAAATCGTCTGCAATGATTAGAACCAATT  
 ACAGCAAACAAGATTGTATAATTATTCCCTATGGTGTGATTGATAGAATTATAGATCATTAGGCAATACAGCC  
 AAATCCAACCAACTTACACTACTTCCACCAAATATCCTAGTGCACAATAGCACATCACTTACTGCATGCT  
 TCCTTGGCATCATATTAAATAGATTCAATTGTATTAGTTCTACAGGTTGAAAATTAGTATAGGTATTTAA  
 AAGATCTAAAATAAAGATCCAATTGTATAGCATTCTAGGTGAAGGAGCAGGGATTATTATTGCGTACAGTA  
 GTGGAACCTCCTGACATAAGATATATTACAGAAGTCTGAAAGATTGCAATGATCATAGTTACCTATTGAGTT  
 TTTAAGGCTGTACAATGGACATATCAACATTGATTATGGTAAAATTGACCATTCTGCTACAGATGCAACCAACA  
 ACATTCTGGCTTATTACATAAAAGTTGCTGAACCTATCAGTCTTTGTGATGCCGAATTGTCTGTA  
 ACAGTCAACTGGAGTAAAATTATAAGGAGCAAGCATGTAAGAAAGTCAAGTACTGTTCTCAGTTAATA  
 ATGTATGTTAATAGTAAAATATCATGCTCAAGATGATATTGATTCAAAATTAGACAATATAACTATATTAAAAACT  
 ATGTATGCTTAGGCAGTAAGTAAAGGGATCGGAGGTTACTTAGTCCTACAATAGGCCTGCGAATATTC  
 GTATTAAATGTAGTACAAATTGATACTATCAAGAACCAAAATTCTCATGCTTAAGAAAGCTGATAAA  
 AGAGTCTATTGATGCAAATATTAAAAGTTGATACCCCTTGTACCCCTATAACAAAAAAGGAATTAAACT  
 CATTGTCAAACAAAGAGTGTGTTAGTGGAGATATACTATCATATTCTATAGCTGGACGTAATGAAGTTT  
 AATAAAACTTATAATCATAAGCATATGAACATCTAAATGTTCAATCATGTTAAATTCAAGATCAACAGAACT  
 AACTATAACCATTATATGGTAGAATCTACATATCCTAACGTTAAGTGAATTGTTAAACAGCTGACAACCAATG  
 AACTAAAAAAACTGATTAAACATCACAGGTAGTCTGTATACAAACTTCTACATAATGAATAATGAATAAAGATCTTAA  
 TAAAAATTCCCTAGCTATACACTGTTATTCAATTAGTTATAAAATTAAAGTGTACCATGGGGCAA  
 TAAGAATTGATAAGTACCACTTAAACTCCCTGGTAGAGATGGCAGCAATTGAGTATGATAAA  
 TTGAGATTACAAAATTGTTGACAATGATGAAGTAGCATTGTTAAAATAACATGCTACTGATAAAATTACAT  
 TTAACAAATGCTTGGCTAAGGCAGTGATACATACAATTGAATGGCATTGTTGTGCATGTTATTACAAG  
 TAGTGTATTGCGCTAATAATAATTGTAGTAAAATCCAATTTCACAACATGCCAGTACTACAAATGGAGGTT  
 ATATATGGGAAATGATGGAATTAAACACATTGCTCTCAACCTAATGGTCTACTAGATGACAATTGTGAAATTAA  
 TCCAAAAAAACTAAGTGATTCAACATGACCAATTATGAATCAATTCTGAATTACTGTTGATCTTAATCC  
 ATAAATTATAATTAAACTAGCAAATCAATGTCACTAACACCATTGTTAATATAAACTTAACAGAAGACAA  
 AAATCTTAAGGAGAGATATAAGATAGAAGATGGTACCAATTGTTAAACTTTAGTGAACTAATCCTAAAGTT  
 CATTAAATCTGGAGGAATAATTAAACCTAATCTAATTGTTATATGTGTATTAAACTAAATTACGAGATATT  
 AGTTTGACACTTTCTCGT

## EXAMPLES

In summary, the materials, information, and methods described in this disclosure provide an array of attenuated strains with graded attenuation phenotypes, and provide guidance in selecting suitable 5 vaccine candidate strains based on clinical benchmarks. The following examples are provided by way of illustration, not limitation.

### Example 1

This example illustrates design, construction, and recovery of recombinant RSV 6120/NS12FM2/GFP and 6120/NS12FM2.

5 The RSV antigenome that was used for constructing 6120/NS12FM2/GFP was the “6120” derivative of the unmodified WT RSV strain A2 antigenomic cDNA called D46 (or D53). D46/D53 is the basis for the present reverse genetics system (Collins, et al. 1995. Proc Natl Acad Sci USA 92:11563-11567), and its complete sequence is shown in US patent 6,790,449 and in GenBank KT992094, with a single difference at position 1938 (in the N gene ORF) compared to the constructs in the present 10 invention. Specifically, the nucleotide assignment at position 1938 in US patent 6,790,449 and in GenBank KT992094 is A, but in the sequences provided herein it is G. This difference does not change amino acid coding and is understood to be inconsequential. The 6120 derivative contained a 112-nucleotide deletion of the downstream non-translated region of the SH gene together with 5 nucleotide 15 substitutions that involve the last three codons and stop codon of the SH ORF and do not change amino acid coding (Bukreyev, et al. 2001. J Virol 75:12128-12140). In addition, the antigenome cDNA had previously been modified to contain a gene encoding enhanced green fluorescent protein (GFP) inserted between the RSV P and M genes as the third gene (Munir et al 2008 J Virol 82:8780-8796). Insertion of a GFP gene in the first gene position was previously shown to have little or no effect on RSV replication or pathogenesis in cell lines and in an *in vitro* human airway epithelium (HAE) culture (Zhang et al 2002 20 J Virol 76:5654-5666), and the same appeared to be the case for GFP inserted between the P and M genes (Munir et al 2008 J Virol 82:8780-8796). The purpose of expressing GFP from the viral genome was to facilitate monitoring infection in initial experiments, because it allows visualization of infections in live cells without interfering with the infection. GFP is often used in this fashion in initial experiments. Note that the GFP gene was not included in the gene position numbering.

25 The top part of FIG. 1 (above the “RSV genome” diagram) illustrates the deletion of the NS1 and NS2 ORFs along with most of their flanking gene sequences from their native positions 1 and 2 in the genome. This deletion has the result of fusing the upstream nontranslated region of the NS1 gene to the N gene ORF. The bottom part of the FIG. 1 (below the “RSV genome” diagram) illustrates the creation 30 of a *Kpn*I site in the intergenic region between the F and M2 genes and the insertion of an NS1/NS2 gene cassette at this site. In 6120/NS12FM2/GFP, the NS1 and NS2 genes were shifted by recombinant DNA methods from their native positions 1 and 2 in the RSV antigenomic cDNA to positions 7 and 8. Note that the GFP gene was not included in the gene position numbering. The shifts are shown in FIG. 1. The recombinant RSV 6120/NS12FM2/GFP virus was recovered by reverse genetics.

35 For a final vaccine product, GFP preferably would not be present. Therefore, site-directed mutagenesis was used to remove the GFP gene from the RSV 6120/NS12FM2/GFP cDNA, creating RSV 6120/NS12FM2. This construct otherwise is identical to that shown in FIG. 1. RSV 6120/NS12FM2 was recovered by reverse genetics and was found to replicate similarly to RSV 6120/NS12FM2/GFP in Vero cells.

With regard to nomenclature, note that of necessity there is some flexibility in usage. For example, 6120/NS12FM2/ΔNS2 also can be referred to as 6120\_NS12FM2\_ΔNS2 and to 6120\_NS12FM2\_DNS2 (reflecting that some symbols can be altered *in silico*), or 6120/NS12FM2/ΔNS2, or 6120/NS12FM2/ΔNS2, or 6120NS12FM2/ΔNS2, etc. As another example, 5 RSV 6120/NS12FM2 is equivalent to 6120/NS12FM2 (some descriptors are not essential to the meaning). As another example, various names can be abbreviated for simplicity, as will be noted in the text; for example, 6120/NS12FM2 can be abbreviated as F-M2.

### Example 2

10 This example illustrates design and construction of rRSV 6120/NS12Ltr/GFP and 6120/NS12Ltr. The RSV antigenome that was used for constructing 6120/NS12Ltr/GFP was the “6120” derivative of the WT RSV antigenomic cDNA, which also contained the GFP gene between the viral M and P genes, as described in Example 1.

15 In RSV 6120/NS12Ltr/GFP, the NS1 and NS2 genes were shifted by recombinant DNA methods from their native positions 1 and 2 in the antigenomic cDNA to positions 9 and 10. Note that the GFP gene is not included in gene position numbering. The top part of the FIG. 2 (above the “RSV genome” diagram) illustrates the deletion of the NS1 and NS2 ORFs as in FIG. 1. The bottom part of FIG. 2 (below the “RSV genome” diagram) illustrates the creation of a *Kpn*I site in the trailer region shortly after the L gene, and the insertion of an NS1/NS2 gene cassette at this site. The RSV 6120/NS12Ltr/GFP 20 virus was recovered by reverse genetics.

In addition, a subsequent version called RSV 6120/NS12Ltr was constructed, in which the GFP gene was deleted by site-directed mutagenesis. This construct otherwise is identical to that shown in FIG. 2.

### Example 3

25 This example describes the replication characteristics of the recombinant RSV 6120/NS12FM2/GFP.

The kinetics and yield of multi-cycle replication of recombinant RSV 6120/NS12FM2/GFP (F-M2) virus was compared to that of wt RSV/GFP (wt RSV) and RSV ΔNS1/ΔNS2/GFP (delNS1\_NS2) in 30 African green monkey Vero cells, which are unable to produce type I interferons in response to virus infection. Note that the wt RSV and delNS1\_NS2 viruses also are in the 6120 backbone and contain the GFP gene between viral genes P and M. Thus, the F-M2 virus and the control viruses are based on the same viral backbone and can be compared directly.

35 Two independent cultures (01 and 02) were evaluated per virus, using virus stocks that were prepared in Vero cells and infected at an MOI of 0.01. Following infection, cell supernatant samples were taken daily and subsequently evaluated in parallel by plaque titration in Vero cells. These results showed that the F-M2 virus replicated as efficiently as wt RSV in Vero cells, which is the substrate for vaccine virus manufacture, whereas delNS1\_NS2 virus was restricted. See FIG. 3. Thus, the F-M2 virus

retains the capacity for efficient vaccine manufacture. This result was not predictable because deletion of NS1 or NS2 has been shown to substantially reduce the efficiency of RSV replication in cell culture, including Vero cells used in vaccine manufacture, because deletion of either or both of these viral proteins results in increased apoptosis resulting in deterioration of the cell monolayer (Bitko et al 2007 J

5 Virol 81:1786-1795). This is evidenced in FIG. 3 by the substantially decreased replication of the delNS1\_NS2 mutant. Further, attempts to produce clinical trial material with a  $\Delta$ NS1 mutant of RSV were unsuccessful because of insufficient titer. The ability of the F-M2 virus to replicate with an efficiency indistinguishable from that of wt RSV indicates that the reduced levels of expression of NS1 and NS2 were sufficient to maintain inhibition of apoptosis sufficient for efficient viral replication.

10 A similar comparison of virus replication was performed in parallel in human airway A549 cells, which are competent for interferon responses to viral infection. Infections were performed with the same Vero-grown virus as in FIG. 3, infected at an MOI of 0.01, with virus replication quantified by plaque assay on Vero cells. These results showed that the F-M2 virus replicated less efficiently than wt RSV, but more efficiently than the delNS1\_NS2 virus. See FIG. 4. Growth efficiency in A549 cells by viruses 15 with mutation/deletion in the NS1 and NS2 accessory proteins is a marker for attenuation *in vivo*. A similar  $\Delta$ NS1 $\Delta$ NS2 virus has been shown to be over-attenuated *in vivo* (Jin et al 203 Vaccine 21:3647-3652). The intermediate level of restriction of the F-M2 virus indicates that this gene shift is a useful attenuating mutation in a vaccine virus, either alone or combined with another attenuating mutation.

20

#### Example 4

This example describes the replication characteristics of the recombinant RSV 6120/NS12Ltr/GFP.

The RSV 6120/NS12Ltr/GFP (L-tr) virus was compared to wt RSV/GFP (wt RSV) and RSV  $\Delta$ NS1/ $\Delta$ NS2GFP (delNS1\_NS2) for multi-cycle replication in Vero cells, following the experimental 25 design in Example 3. These results showed that the L-tr virus replicated as efficiently as wt RSV in Vero cells, and thus retains the capacity for efficient vaccine manufacture. See FIG. 5.

A similar comparison of virus replication was done in parallel in human airway A549 cells. These results showed that the L-tr virus replicated less efficiently than wt RSV, but more efficiently than the delNS1\_NS2 virus. See FIG. 6. Furthermore, the L-tr virus replicated less efficiently than the F-M2 30 virus (see FIG. 4), consistent with the interpretation that moving the NS1 and NS2 genes to increasingly promoter-distal positions increased the level of restriction. This gene shift provided a more attenuated alternative to the F-M2 virus, and is a useful vaccine virus as-is (preferably with the GFP gene deleted) or further modified by the addition of another attenuating mutation.

35

#### Example 5

This example describes the deletion of the NS2 gene from RSV 6120/ NS12M2F/GFP and RSV 6120/NS12FM2

To exemplify how gene-shift of NS1 and/or NS2 could be combined with another attenuating

mutation, the NS2 gene was deleted from RSV 6120/NS12FM2/GFP and RSV 6120/NS12FM2, resulting in RSV 6120/NS12FM2/ΔNS2/GFP and RSV 6120/NS12FM2/ΔNS2, respectively. The creation of RSV 6120/NS12FM2/ΔNS2/GFP is illustrated in FIG. 7. RSV 6120/NS12FM2/GFP (top), identical to that in FIG. 1, was modified by site-directed mutagenesis to delete the region from the first nucleotide of the GS 5 signal of the NS2 gene to the first nucleotide of the M2-2 gene, inclusive. This deleted the complete NS2 gene as well as the long NS2-M2 intergenic region in 6120/NS12FM2/GFP. Deletion of the NS2 gene on its own has previously been shown to provide a modest amount of attenuation (Whitehead et al 1999 J Virol 73:3438-3442), compared to the much higher level of attenuation associated with deletion of the NS1 gene (Teng et al 2000 J Virol 74:9317-9321). Both viruses were readily recovered by reverse 10 genetics.

#### Example 6

This example describes the deletion of the NS2 gene from RSV 6120/ NS12Ltr/GFP and RSV 6120/NS12Ltr.

15 The NS2 gene was also deleted from RSV 6120/NS12Ltr/GFP and RSV 6120/NS12Ltr, resulting in RSV 6120/NS12Ltr/ΔNS2/GFP and RSV 6120/NS12Ltr/ΔNS2. The creation of RSV 6120/NS12Ltr/ΔNS2/GFP is shown in FIG. 8. RSV 6120/NS12Ltr/GFP (top), identical to that in Fig. 2, was modified by site-directed mutagenesis to delete the region from the first nucleotide of the GS signal 20 of the NS2 gene to the last nucleotide of the GE signal of the NS2 gene, inclusive. This deleted the complete NS2 gene.

#### Example 7

This example describes the replication characteristics of the recombinant virus 6120/NS12FM2/ΔNS2/GFP

25 The kinetics and yield of multi-cycle replication of recombinant RSV 6120/NS12FM2/ΔNS2/GFP (F-M2/delNS2) virus were compared to those of its immediate parent RSV 6120/NS12FM2/GFP (F-M2), wt RSV/GFP (wt RSV), and RSV ΔNS1/ΔNS2/GFP (delNS1\_NS2) in African green monkey Vero cells following the general experimental design of Example 3. These results (FIG. 9) showed that the F-M2/delNS2 virus replicated approximately as efficiently as F-M2 and wt RSV 30 in Vero cells, which is the substrate for vaccine virus manufacture, whereas delNS1\_NS2 was restricted, as previously shown. Thus, the F-M2/delNS2 virus retains the capacity for efficient vaccine manufacture even though it now contains two attenuating elements: F-M2 and ΔNS2.

A similar comparison of virus replication was performed in parallel in human airway A549 cells, following the general experimental design of Example 3. These results (FIG. 10) showed that these 35 viruses had a range of increasing restriction, in the order: wt RSV < F-M2 < F-M2/delNS2 < delNS1\_NS2. As noted, growth restriction in A549 cells by viruses with mutation/deletion in the NS1 and/or NS2 accessory proteins is a marker for attenuation *in vivo*. The observation that F-M2/delNS2 is more restricted than F-M2 shows that the combination of these mutations indeed yielded a further-

restricted derivative. A  $\Delta$ NS1 $\Delta$ NS2 virus similar to the delNS1\_NS2 virus in FIG. 10 was previously shown to be over-attenuated in African green monkeys (Jin et al 203 Vaccine 21:3647-3652). Therefore, the availability of the F-M2 and F-M2/delNS2 viruses provides two alternatives that are less restricted and exhibit a range of restriction.

5 These can now be evaluated in HAE cultures, rodents, and African green monkeys in parallel with previous vaccine candidates as benchmarks (Karron et al 2013 Curr Top Microbiol Immunol 372:259-284). Preferably, this analysis would involve the versions of F-M2 and F-M2/delNS2 that do not contain the GFP gene, as described. In addition, the RSV 6120/NS12Ltr/ $\Delta$ NS2/GFP (L-tr/delNS2) construct described in FIG. 8, and its derivative lacking GFP, also can be evaluated in parallel. Since the 10 L-tr shift is more attenuating than the F-M2 shift (FIG. 6 versus FIG. 4), this will provide a further range of restriction. One or more appropriate candidates can be evaluated in human volunteers as described (e.g. Karron, *et al.* 2015, Science Transl Med 2015 7(312):312ra175).

15 It will be apparent that the precise details of the methods or compositions described may be varied or modified without departing from the spirit of the described embodiments. We claim all such modifications and variations that fall within the scope and spirit of the claims below.

## Claims:

1. A recombinant respiratory syncytial virus (RSV) attenuated by one or more modifications to a RSV genome, wherein the one or more modifications comprise:
  - (a) a NS1 gene and a NS2 gene shifted from gene positions 1 and 2 to gene positions 7 and 8 of the RSV genome, respectively;
  - (b) the NS1 gene and the NS2 gene shifted from gene positions 1 and 2 to gene positions 9 and 10 of the RSV genome, respectively;
  - (c) the NS1 gene shifted to a gene position higher than position 1;
  - (d) the NS2 gene shifted to a gene position higher than position 2; or
  - (e) a combination of (c) and (d).
2. The recombinant RSV of claim 1, wherein the one or more modifications comprise (a).
3. The recombinant RSV claim 1, wherein the one or more modifications comprise (b).
4. The recombinant RSV claim 1, wherein the one or more modifications comprise (c).
5. The recombinant RSV claim 1, wherein the one or more modifications comprise (d).
6. The recombinant RSV claim 1, wherein the one or more modifications comprise (e).
7. The recombinant RSV of any of claims 4-6, wherein the NS1 gene is shifted to gene position 7 or 9.
8. The recombinant RSV of any of the prior claims, wherein the RSV genome further comprises a modification comprising a deletion of all or part of the NS1 gene or the NS2 gene.
9. The recombinant RSV any of the prior claims, wherein the RSV genome further comprises a modification comprising deletion of all or part of an M2-2 gene.
10. The recombinant RSV of any of claims 1-2, or 4-9, wherein the RSV genome comprises the one or more modifications, and a nucleotide sequence corresponding to a positive-sense sequence at least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 2 (6120/NS12FM2).
11. The recombinant RSV of claim 10, wherein the RSV genome comprises a positive-sense sequence denoted by SEQ ID NO: 2 (6120/NS12FM2).
12. The recombinant RSV of any of claims 1 or 3-9, wherein the RSV genome comprises the

one or more modifications, and a nucleotide sequence corresponding to a positive-sense sequence at least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 4 (6120/NS12Ltr).

13. The recombinant RSV of claim 12, wherein the RSV genome comprises a positive-sense sequence denoted by SEQ ID NO: 4 (6120/NS12Ltr).

14. The recombinant RSV of claim 8, wherein the RSV genome comprises the one or more modifications, and a nucleotide sequence corresponding to a positive-sense sequence at least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 6 (6120/NS12FM2/ΔNS2) or SEQ ID NO: 8 (6120/NS12Ltr/ΔNS2).

15. The recombinant RSV of claim 14, wherein the RSV genome comprises a positive-sense sequence denoted by SEQ ID NO: 6 (6120/NS12FM2/ΔNS2) or SEQ ID NO: 8 (6120/NS12Ltr/ΔNS2).

16. The recombinant RSV of claim 1, wherein the RSV genome further comprises a reporter gene, optionally wherein the reporter gene encodes a Green Fluorescent Protein (GFP).

17. The recombinant RSV of claim 16, wherein the RSV genome comprises:  
the one or more modifications and the reporter gene, and a nucleotide sequence corresponding to a positive-sense sequence at least 90%, at least 95%, and/or at least 99% identical to SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7; and/or  
a nucleotide sequence corresponding to a positive-sense sequence set forth as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7.

18. The recombinant RSV of any one of claims 1-17, which exhibits:  
reduced expression of the NS1 gene and/or NS2 gene compared to an RSV having the NS1 gene in gene position 1 and the NS2 gene in gene position 2;  
reduced transcription of the NS1 gene and/or NS2 gene compared to an RSV having the NS1 gene in gene position 1 and the NS2 gene in gene position 2; and/or  
reduced inhibition of host interferon response compared to an RSV having the NS1 gene in gene position 1 and the NS2 gene in gene position 2.

19. The recombinant RSV of any one of claims 1-18, wherein the recombinant RSV is increasingly susceptible to restriction in cultured cells that can produce interferons in response to viral infection.

20. The recombinant RSV of any one of claims 1-18, wherein the recombinant RSV retains replication efficiency in cultured cells that cannot produce interferons in response to viral infection.

21. The recombinant RSV of any of the prior claims, wherein the recombinant RSV is a subtype A RSV or a subtype B RSV.

22. The recombinant RSV of any of the prior claims, wherein the recombinant RSV is infectious, attenuated, and self-replicating.

23. An isolated polynucleotide molecule comprising the nucleotide sequence of the genome of the recombinant RSV genome of any of claims 1-22, or an antigenomic cDNA or RNA sequence of the RSV genome.

24. A vector comprising the isolated polynucleotide molecule of claim 23.

25. A cell comprising the isolated polynucleotide or vector of claim 23 or claim 24.

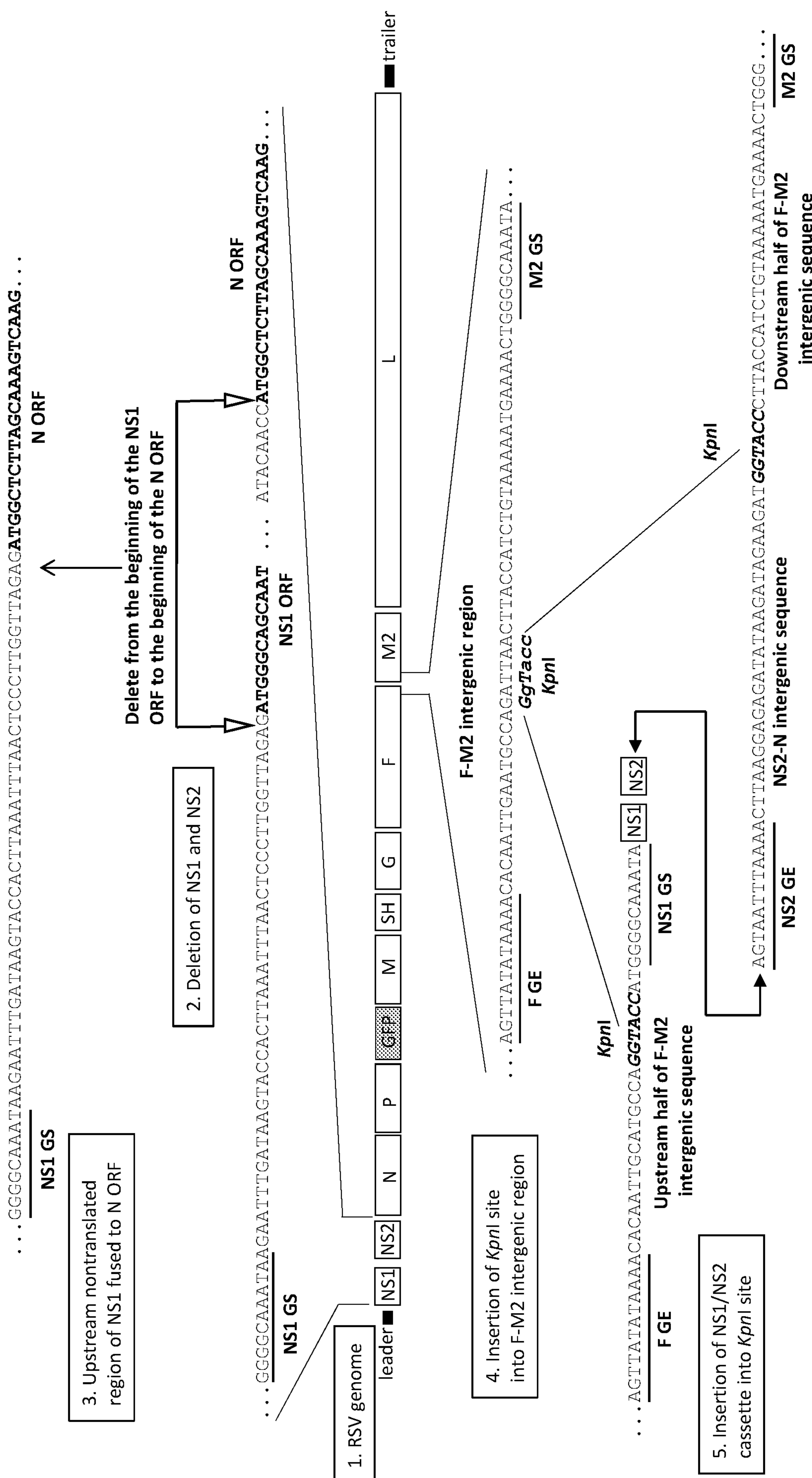
26. A method of producing a recombinant RSV, comprising: transfecting a permissive cell culture with the vector of claim 24; incubating the cell culture for a sufficient period of time to allow for viral replication; and purifying the replicated recombinant RSV.

27. A recombinant RSV produced by the method of claim 26.

28. A pharmaceutical composition comprising the recombinant RSV of any of claims 1-22 or 27.

29. A method of eliciting an immune response to RSV in a subject comprising administering an immunogenically effective amount of the pharmaceutical composition of claim 28 to the subject.

30. The method of claim 29, wherein the pharmaceutical composition is administered intranasally.


31. The method of claim 29 or claim 30, wherein the RSV is administered via injection, aerosol delivery, nasal spray or nasal droplets.

32. The method of any of claims 29-31, wherein the subject is a human.

33. The method of any of claims 29-32, wherein the subject is between 1 and 6 months of age.

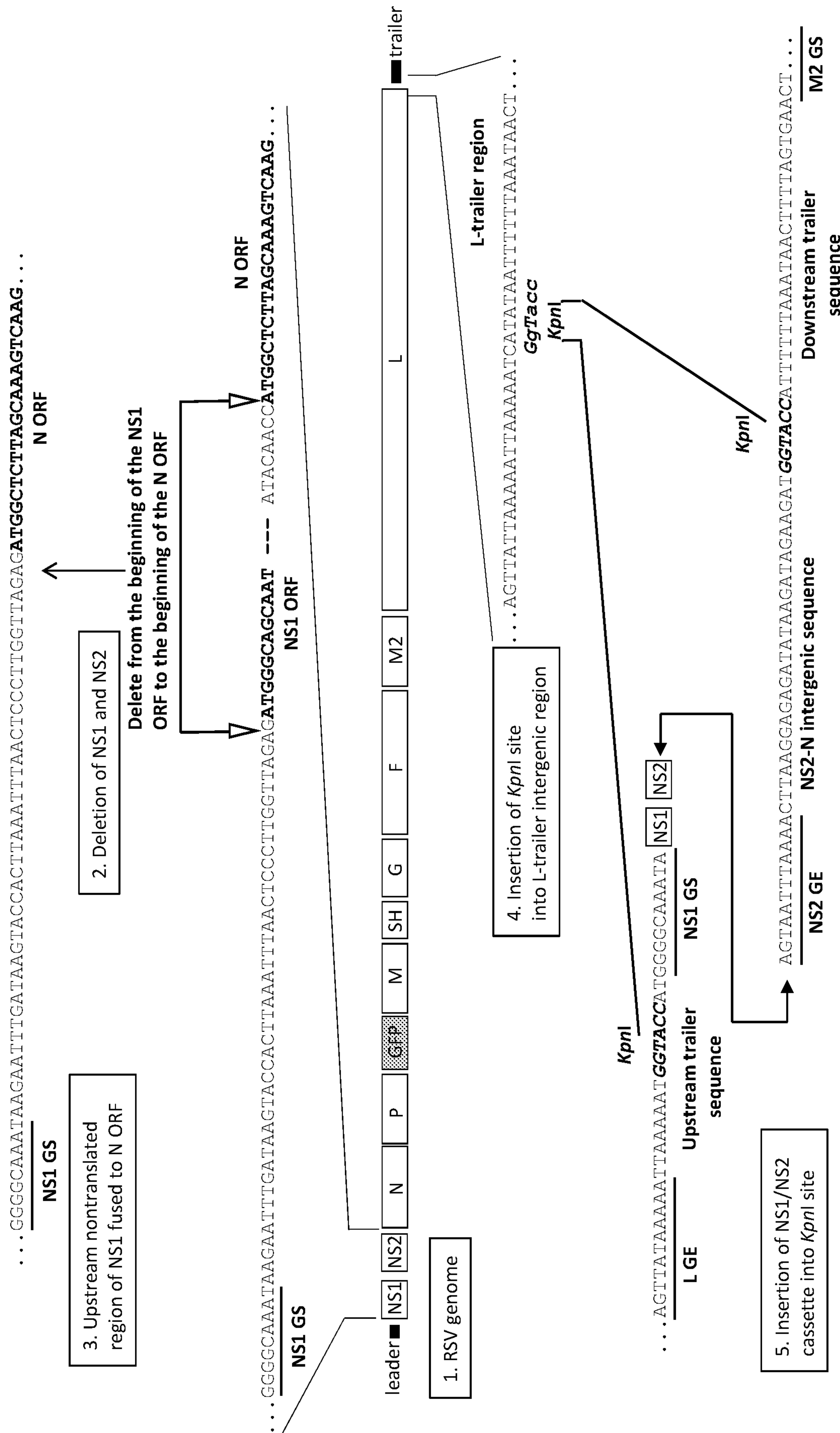
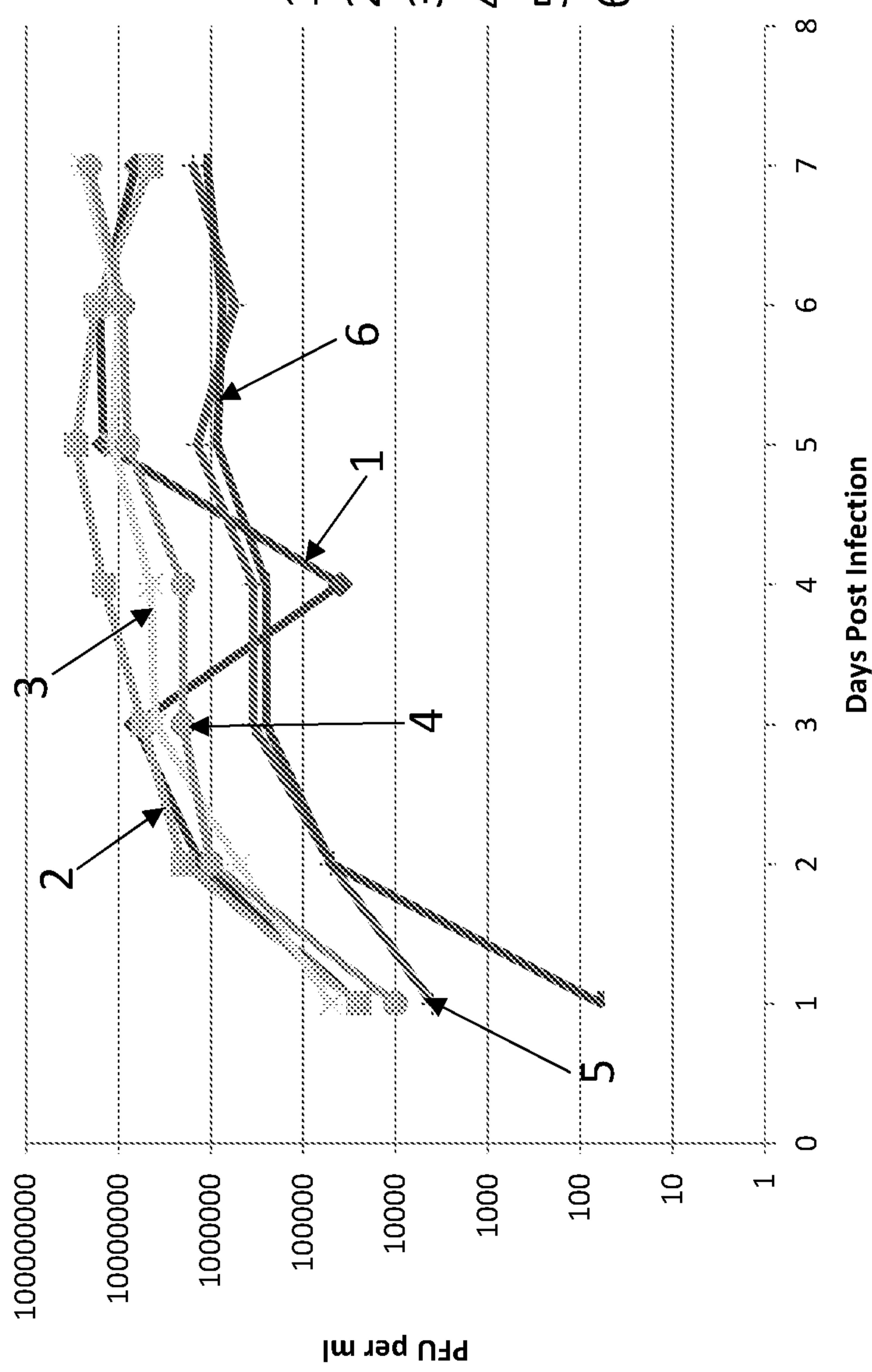

34. The method of any of claims 29-33, wherein the subject is seronegative for RSV.
35. Use of the recombinant RSV of any of claims 1-22 or claim 27 to elicit an immune response to RSV in a subject.

FIG. 1

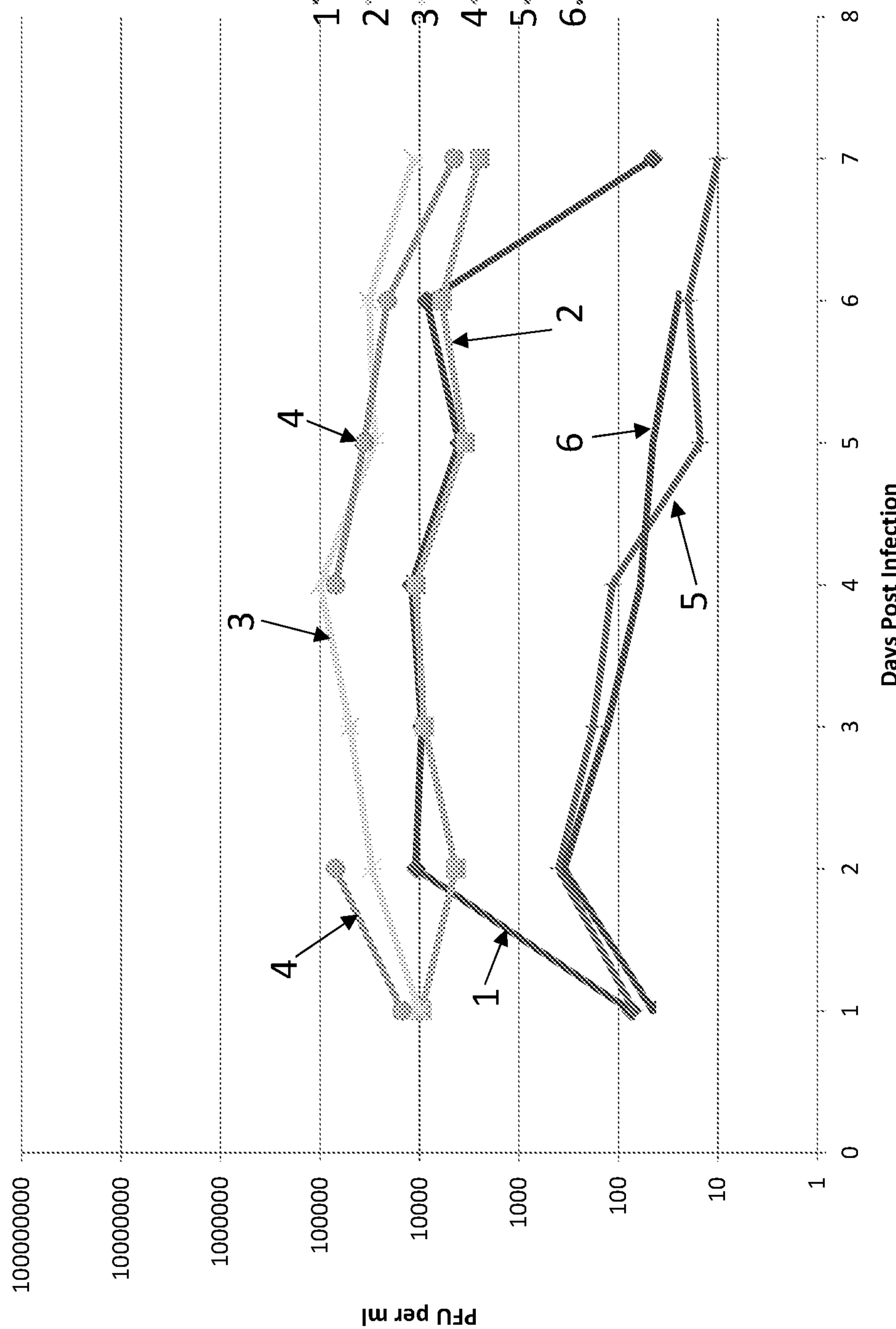



Generation of the **RSV 6120/NS12FM2/GFP** virus, in which the NS1 and NS2 genes are shifted from their native positions 1 and 2 in the genome to positions 7 and 8

## FIG. 2



**Multicycle replication in Vero cells of RSV with NS1-NS2 between F-M2**




**FIG. 3**

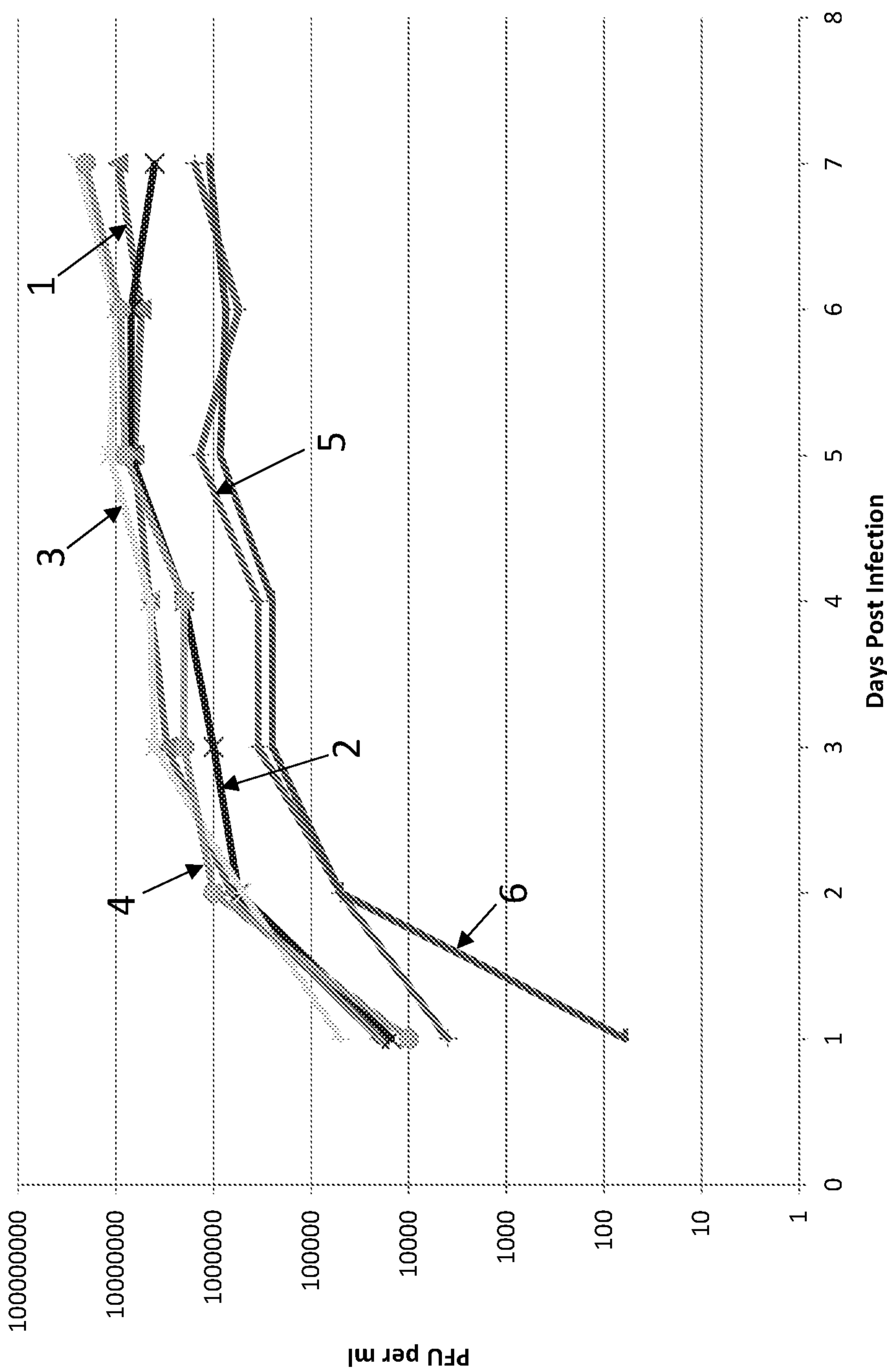
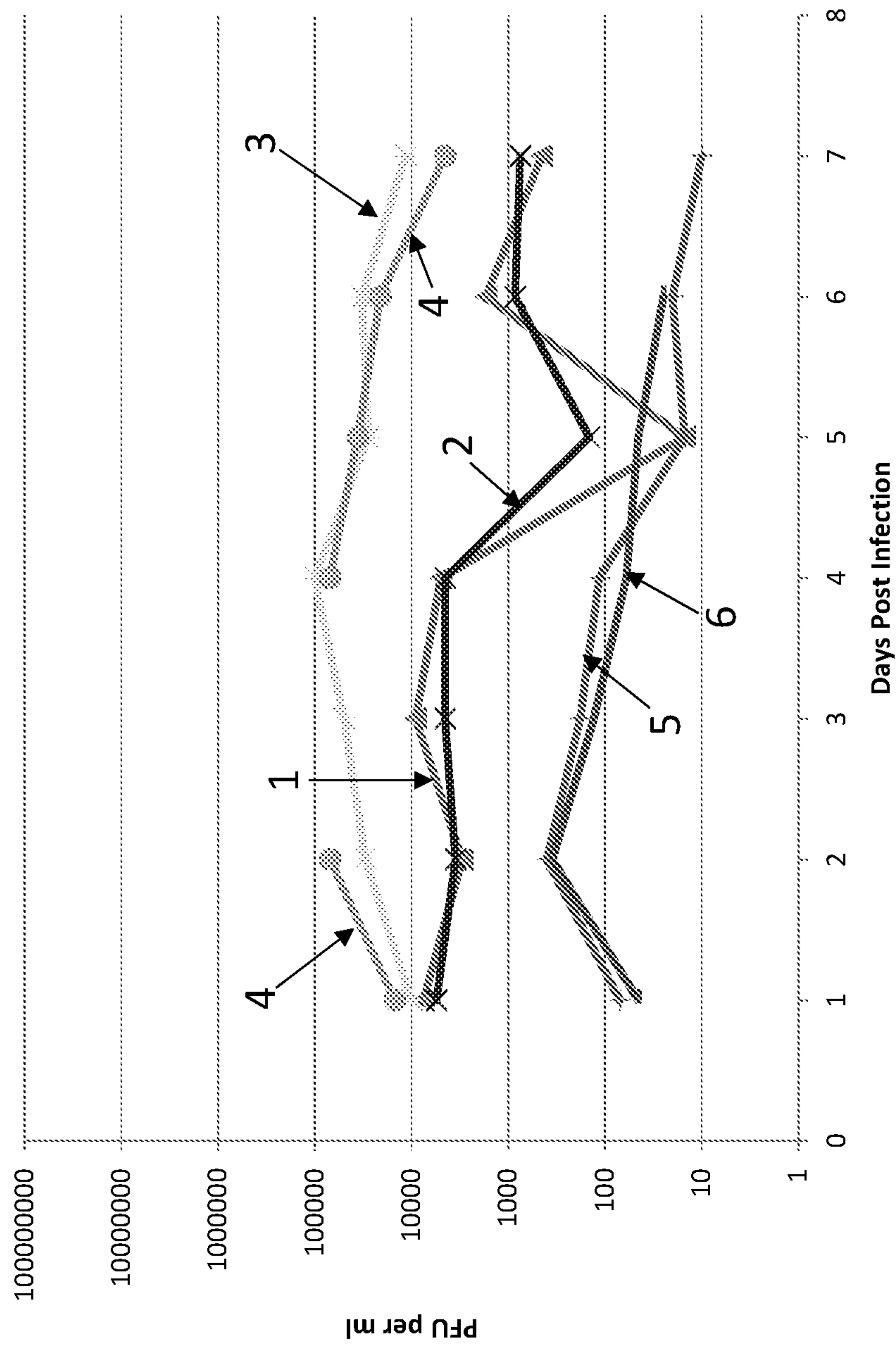
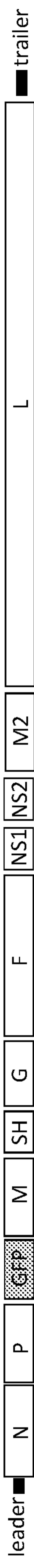
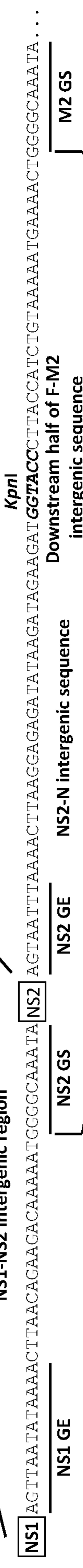
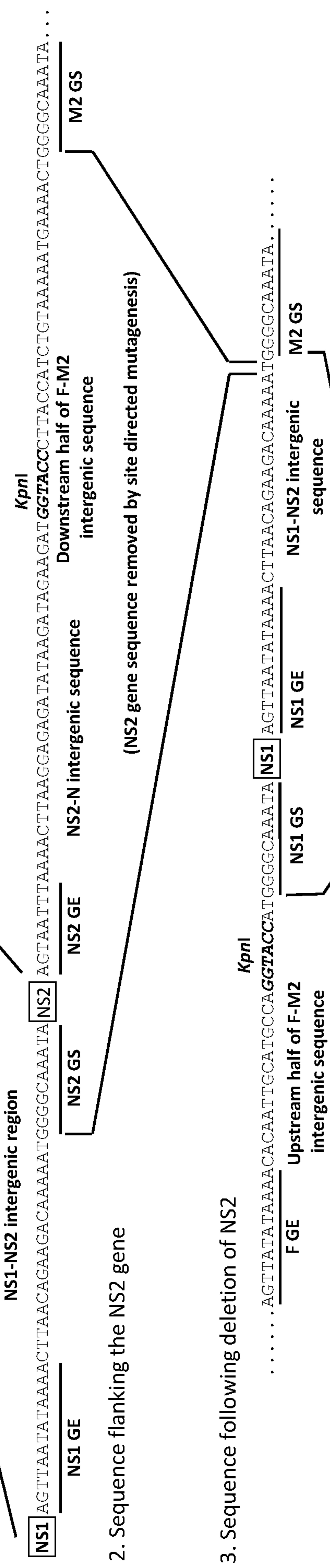
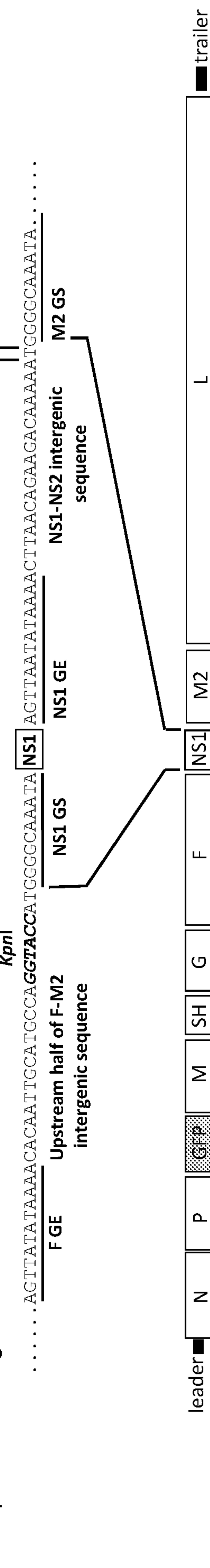

4/10

FIG. 4

**Multicycle replication in A549 cells of RSV with NS1-NS2 between F-M2**








**FIG. 5**  
**Multicycle replication in Vero cells of RSV with NS1-NS2 between L-trailer**

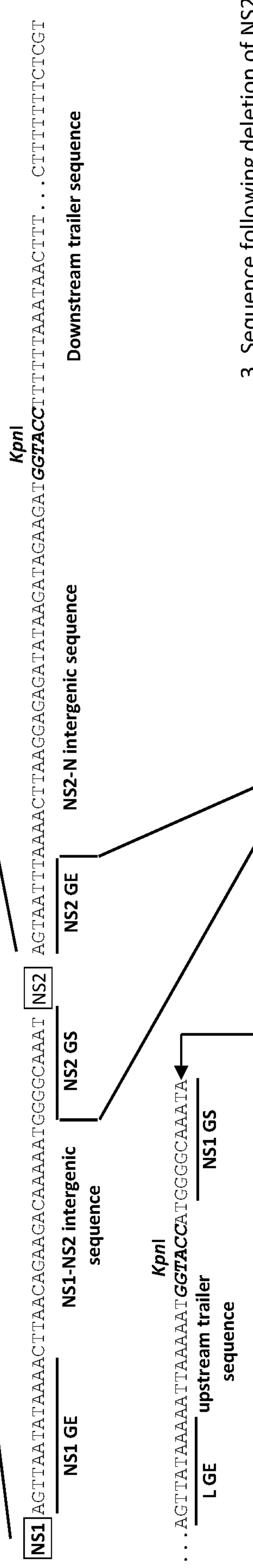


**FIG. 6**

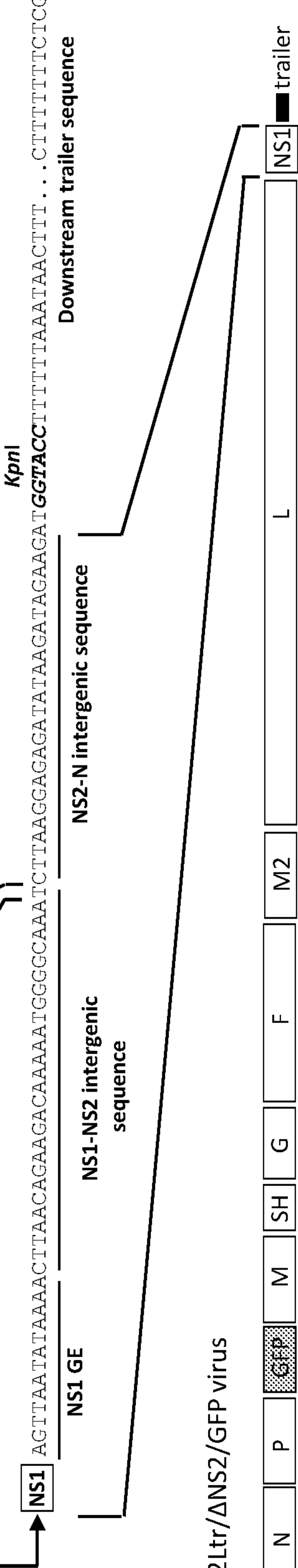
**Multicycle replication in A549 cells of RSV with NS1-NS2 between L-trailer**



**FIG. 7****1. RSV 6120/NS12FM2/GFP virus****NS1-NS2 intergenic region****2. Sequence flanking the NS2 gene****NS2-M2 intergenic region****(NS2 gene sequence removed by site directed mutagenesis)****3. Sequence following deletion of NS2****4. RSV 6120/NS12FM2/ΔNS2/GFP virus**


Deletion of the NS2 gene from RSV 6120/NS12FM2/GFP to create RSV 6120/NS12FM2/ΔNS2/GFP

**FIG. 8**

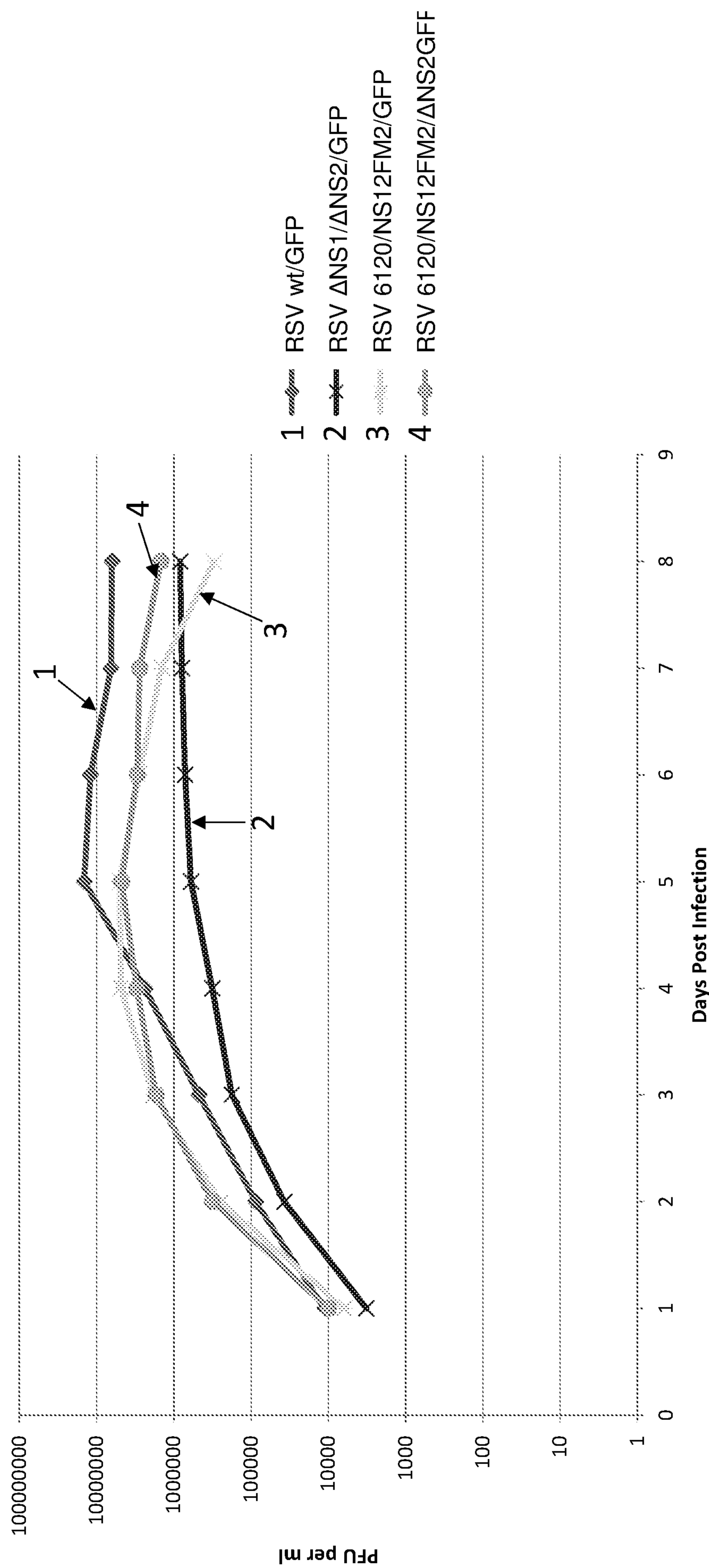

## 1. RSV 6120/NS12Ltr/GFP virus



## 2. Sequence flanking the NS2 gene



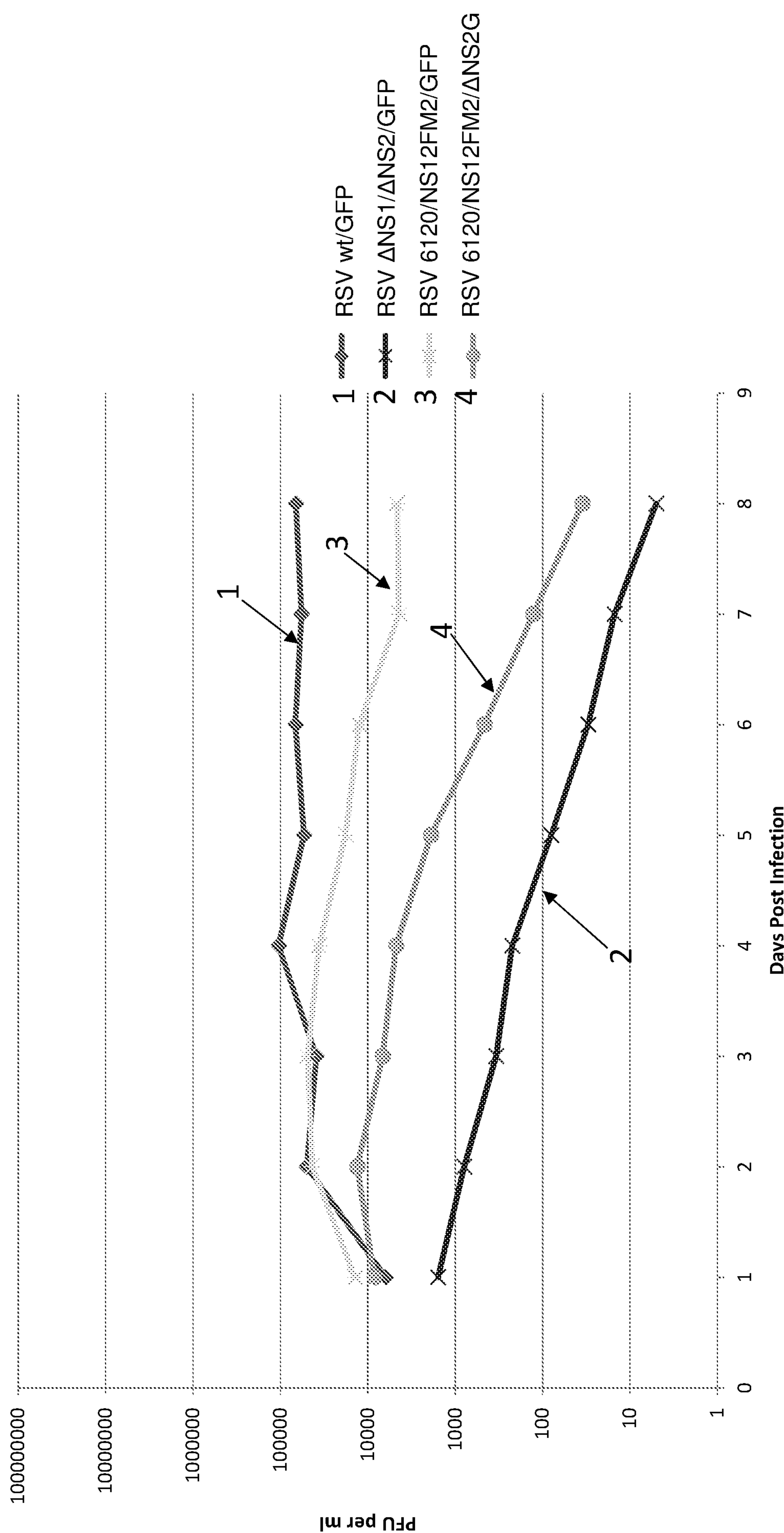
## 3. Sequence following deletion of NS2



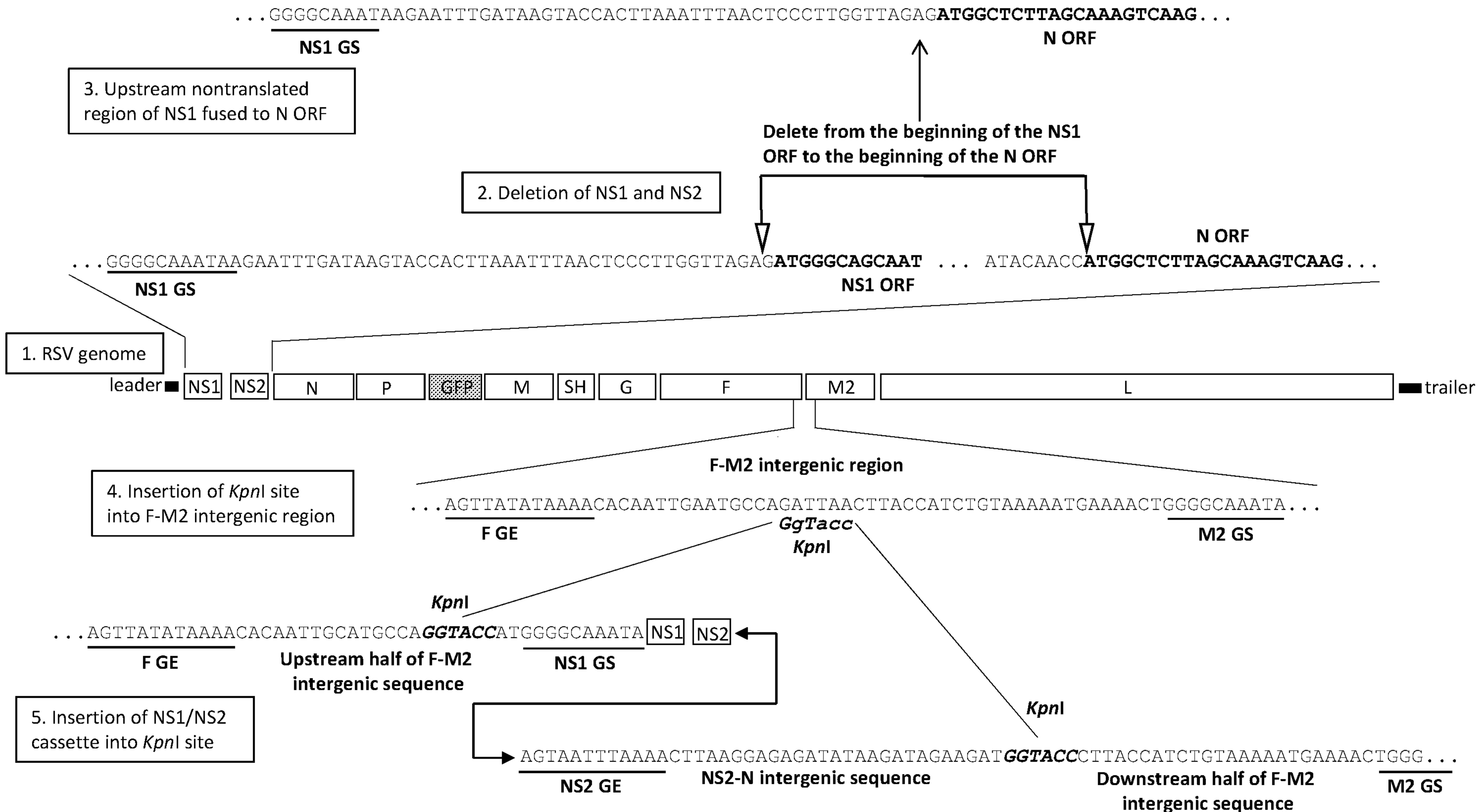

## 4. RSV 6120/NS12Ltr/ΔNS2/GFP virus



Deletion of the NS2 gene from RSV 6120/NS12Ltr/GFP to create RSV 6120/NS12Ltr/ΔNS2/GFP


### Multicycle replication of RSV 6120/NS12FM2/ΔNS2 in Vero cells




**FIG. 9**

10/10

FIG. 10

Multicycle replication of RSV 6120/NS12FM2/ $\Delta$ NS2 in A549 cells

**FIG. 1**



Generation of the **RSV 6120/NS12FM2/GFP** virus, in which the NS1 and NS2 genes are shifted from their native positions 1 and 2 in the genome to positions 7 and 8