WO 01/86439 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 November 2001 (15.11.2001)

(10) International Publication Number

WO 01/86439 A2

PCT

(51) International Patent Classification’:
(21) International Application Number:

(22) International Filing Date:

GO6F 9/46
PCT/US01/14971

9 May 2001 (09.05.2001)

(72) Inventors: SLAUGHTER, Gregory, L.; 3326 Emer-
son Street, Palo Alto, CA 94306 (US). SAULPAUGH,
Thomas, E.; 6938 Bret Harte Drive, San Jose, CA 95120
(US). POUYOUL, Eric; 350 Day Street, San Francisco,
CA 94131 (US).

(25) Filing Language: English (74) Agent: KOWERT, Robert, C.; Conley, Rose & Tayon,
P.C., P.O. Box 398, Austin, TX 78767-0398 (US).
(26) Publication Language: English
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(30) Priority Data: AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
60/202,975 9 May 2000 (09.05.2000) US DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
60/208,011 26 May 2000 (26.05.2000) US HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
60/209,430 2 June 2000 (02.06.2000) US LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
60/209,140 2 June 2000 (02.06.2000) US NO, NZ, PL, PT, RO, RU, SD, SE, SG, SL, SK, SL, TJ, TM,
60/209,525 5 June 2000 (05.06.2000) US TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
09/692,765 19 October 2000 (19.10.2000) US
(84) Designated States (regional): ARIPO patent (GH, GM,

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901

San Antonio Road, Palo Alto, CA 94303 (US).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ,BY, KG, KZ, MD, RU, TJ, TM), European

[Continued on next page]

(54) Title: EVENT MESSAGE ENDPOINTS IN A DISTRIBUTED COMPUTING ENVIRONMENT

Event message endpoint receives
event message
1910

A 4

Event message endpoint extracts
event representation from the
message
1912

Event message endpoint sends
event representation to all
processes with registered interest
in the event.

1914

(57) Abstract: Embodiments of event message endpoints in a distributed
computing environment are described. A set of event messages that may
be generated by a service in the distributed computing environment may
be described in a data representation language event message schema for
the service. For each event message in the schema, the endpoint may
subscribe as a consumer of the event. A service may send a message
including a data representation language representation of the event to
each event message endpoint subscribed to the event. The event message
endpoint may extract the representation of the event from the message
and distribute it to clients with registered interest in the event type. The
event message endpoint may type check the event message and/or the
representation of the event against the message schema. Event messages
endpoints may also authenticate the sender of the message and verify the
integrity of message.

wO 01/86439 A2 D00 OO0 A

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

TITLE: EVENT MESSAGE ENDPOINTS IN A DISTRIBUTED COMPUTING ENVIRONMENT

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to distributed computing environments including Web-ceniric and Internet-centric
distributed computing environments, and more particularly to a heterogeneous distributed computing environment
implementing publish and subscribe event handling based upon a message passing model using event message

endpoints for event notification among network clients and services.

2. Description of the Related Art

Intelligent devices are becoming increasingly common. Such devices range from smart appliances,
personal digital assistants (PDAs), cell phones, lap top computers, deskiop computers, workstations, mainframes;
even, super computers. Networks are also becoming an increasingly common way to interconnect intelligent
devices so that they may communicate with one another. However, there may be large differences in the computing
power and storage capabilities of various intelligent devices. Devices with more limited capabilities may be referred

[13

to as small footprint devices or “thin” devices. Thin devices may not be able to participate in networks
interconnecting more capable devices. However, it may still be desirable to interconnect a wide variety of different
types of intelligent devices.

The desire to improve networking capabilities is ever increasing. Business networks are expanding to
include direct interaction with suppliers and customers. Cellular phones, personal digital assistants and Internet-
enabled computers are commonplace in both business and the home. Home networks are available for
interconnecting audio/visual equipment such as televisions and stereo equipment to home computets, and other
devices to control intelligent sysféms such as security systems and temperature control thermostats. High bandwidth
mediums such as cable and ASDL enable improved services such as Internet access video on demand, e-commerce,
etc. Network systems are becoming pervasive. Even without a formal network, it is still desirable for intelligent
devices to be able to communicate with each other and share resources.

Currently, traditional networks are complex to set up, expand and manage. For example, adding hardware
or software to a network often requires a network administrator to load drivers and configure systems. Making
small changes to a network configuration may require that the entire network be brought down for a period. In
addition, certain intelligent devices may not support the necessary interfaces to communicate on a given network.

What is needed is a simple way to connect various types of intelligent devices to allow for communication
and sharing of resources while avoiding the interoperability and complex configuration problems existing in
conventional networks. Various technologies exist for improving the addition of devices to a network. For
example, many modern 1/O buses, such as the Universal Serial Bus, 1394 and PCI, support plug and play or
dynamic discovery protocols to simplify the addition of a new device on the bus. However, these solutions are
limited to specific peripheral buses and are not suitable for general networks.

A more recent technology, Jini from Sun Microsystems, Inc., seeks to simplify the connection and sharing
of devices such as printers and disk drives on a network. A device that incorporates Jini may announce itself to the

network, may provide some details about its capabilities, and may immediately become accessible to other devices

10

i5

20

25

30

35

WO 01/86439 PCT/US01/14971

on the network. Jini allows for distributed computing where the capabilities of the various devices are shared on a
network. The Jini technology seeks to enable users to share services and resources over a network. Another goal of
the Jini technology is to provide users with easy access to resources anywhere on the network while allowing the
network location of the user to change. Jini also seeks to simplify the task of building, maintaining and altering a
network of devices, software and users.

Jini requires that each Jini enabled device have a certain amount of memory and processing power.
Typically, a Jini enabled device is equipped with a Java Virtual Machine (JVM). Thus, Jini systems are Java
technology centered. Java is a high level object oriented programming language developed by Sun Microsystems,
Inc. Java source code may be compiled into a format called bytecode, which may then be executed by a Java
Virtual Machine.

Bytecode is computer source code that is processed by a virtual machine, rather than the "real" computer
machine, the hardware processor. The virtual machine converts generalized machine instruction (the bytecode) into
specific machine instructions (instructions that the computer's processor will understand). Using a language that
comes with a virtual machine for each platform, the source language statements may be compiled only once and may
then run on any platform that supports the virtual machine. The Java programming language is an example of such a
language, and the Java Virtual Machine (JVM) is an example of a virtual machine platform that supports programs
written in the Java programming language.

Since Java Virtual Machines may be provided for most computing platforms, Java and thus Jini provide
for a certain amount of platform independence. The Jini architecture leverages off the assumption that the Java
programming language is the implementation language for the components of the Jini system. The ability to
dynamically download and run Java code is central to many features of the Jini architecture.

The purpose of the Jini architecture is to federate groups of devices and software components into a single
dynamic distributed system. A key concept within the Jini architecture is that of a service. A service is an entity
that can be used by a person, a program, or another service. Two examples of services are printing a document and
translating from one word processor format to another. Jini allows the members of a Jini system to share access to
services. Services in a Jini system communicate with each other by using a service protocol, which is a set of
interfaces written in the Java programming language. Services are found and resolved in a Jini system by a look-up
service. A look-up service maps interfaces indicating the functionality provided by a service to sets of objects that
implement the service.

Descriptive entries may also be associated with a service. Devices and applications use a process known as
discovery to register with the Jini network. Once registered, the device or application places itself in the look-up
service. The look-up service may store not only pointers to these services on the network, but also may store the
code for accessing these services. For example, when a printer registers with the look-up service, it loads its printer
driver and/or an interface to the driver into the look-up service. When a client wants to use the printer, the driver
and driver interface are downloaded from the look-up service to the client. This code mobility means that clients
can take advantage of services from the network without pre-installing or loading drivers or other software.

Communication between services in a Jini system is accomplished using the Java Remote Method
Invocation (RMI). RMI is a Java programming language enabled extension to traditional remote procedure call

mechanisms. RMI allows not only data to be passed from object to object around the Jini network, but full objects

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

including code as well. Jini systems depend upon this ability to move code around the network in a form that is
encapsulated as a Java object.

Access to services in a Jini system is lease based. A lease is a grant of guaranteed access over a time. Each
lease is negotiated between the user of the service and the provider of the service as part of the service protocol. A
service may be requested for some period and access may be granted for some period presumably considering the
request period. Leases must be renewed for a service to remain part of the Jini system.

Figure 1 illustrates the basic Jini technology stack. The Jini technology defines a distributed programming
model 12 (supported by JavaSpaces, leases, and object templates). Object communication in Jini is based on an
RMI layer 14 over a TCP/IP capable networking layer 16.

Jini is a promising technology for simplifying distributed computing. However, for certain types of
devices, Jini may not be appropriate. The computing landscape is moving toward a distributed, Web-centric service
and content model where the composition of client services and content changes rapidly. The client of the future
may be a companion type device that users take with them wherever they go. Such a device may be a combination
of a cell phone and a PDA for example. It would be desirable for such devices to be able to communicate and share
resources with devices that are more powerful, as well as with thinner or less powerful devices. ’

In addition, with the advent of the Internet and resulting explosion of devices connected to the net, a
distributed programming model designed to leverage this phenomenon is needed. An enabling technology is needed
that facilitates clients connecting to services in a reliable and secure fashion. Various clients from thick to thin and
services need to be connected over the Internet, corporate Internets, or even within single computers. It is desirable
to abstract the distance, latency and implementation from both clients and services.

The key challenge for distributed computing technology is to be scalable from powerful thick clients down
to very thin clients such as embedded mobile devices. Current distributed computing technologies, such as Jini, may
not be scalable enough for the needs of all types of clients. Some devices, such as small footprint devices or
embedded devices, may lack sufficient memory resources and/or lack sufficient networking bandwidth to participate
satisfactorily in current distributed computing technologies. The low end of the client spectrum, including
embedded mobile devices, often have limited or fixed code execution environments. These devices also may have
minimal or no persistent storage capabilities. Most small, embedded mobile devices do not support a Java Virtual
Machine. Most code-capable small clients run native code only. In addition, most small devices have little more
than flash memory or battery backed RAM as their sole persistent storage media. The size of the storage is ofien
very small and sometimes read-only in nature. Furthermore, the access time of this type of storage media is often an
order of magnitude greater than hard disk access time in clients that are more powerful.

Existing connection technologies, such as Jini, may not be as scalable as desired because they are too big.
For example, Jini requires that all participants support Java; however, many small clients may not have the resources
for a Java Virtual Machine. Furthermore, due to its use of RMI, Jini requires that clients be able to download code
and content. Jini may augment the existing client platform by downloading new classes, which may pose security
and size concerns for small devices such as embedded devices. Jini works by clients and resources communicating
by passing code and data. When a client activates a Jini service, the service may return its results to the client,
which may include a large amount of code or content. In Jini, a client may call a method and a large object may be

returned, and thus downloaded. The client may not have the resource to accept the returned object. In addition,

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

RMI and Java itself require a lot of memory. Many small foot print devices may not have the resources to
participate effectively or at all in current distributed computing technologies.

Another concern with existing distributed computing technologies is that they often require certain levels of
connection capability and protocols. For example, Jini assumes the existence of a network of reasonable speed for
connecting computers and devices. Jini also requires devices to support TCP/IP network transport protocol.
However, many smaller devices may have limited connection capabilities. Small devices may have high latency or
low speed network connections and may not support TCP/IP.

As mentioned above, Jini requires devices to support Java and thus include a Java Virtual Machine, which
requires a certain amount of processing and storage capabilities that might not be present for many small devices.
This also restricts the flexibility of Jini in that non-Java devices may not directly participate in a Jini system. Since
Jini requires Java, it may be deemed a homogenous environment. However, it is desirable to have a distributed
computing facility for heterogeneous distributed computing that scales from extremely small embedded devices
through PDA’s and cell phones to laptops and beyond even to the most powerful computers.

Other heterogeneous solutions exist, such as the Common Object Request Broker Architecture (CORBA).
CORBA is an architecture that enables program objects to communicate with one another regardless of the
programming language they were written in or what operating system they’re running on. However, CORBA does
not address all of the connection issues that are addressed by Jini. In addition, CORBA suffers from similar
scalability problems as Jini.

Technology such as Jini and CORBA use a code-centric programming model to define the interface
between remote components. A code-centric programming model defines programmatic interfaces or API’s for
communication between remote clients or components. The API’s may be defined in a particular programming
language. The API’s must be agreed to by all software components to ensure proper interoperability. Since all
access to components is through these standards API’s, the code that implements these API’s must be present in the
client platform. The code may be statically linked into the platform or dynamically downloaded when needed.
Many embedded or mobile devices simply cannot accept code dynamically from a network due to the quality control
issues involved as well as the reliance on a single langnage and program execution environment. Data-centric
models, such as networking protocols, may avoid the dependence on moving code; however, such protocols are not
rich enough to easily provide for distributed computing and they also lack the ease of programming with code and
other programming features, such as type safety.

Conventional distributed computing systems rely on the ability of a program executing on a first device to
be able to remotely call a program on a second device and have the results returned to the first device. The Remote
Procedure Call (RPC) is a basic mechanism for remotely calling a program or procedure. CORBA and Jini are both
based on the ability to remotely invoke program methods. However, communicating by passing code or objects,
such as in Jini or CORBA, may be somewhat complex. For example, as mentioned above, Jini uses the Java Remote
Method Invocation (RMI) to communicate between services. In order for a client to move Java objects to and from
remote locations, some means of serialization/deserialization is needed. Such current facilities in the Java
Development Kit (JDK) rely upon the reflection API to determine the content of a Java object, and ultimately that
code must consult the Virtual Machine. This code is quite large and inefficient.

The fundamental problems with the current method for doing serialization/deserialization include its size,

speed, and object traversal model. Code outside the JVM does not know the structure or graph of a Java object and

4

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

thus must traverse the object graph, pulling it apart, and ultimately must call upon the JVM. Traditional
serialization and reflection mechanisms for storing and moving Java objects are just not practical for all types of
devices, especially thinner devices. Some of the difficulties with Java reflection and serialization are that an
object’s graph (an object’s transitive closure) reflection is difficult to do outside the JVM. Serialization is too large,
requiring a large amount of code. In addition, serialization is a Java specific object interchange format and thus may
not be used with non-Java devices.

The Jini distributed computing model requires the movement of Java objects between Java devices. Thus,
the serialization mechanism itself is not platform independent since it may not be used by non-Java platforms to
send and receive objects. Serialization is a homogenous object format — it only works on Java platforms.
Serialization uses the reflection API and may be limited by security concerns, which often must be addressed using
native JVM dependent methods. The reflection API may provide a graph of objects, but is inefficient due to the
number of calls between the JVM and the code calling the reflection methods.

The use of Java reflection to serialize an object requires an application to ping pong in and out of the JVM
to pick apart an object one field at a time as the trausitive closure of the object is dynamically analyzed.
Deserializing an object using Java deserialization requires the application to work closely with the JVM to
reconstitute the object one field at a time as the transitive closure of the object is dynamically analyzed. Thus, Java
serialization/deserialization is slow and cumbersome while also requiring large amounts of application and JVM
code as well as persistent storage space.

Even for thin clients that do support Java, the Jini RMI may not be practical for thin clients with minimal
memory footprints and minimal bandwidth. The serialization associated with the Jini RMI is slow, big, requires the
JVM reflection API, and is a Java specific object representation. Java deserialization is also slow, big and requires
a serjalized-object parser. Even Java based thin clients may not be able to accept huge Java objects (along with
needed classes) being returned (necessarily) across the network to the client as required in Jini. A more scalable
distributed computing mechanism is needed. It may be desirable for a more scalable distributed computing
mechanism to address security concerns and be expandable to allow for the passing of objects, such as Java objects,
and even to allow for process migration from one network mode to another.

Object based distributed computing systems need persistent storage. However, as discussed above,
attempts at object storage are often language and operating system specific. In addition, these object storage
systems are too complicated to be used with many small, embedded systems. For example, the Jini technology uses
JavaSpaces as persistent object containers. However, a JavaSpace can only store Java objects and cannot be
implemented in small devices. Each object in a JavaSpace is serialized and pays the above-described penalties
associated with Java serialization. It may be desirable to have a heterogeneous object repository for distributed
computing that may scale from small to large devices.

JavaSpaces from Sun Microsystems, Inc., draws from the parallel processing work of David Gelemter, a
computer science professor at Yale University. Gelernter’s set of functions named “Linda” create a shared memory
space called a TupleSpace, in which results of a computer’s processes or the processes themselves may be stored for
access by multiple CPUs. Linda therefore provides a global shared memory for multiple processors.

Another technology which extends Linda is TSpaces from IBM Corporation. TSpaces extends the basic
Linda TupleSpace framework with real data management and the ability to download new data types and new

semantic functionality. TSpaces provides a set of network communication buffers and a set of APIs for accessing

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

those buffers. Like many of the solutions discussed above, TSpaces therefore uses a code-centric programming
model and shares the drawbacks of such a model. Additionally, TSpaces is implemented in the Java programming
language and therefore requires a Java Virtual Machine or other means of executing Java bytecode, such as a Java-
capable microprocessor. Therefore, TSpaces may be inappropriate for small-footprint devices which cannot devote
sufficient resources for executing Java bytecode.

It is desirable in object oriented distributed systems to be able to locate object repositories and find
particular objects within those repositories. As mentioned above, the Jini look-up server may not be practical for
small devices with small memory footprints. A more efficient mechanism for locating object stores may be
desirable.

It may be desirable in a distributed network computing model for clients to have the ability to locate
services. Current network protocols either provide only a single standard service access interface that provides no
security when accessing a network service or provides “all or nothing” access to the full range of the service’s
capabilities, which may include administrator or privileged functions. Also, current network protocols to locate
services do not provide a flexible mechanism for finding services. Current protocols either do not provide any
selective search capability at all (e.g. UPnP) or only provide a primitive keyword and attribute grammar mechanism
(e.g. SLP). Thus, current service discovery mechanism may be too inflexible in their security and search criteria
mechanisms. '

Also, current service discovery models have a symmetric model for service location. However, it may be a
waste of resources for certain service devices, such as devices whose functionality is available on a proximity basis,
to support the discovery model. This is because such devices are already located by proximity (e.g. one device
physically pointing to another one). Thus, an alternate light-weight discovery mechanism may also be desirable for
such devices.

Distributed object access also desires a fair and efficient sharing mechanism. As described above Jini
currently uses a leasing mechanism to share objects. However, Jini leases are time based which may result in a
number of problems. For example, the current object holder might have no idea how long to lease an object and
may hold it too long. In addition, the use of time-based leases may require that time be synchronized between
multiple machines. Moreover time based leasing may require operating system support. In addition, Jini leases are
established and released via RMI. Thus, the Jini leasing mechanism suffers from the above-noted problems with
using RMI. In addition, the Jini leasing mechanism does not provide a security mechanism for establishing,
renewing and canceling of leases. Other leasing mechanisms may be desirable.

Generally speaking, it is desirable for small memory foot print mobile client devices to be able to run a
variety of services, both legacy and new, in a distributed environment. The types of small clients may include cell
phones and PDA’s with a variety of different networking interfaces, typically low bandwidth. Often these devices
have very small displays with limited graphics, but they could include laptops and notebook computers, which may
have a larger display and more sophisticated graphics capabilities. The services may be a wide range of applications
as well as control programs for devices such as printers. It is desirable for a mobile client to be able to use these
services wherever they may be.

A mobile client will often be at a temporary dynamic network address, so networking messages it sends
cannot be routed beyond that networkihg interface (otherwise there may be collisions when two different clients on

different networks have the same dynamic address). Mobile clients often do not bave the capability for a full

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

function browser or other sophisticated sofiware. The displays may limit the client from running certain
applications. Traditional application models are based on predetermined user interface or data characteristics. Any
change to the application requires recompilation of the application.
It may be desirable for such clients to have a mechanism for finding and invoking distributed applications or
services. The client may need to run even large legacy applications which could not possibly fit in the client’s
memory footprint. As discussed above, current technology, such as Jini, may not be practical for small footprint
devices. The pervasiveness of mobile thin clients may also raise additional needs. For example, it may be desirable
to locate services based on the physical location of the user and his mobile client. For example, information about
the services in a local vicinity may be very helpful, such as local restaurants, weather, traffic maps and movie
information. Similarly, information about computing resources, such as printers in a particular location, may be
belpful. Current technologies do not provide an automatic mechanism for locating services based on physical
location of the client. Another need raised by thin mobile clients is that of addressing the human factor. Thin
mobile clients typically do not contain ergonomic keyboards and monitors. The provision of such human factor
services and/or the ability to locate such services in a distributed computing environment may be desirable.

A distributed computing model should provide clients with a way to find transient documents and services.
It may be desirable to have a mechanism for finding general-purpose documents (including services and/or service
advertisements), where the documents are expressed in a platform-independent and language-independent typing
such as that provided by eXtensible Markup Language (XML). Current approaches, including lookup mechanisms
for Jini, Universal Plug and Play (UPnP), and the Service Location Protocol (SLP), do not support such a general-
purpose document lookup mechanism. For example, the Jini lookup mechanism is limited to Java Language typing
and is therefore not language-independent. UPnP and SLP support a discovery protocol only for services, not for

general-purpose documents.

SUMMARY OF THE INVENTION

Some embodiments of a distributed computing environment may support an event “publish and subscribe”
messaging model using event message endpoints. Various embodiments of an event message endpoint, also referred
to as an event message gate, are described. A message gate is a message endpoint for a client or clients in a
distributed computing environment to receive event notification messages in a publish and subscribe event
messaging model. A message gate may provide a secure message endpoint that sends and receives type-safe
messages. The messages may be in a data representation language such as eXtensible Mark-up Language (XML).
Messages gates may allow clients and services to exchange data representation language messages in a secure and
reliable fashion over any suitable message transport (e.g. HTTP). A message gate may provide a secure
communication endpoint that may type check data representation language messages.

An event message endpoint may be constructed by a gate factory. An event message endpoint may be
constructed that may only receive a subset of the total events described in an event message schema for a service.
The event message endpoint may perform verification of event messages against the event message schema to
ensure that the message is in the allowed subset of event messages. Each message sent by a gate may also include an
authentication credential embedded in the message by the gate so that the receiving gate may authenticate the
message. The receiving gate may compare the authentication credential in the message to an authentication

credential used in creating the gate to perform the message authentication. In one embodiment, messages may also

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

include a token or credential that includes information that may allow the receiving gate to verify that the message
has not been compromised or altered.

An event message endpoint may recognize a set of events published by a service in the distributed
computing environment, subscribe to the events, receive event messages from the service when generated by the
service, and distribute the received events to processes (e.g. clients) who have registered interest in the events with
the event message endpoint. The set of event messages that may be generated by a service in the distributed
computing environment may be described in a message schema for the service. The message schema may be
included in a service advertisement for the service. Each event message in the schema may be named using a tag
(e.g. XML tag). For each event message in the schema, the event message endpoint may subscribe as a consumer of
the event.

When an event is generated by a service, a message including a data representation langnage representation
of the event may be sent to each event message endpoint subscribed as a consumer of the event. When an event
message endpoint receives the event message from the service, the data representation language representation of
the event may be extracted from the event message, and the event may be distributed. During event distribution, the
data representation language representation of the event may be distributed to interested clients on the client
platform on which the event message endpoint is receiving messages. Event consumers (clients) may subscribe with
the event message endpoint for each type of event. In one embodiment, event types are Java event types. In one
embodiment, an event consumer may supply an event handler callback method to the event message endpoint. As
each event message arrives at the endpoint from the service producing the event, the event message endpoint call
each event handler method of subscribers to the event type, passing the data representation language representation
of the event to each called event handler.

An event message endpoint may automatically subscribe for produced events on behalf of local consumers
(clients). As a client registers interest with the event message endpoint for one or more events of the service, the
endpoint registers interest with the service that produces the event. Clients may also unsubscribe to events when no
longer interested in the events, and the event message endpoint may then unregister with the service that produces
the event.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an illustration of a conventional distributed computing technology stack;

Figure 2 is an illustration of a distributed computing environment programming model according to one
embodiment;

Figure 3 is an illustration of messaging and networking layers for a distributed computing environment
according to one embodiment;

Figure 4 is an illustration of a discovery service for finding spaces advertising objects or services in a
distributed computing environment aécording to one embodiment;

Figure 5 illustrates client profiles supporting static and formatted messages for a distributed computing
environment according to one embodiment;

Figure 6 is an illustration of a distributed computing model employing XML messaging according to one
embodiment;

Figure 7 illustrates a platform independent distributing computing environment according to one

embodiment;

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

Figure 8 is an illustration of a distributed computing model in which services are advertised in spaces
according to one embodiment;

Figure 9 is an illustration of a distributed computing model in which results are stored in spaces according
to one embodiment;

Figure 10 is an illustration of client and service gates as messaging endpoints in a distributed computing
model according to one embodiment;

Figure 10b is an illustration a message endpoint generation according to a schema for accessing a service
according to one embodiment.

Figure 11a illustrates gate creation in a distributed computing environment according to one embodiment;

Figure 11b illustrates gate creation and gate pairs in a distributed computing environment according to one
embodiment;

Figure 12 is an illustration of possible gate components in a distributed computing environment according
to one embodiment;

Figure 13 is an illustration of proxy client for a conventional browser to participate in the distributed
computing environment according to one embodiment;

Figure 14 illustrates the use of 2 method gate to provide a remote method invocation interface to a service
in a distributed computing environment according to one embodiment;

Figure 15 is an illustration of the use of a space in a distributed computing environment according to one
embodiment;

Figure 16 illustrates advertisement structure according to one embodiment;

Figure 17 illustrates one example of advertisement state transitions that an advertisement may undergo
during its lifetime according to one embodiment;

Figure 18 is an illustration various space location mechanisms in a distributed computing environment
according to one embodiment;

Figure 19 is an illustration of space federations in a distributed computing environment according to one
embodiment;

Figure 20 is a flow diagram illustrating client formation of a session with a space service in a distributed
computing environment according to one embodiment;

Figure 21 is an illustration of a space event type hierarchy for one embodiment;

Figure 22 is a flow diagram illustrating service instantiation in a distributed computing environment
according to one embodiment;

Figure 23 is an illustration of a default space in a distributed computing environment according to one
embodiment;

Figure 24 illustrates an example of a device bridging proximity-based devices onto another transport
mechanism to allow the services provided by the proximity-based devices to be accessed by devices outside the
proximity range of the devices, according to one embodiment;

Figure 25 is an illustration of the use of lease renewal messages in a distributed computing environment
according to one embodiment;

Figure 26a is a flow diagram illustrating an authentication service providing an authentication credential to

a client according to one embodiment;

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

Figure 26b is a flow diagram expanding on step 1002 of Figure 26a and illustrating an authentication
service generating an authentication credential according to one embodiment;

Figure 27 illustrates one embodiment of a bridging mechanism;

Figure 28 illusirates an example of a space discovery protocol mapped to an external discovery service
according to one embodiment;

Figure 29 illustrates bridging a client external to the distributed computing environment to a space in the
distributed computing environment according to one embodiment;

Figure 30 is an illustration of a proxy mechanism according to one embodiment;

Figure 31 illustrates one embodiment of a client with an associated display and display service according to
one embodiment; ‘

Figures 32A and 32B illustrate examples of using schemas of dynamic display objects according to one
embodiment;

Figure 33A illustrates a typical string representation in the C programming language;

Figure 33B illustrates an example of a conventional string function;

Figure 33C illustrates an efficient method for representing and managing strings in general, and in small
footprint systems such as embedded systems in particular according to one embodiment;

Figure 34 illustrates a process of moving objects between a client and a service according to one
embodiment;

Figures 35a and 35b are data flow diagrams illustrating embodiments where a virtual machine includes
extensions for compiling objects into representations of the objects, and for decompiling representations of objects
into objects;

Figure 36 illustrates a client and a service accessing store mechanisms in the distributed computing
environment, according to one embodiment;

Figure 37 illustrates process migration using an XML representation of the state of a process, according to
one embodiment;

Figure 38 illustrates a mobile client device accessing spaces in a local distributed computing network,
according to one embodiment;

Figure 39a illustrates a user of a mobile device discovering the location of docking stations, according to
one embodiment;

Figure 39b illustrates a mobile client device connecting to a docking station, according to one embodiment;

Figure 40a illustrates an embodiment of embedded devices controlled by a control system and accessible
within the distributed computing environment, according to one embodiment;

Figure 40b illustrates a device control system connected via a network (e.g. the Internet) to embedded
devices accessible within the distributed computing environment, according to one embodiment;

Figure 41 is a flow diagram illustrating creating a gate according to one embodiment;

Figure 42a is a flow diagram illustrating a client sending a message to a service according to one
embodiment;

Figure 42b is a flow diagram illustrating a service receiving a message from a client and using an

authentication service to authenticate the message according to one embodiment;

10

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

Figure 42c¢ is a flow diagram illustrating the general process of a client and service exchanging messages
with embedded authentication credential according to one embodiment; and

Figure 43 is a flow diagram illustrating a mechanism for checking the integrity of messages according to
one embodiment;

Figure 44 is a flowchart illustrating a service generating event messages according to one embodiment; and
Figure 45 is a flowchart illustrating an event message gate receiving event messages and distributing events
according to one embodiment.

While the invention is susceptible to various modifications and alternative forms, specific embodiments
thereof are shown by way of example in the drawings and will herein be described in detail. It should be
understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the
particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives

falling within the spirit and scope of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Overview of Embodiments for Distributed Computing

Turning now to Figure 2, a distributed computing environment programming model is illustrated. The
model includes AP layer 102 for facilitating distributed computing. The API layer 102 provides an interface that
facilitates clients connecting to services. The API layer 102 is concerned with the discovery of and the connecting
of clients and services. The API layer 102 provides send message and receive message capabilities. This messaging
API may provide an interface for simple messages in a representation data or meta-data format, such as in the
eXtensible Mark-up Language (XML). Note that while embodiments are described herein employing XML, other
meta-data type languages or formats may be used in alternate embodiments. In some embodiments, the API layer
may also provide an interface for messages to communicate between objects or pass objects, such as Java objects.
API's may be provided to discover an object repository or “space”, find a particular object, claim and release an
object, and write or take an object to or from the object repository. Objects accessible through API layer 102 may
be represented by a representation data format, such as XML. Thus, an XML representation of an object may be
manipulated, as opposed to the object itself.

API layer 102 sits on top of a messaging layer 104. The messaging layer 104 is based on a representation
data format, such as XML. In one embodiment, XML messages are generated by messaging layer 104 according to
calls to the API layer 102. The messaging layer 104 may provide defined static messages that may be sent between
clients and services. —Messaging layer 104 may also provide for dynamically generated messages. In one
embodiment, an object, such as a Java object, may be dynamically converted into an XML representation. The
messaging layer 104 may then send the XML object representation as a message. Conversely, the messaging layer
104 may receive an XML representation of an object. The object may then be reconstituted from that message.

In one embodiment, messages sent by messaging layer 104 may include several basic elements, such as an
address, authentication credentials, security tokens, and a message body. The message system transmission and
receive mechanisms may be completely stateless. Any notion of state may be embedded in the message stream

between sender and receiver. Thus, message transmission may be done asynchronously. In a preferred

11

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

embodiment, no connection model is imposed. Thus, transports such as TCP are not required. Also, error
conditions may be limited to non-delivery or security exceptions.

Messaging layer 104 sits on top of a message capable networking layer 106. In a preferred embodiment,
messaging layer 104 does not require that a particular networking protocol be used. TCP/IP and UDP/IP are
examples of message capable protocols that may be used for message capable networking layer 106. However,
other more specialized protocols such as the Wireless Application Protocol (WAP) may also be used. Other
possible message protocols are IrDA and Bluetooth network drivers beneath the transport layer. Networking layer
106 is not limited to a single reliable connection protocol, such as TCP/IP. Therefore, connection to a larger variety
of devices is possible. .

In one embodiment, message capable network layer 106 may be implemented from the networking classes
provided by the Java2 Micro Edition (J2ME) platform. The Java2 Micro Edition platform may be suitable for
smaller footprint devices that do not have the resources for a full Java piatform or in which it would not be efficient
to run a full Java platform. Since J2ME already provides a message capable family of networking protocols (to
support sockets), it follows that for the small footprint cost of adding messaging laifer 104, distributing computing
facilities may be provided for small devices that already include J2ME. ‘

Message capable networking layer 106 may also be provided by the Java Development Kit’s (JDK)
javanet networking classes. Alternatively, any message capable networking facilities may be used for message
capable networking layer 106. In a preferred embodiment, a reliable transport is not required, thus embedded
devices supporting an unreliable data gram transport such as UDP/IP may still support the messaging layer.

Thus, thin clients may participate in a distributed computing environment by simply adding a thin
messaging layer 104 above a basic networking protocol stack. As shown in Figure 3, a basic system includes
messaging layer 104 on top of a networking layer 106. The networking layer may provide for reliable messages,
e.g. TCP, or unreliable messages, e.g. UDP. The Internet Protocol (IP) is shown in Figure 3 as an example of
protocol that may be used in networking layer 106. However, the distributed computing environment does not
require IP. Other protocols may be used in the distributed computing environment besides IP. A network driver
such as for Ethernet, Token Ring, Bluetooth, etc. may also be part of the networking layer. Many small clients
already provide a network driver and transport protocol such as UDP/IP. Thus, with the addition of the thin XML
based messaging layer, the device méy participate in the distributed computing environment.

Thus, the foundation for the distributed computing environment is a simple message passing layer
implemented on top of reliable connection and/or unreliable data grams. The messaging technology is very different
from communications technologies employed in other distribution computing systems, such as Jini which employs
the Java remote method invocation (RMI). The message passing layer 104 supports an asynchronous, stateless style
of distributed programming, instead of the synchronous, state-full style predicated by RMI. Moreover, message
passing layer 104 is based on a data representation language such as XML and thus copies data, but not code, from
source to destination, unlike RMI. By using a representation data language, such as XML, messaging layer 104 may
interoperate with non-Java and non-Jini platforms in a seamless fashion because Java code is not assumed on the
sending or receiving end of a message. Moreover, unlike RMI, messaging layer 104 does not require a reliable
transport mechanism such as TCP/IP.

The message passing layer may provide simple send() and receive() methods to send a message specified as

an array or string of bytes, for example. The send() method may return immediately, performing the data transfer

12

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

asynchronously. For flow control purposes a callback method may be supplied which is invoked in the event that
the send() method throws an exception indicating it cannot handle the send() request. The receive() method may be
synchronous and may return the next available message.

The message passing layer may also provide methods for storing XML representations of objects, services
and content in “spaces”. A space is named and accessed on the network using an URI (Uniform Resource
Identifier). The URI may be a URL (Uniform Resource Locator) or a simpler version of a URL. In some
embodiments, the URL class may be too large. For such embodiments a simpler resource locator may be used that
specifies the protocol for moving the messages between client and server, protocol dependent host ID, protocol
dependent port ID, and a space name.

An XML representation of an object may be added to a space using a write() method provided by the
messaging layer. In one embodiment, the object and the client-specified name may be supplied as parameters. In
one embodiment, the write method may translate the object into its XML representation. A take() method may be
provided to return the object and remove it from the space. A find() method may be provided to return a specified
object from its XML representation in a space. The find() method may also be used to return an array of matching
objects in a space given a class. Each of these space methods is implemented using the message-passing layer. A
lease mechanism may also be provided, as described in more detail below.

A discovery service may be provided for clients as a general search facility that may be used by a client to
locate a particular space. Rather than attempt to define a complicated search protocol which may not be feasible for
a thin client to implement, the discovery service may offload the actual search to XML-based search facilities,
leaving the discovery service simply to provide interface functionality to the client. The approach is illustrated in
Figure 4. In one embodiment, the discovery service receives a string specifying something to locate, and it sends an
XML message to a known discovery front-end (perhaps found in a default space), which then parses the string and
makes a corresponding XML query to a search facility (which may be an internet search facility). The discovery
front-end may parse what it obtains from the search facility and repackage it as an array of strings (each string may
be a URI for each found space) which it may send in an XML message to the client. It should be noted that the
discovery service does not require that the messaging be atop a connection-oriented transport. Thus, even very thin
clients that do not have TCP could use such a discovery service. The discovery front-end makes it possible for the
client to discover spaces without a browser or search facility on the client. The client only needs a simple facility
that sends a string that specifies keywords to the front-end, which interfaces with a search facility.

A client may be any platform that can send a message using at least a subset of the API and messaging
layers. In one embodiment the API layer may provide for both static (or raw) and formatted (or cooked) messages.
A server may be any platform capable of receiving and fulfilling message requests. An explicit raw message send
may be provided that moves a series of bytes from a client to a server or to another client. The message type may be
specified as reliable (e.g. TCP) or unreliable (e.g. UDP). The smallest of devices may use raw unreliable message
passing as their sole means of participation in the distributed computing environment. The device may use these
messages to announce its presence and its status. Such small devices may also receive raw messages to implement
certain functions, such as turning a feature on or off.

Message-based services such as spaces may send and receive reliable formatted messages. A space
message may be formatted with a well-defined header and with XML. In one embodiment, a formatted message

send may occur when a client uses a space method to claim, write, or take objects from a space. The message

13

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

contents may be dynamically formatted in XML and contain well-defined headers. Figure 5 illustrates client profiles
supporting formatted and static messages. By using static messages, small devices may use a smaller profile of code
to participate in the distributed computing environment. For example, a small device could just send basic
pre-defined messages. Depending on the client, the static pre-defined messages may consume a small amount of
memory (e.g. <200 bytes). Static messages may also be an option even for larger devices. On the other hand, the
dynamic XML messages may be useful when object values are not known at compile time.

Turning now to Figure 6, a distributed computing model is illustrated that combines a messaging system
with XML messages and XML object representation. The platform independence of XML may be leveraged so that
the system may provide for a heterogeneous distributed computing environment. Thus, client 110 may be
implemented on almost any platform instead of a particular platform like Java. The messaging system may be
implemented on any network capable messaging layer, such as Internet protocols (e.g. TCP/IP or UDP/IP). Thus,
the computing environment may be distributed over the Internet. In one embodiment, the messaging system‘may
also use shared memory as a quick interprocess message passing mechanism when the client and/or space server
and/or service are on the same computer system. The distributed computing mode! of Figure 6 may also be very
scalable because almost any size client can be configured to send and/or receive XML messages.

As shown in Figure 6, two kinds of software programs may run in the distributed computing model:
services 112 and clients 110. Services 112 may advertise their capabilities to clients wishing to use the service. The
services 112 may advertise their capabilities in spaces 114. As illustrated in Figure 7, clients 110 and services 112
may or may not reside within the same network device. For example, devices 120 and 124 each support one client,
whereas service 112a and client 110b are implemented in the same device 122. Also, as illustrated in Figure 7, no
particular platform is required for the devices to support the clients and services. For example, device 120 is Java
based, whereas device 124 provides a native code runtime environment.

A device may be a networking transport addressable unit. Example devices include, but by no means are
limited to: PDAs, cellular/mobile phones, notebook computers, laptops, desktop computers, more powerful
computer systems, even supercomputers. Both clients and services may be URI-addressable instances of software
(or firmware) that run on devices. Using the distributed computing environment architecture, a client may run a
service. A space is a service that manages a repository of XML documents. Even though it is redundant, the term,
space service, may be used herein for readability. A software component may be both a client and service at
different times. For example, when a service uses a space (e.g. to advertise itself), that service is a client of the
space.

Figure 8 illustrates the basic model of the distributed computing environment in one embodiment. The
distributed computing environment may connect clients 110 to services 112 throughout a network. The network
may be a wide area network such as the Internet. The network may also be a combination of networks such as a
local area network (LLAN) connected to a wireless network over the Internet. As shown in Figure 8, a service 112
publishes an advertisement 132 for itself (represented in XML) in a space 114. The advertisement 132 specifies the
service's XML schema and URI address. Then, a client 110 may look up the advertisement 132. The client 110
may use the advertisement 132 to instantiate a gate 130. The gate 130 allows the client 110 to run the service 112,
by sending (and receiving) XML messages to (and from) the service 112.

Some results of running a service may be returned to the client in an XML message. However, since other

results may be too large for a small client to receive and consume at once, a service 112 may put those results or an

14

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

XML representation of the results 134 in a space 114, as shown in Figure 9, and return them by reference (in an
XML message) to the client 110, rather than by value. Examples of methods of returning a reference to results
include, but are not limited to: returning in the message a URI referencing the results in a space, and: returning in the
message an XML document including the URI of the results. Later, the client 110 may access the results, or pass
them by reference to another service. The space in which results may be stored may be different from the space in
which the service is advertised.

In one embodiment, the distributed computing environment uses XML for content definition, advertisement
and description. New content for the distributed computing environment (messages and advertisements for
example) are defined in XML. Existing content types (e.g. developed for other environments) may also be
described using XML as a level of indirection (meta-data). XML provides a powerful means of representing data
throughout a distributed system because, similar to the way that Java provides universal code, XML provides
universal data. XML is language agnostic and is self-describing. The XML content may be strongly typed and
validated using schemas. Using a provided XML schema, the system may ensure that only valid XML content is
passed in a message. XML content may also be translated, into other content types such as HTML and WML.
Thus, clients that do not understand XML may still use the distributed computing environment services.

In one embodiment, the distributed computing environment messages may define the protocol used to
connect clients with services, and to address content in spaces and stores. The use of messages to define a protocol
allows many different kinds of devices to participate in the protocol. Each device may be free to implement the
protocol in a manner best suited to its abilities and role. For example, not all devices are capable of supporting a
Java runtime environment. The distributed computing environment protocol definition does not require nor imply
the use of Java on a device. Nor does it preclude it.

A service's capabilities may be expressed in terms of the messages the service accepts. A service's message
set may be defined using an XML schema. An XML message schema defines each message format using XML
typed tags. The tag usage rules may also be defined in the schema. The message schema may be a component of an
XML advertisement along with the service's message endpoint used to receive messages. The distributed computing
environment may allow clients to use all or some subset of a service's capabilities. Security policies may be
employed to enforce the set of capabilities given to a client. For example, once a set of capabilities has been given
to a client, the client may not change that set without proper authorization. This model of capability definition
allows for services levels that range from a base set of capabilities to an extended set. Extensions may be added to
services by adding to the number of recognized messages.

In one embodiment, all operations in the distributed computing environment are embodied as XML
messages sent between clients and services. Storage (both transient and persistent) providers are examples of
services that enable clients and services to store, advertise, and address content. Clients and services may find each
other and broker content using a transient storage space. Services may place a content or service advertisement in a
space. The advertisement may describe the content type or the capabilities of the service. Clients may subsequently
browse spaces looking for advertisements that match a desired set of capabilities. When a client finds a matching
advertisement, a communication channel may be established which may enable bi-directional message passing to the
service backing the advertisement. In one embodiment, the communication channel is authenticated. Results (which

are just another content type) from service operations may be returned directly to the client in a response message,

15

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

advertised and stored in a space, or advertised in a space, but stored persistently. Stored results may be addressed

using a URI (e.g. returned in the response message) and may have an associated authentication credential.

Message Gates
As discussed above, the distributed computing environment leverages off the use of a data description

language, such as XML. XML may be used to describe a target entity (e.g. document, service, or client) to an extent
such that code may be generated to access that entity. The generated code for accessing the target entity may be
referred to as a message gate. Thus, in one embodiment, the distributed computing environment differs from other
distributed computing environments in that instead of passing the necessary code between objects necessary to
access the other object, the environment provides access to XML descriptions of an object or target so that code
may be generated based on the XML description to access the target. The distributed computing environment may
use an XML schema to ensure type safety as well as a programming model (e.g. supported messages) without having
to agree upon language specific APIs, just XML schemas.

Code generated from an XML schema may also incorporate the language, security, type safety, and
execution environment characteristics of the local platform. The local platform may thus have control over the
generated code to ensure that it is bug-free and produces only valid data according to the schema. The generated
code may conform to the client's code execution environment (e.g. Java, C++, Smalltalk), as well as its management
and security framework (Web-server and/or operating system).

Note that the distributed computing environment does not require that code generated from an XML
schema be generated “on the fly” at runtime. Instead, some or all of the code may be pre-generated for categories
(or classes) of services, and then linked-in during the platform build process. Pre-generation of code may be useful
for some clients, such as embedded devices, where certain XML schemas are already known. In one embodiment,
some or all of the code doesn't actually have to be generated at all. A private code-loading scheme (within the
client) might be used in one embodiment to augment the generation process. In addition, the distributed computing
environment may specify, in some embodiments, an interface to download code for additional features in accessing
a service (see, e.g., message conductors described below). Typically, such downloaded code may be small and the
client may have the option to download the code or not.

The phrase “generated code” may refer to code that originates within the client under the control of the
client code execution environment, or to code that is generated elsewhere (such as on the service system or on a
space service system) and that may be downloaded to the client system after generation. Binding time, however,
may be at runtime. At runtime, the generated code may be bound to a service address (URI), so that a message may
be sent to that service instance.

As discussed above, the interface to any service in the distributed computing environment may be specified
by an XML schema, defining the set of messages that a client may send (and receive from) that service. As
illustrated in Figure 10, the client 110 and service 112 may each construct a message gate 130 for communicating
according to the specified XML schema. From the XML schema advertised for the service 112 (and possibly other
information in the service advertisement), a message gate 130a or 130b may be constructed by the client 110a or
110b respectively. A corresponding message gate 130c generated from the same XML schema may also exist on the
service 112a. A gate 130 is a message endpoint that may send and/or receive type-safe XML messages, and that

may verify the type correctness of XML messages when sending and/or receiving the messages. The message gate

16

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

may also provide for authentication and/or other security mechanisms to ensure that the message endpoint is secure.
In one embodiment, message gates are always secure.

The distributed computing environment messaging layer described above may be coupled to or may be part
of the gate. The messaging layer asynchronously delivers an ordered sequence of bytes, using a networking
transport, from the sender to the receiver, maintaining the notion on both the sender and receiver that this sequence
of bytes is one atomic unit, the message. The distributed computing environment does not assume that the
networking transport is IP-based. Instead, the messaging layer may sit atop whatever networking transport layer is
supported by the device.

Message gates may provide a mechanism to send and receive XML messages between clients and services.
The XML messages may be “typed”. For example, the messages may include tags to indicate if a message data field
is, e.g., integer, floating point, text data, etc. A message gate may be constructed to verify the type correciness of
messages sent or received. A message gate also may authenticate (e.g. securely identify) the sender of a received
message. An XML schema may be provided for a service that describes the set of messages accepted by the service
and/or sent by the service. A message gate may verify the correctness of messages sent or received according to the
XML schema for which the gate is constructed.

A gate may be constructed as a single atomic unit of code and data that performs type verification and/or
message correctness verification and/or sender identification for messages between a client and a service in the
distributed computing environment. In one embodiment, once the atomic unit of code and data for a message gate
has been created, it cannot be altered as to its typing, message descriptors, and sender identification. In another
embodiment, the gate may be modified as to the contents of the message schema after the gate is created, including
deleting, adding, or modifying messages in the message schema.

A message gate is the message endpoint for a client or service in the distributed computing environment. A
message gate may provide a secure message endpoint that sends and receives type-safe XML messages. Messages
gates may allow clients and services to exchange XML messages in a secure and reliable fashion over any suitable
message transport (e.g. HTTP). For a client, a message gate may represent the authority to use some or all of a
service’s capabilities. Each capability may be expressed in terms of a message that may be sent to a service. Each
such message may be sent through a client message gate which may verify the correctness of the message. The
message may be received by a service message gate which may authenticate the message and verify its correctness.

A message gate may provide a secure communication endpoint that type checks XML messages. As
further discussed below, a message gate may also provide a mechanism to restrict the message flow between clients
and services. In one embodiment when a client desires to access a service, a client and service message gate pair is
created, if not already existing. In one embodiment, the service message gate may be created when the service
recejves a first message from the client message gate. In one embodiment, one or more service message gates may
be created when the service is initialized, and may be used to pair with client message gates when created. The
creation of a message gate may involve an authentication service that may negotiate the desired level of security and
the set of messages that may be passed between client and service. In one embodiment, the authentication service
may accept a client ID token (also referred to as a client token), a service ID token (also referred to as a service
token), and a data representation language message schema that describes the set of data representation language
messages that may be sent to or received from the service. For example, messages may be described that may be

sent from a client to a service to invoke the service or to invoke aspects of the service. Messages may also be

17

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

described that are to be sent from the service, such as response messages and event notification messages. Refer to
the Authentication and Security section below for a further discussion of how the authentication service may be used
in the construction and use of message gates.

A client message gate and a service message gate pair may allow messages to be sent between the client
and the service. In one embodiment, message gates may be created that only send and/or receive a subset of the
total set of messages as described in the message schema for a service. This limited access may be used within the
distributed computing environment to implement a policy of least privilege whereby clients are only given access to
specific individual message types, based on a security policy. Refer to the Authentication and Security section
below for a further discussion of security checks for gate usage and gate creation.

Client and service gates may perform the actual sending (and receiving) of the messages from the client to
the service, using the protocol specified in the service advertisement (URI of service in the service advertisement).
The client may run the service via this message passing. A message gate may provide a level of abstraction between
a client and a service. A client may access a service object through a message gate instead of accessing the service
object directly. Since the gate abstracts the service from the client, the service’s code may not need to be loaded,
and then started, until the client first uses the service.

The client gate may also perform verification of the message against the XML schema, or verification of
the message against the XML schema may be performed by the service gate, e.g. if the client indicates it has not yet
been verified. In some embodiments, verification may not be practical for simple clients and may thus not be
required at the client. In some embodiments, verification may be performed by the service. The gates may also
perform authentication enablement and/or security schemes. In one embodiment, if a client does not support the
protocol specified in the service advertisement, then it may not be able to construct the right gate. To avoid this
problem, service advertisements (used for gate construction) may include a list of possible URIs for a service, so a
variety of clients may be supported.

A basic message gate may implement an API to send and receive messages. The API moves data (e.g.
XML messages) in and out of the gate, validating messages before sending and/ or upon receiving. In one
embodiment, message gates may support a fixed minimum API to send and receive messages. This API may be
extended to other features as discussed below. As illustrated in Figure 10b, a gate 130 may be generated according
to an XML schema 132. The generated gate code verifies messages based upon the XML schema. The gate may
verify correct message types and/or content through the message API. As illustrated in Figure 10b, through the
message API a verified message may be sent to a service. The message may be received by a corresponding gate at
the service. In response to the message, the service may generate results 180. The service may return result data
182 through its gate. The results data may be the results themselves or a reference to the results, such as a URI to
results stored in a space.. In various embodiments, the message API may support synchronous messages (request-
response), asynchronous messages (response is disconnected from request), unicast messages (point to point), multi-
cast messages (broadcast), and publish and subscribe (event messages), for example. Other type of messages may
also be supported, such as remote method invocation messages.

Each message sent by a gate may include an authentication credential so that the receiving gate may
authenticate the message. FEach message may also include a token which includes information allowing the
receiving gate to verify that the message has not been compromised or altered. For example, the sender may

compute a hash or checksum of the message which may be verified by the receiver. The sender may also encrypt

18

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

this token and/or the entire message using the sender’s private key and may include in the encrypted message the
corresponding public key so that the receiver may verify that the token was not changed. See the section below on
Authentication and Security.

A pair of message gates may provide a mechanism for communicating requests from clients to services and
response from services to clients. Two associated message gate endpoints may be used to create a secure atomic bi-
directional message channel for request-response message passing. Thus, the distributed computing environment
may employ a message transport in which a message gate exists on both the client and the service sides. The two
gates may work together to provide a secure and reliable message channel.

Turning now to Figure 11a, an illustration is provided for one embodiment showing construction of a gate
130a in a client 110 from a service advertisement or other service description 132. The client may have a gate
factory 140 that is trusted code on the client for generating gates based on XML service descriptions. The use of the
gate factory 140 may ensure that the gate it generates is also trusted code, and that the code is correct with respect to
the service advertisement. As shown in Figure 11b, a gate 130¢ may also be constructed at a service 112. The client
gate 130a and the service gate 130c provide message endpoints for communications between the client and service.
In one embodiment, the pieces the gate factory needs to construct a gate 130 are the XML schema of the service
(from the service advertisement) and the URI of the service (from the service advertisement). In another
embodiment, an authentication credential may also be obtained and used in gate construction by running an
authentication service specified in the service advertisement.

A gate factory may provide a trusted mechanism to create message gates. In some embodiments, in order
to ensure that a message gate is a trusted message endpoint, the code used to create the gate must be trusted code. A
gate factory 140 may be a trusted package of code that is used to create gates. In one embodiment, each client and
service device platform that desires to send and receive messages in the distributed computing environment may
have a gate factory. In some embodiments, gates may be pre-constructed by a separate gate factory so that a device
with pre-constructed gates may not need a full gate factory, or may include a partial gate factory for binding a
service URI and/or an authentication credential to the pre-constructed gate at runtime (e.g. when messaging is
desired).

A gate factory for a device may generate gate code that may incorporate the language, security, type safety,

and/or execution environment characteristics of the local device platform. By constructing gates itself, a device has

the ability to ensure that the generated gate code is bug-free, produces only valid data, and provides type-safety. An

advantage of a device generating its own gate code as opposed to downloading code for accessing a service is that
the client code management environment has the control. The generated code may conform to the client's code
execution environment (e.g. Java, C++, Smalltalk), as well as its management and security framework (Web-server
and/or operating system). Generated code is also trusted code, because the client's runtime environment was
involved in its creation. Trusted security information therefore may also be added by the trusted generated code.
Thus, a device may receive an XML message schema for a service and then construct a gate based on that schema to
access the device. The XML schema may be viewed as defining the contract with the service and the generated gate
code as providing a secure way to execute the contract. Note that open devices, in which un-trusted (e.g.
downloaded) code may be run, may be configured so that gates may be generated only by trusted code. Open

devices may employ a process model in which gates are enclosed in a protected, isolated code container that is not

19

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

accessible to tools, such as debuggers, capable of discovering the gate’s implementation, especially the gates
authentication credential.

A gate factory 140 may negotiate on behalf of a client with a service to create a gate to send messages to
the service. Similarly, a gate may be constructed at the service to receive messages from the client gate and send
messages to the client gate. Together, the client and service gates may form a secure bi-directional communication
channel.

A gate factory may provide a level of abstraction in gate creation. For example, when a client desires to
use a service, instead of the client directly creating a gate to access the service, the gate may be created by a gate
factory as part of instantiating the service.

The gate factory may create or may include its own trusted message gate that is used to communicate with
an authentication service (e.g. specified by a service advertisement) to receive an authentication credential for the
gate being constructed. For services that do not restrict access, a gate may be constructed without an authentication
credential. The gates for such services may not need to send an authentication credential with each message since
the service does not restrict access. The authentication service is an example of a service that does not restrict
access, in one embodiment. Thus, a gate factory may be configured to optimize gate construction by checking
whether a service restricts access. If the service does not restrict access, then the gate factory may avoid running an
authentication service as part of gate construction and may avoid included provisions for an authentication
credential as part of the constructed gate. The gate factory may also receive or download an XML message schema
(e.g. specified by a service advertisement) to create a gate matching that schema. The gate factory may also
receive or download a URI for the service and/or for a service message gate for use in creating the client message
gate to communicate with the URI.

In addition, another gate construction optimization may be employed for certain clients that do not desire to
perform checking of messages against a service’s XML schema. The client may be too thin to perform the checking
or may rely on the service gate to perform the checking or may simply choose not to perform the checking (e.g. to
reduce gate memory footprint). The gate factory may be configured to receive an indication of whether or not a gate
should be constructed to verify messages against the provided XML schema. In some embodiments, certain clients
may have a gate factory that does not provide for message verification against a schema for its constructed gates. In
some embodiments, gates may be pre-constructed not to verify messages. In some embodiments, a gate may be
constructed to verify outgoing messages only, or verify received messages only. Thus, in some embodiments, a
client may avoid or may chose to avoid building some or all of the gate code that checks the messages against the
XML schema.

In some embodiments, devices may maintain a cache of gates to avoid constructing them each time the
same service is run. For example, when a new gate is constructed by a gate factory, the gate may be maintained in a
gate cache. When the gate is no longer being used, it is kept in the gate cache instead of being deleted. If the gate
cache becomes full, one or more gates may be removed from the gate cache according to a cache replacement
algorithm, such as least recently used. When the gate factory is called to construct a gate, it first checks the gate
cache to see if a matching gate already exists so that construction of a new gate may be avoided.

The building of a gate may be made lightweight by appropriate reuse of pieces used to construct other
gates. Certain portions of each gate may be the same, and thus may be reused from gate to gate, such as parts of the

message verification code. Also, for some devices, common gate code may be built into the system software for the

20

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

device and shared by all gates on that device. Thus, the gate factory may avoid rebuilding this common code for
each gate. Instead, the gate factory may simply bind the gate to this system software portion. For example, a system
software portion may be provided to handle the message layer over whatever transports are provided on the device.

Space services in particular may be good candidates for many of the gate construction optimizations
described above since a service gate constructed for a space service may perform many of the same functions as
other service gates for that space service. Refer to the Spaces section below for more information on space services.

In some instances, a more efficient form of method invocation may exist. For example, if the target service
runs in the same Java Virtual Machine as the client application, a more efficient form of method invocation may be
to create a Java dynamic proxy class for the service. In such a case, a java.lang.reflect. Method invocation may be
faster than sending a message. A gate binding time procedure may check for such an optimization and use it instead
of running the gate factory to create a gate or bind an existing gate.

In one embodiment, such as for special-purpose clients or small embedded devices, the generation of gate
code at runtime may not be desirable due to memory consumption and code generation time. Thus, instead of
having a gate factory that generates gates at runtime, in some embodiments gates may be pre-generated and built
into the device. For example, message gates may be generated during the build of embedded software as a means of
including a built-in secure message endpoint that does not have to be constructed at runtime. Thus, a client with
built-in gates may not need a full gate factory, or may require only a partial gate factory for performing certain
runtime binding to a built-in gate, such as for the URI and/or authentication credential.

A generation tool may be provided for the pre-construction of gates. The generation tool may include an
XML parser, a code generator and a code compiler. In one embodiment, the code generator may be a Java source
code generator and the code compiler may be a Java code compiler. During the build of the software for which
built-in message gates is desired, the generatién tool is run with input from all the relevant XML schemas for which
gates are desired.

As an example, if it is desired for a device to have a built-in message gate that can send and receive
messages from a digital camera, the build of the device software may include running the gate generation tool with
the camera’s XML message schema as input. The XML schema may be parsed by the XML parser that may convert
the XML schema into an internal form suitable for quick access during a message verification process. The tool’s
code generator may provide source code for a gate corresponding to the camera’s schema. In some embodiments,
the generation tool may also compile the source code and the gate code may be linked into the software package for
the device. At runtime, the camera service may be discovered in the disiributed computing environment. The
message URI for the camera service may be bound to the built-in gate for the camera within the device. The binding
of the URI to the pre-constructed gate may be performed by a gate constructor within the device. This gate
constructor may be a much smaller, simpler gate factory. When the camera service is instantiated, the URI for the
cametra service is passed to the gate constructor as an XML message. The gate constructor may then bind the URI to
the pre-constructed gate.

Thus, a gate may be partially or fully generated at runtime, or a gate may be pre-generated before runtime
with a binding process (e.g. for a URI or credential) performed at runtime. In one embodiment, a gate generation
tool such as the gate factory or the generation tool for pre-constructed gates may be a Java-based tool to provide
some level of platform independence. Alternatively, gate generation tools may be provided in any language, such as

the native code for a particular device in the distributed computing environment.

21

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

Note that the distributed computing environment does not preclude a device from downloading part or all
of a gate’s code. For example, in some embodiments, a service may provide gate code that may be downloaded by a
client wishing to access that service. However, downloaded code may present size, security and/or safety risks.

A more detailed illustration of possible gate components for one embodiment is shown in Figure 12. A
gate may include its address (or name) 150, a destination gate address 152, a valid XML schema (or internal form
thereof) 154, and a transport URI 153. In other embodiments, a gate may also include an authentication credential
156. Some gates may also include a lease 158 and/or a message conductor 160 to verify message ordering.

A gate's name 150 may be a unique ID that will (for the life of the gate) refer only to it. A gate may be
addressed using its gate name 150. In one embodiment, gate names may be generated as a combination of a string
from an XML schema (e.g. from a service advertisement) and a random number, such as a 128-bit random number.
The name 150 may allow clients and services to migrate about the network and still work together. In a preferred
embodiment, the gate address is independent of the physical message transport address and/or socket layer. Thus, a
gate name may provide a virtual message endpoint address that may be bound and un-bound to a message transport
address. In one embodiment, a gate’s name may be a Universal Unique Identifier (UUID) that may, for the life of
the gate, refer only to it.

A gate name may persist as long as the gate persists so that different applications and clients executing
within the same device may locate and use a particular gate repeatedly. For example, a gate may be created for a
first client process executing within a device to access a service. After the first client process has completed its
activity with the service, it may release the gate. Releasing the gate may involve un-binding the gate from the first
client process’s message transport address (e.g. IP and/or Port address). The gate may be stored in a gate cache or
repository. A second client process executing within the same device that desires to run the same service may locate
the gate by its name and use it to access the service. To use the gate, the second client process may bind the gate to
its message transport address, so that the message endpoint for the second client process is a combination of the gate
name and the second client process’s transport address. In another example, a client may receive a dynamic IP
address (e.g. a mobile client). When the client’s transport address changes, a gate name (or gate names) may be re-
bound to the client’s new transport address so that the client may still access a service(s) that it previously accessed
without having to relocate the service and recreate the gate. A gate name may also be useful for process migration.
A process and any associated gates may be checkpointed or saved at one node in the distributed computing
environment and moved to another node. The process may be restarted at the new node and the associated gates
may be bound to the transport address for the new node so that the process will still have access to the external
services to which it had access before being migrated. A gate may track the current location of another gate to
which it is paired. Thus a service or client may be migrated and still be accessible. For example, replicated or load-
balanced service implementations may be abstracted from clients of the service by the gate.

Thus, a gate name 150 provides a flexible mechanism by which to address a message endpoint in the
distributed computing environment. A gate name may be used to locate and/or address a gate over a wide range of
networks, from a local network to the Internet. Gate names may be independent of message transport so that a
message endpoint (gate) may be moved from transport to transport by unbinding and rebinding to different
underlying transport addresses (e.g. IP/Port address pairs).

22

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

In one embodiment, a gate may also be separated from a service so that the same gate may be used to send
requests to different services over time. This may involve un-binding the gate’s destination gate address 152 and
binding a new destination gate address to the gate.

A gate may be implemented as a layer above a device’s transport layer (e.g. networking sockets). Each
gate may include a transport reference 153. The gate name 150 may be bound to the transport reference 153 as
described above. Multiple gates may share the same message transport. For example, multiple gates may have
transport references 153 to the same TCP/IP socket. By sharing the same message transport, the size and
complexity of each gate may be reduced. A device in the distributed computing environment may have a large
number of gates that need to send and receive messages. The message handling complexity for multiple gates may
be reduced by sharing a common message transport. The transport reference 153 may be a transport URI (e.g.
URL) or socket reference and may provide a mechanism for naming an underlying transport and sharing the
transport with other gates. Multiple local gates may include a reference 153 to the same transport, however, each
local gate may behave independently of the other local gates sending and receiving messages to and from its paired
remote gate.

The schema 154 may be downloaded from a space into the gate by the gate factory. The schema may be
compiled into an internal form suitable for quick access during a message verification process. In one embodiment,
the schema may specify two groups of messages: client service messages and provider service messages. The client
service messages group includes the description of all messages that the client may send (that the provider supports),
and the provider service messages group includes the description of all messages that the provider may send (that
the client receives). In one embodiment, either the client or provider may send a particular request to the space
service to obtain a response message with either: the entire client service messages, the entire provider service
messages, the entire client and provider service messages, or a specific message of either the client service messages
or the provider service messages. In addition, once a gate has been constructed, a client may query as to the
capabilities of the service without the gate actually sending a message, but instead by inspecting the gate’s set of
messages.

As described above, a message gate may verify the sender of the message using an authentication
credential, message content for type safety and according to an XML schema. However, it may also be desirable to
verify that messages are sent between a client and a service in the correct order. It may be desirable to be able to
provision applications (services) for clients to run without any pre-existing specific functionality related to the
application on the client (e.g. no GUI for the application on the client). For example, a Web browser may be used
on a client as the GUI for a service instead of requiring an application-specific GUI. Of the possible messages in the
XML schema, the client may need to know what message next to send to the service. It may be desirable for the
client to be able to determine which message to send next without requiring the client to have specific knowledge of
the service. In one embodiment, the service may continually send response messages indicating the next input it
needs. The service would then accept only the corresponding messages from the client with the requested input
specified. Other ad hoc scheme for message ordering may also be employed.

In another embodiment, a message conductor 160 may be employed in the gate or associated with the gate
to verify the correct sequence of messages, as opposed to verifying each message’s syntax (which may already be
performed in the gate according to the schema). Message conductor 160 may provide a more general approach for

application provisioning. The message conductor 160 may be specified in a service's advertisement. The message

23

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

conductor indication in a schema may allow code to be generated on or downloaded to the client during gate
construction, which may provide the choreography needed to decide which message to send next to the service. A
message conductor may be implemented as a Java application, a Java Script, WML script, or in other programming
or scripting languages.

In one embodiment, the message conductor may accept as input an XML document (e.g. from a service
advertisement) that presents the valid order or choreography for messages that may be sent between a client and the
service. This XML document may also specify user interface information and other rules. The conductor may parse
this XML document into an internal form and enforce message ordering (and/or other rules) according to the
enclosed ordering information. The conductor may prevent messages from being sent out of order. Or, if a message
is sent out of order, an exception may be raised within the sending device. If a message is received out of order, the
conductor may send an automatic response message back declaring the ordering error. The sender may then resend
messages in the correct order. Note that in some embodiments, part or all of a conductor may be shared by several
gates. Thus, a conductor may be linked to multiple gates.

In one embodiment of a distributed computing environment, front ends for services (service interfaces) may
be built in to clients. In one embodiment, the service interface may be a preconstructed user interface provided to
the client by the service. In one embodiment, the service interface may be provided to the client in the service
advertisement. The service interface may interact on the client with the user of the service to obtain input for
running the service, and then may display results of running the service on the client. A “user” may be a human,
embedded system, another client or service, etc. In one embodiment, a client device may not be able to provision
arbitrary services, as the client device may only be able to run services for which it has a front end built in. In one
embodiment, a service interface for a service may be implemented in a Web browser on the client.

In one embodiment, a message conductor and/or service interface may be external to the gate and thus
abstracted from the gate and client. The abstracted message conductor may provide provisioning of arbitrary
services to any client device. In one embodiment, the message conductor may be written in code that may run on
substantially any platform. In one embodiment, the message conductor may be written in the Java language. In one
embodiment, the message conductor may not require the arbitrary downloading of objects, for example, Java
objects, returned to the client device. For example, very large objects may be returned, and the message conductor
may choose to not download these very large objects. In one embodiment, the message conductor may send XML
messages to services from the client device on behalf of the client. The message conductor may interact with the
user of the service to receive input and display results.

In one embodiment, a service interface may be provided that interacts with the client (e.g. thru a user
interface) to obtain all information to run the service, and then may display either results of running the service or
information regarding the location of results, as appropriate. The service interface may be either part of a message
conductor 160 or may be in addition to and work with message conductor 160. The service interface may either be:

1. Built in to the client device and thus run on the client.

2. Downloaded to the client device from the space server.

3. Run on the space server.

4. Run on the service provider.

In one embodiment, to a client, the distributed computing environment space server must support #1 always,

indicate if #2 is supported (by advertisement in space), indicate if at least one of #3 and #4 is supported. Note that

24

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

whether or not it supports #4 depends upon whether or not the service provider supports #4. In one embodiment, to
a service provider, the distributed computing environment space server must support #4 always and indicate if it
supports #3.

Regardless of where the service interface runs, once a service is activated, the service interface may interact
with the client, displaying (remotely) requests for input on the client’s display, and then displaying (remotely) results
of running the service. Such interaction with the client is implemented in terms of XML messages.

The service interface and/or message conductor may meet the needs of a client user that may have
discovered a service, but does not want to read a typically large, dry computer manual to figure out how to use the
service. As the service interface and/or message conductor interacts with the user to request all input that the service
needs, they may even provide short descriptions of the input requested if the user requests it. Once the service
interface has obtained the necessary information from the client, it may send XML messages to the service provider
that runs the service. The ordering of the messages may be verified by the message conductor 160 in the gate.

In a preferred embodiment, all messages flow through a gate. A gate may be configured to provide a flow
control mechanism. For example, a service may need to handle a large amount of incoming and outgoing messages.
Flow control may allow a service to keep up with high traffic volume. Gates may be configured to monitor
messages for flow control tags. When a gate receives a message, it may examine that message for a flow control tag.
The flow control tags may be XML tags. A message may include either an OFF tag or an ON tag, for example. Ifa
received message includes an OFF tag, the receiving gate will stop sending messages to its paired destination gate.
If the gate receives a message including an ON tag, it may resume sending messages.

Thus, a service-side gate may monitor the use of its resources and trigger flow control if use of its resources
exceeds a threshold. For example, a service may reduce its load by sending messages including OFF tags to one or
more client gates. The client gates receiving the messages with OFF tags will stop sending messages to the service.
Pending messages in the clients may be buffered or may be handled by internal flow control mechanisms. Once the
service is able to handle more requests, it may send messages to one or more clients with ON tags so that the clients
may resume sending messages. In other embodiments, other flow control tags may be supported in addition to or
instead of ON and OFF. Other flow conirol tags may indicate to reduce message flow or that message flow may be
increased.

Message gates may be configured to perform resource monitoring. For example, since all messages may
flow through a gate, the gate may be configured to manage and/or track a client’s use of a service (and possibly its
associated resources such as memory or threads). A gate may be configured to track the activity of a software
program, such as a client, by monitoring how much a resource, such as a service, is used or which and how many
service resources are used. In one embodiment, a gate may generate or may facilitate generation of a client activity
log. Each message and its destination or sender may be logged.

A gate may also be configured to perform resource monitoring for flow control from the local (sending)
side of a gate pair. If the client exceeds an allocated bandwidth of service (or resource) usage, the gate may
automatically throttle back the flow of messages, for example. Thus, a client-side message gate may antomatically
trigger different flow control modes by monitoring the flow of outgoing messages. If the outgoing message flow
exceeds a threshold, the gate may reduce or shut off its flow of outgoing messages. The threshold may be specified
in a service’s XML schema or advertisement. In some embodiments, the threshold may be specified only for

messages using certain service resources or for all messages.

25

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

The gate may also be configured to determine when message flow may be increased or resumed. In one
embodiment, the gate may maintain a count of outgoing messages that have been sent without the matching reply
(response) received. When matching responses are received by the client-side gate, the count of outstanding request
messages may be decremented. When the counts decrements below a specified outstanding request message
threshold, the gate may increase or resume sending new request messages.

A gate may be configured to support message-based accounting and/or billing. A billing system may be
implemented based upon the number and/or kind of messages sent and/or received by a message gate. Since all
messages to and from a client may pass through a gate, the gate may be configured to facilitate charging a client for
service usage, for example on a per message basis or “pay as you go”. Thus, a billing system may be implemented
within the distributed computing environment in which a user could be charged, for example, each time a message is
sent and/or received by software running on behalf of the user.

In one embodiment, a message gate may receive billing information from an XML schema, e.g. for a
service. The billing information may denote a billing policy and a charge-back URI. The charge-back URI may be
used by the message gate to charge time or usage on behalf of a user. A message gate may make a charge-back by
sending a charge message to the charge-back URI specified in the XML schema. Gates so configured may be
referred to as bill gates. The billing policy may indicate charge amounts per message or per cumulative message
totals, etc. The billing policy may indicate how much and/or how often (e.g. after every x number of messages sent
and/or received) to charge the user. The policy may indicate that only certain types of messages trigger charges,
such a messages requesting a specified service resource. The billing policy may also indicate different billing
models for different clients or classes of clients. For example, a billing policy may be configured (e.g. in a service’s
XML schema) so that some clients may pay a one-time charge when they create a gate to access the service. The
policy may indicate clients that are to pay as they go (e.g. per message), or may indicate clients that are not to be
charged at all.

In some embodiments, a client may be too thin to support a full gate, or a client may not include software to
directly participate in the distributed computing environment. In such embodiments, a server (such as the space
server in which the service is advertised or another server) may be a full or partial proxy gate for the client. The
server may instantiate a service agent (which may include a gate) for each service to be used by the client. The
service agent may verify permission to send messages; send messages to the provider, possibly queuing them until
the provider can accept the next one; send messages to the client, possibly queuing them until the client can accept
the next one; and manage the storing of results in a result or activation space. See also the Bridging section herein.

For example, as illustrated in Figure 13, a client may be a conventional browser 400 that does not support
gates to participate directly in the messaging scheme described above. The browser 400 may be aided by a proxy
servlet (agent) 402. The browser user may use a search engine to find a Web page that fronts (displays the contents
of) a space advertising services within the distributed computing environment. The user is able to point and click on
the space Web page and, with the help of the servlet, to access services. The Web pages may include scripts, for
example, Java or WML scripts, which may be used in connecting the browser to the proxy servlet. Scripts may also
be used to send messages to the proxy servlet. The servlet agent may translate Web page actions into messages on
behalf of the browser client. These actions may include navigating a space, starting services, and returning results.
Result page URISs (referencing pages containing XML) may be returned directly (or translated into HTML or WAP

if needed) to the browser, for display to the user. Thus, the browser-based client does not need to know how to start

26

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

services, nor which messages to send during the service usage session. For example, a user of a WAP browser (e.g.
on a cell phone) may connect to a space page, browse its contents (services), and then start a service, all by pointing
and clicking. The agent 402 provides the client interface between the conventional client and the distributed
computing environment.

The distributed computing environment may include several different types of message gates for
communicating between clients and services that support different features. For example, as discussed above, some
gates may support flow control or billing. Another type of message gate may support a form of remote method
invocation. This type of gate may be referred to as a method gate.

A gate is a secure message endpoint that sends and receives type-safe messages, e.g. XML messages. The
remote method invocation (RMI) style gate may be referred to as a method gate. The direct data-centric gate may be
referred to as a message gate. A method gate may be implemented as a “layer” on top of a message gate. The exact
implementation may be defined in the platform binding.

Figure 14 illustrates the use of a method gate to provide a remote method invocation interface to a service.
Method gates provide a method interface between clients and services. A method gate may be bi-directional,
allowing remote method invocations from client to service and from service to client. A method gate 172 may be
generated from XML schema information 170 (e.g. from a service advertisement in a space). The XML schema
information 170 includes XML defining a method interface(s). From this information, code may be generated as
part of the gate for interfacing to one or more methods. Each method invocation (e.g. from a client application 176)
in the generated code may cause a message to be sent to the service containing the marshaled method parameters.
The message syntax and parameters to be included may be specified in the XML schema. Thus, the method gate
172 provides an XML message interface to remotely invoke a service method. The method gate may be generated
on the client or proxied on a server, such as the space server where the service method was advertised or a special
gateway server.

A service may have a corresponding method gate that implements or is linked to a set of object methods
that correspond to the set of method messages defined in the service’s XML schema. There may be a one to one
correspondence between the object methods implemented by or linked to the service’s method gate and the method
messages defined by the service’s XML schema. Once a service’s corresponding method receives a message from a
client to invoke one of the service’s methods, the service’s method gate may unmarshal or unpack the parameters of
the message invocation and then invoke the method indicated by the received message and pass the unmarshalled
parameters.

The method gate may provide a synchronous request-response message interface in which clients remotely
call methods causing services to return results. The underlying message passing mechanics may be completely
hidden from the client. This form of remote method invocation may deal with method results as follows. Instead of
downloading result objects (and associated classes) into the client, only a result reference or references are returned
in XML messages, in one embodiment. An object reference 178 may be a generated code proxy (e.g. results gate)
representing the real object result 180 (still stored out on the net, for example). In other embodiments, the client
may choose to receive the actual result object. In addition, once a client has received a result object reference, the
client may use this reference to receive or manipulate the actual result object. In one embodiment, the result

reference includes one or more URIs to the real result.

27

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

The real result object(s) may be stored in a service results space (which may be created dynamically by a
servlet, for example). This temporary results space may act as a query results cache. The results cache (space) may
be patrolled by server software (garbage collector) that cleans up old result areas. Results returned from each
method invocation may be advertised in the results space. A result itself may be or may include a method that could
then be remotely instantiated by a client, thus generating its own method gate. Therefore, the distributed computing
environment may support recursive remote method invocation.

As mentioned above, when a client uses a method gate to remotely invoke a service method, a reference to
the method results may be returned from the service method gate instead of the actual results. From this reference, a
results gate may be generated to access the actual result. Thus, the client or client method gate may receive a result
URI and perhaps a result XML schema and/or authentication credential for constructing a gate to access the remote
method results.

In one embodiment, a service gate may create a “child gate” for the results. This child results gate may
share the same authentication credential as its parent gate. In some embodiments, results may have a different set of
access rights and thus may not share the same authentication credential as its parent. For example, a payroll service
may allow a different set of users to initiate than to read the payroll service’s results (paychecks).

A service method gate may return a child results gate to the client gate as the result of the method. The
client may then use the results gate to access the actual results. In one embodiment, the software program (client)
receiving the results gate cannot distinguish between the results gate and the result itself in which case the results
gate may be an object proxy for the actual result object. The results gate may also be a method gate that supports
remote method invocation to result objects. In this manner, a chain of parent and child method/results gates may be
created.

In one embodiment, the method gates and remote methods may be in Java. In this embodiment, method
results are correctly typed according to the Java typing system. When a Java method is remotely invoked as
described above, the results gate may be cast into the Java type that matches the result type. In this embodiment,
method gates may be used in the distributed computing environment to allow remote Java objects to behave as local
Java objects. The method invocation and results may appear the same to the client Java software program whether
the real object is local or remote.

See the Spaces section below for a further discussion on the use of spaces for results.

Message gates may also support publish and subscribe message passing for events. Message gates with
event support may be referred to as event gates. A service’s XML schema may indicate a set of one or more events
that may be published by the service. An event gate may be constructed from the XML schema. The event gate
may be configured to recognize some or all of the set of events published by a service, subscribe to those events, and
distribute each event as the event is produced by the service.

The set of events for a service may be described in the service’s XML message schema. For each event
message in the XML schema, the event gate may subscribe itself as a consumer of that event. In one embodiment,
an event gate subscribes to all events indicated by the XML schema. Each event message may be named using an
XML tag. The event gate may subscribe by sending a subscription message including the XML tag for the event to
be subscribed to.

When a corresponding event occurs with the service, the service may send an event message to subscribers

indicating the occurrence of the event. The event message may contain an XML event document and may be sent to

28

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

each subscribed gate. When a subscribed gate receives the event message, the XML event document is removed
from the message and the process of distribution begins. Event distribution is the process of handing out the event
document within the client platform. Each event consumer within the client platform may subscribe with the event
gate for each type of event. On Java platforms, the typing system is Java (converted from the XML event type).

The event consumer may supply an event handler callback method to the event gate. The event gate may
store a list of these subscriptions. As each event message arrives at the gate (from the service producing the event),
the gate traverses the list of client consumers and calls each handler method, passing the XML ev;nt document as a
parameter. In one embodiment, the XML event document is the only parameter passed to the handler callback
method.

In one embodiment the event gate automatically subscribes itself for events on behalf of the local consumer
clients. As clients register interest with the gate, the gate registers interest with the event producer service. A client
may also un-subscribe interest, which causes the gate to un-register itself with the service producing the event.

An event gate may type check the event document using the XML schema just like a regular message gate
does in the standard request-response message passing style described above. An event gate may also include an
authentication credential in messages it sends and verify the authentication credentials of received event messages.

Figure 44 is a flowchart illustrating a service generating event messages according to one embodiment. At
1900, the service may generate an event. In one embodiment, the event may be a Java event. At 1902, the service
may generate a message in a data representation language. The message may include a data representation language
representation of the event generated by the service. In one embodiment, the data representation language is XML.
At 1904, the service may send the message to one or more event message endpoints or gates in the distributed
computing environment that have previously subscribed to receive the event (e.g. notification of the event) from the
service. The event message endpoints may then distribute the data representation language representation of the
event sent in the message from the service to one or more processes registered to receive the event from the service.
In one embodiment, generating the message and sending the message to event message endpoints may be performed
by a service message endpoint (gate) on behalf of the service process. In some embodiments, the service process, or
the service message endpdint on behalf of the service process, may attach an authentication credential for the service
to the data representation language message. The authentication credential may be used by the event message
endpoint(s) in authenticating the data representation language message as being from the service process.

Figure 45 is a flowchart illustrating an event message endpoint recejving event messages and distributing
events according to one embodiment. The event message endpoint may have been previously generated on a client
device, or may have been received from the service generating the events. In one embodiment, the client device
may receive a data representation language schema that defines a message interface for a set of events generated by
the service, and generate the event message endpoint according to the data representation language schema. In one
embodiment, the schema may be provided in a service advertisement for the service. In one embodiment, the event
message endpoint may subscribe to receive one or more of the events generated by the service

At 1910, the event message endpoint may receive an event message in a data representation language sent
from a service in the distributed computing environment, for example, as described in Figure 44. The message may
include a data representation language representation of an event generated by the service. In one embodiment, the
data representation language may be XML. In one embodiment, the event message endpoint may verify type

correctness of the data representation language message according to the data representation language schema. In

29

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

one embodiment, the data representation language message from the service may include an authentication
credential for the service, and the event message endpoint may use the authentication credential to authenticate the
data representation language message as being from the service. At 1912, the event message endpoint may extract
the representation of the event from the message. At 1914, the event message endpoint may send the data
representation language representation of the event to one or more processes registered to receive the event from the
service.

Each of the one or more processes may have previously registered interest in one or more of the set of
events generated by the service with the event message endpoint. In one embodiment, processes may provide an
event handler callback method to the event message endpoint. When sending the data representation language
representation of an event to the process, the event message endpoint may call the event handler method of a process
registered with the event message gate unit to the event, and pass the data representation language representation of
the event as an argument to the called event handler.

Note that any combination of the gate functionality described above may be supported in a single gate.
Each type has been described separately only for clarity. For example, a gate may be a message gate, a method gate

and an event gate, and may support flow control and resource monitoring

Service Discovery Mechanisms
In one embodiment, the distributed computing environment may include a service discovery mechanism

that provides methods for clients to find services and to negotiate the rights to use some or all of a service’s
capabilities. Note that a space is an example of a service. The service discovery mechanism may be secure, and
may track and match outgoing client requests with incoming service responses.

A service discovery mechanism may provide various capabilities including, but not limited to:

* Finding a service using flexible search criteria.

* Requesting an authorization mechanism, for example, an authentication credential, that may convey to the
client the right to use the entire set or a subset of the entire set of a service’s capabilities.

* Requesting a credential, document, or other object that may convey to the client the service’s interface. In
one embodiment, the service’s interface may include interfaces to a requested set of the service’s
capabilities.

* The tracking of discovery responses to the original requests. In one embodiment, each client request may
include a collection of data that may also be returned in matching responses, thus allowing the requests and
responses to be correlated.

In one embodiment of the distributed computing environment, a service discovery mechanism may provide
a flexible search criteria based upon an extensible grammar. In one embodiment, a service name, service type, and
other elements, if any, being searched for may be matched with elements in an XML document. In one embodiment,
the XML document is the service advertisement for the service. XML may provide a flexible, extensible grammar
for searching. XML also may provide type safety for matching elements. In one embodiment, the service names
and service types may be type checked with the element types in the XML service advertisement.

In one embodiment, a distributed computing environment may include a mechanism for clients to negotiate

service access rights. In one embodiment, the mechanism may be used to negotiate for a subset of a service’s full

30

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

capabilities. The result of the negotiation may be an authorization such as an authentication credential that conveys
to the client the right to use the requested subset of the service’s capabilities.

In one embodiment, the service discovery mechanism may allow a client to request a security capability
credential from a service. In one embodiment, the client may present to the service a set of desired capabilities in
the form of a protected (secure) advertisement. The service may then respond with a capability credential that may
convey to the client the rights to use the requested capabilities described in the protected advertisement.

In one embodiment, the distributed computing environment may include a mechanism for a client to
negotiate service access rights and to then obtain a security credential or document that may be used to present the
service’s access interface to the set or subset of the service’s capabilities that were requested by the client.

In one embodiment, a client that receives a capability credential from a service may generate a custom
service access interface document that may be referred to as a “complete advertisement.” In one embodiment, the
complete advertisement may be an XML document. The generated advertisement may provide access to the service
capabilities as granted to the client by the received capability credential. In one embodiment, an interface may be
provided by the advertisement only to the service capabilities to which the client has been granted access by the
capability credential. In one embodiment, the client may be granted access to only required capabilities and to
which the client has access privileges.

In one embodiment, the distributed computing environment may provide a mechanism by which a client
may negotiate capabilities with services. In one embodiment, the client may negotiate its capabilities to the service.
The service may then customize results based on the parameters negotiated with the client. For example, a client
that is capable of one bit display at a resolution of 160x200 may negotiate these parameters to the service, thus
allowing the service to customize results for the client.

The following is included as an example of an XML capabilities message and is not intended to be limiting

in any way:

<type name="Capabilities">
<element name="display" type="string"/>
<element name="memory" type="string"/>

=11

<element name="mime" type="string"/>

</type>

The distributed computing environment may include a mechanism that may allow clients to negotiate how a
service is to return results of a service invocation. In one embodiment, during a capability credential request, a
means by which to choose one of the results return methods may be conveyed to the service. The service may then
generate a custom service advertisement that may convey to the client the results mechanism to be used, as well as
the service interface.

In one embodiment, the distributed computing environment may include a mechanism for tracking service
discovery search requests and responses to the requests. In one embodiment, search request and response messages
may include a field that may be used to include a string or an XML document. In one embodiment, the string or

XML document included in the field of a request message is also returned in the response message. In one

31

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

embodiment, the string or XML document is required to be returned in the response message. In one embodiment,
the string or XML document may include additional information inserted in or appended to the string or document
when returned in the response message. In one embodiment, this mechanism may be used in debugging complex
systems. In one embodiment, this mechanism may also provide to clients a method for choosing services to access
by using the string or XML document to pass custom search information between a client and service that may only

be understood by the client and service.

Matching Component (Service) Interfaces

The distributed computing environment may provide a mechanism for matching a component (for example,
a service) specification interface with a requested interface. For example, a client (which may be a service) may
desire a service that meets a set of interface requirements. Each component may have a description of the interface
to which it conforms. The specification interface matching mechanism may allow a component that best matches a
requestor’s interface requirements to be located. The specification interface matching mechanism may also allow
for “fuzzy” matching of interface requirements. In other words, the mechanism may allow matching without
requiring the exact specification of all aspects of the interface, thus providing a nearest maich (fuzzy) mechanism.
In one embodiment, the specification interface matching mechanism may be implemented as a multi-level, sub-
classing model rather than requiring specification at a single interface level.

In one embodiment, a component may use an XML Schema Definition Language (XSDL) to describe its
interface. XSDL may provide a human-interpretable language for describing the interface, simplifying activities
requiring human intervention such as debugging. In one embodiment, the interface description may be provided as
part of an advertisement (for example, a service advertisement) as described elsewhere in this document.

Using the specification interface matching mechanism, a basic desired interface may be compared to a set
of component’ interface descriptions. One or more components matching the basic desired interface may be
identified. The interface descriptions may include subclass descriptions describing more specifically the interfaces
provided by the components. In the search process, the class type hierarchy may be examined to determine if a
given class is a subclass of the search type. In one embodiment, subclasses may inherit properties of the base class,
and thus the subclass-specific information may not be examined in this phase. Thus, the search may be performed
generically. The identified components may be searched at the next (subclass) level. The search may become
specific to the subclass and may be performed by interpreting the subclass information included in the interface
description. The search may continue through one or more subclasses until one or more components is determined
which may provide the nearest match to the requestor’s desired interface.

In one embodiment, an interface matching mechanism may provide the ability to distinguish among two or
more components that implement similar interfaces. In one embodiment, the interface matching mechanism may
provide the ability to distinguish among different revisions of the same component.

In one embodiment, a component description may be provided that includes a specification of the interface
to which the component conforms. The component description may also include information about the component
itself. The interface description and/or the component information may be used to differentiate among different
implementations of a given interface. The component descriptions may include a canonical identifier and version

information. The version information may allow component revisions to be distinguished. In one embodiment, the

32

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

component description may be provided as part of an advertisement (for example, a service advertisement) as
described elsewhere in this document.

In one embodiment, components may be searched for a particular canonical identifier. Two or more
components may be identified with matching canonical identifiers. One or more components may be selected from
among the components with matching canonical identifiers. The selection procedure may use an interface
specification version, a component implementation specification, a component implementation specification version,
other information or a combination of information from the component description to produce a set of one or more

components that best match the requestor’s requirements.

Spaces

As mentioned above, the distributed computing environment relies on spaces to provide a rendezvous
mechanism that brokers services or content to clients. Figure 15 illustrates the basic use of a space 114. Service
providers may advertise services in a space 114. Clients 110 may find the advertisements in a space 114 and use the
information from an advertisement to access a service using the XML messaging mechanism of the distributed
computing environment. Many spaces may exist, each containing XML advertisements that describe services or
content. Thus, a space may be a repository of XML advertisements of services and/or XML data, which may be raw
data or advertisements for data, such as results.

A space itself is a service. Like any service, a space has an advertisement, which a client of the space must
first obtain in order to be able to run that space service. A space’s own advertisement may include an XML schema,
a credential or credentials, and a URI which indicate how to access the space. A client may construct a gate from a
space service’s advertisement in order to access the space. A client of a space may itself be a service provider
seeking to advertise in that space or modify an existing advertisement. Or a client of a space may be an application
seeking to access a service or content listed by the space. Thus, spaces may provide catalysts for the interaction
between clients and services in the distributed computing environment.

A space may be a collection of named advertisements. In one embodiment, naming an advertisement is the
process of associating a name string with an advertisement. The association may take place upon storing an
advertisement in a space. Removing an advertisement from a space disassociates the name from the advertisement.
A space may be created with a single root advertisement that describes the space itself. Additional advertisements
may be added to a space. An advertisement's name may locate the advertisement within the space, including
specifying any necessary graphing information such as a hierarchy of names. In a preferred embodiment, the
distributed computing environment does not dictate the structure of a space. That is, spaces may be structured as,
for example, a flat un-related set of advertisements or a graph of related advertisements (e.g. commercial database).
Since, in a preferred embodirment, the distributed computing environment does not dictate how a space actually
stores its content, spaces may be supported by small to large devices. For example, a simple space may be tailored
to fit on small devices, such as PDAs. More advanced spaces may be implemented on large severs employing large
commercial databases.

As mentioned above, a space may contain advertisements for services in the distributed computing
environment. An advertisement may provide a mechanism for addressing and accessing services and/or content
within the distributed computing environment. An advertisement may specify a URI for a service. In some

embodiments, the URI may allow for the service to be accessible over the Internet. An advertisement may also

33

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

include an XML schema for the service. The XML schema may specify a set of messages that clients of the service
may send to the service to invoke functionality of the service. The XML schema may define the client-service
interface. Together, the URI and the XML specified in an advertisement may indicate how to address and access the
service. Both the URI and schema may be provided in XML as an advertisement in a space. Thus, a mechanism for
addressing and accessing a service in a distributed computing environment may be published as an advertisement in
aspace. Clients may discover a space and then lookup individual advertisement for services or content.

Figure 16 illustrates advertisement structure according to one embodiment. An advertisement 500, like
other XML documents, may include a series of hierarchically arranged elements 502. Each element 502 may
include its data or additional elements. An element may also have attributes 504. Attributes may be name-value
string pairs. Attributes may store meta-data, which may facilitate describing the data within the element.

In some embodiments, an advertisement may exist in different distinct states. One such state may be a
drafted state. In one embodiment, advertisements may initially be constructed in a drafted state that exists outside
the bounds of a space. The creator of an advertisement may construct it in a variety of ways, including using an
XML editor. Access to elements and attributes in the drafted state may be at the raw data and meta-data levels using
any suitable means. Typically, events are not produced for changes made to advertisements in the drafted state.
Therefore, the creator of the advertisement may be free to add, change, or delete elements as well as to achieve the
desired attribute set, and then publish the advertisement for the rest of the distributed computing environment to see.

In one embodiment, another possible state for advertisements is a published state. Advertisements may
move to the published state when inserted into a space. Once the advertisement is in a space, interested clients, and
services may locate it, e.g. using its name and/or its elements as search criteria. For example, search criteria may be
specified as an XML template document that may be compared (e.g. by the space service) with the advertisements in
the space. Published advertisements may represent “on-line” services ready for clients to use. The message address
(URI) of the service may be stored as an element in the advertisement. Advertisements that are removed from the
space may transition back to the drafted state where they may be discarded or held. Removal may generate an event
so interested listeners may be made aware of the change. Message gates are typically created from published
advertisements.

In one embodiment, yet another possible state for advertisements is a persistent archived state. An archival
procedure may turn a live published advertisement into a stream of bytes that may be persistently stored for later
reconstruction. Archived advertisements may be sent (e.g. in their raw XML form) from the space to an archival
service. The URI for an advertisement’s archival service may be stored as an element in the advertisement. XML
may provide a format for storing and retrieving advertisements and representing the state of advertisement elements
sufficient to reconstruct the advertisement object(s). Advertisements may be stored in other formats as well,
depending on archival service implementation. The process of making a published advertisement persistent may
prepare the advertisement for the persistent archived state. Persistent advertisements may be stored (e.g. by an
archival service) for future use in a persistent storage location such as a file or a database. A space through the
archival procedure may enable advertisements to be stored, however the space does not necessarily play a role in
how persisted advertisement entries are actually stored. How persisted advertisements are stored may be determined
by the advertisement’s archival service. Typically, no events are generated on behalf of archived advertisements.

Also, changes may not be allowed for advertisements in the persistent archived state.

34

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

Advertisements may be archived and removed or just archived. If an advertisement is archived without
removing it from the space, the space will store a shadow version of the advertisement. Access to an archived
service may cause the advertisement to “fault-in” from its persistent backing store on demand. This feature may
allow advertisements to be filled, from LDAP (Lightweight Directory Access Protocol) entries for example, on
demand.

Figure 17 illustrates one example of advertisement state transitions that an advertisement may undergo
during its lifetime. First, an advertisement may be constructed, as indicated at 1. During construction, the
advertisement is in the drafted state. Then, the advertisement may be inserted in a space, as indicted at 2. The
advertisement may be inserted as a published parent. The advertisement is in the published state after being inserted
in a space. An event (e.g. AdvInsertEvent) may be generated when the advertisement is inserted in the space.
Events are more fully discussed below. The advertisement may be archived and made persistent, as indicated at 3,
which may transition the advertisement to the persistent archived state. An advertisement may also be published
from the persistent archive state, as indicated at 4. An advertisement may be removed from a space and transition
back to the drafted state, as indicated at 5. An event (e.g. AdvRemoveEvent) may be generated when the
advertisement is removed.

In one embodiment, the archived, persistent state is not used. In this embodiment, state changes 3 and 4
also are not used. In this embodiment, an advertisement is either in the drafted state or in the published state.

Advertisements stored in a space may have the following standardized elements and/or attributes: version
(may be an element), creation date (may be an attribute), modification date (may be an attribute), implementation
service URI (may be an element), and/or persistence archival service URI (may be an element).

A space itself is typically a service. A space service may provide the ability to search for advertisements in
the space, which may include searching the space by type of advertisements. A space service may also provide
facilities to read advertisements, write (publish) advertisements, and take (remove) advertisements. A space may
also provide the ability to subscribe for space event notification messages. Some spaces may provide extended
facilities, such as facilities to navigate space relationship graph by position; read, write or take advertisement
elements; read, write or take advertisement attributes; and subscribe for advertisement event notification messages.
Space facilities are described in more detail below. A space’s capabilities are embodied in a space advertisement's
message schema. From the message schema, space address, and authentication credential, a client message gate may
be created to access the space and its facilities.

Spaces and all advertisements within a space may be addressed using URIs. In one embodiment, space and
advertisement names may follow URL naming conventions. The use of URISs, e.g. URLs, for addressing spaces may
allow spaces to be addressable throughout the Internet, in some embodiments.

The space message recipient (a space service) niay be specified using a URI which may have been received
in a service advertisement for the space. The URI may include a protocol, host, port number, and name. The
protocol may name the protocol that may be used to move messages between clients and the space (reliable or
un-reliable sockets, for example). The host and port number may be protocol dependent IDs. The name may be the
space name followed by advertisement, element and/or attribute name. In one embodiment, a pathname may be
used to identify an advertisement in a space. Pathnames may be either absolute or relative. Absolute pathnames
name the space as well as an advertisement. Relative pathnames are relative a designated advertisement within an

assumed space. In one embodiment, the syntax rules governing the construction of pathnames is that of the URI

35

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

(Uniform Resource Identifier). In that embodiment, advertisement and space names therefore may not contain any
URI reserved characters or sequences of characters. Pathnames to elements and attributes may also be specified
using a URI. In general, element and attribute names may be appended to the pathname of an advertisement, such
as: '

http://java.sun.com/spacename/advertisement/element/attribute.

In one embodiment, the distributed computing environment may include a mechanism that allows a client
to discover the URI of a space but restricts access to the service advertisement for the space. In one embodiment,
rather than returning the full advertisement to the space, the URI of the space and the URI of an authentication
service for the space may be returned. In order for the client to access the documents or services advertised in the
space, the client first may authenticate itself to the authentication service at the URI provided in the return message.
The authentication service may then return an authentication credential that may allow the client partial or full
access to the space. When the client receives the authentication credential, the client may attempt to connect to the
space to access the documents or service advertisements in the space.

The distributed computing environment may provide a mechanism or mechanisms that may enable a client
to connect to a space. Embodiments of a connection mechanism may provide for client-space addressing, client
authorization, security, leasing, client capabilities determination, and client-space connection management. A
client-space connection may be referred to as a session. In one embodiment, a session may be assigned a unique
session identification number (session ID). The session ID may uniquely identify a client-space connection. In one
embodiment, a session lease mechanism may be used to transparently garbage collect the session if the client does
not renew the lease.

The following is an example of using such a connection mechanism according to one embodiment. A
client may obtain an authentication credential. In one embodiment, the space may provide an authentication service
in response to a client’s request for access to the space. The client may obtain the authentication credential through
the authentication service. When the client receives the authentication credential, the client may initiate a
connection to the space by sending a connection request message. In one embodiment, the connection request
message may include the URI address of the space service, the authentication credential for the client and
information about the connection lease the client is requesting. After the space receives the connection request
message, the space may validate the message. In one embodiment, an XML schema may be used to validate the
message. The client may then be authenticated using the authentication credential. In one embodiment, the
information received in the connection request message may be used to determine the capabilities of the client to use
the space. In one embodiment, each client of a space may be assigned its own set of capabilities for using the space.
In one embodiment, an access control list (ACL) that may include capability information about one or more clients
of the space may be used in client capabilities determination. In one embodiment, the information received in the
connection request message may be used to look up the client’s capabilities in the ACL.

After authenticating the client and determining the client’s capabilities, the connection lease to grant the
client may be determined. After the lease is determined, the structure for maintaining the client-space connection
may be generated. A session ID for the connection may be generated. In one embodiment, each client-space
connection may be assigned a unique session ID. In one embodiment, an activation space may be created and
assigned to, or alternatively a pre-existing activation space may be assigned to, the client-space session. In one

embodiment, an activation space may be used to store results of services for the client when using the space. In one

36

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

embodiment, a client’s capabilities may be used to determine if an activation space is to be created for the client.
For example, a client may not have capabilities to access an activation space to store and retrieve results. A message
or messages may be sent to the client informing the client that the connection has been established. The message or
messages may include the session ID and information about the lease. The client may then use the space including,
but not limited to: advertisement lookup, advertisement registering, and advertisement retrieval. In one
embodiment, he connection may remain open until the allocated lease expires or until the client sends a message
requesting lease cancellation to the space. In one embodiment, the client may be responsible for renewing the lease
before the lease expires. If the lease expires before the client renews the lease, the connection may be dropped,
causing the client to lose the connection to the space. In one embodiment, to reconnect, the client may be required
to repeat the connection procedure.

In one embodiment, a client of a space may obtain a space's advertisement several different ways. Some of
the ways a client may obtain a space’s advertisement are illustrated in Figure 18. For example, a space discovery
protocol may be provided as part of the distributed computing environment. Space discovery is a protocol a client
or service may use to find a space. A listener agent 202 may be configured associated with one or more spaces to
listen for discovery requests. The discovery listener agent 202 may listen on various network interfaces, and may
receive either broadcast requests or unicast requests (at the URI of the agent) from clients 200a looking for a
space(s). The listener agent 202 then responds with the service advertisement(s) or URIs for the service
advertisements of the requested space(s). In one embodiment, the listener agent is, in general, separate from the
space, because its functionality is orthogonal to the functionality of a space service. However, the listener agent
may be implemented on the same device or a different device as a space service.

In one embodiment, the discovery protocol may be a service advertised in a default space. A client may
instantiate the discovery protocol from the client’s default space in order to discover additional spaces. The
discovery protocol may be pre-registered with a client’s default space. Alternatively, the discovery protocol may
register itself with the default space by placing an advertisement in that space, e.g., when a client connects to a local
network serviced by the discovery service.

In one embodiment, the space discovery protocol may be mapped to underlying device discovery protocols
for other platforms, such as SLP, Jini, UPnP, etc. Thus, a client may use the discovery protocol of the distributed
computing environment to find services in other environments. A bridge to these other environments may be
provided, and advertisements provided to services in these other environments so that clients of the distributed
computing environment described herein may access them. Refer to the Bridging section.

For each advertised discovery protocol, the distributed computing environment may create a subsequent
results space to hold the results of the discovery protocol. In one embodiment, space services in the distributed
computing environment may use the Multicast Announcement Protocol (multicast UDP) to announce themselves on
a LAN. A listener agent may record this information. A device (either a client or service) may use the Multicast
Request Protocol (multicast UDP) to initiate discovery of a space manager. In one embodiment, the space managers
respond with information indicating the URI of their respective spaces. Alternatively, a listener agent may respond
for multiple spaces. The discovery response may also include a short string that labels the each space (e.g. obtained
from keywords of the space), and information that can be used to set up a TCP connection, for example, with each

space manager to perform operations on the respective space. Since the requesting device may receive responses

37

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

from more than one space manager (or multiple space listings from a listener agent), this information may help the
client select which space it wishes to connect to.

In addition to the multicast discovery described above, the discovery service may also perform discovery
using unicast messaging (e.g. over TCP) that can be used to discover a space manager at a known address on the
network (e.g. the Internet, other WAN, LAN, etc). The unicast discovery message may include a request for a space
service at a known URI to provide its service advertisement. The multicast and unicast discovery protocols are
defined at the message level, and thus may be used regardless of whether the devices participating in the discovery
support Java or any other particular language.

The discovery protocol may facilitate the proliferation of clients independently of the proliferation of
server content that supports those clients within the distributed computing environment. For example, a mobile
client may have its initial default space built into its local platform. In addition to local services advertised in the
default space, the mobile client may have services that search for additional spaces, such as a service to access the
discovery protocol or a service to access space search engines.

In one embodiment, the distributed computing environment space discovery protocol may define a set of
XML messages and their responses that may allow clients to:

* Broadcast protocol-defined space discovery messages on their network interfaces.

« Receive from listeners XML messages describing candidate spaces that those listeners

represent.

* Select one of those discovered spaces as default, without the client needing to know the

address of the selected space.

» Obtain information on the selected space, such as its address, so the client may later find that

same space via means outside of the discovery protocol (useful if later the client wants to
access a space which is no longer local, but which still is of interest to the client).

In some embodiments, the multicast and unicast discovery protocols may require an IP network. Although
these discovery protocols meet the needs of devices that are IP network capable, there are many devices that may
not be directly supported by these discovery protocols. To meet the needs of such devices in discovering spaces in
the distributed computing environment, a pre-discovery protocol may used to find an IP network capable agent. The
pre-discovery protocol may include the device sending a message on a non-IP network interface requesting a
network agent. The network agent may set up a connection between itself and the device. Once the connection
between device and agent is set up, the agent participates in the discovery protocol on IP networks on behalf of the
device for which it serves as agent. The network agent may also provide an interface for the device to the
distributed computing environment in general. For example, gates may be constructed in the agent on behalf of the
device for running services advertised in discovered spaces. See the Bridging section.

Another way that clients may locate spaces in the distributed computing environment is by advertisement of
a space in another space. A space is a service, thereforeso, like any other service, it can be advertised in another
space. As shown in Figure 18, a client 200b may find an advertisement 206 in a first space 204a for a second space
204b. Space 204b may in turn include advertisements to additional spaces. Because a service (implementing a
space) may also act as a client, spaces may exchange advertisements or chain together to provide a federation of

spaces, as illustrated in Figure 19. Any pumber of spaces may be included in the distributed computing

38

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

environment. The number and topology of spaces may be implementation dependent. For example, spaces
implemented on an IP network might each correspond to a different subnet.

A third way a client may locate a space is through running a service 208, as shown in Figure 18. A service
208 may be run which returns as its results the service advertisements of space services. Since service
advertisements are XML documents and since the distributed computing environment may include the Internet,
service 208 may be a Web-based search tool. An example of such a service is the space look-up service described
in conjunction with Figure 4. In one embodiment, spaces within the distributed computing environment may be
implemented as Web pages. Each Web page space may include a keyword that may be searched upon to identify
the Web page as a space in the distributed computing environment. The space may include other searchable
keywords as well to further define the space. A client may connect to a search service 208 and supply keywords to
the search service in the form of XML messages. The search service may receive the keywords from the client and
feed the keywords to an Internet search engine, which may be a conventional or third-party search engine. The
search service may return the results from the Internet search engine to the client, either directly as XML messages
or by reference to a results space. The results may be the URIs of spaces matching the search request.
Alternatively, the search service may contact spaces identified by the search, obtain the service advertisement for
each such space, and return the space service advertisements to the client, either directly as XML messages or by
reference to a results space. The client may then select a space from the search results and construct a gate (by itself
or through a proxy) to access the selected space. Once the selected space is accessed, the client may look up service
advertisements within that space, which may lead to additional spaces.

As described above, a space may be an XML-based Website, and as such may be searched via Internet
Web search mechanisms. A space may include Internet searchable keywords. Some devices, such as small client
devices, may not support an Internet browser. However, such devices may still perform Internet searches for spaces
within the distributed computing environment. A device may have a program that accepts strings of keywords,
which may be sent to a proxy program on a server (e.g. a search service). The proxy may send the strings to a
browser-based search facility (e.g. an internet search facility) to perform the search. The proxy may receive the
output of the search and parse it into strings (e.g. XML strings) representing each URI for the search results and
send the response strings back to the client. Thus, a client may locate spaces through the Internet without having to
support a program such as a Web browser. More capable devices may avoid the use of a proxy and initiate an
Internet-based search service directly,

A fourth way a client may locate a space is by obtaining or receiving information about a newly created
empty space or a spawned space when an existing space is spawned. An existing space may include an interface for
spawning an empty space with the same functionality (e.g. same XML schema) as the space from which it is
spawned. Spawning of spaces is further described below.

Once a client of a space finds the advertisement of a space service, that client of the space may run the
space service, as it would any other service. Note that the client of the space service may be another service (e.g. a
service seeking to advertise in the space). In one embodiment, as illustrated in Figure 20, to run a space service, the
client of the space may first run an authentication service for the space to obtain an authentication credential, as
indicated at 300. The authentication service may be specified in the service advertisement of the space service. The
client of the space uses the authentication credential, the XML schema of the space (from space's service

advertisement), and the URI of the space (from space's service advertisement) to construct a gate for the space, as

39

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

indicated at 302. The client of the space may then run the space service by using the gate to send messages to the
space service. A first such message is indicated at 304.

For embodiments employing authentication, when the space service receives the first message from the
client, with the authentication credential embedded, the space service uses the same authentication service (specified
in the service advertisement of the space service) to authenticate the client, thus establishing its identity, as indicated
at 306. The space service may determine the client's capabilities and bind them to the authentication credential, as
indicated at 308.

As indicated at 310, a client of a space may run various space facilities by sending messages to the space
service. In one embodiment, when a client of a space sends a request to the space service, it passes its authentication
credential in that request, so the space service can check the request against the client's specific capabilities.

Each space is typically a service and may have an XML schema defining the core functionality of the space
service. The XML schema may specify the client interface to the space service. In one embodiment, all space
services may provide a base-level of space-related messages. The base-level space functionality may be the basic
space functionality that is capable of being used by most clients, including small devices such as PDAs. It may be
desirable to provide for additional functionality, e.g. for more advanced clients. Extensions to the base-level space
may be accomplished by adding more messages to the XML schema that advertises the space. For example, in one
embodiment, the base-level messages do not impose any relationship graph upon the advertisements. Messages, for
example, to traverse a hierarchy of advertisements may be a space extension. Such additional functionality may be
provided through one or more extended XML space schemas or schema extensions for a space. The extended
schemas may include the base schema so that clients of an extended space may still access the space as a base space.

In one embodiment, a base space service may provide a transient repository of XML documents (e.g.
advertisements of services, results of running services). However, a base space service in one embodiment may not
provide for advanced facilities to support persistence of space content, navigation or creation of space structure (e.g.
hierarchy), and a transactional model. A mechanism for supporting persistence, hierarchy, and/or transactions is by
extending the XML schema. Since extended spaces still include the base XML schema, clients may still treat
extended spaces as base spaces, when just the base space functionality is all that is need or all that can be supported.

In one embodiment, the base space may be transient. The base space may be acceptable for many
purposes. Service providers may register their services in various spaces. In one embodiment, services must
continuously renew leases on the publishing of information in the spaces. By this nature, the services
advertisements may be transient in that they may often be rebuilt and/or reconfirmed. However, it may be desirable
to provide for some persistence in a space. For example, a space that has results may provide some persistence for
users that want to be sure that results are not lost for some time. In one embodiment, persistence may be provided
for by specifying a space interface where the client may control which objects in the space are backed by a persistent
store and manage the maintenance of that persistence store. The persistence interface may be specified with
extended XML schema for the space defining the interfaces for persistence.

In one embodiment, a base space may provide an interface where an XML document may be added to a
space and identified by a string. The base space may not provide any hierarchy for the various so named XML
documents in the space. In embodiments where hierarchy support is desired, additional interfaces may be defined
(extending the XML schema) where the user can specify a hierarchy. Other interfaces may be specified to navigate

the hierarchy or navigate a relationship graph by position. However, other users may still use the base space

40

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

interfaces to access those same documents, without any hierarchy. Interfaces for other space structure may be
provided for as well in extended space schemas.

Extended XML space interfaces may also be provided for space transaction models. For example, an
extended space XML schema may be provided specifying an interface for ACID transactions. ACID is an acronym
used to describe four properties of an enterprise-level transaction. ACID stands for Atomicity, Consistency,
Isolation, and Durability. Atomicity means that a transaction should be done or undone completely. In the event of
a failure, all operations and procedures should be undone, and all data should rollback to its previous state.
Consistency means that a transaction should transform a system from one consistent state to another consistent state.
Isolation means that each transaction should happen independently of other transactions occurring at the same time.
Durability means that completed transactions should remain permanent, e.g. even during system failure. Other
transaction models may also be specified in extended space schemas.

Extended space schemas may be XML documents that specify the message interface (e.g. XML messages)
for using extended space features, functionality or facilities. A space may have a base schema and multiple
extended schemas. This may facilitate provided different levels of service to different clients depending upon the
client authentication.

Besides extensions for space persistence, structure, and transactions, other space extensions may also be
specified as desired. For example, extensions may be provided to manipulate advertisements at the element or
attribute level: read, write or take advertisement elements; read, write or take advertisement attributes; and subscribe
for advertisement event notification messages. A space may provide virtually any number of facilities and arrange
them in base and extended schemas as desired. In one embodiment, all base spaces must provide for advertisement
reading, writing, taking, and lookup facilities, and space event subscriptions.

Various space facilities may be provided. In some embodiments, a facility may be provided for the
establishment of a session with the space. In one such embodiment, the rest of the space functionality is not
available until this is done. In other embodiments, the notion of a session is not provided for, or is optional and/or
implementation dependent.

Another space facility may be to add or remove a service advertisement to or from the space. A space
facility may also be provided for adding or removing an XML document (not an advertisement, but perhaps a result
in a space). The space service may check for uniqueness of an item before allowing the addition of the item. For
example, each item added to the space may be associated with a user-specified string that identifies the item and that
may be used to check for the uniqueness of the item.

In one embodiment, a client may request a listing, tree or other representation of all services advertised in
the space. The user then may scroll or maneuver through the advertisements and select the desired service. A space
may also provide a look-up facility that allows a client to search for a service by providing keywords or string
names. In one embodiment, a space facility may provide a mechanism to look up a space entry that has been added
to the space. The look up facility may search by string to match for name, or wildcard, or even database query. The
look up facility may return multiple entries from which the client may select one or perform a further narrowing
search. In one embodiment, the look-up facility may provide a mechanism to locate a service advertisement
matching a particular XML schema. The client may indicate a particular XML schema, or part of a particular XML,
to be searched for within the space. Thus, a service may be searched for within a space according to its interface

functionality.

41

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

Another space facility that may be provided in the distributed computing environment is a mechanism that
allows services and clients to find transient documents based upon a typing model such as XML. The mechanism
may be a general-purpose, typed document lookup mechanism. In one embodiment, the lookup mechanism may be
based upon XML. The lookup mechanism may allow clients and services to find documents in general, including
services through service advertisements.

In one embodiment, a space lookup and response message pair may be used to allow clients and services to
find XML documents stored within a network transient document store (space). The space may be a document
space used to store a variety of documents. In one embodiment, the documents are XML documents or non-XML
documents encapsulated in XML. Spaces are further described elsewhere herein. The lookup messages may work
on any kind of XML document stored in the space, including service advertisements and device driver
advertisements. In one embodiment, a client (which may be another service) may use a discovery mechanism as
described elsewhere to find one or more document spaces. Then, the client may use space lookup messages to
locate documents stored in the space.

The distributed computing environment may include a mechanism that allows services and clients to
subscribe to and receive events about the publication of XML documents. Events may include the publication of
and removal of XML documents to and from a transient XML document repository such as a space. In one
embodiment, an event may be an XML document that refers to another XML document.

In one embodiment, a space event subscription and response message pair may be used to allow clients and
services to subscribe for events regarding documents that are added to or removed from a space. In one
embodiment, an event subscription may be leased using the leasing mechanisms described elsewhere herein. In one
embodiment, a subscription may be cancelled when the lease is cancelled or expires. In one embodiment, renewing
the lease to the subscription may renew a subscription.

In one embodiment, an event subscription message may include an XML schema that may be used as a
document matching mechanism. Documents that match the schema may be covered by the subscription. In one
embodiment, any document added to a space and that matches the XML schema may generate a space event
message.

A space facility may also be provided to which a client may register (or unregister) to obtain notification
when something is added to or removed from the space. A space may contain transient content, reflecting services
that at added and removed from the space. A mechanism may be provided to notify a client when a service becomes
available or becomes unavailable, for example. A client may register with an event service to obtain such
notification. In one embodiment, a client may register to be notified when a service having a name matching a
specified string or a schema matching a specified schema (or schema portion) is added or deleted from the space.
Thus, a query to register with the space event notification facility may be the same as or similar to that of the service

look up facility described above.

Events may be typed. In some embodiments, the event facilities supported by spaces may allow
for event listeners to take advantage of, e.g., Java class (or XML types) hierarchies. For example, by listening for
AdvElementEvent, the listener will receive events of type AdvElementEvent and all of its sub-classes (XML types).
Thus, for this example all events pertaining to element changes (though not advertisement insertion and removal) are

received.

42

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

By way of further example, subscribing to or listening for a top-level event class or type, e.g. SpaceEvent,
will result in the reception of all space events. Event class types may be distinguished via, for example, the Java
instanceof operator or the XML typing system.

An event may include a URI to the affected advertisement or element. For example, AdvertisementEvent
and all its sub-classes may contain a reference (e.g. URI or URL) to the affected advertisement. AdvElementEvent
and its subclasses may be examined for the name of the affected element. The previous element value (URI or
URL), may be available, for example, from AdvElementRemoveEvent and AdvElementValueChangeEvent.

A space event type hierarchy for one embodiment is illustrated in Figure 21. Types may be defined in XML
and usable in Java or any other suitable object-oriented language such as C++.

A space may provide a facility for a client to instantiate a service advertised in the space. Service
instantiation is the initialization done that allows a client to be able to run a service. On embodiment of service
instantiation is illustrated in Figure 22. To instantiate a service, a client may first select one of the service
advertisements published in the space, as indicated at 320. The client may use the various facilities, such as the look
up facility, provided by the space to look up the various advertisements in the space. Then the client may request the
space to instantiate the service, as indicated at 322.

In one embodiment, service instantiation may include the following actions. After the client requests the
space service to instantiate the selected service, as indicated at 322, the space service may then verify the client is
allowed to instantiate the requested service, as indicated at 324. The space service may perform this verification by
examining an authentication credential included in the client’s message. The authentication credential is the
credential the client received when it established a session with the space service. The space service may verify if
the client is allowed to instantiate the requested service according to the client’s authentication credential and
capabilities indicated for that client. See the Authentication and Security section herein.

Assuming the client is authorized, the space service may also obtain a lease on the service advertisement
for the client with the lease request time specified by the client, as indicated at 326. Leases are further discussed
below. The space service may then send a message to the client which includes the allocated lease and the service
advertisement of the service, as indicated at 328. In one embodiment, the client may run an authentication service
specified in the service advertisement and obtain an authentication credential, as indicated at 330. See the
Authentication and Security section herein for more information on an authentication service. Next, as indicated at
332, the client may construct a gate for the service (for example, using the authentication credential and the XML
schema and service URI from the advertisement). Refer to the Gates section herein. The above described
communication between the client and space service is performed using the XML messaging of the distributed
computing environment. The client may then run the service using the constructed gate and XML messaging. The
service may similarly construct a service gate for XML message communication with the client.

To summarize, an example use of a space is discussed as follows. A client may access (e.g., connect to) a
space service. (A service may act as a client for the purpose of accessing or otherwise using a space.) The space
service may store one or more service advertisements and/or other content in a space, and each of the service
advertisements may include information which is usable to access and execute a corresponding service. The space
service may include a schema which specifies one or more messages usable to invoke functions of the space service.
For example, the schema may specify methods for reading advertisements from the space and publishing

advertisements in the space. The schema and service advertisements may be expressed in an object representation

43

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

language such as eXtensible Markup Language (XML). In accessing the space service, the client may send
information such as an XML message (as specified in the schema) to the space service at an Internet address. In
accessing the space service, the client may search the one or more service advertisements stored in the space. The
client may select one of the service advertisements from the space. In one embodiment, the client may send an
instantiation request to the space after selecting the desired service advertisements from the space. A lease may be
obtained for the desired service, and the lease and the selected service advertisement may be sent by the space
service to the client. The client may then construct a gate for access to the desired service. The desired service may
be executed on behalf of the client.

Another facility provided by a space service may be the spawning or creation of an empty space. This
space facility may allow a client (which may be a service to another client) to dynamically create a new space. In
one embodiment, this space facility may include an interface for spawning an empty space with the same
functionality (same XML schema or extended schema) as the space from which it is spawned. This facility may be
useful for generating (e.g. dynamically) spaces for results. For example, a client may spawn a space a request @
service to place results or advertise results in the spawned space. The client may pass the spawned space URI
and/or authentication credential to the service. Or a service may spawn a space for results and pass the spawned
space URI and/or authentication credential to the client. In some embodiments, once a space is spawned, it may be
discovered just like other spaces using one or more of the space discovery mechanisms described herein.

By using a mechanism in which a space may be created via an interface in another space (e.g. a space
spawning facility), new spaces may be created efficiently. For example, in one embodiment, storage for the
spawned space may be allocated using the same facility used by the original space for storage. Also, a spawned
space may share a common service facility with its original (or parent) space. For example, a new URI may be
assigned to the new space. In one embodim.ent, the new URI may be a redirection to a common space facility shared
with the original space. Thus, a newly spawned space may use the same or some of the same service code as that of
the original space.

Space facilities may also include security administration, for example, to update the various security
policies of the space, and other administrative facilities. For example, the number and age of advertisements may be
controlled and monitored by a root space service. Old advertisements may be collected and disposed. See, e.g., the
Leases section herein for when an advertisement may be considered old. The service implementing the space may
be under the conirol of an administrator. The administrator may set policy in a service dependent manner. Space
facilities may also include a facility to delete an empty space.

Certain spaces may include facilities or services to further support the proliferation of certain clients, such
as mobile clients. For example, services in spaces that a mobile client may discover, e.g. via the discovery protocol,
may provide support for mobile clients, such as:

+ Assigning and administering temporary network addresses for the client.

» Proxying message passing for the client.

. Providing search facilities for additional spaces. For example, a service may allow a

client to specify keywords through a simple interface. The service then uses the keywords in
conjunction with Web search engines to search for spaces on the Web, as further described
herein. In other embodiments, a search service may constrain clients to searching only a few

supported spaces within the distributed computing environment.

44

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

As mentioned earlier (see Figure 9 and accompanying text), spaces may provide a convenient mechani
for storing results from a service run by a client. Using a space for results may allow a small client to receive
pieces the results of running a service. Some services may generate a large amount of results. By using a space
store the results from a service, clients that do not have the resources to receive the full results at once may stiil
the service. Moreover, by using a space to store results, a service running on a fast busy server may be freed fi«
interacting directly with a slow client when returning large results. Thus, the service may be freed sooner for use
other clients.

A space may provide a convenient mechanism for accessing a result by different clients and/or at differ
times. For example, a client may not be able to use the entire result, but a user may want to access the rest of s
result later using another client that can access it. For example, the result could be stock quote information, showi
the current price of a stock (accessible by a PDA), and showing a chart of stock prices (accessible by a laptop late
Also, using a space in the distributed computing environment for results may allow a client to feed the result of ¢
service into another service, without the necessity of downloading the result first. For example, in the case of -
stock quote information above, the PDA could feed the chart into another service, which prints the chart, without-
PDA having to download the chart itself. Thus, a results space may provide a mechanism for a client to pass
another client or service without the client having to handle or receive the results.

In different embodiments, the decision to use a space for results may be mandated by the service, manda
by the client, and/or requested by the client. A service may suggest the use of a space for its results, e.g., in
advertisement. In one embodiment, either the client or the service may spawn a new space for results or use
existing space for results. See the description herein regarding spawning spaces.

In one embodiment, the use of a space for results does not necessarily mean that the service must put
results in that space. There may be alternatives for any result a service generates. For example, part or all of-
result may be sent in-line in a message to the client. Alternatively, the result may be put in the space, and the
notification message may be sent to client, referencing the result (e.g. including a URI to the result or to
advertisement for the result). Another option may be to put the result in the space, with notification via an ev
from the space. For example, the client and the service may agree to call the result some particular name, and t}
the client may register with the space (using a space facility such as described above) to receive an event whe;
result so named is added to the space. See the description above on event notification.

Thus, several different mechanisms may be employed within the distributed computing environment fo
service to return results to a client. The actual results may be returned to the client by value in an XML message,
results may be returned to the client by reference with the actual results (or advertisement for the actual results) |
in a space and the client receiving a message referencing the results in the space. Moreover, results, or rest
advertisements, may be placed in a space and the client notified by event.

Another mechanism for handling results may be for the client to specify another service for the results to
fed to. For example, when a client runs a service that will produce results, the client may instruct that service (e
through XML messaging) to send the results to another service for further processing. This may involve the cli
indicating the URI of an advertisement for the other service so that the result-producing service may generate a g
to the other service in order to run the other service and pass it the results. In this example, the result-produc:

service may be a client of the other service. In some embodiments, the client may send the schema or a p

45

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

constructed gate to the result-producing service to access the service for further processing. An example of a servic
for further processing is a display service that may display the results for the original client. This display servic
may be on or associated with the same device as the client.

Result spaces and method gates may allow the distributed computing environment to provide a simp:
remote method invocation that is practical for thin clients with minimal memory footprints and minimal bandwidt]
because it need not have the adverse side effects of huge program objects (along with needed classes) being returne
(necessarily) across the network to the client as in conventional remote method invocation techniques. Insteas
results may be returned to a result space, and only if desired (and if they can reside on the client) are the actu:
objects downloaded to the client.

The mechanism by which the distributed computing environment may provide for remote metho
invocation is as follows (refer also to the description of method gates in the Gates section herein). An object may t
advertised (e.g. as a service or as part of a service) in a space. The advertisement includes a reference that contair
the URI (e.g. URL) of the object, along with other access parameters, such as security credentials and XML schem:
A client may have or may construct a client method gate for the object, which for every method of the object (¢
service) itself may have a wrapper method that takes the method parameters and creates a request XML message 1
invoke a method of the object. The XML message is sent to a service gate that invokes the actual method on tt
service object. When that method returns a result object, the service gate may post the result object in a resul
space, and may return a message to the client with a reference to the result object.

Thus, for a client to invoke a remote method, the client first sends a message to instantiate an object (e.;
service), such as described above. In one embodiment, instantiation of an object may include the creation «
spawning of a results space. In another embodiment, results space creation may be independent from the obje:
instantiation. Instantiation may return the object URI to the client, and the client and service gates may t
dynamically created when a client requests instantiation. In some embodiments, a results space may already exi
and be advertised by the object (service). Some part or all of the gates may also have been pre-constructed «
reused.

Once a client has initiated an object, a local call of the appropriate client method gate will affect a remo
call to the actual remote object, as described above. The remote method invocation approach of the distribute
computing environment may be recursive, with object references returned to the client, instead of the objects itsel
when the client gate is called. Note that such returned objects may already be instantiated. In some embodiment
the client may make a decision to download an entire object itself, rather than just remotely invoke it.

A method or service invoked as described above may generate a child gate that is associated with tt
results document. The method may return a child gate (or the schema, URI and credentials for the client to constru
a child gate) for the references instead of the references themselves. The client may then access the reference
through the child gate. The child gate may also be a method gate.

As described above, this remote method invocation provided by the distributed computing environme
allows the real result object(s) to be stored in a service results space (which also may be created dynamically, by
servlet for example). The results space may be temporary. The results space may act as a query results cache. Th
results cache may be patrolled by server software (garbage collector) that cleans-up old result areas. Distribute
garbage collection may be employed, as result spaces may fill up until they are destroyed by a client indicating it n

longer needs the space, or by an administrator on a server setting appropriate limits.

46

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

Turning now to Figure 23, an illustration of a default space 350 is provided. The distributed computir
environment may provide at least one default space so clients can find an initial set of advertisements. A device m:
have a default space that exists locally, with a built-in pre-constructed gate. The services advertised in that defax
space may exist locally on that device, and they may provide system software that enables or facilitates the device
participation in the distributed computing environment.

The default space 350 may include one or more mechanisms 352 to locate external spaces, as shown
Figure 23. One service in the default space may run the space discovery protocol described above to find extern
spaces. Also, external spaces may be advertised in the default space. Additionally, a service (e.g. a search engine «
a proxy service to a search engine) may be advertised in the default space that determines or finds external space
Each space may be analogous to a file system mount point. Thus, the distributed computing environment m:
provide searchable, dynamic mount points to services. A default space may be a client’s initial mount point to tt
distributed computing environment.

A default space or access to a default space may be built in to a device. Through the default space ar
local services that may exist on the device, a client execution environment for the distributed computir
environment may be provided. A device’s local services and default space service may have built-in pre-constructe
gates. One of the built-in services listed in the default space may be a service to run the discovery protocol so th
the client may locate additional (e.g. external) spaces. A default space may include a built-in service that provid:
an execution environment for clients that allows the client user to browse spaces, select, and then instantia
services. Such a service may provide a simple user interface that allows a client to entire strings (e.g. keyword fi
space searches), view or browse result references (e.g. space listings, or service listings within a space), select iten
(e.g. to chose and instantiate a service), etc.

Devices that primarily provide a service may also include a default space and may include a built-in servic
in the default space that allows a service to manage advertising itself in various spaces. For example, a device, suc
as a printer, may have a built-in default service that finds (perhaps through the discovery protocol) a space on a loc
area network and adds an advertisement for the printer service to that space. This service may also maintain tt
printer service advertisement within the LAN space, for example, by renewing its lease or updating the printer
XML schema, etc.

For some devices that provide a service, the overhead of finding a space to advertise its service ar
maintain that advertisement is undesirable. In one embodiment, rather than searching for and maintaining a space ¢
spaces to publish service advertisements, services on some devices may transmit their advertisements in response 1
connection requests. For example, a printer device with a printer service that is available on a proximity basis mz
not maintain an advertisement in a space (on the device or external to the device). Instead, when another devic
establishes a connection with the printer device (for example, a user with a laptop running a client desires to print
document), the printer service may transmit the service advertisement to provide the XML service schema fi
connecting to and running the service that provides printing functionality on the printer device. Also, some devic
may only maintain advertisements for their services in a certain vicinity or local network. Such a device may
desire to support or may not have access to transports for broader accessibility.

One example of a service device in which it may be desirable for the device to avoid or limit maintainir
service advertisements in a space is a device whose functionality is available on a proximity' basis. Proximity-base

services may provide advertisements of their functionality upon request. These advertisements may not be broad]

47

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

accessible. For example, proximity-based services may be provided in a wireless communications system. The ter
“wireless” may refer to a communications, monitoring, or control system in which electromagnetic or acoust
waves carry a signal through atmospheric space rather than along a wire. In most wireless systems, radio frequen:
(RF) or infrared (IR) waves are used. Typically, in proximity-based wireless systems, a device comprising
transceiver must be within range (proximity) of another device to establish and maintain a communications channc
A device may be a hub to connect other devices to a wireless Local Area Network (LAN).

As mentioned, embodiments of the distributed computing environment may provide a mechanism using
lookup space that allows clients to rendezvous with services. In a proximity computing environment, o)
embodiment of the distributed computing environment may provide a service discovery mechanism that clients m:
use to discover services without using lookup spaces as rendezvous points. An example of a proximity computis
environment is an IrDA point-to-point communications environment. In a proximity computing environment,
proximity mechanism may find the “physical” location of the service for the client. For example, in an IrD
environment, the client device may be physically pointed at the device including the service(s) that the client desir
to use.

" The proximity service discovery mechanism may enable the client to directly look for servi
advertisements rather than sending a lookup request to a lookup space to look for service advertisements. Since tl
client device may have established a proximity connection to the service device, the client may directly request tl
desired service. For example, a PDA client device may establish a proximity connection to a printer device; tl
client may “know” to request a printer service connection on the printer device.

In one embodiment, the client may send a proximity service discovery message to the service device. T)
message may include information that may specify a desired service on the service device to which the client devi
has a proximity connection. In one embodiment, a service on the service device may respond to the proximi
service discovery message, and may send to the client the service advertisement that the client may use to connect
the desired service. The proximity service discovery message may also include information that may be used
authenticate the client and to establish the client’s capabilities on the service. Using the received servi
advertisement, the client may establish a gate to establish communication with the desired service.

Nevertheless, it may still be desirable to publish advertisements for services that do not desire to or cann
maintain their advertisements in a space that is broadly accessible. In one embodiment of a distributed computis
environment, a device that establishes a connection with a device that does not publish its service advertisement(s
such as a proximity-based device, may publish service advertisements received from the non-publishing device. F.
example, a device that establishes a connection with a proximity-based device and that has an alternate transpc
connection(s) may publish (or republish) service advertisements received from the proximity-based device in fl
alternate transport environment, thus allowing the proximity-based device service(s) to be used by other devic
(through the (re)published service advertisements) which are outside the normal proximity range of the device.

The publishing device may locate a locally published service advertisement for the proximity-based devi
through a discovery and/or lookup service, or alternatively the service advertisement may not be published by tl
local service device, but instead may be sent to the publishing device by the local device upon the establishment of
connection, as described above. In one embodiment, the republished service advertisement may be made availab
as long as the device maintaining the advertisement is connected to or able to connect to the local device. F

example, if the publishing device is disconnected from the local device (for example, moves out of proximity rang

48

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

of the device), the service advertisement may be made stale or removed. A lease mechanism may be provided to
allow the space containing the advertisement to send lease remewal messages to the publishing device. The
publishing device may verify its connection to the local device, thus allowing the space to detect when the local
device is no longer available. Rules for how the service advertisements are republished may be provided by the
local device or by an administrative policy for the local vicinity (e.g. proximity area) or local network.

Figure 24 illustrates an example of a device bridging proximity-based devices onto another transport
mechanism to allow the services provided by the proximity-based devices to be accessed by devices outside the
proximity range of the devices, according to one embodiment. A publishing device 1404 may be connected to a
network 1412, such as an Ethernet LAN or the Internet, etc., and may establish and maintain proximity connections
1414 with proximity devices 1400 and 1404. Proximity connections may be wireless connections or wired LAN
connections, for example. Proximity devices 1400 and 1402 may each send a service advertisement to the
publishing device 1404 upon connection, or, alternatively, the publishing device may locate the service
advertisements using a discovery and/or lookup service for the proximity connections. The publishing device 1404
may then make the services provided by the proximity devices available to other devices 1408 and 1410 on the
network 1412 by republishing the service advertisements 1416 and 1418 in space 1406. Space 1406 may be stored
on the publishing device or on other devices connected to the LAN (including devices 1408 and 1410).

Other devices on the LAN including devices 1408 and 1410 may then discover space 1406 and look up the
republished service advertisements 1416 and 1418 for the proximity-based devices, establish gates to communicate
to those services (device 1404 may act as a proxy or bridge) on the proximity-based devices 1400 and 1402 using
the XML message passing methods described previously, and send requests and receive results to the proximity
devices. Publishing device 1404 may act as a bridge between the network 1412 and the proximity connections 1414

to the proximity-based devices.

Leases

Leases may be used in the distributed computing environment to deal with partial failure, resource
synchronization (scheduling), and to provide an orderly resource clean-up process. Leases may help the overall
distributed system manage independent clients and services that may come and go. The various resources that
clients obtain from services (including space services) may be leased from those services. In general, not every
resource can or needs to be leased. In one embodiment, it is up to the implementation of each particular service to
determine which of its' resources need to be leased. In particular, resources used by a large amount of clients
simultaneously may not need leasing or instead may require custom leasing protocols. This class of leasing may be
left to the service provider. Custom protocols, such as those to implement transactions for example, may be built
upon the base leasing scheme. In one embodiment, the base leasing model is a relative time-based model.

Services may issue leases to clients and provide operations on those leases. In one embodiment, all such
lease functionality of a service is part of that service’s XML schema. Thus, a client may use its gate (corresponding
to the service and constructed for the service’s XML schema) to perform lease operations. In one embodiment, all
services that issue leases provide the following lease operations (only allowed by the owner of the lease): (i)
renewing a lease (parameters specified: lease (e.g. lease ID, lease credential), new lease time requested), and (ii)
canceling a lease (parameter specified: lease (e.g. lease ID, lease credential)). In one embodiment, all leases are

granted for a particular amount of relative time (duration of lease) that may be negotiated. The requestor may

49

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

specify a certain amount of time (e.g. in seconds), and the grantor may grant the lease for any amount up to that
time. In one embodiment, a -1 value may be used to specify an indefinite lease.

In one embodiment, a service advertisement may include one or more leasing addresses. In one
embodiment, the leasing addresses may be URIs. Standard leasing messages to renew and cancel service resource
leases may be sent to a leasing URL. An example lease URI:

<leaser>servicel://resource1</leaser>

An advertisement may also include various leasing messages as described above. Leasing messages may
include messages to renew and cancel leases for resources of the service. In one embodiment, the messages may be
comprised in an XML schema in the advertisement.

The leasing mechanism may provide a mechanism to detect service and client failure. Leases may also
provide a mechanism to provide shared and exclusive resource access. In one embodiment, all service resources
either have no lease (resource is not leased and therefore available), a shared lease (resource accessed by multiple
clients), or an exclusive lease (resource is accessed by exactly one client at a time). In one embodiment, all
resources begin in the no lease state. A no lease state signifies there is no current access to the underlying resource,
and indicates that there is an interest in the resource remaining in existence and thus available for leasing. The
leasing level may be increased from none to shared, none to exclusive, or shared to exclusive. Lease isolation levels
may also be decreased from exclusive to shared, exclusive to none, and shared to none. In one embodiment, clients
may voluntarily increase or decrease the lease isolation level, or may be requested by the service to do so. A
response message from the service may indicate if the isolation level change was accepted.

Request-response message pairs may be employed to claim, release, and renew a lease. Each message may
be tagged using a reserved XML tag to indicate that the message is a leasing message. The distributed computing
environment doesn’t necessarily define the complete composition of the message. In such an embodiment, service
developers may append custom message content, as long as, the message is tagged as a leasing message.

In one embodiment, clients that use leased resources may be expected to: (i) claim the resource as shared or
exclusive, (ii) release the resource claim (if requested or if finished with resource), and (iii) respond to renewal
messages (with another claim at same or different isolation level). Renewal messages may be sent (e.g. in regular
intervals) by services to detect client failure cases. The interval (at which the renewal message is sent) may be
service specific. If a response to the renewal message isn't issued after a specific amount of time (e.g. based on a
time noted in the service advertisement), a resource reclamation process may begin within the service, revoking the
lease completely. In such an embodiment, renewal messages sent to clients should be handled in a timely fashion.
Figure 25 illustrates the use of renewal messages both between a client and an instantiated service and between a
service provider and a space service. Note that both cases may be considered as the use of renewal messages
between a client and a service, since a service provider may be a client to a space’s advertisement service.

Renewal messages may arrive in an “out of band” fashion that may be inconvenient for the client to handle.
That is, the client cannot predict when a renewal message will be sent from the service. Out of band message
handling may complicate the client’s logic and increase its complexity. To solve this problem, an automatic lease
renewal mechanism may be implemented to relieve the client of the responsibility of handling the out of band
messages, and thus reduce client complexity. ~ In the automatic lease renewal mechanism, each gate (message,
method, and/or event gate) may receive renewal messages and automatically respond to them without help from the

client. The default response to a renewal request is to claim the lease at its current level. Each message gate may

50

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

contain a single, set-aside renewal response message that is automatically sent to the advertisement space service
when the gate receives the renewal message. This “out of band” message is handled on behalf of the client, yielding
a cleaner client programming model. In one embodiment, the gate may allow clients to register lease event handlers
to specify different isolation levels in the response message.

The leasing mechanism may also provide a mechanism to detect stale advertisements. When a service
publishes its advertisement in a space, that service obtains a lease on this publishing of its advertisement. Each
advertisement may contain a time by which the service promises to renew the advertisement. In one embodiment,
all time-out values are specified in seconds. If the service continues to renew its lease, the space is provided some
assurance that the service advertised is still being offered. The renewal time may be counted down towards zero by
the space service. If the service does not renew its lease, the service may have failed, or it may no longer wish to, or
be able to provide the service. When the lease is not renewed, the space service marks the service advertisement
stale, so it does not make it available to clients. Services renew advertisements by sending a renewal message to the
space. The space service receives these messages and resets the advertisement renewal time back to its initial value.

In one embodiment, stale advertisements are not automatically deleted. Depending upon the policies of the
space, it may choose to delete stale service advertisements that have expired for a reasonably long period of time.
The deletion policy may be set by the space service. The space service may search for stale advertisements and
either delete them or bring them to the attention of an administrator, for example.

A space service may use leases to manage the resources its facilities provide to clients (including other
services) of the space. For example, when a client desires to use a service, the space service may request a lease for
the client as part of service instantiation. Service instantiation may be performed to allow a client to run a service.
To instantiate a service, a client may first select one of the service advertisements published in a space. The client
may use the various facilities provided by the space to look up advertisements in the space. Then the client may
request the space to instantiate the service. The lease acquired during service instantiation is on use of the service
advertisement (not the same as the lease on publishing of the service advertisement). It should be noted that the
space service may allow multiple clients to have a lease on use of a service advertisement if the advertisement has an
indication it is shared. Otherwise, the space service only allows one client at a time to have a lease on the service
advertisement (exclusive).

Another example of how a space service may uses leases to manage the resources its facilities provide to
clients is when a client of the space registers to be notified when XML documents (e.g. service advertisements) are
added or removed from a space. The registering client of the space may obtain a lease on this subscription to
notifications. This lease enables the space service to know whether to continue sending notifications. Such a lease
may not be necessary when a client has established an active session with the space. Also, note that when a client of
a space (could be a service) establishes a session with the space, the client may obtain a lease on the session. This
allows the space to manage any resources associated with the session.

In another embodiment, the distributed computing environment may employ a leasing mechanism that is
not time-based. The lease may be generated when an object is claimed for use. Instead of a time-based mechanism,
the claim method may accept a caliback that notifies the current leaseholder that some other party wishes access the
same object (e.g. service). Thus, as an alternative embodiment to time-based leases, instead clients méay make
claims on space objects (e.g. services). When another client desires a lease that is incompatible with the current

leaseholder’s lease, the service may send a “callback message™ to the client. Upon receiving the callback message,

51

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

the client (i.e. client gate) may invoke a callback method to decide on a response to the callback message (keep the
lease, cancel the lease, change the access level to shared, etc.). Once a response has been determined, the client gate
sends a response message to the service. This distributed mechanism for managing leases may be implemented
using the XML message-passing layer.

For a non-time-based lease embodiment, the distributed computing environment may provide lease support
for several levels (or kinds) of access that allow a distributed algorithm to determine lease compatibility. Those
levels may include: (i) keep the object in the space (keepInSpace), (ii) read the object in the space (readShared), and
(iii) read exclusively the object in the space (readExclusive).

Authentication and Security

The distributed computing environment provides for spontaneous and heterogeneous distributed systems
based upon an asynchronous message passing model, where data and/or objects may be represented in a
representation language such as XML. In the distributed computing environment, clients may connect to services
throughout the Internet, for example. The distributed computing environment may enable large numbers of network
devices to work together in a reliable, dynamic, and secure fashion. The distributed computing environment may
define a protocol that substantially enables interoperability between compliant software components (clients and
services).

In the context of the distributed computing environment, a device may be a networking transport
addressable unit. Clients and services may be implemented as Universal Resource Identifier (URI) addressable
instances of software or firmware that run on devices.

Internet space is inhabited by many points of content. A URI is a method used to identify any of those
points of content, whether it be a page of text, a video or sound clip, an image, software, firmware or other Internet
content. The most common form of URI is the Web page address, which is a particular form or subset of URI called
a Uniform Resource Locator (URL). A URI typically describes the mechanism used to access the resource, the
specific computer that the resource is housed in and the specific name of the resource (typically a file name) on the
computer.

Clients and services (both may be implemented on devices as softiware and/or firmware) may be connected
over the Internet, a corporate intranet, a dynamic proximity network, within a single computer, or by other network
connection models. The size and complexity of the devices supporting clients and services may range, for example,
from a simple light switch to a complex, highly available server. Example devices include, but are not limited to:
PDAs; cellular phones; notebook, laptop, and more powerful PCs; and more powerful computer systems, up to and
including supercomputers. In some embodiments, the distance, latency, and implementation of clients and services
may be abstracted, with a common discovery and communication methodology, creating a “black box” effect. This
definition approach allows softiware implementation issues to be dealt with by the underlying platform, yielding a
loosely coupled system that may be scaled to Internet proportions.

The distributed computing environment may provide an Internet-centric programming model including
WEB and XML content representation, dynamic device discovery, and secure device communication that is
accessible from a wide range of network devices. The distributed computing environment may include a network-
programming model abstracted above the CPU level. The programming model may include the following properties:

* URI addresses
* Strongly typed data called content (addressed with URIs)

52

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

* Substantially unlimited amount of persistent content storage (e.g. stores), (containing XML and non-XML
content, such as that identified by MIME types)

* Substantially unlimited amount of transient content memory called spaces (containing XML content)

* Descriptive XML metadata (data about data) content advertisements that may be stored in a space to notify
interested clients.

* A substantially unlimited number of instructions (embodied as messages)

e Secure message endpoints (gates) addressed by URIs

* Data flow support (event messages) to coordinate work flow between distributed software programs

Services and clients may run as programs within the distributed computing environment. Services may
advertise their capabilities to clients wishing to use the service. Clients may or may not reside within the same
network device, and that device's code execution environment may or may not support the Java platform.

Using URIs to address content and message endpoints gives the distributed computing environment a
powerful addressing scheme. The address may specify the location of the content or endpoint, and may specify the
route (or transport protocol) to be used. Items addressed using URIs also may have an associated security
credential. The security credential may be used to control what clients are allowed access to the item, as well as
which operations authorized clients are allowed to perform on that item.

The high degree of access provided by the distributed computing environment may be controlled by
appropriate authentication and security systems and methods. Authentication and security in the distributed
computing environment may include, but are not limited to: verifying the typing correctness of XML content in a
message; securely identifying the sender to the receiver; a mechanism to check the integrity of messages sent from a
client to a service and vice versa; and a mechanism of describing a service’s set of accepted messages to a client and
enforcing the message requirements on messages received at the service. The above listed security and
authorization features may be leveraged in a single, atomic unit of code and data. The atomic unit of code and data
may be dynamically created. In one embodiment, once created, the atomic unit of code and data may represent a
message endpoint (gate), and may not be altered as to the security and authorization policies implemented during
creation.

A gate may represent the authority to use some or all of a service's capabilities. Each capability may be
expressed in terms of a message that may be sent to a service. Gates may also be used for failure case detection
when a client leases resources.

Authentication and security may also include a mechanism for verifying that a client attempting to use a
service is authorized to use the service; that the space from which the client receives the service advertisement from
is authorized to provide the service advertisement; and/or that the service advertissment itself is authorized.

Message passing may be implemented in a messaging layer as the means of communicating requests from
clients to services and of the services responding with results to the clients. The messaging layer of the distributed
computing environment may substantially guarantee that valid XML messages are sent, and may provide
mechanisms enabling a language-independent security model. In the messaging layer, a sending message endpoint
may be linked to a receiving message endpoint. The two associated message endpoints may provide a secure,
atomic, bi-directional message channel suitable for request-response message passing between a client and a service.

In embodiments of a distributed computing environment, an advertisement may be published in a space for

a service. An advertisement may be an XML document that includes the XML schema and URT of the service. The

53

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

service may also include a service ID token or credential in the advertisement, and may specify in the advertisement
an authentication service to be used by both the client and the service. A client may then locate the service
advertisement on the space, and use the advertisement to instantiate a message gate on the client. The client may use
the authentication service specified in the advertisement to obtain an authentication credential for sending in
messages to the client. In one embodiment, the client may pass the service ID token or credential from the service
advertisement to the authentication service, and the authentication service may then use the service token or
credential to generate the authentication credential for the client. In one embodiment, the client may include a gate
factory that receives the necessary information to create the message gate, and the gate factory may construct the
message gate and communicate with the authentication service to obtain the authentication credential for the client.
A corresponding service message gate may be instantiated at the service.

The client, at some point, sends a first message to the service. In one embodiment, the client message gate
may embed the client’s authentication credential constructed by the authentication service in the message. When the
service receives the message, it may use the same authentication service to verify the authentication credential
received in the message. By sharing the same authentication service, any of a variety of authentication protocols
may be employed, with the details of generating the authentication credentials separated from the client and the
service. Thus, a client may use different authentication credential protocols with different services.

In one embodiment, the authentication service may determine the capabilities of the client (e.g. what the
client is allowed to do on the service) upon first receiving the client authentication credential from the service. The
capabilities of the client may be bound to the client’s identity. Then, the client’s message gate may embed the
authentication credential in every message sent from the client to the service. The messages may be received by the
service message gate and then checked by the authentication service to ensure that the message is from the client and
that the message request is within the capabilities of the client. In another embodiment, the service message gate
may handle capability determination and message checking for capabilities without using the authentication service.

The client and service message gates may work together to provide a secure and reliable message channel.
The gates may serve as secure message endpoints that allow the client to run the service by sending and receiving
secured, authorized XML messages to and from the service.

Operations in the distributed computing environment may be embodied as XML messages sent between
clients and services. The protocol used to connect clients with services, and to address content in spaces and stores,
may be defined by the messages that can be sent between the clients and services. The use of messages to define a
protocol may enable many different kinds of devices to participate in the protocol. Each device may be free to
implement the protocol in a manner best suited to its abilities and role.

A service's capabilities may be expressed in terms of the messages the service accepts. A service's message
set may be defined using an XML schema. An XML message schema may define each message format using XML
typed tags. The tag usage rules may also be defined in the schema. The message schema may be a component of an
XML advertisement along with the service's message endpoint (gate) used to receive messages. Extensions (more
capabilities) may be added to services by adding messages to the XML message schema.

In the distributed computing environment, authorized clients may be able to use all of a service's
capabilities, or may be limited to using a subset of the service’s capabilities. In one embodiment, once a set of
capabilities has been given to a client, the client may not change that set without proper authorization. This model

of capability definition may allow for services levels that run from a base set of capabilities to an extended set.

54

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

Service instantiation may be performed to allow a client to run a service. To instantiate a service, a client
may first select one of the service advertisements published in a space. The client may use the various facilities
provided by the space to look up advertisements in the space. Then the client may request the space to instantiate
the service. Service instantiation may include, but is not limited to, the following steps:

1. Client requests space service to instantiate a service.

2. Space service verifies client is allowed to instantiate the service.

3. Space service obtains a lease on the service advertisement for the client with the lease request

time specified by the client. Alternatively, the service advertisement may be provided to the
client without using the leasing mechanism.

4. Space service sends a message to the client that includes the lease allocated in steps 3, and the

service advertisement of the service.

5. Client runs the authentication service specified in the service advertisement, and obtains an

authentication credential.

6. Client constructs a client message gate for communicating with the service.

In order to provide trust between clients and services in the distributed computing environment, a series of
dynamically generated numbers (keys, or tokens) may be used as security or authentication credentials for clients.
One or more credentials may be used to verify the right of a client to use a service and to verify messages between
the client and the service. Each client and service may have a unique credential.

The type of authentjcation credential needed to use a service may be returned to the client conducting a
service search. In one embodiment, an authentication credential is an opaque object that must be presented each
time a client uses a service. In one embodiment, the authentication credential may be presented by a message gate
on behalf of a client in every message sent to a service. No matter what kind of authentication credential is required
by a service, by using an authentication service external to the client and the service, the client and the service may
not need to be aware of the authentication credential structure or of the authentication process.

An authentication credential may also include a transport-specific ticket in addition to the service ticket.
When running a service, depending upon the networking transport specified in the service advertisement, the
transport may provide a secure connection. In some cases, if the data link layer is already secure, it may not be
necessary to use a secure transport over the already secure data link layer.

The concept of an authentication credential is abstract enough to allow various levels of security based
upon credential implementation. Levels of security may include, but are not limited to:

1. None (no message security - credential is empty or no credential)

Messages with empty credentials or no credentials may be sufficient when security is enforced
by the physical connectivity properties of the transport. For instance, a smart light switch
connected to just one light switch controller is secure because the switches are wired in a
secure manner.

2. Signed messages (digital signatures)

Signed messages may include a digital signature that enables the service (receiving the
message) to verify the origin (client) of the message.

3. Encrypted messages (fransport may handle this)

55

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

Encrypted messages add another level of security by scrambling the message contents so that
another credential is required to unscramble it.

4. Capability messages (service functionality and user aware)

This level of security may provide for security capabilities on a user-by-user basis (e.g. what
the user is allowed to do), and may allow for fine-grained access control to services and
individual service functions.

Multiple levels of security zones may be used, due to the heavyweight implementation necessary to enforce
the higher levels of security (capabilities & encryption). If the message transport supports (or helps support) these
security levels, the support may be leveraged to provide security level bridge services that bridge one level of
security to another.

As mentioned above, services without any security model may accept empty authentication credentials. For
services that do not restrict access, a gate may be built without an authentication credential or with an “empty”
authentication credential. The gates for such services may not send an authentication credential with each message,
or may send an empty credential. The authentication service is one example of a service that may not restrict access.

Other services may require a user and password pair.

Authenticating Service Access using Credentials

In some embodiments, a mechanism for verifying that a client attempting to run a service is an authorized
client, for verifying that the service advertisement received by the client is an authorized service advertisement,
and/or for verifying that the space from which the client received the service advertisement is authorized may be
based upon a public key/private key asymmetric cryptographic mechanism. In this mechanism, an authorized
sending entity may embed a public key in a message and encrypt the message including the public key with its
private key. An entity receiving the encrypted message may decrypt the message using the public key and find the
same public key embedded in the decrypted message, and thus verify that the message is from the authorized entity,
since only that entity has the private key necessary to encrypt the message. Thus, an entity may issue a credential
that is substantially unforgeable, and that other entities may decrypt (with the appropriate public key) to verify
messages sent by the entity.

Various key generation algorithms may be used in the distributed computing environment. The
composition of keys may be hidden from both clients and services; thus, the client and service may not care what
key generation algorithm is used.

A Kerberos ticket is one example of a security credential that may be used in the distributed computing
environment. Kerberos is a secure method for authenticating a request for a service in a computer network.
Kerberos lets a user request an encrypted "ticket" from an authentication process that can then be used to request a
particular service. The user's password does not have to pass through the network.

Mechanisms may be provided by the distributed computing environment to substantially guarantee that
messages sent between clients and services are not compromised. In one embodiment, a sender may embed a token
containing information that may be used by the receiver to verify that the message has not been altered. There are
several methods for generating the information to embed in the message. In one embodiment, a hash of the message
may be computed and sent with the message. Hashing may include the transformation of a string of characters into a

usually shorter fixed-length value or key that represents the original string. Upon receiving the message, the

56

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

receiver may recompute the hash and check it against the sent hash. If the message has been altered, it is highly
unlikely that the same hash will be generated. The sender may encrypt the hash and send the corresponding public
key in the encrypted message to substantially ensure that the hash is not compromised.

‘In other embodiments, an error detection scheme such as cyclic redundancy checking may be used. Cyclic
redundancy checking is a method of checking for errors in data that is transmitted on a communications link. In an
embodiment using cyclic redundancy checking, the sender applies an n-bit polynomial to the message and appends
the resulting cyclic redundancy code (CRC) to the message. The receiver applies the same polynomial (which may
also be passed in the message) to the message and compares its result with the result appended by the sender. If they
agree, the message has been received successfully. If not, the sender may be notified to resend the message.

Gate factories may also play a role in security, since a gate factory may be “trusted” code. Using a trusted
gate factory to generate gates may help to ensure that gates are trusted code, and that the code is correct with respect
to the service advertisement. Clients may be required to present a client ID token or credential o the gate factory as
a means of authentication. Services may present a service ID token or credential to clients (e.g. through an
advertisement) when a client wishes to create a gate. As discussed herein, a client and service token pair may be
used to create a third credential that may be used to allow the client to send messages to the service. This third
credential may be referred to as an authentication credential. An authentication credential may be created by an
authentication service during the authentication process. In one embodiment, the service may use any authentication
policy at its disposal. In one embodiment, the authentication service administers the authentication policy on behalf
of the service, and thus the service does not have to be aware of the particular authentication policy being used.

The client may construct its gate using an authentication credential that the client receives by running an
authentication service specified in the service advertisement. This may allow the constructed gate to .send the
authentication credential with each message to the service. When the service receives the first authentication
credential in a first message from the client, the service may use the authentication service specified in the service
advertisement to authenticate the client, and thus may establish a binding of the authentication credential to the
identity of the client.

As previously discussed, some results produced by a service may be advertised in a space and ultimately
accessed using a results gate. The results gate may or may not contain the same security credential as the input gate
used to generate the results. Because input to a service may be asynchronous from its output (the results), the results
may have a different set of access rights associated with it. For example, a payroll service may allow a different set
of clients to initiate payroll than to read the payroll service's results (paychecks). Thus, a client may have to go
through a separate authentication process to obtain access rights to the results, which may include receiving an
authentication credential for the results from an authentication service specified in an advertisement for the results.

Message gates may offload most security checks from services. Services may focus on providing capability
and authenticating clients. A principle of least privilege may be supported by giving clients access to only those
capabilities that are requested (or assigned).

Security checks may occur when a gate is created and/or when a gate is used (when messages are sent
and/or received). When a client requests access to an advertised item (service), the procéss of gate creation may
begin. During this process, the client gate factory may work with the service to mutually authenticate each other.
The checks performed at gate creation time may be extensive, and may minimize the number of checks performed

during gate usage. After the service has authenticated the client, the service may determine specific capabilities for

57

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

the client (e.g. what the client is allowed to do on the service), and associate the capabilities with the client
authentication credential. These specific capabilities may specify what operations the client is allowed to perforr
on the service. Since the gates may ensure that every message contains the authentication credential, the service ca
then check each request when it is received against the capabilities of the authenticated client.

Gate creation checks may ensure that a client has permission to use some or all of the service capabilitie
designated by the XML message schema. In one embodiment, these checks may be implemented using acces
control lists (ACLs) in conjunction with an authentication service such as Kerberos. A challenge-response sequenc
(such as a password) may also be used to authenticate a client, In some embodiments, a hardware-based physice
identification method may be used to authenticate the client. For example, the user may supply a physic:
identification such as a smart card for identification and authorization. Other mechanisms for authentication may b
used in other embodiments.

In one embodiment, whatever means is used to authenticate the client, the authentication may be invisibl
to both the client and service, the gate factory may be aware of which authentication service to use, and th
authentication service handles the authentication mechanism and policies. Gate factories may be product an
environment dependent, or may even be controlled by a configuration management system. In one embodiment, th
degree and method of client isolation may be platform dependent, but is known to the gate factory. In som
embodiments, a hardware-based physical identification method may be used to authenticate the client. For example
the user may supply a physical identification such as a smart card for identification and authorization. Othe
mechanisms for authentication may be used in other embodiments.

Message gates in the distributed computing environment are typically associated with a single client. Th
gate factory may determine the means of association. The checks performed at message send time may ensure the
the proper client is using the gate. In one embodiment, gates may be passed in messages, and may be cloned if a ne
client wishes to use the gate. The cloning process may perform a new set of creation checks.

Once a client of a space (the client may be another service) finds the advertisement of a space service, th
client of the space may run the space service, as it would any other service. Rumning a space service may involv
using an authentication mechanism. Running a space service may include, but is not limited to:

1. The client of the space may first run an authentication service that may be specified in the

service advertisement of the space service to obtain an authentication credential.

2. The client of the space may use the authentication credential, the XML schema of the space
(from space's service advertisement), and the URI of the space (from space's service
advertisement) to construct a gate for the space. In one embodiment, the client may pass the
information to a gate factory to construct the gate.

3. The client of the space may run the space service by using the gate to send messages to the

service.

4. When the space service receives the first message from the client, with the authentication

credential embedded, the space service may use the same authentication service used by the
client to obtain the authentication credential to authenticate the client, thus establishing the
client’s identity.

5. The space service may then determine the client's capabilities (e.g. what the client is

allowed to do on the space service) and bind the capabilities to the authentication credential.

58

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

As discussed in the Spaces section, a space’s facilities may include an interface for spawning an empty
space with substantially the same functionality (same XML schema) as the space from which it is spawned. The
spawning facility may be useful, among other things, for dynamically generating spaces for results. When a
requestor has spawned a space, only the requestor may be allowed to access the spawned space. For example, the
spawned space may be for storing results from a service that the client needs to keep secured. This security may be
ensured by:

* Creating an initial root authentication credential, and initializing the authentication service of the spawned
space, so that the authentication service only authenticates the root authentication credential, and so that it
returns no other authentication credentials (no other clients of the spawned space allowed initially).

* Initializing the security policies of the spawned space so that the root identity associated with the root
authentication credential has access to all facilities of the space, including the security administration
facilities.

* Returning the root authentication credential and the service advertisement of the spawned space to the
requestor of the spawned space.

The requestor may build a gate to access the spawned space, since it is returned the authentication
credential and the service advertisement of the spawned space. In one embodiment, only the requestor and clients or
services that the requestor passes the authentication credential and the spawned space's service advertisement may
access the spawned space. Such limiting of access to the spawned space may be usefil when a client and service are
using that spawned space to store results, for example, if the client and service desire to keep the results private.

After running a service, the client may change the authentication policies of the spawned space using a
security administration space facility, and other clients or services may then access the spawned space. In addition,
the spawned space's service advertisement may be made available to other clients of the spawned space (the other
clients may be services) using the discovery protocol or other means.

The message transport layer in a distributed computing environment may include mechanisms for
protecting the security and integrity of communications among clients and services during transport. This security
may be referred to as “wire security” or “transport security” .to distinguish it from the authentication security
implemented by the messaging system including gates. Encryption of messages may be provided at the message
transport layer of the distributed computing environment. Services that request an encrypted transport may do so by
tagging the XML advertisement. The gate factory may then create a gate (or gates) that uses a secure message
transport such as those provided by Bluetooth and HTTPS.

HTTPS (Secure Hypertext Transfer Protocol) is a Web protocol that encrypts and decrypts user page
requests as well as the pages that are returned by the Web server. HTTPS may use a multi-bit key size (may vary
from 40 to 128- bit or more) for a stream encryption algorithm (e.g. RC4), to provide an adequate degree of
encryption for commercial exchange. HTTPS may be used as a transport in the distributed computing environment.

Bluetooth is an emerging peer-to-peer wireless communications standard. The Bluetooth key generation
algorithms may be used in the distributed computing environment. Bluetooth may support encryption keys.

Encryption keys are transport dependent, while client, service, and combination keys may be transport independent.

Figure 26a - An authentication service providing an authentication credential to a client

59

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

Figure 26a is a flow diagram illustrating an authentication service providing an authentication credential to
a client according to one embodiment. A client in the distributed computing environment may desire a service to
perform one or more functions on behalf of the client. In one embodiment, an authentication service may be
provided for use by the client and the service when setting up a secure messaging channel. An authentication
service may perform functions for the client and/or service including authenticating the client and/or service and
negotiating the desired level of security and the set of messages that may be passed between the client and service.
The authentication service may be a process that is executing within the distributed computing environment. The
authentication service may be executing on the same device as the service and/or the client, or alternatively the
authentication service may be executing on a separate device such as an authentication server. In one embodiment,
the authentication service may be an Internet-based service. The authentication service may have its own address,
for example, a Universal Resource Identifier (URI), through which the client and/or service may communicate with
the authentication service. In one embodiment, the address of the authentication service may be provided to the
client in the service advertisement for the service. The client and service sharing an authentication service may help
insure that a secure messaging channel may be established between the client and the service, as any of several
security and authentication protocols may be used in the messaging channel.

In one embodiment, a client may present a client identification token or credential to an authentication
service. The client token or credential may be sufficiently unforgeable to be used as proof of the client’s identity.
The authentication service may then check the client identification token or credential, and issue to the client an
authentication credential that only the authentication service can create. The authentication credential that is
returned to the client is then sent in every message by the client to the service. In one embodiment, the client
message gate is created by a gate factory, which includes the authentication credential in the message gate, and thus
the message gate includes the authentication credential in every message that it sends to the service on behalf of the
client. When receiving a message, the service may then check the authentication credential. Since only the
authentication service can create the authentication credential, the service knows that the client did not forge the
authentication credential. In one embodiment, the service may pass the authentication credential to the same
authentication service used by the client to ensure the authentication credential is valid, to verify that the client is an
authorized client, and to find out the identity of the client.

All services, including space services and authentication services, may authenticate their clients. Once a
service authenticates a client, the client may access the service. For example, in the case of a space service, a client
may then obtain XML advertisements from the space.

In one embodiment, a service may have a prearranged credential that all clients of the service are to use. In
this embodiment, the authentication may provide the prearranged credential to a requesting client. Any client
presenting the prearranged credential to the service may be approved by the service.

In step 1000, the client may request an authentication credential from the authentication service. In one
embodiment, the client may search for and locate a service advertisement for the desired service. In one
embodiment, the service advertisement may include an advertisement for the authentication service to be used to
obtain an authentication credential to be used in accessing the service. In one embodiment, the service
advertisement may include an address such as a URI for the authentication service. In one embodiment, the client

may send information to the authentication service requesting the authentication credential. In one embodiment, the

60

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

client may send information to a gate creation process, for example, a gate factory, and the gate creation process
may access the authentication service to obtain the authentication credential.

' In step 1002, the authentication service may generate an authentication credential for the client. The
authentication credential may be a data element or data structure that may be embedded in messages in a messaging
system and that may allow receivers of the messages to authenticate the sender of the message, to verify the message
is from an authorized sender, and to verify that the message is a message the sender is allowed to send to the
receiver. In one embodiment of a distributed computing environment, an authentication credential may be unique to
the messaging channel set up between a particular client and a particular service. Step 1002 is further illustrated and
described in Figure 26b. In step 1004 of Figure 26a, the authentication service may return the authentication
credential to the client. In one embodiment, the authentication credential may be returned directly to the client. In
one embodiment, the authentication credential may be returned to a gate creation process, for example, a gate

factory, which may then use the authentication credential in generating a gate.

Figure 26b - An authentication service generating an authentication credential

Figure 26b is a flow diagram expanding on step 1002 of Figure 26a and illustrating an authentication
service generating an authentication credential according to one embodiment. In step 1002a, in one embodiment,
the authentication service may obtain a client token and a service token. In another embodiment, the authentication
service may obtain only a client token. In one embodiment, the client token may be a unique identifier for the client
in the distributed computing environment. In one embodiment, the service token may be a unique identifier for the
service in the distributed computing environment. For example, the public keys from a public/private key
encryption mechanism may be used as unique identifiers for the client and the service. In one embodiment, the
client may receive the service token in the service advertisement, and the client may provide the client token and the
service token to the authentication service. In another embodiment, the client may provide the client token and the
service advertisement URI to the authentication service, and the authentication service may retrieve the service
token from the service advertisement.

In step 1002b, the authentication service may verify the client and/or the service. In one embodiment, the
authentication service may use the client token and the service token obtained in step 1002a to verify the client
and/or service. In another embodiment, only a client token was obtained in step 1002a, and thus only the client
token is used to verify the client in step 1002b. In one embodiment, the client may have previously registered its
client token with the authentication service, and the authentication service may compare the received client token to
the registered client token to verify the client as a valid client. In one embodiment, the client may access the
authentication service using a challenge/response mechanism such as a logon account with password and thus may
be verified as a valid client. In one embodiment, the service may have previously registered with the authentication
service, and may have provided its service token to the authentication service. The authentication service may then
verify that the client is attempting to access a valid service by comparing the received service token to the previously
registered service token. Other types of client and service authentication may also be used. For example, the client
may provide a digital signature or digital certificate that the authentication service may use to authenticate the client
and/or to authenticate the service the client is trying to access.

In step 1002c, the authentication service may generate an authentication credential. In one embodiment,

the authentication credential may include an authentication token that only the authentication service can create. In

61

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

one embodiment, the authentication service may use the client token and the service token in generating the
authentication credential. In another embodiment, the authentication service may use just the client token ta
generate the authentication credential. In yet another embodiment, the authentication service may not use an
obtained token in the generation of the authentication credential, but may instead use an authentication credential
generation algorithm to generate a substantially unforgeable authentication credential. In one embodiment, the
authentication service may combine the service token and client token to create a unique authentication credential.
For example, the service token and client token may be 64-bit values, and the two tokens may be combined to
generate a 128-bit authentication credential. Other embodiments may use other methods to generate an

authentication credential.

Figure 41 - Creating a gate

Figure 41 is a flow diagram illustrating the creation of a gate for a client according to one embodiment. In
one embodiment, a gate factory may be trusted code on the client for generating gates based on XML service
descriptions. In another embodiment, the gate factory may reside on a separate device and may be used by the client
to generate gates. For example, a gate factory service may be accessible by the client go generate gates. The use of
the gate factory may ensure that generated gates are trusted code, and that the code is correct with respect to the
service advertisement.

Security checks performed at gate creation time may be extensive, and thus may minimize the number of
security checks that need to be performed during gate usage. Security checks during gate creation may help ensure
that a client has permission to use the set of service capabilities designated in the message schema retrieved from the
service advertisement. In one embodiment, the security checks may be implemented using Access Control Lists
(ACLs) in conjunction with an authentication service. In one embodiment, a challenge/response sequence (such as a
logon and password account) may be used to authenticate a client. In one embodiment, the client authentication and
gate creation security checks may be hidden from the client and service, the gate factory may only be aware of the
authentication service to be used, and the authentication service may be aware of the authentication mechanism and
policies.

In step 1010, the gate factory may obtain an authentication credential for the client to use in communicating

with a service. In one embodiment, the client may have previously obtained the authentication credential from an

" authentication service and may then provide the authentication credential to the gate factory. In another

embodiment, the gate factory may obtain the authentication credential from the authentication service.

In one embodiment, the gate factory may also obtain a message schema for the service. In one
embodiment, the gate factory may obtain the message schema from the client. In another embodiment, the gate
factory may receive the message schema from a service advertisement. For example, the client may supply a URI
for the service advertisement to the gate factory, and the gate factory may connect to the service advertisement using
the URI to obtain the message schema. The message schema may describe the set of messages that may be sent to or
received from the service. For example, messages may be described that may be sent from a client to a service to
invoke the service or to invoke aspects of the service. Messages may also be described that may be sent from the
service to the client, such as response messages and event notification messages. In one embodiment, the messages

may be XML messages, and the message schema may be an XML message schema.

62

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

In step 1012, the gate factory may generate a client message gate. In one embodiment, the gate factory may
embed the authentication credential as data in the generated message gate so that the message gate code may access
the authentication credential. In another embodiment, the authentication credential may be stored externally to the
message gate on the client. In one embodiment, a URI for the service may also be embedded in or provided to the
gate by the gate factory.

In step 1012, the gate factory may also use the message schema in generating the client message gate. The
message schema may be used to define the set of messages that the client may send to the service through the
message gate. The gate factory may compile the message schema into the gate. The message schema may be
compiled by the gate factory into the gate in an internal form suitable for quick access during the message
verification process. Access to a service may be restricted for a particular client using the schema, thus giving the
client less than full access to the service. In one embodiment, when the client obtains the service advertisement, for
example, from a space, based upon the capabilities and/or access rights of the client, a restricted message schema
may be provided to the client for the service. Thus, the gate factory may compile a restricted message schema into
the client message gate, thus restricting the client’s access to the service. In one embodiment, the authentication
service may determine a subset of the total set of messages that the client may send to the service. One or more
levels of access may be provided for a service in the distributed computing environment. One level of access may
provide a client of the service with access to all of the request messages in the message schema for the service, and
thus to substantially all of the functions provided by the service to clients in the distributed computing environment.
Other levels may provide a client of the service with access to various subsets of the request messages in the
message schema, and thus to various subsets of the functionality of the service. In one embodiment, levels of access
may also be determined by a client’s capabilities. For example a thin client may not be able to download large data
files, and thus may be restricted from using a message requesting the download of a large data file.

In one embodiment, the client may provide information about the client to the authentication service to
determine an access level for the client. In one embodiment, the information may include a request for a specific
level of access to the service. In one embodiment, the gate factory may provide the information to the authentication
service to determine the access level of the client. Thus, the gate factory may generate a client message gate that is
capable of sending a subset of the entire set of messages described in the message schema to the service based upon
the capabilities and/or access level of the client.

In step 1014, the gate factory has generated the client message gate, and may notify the client that the gate
has been generated. In one embodiment, the client message gate is a distinct code module that is accessible by the
client. In one embodiment, the client message gate resides on the client. The client may then generate messages and
pass the messages to the client message gate, which may verify the messages and send the messages to the service.
Embodiments of a gate pair mechanism for the client and service to exchange messages is further described in
Figures 42a-42c. Embodiments of gate factories are further described elsewhere herein.

A gate comprises code and data, and thus may itself be passed in a message. This provides an alternative
method for creating gates on clients and/or services. In one embodiment, a gate passed in a message may be cloned
if a new client wishes to use the gate. The cloning process performs a new set of gate creation security checks
including authentication of the new client. A new, unique authentication credential may be generated for the new

client and embedded in the cloned gate.

63

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

Figure 42a - A client sending a message to a service

Figure 42a is a flow diagram illustrating a client sending a first message to a service according to one
embodiment. In step 1020, the client may send a message to the client message gate. In one embodiment, the
message may be an XML message. In step 1022, the message gate may embed an authentication credential in the
message prior to sending the message. In one embodiment, the authentication credential may have been provided by
an authentication service as part of gate construction as described above.

In one embodiment, the message gate may verify the data representation language type correctness, syntax,
etc. of the message. In one embodiment, the message gate may compare the message to a message template in a data
representation language message schema to determine data representation language type correctness of the message.
In one embodiment, the message may be an XML message, and the message gate may check the message against an
XML message schema. In one embodiment, the message schema may have been provided by an authentication
service as part of gate construction as described above. In one embodiment, the message gate may locate a message
template for the message in the schema and compare the various items or fields in the message to the message
template to determine type correctness of the items.

In one embodiment, the first message may be a request message received from the client to be sent to the
service, and the message gate may determine if the message and/or the requested service function(s) specified by the
message are in the allowed subset of messages and/or service functions the client may send to the service. In one
embodiment, the message gate may compare the message to the subset of allowed messages in the message schema
to determine if the message is allowed. In one embodiment, an access level to the service provided to the client by
the authentication service may be used to determine the subset of allowed messages the client may send to the
service. In one embodiment, the first request message may request the service to establish a communications
channel with the client. In one embodiment, the communications channel comprises a gate pair. The gate pair may
comprise a client message gate and a service message gate. In one embodiment, the service message gate may not
exist on the service when the first message is sent to the service.

In step 1024, the client message gate may send the first message to the service over the communications
channel connecting the client to the service. In one embodiment, the client message gate may send the message to a
service URL. In one embodiment, the service URI may have been provided to the client in the service
advertisement. In one embodiment, the client message gate may be created for a specific service URI so that all
messages are sent to the specific service URI, thus creating a message channel from the client to the service. In one
embodiment, the request message may include an address for the client message gate so that the service may
establish a communications link to the client through the client message gate. Examples of addresses that 1ﬁay be
used for message gates include, but are not limited to: Universal Unique Identifiers (UUIDs) or URIs. The process

of a service receiving a first message from a client is illustrated and described in Figure 42b.

Figure 42b - A service receiving a message from a client

Figure 42b is a flow diagram illustrating a service receiving a message from a client and using an
authentication service to authenticate the message according to one embodiment. In step 1030, the service may
receive a first message from the client. In one embodiment, the service message gate may not exist on the service
when the first message is received by the service. In one embodiment, the client message gate may send the first

message to a URI at the service, and the service may receive the first message from the client and then may generate

64

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

a service message gate. In one embodiment, a mechanism on the service may be configured to generally receiv
messages including messages from clients at a URI provided to the client in the service advertisement. Upo:
receiving a first message from a client, the service may generate a service gate to thus establish a communication
channel] with the client through the gate pair consisting of the service message gate and the client message gate. I
one embodiment, an address (for example, a UUID or URI) for the client message gate may be provided to th
service in the first message from the client and may be used in generating the service message gate. In on
embodiment, the service message gate may communicate only with the client message gate and thus with the clier
associated with the message gate. Thus, in some embodiments, there may be at least one unique service messag
gate for each client that is currently in communication with the service.

As described above, the client message gate may have embedded an authentication credential in the firs
message sent to the service. In step 1032, the service may send the authentication credential to an authenticatio
service. In one embodiment, the authentication service may be the same authentication service used by the client t
generate the authentication credential. In one embodiment, the service message gate may send the authenticatio
credential to the authentication credential. In one embodiment, the entire message may be sent to the authenticatio
service.

In step 1034, the authentication service may perform verification of the authentication credential. In on
embodiment, the authentication service may include a copy of the authentication credential from the creation of th
authentication credential. In one embodiment, the authentication service may compare the authentication credentiz
received from the service with the copy of the authentication credential. If the authentication credentials match, i
step 1036, the authentication service may notify the service that the authentication credential has been verified an
appears to be valid. If the verification process fails, the authentication service may notify the service that th
authentication credential appears to be invalid.

In one embodiment, the authentication service may establish an access level for the client to access th
functionality of the service. In one embodiment, the client may have established an access level for the service wit
the authentication service. In one embodiment, the authentication service may notify the service of the access leve
of the client. The access level of the client may be used by the service to determine a subset of request messages a
described in the service message schema that the client may send to the service.

In step 1038, if the authentication service notified the service that the authentication credential is valid i
step 1036, the service may generate a service message gate to pair with the client gate to form a gate pair. Th
service message gate may include the authentication credential to embed in messages sent from the service to th
client, and for comparison with the authentication credential in messages received from the client. The servic
message gate may also include an address (such as a UUID or URI) for the client message gate. The servic
message gate may also include access level information for the client for verifying that messages received from th
client are in the subset of allowed messages the client may send to the service. The service message gate may als
include a message schema for type checking and verifying the syntax of messages received from the client and fo
use in verifying if messages are in the allowed subset of messages. In one embodiment, the service may create a ney
service message gate. In another embodiment, a service message gate may already exist prior to step 1038 that ma
be used to generate the service message gate to communicate with the client. In this embodiment, the service ma
not create a new gate, but instead may update the existing gate with information about the message channel to b

established between the client and the service.

65

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

In one embodiment, after the service generates the service message gate, the service may send a message to
the client. The message may include information to identify the service message gate to the client message gate and
thus to establish the communications channel between the client and the service using the message gate pair. In one

embodiment, the message may include an address (such as a UUID or URI) for the service message gate.

Figure 42¢ - Exchanging messages with embedded authentication credentials

Figure 42c¢ is a flow diagram illustrating the general process of a client and service exchanging messages
with embedded authentication credential according to one embodiment. In one embodiment, after the client
message gate and the service message gate are established, the client and service may no longer require the services
of the authentication service. When sending messages, the client and service message gates may embed the
authentication credential in the messages. When receiving messages, the client and service message gates may
verify the message by comparing the embedded authentication credential with the copy of the authentication
credential included in the gate.

In step 1040, the sender (client or service) message gate may embed an authentication credential in a
message prior to sending the message. In one embodiment, the authentication credential may have been provided by
an authentication service. In one embodiment, the message may be an XML message.

In one embodiment, the sender message gate may also verify the data representation language type
correctness, syntax, etc. of the message prior to sending the message. In one embodiment, the sender message gate
may compare the message to a message template in a message schema to determine type correctness of the message.
For example, the message may be an XML message, and the message gate may include an XML message schema.
The sender message gate may locate a message template for the message in the schema and compare the various
XML items or fields in the message to the message template to determine type correctness of the items.

In one embodiment, the sender message gate may check the allowability of the message. In one
embodiment, the message may be a request message received from a client to be sent to a service, and the message
gate may determine if the requested function(s) specified by the message are in the subset of functions provided to
the client by the access level the client established with the service through the authentication service. In one
embodiment, the message gate may compare the message to a subset of allowed request messages in a message
schema to determine if the message is allowed. In one embodiment, if the message is a response message from a
service to a client, the message may not be checked for allowability. In another embodiment, response messages
from the service to the client may be checked by the client message gate to insure that the client is authorized to
receive the response message.

In step 1042, the sender (client or service) message gate may then send the message to the destination
(client or service) message gate over the communications channel connecting the source (client or service) to the
destination (client or service). In one embodiment, when receiving the message, the receiver message gates may
verify the sender of the message by comparing the embedded authentication credential with the copy of the
authentication credential included in the gate.

In one embodiment, the message may be encrypted before sending. In one embodiment, the message gate
may perform the encryption. In another embodiment, a process external to the message gate may perform the

encryption. For example, the message gate may pass the completed message to a driver process for a

66

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

communications channel, and the driver process may perform encryption of the message. In one embodiment,
encryption and decryption of messages may be performed by a transport mechanism (e.g. HTTPS).

In step 1044, the receiver (client or service) message gate may receive the message sent in step 1042. In
one embodiment, if the message is encrypted, the message may be decrypted by a process prior to being received by
the message gate. In another embodiment, if the message is encrypted, the message gate may decrypt the message.
In step 1046, the receiver message gates may authenticate the sender of the message by comparing the embedded
authentication credential with the copy of the authentication credential included in the receiver gate.

In some embodiments, some services may not require authentication credentials for at least some clients.
In one embodiment, a client wishing to access a service for which no authentication credential is required for the
client may generate a message gate without using an authentication service. In another embodiment, an
authentication service may return a null, empty or otherwise generic authentication credential to a client that does
not require authentication to use a service. In one embodiment not requiring authentication, the message gates may
send messages without embedding authentication credentials. In another embodiment, a null, empty or otherwise
generic authentication credential may be embedded in messages by the message gates.

In one embodiment, the receiver message gate may verify the data representation language type
correctness, syntax, etc. of the message upon receiving the message. In one embodiment, the receiver message gate
may compare the message to a message template in a message schema to determine type correctness of the message.
For example, the message may be an XML message, and the message gate may include an XML message schema.
The receiver message gate may locate a message template for the message in the schema and compare the various
XML items or fields in the message to the message template to determine type correctness of the items.

In one embodiment, the receiver message gate may check the allowability of the message. In one
embodiment, the message may be a request message received from a client, and the message gate may determine if
the requested function(s) specified by the message are in the subset of functions provided to the client by the access
level the client established with the service through the authentication service. In one embodiment, the receiver
message gate may compare the message to a subset of allowed request messages in a message schema to determine
if the message is allowed.

In one embodiment, the sender and the receiver may verify the message for type correctness and/or
allowability. In another embodiment, the sender may perform message verification. In yet another embodiment, the
sender may not perform message verification, and the receiver may perform message verification. In still yet
another embodiment, no verification may be performed.

Some clients may be too “thin” to support the full functionality of a client message gate. These clients may
not perform some or ail of the request message verification prior to sending request messages and the response
message verification subsequent to receiving response messages as described above. For example, some simple
client devices may include a small set of request messages that may be sent to a service, and a small set of responses
that may be accepted from the service. In one embodiment, a minimal client message gate may be constructed for
the client device that sends request messages and receives response messages without performing the message
verification as described above. In another embodiment, a proxy client message gate may be set up on another
device that may provide some or all of the message verification, sending, and receiving as described above for the

client.

67

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

Figure 43 - Checking the integrity of messages

Figure 43 is a flow diagram illustrating a mechanism for checking the integrity of messages according to
one embodiment. In step 1050, the sender gate, acting on behalf of a client or a service, may embed a token in a
message to be sent. This token is separate and distinct from the authentication credential as described above. The
token may include information allowing the receiving gate to verify that the message has not been compromised or
altered. For example, the sender may compute a hash or checksum of the message that may be verified by the
receiver. The sender may also encrypt this token and/or the entire message using the sender’s private key and
include in the encrypted message the corresponding public key so that the receiver may verify that the token was not
changed. In step 1052, the sender gate may send the message. In step 1054, the receiver gate, acting on behalf of a
service or a client, may receive the message. In step 1056, the receiver gate may examine the message, and the
embedded token, to verify that the message has not been compromised.

There are several methods for generating the token to embed in the message. In one embodiment, a hash of
the message may be computed and sent with the message. Hashing may include the transformation of a siring of
characters into a usually shorter, fixed-length value or key that represents the original string. Upon receiving the
message, the receiver may recompute the hash and check it against the sent hash. If the message has been altered, it
is highly unlikely that the same hash will be generated. The sender may encrypt the hash and send the
corresponding public key in the encrypted message to substantially ensure that the hash is not compromised.

In other embodiments, an error detection scheme such as cyclic redundancy checking may be used. Cyclic
redundancy checking is a method of checking for errors in data that is transmitted on a communications link. In an
embodiment using cyclic redundancy checking, the sender applies an n-bit polynomial to the message and appends
the resulting cyclic redundancy code (CRC) to the message. The receiver applies the same polynomial (which may
also be passed in the message) to the message and compares its result with the result appended by the sender. If they
agree, the message has been received successfully. If not, the sender may be notified to resend the message.

Other embodiments may include other methods for generating, embedding and checking tokens for
checking messages for errors or malicious tampering.

Bridging Devices to the Distributed Network Environment

There may be devices, external to the distributed computing environment, which do not support the
message passing model implemented by the distributed computing environment. These devices may provide
services that may be useful to clients in the distributed computing environment. The distributed computing
environment may include a mechanism to bridge such external devices to the distributed computing environment so
that clients in the distributed computing environment may access the services offered on such devices. The
distributed computing environment may also leverage existing device discovery protocols for discovering such
external devices for use in the distributed computing environment.

Many technologies define discovery protocols for publishing and monitoring a network's device
composition. These technologies include, but are not limited to: Jini, SLP, Bluetooth, and UPnP. Furthermore,
many I/O buses such as LonWorks, USB and 1394 also support dynamic discovery protocols. The distributed
computing environment may leverage device discovery technologies by wrapping their implementations in an APL
Leveraging other device discovery protocols and providing a method to bridge to other discovery protocols may
allow the distributed computing environment to discover devices or services on a wide variety of network and I/O

buses. Device discovery in the distributed computing environment may thus be applicable to a wide range of

68

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

devices including small devices such as PDAs, even if they do not participate directly in the distributed computing
environment. Discovery protocols may be defined at the message level.

A bridging mechanism may be provided for “wrapping” one or more specific device discovery protocols,
such as Bluetooth’s, in a messaging API for the distributed computing environment. Wrapping may include framing
the device discovery protocol with code and/or data (the API) so that the protocol can be run by clients and/or
services in the distributed computing environment that would not otherwise be able to run it. When run, the
bridging mechanism may allow for a discovery agent that discovers devices by a specific device discovery protocol
to publish services for those devices in a space in the distributed computing environment. The services present an
XML message schema interface to clients in the distributed network environment, and are capable of operating the
various devices discovered by the specific device discovery protocol. Thus, service advertisements may be
published for the services that operate the various devices discovered by the underlying wrapped device discovery
protocols. The advertised services thus bridge devices (or services) external to the distributed network environment
to clients on the distributed network environment.

Figure 27 illustrates one embodiment of a distributed computing environment with a space 1200. One or
more discovery agents 1204 may participate in an external discovery protocol and bridge to the distributed
computing environment through bridging mechanism 1202. When the wrapped device discovery protocols are run,
discovery agents 1204 through bridging mechanism 1202 may publish service advertisements 1206a-1206¢ in space
1200, wherein each one of advertisements 1206a-1206¢ corresponds to a device or service discovered by one of
discovery protocols 1204 outside the distributed computing environment. Clients may then access the external
devices using the service advertisements 1206a-1206¢ in space 1200 to instantiate services on one of the agents
1204 that operates the corresponding external device or service.

Thus, clients of the distributed computing environment may use discovery agents wrapping device
discovery protocols to find devices. A service acting as a bridge to these devices may be published in a space and
advertised, so clients of the distributed computing environment may access the services provided by the external
devices. The advertised service is a service within the distributed computing environment that is able to invoke a
device outside the distributed computing environment via another protocol or environment, thus bridging the outside
device/service to the distributed computing environment. A client within the distributed computing environment
“sees” only the advertised service within the distributed computing environment and may not even be aware of the
outside device/service.

In one embodiment, the distributed computing environment may provide a version of a space discovery
message protocol, such as the discovery protocol described in the Spaces section, that may be mapped to an
underlying external device discovery protocol, including the wrapped device discovery protocols described above.
The mapped discovery protocol may register itself or be registered with a space, e.g. a default space, by placing an
advertisement in that space. For each advertised discovery protocol, a subsequent results space to hold the results of
the discovery protocol may be provided.

Figure 28 illustrates an example of the space discovery protocol mapped to a Bluetooth discovery service
1220 according to one embodiment. The Bluetooth discovery service 1220 may first register 1230 with the
distributed computing environment. The Bluetooth discovery service 1220 may be wrapped in a bridging API, and
an advertisement 1225 for the discovery service 1220 may be added 1232 in space 1224. A client or service may

locate the discovery service advertisement 1225 on space 1224. When the discovery service 1220 is executed

69

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

(utilizing the API wrapper as a bridge between the discovery protocol 1220 and the distributed computing
environment 1222), a new space 1226 may be created 1234 to store the results of the discovery process. The
discovery service 1220 may store the results (again through the API wrapper) to discovery results space 1226 as one
or more advertisements 1227. Alternatively, results of executing discovery service 1220 may be stored to space
1224 or other pre-existing spaces in the distributed computing environment. A similar method as illustrated in
Figure 28 may be used to discover devices and other services using other underlying discovery protocols.

As mentioned above, there may be devices, external to the distributed network environment, which do not
support the message passing model implemented by the distributed network environment. These devices may have
clients that may want to use services provided in the distributed computing environment. The distributed computing
environment may provide a mechanism to bridge the external clients or client devices to the distributed computing
environment so that the clients on the external devices may access services in the distributed computing
environment.

Agents may be provided that serve as clients in the distributed computing environment to bridge external
clients to the distributed computing environment, allowing the external clients to access services published in the
distributed computing environment. In one embodiment, an agent may have an XML -enabled back end capable of
communicating with services in the distributed computing environment using the message passing model, and a
proprietary protocol (e.g. a protocol supported by the external device) on the front end to interface to the external
device, and thus to the external client. Thus, a client external to the distributed computing environment may locate
and access services in the distributed computing environment through the bridging agent, and may send requests to
the services and receive responses from the services, including results data. For example, an external client may use
the bridging agent to run space discovery in the distributed computing environment, look up advertised services, and
invoke services in the distributed computing environment.

In one embodiment, the distributed computing environment may provide a bridging mechanism for
accessing Jini services from a distributed computing environment client. Since Jini services may require Remote
Method Invocation (RMI), and since clients in the distributed computing environment may communicate to services
using messages such as XML messages, a protocol bridging mechanism may be provided to enable the access of a
Jini. Service by a distributed computing environment client. In one embodiment, a connector mechanism may be
defined that enables the dynamic advertisement of Jini services in distributed computing environment spaces, and
that also may enable the accessing of a Jini service proxy from clients in the distributed computing environment. In
one embodiment, there may be Jini services that may not be bridged to the distributed computing environment.

In one embodiment, an agent may be provided as a service in the distributed computing environment that
bridges the Jini RMI protocol used by Jini services to XML messaging used by distributed computing environment
clients. When the agent is started, the agent may perform a lookup on the Jini spaces for Jini services that have a set
of attributes. For every registered Jini service, the agent may generate an XML advertisement that may correspond
to the service and may register the advertisement in a space in the distributed computing environment. In one
embodiment, an agent may register for event notification in the Jini Lookup service, and thus may be informed when
anew Jini service is registered. When informed of a new Jini service, the agent may perform a lookup in Jini spaces
to locate newly advertised Jini services and to update the distributed computing environment space with new XML

advertisements for the new services. In one embodiment, when a Jini service is removed, the agent may receive an

70

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

event notifying of the removal of the Jini service. The agent may then remove the XML advertisement for the
service from the space.

In one embodiment, to invoke a Jini service via an XML advertisement in a distributed computing
environment space, a client may look up the service advertisement in the space and may send valid messages to the
agent to access the service. The agent may invoke the proxy service corresponding to the Jini service by invoking
the corresponding method through an RMI call to a service proxy. If the proxy is not instantiated, the agent may
download the proxy code and instantiate a new instance of the proxy object. In one environment, every client
connection may have a different proxy-instance. The incoming message from the client may be converted by the
agent into a method call for the proxy. The result from the method call may be returned to the client as an outgoing
message.

In one embodiment, only simple Java types may be used as arguments to an RMI method. If complex Java
types are required, then one or more data advertisements may be passed as arguments to the call, where the data
advertisements may indicate the location and access method of data for the complex Java types. In one
embodiment, the agent may perform initial conversion from XML messages to an RMI method call invocation
dynamically. Since, the agent knows the service interface, it may generate the corresponding set of messages that are
advertised to the client.

Figure 29 illustrates bridging a client 1250 external to the distributed computing environment to a space
1254 in the distributed computing environment. Bridging agent 1252 may serve as the go-between between client
1250 and space 1254. Bridging agent 1252 may communicate with client 1250 in a communications protocol
understandable by the client 1250. Bridging agent 1252 may map the client’s communications protocol into the
XML messaging protocol necessary to communicate with space 1254 perform the facilities provided by space 1254.
Bridging agent 1252, at client 1250’s request, may locate and run services on space 1254. For example, client 1250
may request a list of all services of a particular type from space 1254. Bridging agent 1252 may locate service
advertisements 1256a-c and return the results to client 1250. Alternatively, the results may be posted in a results
space, and the location of the results may be returned to the client 1250. Client 1250 may then choose to execute
service advertisement 1256a, and may send a message (in the client 1250’s communications protocol) to bridging
agent 1252. Bridging agent 1252 may then send the XML request message(s) necessary to execute the service
represented by service advertisement 1256a, and may return the results of the service to client 1250. Methods of
handling the results of the service other than directly returning the results to the client 1250 may be used as
described above in the section titled Spaces. Bridging agent 1252 thus may act as a service of the external client
1250 (via the external client’s protocol) and as a client within the distributed computing environment to bridge a
service within the distributed computing environment to the external client.

Sometimes, even within the distributed computing environment, clients and services cannot directly
communicate with each other, only to a common space. In this case, the space service will automatically create a
service proxy that bridges client to service. The proxy's main job is to route messages between client and service
through the space. The service proxy may be created dynamically. The creation mechanism may be dependent
upon space implementation. Refer to Figure 30 for an illustration of a proxy mechanism. A client 554 and a service
556 may not be able to communicate directly within the distributed computing environment, e.g., because they
support different transport or network protocols. However, they both may be able to communicate with a space 552

that supports both protocols. The space service may create a proxy 550 to bridge the client 554 to the service 556.

71

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

A common form of proxy is a browser proxy. A browser proxy (most commonly implemented as a servlet) may
translate conventional Web page requests into messages. Refer also to the description of space search services (and
proxies therefore) in the Spaces section herein.

The distributed computing environment may provide a mechanism for bridging clients in the distributed
computing environment to enterprise services. In one embodiment of a distributed computing environment, a
method for bridging clients to enterprise services may include a client within the distributed computing environment,
a bridge service within the distributed computing environment, and an enterprise service within the enterprise
environment. The distributed computing environment bridge service serves as a bridge service between the client
and the enterprise service. An enterprise may be a corporation, small business, non-profit institution, government
entity, or other kind of organization. An enterprise may utilize an enterprise computing environment for conducting
a portion of its business. The enterprise computing environment may include various enterprise services. Clients in
the distributed computing environment may desire to use services in the enterprise computing environment. An
enterprise service may be based on a number of architectures, such as three tiered client/server architectures. An
example of an architecture that may be used to implement an enterprise service is Enterprise JavaBeans. Enterprise
JavaBeans (EJB) is an architecture for setting up program components, written in the Java programming language,
that run in the server parts of a enterprise environment using a client/server model. In object-oriented programming
and distributed object technology, a component is a reusable program building block that may be combined with
other components in the same or other computers in a distributed network to form an application. EIB is built on the
JavaBeans technology for distributing program components (Beans) to clients in a network. To deploy an EJB Bean
or component, it must be part of a specific application, which is called a container. In Enterprise JavaBeans, there
are two types of beans: session beans and entity beans. An entity bean is described as one that, unlike a session bean,
has persistence and can retain its original behavior or state. Using EJB, programs may be deployed across
substantially all major operating systems. EJB's program components are generally known as servlets (little server
programs). The application or container that runs the servlets is sometimes called an application server.

The bridge service interacts with the client via XML message passing to gather input parameters necessary
to make requests to the enterprise service outside of the distributed network environment. For example, the bridge
service may be looked up and instantiated by the client just as any other service in the distributed computing
environment. The bridge service then may interact with the enterprise service to run the enterprise service. This
interaction may use an interprocess communications architecture that the enterprise service can understand. As an
example, if an enterprise service is implemented with Enterprise JavaBeans (EJB), a bridge service may
communicate with the enterprise service using EJB. The bridge service may then receive results from the enterprise
service and may return the results directly to the client (in XML messages) or may place the results in a space in the
distributed network environment (e.g. a results space). To the client, the bridge service appears to be the only
service (the enterprise service is hidden to the client), so the client does not have to support the architecture of the
enterprise service. Multiple distributed network environment clients may use the same bridge service (each using a
unique gate pair) to interact with the enterprise service.

The bridge service or other agent may publish an advertisement for the bridge service (and thus for the
enterprise service) in a space in the distributed computing environment. For example, a bridge service or other
bridge agent may use Java Reflection to examine Beans for services in an enterprise system implemented with EJB,

and then create service advertisements for bridge services to the Beans and publish those advertisements in spaces in

72

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

the distributed computing environment. Reflection is a method for Java code to discover information about the
fields, methods and constructors of classes, and to use reflected fields, methods, and constructors to operate on their
underlying counterparts on objects, within security restrictions. The Reflection API accommodates applications that
need access to either the public members of a target object or the members declared by a given class. Once the
bridge services are advertised, clients may access the bridge services (and thus the corresponding enterprise
services) similarly to any other advertised services in the distributed network environment, without knowledge of the

architecture of the enterprise service providing the services.

Client Displays

There are several methods in which results from a service run by a client may be displayed in a distributed
computing environment. Devices that may display results may include, but are not limited to: CRTs on computers;
LCDs on laptops, notebooks displays, etc; printers; speakers; and any other device capable of displaying results of
the service in visual, audio, or other perceptible format. The methods for displaying results may include, but are not
limited to:

¢ The service may return results to a client directly or by reference, and the client may handle the
display of the results.

* The service may return results to a client directly or by reference, and the client may pass the
results to a display service directly or by reference, and the display service may display the results.

* The service may directly handle the displaying of the results.

* The service may pass the results to a display service directly or by reference, and the display

service may display the results.

In the last method of displaying results, the client may specify the display service. For example, there may
be a display service on or associated with the device on which the client resides that the client wishes to use to
display the results of the service. When the client runs the service, the client may send a message to the service
specifying the service advertisement of the client’s display service. The service may then build a gate that allows it
to send messages to the client’s display service. Thus, when displaying results, the service invoked by the client
becomes a client of the client’s display service and sends its results (directly or by reference) for display to that
display service. More detail on the client-service relationship, gates, and messaging is included in other sections of
this document.

Conventional application models are typically based on predetermined, largely static user interface and/or
data characteristics. Changes to conventional applications may require code modification and recompilation. The
mechanisms described for advertising services and for specifying XML message schemas for communicating with
services in the distributed computing environment may be used to provide a mechanism for applications (clients,
services, etc) to describe dynamic display objects. Using the dynamic display objects, application behavior may be
altered without having to download new code, recompile, or re-link the application. Display schemas may be
provided for displaying the same results in different formats, for extracting portions of the results for display, and
for displaying the results on different display devices.

Figure 31 illustrates one embodiment of a client 1300 with associated display 1302 and display service
1304 according to one embodiment. An advertisement 1306 for display service 1304 may be registered on space

1308. An advertisement 1312 for service 1310 may be registered on space 1314 by service 1310. Alternatively,

73

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

service advertisement 1312 and display service advertisement 1306 may be registered on the same space. Client
1300 may search for and discover (1320) service advertisement 1312 on space 1314, and may then set up a gate to
send requests to (and receive results or responses from) service 1310. In one embodiment, the messages may be in
the form of XML messages specified in an XML schema received as part of advertisement 1312. Client 1300 may
send one or more messages (1322) to service 1310. The one or more messages may include messages for running
service 1310 and for instructing service 1310 to send results to display service 1304 for display, and may specify the
location of display service advertisement 1306. The advertisement location may be specified as a Uniform Resource
Identifier (URI).

The messages from client 1300 to service 1310 may instruct service 1310 to perform one or more
operations that produce displayable results. Service 1310 may retrieve display service advertisement 1306 from
space 1308 based upon the location information received from client 1300. The service advertisement may include
the XML message schema and other information necessary to interface with display service 1304. Service 1310
may then set up a gate to send requests to (and receive results from) display service 1304. In other embodiments,
messages from client 1300 to service 1310 may include the XML schema and other information needed for service
1310 to construct a gate to display service 1304, or may include a pre-constructed gate to display service 1304.

During, or after completing, operations requested by client 1300, service 1310 may send the results of the
operations to display service 1304 in the manner specified by the schema for display service 1304 (e.g. encapsulated
in XML messages specified in the XML message schema or by reference as parameters for the display service). In
this regard, service 1310 may be a client of display service 1304. Display service 1304 may then format and display
the results received from or indicated by service 1310 on display 1302 for the client.

In some embodiments, service 1310 may post the results of operations to a space such as a results space
(not shown). Service 1310 may then send a message to display service 1304 including a reference to the stored
results of the operations. In one embodiment, the reference may be in the form of a URIL The display service 1304
may then retrieve the results from the space and display the results on display 1302.

Conventional application models are typically based on predetermined, largely static user interface and/or
data characteristics. Changes to conventional applications may require code modification and recompilation. The
mechanisms described for advertising services and for specifying XML message schemas for communicating with
services in the distributed computing environment may be used to provide a mechanism for applications (clients,
services, etc) to describe dynamic display objects. Using the dynamic display objects, application behavior may be
altered without having to download new code, recompile, or re-link the application.

The dynamic display objects may be described in XML schemas. These schemas may be advertised in
spaces. These schemas may be referred to as display schemas or presentation schemas. An application (or other
services acting on behalf of the application) may then access the schemas from the service advertisements to display
data based upon formatting, data type, and other information stored in the schemas.

The following is an example of a schema containing dynamic display objects:

<element name="delivery" type="Space:shipto" minOccurs="0" />
<type name="TextField">
<element name="Address" type="string"/>

<element name="City" type="string"/>

74

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

<element name="State" type="string"/>

</type>
The above schema may be changed to the following without requiring an application recompile:

<element name="delivery" type="Space:shipto" minOccurs="0" />
<type name="TextField">

<element name="Name" type="string"/>

<element name="Address" type="string"/>

<element name="City" type="string"/>

<element name="State" type="string"/>

</’[ype>

Figures 32A and 32B illustrate examples of using schemas of dynamic display objects according to one
embodiment. In Figure 32A, application 1320 (may be a client, a service, or other application) has been
implemented with presentation schema advertisement 1324 stored in space 1326. A presentation schema
advertisement may include elements describing the data types, formatting specifications, fonts, locations, colors, and
any other information used for displaying data for the application on display 1322. There may be multiple
presentation schema advertisements for application 1320. For example, there may be one schema for each display
page in a series of display pages (for example, Web pages on a Web site).

In one embodiment, application 1320 may invoke a discovery and/or lookup service to locate presentation
schema advertisements. The discovery and/or lookup service may return an XML document listing one or more
advertisements, and URISs to each of the schemas describing a particular display format, etc. Application 1320 may
then select a presentation schema or schemas from the XML document. Application 1320 may then parse the
schema, breaking out the elements of the schema into user interface components. The components then may be used
to locate, format, and display results data on the appropriate display. The result data may be from running a service
or from a results space, for example. Thus, as opposed to having a static or predetermined display, the application
1320 is configured to display results according to a presentation schema that may be dynamically changed without
requiring a rebuild of the application.

Presentation schemas may be provided for displaying the same results in different formats, for extracting
portions of the results for display, and for displaying the results on different display devices.

In one embodiment, one or more presentation schema advertisements may be stored in one or more spaces ‘
in a distributed computing environment. As copies of an application are invoked on one or more devices, each copy

of the application may run a search for services to discover advertisements for the presentation schemas used by the

75

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

applications. Thus, a central, persistent store of the display information may be kept for multiple instances of the
application or for other applications. The display information may be modified in the central location without
requiring the recompilation and/or reinstallation of the applications.

In Figure 32B, client 1328 may locate a service advertisement for service 1330 on a space. When invoking
service 1330, client 1328 may pass a location of presentation schema advertisement 1324 on space 1326 to service
1330. When service 1330 is ready to provide results to client 1328, it may display the results on display 1322
(which may be coupled to the device on which client 1328 is running) using the display information from the
presentation schema provided by presentation schema advertisement 1324. To change the way the results are
displayed, the XML messages in the presentation schema advertisement 1324 may be modified, or a different
presentation schema may be selected, without requiring changes at the client 1328 or service 1330. Service 1330
may be a display service.

A client, application or service may provide a plurality of display schemas for displaying results of various
operations provided by one or more services. Alternatively, a display schema may include information for
displaying a variety of results for one or more clients. Thus, client 1328 may use one display schema or a plurality of
display schemas. Two or more display schemas may be provided for formatting and displaying the same results with
different formats, or on different displays. For example, one display schema for a set of results may be provided for
displaying results on a display screen, and another for printing the results. Also, copies of the same application,
client or service may run on devices with different display capabilities, so two or more display schemas may be

provided for supporting the display requirements of the different devices.

String Management

String handling in conventional systems is generally not very efficient, especially for variable sized strings,
and may be wasteful of memory space, e.g. as the string is copied and/or moved in memory. This inefficiency in
string handling may be particularly problematic in small memory footprint systems such as embedded systems. The
amount of memory, particularly stack space and space for dynamic allocation, may be limited in small footprint
systems. Thus, a more efficient method of handling strings in programs executing within small footprint systems
such as embedded systems is desirable.

Figure 33A illustrates a typical string representation in the C programming language. In C, a string may be
represented by a character pointer 1450 (stringl) containing a memory location (address) of the first character of a
string 1452. Other characters follow the first character in the string 1452, and are typically stored in consecutive
addressable byte locations in memory. Characters in C strings are typically 8-bit. The characters in C sirings may
be any ASCII character. A C string must be terminated by a NULL character. NULL is platform defined as one of
the 256 possible 8-bit values, but is typically the binary value 0600000000. The string 1452 occupies 13 bytes (12
string characters plus the terminating character).

An example of a string operation in C is the strlen() function, typically provided with standard C library
implementations. The strlen() function takes a string pointer as input and returns the length (in bytes) of the string,
not including the terminating character. For example, passing the character pointer 1450 to the strlen() function
would return the length 12. The strlen() function may be implemented by “walking” the string until the terminating

character is located, counting each character.

76

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

String copying in C is typically handled by a strepy() or a strncpy() C library functions, which are

implemented as:

char *strcpy(char *dest, const char *src);

char *strncpy(char *dest, const char *src, size_t n);
The strepy() function copies the string pointed to by the character pointer src (including the terminating character) to
the string pointed to by character pointer dest . The strings may not overlap, and the destination string dest must be
large enough to receive the copy.

The strnepy() function is similar, except that not more than n bytes of src are copied. Thus, if there is no
terminating character among the first n bytes of src, the result will not be terminated. If desired, an instruction may
be placed in the code following a strncpy() to add a termination character to the end of the dest string. In the case
where the length of src is less than that of n, the remainder of dest will be padded with nulls. The strcpy() and
strncpy() functions return a pointer to the destination string dest .

Figure 33B illustrates an example of the results of the strncpy() function on string 1452, when strncpy() is

called with the following parameters:

strnepy(string2, string1+3, 5);

where string2 is character pointer 1454 pointing to the first byte after the terminating character of string 1452,
string1+3 is character pointer 1450 incremented by 3 bytes, and 5 is the number of characters (bytes) to be copied
from the source location string1+-3 to string2. After copying, the next character after the five characters copied from
string] may be set to the terminating character (the character may have been initialized to the terminating character
prior to the copy). Thus, the two strings now occupy (13 + 6) = 19 bytes of memory. If the strcpy() function was
applied with character pointer 1450 as the source string, the original string 1452 and the resultant new string would
occupy (13 * 2) = 26 bytes.

Figure 33C illustrates an efficient method for representing and managing strings in general, and in small footprint
systems such as embedded systems in particular. String 1452 is stored in memory as 12 bytes (no terminating
character is required). String structure 1460 includes pointers (Address(A) and Address(L)) to the first and last
characters of string 1452. Using this string structure, the string’s length may be efficiently computed by subtracting
the pointer to the first character from the pointer to the last character.

Operations such as string copy operations strepy() and strncpy() may also be handled more efficiently.
With string structures such as those illustrated in Figure 33C, a new string structure 1462 may be created, and the
first and last character pointers may be initialized to point to the respective characters in string 1452. Thus, a
portion or all the string 1452 does not have to be copied to new storage for the string. As strings can be hundreds or
even thousands of characters long, the memory saved using the string structures and string methods implemented to
take advantage of them may be considerable. This method of handling copies of portions or all of a string may be
called “substring management,” as it deals with the efficient handling of portions (substrings) of strings.

Other string functions from the standard C string library may be replaced with string functions taking
advantage of the string structure as illustrated in Figure 33C. Examples of other C string functions include, but are
not limited to: strstr(), strcat(), and sprintf(). The string handling structures and methods as described in Figure 33C
may be used, along with the hierarchical structure of XML documents, to provide more efficient handling of XML

77

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

text (such as XML messages) in systems with small memory footprints such as embedded systems. The following is
a simple example of an XML schema defining a purchase order:
<IDOCTYPE purchase.order SYSTEM "po.dtd">
<purchase.order>
<date>22 May 2000</date>
<billing.address>
<name>John Smith</name>
<street>123 Main</street>
<city>Anywhere</city>
<state>MA</state>
<zip>12345-6789</zip>
</billing.address>
<items>
<jtem>
<quantity>3</quantity>
<product.number>248</product.number>
<description>Decorative Widget, Red, Large</description>
<unitcost>19.95</unitcost>
</item>
<item>
<quantity>1</quantity>
<product.number>1632</product.number>
<description>Battery, AA, 4-pack</description>
<unitcost>4.95</unitcost>
</item>
</items>
</purchase.order>
The hierarchical structure of XML documents may allow them to be processed in a recursive fashion with
successively smaller portions of the document processed at each level of recursion. References to various portions
are recorded and processed recursively. String structures as described in regard to Figure 33C may be used to
record the various portions. In this manner, the content of specific XML tags (one line in the above example), in
one embodiment the smallest unit of the XML document processed recursively, may be determined efficiently.
Documents with repeated tags in the same scope may also be handled efficiently, as tags within a given scope may
be enumerated and processed efficiently.
A recursive method for processing an XML document using string structures similar to those described in
Figure 33C may accept a string structure representing the entire XML document string and pointing to the first byte
and the last byte in the document string. The method may then locate the next subsection of the document and pass
a string structure representing the substring of the entire document string containing the subsection to a processing

function for the subsection type. The subsection itself may be broken into another level of subsections represented

78

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

by string structures passed to processing functions for the subsection type. The method may continue in the
recursive processing of the XML document subsections until the entire document has been processed.

Using the string structures with the recursive processing allows the processing to be done without creating
copies of the subsections for processing. Copying of subsections may be particularly costly in recursive processing,
because as the recursion goes deeper, more and more copies of the same data are made. Using the string structures,
only the string structure containing the pointers to the first and last bytes in the subsection needs to be created and
passed down to the next level. Other operations, such as determining the length of a subsection, may be performed
efficiently using the address information stored in the string structures. Also, by using the string structures,
terminating characters such as those used to terminate C strings are not necessary, conserving memory in small

footprint devices such as embedded devices.

XML representation of Objects

As previously mentioned, Jini RMI may not be practical for some clients, such as thin clients with minimal
memory footprints and minimal bandwidth. The serialization associated with the Jini RMI is slow, big, requires the
JVM reflection API, and is a Java specific object representation. Java deserialization is also slow, big and requires
a serialized-object parser. Even Java based thin clients may not be able to accept huge Java objects (along with
needed classes) being returned (necessarily) across the network to the client, as required in Jini.

A more scalable distributed computing mechanism may be provided by embodiments of a distributed
computing environment. A distributed computing environment may include an API layer for facilitating distributed
computing. The API layer provides send message and receive message capabilities between clients and services.
This messaging API may provide an interface for simple messages in a representation data or meta-data format, such
as in the eXtensible Mark-up Language (XML). Note that while embodiments are described herein employing
XML, other meta-data type languages or formats may be used in alternate embodiments. In some embodiments, the
API layer may also provide an interface for messages to communicate between objects or to pass objects, such as
Java objects. Objects accessible through API layer 102 are represented by a representation data format, such as
XML. Thus, an XML representation of an object may be manipulated, as opposed to the object itself.

The API layer may sit on top of a messaging layer. The messaging layer may be based on a representation
data format, such as XML. In one embodiment, XML messages are generated by the messaging layer according to
calls to the API layer. The messaging layer may provide defined static messages that may be sent between clients
and services. Messaging layer may also provide for dynamically generated messages. In one embodiment, an
object, such as a Java object, may be dynamically converted (compiled) into an XML representation. The object
may include code and/or data portions. The object’s code and/or data portions may be compiled into code and data
segments identified by XML tags in the XML representation. The messaging layer may then send the XML object
representation as a message. Conversely, the messaging layer may receive an XML representation of an object. The
object may then be reconstituted (decompiled) from that message. The reconstitution may examine the XML
representation for tags identifying code and/or data segments of the XML representation, and use information stored
in the tags to identify and decompile the code and/or data portions of the object.

Creating and sending an XML representation of an Object
Figure 34 illustrates a process of moving Java objects between a client 1500 and a service 1502 according

to one embodiment. Service 1502 may be any service supported in the distributed computing environment,

79

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

including space services. Client 1500 employs a gate 1504, which may have been created using an XML schema
received from a service advertisement for service 1502, to communicate with a corresponding gate 1506 for service
1502. At some point, client 1500 may need to send Java object 1510 to service 1502. Java object 1510 may
reference other objects, which may in turn reference other objects, and so on. Java object 1510 and its referenced
objects, the objects they in turn reference, and so on, may be referred to as an object graph.

Java object 1510 may be passed to a Java object compilation process 1512 to be compiled to produce an
XML representation of the object graph. The XML representation of the object graph may be passed as an XML
data stream 1514 to gate 1504. The XML data stream 1514 may include an XML representation of all the objects in
the object graph. In one embodiment, the objects in the object graph may be stored recursively in the XML data
stream 1514.

Gate 1504 may then package the XML data stream 1514 in a message 1516 and send the message 1516 to
gate 1506 of service 1502. Gate 1506 may extract the XML data stream 1514 from XML message 1516 and send
the XML data stream 1514 to an XML data stream decompilation process 1518 to be decompiled to produce the
object(s) comprising the object graph, including Java object 1510. In one embodiment, the objects in the object
graph may be stored recursively in the XML data stream 1514, and thus a recursive decompilation process may be
used.

‘When service 1502 needs to send a Java object to client 1500, a substantially similar process may be used.
Java object 1520 may be passed to a Java object compilation process 1512 to be compiled to produce an XML
representation of the object graph. The XML representation of the object graph may be passed as an XML data
stream 1522 to gate 1506. Gate 1506 may then package the XML data stream 1522 in a message 1524 and send the
message 1524 to gate 1504 of client 1500. Gate 1504 may extract the XML data stream 1522 from XML message
1524 and send the XML data stream 1522 to an XML data stream decompilation process 1518 to be decompiled to
produce the object(s) comprising the object graph, including Java object 1520.

In another embodiment, the gates may be responsible for the compilation and decompilation of Java
objects. In this embodiment, Java object 1510 may be passed to gate 1504. Gate 1504 may then pass object 1510
to a Java object compilation process 1512 to be compiled to produce an XML representation of the object graph in
an XML data stream 1514. Gate 1504 may then package the XML data stream 1514 in a message 1516 and send
the message 1516 to gate 1506 of service 1502. Gate 1506 may extract the XML data stream 1514 from XML
message 1516 and send the XML data stream 1514 to an XML data stream decompilation process 1518 to be
decompiled to produce the object(s) comprising the object graph, including Java object 1510. The process of
sending a Java object from service 1502 to client 1500 may be substantially similar to the process of sending an
object from the client to the service.

In one embodiment, object compilation process 1512 and object decompilation process 1518 may both
exist on the client 1500 and the service 1502, and may be programmed to perform compilation and decompilation
substantially similarly on the two devices, thus ensuring the object(s) output on one end are substantially identical to
the object(s) input on the other end. In one embodiment, XML schemas including descriptions of Java objects may
be used on both the client and/or the service in the compilation and decompilation processes. In one embodiment,
XML schema(s) to be used in the compilation and decompilation of Java objects may be passed by the service to the

client in the service advertisement.

80

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

XML provides a language- and platform-independent object representation format. Thus, the process as
illustrated in Figure 34 where an object is compiled into an XML representation of the object and decompiled to
reproduce the object may not be limited to moving Java objects, but in some embodiments may be applied to

moving objects of other types between entities in a networlk.

JVM compilation/decompilation API

Figures 35a and 35b are data flow diagrams illustrating embodiments where a virtual machine (e.g. JVM)
includes extensions for compiling objects (e.g. Java Objects) into XML representations of the objects, and for
decompiling XML representations of (Java) objects into (Java) objects. The JVM may supply an Applications
Programming Interface (API) to the compilation/decompilation extensions. The client 1500 and service 1502 may
be executing within JVMs. The JVMs may be on the same device or on different devices.

In both Figure 35a and Figure 35b, the JVM XML compiler/decompiler API 1530 may accept a Java
object 1510 as input, and output an XML representation of the object 1510 and all its referenced objects (the object
graph of object 1510) in an XML data stream 1514. In addition, the JTVM XML compiler/decompiler API 1530
may accept an XML data stream 1522, which includes an XML representation of object 1520 and all its referenced
objects (the object graph of object 1520), and output Java object 1520 (and all the objects in its object graph).

Figure 35a illustrates one embodiment where, when sending Java object 1510, the client calls the JVM
XML compiler/decompiler API 1530. The client 1510 passes Java object 1510 to the API 1530, which compiles the
object to produce its XML representation, stores the XML representation in XML data stream 1514, and outputs
XML data stream 1514. The client may then pass XML data stream 1514 to gate 1504. Gate 1504 may then
package the XML data stream 1514 in an XML message 1516 and send message 1516 to service 1502.

Upon receiving XML message 1524 from service 1502, gate 1522 may extract XML data stream 1522
from message 1524 and pass data stream 1522 to client 1500. Client 1500 may then call the JVM XML
compiler/decompiler API 1530, passing API 1530 the XML data stream 1522. The API 1530 may then decompile
the XML data stream 1522 to produce Java object 1520 and other objects in its object graph, returning the objects to
client 1500.

Figure 35b illustrates another embodiment where, when sending Java object 1510, the JVM XML
compiler/decompiler API 1530 is called by the gate. The client 1510 passes Java object 1510 to gate 1504. Gate
1504 then passes object 1510 to API 1530, which compiles the object to produce its XML representation, stores the
XML representation in XML data stream 1514, and outputs XML data stream 1514. Gate 1504 may then package
the XML data stream 1514 in an XML message 1516 and send message 1516 to service 1502.

Upon receiving XML message 1524 from service 1502, gate 1522 may extract XML data stream 1522
from message 1524 and pass data stream 1522 to the JVM XML compiler/decompiler API 1530. The API 1530
may then decompile the XML data stream 1522 to produce Java object 1520 and other objects in its object graph.
The gate may then send Java object 1520 and the other objects to client 1500.

In one embodiment, the JVM XML compiler and decompiler may be implemented as integrated functions
of the JVM. In another embodiment, the XML compiler and decompiler may be embodied in API method
invocations in standard extensions to the JVM; thus, the core JVM does not have to be modified. The JVM may
supply the JVM XML compiler/decompiler API 1530 to processes (clients and/or services) executing within the
JVM to allow the processes to access the Java object compilation/decompilation functionality provided by the JTVM.

81

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

In one embodiment, for a process to utilize the object compilation/decompilation, the JVM within which the process
is executing must have the JIVM XML compiler/decompiler functionality and API 1530.

Methods using reflection and serialization to transform and send objects are typically implemented in
applications separate fiom the JVM. The application must repeatedly access the JVM to pick apart an object one
field at a time as the transitive closure of the object is dynamically analyzed. This tends to be a slow and
cumbersome process, while also requiring large amounts of application and JVM code.

Implementing the Java object compilation/decompilation functionality within the JVM is advantageous
because the JVM already understands the concept of, and contents of, an object graph. Thus, the
compilation/decompilation functions may leverage the knowledge (and reuse code) of the JVM in parsing the object
graph to produce the XML representation, and in parsing the XML representation to produce the object graph.
Thus, the compilation/decompilation functions may not have to duplicate functionality that is provided by the JVM,

. as do object sending methods using reflection and serialization. This may allow the code footprint of the

compilation/decompilation functions to be smaller than that of object sending methods using reflection and
serialization. Also, an object may be complied or decompiled by a single call to the JVM XML
compiler/decompiler API.

In addition, integrating the compilation/decompilation of objects with the JVM may allow the compilation
and decompilation of objects to be performed faster than methods using reflection and serialization because, in the
object traversal model implemented with reflection and serialization, the code outside the JVM does not know the
structure or graph of the Java object, and thus must traverse the object graph, pulling it apart, and ultimately must
repeatedly call upon the JVM to do the compilation (and the reverse process for decompilation). This process may
be slowed by the necessity of making repeated calls to the JVM, outside the code. Having the compilation and
decompilation functionality integrated with the JVM, as described herein, avoids having to make repeated calls from
code outside the JTVM to the JVM. In one embodiment, an object may be complied or decompiled by a single call to
the JVM XML compiler/decompiler API.

In one embodiment, the compilation/decompilation functionality may be implemented as a service in the
distributed computing environment. The service may publish a service advertisement in a space. A process in the
distributed computing environment may use a search or discovery service to locate the compilation/decompilation
service. The process (a client of the service) may then use the service by passing Java objects to be compiled into
XML representations and/or XML representations to be decompiled into Java objects to the service.

Java objects may include code (the object’s methods) and data. An object’s code may be non-transient; the
code does not change once the object is created. An object’s data, however, may be transient. Two objects created
from the same Java class may include identical code, but the data in the two objects may be different. In one
embodiment, the compilation function may compile a Java object’s data into an XML representation of the object,
but may not include the object’s actual code in the XML representation. In one embodiment, information about the
object may be included in the compiled XML representation to indicate to the receiver how to recreate the code for
the object. The XML representation may then be stored in an XML data stream and sent (e.g. in a message) to a
receiving process (client or service). The receiving process may then pass the XML data stream to the
decompilation function. The decompilation function may then decompile the XML data stream to produce the Java
object including its data. In one embodiment, the code for the object may be reproduced by the decompilation

function using information about the object included in the XML representation, as the code for an object may be

82

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

statically defined and the JVM receiving the object may be able to reproduce the code (if necessary) using its
knowledge of the object.

In one embodiment, the XML representation of an object produced by the compilation function may
include the Java object’s data and information about the Java object. The information may include class information
for the Java object. An object signature may be included in the information and may be used to identify the object’s
class, etc. The decompilation function may recreate the code for the Java object using the information about the
Java object and may decompile the data from the XML data stream into the Java object. Thus, a complete object
including its code and data may be reproduced on the JVM executing the receiving client or service from the
decompiled data and the information describing the object. In one embodiment, the information describing the
object may be stored in one or more XML tags. In one embodiment, the client or service receiving the XML data
stream may include an XML schema that describes the object, and the XML schema may be used to reconstruct the
Java object from the decompiled data and from the information about the Java object. The decompilation process
may proceed recursively through the object graph, reconstructing the objects referenced by the object by
decompiling the referenced objects’ data from the XML data stream and recreating the referenced objects’ code
from information about the referenced objects in the XML data stream.

In one embodiment, the XML representation of the object produced by the compilation function may
include the object’s data and information that identifies the code of an object. In one embodiment, the information
identifying the code of the object may be stored in one or more XML tags in the XML data stream. When received,
the decompilation function may recreate the code for the Java object using the information about the code from the
XML data stream and decompile the data for the object from the XML data stream. Thus, a complete object
including its code and data may be reproduced on the JVM executing the receiving client or service from the
decompiled data and the information describing the code of the object.

Several scenarios of using XML representations of objects to transfer objects between entities (typically
clients and services) in a distributed computing environment are included for clarification. These scenarios are
exemplary and are not intended to be limiting.

In a first scenario, a service may use the XML compiler/decompiler to compile a Java object into an XML
representation of the object and send the XML representation to a client. The client may the use the XML
compiler/decompiler to decompile the XML representation and perform operations on the data within the object,
and later may use the XML compiler/decompiler to compile the object into an XML representation of the object and
return the XML representation of the object to the service.

In a second scenario, a service may use the XML compiler/decompiler to compile a Java object into an
XML representation of the object and send the XML representation to a client. The client may then send the XML
representation to another service, which may use the XML compiler/decompiler to decompile the XML
representation to reproduce the object, perform operations on the object at the request of the client (possibly
modifying the data), use the XML compiler/decompiler to recompile the modified object imto its XML
representation, and send the XML representation of the object to the client.

In a third scenario, a service may use the XML compiler/decompiler to compile a Java object into an XML
representation of the object and send the XML representation to an object repository or store space. The service
may then send a message to a client informing the client of the location of the XML representation. The message

may include a Universal Resource Identifier (URI) for the XML representation. The client may then retrieve the

83

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

XML representation of the object from the store space, and may use the XML compiler/decompiler to decompile the
representation to reproduce the object. Alternatively, the client may send the location of the XML representation of
the object to another service, along with a request for operations to be performed on the object. The other service
may then retrieve the XML representation from the store space, use the XML compiler/decompiler to decompile the
XML representation to reproduce the object, and perform the requested operations on the object.

In a fourth scenario, a process (could be a client or service) may locate an object repository or store space
in the distributed computing environment by searching for and finding a service advertisement for the store space.
The process may, during execution, create or obtain a plurality of Java objects. The process may use the XML
compiler/decompiler to compile one or more of the objects into XML representations of the objects, and may send,
as a client of the store space service, the XML representations of the objects to the store space to be stored for

possible later access, or for access by other processes.

Security issues in the Decompilation of XML Representations of Objects

Spaces, as described herein, may serve as a file system in the distributed computing environment. Security
may be provided for files in the system in the form of access rights. Access rights may be checked each time a file is
accessed (opened, read, or written to). Thus, a method for providing file access security in the distributed
computing environment may be desirable. This method may also be applied to the XML representations of Java
objects that may be stored in spaces and transmitted between clients and services in the distributed computing
environment.

In one embodiment, a user of a client on a device in the distributed computing environment may be
identified and authenticated when first accessing the client. In one embodiment, the user may supply a physical
identification such as a smart card for identification and authorization. In another embodiment, a challenge-
response mechanism (such as user ID and password) may be used for identification and authorization. Yet another
embodiment may use electronic identification such as a digital signature for identification and authorization. Any
other method of identification and authorization may be used.

Once identified and authorized, the user may then perform various operations on the client, including
accessing one or more services in the distributed computing environment. During these operations, as described
above, one or more objects may be created (locally) or acquired from elsewhere (e.g. from services or spaces). The
objects may be modified and may be compiled into XML representations of the objects and stored locally by the
client or sent to a space service for (transitive or persistent) store. Some of the objects may be received from
services (store services or other services) in the form of XML representations of the objects, which may be
decompiled by the XML compiler/decompiler to recreate the objects on the client.

In one embodiment, during the decompilation of the XML representation of objects, each XML message
may be checked to verify that the user has access rights to the object. If the user does not have the proper access
rights, the XML compiler/decompiler may not decompile the object for the user. In one embodiment, a security
exception may be thrown by the XML compilet/decompiler. In one embodiment, the user may be informed of the
access violation.

Access right information, such as the creator and access levels allowed (creator-only access, read only,
read/write, delete, copy, etc.) for the object may be embedded in the XML message(s) containing the XML

representation of the object. Access authorization may be determined during the identification and authorization of

84

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

the user. For example, the object may allow “read only” access for most users, and “read/write” access for the
creator of the object. If the user tries to access an object using read/write access rights, and the user did not create
the object, the decompilation process may detect this as an access violation, and may disallow the access and notify
the user.

In one embodiment, when the user is done using the client, the user may log off or otherwise signal the user
is finished with the client (e.g. remove a smart card). Objects created on the client by decompilation may be
automatically deleted when the client detects that the user is finished. This may prohibit future users from
intentionally or accidentally accessing the user’s objects. In one embodiment, all objects created by decompilation
may be deleted upon detecting that the user is finished. In another embodiment, a method may be provided to store
at least some of the objects created on the client persistently (e.g. with access rights information), so that the client
may later access the objects, or provide the objects to other users for access.

In one embodiment, the user may have a “smart card” or other physical device to gain access to the client.
The user may insert the smart card into the client device to begin the session. When the client is finished, the client
may remove the smart card. The client may detect the removal of the smart card, and thus detect that the client is

finished, and may then proceed to delete objects created by decompilation of XML representations.

XMIL-based object repositories

In the distributed computing environment, processes (services and/or clients) may desire transient and/or
persistent storage of objects such as XML schemas, service advertisements, results generated by services, XML
representations of Java objects and/or objects implemented in other languages, etc. Existing object storage
technologies tend to be language and/or operating system specific. These storage systems also tend to be too
complicated to be used with small footprint systems such as embedded systems.

JavaSpaces in Jini is an existing object repository mechanism. A JavaSpace may be only capable of storing
Java objects and may be too large to be implemented in small devices with limited amounts of memory. Each object
in a JavaSpace may be serialized as previously described, and thus has the same limitations as previously described
for the reflection and serialization techniques.

A store mechanism may be provided for the distributed computing environment that may be heterogeneous
(not language or operating system dependent), that may scale from small to large devices, and that may provide
transient or persistent storage of objects. In one embodiment, the store mechanism in the distributed computing
environment may be implemented as an Internet Web page or set of pages defined in the XML markup language.
XML provides a language- and platform-independent object representation format enabling Java and non-Java
software to store and retrieve language-independent objects. Since the store mechanism is on the Web, devices of
all types and sizes (small to large) may access the store mechanisms. Web browsers may be used to view the store
mechanism implemented as Web pages. Web search engines may be used to search for contents in the store
mechanism implemented as Web pages. Internet administration mechanisms (existing and future) and XML tools
may be used to administer the XML-based store mechanisms.

In one embodiment, the store mechanisms may be used to store objects created, represented or
encapsulated in XML. Examples of objects that may be stored in the store mechanisms may include, but are not
limited to: XML schemas, XML representations of objects (for example, Java objects compiled into XML

representations as described above), service advertisements, and service results (data) encapsulated in XML. In one

85

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

embodiment, to prevent unauthorized access of an XML object, an authorization credential such as a digital
signature or certificate may be included with the XML object, and a client wishing to access the XML object may be
required to have the proper authorization credential to access the XML object. In one embodiment, the store
mechanism may be a space as described in the Spaces section herein.

Store mechanisms may be services in the distributed computing environment. A store mechanism
implemented as a service may be referred to as a “store service”. A store service may publish an advertisement in a
space. The space itself is an example of a store service. Some store services may be transient. For example, a
space service that stores service advertisements may be a transient store. Other store services may be persistent.
For example, a store service that stores results from services may be a persistent store.

Figure 36 illustrates a client 1604 and a service A 1606 accessing store mechanisms 1600 and 1602 in the
distributed computing environment according to one embodiment. This illustration is intended to be exemplary and
is not intended to be limiting to the scope of this invention. In one embodiment, store mechanisms 1600 and 1602
may each be an Internet Web page or set of Web pages defined in XML and accessible by a Web browser and other
Internet tools. Store mechanism 1600 is a transient store capable of storing objects implemented using XML. Store
mechanism 1602 is a persistent store also capable of storing objects implemented using XML. Service A 1606 may
publish an XML service advertisement 1608 in transient store 1600. Persistent store may also publish an XML
service advertisement in transient store 1600 (or on another transient store in the distributed computing
environment). At some point, client 1604 may require functionality provided by Service A 1606. Client 1604 may
use a discovery and/or lookup service to locate service advertisement 1608. Client 1604 may then construct a
message gate, as described herein, and begin communications with Service A 1606. Client 1604 may send one or
more XML request messages to Service A 1606. Service A 1606 may perform one or more functions in response to
the one or more request messages. One or more of the functions performed by Service A 1606 may produce results
to be provided to client 1604.

For transient results 1610, Service A 1606 may encapsulate the results in an XML advertisement 1612 and
publish the advertisement 1612 in transient store 1600 (or on another transient store in the distributed computing
environment). Service A 1606 may then notify client 1604 that the results 1610 are stored in advertisement 1612 on
transient store 1600, or client 1604 may be notified by other mechanisms as described herein. Client 1604 may then
retrieve transient results 1610 from advertisement 1612. The advertisement 1612 may include an XML schema
describing the formatting, contents, type, etc. of the transient results 1610. The results may be encapsulated in
XML. For example, XML tags may be used to describe portions of the data:

<XML tagl> <datal>

<XML tag2> <data2>

For persistent results 1618, Service A 1606 may use a service or other mechanism as described herein to
locate XML service advertisement 1616 for persistent store 1602, and thus locate persistent store 1602 for storing
persistent results. Alternatively, client 1604 may have previously located persistent store 1602 by locating its
service advertisement 1616, and then may send a Universal Resource Identifier (URI) for a storage location for
persistent results 1618 to Service A in an XML message. In one embodiment, persistent results 1618 may be stored
in an Internet Web page or set of Web pages defined in XML and accessible by a Web browser. Service A 1606
may then store persistent results 1618 in persistent store 1602. Service A 1606 may then publish an XML

86

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

advertisement 1616 for the persistent results 1618 in transient store 1600 (or on another transient store in the
distributed computing environment) and return the location of the advertisement 1616 to client 1604. The
advertisement 1616 may include an XML schema describing the formatting, contents, type, etc. of the persistent
results 1618. The results may be encapsulated in XML as previously described. The advertisement may also
include the URI of the persistent results 1618. The client 1604 may then retrieve the advertisement 1616 and use it
to locate and retrieve persistent results 1618, Alternatively, Service A 1606 may not publish an advertisement for
persistent results 1618, but instead may return a URI for the persistent results 1618 to client 1604 so client 1604
may access the results without looking up an advertisement. Note in some embodiments, the various advertisements
shown in transient store 1600 may each be stored in different transient stores or spaces.

Thus, store mechanisms may be implemented as XML-based Internet Web pages in the distributed
computing environment. These store mechanisms may be implemented on a variety of devices in the environment,
and may provide service advertisements to allow clients (which may be other services) to locate and use the store
mechanisms. Existing and future Web and XML tools may be used to manage the store mechanisms. The store
mechanisms may store objects of various types implemented or encapsulated in XML. Clients on devices of
substantially any size, from small footprint devices to supercomputers, may access the store mechanisms to store and
retrieve the various objects on the Internet. The clients may be Java or non-Java applications, as XML provides a
language-independent storage format. The transient or persistent object repositories may provide for a file system in
the distributed computing environment and may include access checks and other security mechanism as described

herein.

Dynamically Converting a Java Object into an XML Document

In one embodiment, the distributed computing environment may provide a mechanism to convert and
represent an object class instance into an XML document. In order to send representation of a class instance to
another service, the object may be converted and represented as an XML document. In one embodiment, when
receiving an XML document, a program may instantiate a class instance corresponding to the object represented by
the document. In one embodiment, the objects may be Java objects, and the program may be a Java program.

In one embodiment, an intermediary format may be used to represent an XML document and may be
dynamically processed to generate a class instance that represents the XML document. The class may define a set of
instance variables and “set and get” methods to access the instance variables. A corresponding XML document may
be defined as a set of tags, with one tag for each instance variable. When the document is parsed, a hashable
representation may be constructed where the hash key may include the instance variable name and the value may
include the instance variable value. If there are multiple occurrences of a complex instance variable, an enumeration
value may be stored in a hash table. In one embodiment, the process may be limited to only one level of complex
types for the instance variables, and the elements may be homogeneous.

In one embodiment, a protected instance variable may be added to the class definition that may include the
name of the corresponding class. The XML document representation may use the class name as the document type.
Having the class name embedded in the document may allow dynamic instantiation of the right class instance when
the object is reconstructed.

In one embodiment, upon receiving a document, a class instance generator method may be used to extract -

the class type and to parse the document to generate the intermediary hash table representation. The generator

87

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

method may instantiate a new class instance and may use the set methods to initialize the instance object from the
hash table values. In one embodiment, since the class type is defined and the hash table is generic, this process may
be performed for any class that matches the above class definition.

In one embodiment, the reverse process may also be performed where a class instance may be processed
into the intermediary hash table representation and a generator method may be used to produce an XML document
from the hash table representation. This process may also be made generic so that it may be performed for any XML
document that matches the above specification.

This method is not intended to be limited to Java Class objects, and may be applied to other computer-
based objects, including class object instances of other programming languages. In addition, the method is not
intended to be limited to XML representations of object instances; other representation formats including other data

representation languages (such as HTML) may be substituted for XML.

XML-Based Process Migration

The distributed computing environment may enable the distribution and management of distributed
applications. For example, the distributed computing environment may include mobile clients that are dockable
with stations that provide monitors, printers, keyboards, and various other input/output devices that are typically not
provided on mobile devices such as PDAs, cell phones, etc. These mobile clients may run one or more applications,
and may migrate from one station to another in the distributed computing environment. Thus, one embodiment of
the distributed computing environment may provide a method for migrating an executing application (process) with
its entire current state from a mobile client on one node to the same mobile client or another mobile client at another
node within the distributed computing environment.

In one embodiment, an XML representation of the state of a process executing on a client or service may be
created. In one embodiment, the XML representation of the state of the process may include a computation state of
the device and/or virtual machine on which the process is executing, wherein the computation state of the device
and/or virtual machine comprises information about the execution state of the process on the device and/or virtual
machine. A process state may include, but is not limited to: threads, all objects referenced by the threads, transient
variables created during the execution of the process, objects and their data, etc. In one embodiment, data
describing one or more leases representing grants of access to external services, obtained from spaces by the
process, wherein the one or more external services are external to the device and/or virtual machine on which the
process is executing, may also be represented in XML and stored with the process state. Leases are described in
more detail in the Leases section of this document.

Using XML and the messaging system as described herein, an XML representation of the state of a process
may be moved from node to node within the distributed computing environment, e.g. from node to node on the
Internet. The XML representation of the state of a process may also be stored as an XML object in an XML-based
store mechanism as described above, and later retrieved from the store mechanism to resume the process execution
on the same node or on a different node in the distributed computing environment. In one embodiment, the XML
object compilation/decompilation process as described herein may be used in creating (compiling) an XML
representation of the state of a process and in regenerating the state of the process by decompiling the XML

representation of the state of the process.

88

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

Using this mechanism, an XML representation of the state of a process may be stored in an XML-based
store mechanism, such as a space, from an initial node. Subsequently, another node may locate the stored state of
the process, download the state of the process, and resume the process from the downloaded stored state at the point
at which it was executing when the state was stored. Since the process state is stored in an XML format, the tools
and search facilities described herein to store, locate and retrieve XML objects in XML-based store mechanisms
may be used to enable the migration of the process. An advertisement of the stored XML representation of the state
of the process may be published to allow a client resuming the process execution on the same node or another node
to locate and access the stored sate.

The XML representation of the state of a process may be stored to an XML-based persistent store
mechanism, and thus may provide a persistent snapshot of the process. This may be used as a method to resume
process execution on a node after the interruption of the process on the node, for example, due to the intentional or
unintentional shutdown of the node. An advertisement of the stored state of the process may be published to allow
clients to locate the stored state in the distributed computing environment. In one embodiment, to prevent
unauthorized access of an XML representation of the stored state of a process, an authorization credential such as a
digital signature or certificate may be included with the stored state, and a client wishing to resume a process from
the stored state may be required to have the proper authorization credential to access the stored state.

Figure 37 illustrates process migration using an XML representation of the state of a process according to
one embodiment. Process A 1636a may be executing on node 1630. Process A 1636a may be a client or service.
At some point during the execution of Process A 1636a, the state of execution of Process A 1636a may be captured
and stored in an XML-encapsulated state of Process A 1638. The execution of Process A 1636a on node 1630 may
then be stopped. Later, node 1632 may locate the XML -encapsulated state of Process A 1638 and use it to resume
Process A 1636b on the node 1632. Resuming Process A may include using the stored state 1638 to resume thread
execution, recalculate transient variables, re-establish leased resources, and perform any other functions necessary to
resume execution as recorded in the stored XML state of the process 1638.

The following is an example of using XML-based process migration in the distributed computing
environment, and is not intended to be limiting. A mobile client device may be connected to node 1630 and
executing Process A 1636a. The user of the mobile client device may desire to stop execution of Process A 1636a
on node 1630, and to resume execution at a later time at another (or the same) node. In one embodiment, the user
may be prompted with a query to determine if the user wishes to store the state of Process A 1636a and resume
execution later. If the user replies in the affirmative, the XML-encapsulated state of the process may be captured
and stored in persistent store 1634. Later, the user may connect the mobile computing device at node 1632. In one
embodiment, the user may then execute process 1636b and select a “Resume from Stored State” option. The node
1632 may then search for and locate the XML-encapsulated state of Process A 1638, download it, and use it to
resume Process A 1636b. Alternatively, the process may itself know that it was “suspended” on another node, and

may resume from the stored state without user input.

Applications
Technologies exist that allow a user to access network data from remote locations, making the remote data
appear as local data to the user, prdvided the user has access to a browser. However, such technologies do not

provide an automatic infrastructure to query networks near a client device’s location. A mechanism for discovering

89

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

information about networks and services near a client device may be desirable. For example, such a mechanism
may be used to locate information about restaurants, weather, maps, traffic, movie information, etc within a certain
distance (radius) of the client device, and to display desired information on the client device. An example of using
this mechanism may be a cell phone that can be used to automatically locate services in a local environment, for
example, in a movie theater to display the titles and show times of current features in the movie theater or in a
restaurant to view menu selections and prices. In the distributed computing environment as described herein, such a
mechanism may be used to discover spaces including local information and/or services proximate to the client.
device. The mechanism may also be applied in other distributed computing environments, for example, the Jini
system from Sun Microsystems, Inc.

In one embodiment, a mobile client device may include Global Positioning System (GPS) capability and
wireless connection technology. Local distributed computing networks may be provided. For example, a city may
provide a citywide distributed computing environment. Another example may be a shopping mall with a local
distributed computing environment. A local distributed computing network may include a discovery mechanism to
allow client devices to connect to the distributed computing environment and to discover servéces and data in the
local environment. For example, one or more devices in the environment may include wireless connection
technology to allow mobile client devices to connect to the network and to access the discovery mechanism via the
XML messaging system as described previously. A local distributed computing environment may include one or
more spaces with advertisements for services and/or data to be made available to mobile clients. For example, a
citywide distributed computing environment may include spaces that represent entities such as malls, movie theaters,
local news, local weather, traffic, etc. A space may include individual service and/or data advertisements for
accessing services of and information about the entity the space represents. The discovery mechanism may include
a GPS location or locations of the local distributed computing environment, entities represented by space services
within the environment, and/or the various services advertised in the spaces in the environment.

In one embodiment, wired connections may be provided to a local distributed computing network. In this
environment, a user with a mobile client device may “plug in” directly to the network using a wired connection
“docking station”. Examples of wired connections include, but are not limited to: Universal Serial Bus (USB),
FireWire, and twisted-pair Internet. In one embodiment, a docking station may also provide input/output
capabilities such as a keyboard, mouse, and display for the mobile client device. In this embodiment, the location of
the mobile client device may be provided to the lookup or discovery mechanism by the docking station.

In one embodiment, a mobile client device may connect to a distributed computing network. As the user of
the mobile client device navigates within wireless communications range of the distributed computing network, the
mobile client device may constantly, or at various intervals, provide a location vector as input to the local lookup or
discovery mechanism. The mobile client device may obtain the location vector from a GPS system built into or
associated with the mobile client. In one embodiment, the client may send its location information (e.g. via XML
messaging) to a local service discovery mechanism, such as one of the space location mechanisms described herein.
For example, the client may run the space discovery protocol specifying discovery for spaces offering services
within a certain range of the client’s location, or the client may instantiate a space search service to search for spaces
advertising services provided for the client’s vicinity.

As the mobile client device moves into a specified range of a space within the distributed computing

environment, the services and/or data stored in the space may be made available to the mobile client device. In

90

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

embodiments where the client device regularly provides its location to a discovery mechanism, local services and/or
data may automatically be made available to the client’s user. In one embodiment, the user of the mobile client
device may determine the specified range of a space. For example, the user may choose to display all restaurants
within one mile of a current location. Alternatively, the range may be specified in the configuration of the local
distributed computing network. For example, a citywide distributed computing network may be configured to
provide its services to all users within three miles of the city limits. In one embodiment, visual indicators, for
example icons, representing the various services and/or data offered by the space may be displayed on the mobile
client device. The client may then access one or more of the displayed services and/or data. In one embodiment,
information from two or more spaces may be displayed simultaneously on the mobile client device. In one
embodiment, the user may select what services and/or data are to be detected. For example, in a shopping mall, a
user with a mobile client device may choose to display all shoe stores in the mall.

In one embodiment, executable code and/or data used in the execution of the code may be downloaded to
the mobile client device to allow the user to execute an application provided by a service in the space. For example,
moviegoers with mobile client devices may download interactive movie reviews from services in a space for the
movie theater, and may thus perform real-time feedback about the movie they are watching. In one embodiment, an
XML object compilation/decompilation mechanism as described elsewhere herein may be used to compile the code
and/or data to produce XML representations of the code and/or data, and to decompile the XML representations to
reproduce the code and/or data on the mobile client device. In one embodiment, an executable version of a process
may previously exist on the mobile client device, and a stored state of the process may be downloaded to the mobile
client device to allow the user to execute the process using the stored state. In one embodiment, an executable
version of a process may previously exist on the mobile client device, and data for the process may be downloaded
to the mobile client device. For example, data may be downloaded for viewing with a viewer program on the mobile
client device. In one embodiment, an executable version of a process, including the code and data for executing the
process, may be downloaded for execution on the mobile client device. In one embodiment, the service may execute
the application remotely on behalf of the mobile client device, and the service and client may pass to each other
XML messages including data and optionally XML schemas describing the data. In one embodiment, some code
may be executed on the service and some on the client. For example, the service may execute code to perform
operations on a set of data such as numerical calculations. The mobile client device may execute code that may
display portions of the data passed to the client from the service in XML messages and allow the user of the mobile
client device to enter and/or select data and send the data to the service for performing one or more operations on
the data.

In one embodiment, a mobile client device may be connected to two or more services in the distributed
computing network simultaneously. The services may be used independently or in conjunction for performing a
series of tasks. For example, one service may be used by a remote client device to locate and/or perform operations
on a set of data, and a second service may be used to print the set of data.

Figure 38 illustrates a mobile client device accessing spaces in a local distributed computing network,
according to one embodiment. A user of GPS-enabled mobile computing device 1700 may move into proximity of a
local distributed computing environment. The mobile client device 1700 may provide its location provided by GPS
1702 to one or more discovery mechanisms 1706 in the local distributed computing network. The discovery

mechanism 1706 may use the provided GPS location of the mobile client device and predetermined locations of

91

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

spaces within the environment to determine when the user moves within a specified range of one or more spaces or a
vicinity served by one or more spaces within the environment. For example, discovery mechanism 1706 may
determine that mobile client device 1700 has moved within range of space 1704. Discovery mechanism 1706 may
then provide one or more advertisements 1710 from space 1704 to the mobile client device 1700. Alternatively,
discovery mechanism 1706 may provide a Universal Resource Identifier (URI) for space 1704, or for one or more
advertisements in space 1704, to mobile client device 1700. Icons representing the various services advertised by
service advertisements 1708 and/or data represented by content advertisements 1710 may then be displayed on
mobile client device 1700. The user may then select one or more of the advertised services and/or data for
execution and/or display on the mobile client device. The mobile computing device 1700 may establish a wireless
connection with the device offering the service and communicate with the device to execute the service using the
XML-based messaging system as previously described herein. Alternatively, the user of the mobile computing
device 1700 may connect the device at a docking station. The location of the docking station may have been
discovered by the user using the lookup or discovery mechanism 1706, and spaces containing advertisements for the
docking stations to discover the location and availability of docking stations within a specified range of the user.

Discovery mechanism 1706 may also detect when mobile client device 1700 moves into a selected range of
space 1714. The various service advertisements 1718 and content advertisements 1720 may then be made available
to the user of the mobile client device 1700. When the mobile client device moves out of the specified range of one
of the spaces, the advertisements offered by that space may be removed from the mobile client device 1700°s
display.

In one embodiment, advertisements on a space may include location information for the services or data
that they provide. Thus, discovery mechanism 1706 may determine when mobile client device 1700 moves within a
specified range of a particular service advertised on space 1718, and may provide (or remove) the service
advertisement based upon the location of the mobile client device 1700.

Computing devices are shrinking while at the same time gaining power and functionality. Storage devices,
CPUs, RAM, I/O ASICS, power supplies, etc. have been reduced in size to where small, mobile client devices may
include much of the functionality of a full-sized personal computer. However, some components of a computer
system are not easily shrinkable because of the human factor and other factors. These components include, but are
not limited to: keyboards, monitors, scanners, and printers. The limits on reducing the size of some components
may prevent mobile client devices from truly assuming the role of personal computers.

In one embodiment, docking stations may be provided that allow users with mobile client devices to
connect to and use components that are not available on the mobile client device because of human or other factors.
For example, docking stations may be provided in public places such as airports or libraries. The docking stations
may provide monitors, keyboards, printers or other devices for users with mobile client devices. In one
embodiment, the docking stations may not fully function without help from a real computing device such as a mobile
client device connected by a user. The docking station may provide services such as various input/output functions
to the client using the computing power of the mobile client device.

A docking station may provide one or more connection options to a mobile client device. The connection
options may include wireless connections and wired connections. Examples of wireless connections include, but are

not limited to: infrared such as Ir'DA and wireless network connections similar to those provided by a network

92

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

interface card (NIC) in a notebook computer. Examples of wired connections include, but are not limited to: USB,
FireWire, and twisted-pair Ethernet.

A mobile client device may discover the location of docking stations using a method substantially similar to
that described above for mobile client devices. The location of one or more docking stations in a local distributed
computing network may be discovered using a discovery mechanism to discover spaces with advertisements for
docking stations. The mobile client device may provide a location to the discovery mechanism. In one
embodiment, the discovery mechanism or a lookup mechanism may return the location of one or more docking
stations closest to the location of the mobile client device. Alternatively, the discovery mechanism or lookup
mechanism may return a URI of the space containing the advertisements for the docking stations, and the mobile
client device may then connect with the space to provide the location of the one or more docking stations near the
device. In one embodiment, the mobile client device may supply information to the lookup or discovery mechanism
to specify requirements such as monitor resolution, screen size, graphics capabilities, available devices such as
printers and scanners, etc. In one embodiment, information about the one or more docking stations may be supplied
to the user on the mobile client device including availability (is another user using the docking station), components
and capabilities of the various docking stations.

When a user approaches a docking station, a claiming protocol may be initiated. When the docking station
accepts the claim, secure input and output connections may be established between the mobile client device and the
docking station. Alternatively, the user may select the docking station from one or more docking stations discovered
using the lookup or discovery mechanism displayed on the mobile client device. When the user selects the docking
station, the claiming protocol may be initiated to give the user secure, exclusive connection to the docking station
for the duration of the claim. A docking station release method may also be provided to allow the user to terminate
the session on the docking station and release the docking station for use by other users. In one embodiment, the
claiming protocol may be a lease on the docking station service as described previously herein.

Figure 39a illustrates a user of a mobile device discovering the location of docking stations according to
one embodiment. Mobile client device 1750 may connect with discovery mechanism 1756. Mobile client device
1750 may provide a location obtained using GPS 1752 to discovery mechanism 1756. Mobile client device 1750
may also provide docking station requirements to discovery mechanism 1756. Discovery mechanism 1756 may
search one or more spaces 1754 for advertisements for docking stations 1758 that meet the requirements of mobile
client device 1750. In one embodiment, a lookup or discovery mechanism may locate one or more docking stations
within a specified range of mobile device 1750 by comparing location information stored in advertisements 1758
with the supplied location of mobile device 1750. Discovery mechanism 1756 may then provide the location of one
or more docking stations within a specified range of mobile client device 1750. Alternatively, discovery mechanism
1756 may locate a nearest docking station to mobile client device 1750 and provide the location to mobile client
device 1750.

Figure 39b illustrates a mobile client device 1750 connecting to a docking station 1760, according to one
embodiment. In one embodiment, the user may move mobile client device 1750 into wireless range of docking
station 1760 and make a wireless connection to the docking station 1760. In another embodiment, the user fnay
establish a wired connection to docking station 1760 by connecting one or more cables between docking station
1760 and mobile client device 1750. In one embodiment, the user of the mobile client device 1750 may establish a

claim to the docking station 1760. The claim may establish secure, exclusive rights to the docking station for the

93

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

duration of the connection. In one embodiment, the claim mechanism may be a lease mechanism for a resource (tt
docking station) as described previously herein. In one embodiment, a user may be billed for use of the dockin
station. For example, the user may supply a credit card number as part of the process of claiming a docking statio;
Refer to the description of bill gates in the Message Gates section herein. Once connected, the user may use tt
various facilities provided by the docking station 1760 such as keyboard, monitor, printer, etc. Docking static
1760 may also include a connection to a local distributed computing network and thus may provide the user of tt
mobile client device 1750 connected to the docking station 1760 with discovery services for locating service an
content advertisements on other devices within the network, allowing the user to locate and use various services an
content in the distributed computing environment as described previously herein.

When finished, the user may disconnect the mobile client device 1750 from the docking station 1760.]
one embodiment, a docking station release mechanism may automatically be initiated when the mobile client devic
1750 is disconnected from the docking station 1750. The release mechanism may clear any claim on the dockin
station 1760 established by the user of the mobile client device 1750. In one embodiment, the release mechanis:
may notify the discovery mechanism 1756 and/or docking station advertisement 1758 that the docking station
available.

In one embodiment, a user may connect a mobile client device to a docking station without using tk
discovery mechanism. For example, a user in an airport may visually detect a docking station and connect a mobi.
client device to it. Another example may be a library providing a docking station room with a plurality of dockin

stations for use, where users may access any of the docking stations that are available.

Small Footprint and/or Embedded Devices

Simple embedded or small footprint devices may have limited amounts of memory for storing an
executing program instructions. A simple embedded device may need to understand a limited set of control inpu
for initiating functionality of the dévice and outputs for reporting the status of the device. An example of a simpi
embedded device is a “smart” switch (such as a light switch) with embedded circuitry for controlling the switch an
thus the device controlled by the switch. The smart switch may only need to understand two control reques
(change the state of the device, request the state of the device) and to send one status message (the state of it
device). The smart switch may manage the device to which it is connected by receiving its control requests froi
one or more control systems and reporting status messages to the one or more control systems.

In one embodiment, the distributed computing environment may provide a framework (protocol) fc
including small devices that may not have the resource footprint (such as memory) necessary to implement the fu
protocol of the distributed computing environment. In one embodiment, an agent may be provided as a bridg
between the small device-capable protocol and the full protocol. The agent may perform the full protocol discover
for the small device, so the device may not be required to implement the full discovery protocol and servic
activation. In one embodiment, the small device may only need to send service-specific messages. In on
embodiment, these messages may be pre-cooked on the small device, so the small device may only have to sen
messages that are part of the service activation to the agent. The agent may perform the service activation via the fu
protocol to the service and forward incoming message from the device to the service, and/or may forward replie

from the service to the client. Thus, the agent may act as a service connector for the small client.

94

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

In one embodiment of the distributed computing environment, an embedded device may be configured to
receive a specific set of control requests in the form of XML messages and to send a specific set of XML messages
to make requests, report status, etc. In one embodiment, a control system may be configured to manage a variety of
devices by sending XML request messages specific to each device or category of device that it controls and by
receiving XML messages from the devices. In one embodiment, one or more XML schemas may be used to define
an embedded device’s specific set of XML messages; the schema may be used by the embedded device and/or the
control system in sending and receiving XML messages.

An embedded device may include a “thin” implementation of the XML messaging system as previously
described herein that supports the specific set of messages for controlling and monitoring the simple embedded
device. The implementation of the XML messaging system may be tailored for use with small footprint, simple
embedded devices, and thus may fit in the limited memory of the small footprint devices. In one embodiment, the
XML messaging system may be implemented in a small footprint with a virtual machine targeted at small footprint
embedded devices (e.g. KVM). A networking stack (to support the transport protocol for communications with one
or more control systems) may be associated with the virtual machine and the XML messaging layer may “sit on top”
of the networking stack. It is noted that this implementation of the messaging system may be used in other devices
than small footprint or embedded devices.

In one embodiment, static or pre-generated messages may be used for requests from control systems to
embedded devices. The static messages may be precompiled and stored in the embedded devices. An incoming
message may be compared with the stored static messages to find a match for the message and thus to perform the
function requested by the message, thus reducing or eliminating the need for code to parse incoming messages.
Outgoing messages may be read directly from the stored static messages, thus reducing or eliminating the need to
dynamically compile outgoing messages. Thus, static messages may be used to reduce the code footprint of the
messaging layer in embedded systems. For example, static Java objects (Java op codes) may be used for request and
status messages.

Figure 40a illustrates an embodiment of embedded devices 1804a and 1804b controlled by a control system
1800, according to one embodiment. Control system 1800 may be networked with the devices 1804a and 1804b it
controls in any of a variety of ways. The network 1810 may be wired (Ethernet, coaxial, twisted pair, power grid,
etc.) and/or wireless (IrDA, microwave, etc.). In one embodiment, embedded devices 1804a and 1804b may include
a thin implementation of the XML messaging system for. communicating with control system 1800 over network
1810. Control system 1800 may have an implementation of the XML messaging system for sending requests to and
receiving responses from embedded devices 1804a and 1804b. In one embodiment, conirol system 1800 may
include sofiware and hardware configured to present an interface to allow a user to display the status of and
remotely control the embedded devices 1804a and 1804b. In one embodiment, control system 1800 may include
software and/or hardware for automatic control of embedded devices 1804a and 1804b.

In one embodiment, embedded devices 1804a and 1804b may be part of another environment. The
devices may not support the message passing model implemented by the distributed network environment. For
example, the devices may be nodes in a networked automation and control system such as a LonWorks network.
Control system 1800 may include a control system hardware and/or software for controlling devices in the other
environment. Control system 1800 may serve as a bridge between the distributed computing environment and the

other environment. The distributed computing environment may also provide a method or methods to wrap existing

95

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

device discovery protocols for discovering the devices for access from the distributed network environment.
Bridging and wrapping protocols are further described herein in the Bridging section.

Control system 1800 may be connected remotely or locally to one or more other systems in the distributed
computing environment. Figure 40a shows control system 1800 connected to client 1866 via the Internet 1802.
Client 1806 may indirectly request the status of, and send control requests to, embedded devices 1804a and 1804b
through control system 1800. Thus, control system 1800 may serve as a proxy or bridge for embedded devices
1804a and 1804b. See the Bridging section herein. To enable sophisticated communication between the client 1806
and the control system 1800, the client and the control system may have different implementations of the XML
messaging system than the thin implementation on the embedded devices 1804a and 1804b. In one embodiment,
client 1806 may include software and hardware configured to present an interface to allow a user of client 1806 to
display the status of and remotely control the embedded devices 1804a and 1804b. In one embodiment, client 1806
must present the correct authorization credentials to control system 1800 to enable the client 1806 to access
embedded devices 1804a and 1804b. In one embodiment, client 1806 may be granted access at different levels. For
example, client 1806 may only be able to view the status of embedded devices 1804a and 1804b but not be allowed
to remotely control the devices. In one embodiment, control system 1800 may be a service, may have a service
advertisement published in the distributed computing environment, and thus may be accessed by client 1806 using
the client-service method as described previously in this document. In one embodiment, client 1806 may be able to
view the status of, and to remotely control, control system 1800.

Figure 40b illustrates client control system 1808 connected via the Internet 1802 to embedded devices
1804c and 1804d, according to one embodiment. In one embodiment, embedded devices 1804c and 1804d may
include a thin implementation of the XML messaging system for communicating with client control system 1808
over the Internet 1802. Client control system 1808 may have an implementation of the XML messaging system for
sending requests to and receiving responses from embedded devices 1804c and 1804d. In one embodiment, client
control system 1808 may include software and hardware configured to present an interface to allow a user to display
the status of and remotely control the embedded devices 1804c and 1804d. In one embodiment, client conirol
system 1800 may include software and/or hardware for automatic control of embedded devices 1804c and 1804d.

A difference between Figure 40a and Figure 40b is that, in the embodiment illustrated in Figure 40b, the
embedded devices 1804c and 1804d may be accessed by one or more clients in the distributed computing
environment without requiring a proxy (e.g. control system). Embedded devices 1804c and 1804d may include
services for accessing the functionality of the devices, may have published service advertisements in the distributed
computing environment, and thus may be accessed via the client-service method as described previously in this
document,

The distributed computing environment may include a mechanism for a resource-limited client to retrieve
Universal Resource Identifier (URI) addressed resources. For example, a client that is only capable of sending and
receiving messages via an IrDA connection may not be able to establish a URI connection to retrieve results from a
results space. In one embodiment, a service may be provided as a bridge between the client and the URI
resource. The bridge service may interact with the client via XML messages to gather input parameters. The
following is included as an example of XML input message syntax and is not intended to be limiting in any way:

<type name="HttpGet”>

<element name="urlstring” type="string”/>

96

10

15

20

23

30

35

40

WO 01/86439 PCT/US01/14971

</type>

Then, outside the distributed computing environment, the bridge service may establish a URI connection
and retrieve the resource. The resource may then be encapsulated as a payload in one or more XML messages and
sent to the client by the bridge service.

The following illustration of one possible use of embedded devices with thin implementations of the XML
messaging system is included for exemplary purposes and is not intended to be limiting. A building may include a
plurality of electronic devices that consume energy (e.g. lights, air conditioners, office equipment), and thus may
require a system for maintaining an optimum energy consumption level. The plurality of devices may each include
an embedded device for controlling the electronic devices. The embedded devices may include the thin
implementation of the XML messaging system. One or more control systems may be coupled to the devices in a
network, for example, a building LAN or even the Internet. A control system may store and execute a building
management software package and an implementation of the XML messaging system configured to be used by the
software package for monitoring and controlling the devices. The control system may accept input from users, and
may display and otherwise output status information for the building energy consumption system, including status
information for each of the plurality of devices. Energy consumption may be monitored by receiving XML status
messages from each of the plurality of devices. When energy consumption levels need to be adjusted, XML control

messages may be sent to one or more of the devices to cause the energy consumption to change.

Implementing Services

In one embodiment, the distributed computing environment may provide a mechanism for implementing
services as servlets. The mechanism may provide functionality for developing services for the distributed
computing environment.

In one embodiment, an Application Programming Interface (API) may be provided that provides the
functionality to allow the service to be initialized and registered in a space. In one embodiment, the API may
be used to invoke the initialization of the service and to generate an initialization status page, for example, an
HTML page, that may define the status of the service. A user may access the status of the service by accessing the
status page from a browser. In one embodiment, the API may be used to process incoming messages and to
generate documents in response to the messages.

An embodiment of the servlet mechanism may provide several functions including, but not limited to:

* Management of the client connection to the service (unique session ID)

* Management of an activation space that may be used to store results advertisements

* Management of leases on connections sessions and results in activation spaces

* Garbage collection of sessions and results

* Authentication of clients

* Generation of client capabilities on a per session basis
In one embodiment, the distributed computing environment may provide a service cascading mechanism by which
new, complex services may be constructed from other existing services. For example, from a JPEG-to-PostScript
transformation service and a print service, combining the transformation and print service may create a third

cascaded service. In one embodiment, two or more services may be combined into a complex service by defining

97

10

15

20

25

30

WO 01/86439 PCT/US01/14971

access methods of the two or more services as the access methods of the cascaded service. The following service
advertisement for a cascaded service is included for exemplary purposes

and is not intended to be limiting in any way:

<Service>
<pname>Complex Servicedname>
<ID> ... </ID>
<description> </description>
<AccessMethod>
<AccessMethod>

<name>com.transcode. jpgZpsdname>

<implementation>http://www.transcode.com/software/jpg2ps.jardimplementation>
</AccessMethod>
<AccessMethod>

<patne>com.printer.fipPrint</name>

<implementation>http://www.printer.com/software/ftpprint.jar</implementation>
</AccessMethod>
</AccessMethod>

</Service>

Conclusion

Various embodiments may further include receiving, sending or storing instructions and/or data
implemented in accordance with the foregoing description upon a carrier medium. Generally speaking, a carrier
medium may include storage media or memory media such as magnetic or optical media, e.g., disk or CD-ROM,
volatile or non-volatile media such as RAM (e.g. SDRAM, RDRAM, SRAM, etc.), ROM, etc. as well as
transmission media or signals such as electrical, electromagnetic, or digital signals, conveyed via a communication
medium such as network and/or a wireless link.

Various modifications and changes may be made as would be obvious to a person skilled in the art having
the benefit of this disclosure. It is intended that the invention embraces all such modifications and changes and,
accordingly, the specifications, appendices and drawings are to be regarded in an illustrative rather than a restrictive

sense.

98.

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

WHAT IS CLAIMED IS

1. A method for handling events in a distributed computing environment, comprising:
receiving a message in a data representation language sent to a client platform in the distributed computing
environment from a service in the distributed computing environment, wherein the message
includes a data representation language representation of an event generated by the service; and
sending the data representation language representation of the event to one or more processes registered to

receive the event from the service.

2. The method as recited in claim 1, further comprising:
receiving a data representation language schema on the client platform, wherein said data representation
language schema defines a message interface for a set of events generated by the service; and
generating an event message endpoint for the client platform according to the data representation language
schema, wherein said receiving a message and said sending the data representation language

representation of the event to one or more processes are performed by the event message endpoint.

3. The method as recited in claim 2, further comprising the event message endpoint subscribing to one or
more of the set of events generated by the service, wherein the service is configured to send messages including data

representation language representations of an event to subscribers to the event when the event is generated.

4. The method as recited in claim 2, wherein the data representation language message from the service
includes an authentication credential for the service, the method further comprising the event message endpoint
using the authentication credential for the service to authenticate the data representation language message as being

from the service.

5. The method as recited in claim 2, further comprising the event message endpoint verifying type correctness
of the data representation language message according to the data representation language schema subsequent to

said receiving a message.

6. The method as recited in claim 2, wherein the data representation language schema defines a set of
messages that the service may send to the event message endpoint, the method further comprising the event message
endpoint verifying the correctness of the data representation language message from the service according to the

data representation language schema.

7. The method as recited in claim 2, further comprising each of the one or more processes registering interest
in one or more of the set of events generated by the service with the event message endpoint subsequent to said
generating an event message endpoint.

8. The method as recited in claim 7,

wherein said registering interest in one or more of the set of events comprises each of the one or more

99

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

processes providing an event handler callback method to the event message endpoint;
wherein said sending the data representation language representation of the event to one or more processes
registered to receive the event from the service comprises:
the event message endpoint calling an event handler method of each process registered with the
event message endpoint to the event; and
the event message endpoint passing the data representation language representation of the event to

each called event handler.

9. . The method as recited in claim 7, further comprising:
a process unregistering interest in a first event of the service; and
the event message gate unsubscribing to the first event with the service subsequent to said unregistering;
wherein the service is further configured to not send messages including data representation language
representations of the first event to event message endpoints that are unsubscribed to the first

event.

10. The method as recited in claim 2, further comprising receiving the data representation language schema of

the service in a service advertisement of the service.

11. The method as recited in claim 1, wherein the one or more processes are executing within the client
platform.
12. The method as recited in claim 1, wherein the event is a Java event.
13. The method as recited in claim 1, wherein said data representation language is eXtensible Markup
Language (XML).
14. A device, comprising:

a processor;

a memory coupled to said processor;
an event message gate unit configured to:
receive a message in a data representation language sent to the device in the distributed computing
environment from a service in the distributed computing environment, wherein the
message includes a data representation language representation of an event generated by
the service; and
send the data representation language representation of the event to one or more processes

registered to receive the event from the service.

15. The device as recited in claim 14, wherein the device is configured to:
receive a data representation language schema, wherein said data representation language schema defines a

message interface for a set of events generated by the service; and

100

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

generate the event message gate unit according to the data representation language schema.

16. The device as recited in claim 15, wherein the event message gate unit is further configured to verify type
correctness of the data representation language message according to the data representation language schema

subsequent to said receiving a message.

17. The device as recited in claim 15, wherein the data representation language schema defines a set of
messages that the service may send to the event message gate unit, and wherein the event message gate unit is
further configured to verify the correctness of the data representation language message from the service according

to the data representation language schema.

18. The device as recited in claim 15, wherein the device is further configured to receive the data

representation language schema of the service in a service advertisement of the service.

19. The device as recited in claim 14, wherein the event message gate unit is further configured to subscribe to
one or more of the set of events generated by the service, and wherein the service is configured to send messages
including data representation language representations of an event to subscribers to the event when the event is

generated.

20. The device as recited in claim 14, wherein the data representation language message from the service
includes an authentication credential for the service, wherein the event message gate unit is further configured to use
the authentication credential for the service to authenticate the data representation language message as being from

the service.

21. The device as recited in claim 14, wherein each of the one or more processes are configured to register
interest in one or more of the set of events generated by the service with the event message gate unit subsequent to

said generating an event message gate unit.

22. The device as recited in claim 21,

wherein, in said registering interest in one or more of the set of events, each of the one or more processes is
configured to provide an event handler callback method to the event message gate unit;

wherein, in said sending the data representation language representation of the event to one or more
processes registered to receive the event from the service, the event message gate unit is further
configured to:
call an event handler method of each process registered with the event message gate unit to the

event; and

pass the data representation language representation of the event to each called event handler.

23. The device as recited in claim 21,

wherein a first process is configured to unregister interest in a first event of the service;

101

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

wherein the event message gate is further configured to unsubscribe to the first event with the service
subsequent to said unregistering; and
wherein the service is configured to not send messages including data representation language

representations of the first event to event message gate units that are unsubscribed to the first

event.

24. The device as recited in claim 14, wherein the one or more processes are executing within the client
platform.
25. The device as recited in claim 14, wherein the event is a Java event.
26. The device as recited in claim 14, wherein said data representation language is eXtensible Markup
Language (XML).
27. A device, comprising:

a processor;

a memory coupled to said processor;
a service process configured to:
generate an event;
generate a message in a data representation language, wherein the message includes a data
representation language representation of the event generated by the service process; and
send the message to one or more event message gate units in the distributed computing
environment;
wherein each of the one or more event message gate units are operable to distribute the data representation
language representation of the event sent in the message from the service process to one or more

processes registered to receive the event from the service process.

28. The device as recited in claim 27, wherein the device further comprises a service message gate unit,
wherein said generating a message and said sending the message are performed by the service message gate unit on

behalf of the service process.

29. The device as recited in claim 27, wherein the service process is further configured to:
provide a data representation language schema, wherein said data representation language schema defines a
message interface for a set of events generated by the service; and
wherein the one or more event message gate units are generated according to the data representation

language schema.

30. The device as recited in claim 29, wherein the data representation language schema defines a set of

messages that the service may send to the event message gate units.

102

10

15

20

25

30

35

WO 01/86439 PCT/US01/14971

31. The device as recited in claim 29, wherein the service process is further configured to provide the data

representation language schema in a service advertisement.

32. The device as recited in claim 27, wherein the service process is further configured to send messages
including data representation language representations of an event to event message gate units subscribed to the

event when the event is generated by the service process.

33. The device as recited in claim 27, wherein the service process is further configured to attach an
authentication credential for the service to the data representation langnage message, wherein the authentication
credential is configured for use in authenticating the data representation language message as being from the service

process.
34. The device as recited in claim 27, wherein the events are Java events.

35. The device as recited in claim 27, wherein said data representation language is eXtensible Markup

Language (XML).

36. A carrier medium comprising program instructions, wherein the program instructions are computer-
executable to implement:
receiving a message in a data representation language sent to a client platform in the distributed computing
environment from a service in the distributed computing environment, wherein the message
includes a data representation language representation of an event generated by the service; and
sending the data representation language representation of the event to one or more processes registered to

receive the event from the service.

37. The carrier medium as recited in claim 36, wherein the program instructions are further computer-
executable to implement:
receiving a data representation language schema on the client platform, wherein said data representation
' language schema defines a message interface for a set of events generated by the service; and
generating an event message endpoint for the client platform according to the data representation language
schema, wherein said receiving a message and said sending the data representation language
representation of the event to one or more processes are performed by the event message endpoint.
38. The carrier medium as recited in claim 37, wherein the program instructions are further computer-
executable to implement the event message endpoint subscribing to one or more of the set of events generated by the
service, wherein the service is configured to send messages including data representation language representations

of an event to subscribers to the event when the event is generated.

39. The carrier medium as recited in claim 37, wherein the data representation language message from the

service includes an authentication credential for the service, wherein the program instructions are further computer-

103

10

15

20

25

30

35

40

WO 01/86439 PCT/US01/14971

executable to implement the event message endpoint using the authentication credential for the service tc

authenticate the data representation language message as being from the service.

40. The carrier medium as recited in claim 37, wherein the program instructions are further computer
executable to implement the event message endpoint verifying type correctness of the data representation languag:

message according to the data representation language schema subsequent to said receiving a message.

41, The carrier medium as recited in claim 37, wherein the data representation language schema defines a set o
messages that the service may send to the event message endpoint, wherein the program instructions are furthe
computer-executable to implement the event message endpoint verifying the correctness of the data representatior

language message from the service according to the data representation language schema.

42. The carrier medium as recited in claim 37, wherein the program instructions are further computer
executable to implement each of the one or more processes registering interest in one or more of the set of event:

generated by the service with the event message endpoint subsequent to said generating an event message endpoint.

43. The carrier medium as recited in claim 42,

wherein, in said registering interest in one or more of the set of events, the program instructions are further
computer-executable to implement each of the one or more processes providing an event handler
callback method to the event message endpoint;

wherein, in said sending the data representation language representation of the event to one or mort
processes registered to receive the event from the service, the program instructions are furthe
computer-executable to implement:
the event message endpoint calling an event handler method of each process registered with th

event message endpoint to the event; and

the event message endpoint passing the data representation language representation of the event t«

each called event handler.

44, The carrier medium as recited in claim 42, wherein the program instructions are further computer
executable to implement:
a process unregistering interest in a first event of the service; and
the event message gate unsubscribing to the first event with the service subsequent to said unregistering;
wherein the service is further configured to not send messages including data representation languag
representations of the first event to event message endpoints that are unsubscribed to the firs

event.
45. The carrier medium as recited in claim 37, wherein the program instructions are further computer

executable to implement receiving the data representation language schema of the service in a service advertisemen

of the service.

104

10

WO 01/86439 PCT/US01/14971

46. The carrier medium as recited in claim 36, wherein the one or more processes are executing within the

client platform.
47, The carrier medium as recited in claim 36, wherein the event is a Java event.

48. The carrier medium as recited in claim 36, wherein said data representation language is eXtensible Markuy

Language (XML).

105

WO 01/86439 PCT/US01/14971
1/35

The Jini Technology

Jini Apis / Java Spaces 12

C RMI >/ 14

TCP / IP Capable Networking — 16

Fig. 1
(Prior Art)

Distributed Computing Interface — 102

(Messages)/ 104

Message Capable Networking 106

Fig. 2

104 —

WO 01/86439 PCT/US01/14971
2/35
MESSAGES
Reliable Messages Unreliable Messages
(e.g. java.net.Socket) (e.g. java.net.DatagramSocket) Others
("
TCP UPD Others
P Others
L Network Driver (Ethernet, TokenRing,......)
Fig. 3
i i xml
D'SCOYery - Discovery ~«——» Search Facility
Service messages Front-end

Fig. 4

WO 01/86439 PCT/US01/14971
3/35

Dynamic Client Profile

Claim and Release (a lease) Find (an object)

Write and Take (an object) Notify on Write
Public Apis

Dynamic XML to / from Objects

Send / Receive Byte Messages

Connection Transport

Static Client Profile

Static XML Message Definitions

Send / Receive Byte Messages

Connection Transport

Fig. 5

WO 01/86439 PCT/US01/14971
4/35

XML -ﬁ
Messagiy(N/Iessages
110 Device 112
XML / Service

Messages

Fig. 6

Message Capable Network Transport
- >

Device yZ 120 Device /122 Device /124

!110a !112a . !1100
Java Virtual @ Natl\{e Code
i Runtime

Machine 110b Environment

Fig. 7

WO 01/86439 PCT/US01/14971
5/35

Space 114
132
XML advertisement

AN

Client 110 2. instantiate Service 112
130 1. publish
Gate
J 3. run
Fig. 8

1. run Service 112

Ncess 2. publish

Client 11

o

XML Results
N\ 134
Space 114

Fig. 9

WO 01/86439 PCT/US01/14971
6/35
Message Capable Network Transport
- —
Device s 120 Device y 122 Device y 124
L 110a _ 110b
Client Gate @
~ 130a ~ 130b
) . \\ Service Gats Native Code
Java Virtual \ :
. O\ 400 Runtime
Machine C |
Environment
Fig. 10a
XML defining
data types
132
Generate Service Access Code
Service
Generated
Call Send | Message and | Send Message
— | Data-Verify
Code
Data 130
Reference Results J
-t Data
182

Fig. 10b

WO 01/86439

Use

110

7/35

XML
132

PCT/US01/14971

Creation and Use Indirection

Gate
Factory

Creation _____—
140

Request

Client +

Use

Gate

130a

Fig. 11a

Service
Advertisement
(from space)

132

v

Creation
B e

Gate
Factory
140

v

XML

Gate

Messages

130a

Fig. 11b

WO 01/86439

156
\ Message Gate

8/35

‘ 150 154 160
, Dest
GateName TranSport Ref

158

Message System

- 1563

PCT/US01/14971

Client or Service

Message Gate

Message System

Transport - Transport
Fig. 12
Web Server XML
HTTP /HTML Serviet 17 Messages
Browser @ %/
400 or XML
- WAP \ \
Generated
|/ Code used
Browser client by serviet
SPACE
Client

Fig. 13

WO 01/86439 PCT/US01/14971
9/35

XML
defining
method
interface

170

Generate Service Access Codel Service

Generated
Simple Method
Code
172

Call Method

Send Message

Client
Application | Generated
176 Proxy Results
Reference Proxy Send Results URL Results
(Generated) - 180

178

Fig. 14

Find advertisements SPACE Filled with Add advertisements

Service, Client, or
Content Advertisements
114

(r(*r@ . Messages ((\@

Clients Service Providers

Fig. 15

WO 01/86439

PCT/US01/14971
10/35

Meta-Data Advertiserent
500
A
Attribute
504 >
- @ment Element L
. 502 502 -
Attribute
504 Element .
\J 502
Fig. 16 \
2 | 3
Drafted Published < Persistent
5 4

PCT/US01/14971

WO 01/86439

11/35

61 ‘01

e00¢
gl Bid
(euo pajgeus eoedg Jaylouy doog 90INID
-gem 'H9) S9IMBS ul 89118 g eoedS Jo 8o2I\eg 10 u“cm__w
O0IAIBS 10 3uUslio JUBWIBSILIBADY 10 UBND A1an0osi(i
aWwog BIA '€ BIA 2 BIN L UaWIaSILIBAPY
aoedg
¥502 eoedg yum esuodsey
:A1enoosi(
— ﬂm‘éu\ 902
SjUBWBSILIANPY ssoedsg
1o }senbay
{ :Aenoosi(

11
SjUBWIBSILIBAPY

L1
SJUBWIBSILIBAPY

20¢
Jueby leusisi

Aanoosig

%02 (e01A18S JO Ss)nsal 10y)

ooredg 0¥ 0c eoeds

WO 01/86439

12/35

Client runs authentication service for space
300

'

Client constructs gate for accessing space
302

'

Client sends message to space to
run space service
304

'

Space runs authentication service to
identify client
306

'

Space determines client capabilities and
binds them to client identity (token)
308

'

Messaging proceeds between client and
space - client may access space facilities
310

Fig. 20

PCT/US01/14971

PCT/US01/14971

WO 01/86439

13/35

FATE
JuaAgebueyDeINGUIYSIIAPY JUBATOAOWEYeINGLNYS(FAPY JUSATUSSU[RINUIYITAPY
i
JUSAZSINGURYOIIADPY
JuaAgebueyHiusws|JAPY JUBATOAOWOHIUSWS|IAPY JUSATJUSSUUBWS|JAPY
JUSATIUBWIS[IAPY JUSATOAOWRYAPY JUSAZLISSUIAPY
/_\\\\\\\
Em>m=cmc_hmm_tm>n<
Juanjeoeds

WO 01/86439

@ Default Space
advertising

14/35

Client selects service advertisement
published in space
320

I

Client sends message to space requesting
instantiation of service
322

l

Space verifies request
324

5

Space obtains lease for service
326

3

Space sends lease and service
advertisement to client
328

l

Client runs authentication service specified
in advertisement
330

'

Client constructs gate to access service
332

spaces
350

additional

\
352

Fig. 23

PCT/US01/14971

Fig. 22

OtherSpace

PCT/US01/14971

WO 01/86439

15/35

ve b4

8Lyl

JUSWIBSILIBAPY
20INIBS

covl
20Inep paseq-Alwixold

Oyt
8o1ne(

clvl

8071
201ne(]

vivi
SUOI}OBUU0D

Aniwixoid

olvi

JUSLISSILIBAPY
8oIAI8g

00143
80inep paseq-Aliwixoid

140148
8oInaQ

uodsues |

8ivl

JUBWIaSILOAPY

8oINIeS

9yl

JUBWIBSILBADY
80INIBG

907 | eoeds

WO 01/86439 PCT/US01/14971
16/35

Find advertisements | SPACE Filled with | Add advertisements

Resource
Advertisements

Renewal Messages

Renewal Messages

Gate =

Clients Service Providers

Fig. 25

WO 01/86439
17/35

Client requests authentication credential from
authentication service
1000

A 4

Authentication service generates
authentication credential
1002

A 4

Authentication service sends authentication
credential to client
1004

PCT/US01/14971

FIG. 26a

1002

Authentication service obtains client token and
service token

1002a

A 4

Authentication service verifies client and

service
1002b

A 4

Authentication service generates
authentication credential

1002¢

FIG. 26b

PCT/US01/14971

WO 01/86439

18/35

Lc D4

090¢}
JUSWIOSILIBAPY
ELIIVETS

144"
N

- A
cO0cl

wisiueyosy Buibpug

ao0ct
JUBWISSILIBAPY
TGS

eo0c |
UBWSSILIaAPY
29IMI0S

002 | eoeds

PCT/US01/14971

WO 01/86439

19/35

gc b1

¥ccl
seoines Aanoosip
paJslsibal
yum aoedg

Gccl
JUSWIaSILIoApE.
9oIM8g
Aenoosi(

ctcl
L JUBWISSILBAPY

PPY

Occl

2oInIag Aanoosiq
yioolanig

JUBWIUOIIAUT
Bupndwon
painquisig

veclt
L S)NS8J J0} ——p»

aoeds ajeal)

Lacl

uawiesIenpe 9ccl
90INI8S ooedg
80In8(sinsey
Aanoasig

0ect

1o1sibay

PCT/US01/14971

WO 01/86439

20/35

6¢ 014

S90IAI9G

09Gcl
JUBWISSIUBADPY

STl VTS

qogact
JuswIsSILaAPY

20IAI8S

B9Gc |
JUsWwIesSILIBAPY
90IAI8S

PGel eoeds

cScl

weby Buibpug

98%
90IMIeS

SYIOpAUOT]

uoneuawsidu|

vadl

2GG aoedg

og b4

PCT/US01/14971

21/35

WO 01/86439

clel O0ET J)
JUsWwIesSIUaAPY weln \ —
®
¢ctl :
c0gl)
Ae|dsiq i
1 1
T veel
8ctl 9cEl
P0EL
aoIneg Aejdsiq
90¢1
JUBWIBSILBAPY
LS B4 B0INIBS
Aedsig
80ET ooeds

PCT/US01/14971

WO 01/86439

22/35

dee 614

8¢t
usio

oeel
IITVEETS

ycel
JUBWISSILIBAPY

80INI8g
ewayog Ae|dsiq

gge | eoedg

veg Bid

ccel
Reidsiq

0cel .
(- ‘oo1M108 ‘1UB)|D)
uoneolddy

yael
JuswissIlioApY

RINVETIS
ewayos Aejdsig

9ce | eoedg

WO 01/86439

23/35

PCT/US01/14971

1450 String1
A|B|C|D|E GiH|!1]|J Lio
Fig. 33A N o J
(Prior Art) 1450
1450 —| String1 1454 — String2
A|B|C|DIE|F H{I|J|K|L|{|O|DIE|F|G|H
Fig. 33B A
(Prior Art) ' 1;;3
1460 — String1 1462 —| String2
Address(A) - Address(D)
Address(L) H 1 Address(H)
A|B|C|DIE|F|G | J|K|L
N .
NG Fig. 33C

1452

PCT/US01/14971

WO 01/86439

24/35

¢ 014

Z

AN

02S1 clGl 1741
109[qo M.v uoneyidwod HV weens .I.V obessawl
eAep 109[00 EIED TNX
TNX
9061
alen
BIGT 1Sl oSl
uonepdwoossqg weslis A__H A_w obessau
199[d0 Blep X
TNX
20gG| 8oIneS

y0G1
a1en

sl

8161
wesl]s HV uone|idwoosag
elep 108[00
TNX
1742°] clGl
weoalls AH uonejdwon
elep 100[d0

TAX

00G1 W8lo

PCT/US01/14971

WO 01/86439

25/35

qsg "4

ege B4

< M) "
ycGl 0cal
weains ||
v afessow [M T P S Hv Mm_mo
X TAIX 0€gt ner
Q_n_<
Jodwoosp
/\./ /\J Jepdwod /.\/
9IST viGh ANX NAP
ﬁ weal}s OLglt
A m@.ﬁ_w_w,_mME erep AH AH 109(00
TAIX — eAel
0S| eren
¢0G| 8dneg 00G1 weld
) /\m/
e ¢cSlh
14413
| ebessow V HV EMMMm U
X INIX 0eST
TEET IdV
Mwmmww Jojidwoosp
/iojidwoo
/\/ll % TNX WAP)
91G1 0lst
/||\ ebessow A A.I. EMMWm AH AH 1090[q0
TAX X eAer
¢0S| edlneg 00G| WwsiiD

PCT/US01/14971

WO 01/86439

26/35

9¢ b4

v 90IMI8S

Y091
weld

8lol
s)nsey
uslsisied
pejejnsdeous
“TAX

2091l
8101S juajsisiod

R

9191
sjinsey
1ua1sisiad oy
JUSWIBSILIBAPY
TAX

7191
2l0]lS

us1sisiad 1o}
1USWSSILIBAPY
TNX

c¢lol

s)nsay juaisuel] v mnmwww 10}
Jof yuswesIUBAPY TNX | | juswesionpy
TNX
Ol9l1
synsoy
Jusisuel j
perejnsdeous
“TAX

0091
8101G jusisuel]

PCT/US01/14971

WO 01/86439

27/35

/€ bi

o)
v Sse20id

091
V ©PON

qogol
V $S8001d

cE9l
d SPON

/

“TAX

8€91l
V SS8001d
jo syels
arejnsdeous

€91
2101G jualsisied

PCT/US01/14971

WO 01/86439

28/35

gg b1

0cll1
SJUSWIBSILIBAPY
JusIIoD

8LLL
SJUBWISSILIBADY
80INIBS

YTZT eoeds

9041
WwisiueyOaj
Kenoosiq

0LLL
SJUBWaSILIOAPY
Jusjuon

00/}
@01n9(] JUBIID

9[IqoN

80/1
SJUBWIBSILIOAPY
90INIBS

YOLT eoeds

o 1
o°

0000

c0L
Sd9

PCT/US01/14971

WO 01/86439

29/35

geg O

0SLL
someq el |

S|IqON

e6g ‘014

8GIT
SJUBWSSIIaAPY
uonels Bupoo(q

¥GZ1 eoedg

0

C
7

09L}
uonelg - |
Bunjooq

N\

96/ 1
wisiueyoaj
A1enoasiq
1o dnyjoo

0S.1
soineq el ~ |

9lIqoN

PCT/US01/14971

WO 01/86439

30/35

qoy 614

pPy081
80Inep

psppaquig

psppsaquid

c081

18UlB1U|

8081
welsAs
JOJJUOD UBID

2ot Bi

arogi ep0glL
9218 90INSP
pappaqui3g pappaquil
oL81L oL8l
0081

welsAg |04u0D

c08l
]

9081
welo

WO 01/86439

31/35

Gate factory obtains authentication
credential and message schema
1010

A 4

Gate factory generates client gate
using authentication credential and
message schema
1012

A

Gate factory supplies client gate to
client
1014

FIG. 41

PCT/US01/14971

WO 01/86439
32/35

Client sends first message to message

PCT/US01/14971

gate
1020

FIG. 42a

h 4

credential
1022

Message gate embeds authentication

Y

service URI
1024

Message gate sends first message to

FIG. 42b

Service receives first message
1030

Y

Service sends authentication credential
to authentication service
1032

Y

Authentication service verifies
authentication credential
1034

\ 4

Authentication service provides
verification of client to service
‘ 1036

A

Service generates service gate to pair
with client gate using authentication
credential
1038

WO 01/86439

33/35

Sender embeds authentication
credential in message
1040

A

Sender sends message
1042

A 4

Receiver receives message
1044

A 4

Receiver compares authentication
credential in message to known
authentication credential to
authenticate message
1046

FIG. 42¢

PCT/US01/14971

WO 01/86439 PCT/US01/14971
34/35

Sender embeds credential in message
1050

Y

Sender sends message
1052

A

Receiver receives message
1054

A 4
Receiver examines credential and
message to verify message has not
been compromised
1056

FIG. 43

WO 01/86439

Service generates event
1900

h 4

Service generates event message
for the event
1902

h 4

Service sends event message to
all subscribed event message
endpoints
1904

Figure 44

35/35

PCT/US01/14971

Event message endpoint receives
event message
1910

\ 4

Event message endpoint extracts
event representation from the
message
1912

Y

Event message endpoint sends
event representation to all
processes with registered interest
in the event.

1914

Figure 45

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

