
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0236781 A1

US 20040236781A1

Williams (43) Pub. Date: Nov. 25, 2004

(54) METHOD AND SYSTEM FOR REGISTERING 08/382,214, filed on Jan. 30, 1995, now Pat. No.
DATA FORMATS FOR OBJECTS 5,692,157, which is a continuation of application No.

07/900,968, filed on Jun. 17, 1992, now abandoned.
(75) Inventor: Antony S. Williams, Redmond, WA

(US) Publication Classification

Correspondence Address: (51) Int. Cl. ... G06F 17/00
KLARQUIST SPARKMAN LLP (52) U.S. Cl. .. 707/102
121 S.W. SALMON STREET
SUTE 1600 (57) ABSTRACT

PORTLAND, OR 97204 (US) A method and System for registering data formats for objects
are provided. In a preferred embodiment, a Server applica

(73) Assignee: Microsoft Corporation, Redmond, WA tion registers in a registration database data formats for
(21) Appl. No.: 10/879,717 receiving and for Sending data. To Send data to the Server

9 application, a client application retrieves and Selects from
(22) Filed: Jun. 28, 2004 the registration database a data format that the Server appli

cation Supports for receiving data and sends data to the
Related U.S. Application Data Server application in the Selected data format. To receive

data from the Server application, the client application
(63) Continuation of application No. 09/247,125, filed on retrieves and Selects from the registration database a data

Feb. 8, 1999, which is a continuation of application
No. 08/884,448, filed on Jun. 27, 1997, now Pat. No.
5,905,884, which is a continuation of application No.

PROJECT
MANAGEMENT
PROGRAM

SCHEDULING
DATA

CLIPBOARD

format that the Server application Supports for Sending data
and requests the Server application to Send data in the
Selected data format.

204

SPREADSHEET
PROGRAM

BUDGETING
DATA

SCHEDULING DATA
BUDGETING DATA

WORD 2O6
PROCESSING
PROGRAM

SCHEDULING
DATA

BUDGETING
DATA

EXPLANATORY
DATA

Patent Application Publication Nov. 25, 2004 Sheet 1 of 23 US 2004/0236781 A1

-e
VAC 1 DOC

VAC 1 PROJECT July 1, 1990

SCHEDULE:

MODULE2
MODULE1
GLOBAL

TABLE 1: SCHEDULE

104.

BUDGET:

TEM ET TSTE DELTA RUNNING
SUPPLIES 50.00 +50.00
COMPUTERS 4000.003895.00 +195.00 3945.00
MANUALS 500.00 500.00 0.00 4445.00

TABLE 2: WAC1 BUDGET

Figure 1

Patent Application Publication Nov. 25, 2004 Sheet 2 of 23 US 2004/0236781 A1

201 204

PROJECT
MANAGEMENT
PROGRAM

SPREADSHEET
PROGRAM

. CLPBOARD

SCHEDULING
DATA

BUDGETING
DATA

SCHEDULING DATA
BUDGETING DATA

WORD 2O6
PROCESSING
PROGRAM

SCHEDULING

DATA
BUDGETING

DATA

EXPLANATORY
DATA

Figure 2

Patent Application Publication Nov. 25, 2004 Sheet 3 of 23 US 2004/0236781 A1

| CLIENT
APPLC. SERVER

APPLIC.

CONTAINER
OBJECT .

CONTAINEE
OBJECT

Patent Application Publication Nov. 25, 2004 Sheet 4 of 23 US 2004/0236781 A1

CLIENT
APPLICATION

SERVER
APPLICATION

CALLBACK

CLIENT SERVER
LIBRARY LIBRARY

(SERVE
OBJECT

HANDLER

405

402

Patent Application Publication Nov. 25, 2004 Sheet 5 of 23 US 2004/0236781 A1

503

I SERVER CLENT LIBRARY S >
APPLICATION

506
- - - - - - - - m on m - H. H.

- 510
V V 21 - - - - - - - - - - --- e a

502 504

CLIENT SERVER SERVER
512 LIBRARY F. BRARY N > "B"
OBJECT s 07
HANDLER N 5

"A" ww a s a on on use um m me a m. m. m. m. um

511
Y 1 \ll 1 \ . Ya - - - - - - - - ----------

505
OBJECT
HANDLER

"B" Y N.
513

508
a l a s me use us unro m me a to

514
PERSISTENT
REGISTRY

Figure 5

Patent Application Publication Nov. 25, 2004 Sheet 6 of 23 US 2004/0236781 A1

Process Client
Lib Message (Object)

Determine 601
message and

object

Do library
message
processing

602

Client
processing
required

?

603

Call 604
- Callback

routine

Figure 6A

Patent Application Publication Nov. 25, 2004 Sheet 7 of 23 US 2004/0236781 A1

Client Callback Callback (Object, Message Type)

614

Call
Redraw()

Save Object()

609
OBJ CHANGED

?

610
OBJ CLOSED

Call
p Close Object()

611
OBJSAVED

p

Call
Save Object()

612
OBJ RELEASE

?

Unset
ASYNCHBUSY

flag

Return
(To Library).

Figure 6B

Patent Application Publication Nov. 25, 2004 Sheet 8 of 23 US 2004/0236781 A1

Process Wait
For Release

Call 701
Query Release

Status? .

Get message off
dueue and filter

or dispatch
702

Returned
OBJ BUSY

Returned
OBJ OK

Figure 7

Patent Application Publication Nov. 25, 2004 Sheet 9 of 23 US 2004/0236781 A1

OBJSTRUCT

Callback (OBJSTRUCT,
MESSAGE #);

CLASS ID

803 " .

HANDLE TO STORAGE
FOR OBJECT

Figure 8

Patent Application Publication Nov. 25, 2004 Sheet 10 of 23

Block On
message

input queue

Message

f

received

INPUT
p

TITLEBAR
EVENT

?

KEYBOARD

901

902

903 907
DO

keyboard
processing

-908
DO

titlebar
processing

904

905 -909

DO
menu event
processing

910 CALL
Activate Object()

911

DO
messagen
processing

Figure 9

US 2004/0236781 A1

Patent Application Publication Nov. 25, 2004 Sheet 11 of 23 US 2004/0236781 A1

Query Release
Status? (OBJ STRUCT)

- 1001
1002

Return VALID -

OBJERROR / . OBJECT
N

1004
ASYNC

OPERATION IN
PROGRESS

?

Y Return
OBJ BUSY

1005

OTHERWISE
INCOMPATIBLE

2

Return
OBJ BUSY

Y

Figure 10

Patent Application Publication Nov. 25, 2004 Sheet 12 of 23 US 2004/0236781 A1

Client Application:
Open Compound

Document

1101 Call Open
Compound Doc

1102 Error in
Open Compound

DOC

Y Report Error 1103
to User

?
N

1104 Read in

1105 Allocate and
initialize object
data structures

1106 Any For each automatic 1107
automatic links Y link Call

present Update Object

1108 Read in native
document

data

FiCLIre 11 1109 - Display 9.
document

1110 Any Display list and 1111 manual links NY Sys,
present Selectively update

Patent Application Publication Nov. 25, 2004 Sheet 13 of 23 US 2004/0236781 A1

Change Object
Format

Call 1201

Enum Formats
With format=0

1204

Call Enum
Formats with
Current format

Add current
format to list

Returned 1202
NULL

?

1205 1206

Y Notify user
no other formats

- available

List
ENULL,

Or of 1 element
= Current disgby

Display format 12O7
list and get

user Selection

Call 1208
Request Format

Figure 12A

Patent Application Publication Nov. 25, 2004 Sheet 14 of 23 US 2004/0236781 A1

1211.

Returned
OBJ OK

Handle Other
Errors m

- 1212
Call Return

Process Wait
For Release

1213

Call
Query Release

Error

1214 1215

Returned
Data Handle

?

Return
Call 1216

Get Data

Display 1217
Received
Data

Handle
Error

N

Figure 12B

Return

Patent Application Publication Nov. 25, 2004 Sheet 15 of 23 US 2004/0236781 A1

Enum Formats

1301
Determine

Object Class

Format
Parameter

Get next format
Get first format in list after

from list input format

Format
Retrieved

/ Return Return
Format NULL

Figure 13

Patent Application Publication Nov. 25, 2004 Sheet 16 of 23 US 2004/0236781 A1

Request Data

1401
Determine
object class m

1402

Return
N ERROR FORMAT

invoke object 1404
handler to

satisfy request

Request
Satisfied

equested
format

registered
?

Return ERROR
NOT OPEN

Figure 14A

Return
OBJ BUSY

Patent Application Publication Nov. 25, 2004 Sheet 17 of 23 US 2004/0236781 A1

REQUEST DATA E> (Receive REQUEST Y message to DATA message
server library

Return OBJ WAIT
FOR RELEASE

invoke
server callback 1410

with OBJ
REQUESTED

DATA

Send REQUEST
(IPC) DATA DONE

... Figure 6A <H message with a 1411
handle to data

received

Client Process Server Process

Figure 14B

Patent Application Publication Nov. 25, 2004 Sheet 18 of 23 US 2004/0236781 A1

Get Data

15O1
Determine

Object Class

1502
Requested Return
format ERROR FORMAT

egistered
p

1503

Does m
(b. Return

object have data ERROR BLANK
in format

Set Output 1504
parameter =
handle to

data received

Return
OBJ OK

Figure 15

Patent Application Publication Nov. 25, 2004 Sheet 19 of 23 US 2004/0236781 A1

Server
get data .

1601 Allocate
memory to
hold data in

format

1602

Fill memory 1603
with requested
data in format

1604

/ Return error or
handle to the data

Figure 16

LOVA WVBL LOETOHd

Z? aun61-I

US 2004/0236781 A1

90/L),1021
0! 11

Patent Application Publication Nov. 25, 2004 Sheet 20 of 23

Patent Application Publication Nov. 25, 2004 Sheet 21 of 23 US 2004/0236781 A1

Update Object
Contents

- 1801
Display form for t
defining data Figure 18
and determine

formats

1802

Get user
Selections

1804 1808 1809

Fill in With data
from database OBJ WAIT FOR N currors

queries RELEASE

1805 1810

Call Process

Release

1806 1811
Call Call Query Release

Send Data ETOr

1812 1813

Returned Returned N Handle
OBJ OK OBJ OK eO

Patent Application Publication Nov. 25, 2004 Sheet 22 of 23 US 2004/0236781 A1

Send Data

Registed Return ERROR
registered N FORMAT

Invoke object 1904
handler to

satisfy request

Return
Y OBJ OK

Request
Satisfied

p

Determine 1906
Server's

executable file.

Return ERROR
NOT OPEN

Figure 19A

Return
OBJ BUSY

Patent Application Publication Nov. 25, 2004 Sheet 23 of 23

1909

Return OBJ WAIT
FOR RELEASE

Send
SEND DATA
message to
server library

... Figure 6A

Client Process

(IPC)

(IPC)

Figure 19B

Receive SEND
V DATA message

US 2004/0236781 A1

invoke Server
Callback With
OBJ SENT

DATA

1910

Send SEND
DATA DONE
message with
return value

1911

Server Process

US 2004/0236781 A1

METHOD AND SYSTEM FOR REGISTERING
DATA FORMATS FOR OBJECTS

TECHNICAL FIELD

0001. This invention relates generally to a computer
method and System for registering data formats for objects
and, more specifically, to a method and System for Storing
data formats Supported by a Server, retrieving data formats
Supported by the Server, and Sending data to the Server and
requesting the Server to return data in the retrieved format.

BACKGROUND OF THE INVENTION

0002 Current document processing computer systems
allow a user to prepare compound documents. A compound
document is a document that contains information in various
formats. For example, a compound document may contain
data in text format, chart format, numerical format, etc. FIG.
1 is an example of a compound document. In this example,
the compound document 101 is generated as a report for a
certain manufacturing project. The compound document 101
contains Scheduling data 102, which is presented in chart
format; budgeting data 103, which is presented in Spread
sheet format; and explanatory data 104, which is presented
in text format. In typical prior Systems, a user generates the
Scheduling data 102 using a project management computer
program and the budgeting data 103 using a spreadsheet
computer program. After this data has been generated, the
user creates the compound document 101, enters the
explanatory data 104, and incorporates the Scheduling data
0.102 and budgeting data 103 using a word processing
computer program.

0.003 FIG. 2 shows how the scheduling data, budgeting
data, and explanatory data can be incorporated into the
compound document. The user generates Scheduling data
using the project management program 201 and then Stores
the data in the clipboard 203. The user generates budgeting
data using the Spreadsheet program 204 and then Stores the
data in the clipboard 203. The clipboard 203 is an area of
Storage (disk or memory) that is typically accessible by any
program. The project management program 201 and the
Spreadsheet program 204 typically Store the data into the
clipboard in a presentation format. A presentation format is
a format in which the data is easily displayed on an output
device. For example, the presentation format may be a
bitmap that can be displayed with a Standard bitmap block
transfer operation (BitBlt). The storing of data into a clip
board is referred to as “copying to the clipboard.
0004. After data has been copied to the clipboard 203, the
user Starts up the word processing program 206 to create the
compound document 101. The user enters the explanatory
data 104 and Specifies the locations in the compound docu
ment 101 to which the Scheduling data and budgeting data
that are in the clipboard 203 are to be copied. The copying
of data from a clipboard to a document is referred to as
“pasting from the clipboard. The word processing program
206 then copies the scheduling data 102 and the budgeting
data 103 from the clipboard 203 into the compound docu
ment 101 at the specified locations. Data that is copied from
the clipboard into a compound document is referred to as
“embedded” data. The word processing program 206 treats
the embedded data as Simple bitmaps that it displays with a
BitBlt operation when rendering the compound document

Nov. 25, 2004

101 on an output device. In Some prior Systems, a clipboard
may only be able to Store data for one copy command at a
time. In Such a System, the Scheduling data can be copied to
the clipboard and then pasted into the compound document.
Then, the budgeting data can be copied to the clipboard and
then pasted into the compound document.
0005 Since word processors typically process only text
data, users of the word processing program can move or
delete embedded data, but cannot modify embedded data,
unless the data is in text format. Thus, if a user wants to
modify, for example, the budgeting data 103 that is in the
compound document 101, the user must start up the spread
sheet program 204, load in the budgeting data 103 from a
file, make the modifications, copy the modifications to the
clipboard 203, Start up the word processing program 206,
load in the compound document 101, and paste the modified
clipboard data into the compound document 101.
0006 Some prior systems store links to the data to be
included in the compound document rather than actually
embedding the data. When a word processing program
pastes the data from a clipboard into a compound document,
a, link is Stored in the compound document. The link points
to the data (typically residing in a file) to be included. These
prior Systems typically provide links to data in a format that
the word processing program recognizes or treats as pre
Sentation format. For example, when the word processing
program 206 is directed by a user to paste the Scheduling
data and budgeting data into the compound document by
linking, rather than embedding, the names of files in which
the Scheduling data and budgeting data reside in presentation
format are inserted into the document. Several compound
documents can contain links to the same data to allow one
copy of the data to be shared by Several compound docu
mentS.

SUMMARY OF THE INVENTION

0007. It is an object of the present invention to provide a
method and System for registering data formats for a server
application.

0008. It is another object of the present invention to
provide a method and System for registering data formats
that the Server application can both receive and Send data in.

0009. It is another object of the present invention to
provide a method and System for a client application to
determine which data formats a Server application Supports
without launching the Server application.

0010. It is another object of the present invention to
provide a method and System for transferring data between
a Server and client application.

0011. These and other objects, which will become appar
ent as the invention is more fully described below, are
obtained by a method and System for transferring data
between a Server and client application. In a preferred
embodiment, the data formats that the Server application
Supports are Stored in a persistent global registry. The client
application retrieves the data formats from the persistent
global registry and requests the Server application to Supply
data in the retrieved format. The Server application, upon
receiving the request, Supplies the data in the retrieved
format.

US 2004/0236781 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0012 FIG. 1 is an example of a compound document.
0013 FIG. 2 is a block diagram illustrating the incorpo
ration of the Scheduling data, budgeting data, and explana
tory data into the compound document.
0.014 FIG. 3 is a block diagram illustrating the relation
ships between client and Server applications in a preferred
embodiment.

0.015 FIG. 4 is a block diagram illistrating the relation
ship between an object handler and client and Server pro
CCSSCS.

0016 FIG. 5 is a block diagram illustrating the compo
nents that comprise the object linking and embedding facili
ties and the communications paths.
0017 FIG. 6A is a flow diagram of a client library
message dispatching routine.
0018 FIG. 6B is a flow diagram of a typical client
application callback routine.
0019 FIG. 7 is an overview flow diagram of a typical
function used by a client application to handle waiting for an
asynchronous request to complete.

0020 FIG. 8 is a schematic diagram of an object data
Structure.

0021 FIG. 9 is an overview flow diagram illustrating a
typical input loop for an application in an event-driven
windowing operating System environment.
0022 FIG. 10 is an overview flow diagram for the client
library routine Query Release Status?
0023 FIG. 11 is an overview flow diagram of the pro
cedure a client application follows to open or create a
compound document.
0024 FIG. 12 is a flow diagram of the function
Change Object Format implemented by a typical client
application.
0025 FIG. 13 is a flow diagram of the client library
function Enum Formats.
0026 FIG. 14 is a flow diagram of the client library
routine Request Data and the corresponding server routine.
0027 FIG. 15 is a flow diagram of the client library
function Get Data.
0028 FIG. 16 is a flow diagram of the server application
routine Server Get Data.
0029 FIG. 17 is a block diagram of the object linking
and embedding used to generate the Spreadsheet Scheduling
data and the weekly reports.
0030 FIG. 18 is a flow diagram of the function Upda

te. Object Contents.
0031 FIG. 19 is a flow diagram for the client library
routine Send Data and corresponding server routine.

DETAILED DESCRIPTION OF THE
INVENTION

0.032 The present invention provides a method in which
data that is contained within a compound document can be

Nov. 25, 2004

manipulated directly by the application program that creates
the data. In a preferred embodiment, an application program
that creates data can Store data in various formats and
receive data in various formats. The application program
registers the formats by Storing the formats in a persistent
registry. Another application program can check the persis
tent registry to determine which formats are Supported. The
other application can Send or receive data in a registered
format. In a preferred embodiment, an application program
that creates a compound document controls the manipulation
of linked or embedded data that was generated by another
application. In object-oriented parlance, this data is referred
to as an object. (The reference Budd, T., “An Introduction to
Object-Oriented Programming.” Addison-Wesley Publish
ing Co., Inc., 1991, provides an introduction to object
oriented concepts and terminology.) An object that is either
linked or embedded into a compound document is “con
tained within the document. Also, a compound document is
referred to as a “container object and the objects contained
within a compound document are referred to as-"containee”
objects. Referring to FIGS. 1 and 2, the scheduling data 102
and budgeting data 103 are containee objects and the com
pound document 101 is a container object. Continuing with
the example of FIGS. 1 and 2, the user can indicate to the
word processor that the user wants to edit a containee object,
such as the budgeting data 103. When the user indicates that
the budgeting data 103 is to be edited, the word processing
program determines which application should be used to edit
the budgeting data (e.g., the spreadsheet program) and
launches (starts up) that application. The user can then
manipulate the budgeting data using the launched applica
tion, and changes are reflected in the compound document.
0033. In a preferred embodiment of the present invention,
applications cooperate using object linking and embedding
facilities to create and manipulate compound documents. An
application that creates a compound document is referred to
as a client application, and applications that create and
manipulate containee objects are referred to as Server appli
cations. Referring to FIG. 2, the project management pro
gram 201 and the Spreadsheet program 204 are server
applications, and the word processing program 206 is a
client application. A client application is responsible for
Selection of the various objects within the container object
and for invoking the proper Server application to manipulate
the Selected containee object. A Server application is respon
Sible for manipulating the contents of the containee objects.
0034. In a preferred embodiment, applications are pro
Vided with an implementation-independent Application Pro
gramming Interface (API) that provides the object linking
and embedding functionality. The API is a set of routines
(functions) that are invoked by client and Server applications
that Support compound documents. These routines manage,
among other things, the Setup and initialization necessary for
client applications to Send and receive messages and data to
and from server applications. The API routines are divided
into a client library and a server library. The client library
provides routines which invoke the correct Server applica
tion to act upon a particular containee object. The Server
library provides routines which process requests to manipu
late containee objects.
0035 FIG. 3 illustrates the relationships between client
and Server applications in a preferred embodiment. In this
embodiment, client applications and Server applications are

US 2004/0236781 A1

Separate processes. The client proceSS 301 includes client
application code 303, client library 304, and container object
307. The server process 302 includes server application code
308, server library 309, and containee object 311. The client
process 301 communicates with the server process 302
through the communications channel 306. The client library
and server library are dynamically linked with the client
application code and Server application code, respectively,
when an application proceSS is started up. One skilled in the
art would appreciate other architectural configurations are
possible. For example, the client library and server library
functions could be implemented as processes Separate from
the client and Server processes.
0.036 The use of the client library of the present inven
tion allows a client application program to be developed
independently of any particular containee object format.
Indeed, a client application, in general, does not need to
know anything about the contents of a containee object. It is
also preferred that the libraries are linked to the applications
dynamically when an application process is created. The
dynamic linking allows applications to be marketed without
library code and to be easily linked to new versions of the
library.

0037. The client library routines typically transfer
requests to manipulate a containee object through the com
munications channel 306 to the server process 302. One
skilled in the art would appreciate that the communications
channel 306 could be implemented through well-known
interprocess communication mechanisms that are provided
by various operating Systems. The Server process 302
responds to requests to manipulate containee objects
received through communications channel 306. The server
library provides routines through which the Server proceSS
receives requests to manipulate data and processes the
requests accordingly.

0.038 An example will help illustrate the relationship
between the client process 301 and the server process 302.
Referring again to FIG. 1, if a user wants to edit the
budgeting data 103 of the compound document 101, then the
following Sequence of events occurs. First, the user Starts up
the word processor program, which is dynamically linked to
the client library. Second, the user opens the compound
document for editing. Third, the user Selects the budgeting
data, which is a containee object, and indicates that the
Selected object is to be edited. Fourth, the client application
invokes a client library routine for performing an action on
an-object passing the routine a handle (which uniquely
identifies the Selected object) to the object and an indicator
that the action is edit. Fifth, the client library routine
determines that the Spreadsheet program provides the
actions for the budgeting data. Sixth, the client library Starts
up the spreadsheet program as a Server process, if it is not
already Started. Seventh, the word processor application
Sends a message to the spreadsheet program that it should
edit the budgeting data. Eighth, the Server library receives
the request to edit and invokes a routine in the Spreadsheet
program for editing the data. When editing is complete, the
spreadsheet routine returns to the server library. The server
library Sends a message to the word processor application to
indicate that editing is complete. The client library receives
the message and returns from its invocation. Upon return
from the invocation, the word processor application knows
that the editing is complete.

Nov. 25, 2004

0039 Typically, the start up of a server process can be a
relatively slow process. There are certain situations in which
it may be unacceptable to incur this overhead. For example,
if a user wants to print a compound document that includes
many containee objects, it may take an unacceptably long
time to Start up the Server proceSS for each containee object
and request each Server process to print the object. To
ameliorate this unacceptable performance, a Server applica
tion can provide code that can be dynamically linked during
runtime into the client process to provide certain function
ality in a more expeditious manner. This code is called an
“object handler.” Object handlers provide actions on behalf
of the Server application So that the client library routines
can avoid Starting up Server processes and passing messages
to the Server process. In the above example, an object
handler could provide a print routine that the client library
routines could invoke to print a containee object.
0040 FIG. 4 shows the relationship between an object
handler and the client and Server processes. The object
handler 402 is linked into the client process address Space
during runtime by the client library routines. Typically, the
client library 403 invokes the object handler 402 directly,
and the client application code need not be aware that a
handler is providing the Services, rather than a Server pro
CCSS.

0041 FIG. 5 shows the components that comprise the
object linking and embedding facilities and communications
paths when a compound document includes containee
objects implemented by different Server applications. The
client process 500 contains the client application 501, the
client library 502, and the object handlers “A” and “B”512,
513. The server processes 509, 510,511 contain the server
applications 506, 507, 508 and server libraries 503, 504,
505. The client process 500 establishes communications
channels with each server process 509,510,511. Each server
process 509, 510, 511 implements a particular type of
containee object of the container object that is opened by the
client process 500. The client application code 501 is
dynamically linked to routines provided by the client library
502. When the client process 500 is running, it communi
cates Synchronously or asynchronously with the Server pro
cesses 509, 510,511 using the functionality provided by the
client library routines. Similarly, each server process 509,
510, 511 is dynamically linked to routines provided by the
server libraries. When the server processes 509, 510,511 are
running, they proceSS messages Sent from the client process
500. The client library 502 sets up message passing struc
tures and connections to each server 509, 510,511. When the
client application 501 requests an action on a containee
object, the client library 502 Sends an appropriate message
to the Server process that implements the type of the con
tained object. Alternatively, if the Server application has
defined an object handler for the requested action, then the
client library 502 invokes the object handler to perform the
requested action. FIG. 5 shows that two servers 506, 507
have defined object handlers 512, 513. The client library
routines access the persistent global registry 514 to deter
mine information Such as which Server application to use for
a particular containee object and whether an object handler
is defined for a Server application.

0042. In addition to the client and server libraries, the
object linking and embedding facilities of the present inven
tion provide information to client and Server applications

US 2004/0236781 A1

through a persistent global “registry.” This registry is a
database of information Such as (1) for each type of object,
the server application that implements the object type, (2)
the actions that the each Server application provides to client
applications, (3) where the executable files for each server
application are located, and (4) whether each server appli
cation has an associated object handler.
0.043 Communication between client and server pro
ceSSes occurs either Synchronously or asynchronously. Syn
chronous communication occurs when one process Sends a
message to the other proceSS and the Sending proceSS
Suspends activity until the other process completely pro
ceSSes the message. For example, when a client proceSS
wants to create a new containee object, the client proceSS
(through the client library routines) sends a message to the
appropriate Server process. The client process waits until the
containee object is created before continuing execution.
Asynchronous communication occurs when one proceSS
Sends a message to the other process and the Sending proceSS
continues execution while the receiving process responds to
the message. Typically, when the receiving proceSS has
completed responding to the request, it sends a message
indicating Such completion to the Sending process. For
example, when a client proceSS wants a containee object
Saved in a compound document file, the client process Sends
a message to the Server process. The client proceSS can
continue to execute (e.g. responding to users requests) while
the Server process is Saving the object. When the Server
proceSS has completed Saving the object, it Send a comple
tion message to the client process.
0044) In a preferred embodiment, messages are passed
between client and Server processes using interprocess com
munications mechanisms provided by the underlying oper
ating System. The client and Server library routines provide
an interface through which the details of the interproceSS
communication are shielded from the client and Server
applications. A client or Server application requests a Syn
chronous action by invoking a library routine. When the
routine returns to the requesting application, then the action
requested has been completed. Similarly, a client or Server
application requests an action to occur asynchronously by
invoking a library routine. The library routine initiates the
action and returns to the requesting application. The request
ing application can then continue executing. When the
requested action is complete, a message is received which
the library routines process. In a preferred embodiment, the
library routines use a “callback” routine to respond to the
asynchronously received completion message. A callback
routine is provided by the requesting application. The
address of the callback routine is made available to the
corresponding library So that when the library receives an
asynchronous message, the library can invoke the callback
routine to process the message. One skilled in the art would
appreciate that there are numerous ways to accomplish this
invocation depending upon the programming language
employed.

004.5 FIG. 6A is a flow diagram of a client library
message dispatching routine. When a client process receives
a message from a Server process, the message is dispatched
by the client library to the appropriate routine for processing.
This dispatching occurs by invoking the Process Cli
ent Lib Message routine. This routine determines to which
object the message is directed and invokes the client call

Nov. 25, 2004

back routine to process the message when required. In Steps
601 through 604, the client library receives a message,
processes the message, and optionally invokes a client
callback routine to process the message. In Step 601, the
routine determines for which containee object the message
is directed. In step 602, the routine performs the client
library provided processing. In Step 603, if client application
processing is needed, then the routine continues at Step 604,
else the routine returns. Client application processing is
typically needed to respond to asynchronous messages. In
Step 604, the routine invokes the client application callback
routine indicating the type of message received. The routine
then returns.

0046 FIG. 6B is a flow diagram of a typical client
application callback routine. This callback routine invokes
the appropriate Subroutine defined by the client application
to process the asynchronous message. In StepS 609 through
617, the callback routine determines the type of message and
invokes the appropriate code to process the message. The
client callback routine is passed a handle to the object
(object) to which the message is directed and the message
type. A client application callback routine typically pro
ceSSes the following messages:

0047 OBJ CHANGED
0.048 OBJ CLOSED
0049 OBJ SAVED
0050) OBJ RELEASE

0051 Server applications also provide callback routines
that are invoked by the Server library. Typically, all messages
that a Server receives are asynchronous. A Server callback
routine typically processes the following messages:

0052 OBJ OPEN
0053) OBJ CLOSE
0054) OBJ SAVE
0055) OBJ DOACTION
0056 OBJ RELEASE
0057 OBJ SHOW
0058 OBJ UPDATE

0059. In addition to being passed an object handle and
message type, the Server callback routine receives a param
eter to indicate the action that is to be performed when the
message is OBJ DOACTION. The additional parameter
may also be used to point to arbitrary data. The server library
can then pass more than three parameters to the callback
routine.

0060. In a preferred embodiment, only one asynchronous
action can be pending at any one time for any one object.
This restriction ensures that the response received from the
client library and dispatched to the client application will be
asSociated with a certain action request Such that no com
putation is needed to decipher which action request the
asynchronous message is responding to. One skilled in the
art would appreciate that Sending additional information
during message passing would eliminate the need for this
restriction.

US 2004/0236781 A1

0061 The client application requests an asynchronous
action by invoking a client library routine. The client library
routine, after initiating the request, returns the message,
OBJ WAIT FOR RELEASE. At that point, the client
application waits to receive an OBJ RELEASE message
through its callback routine before requesting another asyn
chronous operation upon that object. There are basically two
ways a client application can wait for the asynchronous
operation to complete. One way is for the client application
to continue to process all messages including user input and
not generate any additional asynchronous requests for that
object. The other way is for the client application to ignore
all user input, but continue to get and dispatch all other
messages in order to allow the client library to receive and
proceSS Server library messages. From a user's perspective,
the latter method will cause the application to appear unre
Sponsive until the asynchronous request completes.
0.062 FIG. 7 is an overview flow diagram of a typical
function used by a client application to handle waiting for an
asynchronous request to complete. The function returns only
when the client library Says that it is no longer processing an
asynchronous request on the object. In step 701, the function
calls the client library routine Query Release Status to
determine whether an asynchronous operation has com
pleted on the object passed as a parameter. In Step 702, if
Query Release Status? returned OBJ BUSY, then the func
tion continues at step 705, otherwise the function continues
at step 703. In step 703, if Query Release Status? returned
OBJ OK, then the asynchronous operation has completed
and the function can return. Otherwise, the function must
handle an error first and then return; error handling is
performed in step 704. In step 705, the function enters a
message receive-dispatch loop which effectively blockS
until there is input, and when there is, the message is
retrieved and dispatched to the appropriate message handler.
AS described above, user messages can either be dispatched
or filtered out. If all messages are read and dispatched, then
user input continues to be processed. Otherwise, the function
may choose to filter out user messages by reading them and
dropping them instead of dispatching them. Once the mes
Sage is processed, either after a dispatch returns or after
filtering the message, the function continues at Step 701.
0.063 Eventually, one of the messages received in step
705 will be the notification from the server library that the
Server is done processing the requested asynchronous opera
tion. This message will get dispatched as part of step 705 to
the client library message dispatching routine show in FIG.
6A with a pointer to the object passed in as a parameter. AS
part of step 602 in FIG. 6A, the client library will clear the
flag that indicated there was an asynchronous operation
underway on the object. In step 604, the client library will
invoke the callback routine with the OBJ RELEASE noti
fication as discussed in reference to FIG. 6B. The client
callback routine then returns to the client library message
dispatch routine which then returns to the beginning of the
loop in step 701 in FIG. 7. At this point, when the client
application calls the Query Release Status routine, Que
ry Release Status? will return OBJ OK because the asyn
chronous operation has completed and the function will
return.

0064. Note that, during step 705, if the client application
attempts to process another asynchronous request from the
user (which is not filtered) on the same containee object, the

Nov. 25, 2004

client library will return OBJ BUSY in response to the new
request. The client application can choose to loop on this call
until it returns OBJ OK, or it can display an error notifica
tion to the user.

0065 Client Library Services:
0066. In addition to providing Support for the various
communication paths, the client library provides a set of
linking and embedding functions which can be used by any
client application to create and maintain a compound docu
ment. The following functions are Supported by the client
library:

0067
0068)
0069
0070)
0.071)
0072)
0073)
0074)
0075)
0076)
0.077

Open Compound Doc
Save Compound Doc
Close Compound Doc
Create Object
Update Object

Close Object
Delete Object
Display Object

Activate Object
Query Release Status?
Query Release Error

0078 Use of these library functions requires the client
application to initialize certain data Structures upon invoca
tion which are released when the compound document is
closed. For example, when a client application is started, it
opens the compound document and then allocates and
initializes object data Structures for each embedded or linked
object contained in the compound document. These object
data Structures are passed as parameters to the library
routines. One use of these data Structures is to allow the
library functions to identify and invoke the appropriate
callback routine when an asynchronous operation is per
formed. Another use of the object data Structure is to Store
the object type so that information can be retrieved for the
object from a persistent global registry. The client applica
tion should release these data structures when the compound
document is closed.

007.9 FIG. 8 shows a schematic diagram of an object
data Structure. It consists of Several items of information
801, 802, and 803, and optional information 804 that the
client application may provide to hold object specific infor
mation. Item 801 is a pointer to the client application
callback routine for the object. The client library uses this
field in its message processing routine (FIG. 6A) to invoke
the callback routine when notification to the client applica
tion is required. Item 802 is the object type. In object
oriented parlance, this is known as the item “class id'. The
CLASS ID field 802 identifies the particular server that
implements the object class. A Server can Store class specific
information in the persistent global registry indexed by this
CLASS ID. Item 803 is a handle to the permanent storage
of the object. Item 804 comprises the remainder of the object
data Structure and is provided by the client application when
it defines a wrapper data Structure that contains the required
information 801 through 803. One skilled in the art would

US 2004/0236781 A1

appreciate that the exact definition of the wrapper Structure
depends upon the programming language used.

0080. The client library routines are invoked by the client
application code in the usual course or processing user input.
In an event-driven windowing System, the client application
calls the appropriate library routine in response to receiving
a message indicating that the user has selected a particular
menu item or object on the Screen.
0081 FIG. 9 is an overview flow diagram which shows
a typical input loop for an application in an event-driven
windowing operating System environment. It is the loop that
dispatches messages to the appropriate Subroutines. In Step
901, the application waits for a message. When it receives a
message in Step 902, the application decodes the message to
determine what type of input event has occurred in steps 903
through 906. Typically, for each type of input event, the
application calls a different subroutine, steps 907 through
910. These Subroutines in turn may call functions imple
mented by the object linking and embedding libraries. For
example, when a Menu Event is received in step 905, the
application will invoke the Subroutine that handles proceSS
ing menu selections in step 909. Step 909 will eventually
call routine Activate Object in step 910 if the object selected
is an embedded or linked object and the user Selects an
action to perform on the object that requires communication
with the Server application.
0082 In order to understand how these library functions
work, it is useful to understand how the storage of com
pound documents differ from the Storage of ordinary docu
ments. An important distinction is that, in a compound
document, data managed by different applications resides
together (e.g. in the same file); whereas in an ordinary
document, all of the data is managed and must be understood
by the application that created the ordinary document.
Specifically, in a compound document, embedded data is
Stored along with the native data of the compound document
even though the client application cannot interpret the
embedded data. Native data refers to data in a format that an
application can process directly. For example, a word pro
ceSSor may use a text format for its native data. Embedded
data is handled by the client application that maintains the
compound document as a Stream of bytes because it does not
know how to interpret the embedded data. For example, if a
compound document contains an embedded spreadsheet
range, Storage for the compound document will include the
actual spreadsheet data in the format native to the Server
application used to implement the spreadsheet data.

0.083. One skilled in the art would appreciate that there
are many ways for a client application to Store data it does
not understand and thus provide Storage for embedded
objects. One way is for the client application to Store the
location of the Stream of bytes for each object in an object
table So the client application knows how to locate and
retrieve the embedded object data when needed. Using this
method, the embedded data could be stored within the same
file as the client application native data. Alternatively,
although logically embedded within the compound docu
ment, the data for each embedded object could actually be
Stored in a separate file by the client application.
0084. The following scenario will help illustrate use of
the client library linking and embedding functionality in a
typical application. When the client application (e.g. a word

Nov. 25, 2004

processing program) creates a compound document that
contains text and two embedded objects, Such as a graph and
Spreadsheet data, it first creates and initializes Storage for the
entire compound document. At that point, the client appli
cation has a handle to the entire document and a handle to
the native application data (the text). The procedure used by
the client application to open a compound document is
discussed in more detail below.

0085. In a preferred embodiment of the present invention,
the user then inserts the graph and spreadsheet objects by
using an “Insert Object” command on the application “Edit”
menu. In response to selection of the “Insert Object” menu
item, the client application presents the user with a list of the
kinds of objects that can be created. The client application
constructs this list from the data in the persistent global
registry. Once the user Selects the desired object (in this case
a graph or spreadsheet object), the client application invokes
the Create Object function to create the object. The Cre
ate Object function sends a message to the server applica
tion that implements the graph object (through the server
library) to create a graph object and to allow the user to edit
the object. In one embodiment, the Server application returns
a handle to the newly-created graph object. Similarly, when
the user inserts the spreadsheet object, the client application
invokes the Create Object function to Send a message to the
Server application that implements the spreadsheet object to
create a spreadsheet object and to allow the user to edit the
object. The Server application returns a handle to the spread
sheet object.

0086 Once these embedded objects have been created,
the user can edit or otherwise manipulate the objects by
Selecting an object and Selecting an action available on the
client application menu. To execute the action, the client
application invokes the client library function Activate Ob
ject. Activate Object invokes the server application that
implements the Selected object and sends the Server appli
cation a message indicating the Selected action and a handle
to the Selected object. The Server application can then read
and write the data of the embedded object in its normal
fashion. In addition, the user can “open’ an embedded object
by either double clicking on the object or by Selecting the
object and then choosing the application menu item “Open.”
This “Open’ action will result in the client application
invoking Activate Object on the Selected object with a
default action, determined from the global registry, which is
typically "edit.” If the user then selects a different object
inside the compound document, or Selects any of the native
text data, the client application closes the previously
selected object by invoking the Close Object client library
routine. This routine Sends a message to the associated
server to shut itself down.

0087. The above scenario was described assuming that
the user wanted to work with embedded objects. The same
StepS would be used to create and manipulate the graph and
Spreadsheet objects if they were instead linked objects.
However, the user would specify that the client application
should create a linked object when the user Selects the
“Insert Object” command.

0088. In addition to the client library routines already
discussed, there are Several other functions used by the client
application to communicate with the Server. These functions
are Update Object, Display Object, Query Release Sta

US 2004/0236781 A1

tus, and Query Release Error. Update Object is used by
the client application to request an updated presentation
format from the server. The presentation format is what is
actually displayed in the window of the client application.
The presentation may become out of date, for example, if a
linked object has not been updated with respect to its Source
data.

0089 Display Object is used by the client application to
request an object to be redisplayed. The client library passes
the request to the Server application or the object handler. A
bounding rectangle (a display context) is passed to the server
or object handler indicating the area of redisplay.
0090 Query Release Status? and Query Release Error
are used by the client application to obtain information about
a previously completed asynchronous Server operation. The
Query Release Status' function is used to determine
whether an outstanding asynchronous call has been com
pleted on the Specified object. That is, once a client appli
cation has been returned an OBJ WAIT FOR RELEASE
value as a result of a function call to the client library, the
client application then waits until it receives a OBJ RE
LEASE message through its callback routine before the
client application initiates additional asynchronous actions
upon the same object. This waiting is accomplished by
looping on a call to Query Release Status until it returns
OBJ OK (see FIG. 7). Once the client application has
received the OBJ RELEASE message, it can invoke the
client library routine Query Release Error to determine the
value returned by the most recent asynchronous Server
operation on the Specified object.
0091 FIG. 10 shows an overview flow diagram for the
client library routine Query Release Status? This routine
takes one parameter, a pointer to an object (an OBJ
STRUCT as shown in FIG. 8) and returns OBJ BUSY if

the server for the object is unavailable or OBJ OK if the
Server can process an asynchronous operation. In Step 1001,
the function first ensures that the parameter is a valid pointer
to an object and returns OBJERROR in step 1002 if it is
not. In Step 1003, if an asynchronous operation is in progreSS
on the object, the function returns OBJ BUSY in step 1004.
This occurs when a RELEASE message for the object has
not yet been sent to the client. The client library is respon
Sible for keeping track of any asynchronous operations it
invokes on behalf of an object. In step 1005, the client
library also checks to ensure the server is not busy for other
reasons, for example, the Server has requested the Server
library to postpone all linking and embedding activities.
Once a RELEASE message has been sent to the client
application, Query Release Status? returns OBJ OK in
step 1006.
0092 Opening a Compound Document
0093 FIG. 11 shows an overview flow diagram of the
typical procedure a client application follows to open or
create a compound document. In Step 110.1, the client
application calls the client library function Open Com
pound Dcc to open (or create) a file for the specified com
pound document. In step 1102, if the Open Compound Doc
returns an error, then the client application reports this to the
user in Step 1103 and returns to the message-dispatch loop.
In step 1104, the application reads in its linked and embed
ded object tables. In step 1105, the client application allo
cates and initializes object data Structures for each embed

Nov. 25, 2004

ded linked object. In step 1106, if there are any automatic
links contained in the compound document, then the func
tion continues at step 1107, else it continues at step 1108. In
step 1107, the client application calls function Update Ob
ject for each automatic link found. Next, in step 1108, it
reads in the native data and displays the data in step 1109
using its Standard application Specific mechanism. In the
process of displaying its data, if the client application
encounters an embedded object, it calls function Display
Object, which invokes the appropriate server to display the

object. In step 1110, the client application checks to see if
there are any manual links. If So, the client application
continues at Step 1111, otherwise the application returns to
the message-dispatch loop. In Step 1111, the application lists
the manual links and allows the user to Selectively update
them. A manual link is one that requires the user to explicitly
tell the client application to perform the update. After the
desired manual links are updated, the client application
returns to the message-dispatch loop.

0094) Registering Data Formats

0095 The present invention allows a client and server
application to exchange data in particular formats. The
formats can be defined dynamically and displayed to the
user of a client application without intervention by a Server
application. In a preferred embodiment, the client applica
tion obtains the formats available for a particular object class
from a Server application Supplied list of the formats Stored
in the persistent global registry. The server application (or an
object handler) can update the list of formats (register the
formats) at any time. The client application uses the regis
tering data format capabilities to perform operations like
changing the display representation of an arbitrary object on
user demand and to incorporate an independently imple
mented Server application as an engine for processing the
client native data.

0096. As discussed above, the persistent global registry is
a database of information to Support the object linking and
embedding functions. The persistent global registry is pref
erably Stored on a long-term Storage device, Such as a disk.
Data formats are Stored in the persistent global registry
indexed by CLASS ID. A server application that imple
ments an object is responsible for Storing the data formats
that it Supports in the persistent global registry. The Server
applications Store the data formats that it Supplies data in and
the data formats that it can receive data.

0097. Two examples will serve to illustrate these capa
bilities of the present invention. In the example of FIG. 1,
a user is generating a report for a certain manufacturing
project. Suppose the user wishes to change the representa
tion of the Scheduling data 102, which was produced using
the project management program 201 (FIG. 2) from a Gantt
chart to a Pert chart. (A Gantt chart displays Scheduling data
as a Sideways barchart with a bar for each task, and a Pert
chart displayS. Such data using circles to Show tasks and
connects them to show dependencies and critical paths.) The
client application, the word processor program 206 (FIG. 2),
can provide this capability to the user through a "Change
Formats' command on the client application “View'-menu.
When the user selects “Change Formats” for the selected
object, the client application determines from the persistent
global registry what formats the Server application for the
Selected object Supports, displays a list of these formats to

US 2004/0236781 A1

the user for Selection, and then, once the user has Selected a
format, requests the data from the Server application in the
Selected format and displays the new representation.

0.098 FIG. 12 shows a flow diagram of the function
Change Object Format implemented by a typical client
application. This function is called by the client application
when the client determines that the user has Selected
“Change Formats” from its “View' menu. The function
determines what formats the Selected object Supports, gets
the data from the Server application in the format the user
selects, and displays the data. In steps 1201 through 1204,
the function calls the client library routine Enum Formats in
a loop until the client application obtains a list of all the
available formats for the selected object. The client library
function Enum Formats is described in detail below. In step
1201, the function calls Enum Formats with 0 as an input
parameter. Function Enum Formats returns the first avail
able format. In step 1202, if the format returned was NULL,
then all formats have been obtained and the function con
tinues at step 1205, otherwise it continues at step 1203. In
step 1203, the function stores the returned format in a list. In
step 1204, the function calls Enum Formats with the format
that was returned from the previous call to Enum Formats.
The function then loops to step 1202 to test the result
returned from Enum Formats. Once all of the formats have
been retrieved and added to the list, the test in step 1202 will
cause the function to continue at step 1205. In step 1205, the
function tests to see if there is anything on the list or if there
is only one format available and it is the same as what is
currently being displayed. If either case is true, the function
informs the user in step 1206 that no other formats are
available and returns. Otherwise, the function continues in
step 1207.

0099. In step 1207, the function displays the list of
formats to the user and obtains a format Selection from the
user. In step 1208, the function calls the client library
function Request Data to tell the server application to
deliver the data in the desired format to the client library if
the Server application is available to do so. The function
Request Data is described below in detail. In step 1209, if
function Request Data returns OBJ OK, then the function
continues at Step 1216, otherwise the function continues at
step 1210. In step 1210, if function Request Data returns
OBJ WAIT FOR RELEASE, then the function continues
in step 1212, else the function handles the error in step 1211
and returns. In Step 1212, the function calls the client
application routine Process Wait For Release, shown in
FIG. 7, in a mode that blocks all user input. Step 1212
completes when the client library has received an answer
from the Server application and has notified the client
application. In step 1213, the function calls the client library
function Query Release Error to determine the result from
the Request Data call. The function Query Release Error
allows a client application to determine whether the asyn
chronous operation completed Successfully. In Step 1214, if
this result is a handle to data, then the function can continue
in step 1216 to get the data. Otherwise, the function handles
the error in step 1215 and returns. In step 1216, the function
calls the client library function Get Data, described in detail
20 below, to retrieve the data in the format selected by the
user. Finally, in step 1217, the function calls a routine to
display the retrieved data and returns.

Nov. 25, 2004

0100 FIG. 13 is a flow diagram of the client library
function Enum Formats. In a preferred embodiment, Enum
Formats retrieves from the persistent global registry the

next format from the list of formats available for the class of
the Selected object. This function takes an input parameter
which is the format retrieved from a previous call to Enum
Formats and a pointer to the Selected object data structure.

If the format retrieved from the previous call indicates a 0,
then this function returns the first format in the list. In step
1301, the function determines the object CLASS ID from
the selected object data structure. In step 1302, if the format
input parameter is 0, then the function continues at Step
1303, else it continues at step 1304. In step 1303, the
function looks up the format list corresponding to the object
CLASS ID and returns the first format in the list, or NULL
if the format list is empty. In step 1304, the function looks
up the format list corresponding to the object CLASS ID,
finds the format that matches the format input parameter, and
returns the next format in the list, or NULL if there are no
more formats in the list. In step 1305, the function checks to
See if a format was retrieved and if one was, then it is
returned, otherwise the function returns NULL.

0101 FIG. 14 is a flow diagram of the client library
routine Request Data and the corresponding server appli
cation processing required. The Request Data function
retrieves object data in a Specified format from a server
application. If the Server application is busy, the function
Request Data returns with a WAIT FOR RELEASE mes
Sage and the client application should not call the function
Get Data until the callback notification has been received. A
client application calls Request Data before calling Get
Data. Function Get Data retrieves the data in the requested

format from the object. Request Data takes two input
parameters: a pointer to the Selected object data Structure
and the requested format. In step 1401, the function deter
mines the object CLASS ID from the selected object data
Structure. In Step 1402, if the requested format is registered
in the persistent global registry for the object class, then the
function continues at step 1403, otherwise the function
returns ERROR FORMAT. In step 1403, the function
checks the registry to determine whether there is an object
handler defined for the object class. If there is none, the
function continues at step 1406, otherwise it continues at
step 1404. In step 1404, the function invokes the object
handler to satisfy the data request. In step 1405, if the
handler can satisfy the request (it returned OBJ OK), then
the function returns OBJ OK. A handler is likely to be able
to Satisfy a Request Data call in situations where the
requested data format is a presentation format. If the handler
cannot Satisfy the request, the program continues at Step
1406. In step 1406, the function determines which server
application implements the Selected object by checking the
persistent global registry. In step 1407, the function deter
mines whether the Server application is connected or
launched (open). If the server application is not open, then
the function returns ERROR NOT OPEN, otherwise it
continues at step 1408. In step 1408, the function checks to
See if the Server application is busy, and if it is, it returns
OBJ BUSY, otherwise it continues at step 1409. In step
1409, the function sends a REQUEST DATA message to the
Server asynchronously, passing it the requested format, and
a handle to the object. Finally, the function returns

US 2004/0236781 A1

OBJ WAIT FOR RELEASE to the client application so
that the client knows it must wait for an asynchronous
response.

0102 On the server side, when the server library receives
the REQUEST DATA message, it invokes the callback
routine of the Server application in Step 1410 passing it a
OBJ REQUESTED DATA notification and the handle to
the object. The Server application processes the request, and
the callback routine returns a handle to the data in the
requested format to the Server library. If an error occurs, the
callback routine returns an error value instead. In Step 1411,
the server library sends the message REQUEST DATA
DONE to the client library passing the handle to the data

or the error value returned by the Server application.
0103) Then, when the client library asynchronously
receives the REQUEST DATA DONE message in its mes
sage handling routine (see FIG. 6A), in step 604, the library
invokes the callback routine of the client application passing
it a OBJ RELEASED notification. At this point, step 1212
(see FIG. 12) of the client application function Change Ob
ject Format will complete and user input to the client will no
longer be blocked. As described in FIG. 12, if the value
returned by the Server is a handle to data, then the client
application will be free to retrieve the data using function
Get Data. One skilled in the art would appreciate that
different mechanisms can be used to actually pass the data.
Typical examples are that the data can be passed in shared
memory or that each process is provided Support from the
underlying operating System to copy the data into its own
address Space by passing the operating System a handle to
the data.

0104 FIG. 15 is a flow diagram of the client library
function Get Data. The function Get Data checks the object
to determine if it has data in the requested format and returns
the data to the client application. Three parameters are
passed to the function Get Data: a pointer to the object data
Structure, the requested format, and an output parameter
which is a handle to the data. In step 1501, the function
determines the object CLASS ID from the object data
structure. In step 1502, if the input format is registered in the
persistent global registry for the class of the object, then the
function continues at step 1503, otherwise the function
returns ERROR FORMAT. In step 1503, the function
checks to see if client library has received data from the
Server application in the requested format. The object data
Structure maintains a list of available formats for the data.
This list is updated when a Request Data call results in a
new format being received. If the test in step 1503 fails, the
function returns ERROR BLANK to the client application.
In step 1504, the function sets the output parameter to the
handle of the data in the requested format and returns OBJ
OK.

0105 FIG. 16 is a flow diagram of the server application
routine Server Get Data. This function is invoked from the
Server application callback routine when it receives the
OBJ REQUESTED DATA notification from the server
library (see step 1410 in FIG. 14). The function Server
Get Data allocates memory and fills it with the object data

in the requested format and returns a handle to the data or an
error value. The function requires two parameters: a handle
to the object and the requested format. In step 1601, the
function allocates enough memory to hold the data in the

Nov. 25, 2004

requested format. In step 1602, it locks the memory in order
to provide an atomic operation. In step 1603, the function
fills the memory with data from the object in the requested
format. In step 1604, it unlocks the memory. Finally, it
returns either the handle to the data or an error value.

0106 A second example will help illustrate how a client
application incorporates registering data format capabilities
to use a Server application as an engine for filtering its data.
Suppose that the user generating the manufacturing project
report in FIG. 1 is actually working on a project which is a
Subpart of a much larger manufacturing project that involves
multiple project teams. Suppose further that the user's
manager maintains a spreadsheet of the Scheduling data of
the entire manufacturing project, and each project team is
responsible for entering the Scheduling data for its Subpart
into the manager's spreadsheet. Each project team is also
responsible for producing a weekly Status report to the
manager.

0107 FIG. 17 shows how object linking and embedding
is used to generate the spreadsheet Scheduling data and the
weekly reports. Each project team uses the database program
1701 to enter scheduling data, which is stored in a database
1710, to update the manager's spreadsheet 1706, and to
produce weekly reports 1703 using a report form 1702.
0108. In this example, the database program allows the
user to generate reports from the data in the layout Specified
by a report form 1702 that the user has previously created.
The report form 1762 contains display fields that are data
base queries which are filled in by the database program
when the report is actually generated. The report form 1702
is a compound document and can contain arbitrary embed
ded or linked objects created by other applications. On the
report form 1702, the user has placed a linked object 1703,
which is the Scheduling data for the user's project team. The
data for the linked object is Stored in the manager's spread
Sheet 1706.

0109. In this example, database program 1701 provides
the ability to insert an arbitrary object (here a linked spread
sheet object) and to set or update its contents with native
data through two commands, “Insert Object,” and “Update
Object Contents, found on the “Edit” menu of the database
program. When the user selects the “Insert Object” com
mand, the database program 1701 presents the user with a
list of the classes of objects defined in the persistent global
registry. Once the user has Selected the type of object to
create and specifies whether the object should be linked or
embedded, the database program 1701 creates a default
object of that CLASS ID using the standard client library
routine, Create Object. In our example, a linked default
Spreadsheet object is created.
0110. To initially set the data, or at any later time when
the user wishes to update the data, the user Selects the
command “Update Object Contents”. When “Update Object
Contents' is invoked on a Selected object, the database
program presents a form for the user to fill in with database
queries Specifying the data to be placed in the Selected
object. Once the user has completed this form, the database
program 1701 causes the data of the object to be changed by
invoking the client library routine Send Data. The range in
the manager's spreadsheet 1706 is updated to reflect the
scheduling data that was specified in the “Update Object
Contents' form.

US 2004/0236781 A1

0111. The spreadsheet program 1705 is used by the user's
manager to View the Scheduling data for the entire manu
facturing project in the manager's spreadsheet 1706. This
Spreadsheet contains the ranges of data that were actually
created by the component project teams as described above.
Whenever each project team chooses to update the manag
er's spreadsheet using Update Object Contents, the manager
will have an updated Synopsis of project progreSS.
0112 FIG. 18 shows the flow diagram for function
Update Object Contents. This function allows the user to
Specify which data is to be sent to the object. In a preferred
embodiment, this function is passed an object that is to have
its data Set. The function determines the object class and
retrieves from the persistent registry which data formats the
object Supports for Setting data. The function determines if
it can Support any of these data formats (e.g., Standard
spreadsheet format). If it can, then the function allows the
user to Specify which data from the database is to be sent to
the object. In step 1801, the function displays a standard
input selection form for a format that the object server
Supports (e.g., a spreadsheet). In step 1802, the function
inputs the user input selections. In step 1804, the function
retrieves the data from the database as indicated by the user
selections. In step 1805, the function puts the data in a
format that is compatible with the object server. In step
1806, the function invokes the function Send Data to send
the formatted data to the object. In step 1807, if function
Send Data returns an OBJ OK message, the function
returns, else the function continues as step 1808. In Step
1808 through 1813, the function waits for the asynchronous
invocation of function Send Data to complete and the
function returns. This is the Same proceSS as is described in
steps 1110 through 1115 of FIG. 11.
0113 FIG. 19 shows the flow diagram for the client
library routine Send Data and the corresponding Server
processing required. The Send Data function checks to
ensure the Server for the Selected object can Set the object
data in the requested format and Sends the data to the Server
if it can. The function Send Data has three input parameters:
a pointer to the Selected object data Structure, a handle to the
data, and the requested format. In step 1901, the function
determines the object CLASS ID from the selected data
structure. In step 1902, if the input format is registered in the
persistent global registry for the object class, then the
function continues at step 1903, otherwise the function
returns ERROR FORMAT. In step 1903, the function
checks in the registry to see if there is an object handler
defined for the object. If there is none, the function continues
at step 1906, otherwise it continues at step 1904. In step
1904, the function invokes the object handler to satisfy the
send request. In step 1905, if the handler can satisfy the
request (it returned OBJ OK) then the function returns
OBJ OK. If the handler cannot satisfy the request, the
program continues at step 1906. In step 1906, the function
determines the location of the server for the object class. In
step 1907, the function determines whether the server is
connected (open). If the Server is not open, the function
returns ERROR NOT OPEN, otherwise, it continues at
step 1908. In step 1908, the function checks to see if the
server is busy and, if it is, it returns OBJ BUSY, otherwise
it continues at step 1909. In step 1909, the function sends a
SEND DATA message to the server asynchronously, pass
ing it a handle to the data, the requested format, and a pointer
to the object. Finally, the function returns OBJ WAIT FOR

Nov. 25, 2004

RELEASE to the client application so that the client knows
it must wait for an asynchronous response.
0114. On the server side, when the server library receives
the SEND DATA message, it invokes the callback routine of
the server application in step 1910 passing it a OBJ SENT
DATA notification, a handle to the data, the requested

format, and the handle to the object. If the Server application
Successfully processes the request, the callback routine will
return an OBJ OK value to the server library, otherwise the
callback will return an error value. In step 1911, the server
library sends the message SEND DATA DONE to the
client library with the value returned by the server applica
tion.

0115 Then, when the client library asynchronously
receives the SEND DATA DONE message in its message
handling routine (see FIG. 6A), in step 604, the library
invokes the callback routine of the client application passing
it an OBJ RELEASE notification. At this point, step 1810
(see FIG. 18) of the client application function Update Ob
ject Contents will complete.
0116. Although the present invention has been described
in terms of a preferred embodiment, it is not intended that
the invention be limited- to his embodiment. Modifications
within the spirit of the invention will be apparent to those
skilled in the art. The Scope of the present invention is
defined by the claims which follow.

1-26. (canceled)
27. A computer-based method for providing a client with

data format information relating to data formats Supported
by a Server, the method comprising:

under control of Server code, providing the data format
information;

Storing the provided data format information in a persis
tent registry; and

under control of the client,
retrieving from the persistent registry the Stored data

format information; and

determining from the retrieved data format information
data formats Supported by the Server.

28. The method of claim 27 wherein the server code is
code executed during installation of the Server.

29. The method of claim 27 wherein the server code is
code executed when the Server is launched.

30. The method of claim 27 including when the server
Supports a data format that is compatible with the client,
launching the Server.

31. The method of claim 30 wherein the client is execut
ing in a process and the Server is launched in a Separate
proceSS.

32. The method of claim 30 wherein the client is execut
ing in a proceSS and the Server is launched in the same
proceSS.

33. The method of claim 30 wherein the client and the
Server exchange data using a compatible format.

34. The method of claim 27 wherein the client determines
the data formats while the Server is not executing.

35. A computer-based method for determining the data
formats that are Supported by a Server, the method compris
Ing:

US 2004/0236781 A1

retrieving from a persistent registry data format informa
tion, the data format information being provided by
Server code for Storage in the persistent registry; and

determining from the retrieved data format information
data formats Supported by the Server.

36. The method of claim 35 including when the server
Supports a data format that is compatible with the client,
launching the Server.

37. The method of claim 36 wherein the client is execut
ing in a process and the Server is launched in a Separate
proceSS.

38. The method of claim 36 wherein the client is execut
ing in a proceSS and the Server is launched in the same
proceSS.

39. The method of claim 36 wherein the client and the
Server eXchange data using a compatible format.

40. The method of claim 35 wherein the client determines
the data formats while the Server is not executing.

41. A computer-based method for Supplying data format
information for data formats Supported by a Server, the
method comprising:

under control of Server code,
retrieving the data format information; and
Storing the data format information in a persistent

registry So that a client can retrieve the data format
information from the registry and determine the data
formats that are Supported by the server.

42. The method of claim 41 wherein the client determines
the data formats while the Server is not executing.

43. The method of claim 41 wherein the server code is
code executed during installation of the Server.

44. The method of claim 41 wherein the server code is
code executed when the Server is launched.

45. The method of claim 41 including when the server
Supports a data format that is compatible with the client
launching the Server.

46. The method of claim 45 wherein the client is execut
ing in a process and the Server is launched in a Separate
proceSS.

47. The method of claim 45 wherein the client is execut
ing in a proceSS and the Server is launched in the same
proceSS.

48. The method of claim 45 wherein the client and the
Server eXchange data using a compatible format.

49. One or more computer-readable media containing
computer-executable instructions for performing a method
to provide a client with data format information relating to
data formats Supported by a Server, the method comprising:

under control of Server code, providing the data format
information;

Storing the provided data format information in a persis
tent registry; and

under control of the client,
retrieving from the persistent registry the Stored data

format information; and

determining from the retrieved data format information
data formats Supported by the Server.

50. The computer-readable media of claim 49 wherein the
Server code is code executed during installation of the Server.

Nov. 25, 2004

51. The computer-readable media of claim 49 wherein the
Server code is code executed when the Server is launched.

52. The computer-readable media of claim 49 including
when the Server Supports a data format that is compatible
with the client, launching the Server.

53. The computer-readable media of claim 52 wherein the
client is executing in a process and the Server is launched in
a Separate proceSS.

54. The computer-readable media of claim 52 wherein the
client is executing in a process and the Server is launched in
the same process.

55. The computer-readable media of claim 52 wherein the
client and the Server eXchange data using a compatible
format.

56. The computer-readable media of claim 49 wherein the
client determines the data formats while the server is not
executing.

57. A computer-readable media containing computer
executable instructions for performing a method to deter
mine data formats that are Supported by a Server, the method
comprising:

retrieving from a persistent registry data format informa
tion, the data format information being provided by
Server code for Storage in the persistent registry; and

determining from the retrieved data format information
data formats Supported by the Server.

58. The computer-readable media of claim 57 including
when the Server Supports a data format that is compatible
with the client, launching the Server.

59. The computer-readable media of claim 58 wherein the
client is executing in a process and the Server is launched in
a Separate proceSS.

60. The computer-readable media of claim 58 wherein the
client is executing in a process and the Server is launched in
the same process.

61. The computer-readable media of claim 58 wherein the
client and the Server eXchange data using a compatible
format.

62. The computer-readable media of claim 57 wherein the
client determines the data formats while the server is not
executing.

63. A computer-readable media containing computer
executable instructions for performing a method to Supply
data format information for data formats Supported by a
Server, the method comprising:

under control of Server code,

retrieving the data information; and

Storing the data format information in a persistent
registry So that a client can retrieve the data format
information from the registry and determine the data
formats that are Supported by the Server.

64. The computer-readable media of claim 63 wherein the
client determines the data formats while the server is not
executing.

65. The computer-readable media of claim 63 wherein the
Server code is code executed during installation of the Server.

US 2004/0236781 A1

66. The computer-readable media of claim 63 wherein the
Server code is code executed when the Server is launched.

67. The computer-readable media of claim 63 including
when the Server Supports a data format that is compatible
with the client launching the Server.

68. The computer-readable media of claim 67 wherein the
client is executing in a process and the Server is launched in
a Separate proceSS.

Nov. 25, 2004

69. The computer-readable media of claim 67 wherein the
client is executing in a process and the Server is launched in
the same process.

70. The computer-readable media of claim 67 wherein the
client and the Server eXchange data using a compatible
format.

