用于三氯氢硅的结构催化填料

摘要

本发明提供用于三氯氢硅反应精馏塔中的一种结构催化填料。由波纹丝网层、催化剂布袋层和平丝网层卷制的圆柱形，催化剂布袋设置在平丝网和波纹丝网的中间。圆柱形外形尺寸优选直径为 60 ～ 1000mm，高为 100 ～ 2000mm。波纹丝网上的每条波纹为尖角型，每两个波纹间距优选为 40 ～ 300mm，每个波纹与丝网边缘的倾斜角度优选为 30 度～ 60 度。此催化填料形状较传统结构更加规则，具有通量大的特点，也具有较高的反应物接触面积，有利于气液两相的充分混合；可将催化剂颗粒固定，防止催化剂颗粒流动，减少了催化剂颗粒之间的磨损，增大了催化剂的寿命；不易被架空和重叠，受力均匀，其机械性能良好。
1. 一种用于反歧化反应精馏塔制备三氯氢硅的结构催化填料，其特征是由波纹丝网层、催化剂布袋层和平丝网层卷制的圆柱形，催化剂布袋设置在平丝网和波纹丝网的中间。

2. 如权利要求1所述的填料，其特征是圆柱形外形尺寸直径为60～1000mm，高为100～200mm。

3. 如权利要求1所述的填料，其特征是平丝网和波纹丝网的目数为30～200，波纹丝网上的每条波纹为尖角型，每两个波纹间距为40～300mm。

4. 如权利要求3所述的填料，其特征是每个波纹与丝网边缘形成的倾斜角度为30度～60度。

5. 如权利要求3所述的填料，其特征是波纹的尖角呈等腰三角形，尖角角度为30～150度。

6. 如权利要求1所述的填料，其特征是催化剂布袋由一个一个小格组成，每个小格宽度为25～60mm，长度为100～200mm。

7. 如权利要求6所述的填料，其特征是催化剂装填体积为布袋体积的20%～80%。
用于反歧化反应精馏塔制备三氯氢硅的结构催化填料

技术领域
[0001] 本发明涉及反应精馏技术领域，特别是涉及一种多晶硅生产过程中利用反歧化反应通过反应精馏塔制备三氯氢硅的结构催化填料。

背景技术
[0002] 反应精馏技术是指在反应进行的同时用精馏的方法分离出产物的过程，原理是：对于可逆反应，当某一产物的挥发度大于或小于反应物时，如果将该产物从反应体系中分离，则可破坏原有平衡，使反应进一步向生成物的方向进行，因而可提高单程转化率，同时又可利用反应热供产品分离，达到节能的目的。
[0003] 目前，我国大多数企业的多晶硅生产工艺为改良西门子法，此工艺以三氯氢硅为原料，生产过程中产生部分二氯二氢硅及大量四氯化硅副产物。对于四氯化硅，已有冷氢化法等方法对其进行处理，使其转化为三氯氢硅重复利用，但国内技术不成熟，且四氯化硅待处理量大；对于二氯二氢硅，虽然国外已有比较成熟的技术以其为原料制备多晶硅，但由于技术封锁，国内在此领域仍几乎为空白，主要采用固定床技术来处理二氯二氢硅。此技术存在着二氯二氢硅转化率低的问题，且在反应完成后还需将氯硅烷产品分离才能进入下一工序。本发明则通过反应精馏的反应将利用价值较低的原料氯硅烷和四氯化硅转化为利用价值很高的产品三氯氢硅，有效提高了原料利用率，将反应和分离过程耦合在一起，很好的解决了此难题。

发明内容
[0004] 本发明的目的在于提供用于氯硅烷反歧化反应精馏塔中的结构催化填料。使用本发明的结构催化填料，在提供精馏过程所需的气液相接触载体的同时，提供氯硅烷反歧化反应所需的催化剂及反应载体。
[0005] 本发明解决其技术问题所采用的技术方案是：
[0006] 一种用于反歧化反应精馏塔制备三氯氢硅的结构催化填料：由波纹丝网层、催化剂布袋层和波纹丝网层卷制的圆柱形，催化剂布袋设置在波纹丝网的中间。
[0007] 波纹丝网外形尺寸优选直径为 60 ～ 1000mm，高为 100 ～ 200mm。
[0008] 波纹丝网波纹丝网的数优选为 30 ～ 200，波纹丝网的波纹波纹，每两个波纹间距优选为 40 ～ 300mm。
[0009] 每个波纹与波纹网边缘的形成的倾斜角度优选为 30 度～ 60 度。
[0010] 波纹的尖角优选呈等腰三角形，尖角角度为 30 ～ 150 度。
[0011] 催化剂布管由一个一个小格组成，每个小格优选宽度为 25 ～ 60mm，长度为 100 ～ 200mm。催化剂装填体积优选为布袋体积的 20% ～ 80%。
[0012] 本发明的特点在于提供了一种氯硅烷反歧化反应精馏塔中的结构催化填料。
[0013] 这种新型结构催化填料结构简单合理，具有如下优点：
[0014] 1. 此催化填料形状较传统结构更加规则，具有通量大的特点，也具有较高的反应
物接触面积，有利于气液两相的充分混合；
[0015] 2.此结构可将催化剂颗粒固定，防止催化剂颗粒流动，减少了催化剂颗粒之间的
磨蚀，增大了催化剂的寿命。
[0016] 3.此结构催化剂几何结构特殊，不易被架空和重叠，受力均匀，其机械性能良
好。

附图说明
[0017] 图 1 为本结构催化剂的一个实例的倒视图；
[0018] 图 2 为本结构催化剂的一个实例的俯视图；
[0019] 图 3 为催化剂布袋的展开俯视图；
[0020] 图 4 为波纹丝网展开的倒视图；
[0021] 图 5 为波纹丝网展开的俯视图。
[0022] 其中：1- 催化剂填料，2- 波纹丝网，3- 催化剂布袋，4- 平丝网

具体实施方式
[0023] 下面结合附图 1 ～ 5，对本发明实施例中的技术方案进行清楚、完整地描述，显然，
所描述的实施例仅仅是本发明一部分实施例，而不是全部的实施例。基于本发明中的实施
例，本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例，都属于
本发明保护的范围。
[0024] 参照图 1 和图 2，本发明的一种结构催化剂填料 1，包括波纹丝网 2、平丝网 4 和催化
剂布袋 3。所述的结构催化剂填料单元为圆柱形，根据实际工艺的应用，此圆柱形结构单元，是
由宽度一致 (100 ～ 200mm) 的一层平丝网、一层催化剂布袋和一层波纹丝网叠在一起卷成
的，在加工卷制过程中，催化剂布袋夹在平丝网和波纹丝网的中间。其外形尺寸在 Φ (60 ～
1000) × H (100 ～ 200) mm 范围内。平丝网的材质为不锈钢，数数为 30 ～ 200。波纹丝网的材
质为不锈钢，目数为 30 ～ 200，波纹丝网上的每条波纹为尖角型，每两个波纹间距可为 40 ～
300mm。每个波纹与丝网边缘的形成的倾斜角度为 α，角度为 30 度～ 60 度；波纹的尖角呈
等腰三角形，尖角为 β，角度为 30 ～ 150 度。催化剂布袋由透气性较好、厚度较薄的专用滤
布缝制而成，其材质可为丙纶滤布、锦纶滤布、涤纶滤布和棉纶滤布等，布袋由一个一个小
格组成，每个小格宽度为 25 ～ 60mm，两两之间通过线隔开。催化剂针对该反应体系选用碱
性阴离子交换树脂，装填体积根据小格面积的不同可为 15 ～ 50ml。