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(57) Abstract: Techniques are disclosed for managing a high performance, fault-tolerant, strongly consistent, distributed key-value
store system. The key-value store may store information, such as metadata for a distributed file system. Fault-tolerance means that
the distributed key-value store continues to provide access to values in the key-value store in spite of a certain number of node fail -
ures. To provide this capability, the key-value store may store copies of (key, value) pair on N+1 nodes in order to provide fault tol -
erance for the failure of up to N nodes. In addition, metadata describing which nodes store a given value is stored on 2N+1 nodes
and the distributed key-value store is sized such that there are 3N+1 nodes in a cluster. Doing so allows the key, value store to toler -
ate a failure of N nodes, while still maintaining a consistent and available key-value store.
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DISTRIBUTED KEY-VALUE STORE

BACKGROUND
Field

[0001] Embodiments presented herein generally relate to distributed
computing. More specifically, embodiments presented herein provide techniques

for allocating shared resources to a distributed key-value store.
Description of the Related Art

[0002] A distributed computer system includes software components located
on multiple computers coupled to a network and which communicate and
coordinate actions by passing messages to each other over the network. Each

networked computer or node generally has its own memory and local data store.

[0003] Key-value stores are an effective way to manage data, as they are not
based on relational tables and structured query languages. Essentially, a key-
value store is a large dictionary. Providing the key-value store with a key allows
the update or return of a value, where the value can be data of almost any type,

thus making the key-value store adaptable to a variety of applications.

[0004] A distributed computer system often includes a file system, such as
POSIX-compliant file system, for managing the data files accessible by the
multiple computers or nodes in the distributed system. File systems, such as
POSIX-compliant file systems, rely on metadata (information about the data in
the file system) to find and modify data in the file system. The manner in which
the distributed system manages the metadata determines the characteristics of
the file system. Specifically, if it is desired that the file system have high
availability, good scalability, and high performance, then the metadata subsystem

for the file system should also have these same characteristics.

[0005] Thus, to have high availability, the metadata subsystem in the
distributed computer system should be able to tolerate failure of a certain number
of computers in the distributed system. To have good scalability, the metadata

subsystem needs to adapt to handling a greater number of files and computer
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systems. To have good performance, operations on the metadata system needs
to occur quickly, as the speed with which the metadata subsystem can be
accessed determines in the large part the speed with which the data files can be

accessed.
SUMMARY

[0006] One embodiment of the invention includes a method for accessing
metadata in a distributed key-value store stored on a plurality of computing
nodes. This method may generally include receiving, by a first one of the nodes,
a message from a requesting client to perform a read operation to read a value
stored in the key-value store for the first key. The message itself includes the
first key and a lock sequence number and wherein the requesting client holds a
lock for at least the first key. Upon determining the lock sequence number is
equal to or greater than a stored sequence number stored with the first key in the
key value store, the value of the first key is read from the key-value store. The

key value is then returned to the requesting client.

[0007] In a particular embodiment, reading the value of the first key itself
includes reaching consensus between at least two of the plurality of nodes
regarding the value of the first key. For example, the nodes may use the Paxos
algorithm to reach consensus on the correct value associated with the first key,
as stored by the distributed key value store. This method may still further
include, upon determining the lock sequence number is greater than the stored
sequence number, converting the read operation to a write operation and setting

the stored sequence number to equal the lock sequence number.

[0008] In still another embodiment, the method may further include receiving,
by a second one of the nodes, a message from the requesting client to perform a
write operation to write a new value in the key-value store for the second key.
The message includes the second key, the new value, a lock sequence number,
and a version number. Further, the requesting client holds a lock for at least the
second key. Upon determining (i) the lock sequence number is equal to or
greater than a stored sequence number stored with the second key in the key
value store and (ii) the version number in the request matches a stored version

number stored with the second key in the key value store, the new value is
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written in the distributed key value store for the second key and the stored

version number is incremented.

[0009] In a particular embodiment, the metadata stores file system metadata
for a distributed file system, and wherein the value provides either a location of a

file system object corresponding to the key or a file system object.

[0010] Other embodiments include, without limitation, a computer-readable
medium that includes instructions that enable a processing unit to implement one
or more aspects of the disclosed methods as well as a system having a
processor, memory, and application programs configured to implement one or

more aspects of the disclosed methods.
DESCRIPTION OF THE DRAWINGS

[0011] So that the manner in which the above-recited features of the present
invention can be understood in detail, a more particular description of the
invention, briefly summarized above, may be had by reference to embodiments,
some of which are illustrated in the appended drawings. It is to be noted,
however, that the appended drawings illustrate only typical embodiments of this
invention and are therefore not to be considered limiting of its scope, for the

invention may admit to other equally effective embodiments.

[0012] Figures 1A-1B depict an example of a distributed system, according to

an embodiment of the invention.

[0013] Figure 2 depicts an example of a distributed key-value store, according

to an embodiment.

[0014] Figure 3 illustrates an example of a node in a fault-tolerant, consistent

key-value store, according to one embodiment.

[0015] Figure 4 depicts a flow diagram for the distributed lock service in each

node, according to an embodiment of the invention.

[0016] Figure 5A depicts a flow diagram of tasks in the scribe process,

according to an embodiment.

[0017] Figure 5B depicts a flow diagram of a read operation by the scribe

process, according to an embodiment.
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[0018] Figure 5C depicts a flow diagram of a write operation by the scribe

process, according to an embodiment.

[0019] Figure 6 depicts a sequence diagram of a key update process,

according to an embodiment.

[0020] Figure 7A depicts a time-sequence diagram for read-after-read (RAR)
consistency in a distributed key value store in which the scribe process operates,

according to one embodiment.

[0021] Figure 7B depicts a time-sequence diagram for read-after-write (RAW)

consistency in which the scribe process operates, according to one embodiment.

[0022] Figure 8 depicts a sequence diagram for a consensus protocol,

according to one embodiment.
DETAILED DESCRIPTION

[0023] Embodiments presented herein provide a high performance, fault-
tolerant, strongly consistent, distributed key-value store system for storing
information, such as metadata for a distributed file system. Fault-tolerance
means that the distributed key-value store continues to provide access to values
in the key-value store in spite of a certain number of node failures. To provide this
capability, in one embodiment, the key-value store replicates each (key, value)
pair to N+1 nodes in order to provide fault tolerance for the failure of N nodes. In
addition, metadata describing which nodes store a given value is stored on 2N+1
nodes and the distributed key-value store is sized such that there are 3N+1
nodes in a cluster. Doing so allows the key, value store to tolerate a failure of N
nodes, while still maintaining a consistent and available key-value store. For
example, for N=1, two nodes of the cluster store a given value, three nodes store
metadata indicting which nodes store that value, and do so in a cluster of four
nodes. Of course, a cluster may be expanded to include many more than four

nodes, and it is not uncommon for a cluster to include hundreds of nodes.

[0024] Advantageously, this arrangement allows the distributed key-value
store to survive a failure of one node without any loss of data. In the event a
primary node associated with a given key value fails, a secondary node can read

and write to that that value in the distributed key-value store. Further, following

4
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the failure of one node, the system can make progress towards a state where the
system again has two copies of data values and metadata that were stored on
the failed node. For example, the secondary node (effectively replacing the
primary node) can replicate key values to another node (resulting in the system
again having N+1 copies of a given key value). Similarly, the metadata
associated with a given key value may be replicated to other nodes (resulting in
the cluster again having 2N+1 copies of key-value metadata).

[0025] Consistency means that the replicated key values of the key-value
store on the other nodes are the same when read from the store. Note, the
values on each node are not always be the same at the same time (e.g., when a
write is made to a key-value on a primary node, the secondary node stores a
previous value, until being updated as part of the write operation. Should the
primary node fail before the secondary node is updated, the write operation fails.
More specifically, consistency means that any two successive reads will return
the same value, unless, and only unless, a write operation occurred between the
two reads. This property is referred to read-after-read (RAR) consistency. The
process for read-after read consistency is used to reject stale writes from older
clients. For example, if a client C1 issues a write and fails, and a client C2 now
issues a read to the same key, then the next read from C2 is guaranteed to return
the same value, even if the write from C1 were to get to the Scribe server, it

would reject the write.

[0026] Similarly, any read after a successful write operation will return the
value written by the write operation. This property is referred to read-after-write
(RAW) consistency. As described below, the key value store provides both RAR
consistency and RAW consistency, even when a write operation is interrupted by
a node failure before being successfully completed. High-performance means
that steps are taken to reduce the amount of network traffic needed to support

both fault-tolerance and consistency.

[0027] As described, embodiments provide a key value store that includes a
plurality of nodes connected to a network. Data is written to and read from the
key-value store using a key value (k). That is, each data value (v) is associated

with a distinct key value (k) creating key value information (k,v). Data is read and
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written to/from the key value store using the (k,v) information.

[0028] In one embodiment, each node includes a distributed lock service and
a scribe process. The scribe process performs read and write operations to the
key-value store on behalf of clients. The primary (k,v)-store on a given node acts
as the primary for some portion of key values (k), as determined using a
consistent hashing algorithm. The node may also store a secondary (or tertiary,
etc.) copy of some key values in order to maintain N+1 copies of each key value
on nodes within the cluster. The scribe process on each node performs read and
write operations against the (k,v)-store on that node. To do so, a scribe client
obtains locks and sequence numbers from the distributed lock service and sends
messages to a scribe process on the primary node associated with a (k,v) value
requesting read/write operations. The replication process replicates values
written to the (k,v) store across nodes in a consistent manner. In one
embodiment, the replication process may use a consensus protocol (such as the
Paxos algorithm) to replicate a value written on one node to at least N+1 nodes
(at which point a write operation may be reported to a client as successful). In
operation, updates to the key-value store use the consensus protocol (again,
such as Paxos) to maintain fault-tolerance and a consistency protocol to maintain
consistency. The consensus protocol ensures that an update to the key-value
store is replicated to N+1 nodes in the distributed system. Summarily, the Scribe
process uses the consensus protocol to reach consensus regarding 2N+1 copies
of location metadata. The consistency protocol ensures that an update is a
consistent one, which means that a read occurring after a write to the key-value
store returns the latest value, and that a read following a read with no intervening

write return the same value.

[0029] The fault-tolerant, consistent, and high-performance key-value store is
particularly suited to store metadata values for file system objects in a file system,
such as inodes. In such embodiments, the scribe process may provide a
metadata store for data backed-up by the nodes of the cluster. Each node in the
cluster may itself be part of a distributed secondary storage backup appliance,
providing backups to a primary storage system. For example, if used to backup a

primary cluster hosting virtual machine instances, the secondary storage system
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could store VMDK files (virtual hard disk drives used by Virtual machines
spawned on the primary cluster). Further, in such embodiments, the (k,v) key
value managed by the scribe process indicates where a file system object or an
element of backup data (e.g., a file or portion of the VMDK file) is located on a
physical disks drive of one of the nodes. In addition, for inodes related to
relatively small files (e.g., files up to 256K bytes), the key-value store can also

store the file associated with file system metadata directly.

[0030] Figure 1A depicts an example of a distributed system, according to an
embodiment of the invention. The distributed system includes a cluster of
computing nodes 104, 106, 108, 110, each of which has its own local store 114,
116, 118, 120. Each node may be a computer system with a processor, a
memory and storage devices. The key value store may be implemented using
any combination of magnetic disk and solid-state drive memory (SSD). Network
112 connects nodes of the cluster to one another. The nodes 104, 106, 108, 110
cooperate with each other by passing messages on the network 112. It is
assumed that messages on the network from the same source are delivered in
the order sent and that messages sent between healthy nodes are eventually
delivered. Note, a node that fails to communicate with peer nodes for a certain

amount of time is deemed “dead.”

[0031] As shown, a key-value store is distributed over the nodes. Each node
104, 106, 108, 110 in the system 100 maintains a portion of the key-value store.
For example, node 1 is assigned responsibility for maintaining keys k11...k1n;
node 2 is assigned responsibility for maintaining keys k21...k2n; node 3 is
assigned responsibility for maintaining k31...k3n; and node N is assigned
responsibility for keys kN1...kNn. Distribution of the keys over the nodes can
occur at initialization time or a time at which the nodes are reconfigured, if there
is a node failure. As described in greater detail below, keys may be assigned to
a node using a consistent hashing function which generally distributes keys

equally across the nodes.

[0032] Additionally, in one embodiment, at least one node in the system is
designated as a backup node for the portion of the (k,v)-store on another node in

the system. In that role, the backup node maintains a copy of the portion of the
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(k,v)-store of the other node. If a primary node fails, the backup node for the
failed node's (k,v)-store handles the failed node's (k,v)-store by making available
its copy of the failed node's (k,v)-store. This implies that there are at least two
copies of each key and value in the (k,v)-store and that these two copies store
the same (k,v) key values (to tolerate N=1 failures). If an update is in progress,
different nodes may have a different value, until the update process is complete
or one node may have a “stale” value when certain node failures occur.
However, as described below, a read operation will resolve any inconsistencies
between nodes by returning a value written by the most recent completed write,

even where a node failure has occurred.

[0033] Distributing keys over the nodes may use a consistent system for
mapping portions of the (k,v)-store to each node. In one embodiment, a hashing
mechanism is used to determine which node a given key value should be written
to. Each key is consistently hashed to a given hash bucket, where a bucket
typically corresponds to a node in the system. Thus, a particular node is the
primary node for one of the buckets and a secondary or backup node for some
number of other buckets, depending on the number of duplications needed to
handle N node failures. If a node is added to a system with N nodes, the keys in
each of the buckets are redistributed among the nodes so that each node has
1/(N+1) of the total keys. This entails moving 1/(N+1) of the keys from the

existing nodes to the new node.

[0034] The consistent hashing function assures a stable mapping of a key to a
hash bucket, regardless of which nodes stores (k,v) key values for that bucket.
For example, assume the cluster of four nodes 104, 106, 108, 110 are configured
to tolerate a failure of any one node (i.e., N=1). In such a case, the consistent
hashing function may hash a given key (k) to one of four buckets (B) 1, 2, 3, or 4.
Each node obtains a lock indicating which bucket that node is responsible for
maintaining. For example, node 104 may be the preferred primary node for
bucket B=1 and node 104 obtains a lock for this bucket from the distributed lock
service. Similarly, nodes 106, 108, and 110 can obtain a lock for buckets 2, 3,
and 4 respectively. Further, if the primary node for a given bucket is (B), the next

node to the right (B+1) can take over as a preferred node for the that bucket and
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the next two nodes (B+1 and B+2) can take over as the preferred nodes for
replicating location metadata indicating which nodes store a given (k,v) key-
value. Note, node 110 wraps around to node 104 in this example when finding a

“next” node.

[0035] In one embodiment, a node “liveness” service, along with locks from
the distributed locking service, assist in reconfiguring the system. When a node
fails, the failed node's portion of the key-value store is maintained by the
secondary node until the failed node can be restored. For example, node 106
may hold a lock from the distributed lock service indicting that node 2 is the
primary node for (k,v) keys that hash to the bucket B=2. That is, for keys that
hash to the value B=2, node 106 is the primary node. Should node 106 fail, then
a secondary node (node 108 in this example) is the backup node. After the
failure of node 106 is identified, node 108 obtains a lock from the distributed lock
service for the bucket B=2 and performs operations on keys that hash to this
bucket. For example, in addition to writing a (k,v) key value on node 108 (again,
which hashes to bucket B=2), node 108 can replicate copies of a given (k,v) key-
value to node 110 (to maintain N+1 copies of a (k,v) key-value) and replicate
metadata on node 108 indicating which nodes store a given (k,v) key-value to
node 110 and node 104 (to maintain 2N+1 copies of location metadata). For
example, a background scan periodically determines if any of the keys need to be
moved (or if the replication factor has to be upped based on current “liveness”

information).

[0036] Similarly, each node may run background processes that periodically
scan for node “liveness” information to determine whether a given node (or
process on a given node) has failed. For example, should node 108 fail, any (k,v)
key-values stored as secondary copies on node 108 (e.g., (k,v)-values for which
node 106 is the primary node) need to be replicated elsewhere. In such a case,
a process on node 106 may determine that the distributed system 100 has
reached consensus that node 108 has failed. In response, the background
process on node 106 can use the location metadata to identify (k,v) key-values
which are stored on node 106 as a primary location and node 108 as a

secondary location. Any such values are then replicated to node 110 (and
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location metadata is updated on nodes 110 and 104).

[0037] The background process on a node periodically goes over all the data
to determine if any of the keys need to be moved (or if the replication factor has
to be upped based on current liveness information). For example, if key-value
data is stored on two nodes say node A and node B, and if node B failed, the
background scan would observe that only 1 copy of the data was available. The
background process would increase the replication factor of the data so there
were 2 copies of the data available (by maybe copying the data to node C).
Nodes 104 and 110 perform a similar process to ensure that the cluster has N+1
copies of key, value data and 2N+1 copies of location metadata following a failure
of node 108, for a cluster configured to tolerate N=1 failures For a cluster where
N is greater than 1, the number of copies of data and copies of location metadata

is scaled accordingly.

[0038] Once the preferred primary is restored (node 106 in this example),
node 108 can release the lock on bucket B=2 and node 106 can again begin
processing read and write operations for (k,v) keys which hash to the bucket B=2.
In such a case, node 106 may have “stale” values for any (k,v) key-values which
hash to the bucket B=2 that were written to node 108 while node 106 was
unavailable. However, when processing any reads to (k,v) store keys which hash
to the bucket B=2, node 106 can resolve this inconsistency by updating (k,v) key
values when performing a read operation. In case of a write operation performed
after node 106 is restored, node 106 writes a new value to the (k,v) key value
store on node 106 and replicates the write to the next available node (node 108
in this example, unless node 108 has itself subsequently failed, in which case, a

write made to a (k,v) key value on node 106 is replicated to node 110).

[0039] Figure 1B illustrates an example of a distributed backup cluster 150
providing backup services to a primary storage cluster 155, according to one
embodiment. As shown, the distributed backup cluster 150 includes a node 1
(120), node 2 (125), node 3 (130), and node 4 (135). Nodes 120, 125, 130, and
135 each include a set of software applications, e.g., an instance of a backup
proxy 140 used to capture backup files and file system metadata from primary

storage cluster 155, a lock service 145, a bridge process 160 scribe process 165,

10
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a (k,v)-store 170 (e.g., stored on a solid-state storage device (SSD)), and disk
storage 190 (e.g., a magnetic disk drive or RAID array of such drives). For
convenience, operations of these processes on nodes 120, 125, 130 and 135 are
described relative to node 2 (125).

[0040] In one embodiment, the backup proxy 160 provides a software
component used to access data from primary storage cluster 155. For example,
the backup proxy 160 could be configured to provide a backup of a primary
storage cluster 155 for a VMware cluster. In such a case, the backup proxy 140
could communicate with the primary storage cluster 155 using the vStorage APIs
for Data Protection VADP APls available from VMware, Inc. Of course,
depending on the primary system being backed up by the distributed backup

cluster 150, other protocols for backing up data may be used.

[0041] The backup proxy 140 on node 2 (125) obtains backup data (e.g., files)
from the primary storage cluster 155, represented as an arrow 175. In one
embodiment, backup data obtained by the backup proxy 140 is given to bridge
process 160, which in turn stores the backup data in the disk storage 190 (or in
some cases, in the (k,v)-store 170). The bridge process 160 also sends
messages to the scribe process 165 requesting the scribe process 165 perform
read and write operations on file system metadata (e.g., inode data) regarding
how and where the backup data is stored in the disk storage 190 (or in some
cases, in the (k,v)-store 170 directly). For example, assume the bridge process
160 receives a virtual machine disk (VMDK) file from the backup proxy 140. In
such a case, the bridge process writes the VMDK file to disk storage 190. The
number of copies of actual data files that bridge 160 stores on hard disks can
vary. Thatis, the cluster 100 may be configured to store more than N+1 copies in
disk storage. Similarly, the disks themselves may be arranged to independently
tolerate disk failures (e.g., as a RAID array). However as a VMDK file can be
quite large (e.g., terabytes), bridge process 160 may store the VMDK file as set
of smaller blob (binary large object) files, each having a set of chunks (e.g., 1 Mb
each). Backup data below a given size threshold (e.g., files less than 256K

bytes) could be stored in the (k,v) store directly.

[0042] In addition, the bridge process 160 may send requests to the scribe

process 165 to write metadata to the (k,v)-store 170 indicating how and where

11
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the VMDK file is written to the disk storage 190. That is, the metadata can
indicate which of N+1 nodes store a copy of a file (or data). Note, some of the
(k,v) values written by the bridge process 160 may hash to bucket on one of the
other nodes (e.g., node 120, 130, or 135), if such cases bridge process 160 on

node 125 sends requests to the scribe process 165 on the approaite node.

[0043] As described below, to perform an operation on file system metadata
(i.e., on the (k,v) key values in the (k,v)-store 170), the bridge process 160
obtains read/write locks and sequence values from lock service 145. In addition
to issuing lock primitives, the lock service 145 may also monitor a state of the
constituent nodes and processes in the distributed backup cluster 150 regarding
a “liveness” or health of the bridge process 160, the scribe process 165 on node
2 (125), as well as on the health of corresponding processes on node 1 (125),
node 3 (130), and node 4 (135). As described below, when a node or process
becomes unavailable, and when the lock service 145 across multiple nodes
reaches consensus that a given node or process has failed or become
unavailable, the lock service 145 marks that node or process as being
unavailable. Further, processes on the nodes of cluster 150 may register to be

notified of health status changes to other processes in the cluster 150.

[0044] The lock service 145 may also include an API that allows the backup
proxy 140, bridge process 160, and scribe process 165 to obtain locks (e.g., read
locks and write locks) for keys stored in the (k,v) store 170. The lock service 145
may also include an API used to generate monotonically increasing numbers,

referred to as sequence numbers or “sequencers,” issued with a lock.

[0045] To perform read/write operation on a given (k,v) key value in (k,v)-store
170, the bridge process 160 obtains an appropriate read/write lock from the lock
service 145. In one embodiment, locks obtained from the lock service 145
include a monotonically increasing number used as the “sequencer” for read/write
operations on the keys associated with a given lock. Thatis, each new lock
issued on a given key has a greater sequencer value than any previous lock on
that same key. As described below, (k,v) key values in the (k,v)-store 170
includes the value of the sequencer last used to read or write to a given (k,v) key
value, and the scribe process 165 will reject any operation on a (k,v) key value

that supplies a sequencer lower than the sequencer stored in the (k,v) store 170
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for that (k,v) key value. For performance reasons, the bridge process 160 (or
other scribe client) typically receives a sequencer for given lock only once, and
this sequencer can be used with any key associated with that lock to perform
multiple read/write operations, so long as the bridge process 160 retains that

lock.

[0046] If the bridge process 160 fails, or decides to release a lock on a set of
keys, any subsequent lock on any of the same keys is issued with a greater
sequence number. Should the bridge process 160 go down, an incomplete
operation may be restarted either by a subsequent instance of the bridge process
160, or should node 2 (125) itself fail, an incomplete operation may be restarted
on another one of the nodes in cluster 150. However, any scribe client (e.g., any
bridge process 160 in the cluster 150) requesting a lock on a key previously
locked by the failed process obtains a lock with a greater sequencer number than
the one associated with the previous lock. The reinstated process can then re-
issue the failed read/write operation with this higher number set as the
sequencer. As a result, operations initiated by the failed process (or node) can
no longer modify the (k,v) values in the (k,v)-store 170, because any such
operations will be associated with a lower sequencer value, once any read (or
write) to the relevant (k,v) key value occurs. Doing so prevents any “in-flight”
writes from modifying data stored in the (k,v)-store 170 after (i) the process which
initiated a write has failed and (ii) a new lock on that key value is issued to
another scribe client and used to perform a read or write operation. That is, the
monotonically increasing sequencer for each key (k) ensures that the file system
metadata stored in the (k,v)-store 170 exhibits read-after-read and consistency,
as a successful read operation performed after a failed write operation is
guaranteed to have a greater sequencer number than one associated with the
failed write. After performing a current read operation, the scribe process 165
rejects any write operations with a sequencer number that is less than the current

read operation.

[0047] As noted, the scribe process 165 performs read and write operations
on the file system metadata stored in the (k,v)-store 170. For example, the
bridge process 160 may send read and write operations to the scribe process

165 to update the file system metadata for files stored in disk storage 190. The
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scribe process 160 may be responsible for creating N+1 copies of a (k,v)-key
value after as part of a successful write operation. Doing so allows the
distributed key-value store on cluster 150 to tolerate N node failures. For
example, after writing a key value KV 185 on node 2, scribe process 165
replicates this value in the (k,v) store on node 3 (130), shown as KV 180’. The
scribe process 165 also writes location metadata LM 185 to 2N+1 nodes of the
cluster 150, in order to tolerate N node failures. The location metadata LM 185
indicates which nodes store a given (k,v) value. For example, as shown,
metadata LM 185 is stored on node 2 (125) as a primary node and on node 3
(130) and node 4 (135) as backup copies of LM 185" and LM 185”. Writing 2n+1
copes of location metadata allows the (k,v) store to reach consensus regarding
which nodes have the correct location metadata for a given (k,v) key value,

regardless of any single node or process failures that may occur.

[0048] As noted, in one embodiment, each (k,v) key values in (k,v)-store 170
also stores a sequencer and a version number. The stored sequencer number is
associated with the last complete read or write performed by the scribe process
165 on a given key (k,v) value. When read or write operations issued by scribe
clients also supply a sequencer number, the scribe process 165 performs a
requested read or write only if the supplied sequencer is greater than or equal to
what is stored with the key value being read or written. If the supplied sequencer
is larger, the scribe process updates metadata associated with a key being read
(or written) to store this larger sequencer. Accordingly, a read operation may be
converted into a write operation. This occurs when a read operation supplies a
larger sequencer than what is stored in the (k,v) store 170 for a given key. In
such cases, the higher sequence number submitted with the operation is written
to the key. As noted, operations submitted by a scribe client with a lower

sequence number than what is stored with a given key value are rejected.

[0049] As a result, if a new client has read from or written to a (k,v) record,
stale writes issued from an older client (that have a smaller sequencer) are
rejected by the scribe process 165. Doing so ensures that any two back-to-back
reads by requested by a scribe client return the exact same value. In addition,
the scribe process 165 on node 2 (125) replicates each (k,v) key value stored on

node 2 (125) to other nodes in the cluster 155 as part of a successful write
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operation.

[0050] Figure 2 depicts an example of a distributed key-value store 200,
according to an embodiment of the invention. As shown, each node in Figure 2
corresponds to one of the nodes in Figure 1. Additionally, each node is assigned
to be primary node for one key set and a backup node for another key set if the
primary node for the other key set fails. Node failure generally includes any event
that makes the node untrusted, such as the failure of a process, a hardware
failure, or loss of network connectivity. In one embodiment, active nodes may
determine that a given node has failed when the failed node stops responding to
messages sent over the network within a certain amount of time. For example,
the distributed lock service on nodes 1, 3, and N, may use a consensus protocol
(such as the Paxos algorithm) to reach a consensus that node 2 is not “alive,”
should node 2 stops responding to messages. Once such consensus reached,
the distributed lock service may release any locks held by node 2, allowing node
3 (if “alive”) to obtain a lock for the bucket B=2.

[0051] As shown, node 1 contains key sets 202 and 208, where node 1 is the
primary node for set 202 and node N is primary for set 208. Node 2 contains key
sets 204 and 202, where node 2 is the primary node for key set 204 and node 1
is the primary node for key set 202. Node 3 contains key set 206 and 204, where
node 3 is the primary node for key set 206 and node 2 is the primary node for key
set 204. Node N contains key sets 208 and 206, where node N is the primary
node for set 208 and node 3 is the primary node for set 206. This simple
assignment scheme is based on using the hashing function to identify a primary
node (or bucket) for a given key, and from the identified the primary node, the
preferred backup node. Of course, the hashing mechanism is only one way to
assign management responsibility of backup sets to nodes. Of course, other
approaches to assign a primary or secondary (or tertiary, etc.) node for storing
data, copies of that data, and location metadata may be used so long as each
node knows which buckets that node is responsible for managing as the primary
node at any given time. Note, the actual number of buckets for which a node
acts as a secondary or backup node depends on the degree of fault-tolerance in
the system. For example, if the degree of fault-tolerance is one (i.e., a single

fault is tolerated), then one node is a secondary or backup node for one bucket of
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(k,v) key values, and two nodes are a secondary node for 2N+1 copies of location

metadata.

[0052] Figure 3 illustrates a node 300 in a fault-tolerant, consistent key-value
store in one embodiment. As shown, node 300 includes a distributed lock-
service 302 and a scribe process 318 that includes a replication 310 process as
well as a primary (k,v)-store 322 and one (or more) backup (k,v) stores 324. The
distributed lock service 302 ensures that a single scribe process 318 serves as
the primary node a particular key-range. That is, the scribe process 318 on each
node obtains a lock form the distributed lock-service 302 to perform operations
on (k,v) key values which hash to a given bucket (B), while the bridge process on
each node obtains locks on individual (k,v) values . Additionally, the distributed
lock service 302 monitors a “liveness” status of the nodes in the distributed
system via node health process 306. The lock service 302 also provides
sequence numbers, via the sequence number process 304. Of course, the
functions described herein as being performed by the lock service 302 could be

split into individual multiple processes.

[0053] As shown, the scribe process 318 includes a replication process 310
and a version number process 320. The scribe process 318 has access to both a
primary (k,v)-store 322 and a backup (k,v)-store 324. The scribe process 318 on
node 300 receives read and write messages for the both primary and backup key
value stores within node 300 and performs the read and write operations to the
(k,v)-store. The scribe process 318 on node 300 maintains consistency of the
segment of the key-value store on node 300. In one embodiment, the replication
process 310 performs a consensus protocol to replicate (k,v) key-values so that
the system can tolerate N node failures. For example, when data is written to a
(k,v) value in the primary (k,v)-store 322, the replication process 310 replicates
that (k,v) value to ensure that the system has N+1 copies of the write, prior to the
scribe process 318 confirming that the write operation has been committed
successfully. In one embodiment, the replication process 310 maintains a state
machine that is typically the same on each node. That is, each node in the
distributed system has an instance of the replication process 310 and the
replication process 310 on each node can assume any of the roles of client C,

proposer P, or acceptor A in a performing a consensus protocol, e.g., Paxos, as
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described in greater detail below.

[0054] The version number process 320 manages version numbers assigned
to (k,v)-values. In one embodiment, each (k,v) key-value stored in the (k,v)-store
322 may be associated with a version number, incremented each time a scribe
process 318 writes to a given (k,v) key-value. When the scribe process 318
performs a write operation, the version number maintained by the scribe process
needs to match a stored version number of the key whose value is being
updated. If a version number match occurs. In addition, a sequence number
issued by the distributed lock service 302 that is specified by a client requesting
scribe process 318 perform an operation needs to be equal to or greater than a
value of the sequence number at the key being updated. If both of these
conditions are satisfied, then the scribe process performs the requested
operation. If the operation a write operation, then the scribe process increments
and the version number stored for the key in the (k,v)-store.

[0055] As noted, above, in one embodiment, a sequence number is
associated with each lock acquisition performed by a client of scribe process 318.
For example, a backup process on the node may be creating a backup of a file
stored on a primary storage system. To do so, the backup process may write a
file to disk-based storage on node 300, as well as send write operations to the
scribe process 318 to reflect file system metadata associated with the file written
to disk based storage (or send such operations to a bridge process to be
performed). To do so, the scribe client obtains a lock and a sequence number for
the appropriate values in the (k,v) store. When the scribe client requests that the
scribe process 318 perform operations using that sequence number, the
sequence can remain constant so long as the scribe client holds the associated
lock. The scribe process 318 compares the sequence number received from a
client to what is stored for in the (k,v) store. If a first client holding a lock
(associated with a particular sequence number) fails and a second client acquires
a lock for the same (k,v) value, the second client is guaranteed to receive a
higher sequence number. Doing so allows scribe process 318 to reject any
subsequent writes requested by a client that have a lower sequence number than
what is stored in the scribe (k,v) store

[0056] As discussed above, Figure 2 illustrates a single duplication of the
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(k,v)-store. In Figure 3, the primary (k,v)-store 322 is the portion of the (k,v)-store
assigned to node 300. The backup (k,v)-store 324 is the portion of the key-value
store of at least one other node, for which node 300 is designated as the backup
node. Because the (k,v)-store stores N+1 copies of each (key, value) to provide
fault tolerance for up to N nodes, a consistency protocol ensures that duplicate
keys in the (k,v) store have the same value. The consistency protocol enforced
by the scribe process 318 provides both (i) a read-after-read consistency (RAR)
and (ii) a read-after-write (RAW) consistency. For the read-after-read case, a
second read needs to return the same data as a first read, if there is no
intervening write. For a read-after-write case, a read must return the latest value
written. These cases of consistency are illustrated in Figures 8A and 8B, and are

discussed further below.

[0057] Figure 4 depicts a flow diagram of operations 400 performed by a
distributed lock service, according to one embodiment. The distributed lock
service (302 in Figure 3) monitors the health of nodes (referred to above as
‘liveness”) in a key-value store so that the nodes in a cluster can reach
consensus regarding f a node failure. Referring to Figure 4, at step 402, the lock
service tracks the availability of other nodes, or processes on nodes in the
cluster. If a node (or process) failure is identified (step 404), the node health
process 306 marks a node identified as having failed as being unavailable (step
406). In one embodiment, the node health service communicates with peers on
other nodes of the cluster before determining a node (or process) has failed. For
example, the nodes may perform a consensus protocol (e.g., Paxos) to
determine whether to mark a given node or process as having failed. At step
408, the lock releases any locks held by the failed node or process. At step 410,
other nodes of the status change. For example, after determining a node has
filed, the lock service releases a lock on a bucket held by the failed node. Doing
so allows another node to acquire a lock on that bucket and begin acting as the
primary node for that (k,v) keys which hash to that bucket using the consistent

hashing algorithm.

[0058] The distributed lock service also provides locks and sequence numbers
used by scribe clients to perform read and write operation directed to the (k,v)-

store. The distributed lock service provides a lock to a client (step 412) and a
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lock sequence number (step 414). As noted, the lock may correspond to a (k,v)
key value or range of values stored in the key-value store. Once a scribe client
obtains a lock (and sequence number), the scribe client may request the scribe
process 318 perform read and write operations on the (k,v) store using that
sequence number. Typically, a scribe client retains a lock on a key (k) until all
operations against that file are complete (or until the client process fails). After a

certain idle period, the client may release a lock as well.

[0059] Figure 5A depicts a method 500 for using a sequence number
according to one embodiment. The scribe process performs reads and writes to
the key-value store in the distributed system. In the case of a read or write
command with the format of op(k,vn,sn,data), where op =rd or wr, kis a key and
data is the data associated with the key stored in the (k,v) store, sn is a sequence
number is obtained from the lock service, and vn is a version number obtained
from the scribe process for writes. As shown, the method 500 begins at step
502, where the scribe client requests a lock from the distributed lock service. At
step 504, the distributed lock service provides the sequence number sn, along
with the lock. At step 506, the scribe client issues a read or write operation to the
scribe process, using the obtained sequence number. At step 508, after scribe
performs any requested operations on a given (k,v) key value pair (or after
holding a lock on a key value that has been idle for a predefined time), the scribe
client may inform the distributed lock service that a given lock may be released.
In one embodiment, a read of the (k,v)-store has the format rd(k,vn,sn,data),
where "k" is the key, "vn" is a version number, "sn", is a sequence number, the "e
is a value tuple associated with the key and the read arguments (k,vn,sn,data)
are stored in the (k,v)-store. Preferably, reads/write operations do not require a
new sequence number for each operation requested by the same scribe client.

Instead, a client may use the same sequence number so long as it holds a lock.

[0060] Figure 5B depicts a method 530 for performing a read operation in a
distributed, key value store, according to one embodiment. In step 532, the
scribe process receives a read request, which can be a request originating in the
same node as the scribe process, but can be from clients on other nodes as well.
In step 536, the scribe process compares the sequence number of the request

with the sequence number of the key stored in the (k,v)-store. If the sequence
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number of the read operation being performed is equal to or larger than the
sequence number stored in the (k,v)-store as determined in step 538, then scribe
reads the key data (step 540). As described below, the scribe process may
perform a consensus algorithm to ensure the (k,v) value on the primary node is
not stale due to a particular sequence of node failures. If the sequence number
in the request is larger than what is stored in the (k,v) store, the read operation of
the key is converted into a write operation on the key (step 544), because the
sequence number stored with the key-value pair needs to be updated. At step
546, the scribe process returns the data in the (k,v) store to the requesting scribe
client. If the sequence number supplied with the operation is smaller than the
sequence number for the key stored in the (k,v)-store, the operation fails and

scribe reports an error to the requesting client (step 542).

[0061] In one embodiment, a write to the (k,v)-store has the format
wr(k,vn,sn,data), where "k" is the key, "vn" is a version number, "sn", is a
sequence number, the "data" is a value tuple associated with the key, and the
write arguments (k,vn,sn,data) are stored in the (k,v)-store. Figure 5C depicts a
method 560 for performing a write operation in a distributed, fault-tolerant key
value store, according to one embodiment. As shown, the method 560 begins at
step 562, where the scribe process receives a write request. In step 564, the
scribe process compares a version number stored with the key to a the version
number vn included in the write request. If the version numbers are not equal,
the operation is rejected and scribe reports an error to the client (step 574). In
step 566, the scribe process compares a sequence number in the request with a

sequence number of the key in the (k,v)-store.

[0062] At step 566, if the sequence number in the request is larger than or
equal to the sequence number stored in the (k,v)-store, then the scribe process
performs an atomic compare and swap to update the key. More specifically, the
compare and swap writes the data to the key (step 570), increments the version
number (step 572) and if the sequence number is larger, the scribe process
updates the sequence number sn stored with the key. At step 576, scribe
replicates the (k,v) value to N+1 nodes to tolerate N failures. In addition, if the
nodes on which (k,v) value is stored changes as a result of the write (e.g., should

a secondary node have failed and scribe writes the (k,v) value to the primary
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node and a replacement secondary node), then scribe updates the location

metadata for the (k,v) key value was well.

[0063] Again at 566, if the sequence number in the write request is less than
the sequence number in the (k,v)-store, then the scribe process reports an error
(step 574) and no write is performed. The result of these steps is that the key in
the (k,v)-store that is targeted for an update is not updated if the write is stale or
out of date. Conversely, if the scribe process updates the (k,v) pair, then the
version number stored in the key value store is incremented. Thus, a write
operation on the (k,v)-store requires both a equal or larger sequence number and

an exactly matching version number for a write to succeed.

[0064] The replication process 310 in Figure 3 replicates updates based on a
consensus algorithm. The algorithm is implemented by replicating a finite
deterministic state machine on each of the nodes. Thus, process 310 each node
includes one of the replicated state machines. In one embodiment, the replication
process 310 may be tailored to have fewer messages than other versions of the
algorithm. The replication process 310 can obtain consensus regarding a
proposed (k,v)-store key value even if up to N nodes simultaneously fail, where
N+1 is the total number of main nodes and there are N nodes that can take part
in reconfiguring the distributed system of nodes system to remove the failed node

The consensus algorithm is further described below in conjunction with Figure 8.

[0065] Figure 6 depicts a sequence diagram 600 of a key update process to
assure that there is consensus and consistency in accordance with an
embodiment of the invention. In the figure, when a client, say node 1 602, makes
a request 612, request(op(k,vn,sn,data)) to the key-value store, all of the nodes
602, 604, 606, 608, 610 participate in the consensus protocol as depicted in the
diagram, where the requested operation becomes a value in the protocol 614 on
which the nodes 604, 606, 608, 610 vote to reach a consensus. The result of the
protocol 614 is that if a majority of acceptors accepts the value, then an
opPermitted message 616 is sent back to the node 602 requesting the operation
indicating that the other nodes 604, 606, 608, 610 agree that the operation can
be performed. Upon receiving the opPermitted message 616, the client, node 1

602, sends a message op(k,vn,sn,data) 618 to perform the operation op(either a
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read or a write) on the value v of the key k in the (k,v)-store in node 2, which has
been assigned as the primary node to handle the key in the (k,v) pair being
updated. If the operation is a write, the client, node 1, also sends a message
op(k,vn,sn,data) 622 to perform the operation op on the value of the key in node
3, which is the backup node for the key in the (k,v) pair, again assuming that the
keys are duplicated only once. Upon receipt of the operation message 618, the
scribe process in node 2 604 examines the sequence number in the operation
message and attempts to perform the operation on the key in the (k,v)-store
according to the method 560 discussed above. If the operation is successful,
node 2 returns an opStatus message 620 indicating confirming the operation was
performed. In the case of a write operation, the scribe process in node 3 606
also receives the update message, examines the sequence number in the update
request, and attempts to perform the operation on the on the key in the (k,v)-store
using method 560. If successful, node 3 606 returns an opStatus message 624
indicating the write was performed. Thus, the replication and scribe processes
carry out both a consensus check and a consistency check. Doing so guarantees

that the (k,v)-store is consistent and fault-tolerant.

[0066] Performing both the consistency protocol and the consensus protocol
can create a large amount of message traffic on network 112 in Figure 1. For
high performance, steps are needed to make this traffic more efficient. First, in
one embodiment, N+1 copies of a (k,v) key value are needed to tolerate N
simultaneous failures. In addition, the distributed key value store includes 2N+1
copies of location metadata indicating which nodes store a given (k,v) value.
(need 2N+1 3N+1) This reduces message traffic to carry out the consensus
protocol. Second, the messages, such as Remote Procedure Call (RPC)
messages, are batched to amortize the cost of sending and receiving messages
over the network 112. Doing so reduces the message traffic, as well as reduces
CPU processing requirements. Third, the consensus protocol preferably operates
in the steady state, i.e., with a node being a primary node for an bucket (B) of
keys identified using the hashing algorithm. This means that a read by a client
from a node only requires a single message and that a write by a client requires
only two messages, one from the client to node with the primary (k,v)-store and

one from the client to node with the backup (k,v)-store. That is, if the system is
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configured to handle N failures, then exactly N+1 RPC messages are needed to
perform the replication. Finally, using locking on single keys in the (k,v)-store
helps improve performance because concurrent operations on other keys in the
(k,v)-store are permitted by the nodes.

[0067] As explained above, a consistency protocol performed by the scribe
process 318 may be used to maintain consistent data in the (k,v)-store. The
consistency protocol in one embodiment provides a mechanism for assuring
consistency in the read-after-read (RAR) case and the read-after-write (RAW)

case.

[0068] Figure 7A depicts a time-sequence diagram 700 for read-after-read
(RAR) consistency in a distributed key value store in which the scribe process
318 operates, according to one embodiment. As shown, 702, 704, 706, and 708
are time lines, where time increases downwards, for nodes 1, 2, 3, and 4,
respectively. Attime T, node 3 issues a write 710 (i.e., wr(k1,v1)), which is a write
to k1 with value v1. At time T+D, node 3 fails. Attime T+2D, node 1 issues a
read 712 (i.e., rd(k1,_)) and obtains v1’, which is not v1, because the write 710
from node 3 has been placed in node 1’s FIFO queue, but has not completed
until time T+3D is reached. At time T+4D, node 1 issues aread 714 (i.e.,
rd(k1,_)) and obtains value v1, because the write from node 1 has completed. In
this case, the read-after-read rule is violated because two reads of the same key
return different data as the delayed write operation 710 took time to reach node 1
(e.g., due to network delay). The consistency protocol of the scribe process 320
in Figure 3 prevents this violation from occurring by means of sequence numbers
included in each of the write operations. In the case depicted, the write at T+3D is
rejected because its sequence number is lower than the read 712, meaning that
write 710 is a stale write and is not permitted to occur.

[0069] Figure 7B depicts a time-sequence diagram 750 for read-after-write
(RAW) consistency in which the scribe process 318 operates, according to one
embodiment. In the figure, 752, 754, 756, and 758 are time lines for nodes 1, 2,
3, and 4, respectively. In time-order, node 4 issues a write 760 (i.e., wr(1,5)),
which is a write to key = 1 with a value of 5, to both node 2 and node 3. Next,

node 1 issues a read 762 (i.e., rd(1,_)) and obtains a value of 5. Next, node 4
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issues a read 764 (i.e., rd(2_,)) and obtains a value of 0 (the default value). After
node 4’s read operation 764, node 1 issues write 766 (i.e., wr(2,7)) to both nodes
2 and 3. Following this, node 4 issues write 768 (i.e., wr(3,2)) to both node 3 and
node 2. Lastly, node 1 issues a read operation 770 (i.e., rd(0,1,2,3;0,5,7,0)) to
obtain the values of all of the keys. Thus, as shown in figure 7B, the read after
the write is read 770 and the writes are 760 and 766. The operations ordered by
increasing sequence numbers are 760, 762, 764, 766, 768, and 770. Thus, 770
having the highest sequence number should return the updates performed by the
lower sequence number writes. The two writes with lower sequence numbers are
760 and 766. Read 770 returns the value for 5, for key = 1 and the value 7 for key
= 2, thus satisfying the consistency rule. However, sequence numbers alone
are insufficient for maintaining consistency. Consider 3 nodes N1, N2, N3. If N2
is down, a write (k1, v1) would be replicated to N1 and N3. At this point, if N1
were to go down and N2 were to come back up, a read for K1 on N2 should
return (k1, v1) which it initially doesn't have. In such a case, the scribe process
uses the consensus algorithm to come to a consensus with N3 and return (k1,
v1).

[0070] As explained above, a consensus protocol allows the key-value store
to service requests despite node failures. Figure 8 illustrates one such protocol
operating among three nodes, where each node can assume any role, such as
client (C), proposer (P), or acceptor (A), in the protocol. As shown, the protocol
has a proposer 802 and three acceptors 804, 806, 808, which are the nodes in
the distributed system. When a client needs a consensus decision on a proposed
update to the key-value store, the proposer 802 enters a loop 810, which ranges
from O to n, selecting a proposal number n for the proposed update and
broadcasts a prepare message, prepare(n) 812, 814, 816, to all of the acceptors
804,806, 808. If an acceptor 804, 806, 808 receives a prepare request 812, 814,
816 with a proposal number n greater than a proposal number in any prepare
request to which it has already responded, then each acceptor 804, 806, 808
replies with a promise, promise(n,m,v1) 818, promise(n, m, v2) 820, promise(n,
m, v3) 822 not to accept any more prepare messages with proposal numbers
less than n and with the highest numbered proposal m that it has accepted along

with the value (v1, v2, v3) associated with m. The proposer 802 then determines
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if it, the proposer 802, has received responses with proposal number n from a
majority of acceptors 804, 806, 807 in step 824 and if so, determines the value v
for the proposal with proposal number n, where v is the value in the promise
messages 818, 820, 822 with the highest proposal number or any value if the
promise messages return no values in step 826. The proposer 802 then sends an
accept message accept(n,v) 828, 830, 832 with proposal number n and the value
v to each of the acceptors 804, 806, 808 and upon receiving a reply
accepted(n,v) 834, 836, 840 from a majority of acceptors in step 844, indicates
that it, the proposer 802, has achieved a consensus that the proposed update
with value v can proceed. If a consensus is not achieved, the proposal number n
is incremented and the process is repeated until a consensus is achieved. In the
case illustrated, the protocol allows for the possibility that one of the acceptors
can fail, and consensus will still be achieved, because the remaining acceptors

will still constitute a majority.

[0071] If the proposer 802 is always the name node, not subject to failure, and
knows the highest round number to date, it is possible exclude the first phase of
the process 844 (the prepare 812, 814, 816, and promise messages 818, 820,
822), thus establishing a consensus by just sending accept and receiving a
majority of accepted messages. This also reduces the message traffic on the

network to which the nodes are coupled.

[0072] One embodiment of the invention may be implemented as a program
product for use with a computer system. The program(s) of the program product
define functions of the embodiments (including the methods described herein)
and can be contained on a variety of computer-readable storage media.
lllustrative computer-readable storage media include, but are not limited to: (i)
non-writable storage media (e.g., read-only memory devices within a computer
such as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips
or any type of solid-state non-volatile semiconductor memory) on which
information is permanently stored; and (ii) writable storage media (e.qg., floppy
disks within a diskette drive or hard-disk drive or any type of solid-state random-

access semiconductor memory) on which alterable information is stored.
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[0073] While certain embodiments have been described, these embodiments
have been presented by way of example only, and are not intended to limit the
scope of the inventions. Indeed, the novel embodiments described herein may
be embodied in a variety of other forms; furthermore, various omissions,
substitutions and changes in the form of the embodiments described herein may
be made without departing from the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such forms or modifications as

would fall within the scope and spirit of the inventions.
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WE CLAIM:

1. A method for accessing metadata in a distributed key-value store stored
on a plurality of computing nodes, the method comprising:

receiving, by a first one of the nodes, a message from a requesting client
to perform a read operation to read a value stored in the key-value store for the
first key, wherein the message includes the first key and a lock sequence number
and wherein the requesting client holds a lock for at least the first key;

upon determining the lock sequence number is equal to or greater than a
stored sequence number stored with the first key in the key value store, reading
the value of the first key; and

returning the key value to the requesting client.

2. The method of claim 1, wherein reading the value of the first key
comprises, reaching consensus between at least two of the plurality of nodes

regarding the value of the first key.

3. The method of claim 1, further comprising:
upon determining the lock sequence number is greater than the stored
sequence number, updating the stored sequence number to a value of the lock

sequence number.

4, The method of claim 1, further comprising:

obtaining, by the requesting client, the lock for at least the first key,
wherein the lock includes the lock sequence number, and wherein the lock
sequence number is greater than any previous lock sequence number issued

with a lock for the fist key.

5. The method of claim 1, further comprising:
identifying, by the requesting client, the first computing nodes as operating

as a primary node for the first key value.

6. The method of claim 5, wherein the requesting client identifies the first
computing node by hashing the key value to identify a hash bucket, and wherein

the first computing node holds a lock on keys which has to the identified bucket.
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7. The method of claim 1, further comprising:

upon determining the lock sequence number is less than the stored
sequence number stored with the first key in the key value store, rejecting the
read operation.

8. The method of claim 1, wherein the distributed key-value store can tolerate
at most N node failures, wherein the first key and the value is stored on at least
N+1 of the computing nodes, wherein location metadata indicating which of the
computing nodes store the first key and the value is stored on at least 2N+1

nodes.

9. The method of claim 1, further comprising:

receiving, by a second one of the nodes, a message from the requesting
client to perform a write operation to write a new value in the key-value store for
the second key, wherein the message includes the second key, the new value, a
lock sequence number and a version number, and wherein the requesting client
holds a lock for at least the second key;

upon determining the lock sequence number is equal to or greater than a
stored sequence number stored with the second key in the key value store and
that the version number in the request matches a stored version number stored
with the second key in the key value store, writing the new value in the distributed

key value store for the second key and incrementing the stored version number.

10.  The method of claim 1, wherein the metadata stores file system metadata
for a distributed file system, and wherein the value includes at least a location of

a file system object corresponding to the key or a file system object.

11. A system for providing a distributed key-value store stored on a plurality of
computing nodes, each computing node comprising:
a processor; and
a memory storing one or more applications executed to manage access to
the (k,v) key values stored by the key value store by performing on operation, the
operation comprising:
receiving, by a first one of the nodes, a message from a requesting

client to perform a read operation to read a value stored in the key-value
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store for the first key, wherein the message includes the first key and a
lock sequence number and wherein the requesting client holds a lock for
at least the first key,

upon determining the lock sequence number is equal to or greater
than a stored sequence number stored with the first key in the key value
store, reading the value of the first key, and

returning the key value to the requesting client.

12.  The system of claim 10, wherein reading the value of the first key
comprises, reaching consensus between at least two of the plurality of nodes

regarding the value of the first key.

13. The system of claim 10, wherein the operation further comprises:
upon determining the lock sequence number is greater than the stored
sequence number, updating the stored sequence number to a value of the lock

sequence number.

14. The system of claim 10, wherein the operation further comprises:
obtaining, by the requesting client, the lock for at least the first key,

wherein the lock includes the lock sequence number, and wherein the lock

sequence number is greater than any previous lock sequence number issued

with a lock for the fist key.

15.  The system of claim 10, wherein the operation further comprises:
identifying, by the requesting client, the first computing nodes as operating
as a primary node for the first key value.

16. The system of claim 15, wherein the requesting client identifies the first
computing node by hashing the key value to identify a hash bucket, and wherein

the first computing node holds a lock on keys which has to the identified bucket.

17.  The system of claim 10, wherein the operation further comprises:
upon determining the lock sequence number is less than the stored
sequence number stored with the first key in the key value store, rejecting the

read operation.
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18.  The system of claim 10, wherein the distributed key-value store can
tolerate at most N node failures, wherein the first key and the value is stored on
at least N+1 of the computing nodes, wherein location metadata indicating which
of the computing nodes store the first key and the value is stored on at least
2N+1 nodes.

19.  The system of claim 10, wherein the operation further comprises:

receiving, by a second one of the nodes, a message from the requesting
client to perform a write operation to write a new value in the key-value store for
the second key, wherein the message includes the second key, the new value, a
lock sequence number and a version number, and wherein the requesting client
holds a lock for at least the second key;

upon determining the lock sequence number is equal to or greater than a
stored sequence number stored with the second key in the key value store and
that the version number in the request matches a stored version number stored
with the second key in the key value store, writing the new value in the distributed

key value store for the second key and incrementing the stored version number.

20. The system of claim 10, wherein the metadata stores file system metadata
for a distributed file system, and wherein the value includes at least a location of

a file system object corresponding to the key or a file system object.

21. A computer-readable storage medium storing one or more application
programs, which, when executed on a processor perform an operation for
accessing metadata in a distributed key-value store stored on a plurality of
computing nodes, the operation comprising:

receiving, by a first one of the nodes, a message from a requesting client
to perform a read operation to read a value stored in the key-value store for the
first key, wherein the message includes the first key and a lock sequence number
and wherein the requesting client holds a lock for at least the first key;

upon determining the lock sequence number is equal to or greater than a
stored sequence number stored with the first key in the key value store, reading
the value of the first key; and

returning the key value to the requesting client.
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22.  The computer-readable storage medium of claim 21, wherein reading the
value of the first key comprises, reaching consensus between at least two of the

plurality of nodes regarding the value of the first key.

23. The computer-readable storage medium of claim 21, wherein the
operation further comprises:

upon determining the lock sequence number is greater than the stored
sequence number, updating the stored sequence number to a value of the lock

sequence number.

24, The computer-readable storage medium of claim 21, wherein the
operation further comprises:

obtaining, by the requesting client, the lock for at least the first key,
wherein the lock includes the lock sequence number, and wherein the lock
sequence number is greater than any previous lock sequence number issued

with a lock for the fist key.

25.  The computer-readable storage medium of claim 21, wherein the
operation further comprises:
identifying, by the requesting client, the first computing nodes as operating

as a primary node for the first key value.

26. The computer-readable storage medium of claim 25, wherein the
requesting client identifies the first computing node by hashing the key value to
identify a hash bucket, and wherein the first computing node holds a lock on keys
which has to the identified bucket.

27. The computer-readable storage medium of claim 21, wherein the
operation further comprises:

upon determining the lock sequence number is less than the stored
sequence number stored with the first key in the key value store, rejecting the

read operation.

28.  The computer-readable storage medium of claim 21, wherein the
distributed key-value store can tolerate at most N node failures, wherein the first

key and the value is stored on at least N+1 of the computing nodes, wherein
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location metadata indicating which of the computing nodes store the first key and

the value is stored on at least 2N+1 nodes.

29. The computer-readable storage medium of claim 21, wherein the
operation further comprises:

receiving, by a second one of the nodes, a message from the requesting
client to perform a write operation to write a new value in the key-value store for
the second key, wherein the message includes the second key, the new value, a
lock sequence number and a version number, and wherein the requesting client
holds a lock for at least the second key;

upon determining the lock sequence number is equal to or greater than a
stored sequence number stored with the second key in the key value store and
that the version number in the request matches a stored version number stored
with the second key in the key value store, writing the new value in the distributed

key value store for the second key and incrementing the stored version number.

30.  The computer-readable storage medium of claim 21, wherein the
metadata stores file system metadata for a distributed file system, and wherein
the value includes at least a location of a file system object corresponding to the

key or a file system object.
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