PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

B01J 13/02, A61J 3/07

(11) International Publication Number:

WO 85/ 05288

(43) International Publication Date: 5 December 1985 (05.12.85)

(21) International Application Number: PCT/US85/00827

(22) International Filing Date:

6 May 1985 (06.05.85)

(31) Priority Application Number:

611,583

A1

(32) Priority Date:

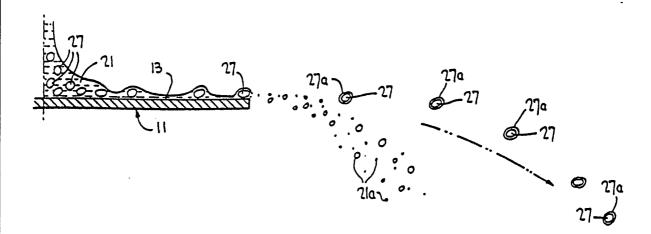
18 May 1984 (18.05.84)

(33) Priority Country:

U

(71) Applicant: WASHINGTON UNIVERSITY TECHNO-LOGY ASSOCIATES, INC. [US/US]; 8204 Brentwood Industrial Drive, St. Louis, MO 63144 (US).

(72) Inventors: SPARKS, Robert, Edward; 1318 West Adams Avenue, Kirkwood, MO 63122 (US). MA-SON, Norbert, Simon; 645 Langton Drive, St. Louis, MO 63105 (US).


(74) Agents: STERN, Marvin, R. et al.; Holman & Stern, Chartered, 2401 Fifteenth Street, N.W., Washington, DC 20009 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), BR, CF (OAPI patent), CG (OAPI patent), CH (European patent), CM (OAPI patent), DE (European patent), DK, FI, FR (European patent), GA (OAPI patent), GB (European patent), HU, IT (European patent), JP, KR, LK, LU (European patent), ML (OAPI patent), MR (OAPI patent), NL (European patent), NO, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD AND APPARATUS FOR COATING PARTICLES OR LIQUID DROPLETS

(57) Abstract

Solid particles or viscous liquid droplets of core material (27) are encapsulated in a coating material (21) largely as single particles with a single coherent coating, by feeding a suspension of the two materials onto a rotating surface (13). The suspension is centrifugally dispersed by the rotating surface into relative large coated particles (27, 27a) and relatively small droplets (21a) of coating material. Only the size of the droplets of unused coating corresponds to the droplet formed from atomization of the liquid coating material. The size of the coated particles depends on the size of the uncoated particles and is much less dependent upon the atomization characteristics of the rotating surface. Upon being thrown from the rotating surface, or falling from that surface, the droplets (21a) and coated particles (27, 27a) are solidified by exposure to air and are separated by sieving, or the like. The solidified droplets of pure coating material may be recycled into the suspension. Coating of all particles is achieved by dispersing the individual components of core material in the coating material before the resulting suspension reaches the rotating surface.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GA	Gabon	MR MW	Mauritania Malawi
ΑŬ	Australia	GB	United Kingdom		
BB	Barbados	HU	Hungary	NL	Netherlands
BE	Belgium	ΙT	Italy	NO	Norway
BG	Bulgaria	JP	Japan	RO	Romania
	•	KP	Democratic People's Republic	SD	Sudan
BR	Brazil	IXI	of Korea	SE	Sweden
CF	Central African Republic	T/D	*	SN	Senegal
CG	Congo	KR	Republic of Korea		•
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
		MC	Monaco	US	United States of America
DK	Denmark				
FI	Finland	MG	Madagascar		
273	Eropas	MI.	Mali		

- 1 -

1	METHOD AND APPARATUS FOR COATING
2	PARTICLES OR LIQUID DROPLETS
3	
4	
5	
6	
7	
8	
9	BACKGROUND OF THE INVENTION
10	l. Technical Field
11	The present invention relates to a method and
12	apparatus for coating or microencapsulating solid
13	particles or viscous liquid droplets. More particularly,

- 1 the present invention relates to improvements in such
- 2 methods and apparatus which provide encapsulation
- 3 techniques and effects which are unprecendented in the
- 4 prior art.
- 5 2. Discussion of the Prior Art
- 6 Coating or microencapsulation of solid particles
- 7 or liquid droplets is widely employed to protect coated
- 8 substances from environmental effects and/or control
- 9 their release time and/or confer improved handling
- 10 characteristics. Typical products which are coated or
- 11 microencapsulated are drugs, pesticides, dyes, etc..
- 12 Numerous coating or microencapsulation techniques
- have been employed in the prior art, many of which are
- 14 described in the Encyclopedia Of Chemical Technology,
- 15 third edition, volume 15, pages 470-493 (1981), John
- 16 Wiley and Sons. By and large, these techniques suffer
- 17 from one or more important disadvantages, including:
- high cost; inapplicability for coating particles smaller
- 19 than 200 micrometers in diameter; complexity; long
- 20 contact time between the core and coating materials prior
- 21 to solidification of the coating material; inability to
- 22 achieve wetting and coating of the core particles with
- 23 the desired coating material; inefficient separation of
- 24 coated particles from unused coating material and

inefficient usage or wastage of coating material. 1 important in many methods are the tendency for the coated 2 particles to agglomerate and the limited choice of wall 3 materials. There are severe cost disadvantages to most 4 methods because they are batch processes difficult to 5 operate on large commerical scale and because they must 6 employ a solvent for the coating and are unable to use 7 melted coating materials, which require no solvent 8 removal or handling facilities. 9

There have been a number of attempts in the prior 10 art to provide coating techniques which are devoid of the 11 aforesaid disadvantages. For example, in U.S. patent 12 number 4,386,895 (Sodickson), there is disclosed a 13 rotating apparatus having radially-extending conduits 14 from which hollow needles project radially outward into a 15 reservoir of jelling material. As the apparatus spins, 16 liquid core material is urged by centrifugal force 1.7 through the conduits and needles. The liquid core 18 material is formed into droplets at the distal ends of 19 the needles, and the droplets are centrifugally thrown 20 into a layer of the gelling material which forms on the 21 outer reservoir wall due to the centrifugal forces 22 produced by rotation. The droplets of liquid core 23 the gelling encapsulated bу thusly 24 material are This technique works well for its intended 25 material.

1 However, it is limited to use with liquid as a 2 material (i.e., it cannot be 3 microencapsulate solid particles) and the minimum size 4 droplet that can be coated depends upon the 5 diameter of the needle. As to the latter limitation, 6 there are practical limitations on minimum needle 7 particularly when viscous core liquids must flow 8 therethrough.

9 In U.S. patent number 2,955,956 (Baugh et al.), a 10 rotating disc or table is disposed below a feed pipe 11 through which a slurry composition of coating material is 12 The slurry is spread over the spinning disc surface to form a thin film of the coating material thereon. 13 annular flow of solid granules is permitted to impinge 14 15 upon the film on the disc surface, whereupon the granules 16 are coated with the coating material. The coated 17 granules are thrown or are permitted to fall from the 18 rotating disc and are solidified by dry warm gas directed 19 at the falling granules. A second annular flow of 20 granules is directed onto the rotating film to scavenge 21 the unused film and assure that all of it is utilized. 22 Again, this technique is satisfactory for a limited 23 purpose, namely coating granules, such as salt, with 24 additives, but it cannot be readily employed to coat 25 liquid droplets. Moreover, since the granules in

scavenging outermost annular flow cannot possibly be coated to the same extent as granules in the innermost flow, it is not possible with this technique to achieve uniform coating of all of the granules. Therefore, the Baugh et al. technique is more suitable for wide

6 dispersion of additives onto the surface of granules than

7 it is for coating particles.

British Patent No. 1,090,971 to Wilson, et al., 8 discloses a method of microencapsulating solid particles 9 by forming a dilute suspension of the particles in a 10 dilute solution of a resinous coating material 11 volatile liquid, causing the suspension to impinge on a 12 spinning disc whereby the dilute suspension is dispersed 1.3 as a spray consisting of atomized coating solution and 14 microencapsulated particle droplets, the spray of 15 droplets then being exposed to steam at temperatures 16 above the boiling point of the coating solvent which 17 volatilizes the unwanted liquid solvent so as to leave 18 coated particles plus particles of pure coating of the 19 same size. The process, however, requires a feedstock 20 solution having a very low percentage content 21 particles to be coated, involves the high temperature 22 removal of a large amount of unused feedstock liquid by 23 volatilization, and does not permit separation by sizing 24 of coated particles from particles of pure coating 25 material. 26

1 Objects and Summary of the Invention

It is therefore an object of the present invention to provide an improved method and apparatus for coating

4 or microencapsulating both solid particles and viscous

5 liquid droplets.

It is another object of the invention to provide a 6 method and apparatus for microencapsulating particles 7 which enables at least a majority of the particles to be 8 coated individually or discretely rather than in clusters 9 improved means while simultaneously providing 10 separating unwanted and unused liquid coating material 11 from the coated particles. More particularly, it is an 12 object of the invention to provide a coating process and 13 controlled mechanical or includes 14 apparatus which physical separation of coated particles from unused 15 liquid coating material by size discrimination, whereby 16 the method is equally applicable to the coating of solid 17 viscous liquid particles, either with materials 18 including a liquid solvent or with molten coating 19 whereby the wettability of the core liquids, 20 and droplets by the coating material 21 particles or relatively unimportant, permitting use of the method for 22 a wider variety of core particles and coating materials. 23

PCT/US85/00827

20

21

22

It is another object of the present invention to provide a method and apparatus for coating or microencapsulating solid particles and viscous liquid droplets over a wide range of particle and droplet sizes, including droplets and particles having diameters well below 200 micrometers.

It is a further object of the present invention to 7 apparatus coating for provide a method and 8 microencapsulating solid particles or viscous liquid 9 droplets with much less complexity, continuously, at a 10 much faster rate, and at lower cost than is possible 11 much of the prior art, and to avoid the problem 12 agglomeration of the particles being coated. 13

Still another object of the present invention is
to provide a method and apparatus for coating or
microencapsulating solid particles or viscous liquid
droplets wherein coating material can be easily re-cycled
back into the process if not used during a first pass
through the process.

It is yet another object of the present invention to provide a method and apparatus for coating or microencapsulating solid particles or viscous liquid

WO 85/05288 PCT/US85/00827

- 8 -

- 1 droplets in which coating thickness can be easily
- 2 adjusted by adjustment of any of plural process
- 3 parameters.
- A further object of the present invention is to
- 5 provide a method and apparatus for coating or
- 6 microencapsulating solid particles or viscous liquid
- 7 droplets wherein the contact time between the core and
- 8 coating materials prior to solidification of the coating
- 9 material can be made sufficiently short to prevent
- degradation of some labile materials, or to prevent their
- 11 dissolving one in the other when they are partially or
- 12 totally miscible.
- The present invention provides, in a process for
- 14 coating particles with a liquid coating, a method for
- 15 obtaining individually coated particles while
- 16 simultaneously facilitating removal of the coated
- 17 particles from excess coating liquid with which the
- 18 particles are mixed in a suspension, the method
- 19 comprising feeding the suspension onto a rotating surface
- 20 to separate the suspension into coated particles and
- 21 atomized liquid droplets expelled circumferentially from
- 22 the surface, and rotating the surface at a speed yielding
- 23 a predominance of the droplets of undesired liquid
- 24 coating of a predetermined size which is smaller than the
- 25 size of the coated particles.

Thus in accordance with the present invention, 1 solid particles or liquid droplets of core material to be 2 coated are initially dispersed in molten or dissolved 3 coating material to form a suspension. The suspension of 4 the two materials is then fed to the surface of 5 rotating disc, table or other rotating element. 6 process parameters, particularly the speed of rotation of 7 the disc or other rotating element are controlled so that 8 the centrifugal forces imposed on the suspension by the 9 disc or the like cause the suspension to spread towards 10 the disc periphery with progressive thinning out of the 11 liquid and separation of excess coating material from the 12 coated particles, with dispersion of the suspension into 13 particles and (2) significantly 14 coated smaller-size atomized droplets of excess coating material 15 which are formed by atomization of the thin film of 16 liquid coating at the periphery of the disc or the like. 17 Thus, in accordance with the invention, the disc or the 18 like is used as a means for mechanically or physically 19 from the coating liquid 20 separating the excess particles and dispersing individually coated 21 separated liquid as atomized droplets of significantly 22 coated particles. the 23 size than smaller 24 importantly, to obtain the required separation and dispersion, the invention involves relating the rotary 25 speed of the disc to the required size of atomized 26

12

13

14

15

16

17

18

19

20

21

22

23

24

droplets of excess liquid coating material to be obtained 1 2 from the disc, rather than relating the disc speed to the size of coated particles to be obtained. This represents 3 a significant departure from known techniques involving 4 5 the use of a rotating wheel or the like to provide 6 dispersion of coated particles, where the wheel speed is 7 related to the required size of coated particle 8 In practical terms, for coated particles of products. 9 comparable dimensions, the invention involves rotary disc 10 speeds surprisingly in excess of those used in the prior 11 art techniques.

The average mean size required for the atomized droplets of excess coating liquid may, in practice, be determined by the amount of contamination, i.e., excess unused coating material, which is acceptable in the final product of coated particles, such determination being effected by known techniques involving the relative sizes of the coated particles and the particle distribution characteristics of unused coating liquid, related to rotational speeds, liquid feed rate, length of wetted periphery, and viscosity in rotary atomizer-type Typically, in accordance with the invention, the average size of atomized droplets may be about 20% to 75% of the size of the coated particles.

Since the materials being coated are solid (or 1. viscous liquid), they are not atomized but are simply 2 thrown from the disc as relatively large particles 3 retaining a coating of the liquid in which they were 4 The control of the process parameters to 5 provide separation of the suspension by the rotary disc 6 into individually coated particles and significantly 7 material excess coating droplets οf 8 smaller process of the present invention differentiates the 9 completely from prior art processes such as 10 congealing, in which a slurry of dispersed solids 11 atomized as a liquid, with the product solid present 12 inside the atomized droplets. In spray congealing the 13 dispersed solids are sufficiently finely divided that 14 there are many solid particles in most of the atomized 15 slurry product, and the size distribution of the entire 16 product approximates that predicted from atomization 17 correlations. In spray congealing, when the suspension 18 must behave as a liquid during atomization and no solvent 19 is subsequently removed, the volume fraction of solids in 20 the suspension (and hence, also in the product congealed 21 droplets) has an upper limit near 30%, while in the 22 present invention the volume fraction of coated solids in 23 the product particles may be in excess of 90%, owing to 24 the separation of the unused coating liquid on the 25 rotating disk and its atomization into smaller, easily 26

WO 85/05288 PCT/US85/00827

- 12 -

removed particles. In the present invention essentially 1 2 all of the solids in the feed slurry and all of the coated product solids are larger than the sizes predicted 3 4 atomization correlations for the processing from conditions employed. An example of the size distribution 5 6 the feed solids, product solids and atomized coating obtained is provided in Example VII. 7

8 The invention further has clear distinctions 9 the old art of spray-chilling, in which a suspension is 10 atomized with subsequent solidification of the droplets by cooling, and from spray-drying, in which a solvent is 11 12 present in the original suspension or solution and is 13 subsequently removed. In both these known processes, the 14 feed suspension or solution is atomized as a liquid, and 15 products of the processes are the solidified 16 droplets, and there is no separation between particles 17 containing solids and those not containing solids. 18 principle any atomization device can be used which will 19 give the desired droplets. In the present invention, the 20 process variables are adjusted to give a completely 21 different result, and products can be formed which are 22 impossible to form general spray-chilling in spray-drying. For example, it is convenient with the 23 24 process invention to place thin waxy coatings (e.g. 100 25 micrometers) around solid particles 2 millimeters in

diameter. In spray-chilling, it would not be possible to 1 the feed slurry through a pressure nozzle or 2 two-fluid nozzle, because the core particles would block 3 plug the orifices in typical nozzles. If a very large 4 nozzle was used to permit the particles to pass, 5 coarse spray would include many product 6 resultant particles containing no core (just large drops 7 coating), a few core particles having thin coating, many 8 having thick coating and many in agglomerates rather than 9 This would occur because single coated particles. 10 particle formation in these orifice devices occurs by 11 atomization of the entire slurry simply as a liquid which 12 happens to contain some solid particles. Such a slurry 13 of large particles could, of course, be passed over a 14 rotating-disc atomizer without any plugging or flow 15 stoppage. However, the disc would be run to treat the 16 slurry as a simple fluid, giving all atomized droplets in 17 the same size range. Again, this means that much of the 18 coating would be in the form of particles as large as the 19 coated particles and many of the particles will be in the 20 form of agglomerates. In none of these cases could most 21 of the unused coating be separated from the coated 22 particles by simple means such as sieving, and 23 product would contain large inert particles of coating as 24 a major fraction. This is unacceptable in most practical 25 26 cases.

15

16

17

18

19

20

21

22

23

24

25

By contrast, in the present invention, with a feed 1 slurry containing e.g. 500 micron core particles, and a 2 desired coated product particle of 600 micron average 3 diameter, the disc size, rotational speed, feed rate of 4 the slurry and coating viscosity will be adjusted to 5 force all the unused coating to be in the form of 6 droplets much smaller (e.g. a mean diameter around 250 7 micrometers) so that most of it can be easily separated 8 product particles will 9 from the product, and the essentially be all in the form of single coated core 10 particles nearly all having an average coating thickness 11 of 50 microns. If it is desired, it is possible to make 12 the unused coating particles smaller, or somewhat larger, 13 while making the desired product. 14

A key point of the invention is to run the process differently from a typical spray-chilling process. In the latter process, the atomization is set to treat all the feed slurry as a liquid, making droplets in the desired size range. In the process invention, all parameters are adjusted to force all unused particles into a relatively small size, formed by atomization of the film of pure coating, while the large product of coated core particles is thrown off the disc surrounded by the desired amount of remaining liquid, subsequently solidified as a coating.

The small coating material droplets and the 1 coating-wetted particles resulting from operating the 2 disc in accordance with the invention are thrown or 3 caused to fall from the spinning surface and solidify due 4 to the drying or cooling effect of the surrounding air or 5 Sieving or other size discrimination techniques 6 may be readily employed to remove the coated particles 7 from the much smaller particles of unused coating 8 material and the removal step is facilitated compared 9 οf the size processes because 10 with prior art discrimination between the coated particles and the 11 smaller particles of excess coating material which is 12 conferred by the process invention. The coating material 13 particles thusly collected may be re-cycled into the 14 process. The minimum size of the solid particles 15 liquid droplets which can be coated by this technique is 16 limited only by the size of the particles or droplets 17 themselves and by the lower limit of droplet size of 18 excess coating liquid which can be obtained with a 19 rotating disc (dry particles of 1-5 micrometers at high 20 low viscosity coatings containing disc speeds with 21 solvent). By completely dispersing the particles or 22 droplets in the molten coating material before the 23 materials are placed in contact with the rotating 24 surface, it is possible to coat all particles in a 25 similar fashion. The more uniform the size of the 26

- 1 dispersed particles the more particle-to-particle
- 2 uniformity there will be in the coated particles. This
- 3 has little effect on the size distribution of smaller,
- 4 atomized excess coating.

5 Brief Description of the Drawings

- These and other objects, features and many of the
- 7 attendant advantages of the present invention will be
- 8 better understood upon a reading of the following
- 9 detailed description considered in connection with the
- 10 accompanying drawings wherein like parts in each of the
- 11 several figures are identified by the same reference
- 12 numerals, and wherein:
- Fig. 1 is a diagrammatic illustration of apparatus
- 14 according to the present invention which may be employed
- to perform the method of the present invention;
- 16 Fig. 2 is a diagrammatic illustration of an
- alternative embodiment of the present invention;
- Fig. 3 is a diagrammatic representation of still
- another embodiment according to the present invention;

- 1 Fig. 4 is a diagrammatic representation of a
- 2 further embodiment employed in accordance with the
- 3 present invention;
- 4 Fig. 5 is a diagrammatic illustration of yet
- 5 another embodiment of the present invention;
- 6 Fig. 6 is a diagrammatic elevational view of a
- 7 rotary separating element showing its effect on a liquid
- 8 suspension when used in accordance with the invention;
- 9 Fig. 7 is a diagrammatic plan view of the element
- 10 shown in Fig. 6;
- 11 Fig. 8 is a view similar to Fig. 7 but showing
- 12 another type of rotary separating element;
- Figs. 9, 10 and 11 are diagrammatic views of prior
- 14 art products (from a spray drying process) including
- 15 coated particles, the figures representing successive
- 16 stages in a coating process;
- 17 Fig. 12 is a view similar to Fig. 9 showing an
- 18 intermediate product according to the invention prior to
- 19 final separation of coated particles from droplets of
- 20 excess coating liquid; and

WO 85/05288 PCT/US85/00827

- 18 -

- Figs. 13 to 15 are diagrammatic views of alternative rotary separating devices useful in
- 3 performance of the invention.

4

Description of the Preferred Embodiments

5 Referring specifically to Fig. 1 of the accompanying drawings, an enclosed spray chamber 10 (with . . 6 7 only top wall 12 illustrated in Fig. 1) is provided for 8 performing the method of the present invention. 9 chamber 10 there is disposed a rotatable disc or table 11 10 having an upper surface 13 which may be disposed 11 horizontally. Rotatable disc 11 is rotatably driven 12 about its central vertical axis by means of a variable 13 speed drive motor 17 acting through drive shaft 15. A 14 speed control unit 19 permits adjustment of 15 rotational speed of the disc 11.

Speed control 19 and motor 17 may be located inside or outside of chamber 10, depending upon the particular application. The disc may be disposed above the motor or suspended below the motor, with appropriate modification of feed lines, supports, etc.

A reservoir 20 is adapted to contain molten or 1 The reservoir 20 is dissolved coating material 21. 2 heated, for example, by means of a heating coil 23 3 disposed about the reservoir periphery, to maintain the . 4 coating material 21 in molten or dissolved form. 5 regard, the coating material 21 may be supplied to 6 reservoir 20 in molten form and maintained in that state 7 by means of the heating coil; alternatively, the coating 8 material may be supplied to the reservoir in solid form 9 and melted by the heat derived from heating coil 23. In 10 either case, the molten coating material 21 11 reservoir is in a flowable state. A feed funnel 25 is 12 provided to extend through an opening in chamber 10 so as 13 to deliver individual mass components 27 of core material 14 (e.g., solid particles of core material) to be coated 15 into reservoir 20. In instances where the core material 16 is in the form of droplets of viscous liquid, funnel 25 17 may be replaced by a droplet-forming tube, a means of 18 feeding an emulsion or the like. A stirrer mechanism 19 extends into the chamber 10 and reservoir 20 and 20 actuated by a variable speed stirrer motor 30 disposed 21 outside of chamber 20. The stirrer 22, when driven by 22 motor 30, acts to disperse the solid particles 27 23 liquid droplets) of core material throughout the molten 24 slurry or result is a The coating material 21. 25 suspension of the two materials disposed in reservoir 26

1 This slurry or suspension is delivered through a 2 gravity-feed passage 31, extending from the bottom of 3 reservoir 20, to a ball valve mechanism 33. The ball 4 valve 33 is selectively actuatable from outside chamber 10 by means of actuating rod 35 to control the rate of 5 6 flow of the suspension material through the ball valve 7 It is noted that the heating coil 23 is disposed so 8 to heat the suspension as it passes through passage 9 31 and ball valve 33, thereby assuring that the coating 10 material remains in its molten state while in 11 components. The outlet passage 37 from ball valve 12 disposed directly above the axial center of surface 13 so 13 as to deliver the suspension material substantially along 14 the rotation axis of disc 11.

15 The space above surface 13 is heated, for example, 16 by means of industrial grade heat guns 39, to maintain 17 the temperature on surface 13 sufficiently high so that 18 the coating material in the suspension remains molten. 19 Additional heat is provided at the underside of disc 11, 20 for example, by means of infrared heat lamps 40. Heating may be provided by many methods such as preheated air, 21 22 steam, radiant energy, induction heating, etc.

The top surface 13 of disc 11 may be smooth or may provided with a plurality of angularly-spaced radially-extending grooves 24 defined therein, or raised fins, so as to establish paths of travel for the material deposited on surface 13 from ball valve 33. Grooved or vaned surfaces are advantageous if the particles to coated are small, for example below 200 micometers diameter, and the coating is viscous, because they can produce finer particles of the unused liquid coating than do smooth discs at the same rotational speed.

In operation, the coating material 21 in liquid or slurry form is disposed in reservoir 20. If the coating material 21 is a wax, the wax is melted by heating. If a polymer coating material is used, it may be dissolved in a solvent, if necessary. The coating liquid may contain emulsified or suspended particles if they are desired in the final wall or coating on the core particle. The core material must be solid particles, granulated aggregates of fine particles or droplets of liquid which is more viscous than the liquid coating material 21. These particles or droplets 27 preferably, but not necessarily, should have a relatively narrow size distribution. When the droplets or particles are fed into the slurry of coating material 21, the stirrer 29 may be actuated by stirrer motor 30 to disperse the particles 27 in the

1 material 21. With the particles properly dispersed (and this may be a continuous process), the disc drive motor 2 3 17 is actuated and set to the desired speed by speed control 19. This desired speed will depend primarily 4 5 upon the size of the smaller excess coating particles to be produced as described below. Ball valve 33 is then 6 7 actuated by means of actuator rod 39 to permit the suspension to flow onto the surface 13 of disc 11. Valve 8 9 33 is opened slowly until the desired flow rate is The centrifugal force acting upon 10 achieved. suspension material as it hits the surface 13 causes 11 material to be thrown radially outward on the surface or 12 This has the effect of dispersing 13 grooves 24. suspension into both particles 27 wetted with the coating 14 15 liquid and smaller droplets of coating liquid which do 16 not contain the core particles 27. The heating of the 17 region surrounding disc ll maintains the coating material 18 in liquid state on surface 13. However, when material is thrown from or falls from disc 11, 19 20 falls through dry cooler air which causes the material 21 coating material to solidify by cooling or drying. 22 solidified small droplets of excess coating material and 23 the core material coated with the solidified coating 24 material fall to the bottom of the chamber during

17

18

19

20

21

22

23

24

25

solidification process. Sieving, or other separation 1 techniques, may be employed to separate the coated 2 particles from the smaller particles of pure coating 3 material. The smaller coating material pieces may then 4 be recycled into the process by delivering such pieces 5 The majority of the original into reservoir 20. 6 suspended particles are coated discretely and similarly, 7 a feature which is achieved by virtue of the fact that 8 the original core material particles 27 are carefully 9 dispersed in the coating material before the suspension 10 is fed to the rotating disc. The coating thickness may 11 be varied mainly by changing the viscosity of the coating 12 liquid, but also by adjusting the feed rate of suspension 13 to the disc, by varying the rotational speed of the disc, 14 by varying the diameter of the disc or by varying the 15 number of grooves or vanes. 16

It is possible to perform the method of the invention as a continuous process by feeding the coating liquid 21 and particles 27 into reservoir 20 on a continuous basis. An endless conveyor belt disposed at the floor of chamber 10 collects the particles and feeds them to a train of sieves which discriminate between coated particles and the smaller particles of pure coating material. The latter may be delivered directly to the reservoir 20 whereas the coated particles may be

PCT/US85/00827

- dispensed in any manner desired. Alternatively, all of
- 2 the particles may be pneumatically conveyed into a
- 3 cyclone, seives or bag filter for separation of smaller
- 4 excess coating droplets to be recycled.

WO 85/05288

25

previously noted, the process parameters are 5 specifically controlled, in a manner to be described, so б as to provide a separation of the liquid suspension by 7 means of the disc into coated particles (generally these 8 will be individually coated particles unless the process 9 is operated at low enough speed so that a small fraction 10 of the particles remain as doublets or triplets, or if 11 there is a wide size distribution of feed particles such 12 the finer core particles are trapped in larger 13 particles) and droplets of excess coating liquid 14 significantly smaller size than the coated particles. 15 16 The effect of the rotating disc on the suspension fed to it is vividly illustrated in Figures 6 to 8. It will be 17 18 seen that the coating liquid 21 in the suspension gradually pulled away from the core particles 27, forming 19 20 a liquid film on the disc, as the suspension moves from the center toward the periphery of the disc, 21 22 progressive decrease in thickness of the liquid film or 23 sheet and finally separation of the excess liquid from 24 the particles 27, leaving a coating layer 27a on

particles and dispersing the excess coating into a spray

12

of small droplets 21a formed from the thin coating film. 1 2 Figures 6 and 7 show this effect for a disc with a smooth 3 upper surface, and Figure 8 shows the effect with a grooved disc. The size of the atomized droplets 4 5 excess coating bears little relation to the size of the 6 solid coated particles, but depends rather on the film 7 spreading and atomization characteristics of the liquid coating alone. The core particles, by contrast, move by 8 9 a totally different mechanism, not spreading into a film 10 but simply being thrown through or along the film of 11 coating, issuing from the disc periphery with a small

amount of associated coating material.

13 Figure 12 shows a typical product in accordance 14 with the invention as it is sprayed or expelled from a 15 rotating surface. It will be evident that the product 16 consists of core particles 27 with a liquid coating layer 27a all generally of similar size, and droplets 21a of 17 18 excess unused coating material 21 which 19 significantly smaller size than the coated particles and 20 which have a size distribution typical of that expected 21 for simple atomization of the pure coating liquid. product shown in Figure 12 is in vivid contrast to 22 23 typical products of prior art processes which use a 24 rotary wheel or the like to provide dispersion of

Thus, Figures 9 to 11 show the 1 suspended particles. product of a typical prior art process (spray drying) in 2 which particles are imbedded in droplets of a liquid 3 by forming a slurry of containing a solvent, 4 particles in the liquid and forming droplets of 5 slurry by feeding the slurry to a rotary wheel or the 6 like. As shown in Figure 9, the product as it leaves the 7 wheel contains particles 127 with a liquid coating 127a 8 and separated droplets 121 of excess coating material. 9 However, it will be evident that there is no sharp size 10 discrimination, as in products of the present invention, 11 between the coated particles (which are usually coated in 12 clusters, but some of which will be coated singly) and 13 the droplets of excess coating material. Thus, there are 14 a significant number of droplets 121 which are comparable 15 in size to the coated particles, in contrast to products 16 of the present invention where the droplets predominantly 17 18 significantly smaller than the coated particles and most large particles are coated discretely. Accordingly, 19 subsequent removal of excess droplets οf 20 material, by sieving, centrifuging or the 21 like, facilitated with products according to the invention 22 compared with the products of the prior art processes. 23 Figure 10 shows the prior art product of Figure 9 after 24 evaporation of the solvent, and Figure 11 shows 25 product after removal of the smaller excess 26

droplets, for example by sieving, illustrating the rather 1 high percentage of unused coating material (in the larger 2 droplets thereof) which has not been removed from the 3 coated product. It is essentially impossible by this 4 prior art process to produce product particles with core 5 loadings above 50%, to remove excess coating, and to have 6 high particle-to-particle uniformity. Looked at in the 7 alternative, the invention provides a product comprising 8 large, predominantly individually coated 9 relatively droplets predominantly uncoated 10 particles and significantly smaller size than the coated particles, 11 whereas prior art products are predominantly a mixture of 12 individual mass components of coated particles 13 uncoated droplets of generally similar dimensions wherein 14 the core particles themselves are relatively small 15 compared to the final particles. 16

In order to obtain a product wherein there is a 17 sharp size discrimination between the coated particles 18 and the droplets of excess coating liquid, the process 19 the invention parameters in accordance with 20 controlled in a particular manner. More particularly, in 21 accordance with the invention, the rotational speed of 22 the disc or the like is related to the average mean size 23 required for the droplets 21a (as will be described in 24 more detail below) rather than relating the rotational 25

speed of the disc or the like to the average size 1 2 required for the coated particles. By contrast, in the prior art processes, the speed of the rotary wheel or the 3 4 like is related to the size required for the formed droplets irrespective of whether they contain imbedded 5 6 core particles or not. Thus, in the present invention, 7 the disc or the like is run at surprisingly higher speeds 8 than in the prior art for producing coated core particles 9 of similar size to the particles of the prior art.

10 As noted above, in carrying out the invention, the speed of rotation for the disc is related to the required 11 12 mean droplet size for the excess coating material rather 13 than to the required size of coated particles and in this 14 process, changes in the disc speed have significantly less effect on the thickness of coating on the large core 15 16 particles. It is well known in industrial spray drying 17 and spray chilling techniques using rotary disc-type 18 there are mathematical correlations atomizers that 19 between the disc speed and the average droplet size 20 expelled from the disc, see for example pages 179-184 of 21 "Spray Drying Handbook" by K. Masters, 3rd Edition, John 22 Wiley & Sons, New York (1979), and which is specifically 23 incorporated herein by reference. These correlations may 24 be used to provide an estimate of required disc speed for 25 present invention, (possibly incorporating

viscosity correction factor in the correlations to 1 compensate for the effect of hot air flow as in Figures 3 2 and 4) once the desired average droplet size for the 3 excess coating liquid has been established. This desired 4 average droplet size may be established from known 5 droplet size distribution estimates, for example, 6 log-probability graphs (also discussed in the 7 reference) and relating the estimated droplet size 8 distribution to the acceptable contamination percentage 9 in the final product, i.e., the percentage of acceptable 10 excess coating droplets of a size making them impractical 11 to separate from the coated particles. Again, it should 12 while techniques are known for 13 stressed that estimating disc speed in relation to a required droplet 14 size and for estimating droplet size distributions, these 15 have not previously been utilized in the present manner 16 whereby, in a particle coating process, disc speed is 17 related to a predetermined size required for the droplets 18 of excess coating liquid rather than being related to the 19 particles the coated product for size required 20 themselves. Also, it is understood that the correlations 21 referred to above for determining the required disc speed 22 may be used for estimation purposes, and in practice, it 23 may be desirable somewhat to adjust the disc speed 24 25 empirically.

significant difference 1 the To illustrate rotational speeds used in processes according to the 2 3 invention compared with prior art processes, the various parameters used in a typical prior art spray cooling-type 4 particle embedding process may be compared with the 5 parameters used in a process in accordance with the 6 invention for coating like particles with a like liquid 7 coating. Thus, for example, if it is required to coat 8 9 ion-exchange resin beads having a sieve fraction 53-106 microns with a wall material of 9/1 paraffin wax/Elvax 10 420 (Dupont ethylene-vinyl acetate copolymer, melt index 11 150) in a spray cooling procedure in accordance with a 12 typical prior art process, the rotational speed of an 13 8-inch diameter (0.2 meter) disc type atomizer typically 14 would be set at about 3,000 r.p.m. for a feed rate of 4.5 15 kg/hr of slurry containing 2/1 wt ratio of coating to 16 core particles, with a coating viscosity of 50 centipoise 17 to give an average fluid drop in the atomized slurry 18 close to the size just containing the largest core 19 particle. For the largest single core particle at 70% 20 21 loading in the final microcapsule, this droplet size 22 would be 120 microns and setting the rotational speed at 3,000 r.p.m. would give an average droplet size of about 23 24 118 microns from the correlation noted above. However, 25 this will be the average particle size in the atomized 26 slurry both for particles containing the core material

and also for droplets of the excess pure coating material. A product obtained from this prior art process at these conditions showed a substantial overlap in particle size distribution of the coated particles and the unused coating droplets so that it was not practical to effect a separation based on size.

By contrast, in a process in accordance with the 7 present invention, if it is estimated that the smallest 8 microencapsulated product including the above beads will 9 have a diameter of 67 microns at approximately 50% 10 loading of the 53-micron core particle, the rotational 11 speed of a disc may be set for example to run at 8,000 12 r.p.m. to give an average particle diameter for unused 13 coating droplets of about 40 microns. To estimate the 14 amount of unused coating droplets which might be in the 15 microencapsulated product, a log-probability graph, 16 may be used and results described above 17 contamination rate of about 10% for a product sieved at 18 microns. A run was also made under these conditions, 19 but using an 8-inch vaned disc giving somewhat smaller 20 droplets of excess coating. After sieving at 53 microns, 21 the contamination, measured by counting coated particles 22 and remaining pure coating particles, was approximately 23 7%. 24

PCT/US85/00827

7

The correlation referred to above with the viscosity term modified to mirror the effect of hot air moving over the surface is:

4

$$\bar{x} = \frac{(1.4 \times 10^4)(M_L)^{0.24}}{(Nd)^{0.83}(Vd)^{0.12}} \left(\frac{V}{15} \right)^{0.1}$$

where \bar{x} = Average droplet diameter (microns)

 $M_T = Liquid feed rate (kg/hr)$

N = Rotational speed (RPM)

d = Disk diameter (meters)

V = Viscosity (centipoise)

As noted above, one of the parameters which may be adjusted to vary the thickness of the coating material on the final coated particle is the viscosity of the coating liquid. In this regard, when wax is employed as a coating material, the viscosity can be readily lowered

thereby provide thinner coating walls on the final 1 coated particle, by adding solvents to the molten coating 2 material 21. When the inclusion of a polymeric material, 3 e.g., polyethylene in the coating is desirable the 4 viscosity can be lowered significantly through addition 5 6 of compatible materials of substantially lower viscosity, e.g., waxes. In general, the solid particles 27 of core 7 should be insoluble in the liquid coating 8 material however, if the contact time between the 21; 9 material material 21 is coating core material 27 and the 10 the coating material short before 11 sufficiently solidifies, solids may be coated before they dissolve. 12 In this way, water soluble or water sensitive solids may 13 be coated by an aqueous solution. Likewise, droplets of 14 viscous liquids (i.e., of significantly greater viscosity 15 than the coating material 21) may also be coated. 16

In some applications the materials may be selected 17 such that the solid core material 27 reacts with the 18 coating liquid 21 so as to form an initial solid wall at 19 the coating material 21 is before their juncture 20 solidified during the process. Thus, the core material 21 27 might contain a polyfunctional acid chloride, 22 isocyanate, and the liquid 21 might contain a polyamine 23 or polyol. This technique is also useful for coating a 24 liquid since the initial wall or shell formed by the 25

- 1 chemical reaction between the two materials prevents
- 2 absorption or dispersal of the core material into the
- 3 coating material or aggregation of the core particles
- 4 before the coating material solidifies.
- 5 Coatings of slurries may be formulated by
- 6 suspending the solids desired in the coating liquid prior
- 7 to, or simultaneously with, the suspension of the core
- 8 particles. Suspended solids in the coating may be
- 9 soluble in the coating if their contact time with the
- 10 coating is insufficient to permit dissolution.
- 11 Liquids may also be coated by dispersing them to
- 12 form a suspension or emulsion in the coating liquid. The
- 13 core liquid should have a viscosity higher than that of
- 14 the coating liquid so that the spread of liquid and
- 15 subsequent atomization into small drops occurs primarily
- in the coating liquid. Liquid core materials may also be
- 17 coated after they are absorbed onto or into solids.
- 18 It is also possible to catch the coated particles
- on a layer of powder or in a hardening or extraction bath
- 20 in which additional solvent is removed by extraction or
- 21 in which a chemical hardening reaction occurs. An
- 22 example of the latter would be the formation of

- l gelatin-coated particles which are caught in a bath
- 2 containing glutaraldehyde which hardens the wall or
- 3 coating material and greatly decreases the permeability
- 4 of the wall.
- 5 It is possible to use the invention to produce
- 6 walls of polymers which are insoluble in all or nearly
- 7 all solvents when the polymers are available in the form
- 8 of aqueous latex suspensions. Examples are acrylics,
- 9 rubber, synthetic rubber, polyvinylidene chloride, etc.
- 10 The solid or droplet core particles are suspended in the
- 11 latex and the suspension fed to the rotating element
- 12 according to the present invention. Moist air must be
- 13 blown over the disc surface or other means provided to
- 14 prevent the latex from drying and coagulating on the
- 15 disc. After the coated particles and smaller excess pure
- latex particles leave the disc they are dried, e.g., by
- 17 falling through a chamber through which hot unsaturated
- 18 air or gas is passing. As water is removed from the
- 19 latex, the polymer particles coagulate into an insoluble
- 20 film. When dry the film coating is a tight barrier only
- 21 affected by solvents for the polymer.
- 22 Another embodiment of the present invention is
- 23 illustrated in Fig. 2 to which reference is now made. A
- 24 rotating disc 11 with a grooved top surface 13 and its

1 drive motor 17 are similar to like components illustrated 2 in the embodiment of the Fig. 1. Infrared heat lamps 40 3 are employed to heat the space above disc ll and a 4 stirrer motor 30, having its speed controlled by a VARIAC 5 41, stirs the coating and core materials to provide the 6 necessary suspension. A heated funnel 45 is selectively 7 raised and lowered along three threaded vertical support 8 rods 49, only two of the support rods being illustrated 9 in Fig. 2. The stirrer 50 is disposed within funnel 45 10 and is rotated by means of drive shaft 47 connected to 11 stirrer motor 30. The distal end of shaft 47 is in the form of a plug 51 which, depending upon the height of the 12 13 funnel 45 on support rods 49, may project through the 14 lower funnel opening and thereby close off outflow from 15 the funnel to the disc 11. This embodiment eliminates the ball valve and provides flow control by means of the 16 17 raising and lowering of the funnel on shafts 49, 18 raising and lowering the motor. Many more feed schemes 19 will be apparent to those skilled in the art.

20 Another embodiment of the present invention is 21 illustrated in Fig. 3 to which detailed reference is now 22 made. A rotating disc 55 having a smooth flat upper 23 surface 57 is disposed horizontally between two 24 horizontal walls 59 and 60. A funnel 61 contains a 25 stirrer 63 placed to suspend solid particles in liquid

coating material which is added simultaneously to the 1 stirred funnel. The lower end of funnel 61 extends 2 through a suitably provided opening 65 in upper wall 59 3 so that the bottom opening of funnel 61 is disposed to 4 permit the funnel contents to fall on the disc surface 57 5 in alignment with the rotation axis of the disc. A 6 distribution cone 67 diverges downwardly and is disposed 7 substantially concentrically about the funnel stem so as 8 to prevent splashing of the slurry material delivered 9 from the funnel to the disc surface. Hot air 10 channelled to the region between plates 59 and 60, both 11 above the disc 55 and below it, by means of suitable hot 12 air conduits 69 which communicate with suitable openings 13 in plates 59 and 60. The temperature of the air 14 delivered through conduits 69 is sufficient to maintain 15 the coating material in molten form when it is located in 16 the region between plates 59 and 60. It is apparent that 17 the plates aiding in controlling air flow need not be 18 parallel. For example, higher hot air velocity at the 19 edge of the rotating disc can be achieved with the gap 20 between plate and rotating disc decreasing as the radius 21 increases. It is also apparent that the plates may 22 rotate in common with the disc. 23

In the Embodiment of Fig. 3, the funnel 61 serves as the vessel in which the solid particles or liquid droplets of core material are dispersed in the coating

- l liquid. In addition, the feed rate of the resulting
- 2 suspension from the funnel onto disc surface 57 is
- 3 controlled by the level of suspension maintained in the
- 4 funnel rather than by a funnel outlet valve mechanism.
- 5 The embodiment of Fig. 4 is similar in many
- 6 respects to the embodiment of Fig. 3 except for the
- 7 suspension feeding mechanism and for the fact that the
- 8 disc is tilted at an angle, e.g., forty-five degrees,
- 9 relative to horizontal. The suspension of coating and
- 10 core materials is disposed in a vessel 70 having a
- 11 stirrer 71 therein. A lower corner portion of the vessel
- 12 70 is selectively openable to permit controlled feeding
- of the suspension material onto the top surface 57 of
- 14 disc 55. Fig. 4 is intended to illustrate that the disc
- 15 can be oriented at substantially any desired angle and
- 16 need not be horizontal as shown in Figs. 1 3.
- 17 The embodiment of Fig. 5 diagrammatically
- illustrates the use of a generally conical mesh screen 77
- 19 disposed above the top surface of a disc 75 so as to
- 20 converge to a location between the disc and the lower end
- 21 of a funnel 73. The funnel delivers the suspension
- 22 material toward the disc 75 in the manner described above
- in relation to the embodiments of Figs. 1 3. However,
- 24 the mesh screen 77, which rotates with disc 75, is

- l provided to aid in controlling the average coating
- 2 thickness by draining away part of the coating material
- 3 through the screen. Further forms of rotary discs 90,
- 4 92, 94 which may be used for the invention are shown in
- 5 Figs. 13 to 15. In addition, multi-tier rotating discs,
- 6 vaned wheels, grooved discs and radial tubes can be
- 7 employed.
- 8 The invention as described hereinabove is suitable
- 9 for coating particles of substantially any shape;
- 10 however, the most uniform coating is obtained with
- 11 spherical particles. Particle size may generally vary in
- the range from 10 micrometers to 10 millimeters, although
- 13 special designs or conditions will permit the use of
- 14 particles outside this range. Nearly spherical
- 15 particles may be readily formed by techniques well known
- in the prior art, such as spray drying or prilling, by
- 17 extrusion or compression in molds, or by agglomeration of
- 18 fine powders in rotating drums using a liquid phase
- 19 binder and/or heat. It is also known that compact
- 20 crystals approaching a spherical shape may be obtained by
- 21 attrition during crystalization.
- The preferred coating material for minimum process
- 23 cost should be liquid at coating temperature and should
- 24 solidify when cooled, without requiring either

evaporation of a solvent or a chemical reaction. 1 viscosity of the coating material may range from 0.5 to 2 100,000 centipoises, with preferred viscosities between 3 4 1-5,000 centipoises. Preferred coating liquids are various mixtures of polyolefins, ethylene-vinyl acetate 5 б copolymer and waxes. typical coating liquid A composition is 50 percent by weight polyethylene of 8 density 0.92, melt index 250, and 50 percent paraffin wax having a melting point of 60° C. It is preferable that 9 the core material is insoluble in the coating liquid at 10 coating temperature, although soluble cores can be coated 11 12 if the contact time with the coating before spraying and 13 solidification sufficiently short is to 14 dissolution.

During a typical operation, as noted above, the 15 particles to be coated may constitute up to 45 percent by 16 17 volume of the overall suspension slurry, although in general the percent by volume will be in the 20-35% 18 19 temperature surrounding the top surface of range. The 20 the disc must be above the melting point of the coating 21 material. Typically, this may be between 60° and 90° C for pure waxes and 120° to 160° C for polymer/wax 22 23 mixtures.

18

19

20

21

22

23

24

25

The rotational speed of the disc is chosen so that 1 the excess coating material produces much smaller spheres 2 than the coated particles. If the disc were used simply 3 as an atomizer for the coating liquid it is these small 4 spheres which would be produced. Since the excess liquid 5 wall material forms smaller droplets, the aerodynamic 6 drag force per unit mass is much higher than that for the 7 these smaller Hence. as larger coated particles. 8 droplets solidify they are slowed down much more quickly 9 by the drag force as they move away from the spinning 10 disc. These droplets, therefore, fall much closer to the 11 spinning disc. A receiver may be placed near the disc to 12 catch these small unused coating particles for recycling 13 back to the coating reservoir. Alternatively, the unused 14 coating particles may be caught in the inner portion of 15 the bottom cone for sieving and recycling. 16

When the ring of unused coating particles partly overlaps the ring of coated particles, the particles cannot be totally separated by sieving. When this occurs, an increase in rotational speed of the disc causes a separation of the rings, by throwing the coated particles farther and decreasing the size of the unused coating particles so that they fall closer to the disc. When the product particles are less than 100 microns in diameter, both the product and the smaller excess coating

WO 85/05288 PCT/US85/00827

- 42 -

l particles fall within a few feet of the disc and are both

2 strongly affected by the air blowing outward along the

3 radius of the disc. Hence they do not separate cleanly

4 into distinct rings. However, they are easily separated

5 by sieving, centrifugal force, etc.

For particles in the range of 0.5 millimeter
diameter and a density of 1.2, a rotational speed of
1,000 - 1,500 rpm for a disc of 8 inches diameter
provides good spatial separation of the fine excess wax

10 particles from the much larger coated particles so that

Il the excess wax particles may be collected separately and

may not require a separate sieving operation.

13

14

15

16

17

18

19

20

21

22

23

24

The particles to be coated may be mixed with the melted coating material immediately before the resulting suspension is fed to the disc. Feeding rates for a disc having an 8 inch diameter are preferably on the order of 100 milliliters to 5 liters per minute but can cover the range of 10ml/min to 100 liters/min. For coating materials with melting points substantially above room temperature (e.g., above 50°C), the coated particles solidify rapidly after leaving the disc surface and may be collected immediately. If a solution is used as the coating, then the solvent has to be evaporated before essentially dry particles can be collected.

The embodiments described above include a disc 1 having a grooved surface, a disc having a flat smooth 2 surface, cupped or cone-shaped surface, and angled 3 screens or perforated plates disposed above a reservoir 4 (rotating or non-rotating). It is also possible to 5 6 provide a vaned disc whereby the disc comprises a angularly spaced vanes with 7 plurality of therebetween. Virtually any rotating device which can be 8 used for atomization may be used in the present 9 application, as long as the slurry does not have to pass 10 through a fine orifice where plugging may occur. 11

Other alternatives are an inverted cone made from stainless steel screen and a vaned disc in which the vanes are placed at an angle to the disc diameter.

In employing the invention, we have successfully 15 the following substances: phosphors (12-60)16 angular particles micrometers), potassium chloride 17 (25-300 micrometers), potassium chloride (approximately 18 250-500, 120-250 500-860, 19 spherical particles thickened with carboxymethyl 20 micrometers), water cellulose, sucrose crystals (1-1.5 millimeters), sucrose 21 millimeters), aspirin powder (held 22 spheres (1.4-2 together with carboxymethyl cellulose solution), 23

- acetaminophen (180-320 micrometer spheres), 1 Coating liquids which we have employed include pure wax, 2 wax with solvents (e.g., paraffin wax 20 percent, Polywax 3 30 percent, 1,1,2, trichloroethane 50 percent), wax 4 mixtures (Polywax 500 16 percent, ethylene vinylacetate 5 copolymer (Elvax 420, 18% vinyl acetate, Du Pont de 6 7 Nemours, Inc.) 24 percent and paraffin wax 60 percent; or paraffin wax 17 percent, Polywax 500 33 percent 8 Elvax 420 50 percent), polyethylene wax, wax and 9 polyethylene (paraffin percent 50 and 10 density 50 percent), Woods metal 11 polyethylene (50 percent Bismuth, 25 percent Lead, 12.5 percent Cadmium and 12.5 12 percent Tin), cellulosic polymer dissolved in a solvent, 13 and solutions of mixtures of waxes, polyethylene and 1:4 15 acetate copolymer in aromatic and ethylene-vinyl aliphatic hydrocarbons. Coating materials have also been 16 17 used in the form of slurries containing up to 37 mass 18 percent of suspended insoluble solids, both smaller than 19 and greater than the average final wall thickness.
- The present invention is further illustrated by the following examples:

20

21

22

23

24

1 EXAMPLE I

In this example, nearly spherical particles of 2 potassium chloride were used, the particles being of a 3 20-32 mesh (500-863 micrometers) fraction obtained by 4 substantially that apparatus was 5 The sieving. illustrated in Fig. 1 with the top surface of disc 11 6 smooth rather than grooved. The outlet opening 37 for 7 the ball valve was disposed approximately 1/8 inch above 8 the surface 13 of the disc. The entire reservoir was 9 heated by electrical tape and was equipped with a 10 thermocouple. The disc was inclined at about 45 degrees 11 from horizontal (as in the Fig. 4 embodiment) to increase 12 the path of the upward-directed particles in the air so 13 as to allow them to solidify before encountering a solid 14 (The downward-directed particles were not 15 surface. collected). The disc assembly was equipped with three 16 heat guns above the disc and two below the disc in 17 addition to the two heat lamps. 18

Thirty-eight grams of paraffin wax (Fisher P-22), 38 grams of Polywax-500 (made by the Bareco Division of Petrolite Inc.), and 24 grams of Elvax 420 (DuPont) were melted and mixed in a beaker. The molten wax and 38 grams of potassium chloride particles were mixed in the heated mixing reservoir. With all the heat guns on, the

- disc was then turned on to rotate at 700 rpm. The valve
- 2 was opened to allow the suspension to flow onto the
- 3 center of the disc from which it was dispersed. Coated
- 4 potassium chloride was thrown in an upward trajectory
- 5 (because of the angle of the disc with respect to
- 6 horizontal) landing at floor level roughly six feet away
- 7 from the disc. The smaller pure wax particles followed a
- 8 path much closer to the disc, separated by one or two
- 9 feet from the coated potassium chloride particles.
- 10 The large particles were separated into three
- 11 fractions by sieving. Twenty-eight percent were greater
- than 860 micrometers in diameter; 68% were between 590
- and 860 micrometers in diameter; and 4% were less than
- 14 590 micrometers in diameter. The small wax particles
- immediately around the disc were not recovered.
- The mean diameter measured for a small number of
- uncoated particles (n=15) was 521 ± 44 micrometers. The
- 18 coated particles had a mean diameter of 759 plus or minus
- 19 74 micrometers (N = 15). Therefore, the mean wall
- 20 thickness based on these measurements was 119
- 21 micrometers.
- In the fraction having a diameter greater than 860
- 23 micrometers, all the particles sank in a liquid of
- density approximately 10% greater than that of the wax

(i.e., diethyl succinate having a density of 1.047 grams 1 per cubic centimeter). This indicates that all these 2 particles contained potassium chloride. In the particles 3 having diameters in the range of 590-860 micrometers, 4 three particles out of twenty randomly chosen particles 5 floated, indicating that they were pure wax. (The 6 fraction of pure wax particles in this size range could 7 be decreased by higher disc speed or lower coating 8 viscosity). Water extraction showed that the fraction 9 having diameters greater than 860 micrometers contained 1Ò 54.7% potassium chloride, and 45.3% wax; the fraction 11 diameter contained 65% 590-860 micrometer 12 having potassium chloride and 35% wax. 13

Whereas the free potassium chloride dissolved 14 within seconds when placed in water, less than 3% of the 15 coated potassium chloride (of either size fraction) 16 dissolved in ten minutes. Only 16.2% dissolved in 70 17 minutes from the 590-860 micrometer fraction, and 30.9% 18 dissolved in 70 minutes from the fraction having 19 diameters greater than 860 micrometers. In 266 minutes, 20 39% dissolved from the fraction in the range of 590-860 21 micrometer diameter, and 62% from the fraction having 22 diameters in the range greater than 860 micrometers. 23 This indicates that the soluble potassium chloride 24 particles were well coated. 25

1 In this example (I) the potassium chloride was 2 well coated by the waxy polymer coating. This is 3 difficult by methods such as fluid-bed coating because 4 the waxy droplets do not wet the potassium chloride 5 surface well. Hence, the coating spreads poorly over the 6 surface. In the present invention, the particles start 7 by being totally immersed in the coating, and the process 8 is so rapid that the coating does not have sufficient 9 time to uncover the surface before solidifying.

10 <u>EXAMPLE II</u>

11 Non-pareil sugar spheres ranging from 1.2 to 2 12 millimeters in diameter were encapsulated in wax having 1-3 the following composition: Gulfwax (household paraffin wax) 38 grams; Polywax 500 (Bareco) 38 grams; and Elvax 14 15 420 (DuPont) 24 grams. While the wax was stirred at 104° 16 C in the mixing vessel, 40 grams of non-pareil spheres 17 were added, mixed well and the dispersion was poured on 18 to the disc, which was spinning at 1140 rpm. 19 resulting wax coating on the coated non-pareils ranged 20 to 25% by weight when measured by extraction. from 17 21 Uncoated non-pareil spheres released 73.6% of their 22 in ten minutes and 91% in thirty minutes. contents

- 1 Coated spheres did not release a detectable amount in ten
- 2 minutes (i.e., less than 1%). After thirty minutes, 1.1%
- 3 was released, and after one hour 2.6% was released.
- 4 Hence, the sugar was well coated.

5 <u>EXAMPLE III</u>

acetate butyrate grams of cellulose 6 Twenty (Eastman CAB 381-2) were dissolved in a mixture of 100 7 milliliters dichloromethane and 10 milliliters acetone 8 and placed in reservoir 20. Red sugar crystals having a 9 total weight of 28 grams and passing through a 500-micron 10 sieve but retained by a 250-micron sieve were mixed with 11 the CAB solution and the suspension fed to the disc 12 rotating at 1170 rpm without heating. The red particles 13 were well separated from the smaller, uncolored polymer 14 droplets during the coating operation. The fraction of 15 the coated product passing a 1 millimeter sieve but 16 retained by 860 micrometer openings (coated particles 17 agglomerated on the receiving surface due to inability to 18 evaporate all the solvent in the laboratory air) were 68% 19 sugar and 32% cellulose acetate butyrate coating. When 20 placed in water, 33% of the sugar dissolved in ten 21 minutes, and 65% in 90 minutes. 22

1 EXAMPLE IV

10

11

12

13

14

15

16

17

18

19

20

2 In order to coat with polymeric compositions 3 higher melt viscosity (e.g., polyethylene), it 4 necessary to control the air temperature adjacent to the 5 rotating disc. This was achieved to a greater extent 6 using the embodiments of Figs. 3 and 4 wherein the cover 7 plates 59 and 60 were employed. Hot air (for example, 8 from heat guns) is conducted directly through conduits 69 9 toward the disc.

melted in a beaker. 34 grams of spherical granules of slightly water-soluble organic acid, having a number mean diameter of 0.740 millimeters, was mixed with the molten polyethylene. The temperature of the mixture was 154° C. This was delivered to the disc which was rotating at 1140 rpm. The temperature of the plates facing the disc ranged from 130° to 170° C at different points. The viscous suspension was fed to the plate over a period of five minutes. 46 grams of material which did not contact a wall were recovered and were distributed as follows:

17

1	Diameter (Micrometers)	% of total	<u>Content</u>
2	500	7.8	Polyethylene only
3	500-590	0.9	Polyethylene only
4	590-860	7.3	coated organic acid
5	860-1000	14.5	coated organic acid
6	1000-1180	9.1	coated organic acid
7	1180 particulate	3.7	several spheres
8	non particulate	56.7	"taffy" and "spider
9			webs", polyethylene
10			containing no organic
11			acid.

(The non-particulate material is not observed at lower coating viscosity, but higher temperature could not be employed in this example to lower the viscosity owing to the thermal instability of the core particles).

For comparison, the particle size distribution of the uncoated organic acid spheres was as follows:

1	Diameter (micrometers)	wt %
2	500	0.4
3	500-590	1.2
4	500-860	79.2
5	860-1000	19.0
6	1000	0.3

7 The particles in size fraction 590 to 1000 8 micrometers contained 49% organic acid. When placed in 9 deionized water 2.4% of the organic acid was released in 10 16 hours, 7.1% in 72 hours. In the uncoated control 11 runs. the organic acid dissolved entirely in 1.2 approximately 30 minutes.

13 EXAMPLE V

14 400 gm Woods metal, (obtained from Federated Metal 15 Corp. of Newark, N.J.) was melted in a beaker. 50 gm of 16 nearly spherical KCl, passing a sieve with 860 micron 17 openings but being retained by a 500 micron sieve, was 18 heated to 85° C in an oven. An 8-inch disc with 19 twenty-four grooves 1/8 inch wide and 1/16 inch deep, held at 60° C and an inclination of 28 degrees with the 20 21 horizontal, was rotated at 6,300 rpm. A suspension of 22 KCl particles in the liquid Woods metal was formed and 23 poured onto the disc.

The distribution of particle sizes was as follows:

2	Diameter (micrometers)	Wt/(gm)	Content
3	Below 500	26.3	metal dust
4	500-590	21.8	spheres
5	500-860	10.0	spheres and flat
6			pieces
7	Above 860	37.1	agglomerates

The spheres were covered with the metal as determined by visual observation, but the potassium chloride dissolved readily, indicating that the coating was porous. Under the microscope the coating was seen to consist of many small metal crystals, giving the likelihood of leakage at crystal boundaries.

14 EXAMPLE VI

15 50 gm Polyethylene USI (density = 0. 927, melt index 16 = 250) was dissolved in 50 gm Gulfwax Paraffin at 150° C.

The flat, smooth 8-inch diameter disc was held at 130° C

- 1 and rotated at 1,800 rpm. 50 gm of nearly spherical
- 2 acetaminophen particles, 177 250 micrometers was mixed
- 3 with the polymer/wax solution. The 177 300 micrometers
- 4 product fraction contained mostly coated single
- 5 particles.

6 EXAMPLE VII

7 The cone-screen embodiment of Fig. 5 was employed 8 in coating nearly spherical KCl. The percent core 9 material relative to total particle (i.e., payload) 10 increased in the product from a run made under the same 11 conditions using a flat disc. This demonstrates that the 12 porous cone represents another means to control wall 13 by increasing the amount of coating liquid thickness 14 drained away from the core particles, and also decreases the fraction of excess coating liquid atomized from the 15 16 edge of the rotating device. There is, however, a 17 decrease in the number of discretely coated particles.

Coating composition was 38% by weight paraffin wax (Gulf), 38% by weight Polywax 500, Bareco, and 24% Elvax 420 (Dupont). Original particle size range was 0.50 to

- 1 86 mm. The slurry was fed to the disc or rotor at 116
- degrees centigrade, with the air between the plates kept
- 3 at 129-133'C.

% Payload

5		500-590 micrometers	590-850 micrometers
6	Flat Disk	75.8	57.3
7	Cone Screen	88	82.8

8 For the smooth disc, operated at the same

9 conditions the size distributions of uncoated core

10 particles, coated particles and atomized excess coating

11 were as follows:

12 Uncoated KCL

13	Diameter (micrometer	s) Weight (gm)	<u> </u>
14	Smaller than 420	.418	2.5
15	420-500	2.354	14.0
16	500-590	13.187	78.6
17	590-860	0.654	3.9
18	Larger than 860	0.172	1.0
19	То	tal 16.785	100.0

WO 85/05288 PCT/US85/00827

- 56 -

1 Product (in two rings around rotating device):

2 Coated KCL Particles (Outer Ring)

3	Diameter (micromete	ers)	Weight (gm)	70
4	Smaller than 500		.3	1.8
5	500-590		.6	3.6
6	590-860		12.1	73.4
7	860-1.00		2.6	15.8
8	1.00-1.18		0.5	3.0
9	Greater than 1.18		0.4	2.4
10		Total	16.5	100.00

Atomized Excess Coating (Inner Ring)

12	Diameter (micrometers)	Weight (gm)	7/0
13	Smaller than 149	1.0	5.5
14	149-177	0.9	5.0
15	177-250	1.5	8.3
16	250-297	3.3	18.3
17	297-420	7.3	40.6
18	420-500	1.3	7.2
19	Greater than 500	2.7	15.1
20		18.0	100.00

15

16

17

18

19

20

21

22

23

24

25

26

27

is only a small overlap in the size 1 There distribution of the large coated KCL particles (mostly 2 single coated particles) and the small droplets, 3 consist mostly of atomized pure coating material. 4 solid KCL is more dense, nearly all coated KCL particles 5 would be in the outer circle. If the disc is operated at 6 the viscosity of the 7 higher rotational speed or if coating is decreased, the diameter of the atomized 8 droplets in the inner ring decreases. The diameter 9 the ring containing the large coated particles will 10 increase if rotational speed is increased, or 11 decrease slightly if speed is kept the same but viscosity 12 is decreased, because they have a thinner coating. 13

We have described an improved method and apparatus for coating or microencapsulating solid particles viscous liquid droplets applicable to a wide range of The coating technique works well for coating sizes. in the 20-300 micrometer range where prior art solids methods of spraying the coating onto fluidized particles work poorly or not at all. In general the method is less expensive than prior art processes because it is very rapid and requires less energy and process control. Contact time between the coating material and the core material can be maintained extremely short. In addition, the particles need only be handled once in the apparatus opposed to many passages through the spray region of the spray coating methods.

The present invention is also useful in place of a variety of other processes for forming microcapsules. For example, the method of the present invention obviates the need for careful control and timed changes conditions required in many cases of coacervation solvent evaporation microencapsulation processes. present method avoids the difficulties of microcapsule agglomeration, a frequent problem in these processes.

The method of the present invention is also useful with dispersed liquid core droplets, made more viscous than the coating liquid to limit the spreading and atomization phenomena to the less viscous coating material. In this manner, the process of the present invention may be employed to form microcapsules similar to those formed by the annular-jet method.

Having described several embodiments of the new and improved method and apparatus for coating or microencapsulating solid particles or viscous liquid droplets in accordance with the present invention, it is believed that other modifications, variations and changes will be suggested to those skilled in the art in view of

- 1 the foregoing description. It is therefore to be
- 2 understood that all such variations, modifications and
- 3 changes are believed to fall within the scope of the
- 4 invention as defined in the appended claims.

1 WHAT IS CLAIMED IS:

22

23

24

2	Claim 1. A method of coating or encapsulating
3	individual mass components of core material having the
4	form of solid particles, aggregates formed by granulation
5	or liquid droplets with a coating of material that is
6	less viscous than the core material and solid at normal
7	room temperatures but liquid at elevated coating
8	temperatures, or in the form of a solution during the
9	coating process, said method comprising the steps of:
10	distributing said individual mass components of
11	core material throughout the liquid coating material to
12	form a suspension;
13	feeding the suspension onto a rotating surface
14	which centrifugally separates and disperses the
15	suspension into (1) droplets of pure coating material and
16	(2) individual components of said core material coated
17	with said coating material;
18	cooling the coated individual mass components or
19	removing solvent therefrom to solidify the coating
20	material;
21	and controlling the process so as to produce a

and controlling the process so as to produce a predominance of the droplets of excess liquid coating as droplets of a predetermined size smaller than the size of the coated individual mass components.

15

16

17

18

19

20

- Claim 2. The method according to Claim 1 wherein the step of controlling the process includes relating the speed of rotation of the surface to said predetermined size of the droplets.
- Claim 3. The method according to Claim 1 further comprising the step of separating said coated individual mass components from the droplets of pure coating material.
- Claim 4. The method according to Claim 3 wherein the step of separating includes sieving or use of centrifugal force to separate the relatively large coated individual mass components from the relatively small droplets of coating material.
 - Claim 5. The method according to claim 3 wherein the step of separating includes rotating said rotating surface at sufficiently high speed such that the droplets of pure coating material are significantly smaller than the coated individual mass components and therefore fall from said rotating surface at a location radially inward from the separated coated individual mass components.

PCT/US85/00827 WO 85/05288

- 62 -

- 1 Claim 6. The method according to Claim 1 wherein
- 2 the step of cooling or removing solvent includes passing
- 3 the coated mass components through ambient air or gas,
- unheated, by centrifugally hurling the 4 heated OT
- 5 components from said rotating surface.
- 6 Claim 7. The method according to Claim 1 further
- 7 comprising the step of heating the region at said
- 8 rotating surface to maintain the coating material
- 9 liquid form at said rotating surface.
- 10 Claim 8. The method according to Claim 7 wherein
- 11 the step of heating includes passing hot air between a
- 12 plate or plates positioned a short distance above and
- 13 below said rotating surface, or heating said plate or
- 14 plates by induction.
- 15 Claim 9. The method according to Claim 1 wherein
- the step of distributing comprises the steps of: 16
- 17 heating said coated material in a vessel to
- sufficiently high temperature to maintain the coating 18
- 19 material in liquid form;
- 20 dispersing said individual mass components of core
- material into said coating material in said vessel; and 21
- 22 stirring the contents of said vessel to form said
- 23 suspension of individual mass components distributed
- 24 throughout said coating material.

- Claim 10. The method according to Claim 1 wherein
- 2 the rotating surface is oriented at an acute angle
- 3 relative to horizontal.
- Claim 11. The method according to Claim 1 further
- 5 comprising the step of adjusting the thickness of the
- 6 coating material on said core material by adjusting the
- 7 rotational speed of said surface.
- 8 Claim 12. The method according to Claim 1 further
- 9 comprising the step of adjusting the thickness of the
- 10 coating material on said core material by adjusting the
- 11 viscosity of the liquid coating.
- 12 Claim 13. The method according to Claim 1 further
- 13 comprising the step of adjusting the thickness of the
- 14 coating material on said core material by adjusting the
- 15 rate at which said suspension is fed onto said rotating
- 16 surface in said step of feeding.
- 17 Claim 14. The method according to Claim 1 further
- 18 comprising the step of adjusting the thickness of the
- 19 coating material on said core material by adjusting the
- 20 wetted surface of the rotating device.

WO 85/05288 PCT/US85/00827

- 64 -

- 1 Claim 15. The method according to Claim 1 further 2 comprising the steps of:
- draining a portion of said coating material, which
- 4 is fed as part of said suspension to said rotating
- 5 surface, by providing porosity in said rotating surface
- 6 as with a mesh cover or porous material or perforated
- 7 material disposed in the form of a cone or bowl in spaced
- 8 relation above a further receiving surface;
- 9 centrifugally dispersing the coated mass
- 10 components, which are larger than the interstices or
- ll perforations of said mesh cover, along said mesh cover
- while partially draining the liquid coating material, by
- 13 gravity, such on and/or centrifugal force, away from the
- 14 coated mass components as the mass components move along
- 15 the mesh cover; and
- ló passing said liquid coating through the mesh cover
- 17 and recycling the passed liquid coating material.
- 18 Claim 16. The method according to Claim 1 further
- 19 comprising the steps of:
- 20 solidifying said droplets of coating liquid by
- 21 centrifugally projecting them from said rotating surface
- 22 through ambient air or gas (heated or unheated, depending
- on whether the coating is a melt or a solution);
- 24 collecting the solidified droplets of coating
- 25 material: and
- 26 recycling the collected droplets of coating
- 27 material.

- Claim 17. The method according to Claim 1 further comprising the steps of:
- 3 solidifying said droplets of coating material; and
- 4 recycling the solidified droplets of coating
- 5 material by returning them to said suspension.
- 6 Claim 18. The method according to Claim 1 further
- 7 comprising the step of adding a solvent for said coating
- 8 material to dissolve the coating material prior to or
- 9 during the formation of the suspension to permit coating
- 10 or to reduce the thickness of the coating material on
- 11 said coated mass components.
- 12 Claim 19. The method according to Claim 1 wherein
- 13 said core material is insoluble in said coating material.
- 14 Claim 20. The method according to Claim 1 wherein
- 15 said core material is at least partially soluble in said
- 16 coating material, and wherein the time from initial
- 17 contact between said core and coating materials to
- 18 solidifying of said coating material is sufficiently
- 19 short to prevent significant dissolution of said core
- 20 material into said coating material.

- Claim 21. The method according to Claim 1 wherein
- 2 the core material or a component contained thereon reacts
- 3 with the coating material or a component contained
- 4 therein to form an initial solid wall at the periphery of
- 5 each individual mass component before said coating
- 6 material solidifies.
- 7 Claim 22. The method according to Claim 1 wherein
- 8 said core material is in the form of liquid droplets
- 9 having a higher viscosity than that of the coating
- 10 material.
- 11 Claim 23. The method according to Claim 1 further
- 12 comprising the step of hardening the coated mass
- 13 components by transferring them to a chemical hardening
- 14 bath.
- 15 Claim 24. The method according to Claim 23
- 16 wherein said coating material is a gelatin and said
- 17 hardening bath includes glutaraldehyde.
- 18 Claim 25. The method according to claim 23
- 19 wherein the coating is gelatin and hot gas, air or
- 20 non-solvent liquid is contacted with the gelatin to cause
- 21 cross-linking and insolubilization.

- 1 Claim 26. The method according to Claim 22
- 2 wherein said individual mass components are generally
- 3 spherical particles having diameters in the range of 10
- 4 micrometers to 10 millimeters.
- 5 Claim 27. The method of claim 1 wherein the
- 6 coating liquid is a suspension containing fine insoluble
- 7 particles which become part of the coating on the core
- 8 particles, and are equally as well distributed in the
- 9 excess coating liquid.
- 10 Claim 28. The method according to Claim 1 wherein
- 11 said suspension is flung radially outward along said disc
- 12 surface in radially-extending angularly-spaced grooves
- 13 formed in said surface.
- Claim 29. In a process for coating particles with
- 15 a liquid coating, a method for obtaining individually
- 16 coated particles while simultaneously facilitating
- 17 removal of the coated particles from excess coating
- 18 liquid with which the particles are mixed in a
- 19 suspension, the method comprising feeding the suspension
- 20 to a rotating surface to separate the suspension into
- 21 coated particles and atomized liquid droplets expelled
- 22 circumferentially from the surface, and rotating the

- 1 surface at a speed for obtaining a predominance of the
- 2 excess pure coating droplets of a predetermined size
- 3 which is smaller than the size of the coated particles.
- 4 Claim 30. The invention of Claim 29 wherein the
- 5 volume percentage of particles to be coated in the
- 6 suspension is in the range 10-35%, preferably 20-35%.
- 7 Claim 31. The invention of claim 29 wherein
- 8 coated particles of temperature-labile material
- 9 (chemicals, enzymes, biological cells) are formed with
- 10 simultaneous formation of smaller droplets of excess
- 11 coating material, so rapidly that little or no
- 12 degradation or denaturation occurs.
- 13 Claim 32. The invention of claim 29 wherein the
- 14 core mass components to be coated are poorly wetted by
- 15 the coating liquid (wetting angle less than 90°) but are
- 16 completely coated by virtue of having been completely
- 17 immersed while in suspension and having the process of
- 18 liquid spreading and particle radial passage and
- 19 solidification occur too rapidly for the uncovering of
- 20 the core to occur.

10

11

12

13

14

15

16

17

18

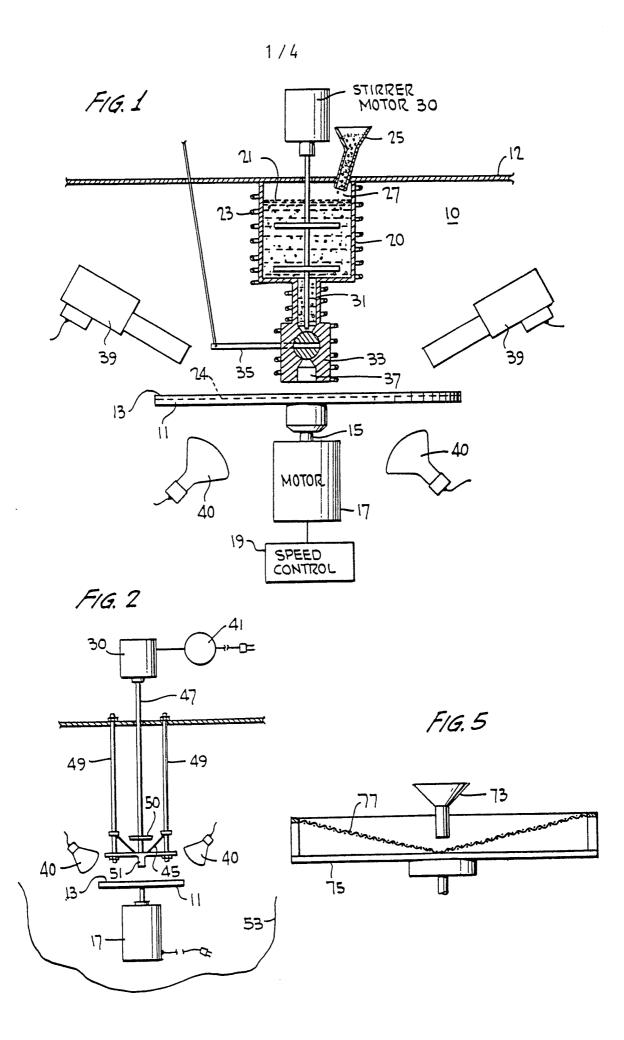
19

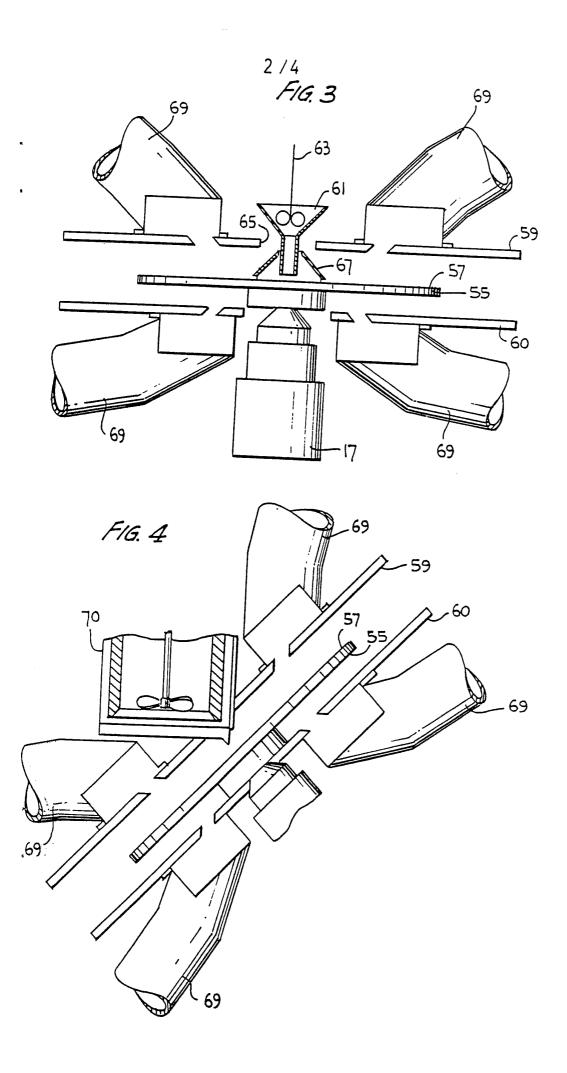
20

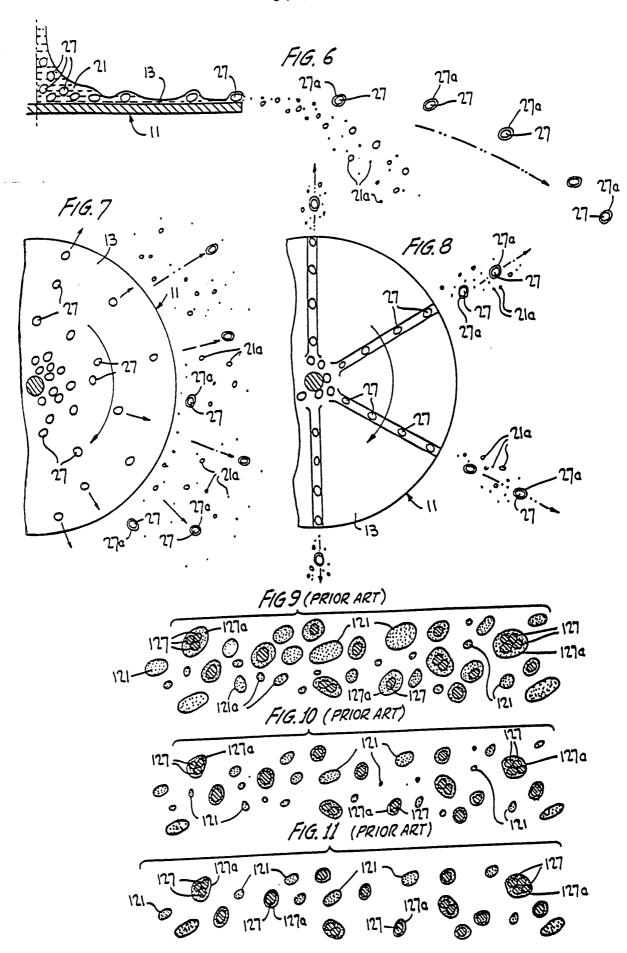
21

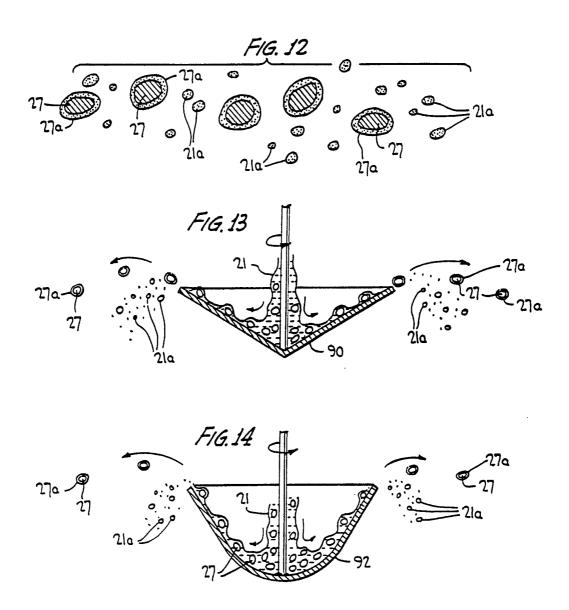
22

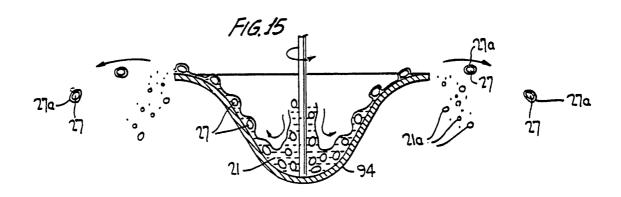
23


24


25


Claim 33. A product comprising (a) individual 1 mass components of core material having the form of solid 2 particles, aggregates formed by granulation, or liquid 3 coated or encapsulated in a liquid core 4 material, and (b) droplets of pure liquid 5 material of significantly smaller size than the coated 6 mass components, the product being produced by 7 process as claimed in claim 1. 8


Claim 34. Apparatus for coating or encapsulating individual mass components of core material having particles, aggregates formed of solid granulation, or liquid droplets with a coating material that is less viscous than the core material and solid at normal room temperatures but liquid at elevated coating temperatures, or in the form of a solution during the coating process, said apparatus comprising container means for containing the individual mass components of core material and the liquid coating material in the form of a suspension, feed means for feeding the suspension from the container means onto a rotating surface for centrifugally separating and dispersing the suspension into (1) droplets of pure coating material and (2) individual components of said core material coated with said coating material, cooling means for cooling the coated individual mass components or for removing solvent


- 1 therefrom to solidify the coating material, and means for
- 2 controlling the apparatus to produce a predominance of
- 3 the droplets of excess liquid coating as droplets of a
- 4 predetermined size smaller than the size of the coated
- 5 individual mass components.
- 6 Claim 35. The invention of claim 34 wherein the
- 7 controlling means includes means for relating the speed
- 8 of rotation of the surface to the predetermined size of
- 9 the droplets.
- 10 Claim 36. The invention of claim 34 including
- 11 means for separating the coated individual mass
- 12 components from the droplets of pure coating material.
- 13 Claim 37. The invention of claim 34 including
- 14 heating means for heating a region at said rotating
- 15 surface for maintaining the coating material in liquid
- 16 form at the rotating surface.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 85/00827

	international Application 100			
I. CLAS	SIFICATION OF SUBJECT MATTER (if several class	sification symbols apply, indicate all) ⁶		
Accordin	ng to International Patent Classification (IPC) or to both Na	itional Classification and IPC		
IPC4:	B 01 J 13/02; A 61 J 3/07			
II. FIELD	DS SEARCHED			
		entation Searched 7		
Classifica	tion System	Classification Symbols		
4	B 01 J			
IPC T	A 61 J			
	Documentation Searched other	than Minimum Documentation is are included in the Fields Searched		
	to the Extent that such Document	s are included in the Field Clare.		
	THENTE CONCINEDED TO BE DELEVANTS			
Category *	UMENTS CONSIDERED TO BE RELEVANT® Citation of Document, 11 with Indication, where ap	propriate, of the relevant passages 12	Relevant to Claim No. 13	
<u>Guicgoi</u>				
A	US, A, 4123206 (CLARENCE C	DANNELLY) 31 OC-	1 2 2 1 5 6	
	tober 1978, see column		1,2,3,4,5,6, 10,11,16,17,	
	column 4, lines 1-43;	rigure i	29,33,34,36	
			23,33,34,30	
A	US, A, 4386895 (LESTER A.	SODICKSON) 7 Janu-		
A	ary 1983, see column 3		1,2,19,23,	
	(cited in the applicat		26,28,29,34,	
	(orcea in one approac		35	
Α	US, A, 2955956 (CHARLES BA	UGH et al.) 11 Octo-		
	ber 1960, see column 3		1,6,8,16,19,	
	(cited in the applicat	ion)	34	
		D) 06 Testes 1061		
A	GB, A, 873757 (VITAMINS LT	D) 26 JULY 1961,	1,2,6,24	
	see page 2, lines 68-1	30; page 3, IIIles	1,2,0,24	
	1-20			
A	Derwent, volume 75, nr. 1,	4 February 1975.		
A	Section C.: "Agricultur	al Chemistry",		
	Derwent Publication Lt.	d. (London, GB)		
	& JP, B, 49049294 (CHI	SSO CORP.) 26 Decem-		
	ber 1974, see abstract		1,15	
Speci	al categories of cited documents: 10	"T" later document published after th	e international filing date	
"A" do	cument defining the general state of the art which is not insidered to be of particular relevance	or priority date and not in conflic cited to understand the principle	or theory underlying the	
"E" ear	rifer document but published on or after the international	invention "X" document of particular relevance		
	ng date cument which may throw doubts on priority claim(s) or	cannot be considered novel or involve an inventive step	cannot be considered to	
wh	ich is cited to establish the publication date of another ation or other special reason (as specified)	"Y" document of particular relevant cannot be considered to involve a	e; the claimed invention	
"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-				
"P" document published prior to the international filing date but in the art.				
late	later than the priority date claimed "A" document member of the same patent family			
IV. CERTIFICATION				
	e Actual Completion of the International Search	Date of Mailing of this International Sec	III. Apolt	
26t	th August 1985	27 SEP 1985		
Internatio	International Searching Authority Signature of Authorized Officer			
	EUROPEAN PATENT OFFICE			

Form PCT/ISA/210 (second sheet) (January 1985)

ategory *		Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
-refort	i		
A	DE,	B, 1185109 (VITAMINS LTD.) 7 January 1985, see column 7, lines 10-65; figure 2	1,7,9,34
A	FR,	A, 1433421 (DUNLOP RUBBER CO.) 21 February 1966 & GB, A, 1090971 see page 1, left-hand column, paragraph 2; page 6, left-hand column, paragraph 3 (cited in the application)	1
		•	
		·	
:			
:			

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

INTERNATIONAL APPLICATION NO. PCT/US 85/00827 (SA 9599)

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 17/09/85

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A- 4123206	31/10/78	US-A- 4218409	19/08/80
US-A- 4386895	07/06/83	None	
US-A- 2955956		None	
GB-A- 873757		None	
DE-B- 1185109		None	
FR-A- 1433421		GB-A- 1090971	