(54) Title

P2X3 and/or P2X2/3 compounds and methods
(51) International Patent Classification(s)

C07D 471/04 (2006.01) A61P 23/00 (2006.01)
A61K 31/437 (2006.01)
(21) Application No: 2014365823
(22) Date of Filing: 2014.12.16
(87) WIPO No: WO15/095128
(30) Priority Data
(31) Number 61/916,499
(32) Date 2013.12.16
(33) Country US
(43) Publication Date: 2015.06 .25
(44) Accepted Journal Date: 2019.05 .02
(71) Applicant(s)

Asana Biosciences, LLC
(72) Inventor(s)

Thompson, Scott;Venkatesan, Aranapakam;Priestley, Tony;Kundu, Mrinal;Saha, Ashis
(74) Agent / Attorney

FB Rice Pty Ltd, L 2344 Market St, Sydney, NSW, 2000, AU
(56) Related Art

WO 2010/111058 A1
CN 102803245 A
US 20160318927 A1
Burnstock et al Pharmacology Reviews (2012), 64, p834-868.
US 20120064181 A1
CN 101300235 A
$|||\mid$

(10) International Publication Number WO 2015/095128 A1

(51) International Patent Classification:

C07D 471/04 (2006.01) A61P 23/00 (2006.01)
A61K 31/437 (2006.01)
(21) International Application Number:

PCT/US2014/070497
(22) International Filing Date

16 December 2014 (16.12.2014)
(25) Filing Language:
(26) Publication Language:
(30) Priority Data:

61/916,499 16 December 2013 (16.12.2013)
(71) Applicant: ASANA BIOSCIENCES, LLC [US/US]; 400 Crossing Boulevard, Third Floor, Bridgewater, NJ $08807-$ 2863 (US).
(72) Inventors: THOMPSON, Scott; 75 Guilford Circle, Phoenixville, PA 19460 (US). VENKATESAN, Aranapakam; 7100 Johnson Farm Lane, Unit\# 105, Chadds Ford, PA 19317 (US). PRIESTLEY, Tony; 336 Old Bailey Lane, West Chester, PA 19382 (US). KUNDU, Mrinal; CK 106, Sector II, Salt Lake, Kolkata 700091 (IN). SAHA, Ashis; 25 Crescent Street, Apartment 227, Waltham, MA 02453 (US).
(74) Agents: FOLEY, Shawn et al.; Lerner, David, Littenberg, Krumholz \& Mentlik, LLP, 600 South Avenue West, Westfield, New Jersey 07090 (US).

(I)

Figure 4
(57) Abstract: The present application provides novel compounds and methods for preparing and using these compounds. In one embodiment, the compounds are of the structure of formula (I), wherein $\mathrm{R}^{1}-\mathrm{R}^{4}$ are defined herein. In a further embodiment, these compounds are useful in method for regulating one or both of the $\mathrm{P} 2 \mathrm{X}_{3}$ or $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ receptors. In another embodiment, these compounds are useful for treating pain in patients by administering one or more of the compounds to a patient.

(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, $\mathrm{AO}, \mathrm{AT}, \mathrm{AU}, \mathrm{AZ}, \mathrm{BA}, \mathrm{BB}, \mathrm{BG}, \mathrm{BH}, \mathrm{BN}, \mathrm{BR}, \mathrm{BW}, \mathrm{BY}$, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))

$\mathrm{P}_{2} \mathrm{X}_{3}$ and/or P2X $\mathrm{X}_{2 / 3}$ Compounds and Methods

CROSS-REFERENCE TO PRIORITY APPLICATION

[0001] The present application claims the benefit of the filing date of U.S. Provisional Application No. 61/916,499, filed December 16, 2013, entitled P2X ${ }_{3}$ and/or $\mathrm{P}_{2} \mathrm{X}_{2 / 3}$ Compounds and Methods, the disclosure of which is hereby incorporated herein by reference. BACKGROUND
[0002] Adenosine triphosphate (ATP) is well-recognized as the primary energy currency of living cells, but has also emerged as a significant signaling molecule that can shape physiological and pathophysiological processes by interacting with any of several 'purinergic' membrane-associated receptor molecules. The purinergic receptor family comprises both G-protein-coupled (GPCR) receptors (assigned a P2Y nomenclature) and ligand-gated ion channel (P2X) variants. ATP elicits an excitatory effect on afferent sensory nerves via an interaction with receptors of the P2X subfamily. The consequence of such hyperexcitability may be interpreted as pain when the ATP effect is elicited in skin, bone or visceral tissues, as pain and/or cough in airway tissues, or as pain and/or instability when it occurs in the bladder. Two particular receptor variants within the P2X subfamily, designated $\mathrm{P}_{2} \mathrm{X}_{3}$ and $\mathrm{P} 2 \mathrm{X}_{2 / 3}$, have emerged as targets of particular interest in a variety of studies designed to measure nociception, airway or bladder function in rodents, since activation of these receptors by ATP is capable of generating the adverse events cited above.
[0003] Accordingly, there is a need for more potent and selective $\mathrm{P}_{2} \mathrm{X}_{3} / \mathrm{P} 2 \mathrm{X}_{2 / 3}$ modulators.

SUMMARY OF THE INVENTION

[0004] In one aspect, a compound of the structure of formula (I) is provided, wherein $R^{1}-R^{4}$ are described herein, or a pharmaceutically acceptable salt thereof.

(I)
[0005] In another aspect, a compound of the structure of formula (II) is provided, which is embraced by formula (I), wherein R^{1}, R^{2}, and R^{4} are described herein, or a pharmaceutically acceptable salt thereof.

(II)
[0006] In a further aspect, a compound of the structure of formula (III) is provided, which is embraced by formula (I), wherein R^{1}, R^{2}, and R^{4} are described herein, or a pharmaceutically acceptable salt or prodrug thereof.

(III)
[0007] In yet another aspect, a compound of the structure of formula (IV) is provided, which is embraced by formula (I), wherein R^{2} and $R^{4}-R^{6}$ are described herein, or a pharmaceutically acceptable salt thereof.

(IV)
[0008] In still a further aspect, a composition is provided and contains (i) a compound described herein and (ii) a pharmaceutically acceptable carrier.
[0009] In another aspect, a kit is provided and contains a compound described herein.
[0010] In yet a further aspect, a method for regulating activity of one or both of the $\mathrm{P}_{2} \mathrm{X}_{3}$ or $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ receptors is provided and includes administering a compound described herein to a patient in need thereof. In one embodiment, the regulation is inhibition.
[0011] In a further aspect, a method for modulating one or both of the $\mathrm{P}_{2} \mathrm{X}_{3}$ or ${\mathrm{P} 2 \mathrm{X}_{2 / 3}}$ pathways is provided and includes administering a compound described herein to the patient. [0012] In a still further aspect, a method for treating pain in a patient is provided and includes administering a compound described herein to the patient.
[0012a] In a still further aspect, there is provided a compound of the structure of formula (I):

(I)
wherein:
R^{1} is optionally substituted 5-membered heteroaryl or $N R^{5} R^{6}$;
R^{2} is optionally substituted heteroaryl;
R^{3} is H or C_{1} to C_{6} alkyl;
R^{4} is optionally substituted heteroaryl;
R^{5} and R^{6} are, independently, selected from the group consisting of H, optionally substituted C_{1} to C_{6} alkyl, C_{3} to C_{6} cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and $\mathrm{CO}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl); or
R^{5} and R^{6} are joined to form a 5 or 6 -membered heterocyclic ring optionally substituted by one or more of halogen, C_{1} to C_{6} alkyl, C_{1} to C_{6} alkoxy, C_{1} to C_{6} hydroxyalkyl, C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkyl containing 1 to 3 fluorine atoms, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, or CONH_{2};
or a pharmaceutically acceptable salt or prodrug thereof, wherein
the optionally substituted heteroaryl is unsubstituted or substituted with one or more selected from the group consisting of halogen, $\mathrm{CN}, \mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{3} to C_{8} cycloalkyl, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} or C_{6} alkyl containing 1 to 3 fluorine atoms, C_{1} to C_{6} alkoxy containing 1 to 3 fluorine atoms, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, C_{1} to C_{6} hydroxyalkyl, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl $), \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHC}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl $) \mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), NH_{2}, NH (aryl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl) and $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$;
the optionally substituted alkyl is unsubstituted or substituted with one or more selected from the group consisting of halogen, $\mathrm{CN}, \mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkyl- C_{1} to C_{6} alkoxy,
heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHC}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NH}_{2}, \mathrm{NH}($ aryl $), \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), and $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$;
the optionally substituted aryl is unsubstituted or substituted with one or more selected from the group consisting of halogen, $\mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy $-\mathrm{C}_{1}$ to C_{6} alkoxy- C_{1} to C_{6} alkoxy, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), NH_{2}, NH (aryl) or $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$; and
the optionally substituted heterocycle is unsubstituted or substituted with one or more selected from the group consisting of halogen, $\mathrm{CN}, \mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} hydroxyalkyl, C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkyl containing 1 to 3 fluorine atoms, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHC}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NH}_{2}, \mathrm{NH}($ aryl $), \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) and $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$.
[0012b] In a still further aspect, there is provided a compound which is selected from the group consisting of
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-ethyl-1,3,4-oxadiazol-2-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(2,5-dimethyl-1H-imidazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3,5-dimethyl-4H-1,2,4-triazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methyl-1,3,4-thiadiazol-2-yl)-N-((6-methylpyridin-3-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-pyrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-methyl-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-butyl-8-(4-methylpiperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-
(propylthio)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-carbamoyl-4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(4-carbamoylpiperazin-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
(S)-N-(1-(1,3,4-oxadiazol-2-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(o-tolyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclopropyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(hydroxymethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(N-methylisobutyramido)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1,3,4-oxadiazol-2-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclopropyl-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-methyl-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-methyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-cyclopropyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methoxypyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-isopropyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-isopropyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclopropyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclopropyl-1H-1,2,3-triazol-1-yl)-N-((2-methoxypyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-cyclobutyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methoxypyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-isopropyl-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(tert-butyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)-N-((6-methylpyridin-3-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(1,3,4-oxadiazol-2-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-cyanothiophen-2-yl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-(2-methyl-1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((6-methylpyridin-3-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(tert-butyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-(trifluoromethyl)thiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-isopropyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-propyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-propyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)-N-((2-methylpyrimidin-5-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(2-methylthiazol-5-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-(tert-butyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-chlorothiophen-2-yl)-8-(5-isopropyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-(2-methyl-1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(2-methyl-1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-methyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)-N-((5-methylpyrazin-2-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-(2,2,2-trifluoroethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-(2,2,2-trifluoroethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-(2,2,2-trifluoroethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((6-methoxypyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-(1-(2-methylpyrimidin-5-yl)ethyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methoxypyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6carboxamido)methyl)pyridine 1-oxide,

N-((1-methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6-carboxamide,

N -((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(thiazol-2-ylamino)imidazo[1,2-a]pyridine-6-carboxamide,

N-((1-methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(thiazol-2-ylamino)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-((5-methylthiazol-2-yl)amino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-((4-fluorophenyl)amino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-((2-methoxyphenyl)amino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((8-(1-methyl-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)pyridine 1-oxide,

8-(1-methyl-1H-pyrazol-4-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(1-methyl-1H-pyrazol-4-yl)-N-((1-methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-methyl-1H-pyrazol-5-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3,8-bis(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((S)-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3,5-dimethylisoxazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-ethyl-1H-pyrazol-5-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-(cyclopropylmethyl)-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-(2-fluoroethyl)-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(3,5-dimethylisoxazol-4-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
$\mathrm{N}-((\mathrm{S})-1-(4 \mathrm{H}-1,2,4-$ triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(3,5-dimethylisoxazol-4-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N-((S)-1-(4H-1,2,4-triazol-3-yl)propyl)-8-(3,5-dimethylisoxazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((S)-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3,5-dimethylisoxazol-4-yl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N-((S)-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3,5-dimethyl-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(3,5-dimethyl-1H-pyrazol-4-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-(2-amino-2-oxoethyl)-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-ethyl-1H-pyrazol-5-yl)-3-(5-
methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
2-methyl-5-((8-(4-methylpiperidin-1-yl)-3-(propylthio)imidazo[1,2-a]pyridine-6carboxamido)methyl)pyridine 1-oxide,

8-(4-methylpiperidin-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(4-methylpiperidin-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)pyridine 1-oxide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(4-methylpiperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

5-((3-(5-chlorothiophen-2-yl)-8-(4-methylpiperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

5-((8-(cyclohexylamino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(cyclohexylamino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

5-((8-(4,4-dimethylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

5-((8-(4,4-difluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

5-((8-(cyclohexylamino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-(trifluoromethyl)pyridine 1-oxide,

2-methyl-5-((8-(4-methylpiperidin-1-yl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)pyridine 1-oxide,

5-((8-(cyclohexyl(methyl)amino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

5-((8-(4-fluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

N-((1-methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4,4-dimethylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4,4-difluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((3-(5-methylthiophen-2-yl)-8-(4-(trifluoromethyl)piperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)pyridine 1-oxide,

5-((8-(4-(fluoromethyl)piperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-(fluoromethyl)piperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(4-(trifluoromethyl)piperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(cyclopentylamino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4,4-difluoropiperidin-1-yl)-3-(4-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-fluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((S)-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3-methoxypyrrolidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methoxy-4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methoxypiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((S)-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3-methoxypiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
$\mathrm{N}-((\mathrm{S})$-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3-methoxy-3-methylpyrrolidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(1H-pyrazol-3-yl)ethyl)-8-(4,4-difluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(4,4-difluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-8-(4,4-difluoropiperidin-1-yl)-N-(2-methyl-1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

3-((8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6carboxamido)methyl)pyridine 1-oxide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(4-methoxypiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(4-carbamoyl-4-methylpiperidin-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(1H-1,2,4-triazol-5-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(m-tolyl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((8-(4-methylpiperidin-1-yl)-3-(o-tolyl)imidazo[1,2-a]pyridine-6carboxamido)methyl)pyridine 1-oxide,

8-(5-isopropyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-isopropyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)-N-((6-(trifluoromethyl)pyridin-3-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((6-cyclopropylpyridin-3-yl)methyl)-8-(5-ethyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(cyclopropylmethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-methyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-propyl-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-isopropyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)-N-(1-(pyrazin-2-yl)ethyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)-N-(1-(pyrazin-2-yl)ethyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-N-((1 -methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)-N-(1-(pyrazin-2-yl)ethyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-N-((6-methoxypyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-cyclobutyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(cyclopropylmethyl)-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-cyclopropyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((2-methox ypyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-
(difluoromethyl)-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-chlorothiophen-2-yl)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-cyclopropyl-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

3-(5-chlorothiophen-2-yl)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-ethyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-propyl-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-(1-(5-methyl-1,3,4-oxadiazol-2-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-(2,2,2-trifluoroethyl)-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(1,1-difluoroethyl)-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-3-(5-methylfuran-2-yl)-N-((2-methylpyrimidin-5-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-(1,1-difluoroethyl)-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(1,1-difluoroethyl)-1H-tetrazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-
yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(N-methylpropionamido)-3-(5-
methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(N-cyclopropylpropionamido)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide.
[0013] Other aspects and advantages of the invention will be readily apparent from the following detailed description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Figure 1A is a map of a circular cloning plasmid pIRESpuro3 (Clontech Laboratories Inc., Mountain View, CA) into which the protein coding sequence of rat P2X2 has been cloned in the EcoRV-digested and dephosphorylated vector pIRES-puro3 within a multiple cloning site (MCS).
[0015] Figure 1B is a map of a circular plasmid pCDNA-Hygro (Invitrogen) into which the coding sequence of rat P2X3 (NCBI Accession No: X91167), amplified by PCR from rat brain cDNA, has been cloned. The PCR product obtained containing the protein coding sequence of rat P2X3 was cloned into EcoRV-digested and dephosphorylated vector pCDNA-Hygro within the multiple cloning site (MCS).
[0016] Figure 1C is a vector generated from the pcDNA-Hygro containing the rat P2X3, which was then subcloned into pcDNA-5/TO (Invitrogen/Life Technologies) at HindIII (5') and XhoI (3^{\prime}) sites within the multiple cloning site (MCS) of the vector.
[0017] Figure 2 illustrates the antihyperalgesic effects of the compound of example 22 in a rat model of inflammatory thermal hyperalgesia induced by an intraplantar injection of Complete Freund's Adjuvant (CFA). Thermal hyperalgesia is manifest as a reduction in the time for foot-withdrawal during irradiation with a painful thermal stimulus. The compound of example 22 was administered at a dose of $60 \mathrm{mg} / \mathrm{kg}, 48 \mathrm{~h}$ after footpad injection of CFA and produced a substantial reversal (77% and 68%) of thermal hyperalgesia when assessed at 1 h and 2 h post-dose, respectively.
[0018] Figure 3 illustrates the antinociceptive effects of the compound of example 22 in a rat model of ongoing spontaneous pain. The compound of example 22 was administered by oral gavage at a dose of $100 \mathrm{mg} / \mathrm{kg}$ followed 30 min later by a footpad injection of a dilute formalin solution. Formalin elicits a typical biphasic nociceptive response that manifests as spontaneous hind limb flinches which are counted and binned over 5 min epochs. The compound of example 22 attenuated the second phase flinching response to formalin -a profile that is consistent with an antinociceptive action.
[0019] Figure 4 illustrates the antinociceptive effects of the compound of example 22 in a mouse model of visceral pain. The compound of example 22 was administered by oral gavage at 3 dose levels (20,40 and $60 \mathrm{mg} / \mathrm{kg}$) 30 min prior to an intraperitoneal injection of a
dilute acetic acid solution. When injected into the abdominal cavity, acetic acid induces a distinctive stretching response in the abdomen and at least one hind limb that is assumed to reflect a response to visceral pain. The compound of example 22 produced a clear dose-related reduction in the pain responses when assessed for a total of 15 min post acetic acid injection. Statistical significance is indicated with respect to the vehicle control group and was performed using a one-way ANOVA followed by Dunnett's multiple comparison test.
[0020] Figure 5 illustrates the antihyperalgesic effects of the compound of example 38 in a rat model of inflammatory thermal hyperalgesia induced by an intraplantar injection of CFA. Thermal hyperalgesia is manifest as a reduction in the time for foot-withdrawal during irradiation with a painful thermal stimulus. The compound of example 38 was administered at a dose of $60 \mathrm{mg} / \mathrm{kg}, 48 \mathrm{~h}$ after footpad injection of CFA and produced a substantial reversal (50%) of thermal hyperalgesia when assessed at 1 h post-dose.
[0021] Figure 6 illustrates the antihyperalgesic effects of the compound of example 52 in a rat model of inflammatory thermal hyperalgesia induced by an intraplantar injection of CFA. Thermal hyperalgesia is manifest as a reduction in the time for foot-withdrawal during irradiation with a painful thermal stimulus. The compound of example 52 was administered at a dose of $60 \mathrm{mg} / \mathrm{kg}$, 48 h after footpad injection of CFA and produced a substantial reversal (39%) of thermal hyperalgesia when assessed at 1 h post-dose.

DETAILED DESCRIPTION OF THE INVENTION

[0022] Discussed herein are novel compounds which have capabilities in modulating one or both of the $\mathrm{P}_{2} \mathrm{X}_{3}$ or $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ pathways. These compounds may be used to treat disease affected by a dysregulation of one or both of the $\mathrm{P}_{2} \mathrm{X}_{3}$ or $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ pathways.
[0023] The compounds discussed herein have the structure of formula (I).

(I)
[0024] In this structure, R^{1} is optionally substituted heteroaryl or $N R^{5} R^{6}$. In one aspect, R^{1} is optionally substituted heteroaryl. In one embodiment, R^{1} is optionally substituted heteroaryl. In another embodiment, R^{1} is heteroaryl substituted with one or more halogen, C_{1}
to C_{6} alkyl, C_{3} to C_{6} cycloalkyl, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, C_{1} to C_{6} hydroxyalkyl, C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkyl containing 1 to 3 fluorine atoms, or $\mathrm{CH}_{2} \mathrm{CONH}_{2}$. In a further embodiment, R^{1} is oxadiazole, pyrazole, thiophene, or isoxazole. In yet another embodiment, R^{1} is oxadiazole substituted with one or more C_{1} to C_{6} alkyl, pyrazole substituted with one or more C_{1} to C_{6} alkyl, pyrazole substituted with one or more C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, pyrazole substituted with one or more C_{1} to C_{6} alkyl containing 1 to 3 fluorine atoms, pyrazole substituted with one or more $\mathrm{CH}_{2} \mathrm{CONH}_{2}$ groups, thiophene substituted with one or more C_{1} to C_{6} alkyl, or isoxazole substituted with one or more C_{1} to C_{6} alkyl. In still a further embodiment, R^{1} is oxadiazole substituted with one C_{1} to C_{6} alkyl, pyrazole substituted with one C_{1} to C_{6} alkyl, pyrazole substituted with one C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, pyrazole substituted with one C_{1} to C_{6} alkyl containing 1 fluorine atom, pyrazole substituted with one or more $\mathrm{CH}_{2} \mathrm{CONH}_{2}$ group, thiophene substituted with one C_{1} to C_{6} alkyl, or isoxazole substituted with one or two C_{1} to C_{6} alkyl. In another embodiment, R^{1} is oxadiazole substituted with one ethyl, pyrazole substituted with one CH_{3} or $\mathrm{CH}_{2} \mathrm{CH}_{3}$, pyrazole substituted with one $-\mathrm{CH}_{2}$-cyclopropyl, pyrazole substituted with one $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$, pyrazole substituted with one or more $\mathrm{CH}_{2} \mathrm{CONH}_{2}$ group, thiophene substituted with one CH_{3}, or isoxazole substituted with two CH_{3}. In yet another embodiment, R^{1} is 2-ethyl-1,3,4oxadiazole, 1-methyl-pyrazole, 1-ethyl-pyrazole, 1-cyclopropylmethane-pyrazole, 1-fluoroethane-pyrazole, 1-carboxamidomethyl-pyrazole, 2-methyl-thiophene, or 3,5,-dimethyl-isoxazole.
[0025] In another aspect, R^{1} is $\mathrm{NR}^{5} \mathrm{R}^{6}$. In one embodiment, R^{5} and R^{6} are, independently, chosen from H , optionally substituted C_{1} to C_{6} alkyl, C_{3} or C_{6} cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and $\operatorname{CO}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl). In a further embodiment, R^{5} and R^{6} are optionally substituted phenyl. In another embodiment, R^{5} and R^{6} are phenyl substituted with fluorine or C_{1} to C_{6} alkoxy. In yet a further embodiment, one or both of R^{5} and R^{6} are optionally substituted thiazole. In still another embodiment, one or both of R^{5} and R^{6} are optionally substituted C_{1} to C_{6} alkyl or C_{3} to C_{6} cycloalkyl. In a further embodiment, one or both of R^{5} and R^{6} are 4-fluoro-phenyl or 2-methoxy-phenyl. In another embodiment, R^{5} and R^{6} are joined to form a 5 or 6 -membered heterocyclic ring optionally substituted by one or more of halogen, C_{1} to C_{6} alkyl, C_{1} to C_{6} alkoxy, C_{1} to C_{6} hydroxyalkyl, C_{3} to C_{6} cycloalkyl, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, C_{1} to C_{6} alkyl containing 1 to 3 fluorine atoms, or CONH_{2}. In a further embodiment, R^{5} and R^{6} are joined to form a
heteroaryl. In still a further embodiment, R^{5} and R^{6} are joined to form an optionally substituted 5 or 6 -membered heterocyclic ring. In yet another embodiment, R^{5} and R^{6} are joined to form an optionally substituted pyrrolidine, imidazole, pyrazole, tetrazole, triazole, piperidine, or piperazine. In a further embodiment, R^{5} and R^{6} are joined to form pyrrolidine optionally substituted with one or more C_{1} to C_{6} alkyl or C_{1} to C_{6} alkoxy. In another embodiment, R^{5} and R^{6} are joined to form imidazole substituted with one or more C_{1} to C_{6} alkyl. In still another embodiment, R^{5} and R^{6} are joined to form a pyrazole substituted with one or more C_{1} to C_{6} alkyl. In yet another embodiment, R^{5} and R^{6} are joined to form tetrazole substituted with one or more C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkyl, C_{1} to C_{6} hydroxyalkyl, C_{1} to C_{6} alkyl containing 1-3 fluorine atoms, and C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl. In a further embodiment, R^{5} and R^{6} are joined to form triazole substituted with one or more C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkyl containing 1-3 fluorine atoms, and C_{1} to C_{6} alkyl. In another embodiment, R^{5} and R^{6} are joined to form piperidine substituted with one or more C_{1} to C_{6} alkoxy, halogen, C_{1} to C_{6} alkyl containing 1-3 fluorine atoms, C_{1} to C_{6} alkyl, or CONH_{2}. In yet another embodiment, R^{5} and R^{6} are joined to form piperazine substituted with CONH_{2}. In still a further embodiment, R^{5} and R^{6} are joined to form 3-methoxy-pyrrolidine, 3-methyl-3-methoxy-pyrrolidine, 2,5-dimethyl-imidazole, 5 -ethyl-pyrazole, 5 -propyl-tetrazole, 5-cyclopropyl-tetrazole, 5 -propyl-tetrazole, 5 -isopropyl-tetrazole, 5 -ethyl-tetrazole, 5-cyclobutyl-tetrazole, 5-cyclopropylmethyl-tetrazole, 5-methyl-tetrazole, 5-hydroxymethyltetrazole, 5 -difluoromethyl-tetrazole, 5-(2,2,2-trifluoroethyl)-tetrazole, 5-(1,1-difluoroethyl)tetrazole, 5-cyclopropyl-triazole, 5-difluoromethyl-triazole, 5-trifluoromethyl-triazole, 5-methyl-triazole, 5 -isopropyl-triazole, 5 -propyl-triazole, 5 -ethyl-triazole, 5 -tert-butyltriazole, 5-cyclobutyl-triazole, 5-(1,1-difluoroethyl)-triazole, 5-(2,2,2-trifluoroethyl)-triazole, 3,5-dimethyl-1,2,4-triazole, 4-methyl-piperidine, 4,4-dimethyl-piperidine, 4,4-difluoropiperidine, 4-methyl-4-carboxamido-piperidine, 4-fluoro-piperidine, 4-trifluoromethylpiperidine, 4-fluoromethyl-piperidine, 4-methyl-4-methoxy-piperidine, 4-methoxypiperidine, 3-methoxy-piperidine, or 4-carboxamido-piperazine.
[0026] R^{2} is optionally substituted aryl, optionally substituted heteroaryl, C_{1} to C_{6} alkyl, or S - C_{1} to C_{6} alkyl. In one embodiment, R^{2} is optionally substituted aryl. In another embodiment, R^{2} is optionally substituted phenyl. In a further embodiment, R^{2} is phenyl substituted with one or more C_{1} to C_{6} alkyl. In yet another embodiment, R^{2} is phenyl substituted with one CH_{3}. In still another embodiment, R^{2} is 2 -tolyl or 3-tolyl. In a further
embodiment, R^{2} is C_{1} to C_{6} alkyl. In another embodiment, R^{2} is butyl. In still a further embodiment, R^{2} is - S -(C_{1} to C_{6} alkyl). In yet another embodiment, R^{2} is $-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$. In a further embodiment, R^{2} is optionally substituted heteroaryl. In still another embodiment, R^{2} is heteroaryl substituted with one or more halogen, cyano, C_{1} to C_{6} alkyl or C_{1} to C_{6} alkyl containing 1-3 fluorine atoms. In yet a further embodiment, R^{2} is thiazole, thiophene, or furan. In another embodiment, R^{2} is thiazole substituted with C_{1} to C_{6} alkyl. In still a further embodiment, R^{2} is thiophene substituted with one or more of halogen, cyano, C_{1} to C_{6} alkyl or C_{1} to C_{6} alkyl containing 1-3 fluorine atoms. In yet another embodiment, R^{2} is furan substituted with C_{1} to C_{6} alkyl. In a further embodiment, R^{2} is 2-chloro-thiophene, 2-methylthiophene, 2-cyano-thiophene, 2-trifluoromethyl-thiophene, 5 -methyl-thiazole, 2-methylthiazole, or 2-methyl-furan.
[0027] R^{3} is H or C_{1} to C_{6} alkyl. In one embodiment, R^{3} is H . In another embodiment, R^{3} is C_{1} to C_{6} alkyl.
[0028] R^{4} is optionally substituted heteroaryl. In one embodiment, R^{4} is optionally substituted triazole, optionally substituted pyridine, optionally substituted pyridone, optionally substituted oxadiazole, optionally substituted pyrazine, or optionally substituted pyrimidine. In another embodiment, R^{4} is heteroaryl optionally substituted with C_{1} to C_{6} alkyl, C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkoxy, or C_{1} to C_{6} trifluoroalkyl. In a further embodiment, R^{4} is pyridine substituted with one or more C_{1} to C_{6} alkyl, C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkoxy, or C_{1} to C_{6} trifluoroalkyl. In yet another embodiment, R^{4} is pyridine and the nitrogen atom of said pyridine is bound to an O -atom. In still a further embodiment, R^{4} is pyrazine substituted with one or more C_{1} to C_{6} alkyl. In another embodiment, R^{4} is pyrimidine substituted with one or more C_{1} to C_{6} alkyl or C_{1} to C_{6} alkoxy. In yet a further embodiment, R^{4} is pyridone substituted with one or more C_{1} to C_{6} alkyl. In still another embodiment, R^{4} is $1,2,4$-triazole, 2 -methyl-pyridine, 2 -methoxy-pyridine, 1 -oxo-pyridine, 1-oxo-2-methyl-pyridine, 1-oxo-2-trifluoromethyl-pyridine, 2-trifluoromethyl-pyridine, 2-cyclopropyl-pyridine, 1,3,4-oxadiazole, 1,2,4-oxadiazole, 3-methyl-1,2,4-oxadiazole, 2-methyl-1,3,4-oxadiazole, 2-methyl-pyrazine, 2-methyl-pyrimidine, 2-methoxy-pyrimidine, or 1-methyl-pyridone.
[0029] In one embodiment, the compound is of the structure of formula (II), wherein R^{1}, R^{2}, and R^{4} are defined above.

(II)
[0030] In another embodiment, the compound is of the structure of formula (III), wherein R^{1}, R^{2}, and R^{4} are defined above.

(III)
[0031] In a further embodiment, the compound is of the structure of formula (IV), wherein R^{2} and $\mathrm{R}^{4}-\mathrm{R}^{6}$ are defined above.

(IV)
[0032] Representative "pharmaceutically acceptable salts" include but are not limited to those of an acid or base. In one embodiment, the pharmaceutical salt is selected from among water-soluble and water-insoluble salts. The salt may be of an acid selected from, e.g., among acetic, propionic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, phthalic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, napthalenesulfonic, benzenesulfonic, toluenesulfonic, trifluoroacetic, and camphorsulfonic. The salt can also be of a base selected from, e.g., sodium, potassium, calcium, and ammonium. In some embodiments, a composition of the invention may contain both a pharmaceutically acceptable salt and the free base form of a compound of the invention.
[0033] A compound of the invention may also be a prodrug of formula (I). Prodrugs of compounds of formula (I) may be prepared using various methods known to those skilled in the art. See, e.g., Rautio, Nature Reviews Drug Discovery, 7:255-270 (2008) and Ettmayer, J. Med. Chem., 47:2393-2404 (2004), which are hereby incorporated by reference. In the case
of drugs containing a hydroxy moiety, acetyl and other ester analogs are contemplated for use as prodrugs. See, e.g., Beaumont, Current Drug Metabolism, 4:461-485 (2003), which is hereby incorporated by reference. In the case of drugs containing an amine moiety, prodrugs containing amides and carbamates are contemplated. See, e.g., Simplício, Molecules, 13:519-547 (2008), which is hereby incorporated by reference. As specific examples, (alkoxycarbonyloxy)alkyl carbamates, (acyloxy)alkyl carbamates, and (oxodioxolenyl)alkyl carbamates may be utilized as effective prodrug strategies for amines. See, e.g., Li, Bioorg. Med. Chem. Lett., 7:2909-2912 (1997); Alexander, J. Med. Chem., 34:78-81 (1991); Alexander, J. Med. Chem., 31:318-322 (1988); and Alexander, J. Med. Chem., 39:480-486 (1996), all of which are incorporated by reference herein.
[0034] Some compounds described herein possess one or more chiral centers. Therefore, the disclosure of each compound includes its separate enantiomers as well as mixtures of the enantiomers. Where multiple chiral centers exist in the compounds, also provided are each possible combination of chiral centers within a compound, as well as all possible enantiomeric and diastereomeric mixtures thereof. All chiral, diastereomeric, and racemic forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials.
[0035] The following definitions are used in connection with the compounds described herein. In general, the number of carbon atoms present in a given group is designated " C_{x} to $\mathrm{C}_{\mathrm{y}}{ }^{\prime \prime}$, where x and y are the lower and upper limits, respectively. The carbon number as used in the definitions herein refers to carbon backbone and carbon branching, but does not include carbon atoms of the substituents, such as alkoxy substitutions and the like. Unless indicated otherwise, the nomenclature of substituents that are not explicitly defined herein is determined by naming from left to right the terminal portion of the functionality followed by the adjacent functionality toward the point of attachment. As used herein, "optionally substituted" means that at least 1 hydrogen atom of the optionally substituted group has been replaced.
[0036] "Alkyl" refers to a hydrocarbon chain that may be straight or branched. In one embodiment, an alkyl contains 1 to 6 (inclusive) carbon atoms. In another embodiment, an alkyl contains 1 to 5 (inclusive) carbon atoms. In a further embodiment, an alkyl contains 1 to 4 (inclusive) carbon atoms. In yet another embodiment, an alkyl contains 1 to 3 (inclusive)
carbon atoms. In still a further embodiment, an alkyl contains 1 or 2 carbon atoms. Examples of alkyl groups that are hydrocarbon chains include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, and hexyl, where all isomers of these examples are contemplated.
[0037] Alkyl groups may also consist of or contain a cyclic alkyl radical, i.e., "carbocyclic ring" or "cycloalkyl". Examples of carbocyclic rings include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like. In one embodiment, the carbocyclic ring is 3 - to 6 -membered. In another embodiment, the carbocyclic ring is a 3 - to 5 -membered ring. In a further embodiment, the carbocyclic ring is 4 - to 6 - membered. In still a further embodiment, the carbocyclic ring is 3- or 4-membered, i.e., cyclopropyl or cyclobutyl. Unless specifically noted, the alkyl groups are unsubstituted, i.e., they contain carbon and hydrogen atoms only. However, when the alkyl group or carbocyclic ring is substituted, it is prefaced with the term "optionally substituted" or "substituted". The optional substituents of the alkyl groups or carbocyclic rings include, without limitation, halogen, CN , $\mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkyl- C_{1} to C_{6} alkoxy, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$, $\mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHC}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl $) \mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl $), \mathrm{NH}_{2}, \mathrm{NH}(\operatorname{aryl}), \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), and $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$.
[0038] "Alkoxy" refers to $\sim \mathrm{O}$ (alkyl), where the alkyl is optionally substituted and is defined above. In one embodiment, an alkoxy contains 1 to 6 (inclusive) carbon atoms or integers or ranges therebetween. In another embodiment, an alkoxy contains 1 to 5 (inclusive) carbon atoms or ranges therebetween. In a further embodiment, an alkoxy contains 1 to 4 (inclusive) carbon atoms. In still a further embodiment, an alkoxy contains 1 to 3 (inclusive) carbon atoms. In still a further embodiment, an alkoxy contains 1 or 2 carbon atoms. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, and butoxy. The alkyl radical of an alkoxy group can be unsubstituted or substituted as defined above for "alkyl".
[0039] "Aryl" refers to an aromatic hydrocarbon group containing carbon atoms. In one embodiment, the aryl contains 6 to 10 carbon atoms, i.e., $6-, 7-, 8$-, 9 - or 10 -membered. In another embodiment, aryl is an aromatic or partly aromatic bicyclic group. In a further
embodiment, the aryl is a phenyl group. In another embodiment, the aryl is naphthyl (such as α-naphthyl or β-naphthyl), 1,2,3,4-tetrahydronaphthyl, or indanyl. An aryl group can be unsubstituted or substituted with one or more groups including, without limitation, halogen, $\mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl $)\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NH}_{2}, \mathrm{NH}\left(\right.$ aryl) or $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$.
[0040] "Halogen" refers to F, Cl, Br and I.
[0041] The term "heteroatom" refers to a sulfur, nitrogen, or oxygen atom. "Heteroaryl" refers to a monocyclic aromatic 5 - or 6 -membered ring containing at least one ring heteroatom. In one embodiment, the heteroaryl contains 1 to 5 carbon atoms (inclusive) or integers or ranges therebetween. In another embodiment, the heteroaryl contains 2 to 5 carbon atoms (inclusive). In a further embodiment, the heteroaryl contains 3 to 5 carbon atoms (inclusive). In still a further embodiment, the heteroaryl contains 4 or 5 carbon atoms. "Heteroaryl" also refers to bicyclic aromatic ring systems wherein a heteroaryl group as just described is fused to at least one other cyclic moiety. In one embodiment, a phenyl radical is fused to a 5- or 6-membered monocyclic heteroaryl to form the bicyclic heteroaryl. In another embodiment, a cyclic alkyl is fused to a monocyclic heteroaryl to form the bicyclic heteroaryl. In a further embodiment, the bicyclic heteroaryl is a pyridine fused to a 5 - or 6-membered monocyclic heteroaryl. In still a further embodiment, the heteroaryl ring has 1 or 2 nitrogen atoms in the ring. In still a further embodiment, the heteroaryl ring has 1 nitrogen atom and 1 oxygen atom. In still a further embodiment, the heteroaryl ring has 1 nitrogen atom and 1 sulfur atom. Examples of heteroaryl groups include, without limitation, furan, thiophene, indole, azaindole, oxazole, thiazole, isoxazole, isothiazole, imidazole, pyridine, pyridone, pyrazole, pyrimidine, pyrazine, pyridazine, pyrrole, oxadiazole such as 1,3,4-oxadiazole, triazole such as 1,2,4-triazole, tetrazole, benzoxazole, benzothiazole, benzofuran, benzisoxazole, benzimidazole, azabenzimidazole, indazole, quinazoline, quinoline, and isoquinoline. A heteroaryl may be unsubstituted or substituted with one or more groups including, without limitation, halogen, $\mathrm{CN}, \mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{3} to C_{8} cycloalkyl, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6}
alkoxy- C_{1} to C_{6} alkoxy, C_{1} or C_{6} alkyl containing 1 to 3 fluorine atoms, C_{1} to C_{6} alkoxy containing 1 to 3 fluorine atoms, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, C_{1} to C_{6} hydroxyalkyl, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHC}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl $) \mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl $), \mathrm{NH}_{2}, \mathrm{NH}($ aryl $), \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) and $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$.
[0042] "Heterocycle" refers to a monocyclic or bicyclic group in which at least 1 ring atom is a heteroatom. A heterocycle may be saturated or partially saturated. In one embodiment, the heterocycle contains 3 to 7 carbon atoms (inclusive) or integers or ranges therebetween. In another embodiment, the heterocycle contains 4 to 7 carbon atoms (inclusive). In a further embodiment, the heterocycle contains 4 to 6 carbon atoms (inclusive). In still a further embodiment, the heterocycle contains 5 or 6 carbon atoms (inclusive). Examples of heterocycles include, but are not limited, to aziridine, oxirane, thiirane, morpholine, thiomorpholine, pyrroline, pyrrolidine, azepane, dihydrofuran, tetrahydrofuran, dihydrothiophene, tetrahydrothiophene, dithiolane, piperidine, 1,2,3,6-tetrahydropyridine-1yl, tetrahydropyran, pyran, thiane, thiine, piperazine, homopiperazine, oxazine, azecane, 2,5-diazabicyclo[2.2.1]heptane, 3,6-diazabicyclo[3.1.1]heptane, diazabicyclo[3.2.1]octane, azabicyclo[2.2.2]octane, azabicyclo[2.2.2]octane, azabicyclo[3.1.1]heptane, azabicyclo[2.2.2]octane, azabicyclo[3.1.1]heptane,
tetrahydroquinoline, perhydroisoquinoline, 5,6-dihydro-4H-1,3-oxazin-2-yl,

2,5-diazabicyclo[2.2.2]octane,	
3,8-diazabicyclo[3.2.1]octane,	6-oxa-3,8-
7-oxa-2,5-diazabicyclo[2.2.2]octane,	2,7-dioxa-5-
2-oxa-5-azabicyclo[2.2.1]heptane-5-yl,	2-oxa-5-
3,6-dioxa-8-azabicyclo[3.2.1]octane,	3-oxa-6-
3-oxa-8-azabicyclo[3.2.1]octan-8-yl,	5,7-dioxa-2-
6,8-dioxa-3-azabicyclo[3.2.1]octane,	6-oxa-3-

8-oxa-3-azabicyclo[3.2.1]octan-3-yl, 2,5-diazabicyclo[2.2.1]heptane-5-yl, 6-azabicyclo[3.2.1]oct-6-yl, 8-azabicyclo[3.2.1]octan-8yl, 3-oxa-7,9-diazabicyclo[3.3.1]nonan-9-yl, 9-oxa-3-azabicyclo[3.3.1]nonan-3-yl, 3-oxa-9-azabicyclo[3.3.1]nonan-9-yl, 3,7-dioxa-9-azabicyclo[3.3.1]nonan-9-yl, 3,4-dihydro-2H-1,4-benzoxazin-7-yl, thiazine, dithiane, and dioxane. In another embodiment, the heterocycle contains 1 or 2 nitrogen atoms. In a further embodiment, the heterocycle contains 1 or 2 nitrogen atoms and 3 to 6 carbon atoms. In still a further embodiment, the heterocycle
contains 1 or 2 nitrogen atoms, 3 to 6 carbon atoms, and 1 oxygen atom. In a still a further embodiment, the heterocycle is 5 - to 8 -membered. In still a further embodiment, the heterocycle is 5 -membered. In still a further embodiment, the heterocycle is 6 -membered. In still a further embodiment, the heterocycle is 8 -membered. A heterocycle may be unsubstituted or substituted with one or more groups including, without limitation, halogen, $\mathrm{CN}, \mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} hydroxyalkyl, C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkyl containing 1 to 3 fluorine atoms, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHC}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), NH_{2}, $\mathrm{NH}($ aryl $), \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl) and $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$.
[0043] "Alkylamino" refers to an NH or N group, the nitrogen atom of the group being attached to 1 or 2 alkyl substituents, respectively, wherein the alkyl is optionally substituted and defined above. The alkylamino is bound through the nitrogen atom of the group. In one embodiment, alkylamino refers to $\leadsto \mathrm{NH}$ (alkyl). In another embodiment, alkylamino refers to $\sim \mathrm{N}($ alkyl)(alkyl), i.e., a "dialkylamino". In a further embodiment, alkylamino refers to $\sim \sim$ $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl). In still a further embodiment, alkylamino refers to $\sim \sim$ $\mathrm{N}($ alkyl)(heterocycle). In still a further embodiment, alkylamino refers to $\sim \mathrm{N}$ (alkyl)(aryl). In still a further embodiment, alkylamino refers to $\sim \mathrm{N}($ alkyl)(heteroaryl). In still a further embodiment, alkylamino refers to $\sim \mathrm{N}($ alkyl)(alkenyl). When the nitrogen atom is bound to two alkyl groups, each alkyl group may be independently selected. In still a further embodiment, two alkyl groups on the nitrogen atom may be taken together with the nitrogen to which they are attached to form a 3- to 4-membered nitrogen-containing heterocycle where up to two of the carbon atoms of the heterocycle can be replaced with $\mathrm{N}(\mathrm{H}), \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\right.$ aryl), N (heteroaryl), $\mathrm{O}, \mathrm{S}(\mathrm{O})$, or $\mathrm{S}(\mathrm{O})_{2}$. Examples of alkylamino include, but are not limited to $\quad \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, \quad \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right), \quad \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}, \quad \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$, $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$, and $\mathrm{N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)\left(\mathrm{CH}_{3}\right)$.
[0044] "Arylamino" refers to an NH or N group, the nitrogen atom of the group being attached to 1 or 2 aryl substituents, respectively, wherein the aryl is optionally substituted and defined above. The arylamino is bound through the nitrogen atom of the group. In one
embodiment, arylamino refers to $\sim \mathrm{NH}$ (aryl). In another embodiment, arylamino refers to $\sim \mathrm{N}($ aryl $)$ (aryl), i.e., a "diarylamino". When the nitrogen atom is bound to two aryl groups, each aryl may be independently selected.
[0045] "Alkylcarbonylamino" refers to $\sim \mathrm{NHC}(\mathrm{O})$ (alkyl) or $\sim \mathrm{N}($ alkyl $) \mathrm{C}(\mathrm{O})$ (alkyl) where the alkyl groups are independently defined and independently optionally substituted as described above. Examples of alkylcarbonylamino include, but are not limited to, $\mathrm{CH}_{3} \mathrm{CONH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONH}$, and $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CONH}$.
[0046] "Ester" refers to $\sim \mathrm{C}(\mathrm{O}) \mathrm{O}$ (alkyl), which is bound through the carbon atom. The alkyl group is defined and optionally substituted as described above. Examples of ester include, without limitation, $\mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}, \mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), \mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, and $\mathrm{C}(\mathrm{O})(\mathrm{O})\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
[0047] "Urea" refers to a group having a $\sim \mathrm{NHC}(\mathrm{O}) \mathrm{NH} \sim \sim$ where one of the nitrogen atoms is bound to an alkyl or heteroaryl group. The alkyl or heteroaryl groups are defined and optionally substituted as described above. Examples of urea include, without limitation, $\mathrm{NHC}(\mathrm{O}) \mathrm{NHCH}_{3}, \quad \mathrm{NHC}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{3}, \quad \mathrm{NHC}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$, and $\mathrm{NHC}(\mathrm{O}) \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$.
[0048] "Alkylaminocarbonyl" refers to $\sim \mathrm{C}(\mathrm{O}) \mathrm{NH}($ alkyl $)$ or $\sim \mathrm{C}(\mathrm{O}) \mathrm{N}($ alkyl)(alkyl) where the alkyl groups are independently defined and independently optionally substituted as described above. Examples of alkylaminocarbonyl include, but are not limited to, $\mathrm{CH}_{3} \mathrm{NHCO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCO}$, and $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NHCO}$.
[0049] It is to be noted that the term "a" or "an" refers to one or more. As such, the terms "a" (or "an"), "one or more," and "at least one" are used interchangeably herein.
[0050] The words "comprise", "comprises", and "comprising" are to be interpreted inclusively rather than exclusively. The words "consist", "consisting", and its variants, are to be interpreted exclusively, rather than inclusively.
[0051] As used herein, the term "about" means a variability of 10% from the reference given, unless otherwise specified.
[0052] The term "regulation" or variations thereof as used herein refers to the ability of a compound of formula (I) to inhibit one or more components of a biological pathway.
[0053] As used herein, the terms "subject" and "patient" are used interchangeably and include a mammal, e.g., a human, mouse, rat, guinea pig, dog, cat, horse, cow, pig, or non-human primate, such as a monkey, chimpanzee, baboon or gorilla.
[0054] As used herein, the terms "disease", "disorder" and "condition" are used interchangeably, to indicate an abnormal state in a subject.
[0055] Unless defined otherwise in this specification, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art and by reference to published texts, which provide one skilled in the art with a general guide to many of the terms used in the present application.
[0056] Pharmaceutical compositions described herein comprise a compound of formula (I) (which as used herein, includes compounds of formulae (II-IV) optionally with other pharmaceutically inert or inactive ingredients. In one embodiment, the pharmaceutically inert or inactive ingredient is one or more pharmaceutically acceptable carrier or excipient. Also contemplated is combining a compound of formula (I) with one or more therapeutic agents, i.e., active ingredients, as described below. In a further embodiment, a compound of formula (I) is combined with one or more inert/inactive ingredients and one or more therapeutic agents.
[0057] The pharmaceutical compositions of the invention comprise an amount of a compound of formula (I) that is effective for regulating $\mathrm{P}_{2} \mathrm{X}_{3}$ or $\mathrm{P} 2 \mathrm{X}_{2 / 3}$, such as in the treatment of pain in a subject. Specifically, the dosage of the compound of formula (I) to achieve a therapeutic effect will depend on factors such as the formulation, pharmacological potency of the drug, age, weight and sex of the patient, condition being treated, severity of the patient's symptoms, specific compound of formula (I), route of delivery, and response pattern of the patient. It is also contemplated that the treatment and dosage of the compound of formula (I) may be administered in unit dosage form and that one skilled in the art would adjust the unit dosage form accordingly to reflect the relative level of activity. The decision as to the particular dosage to be employed (and the number of times to be administered per day) is within the discretion of the ordinarily-skilled physician, and may be varied by titration of the dosage to the particular circumstances to produce the therapeutic effect. Further, one of skill in the art would be able to calculate any changes in effective amounts of any one of the compounds of the compositions due to changes in the composition components or dilutions. In one embodiment, the compositions may be diluted 2 -fold. In another embodiment, the compositions may be diluted 4 -fold. In a further embodiment, the compositions may be diluted 8 -fold.
[0058] In one embodiment, the therapeutically effective amount is about 0.0001% to about $25 \% \mathrm{w} / \mathrm{v}$ (i.e., weight of drug per mL of formulation). In another embodiment, the therapeutically effective amount is less than about $20 \% \mathrm{w} / \mathrm{v}$, about $15 \% \mathrm{w} / \mathrm{v}$, about $10 \% \mathrm{w} / \mathrm{v}$, about $5 \% \mathrm{w} / \mathrm{v}$, or about $1 \% \mathrm{w} / \mathrm{v}$. In another embodiment, the therapeutically effective amount is about 0.0001% to about $10 \% \mathrm{w} / \mathrm{v}$. In a further embodiment, the therapeutically effective amount is about 0.005 to about $5 \% \mathrm{w} / \mathrm{v}$. In still a further embodiment, the therapeutically effective amount is about 0.01 to about $5 \% \mathrm{w} / \mathrm{v}$. In still a further embodiment, the therapeutically effective amount is about $0.01 \% \mathrm{w} / \mathrm{v}$, about $0.05 \% \mathrm{w} / \mathrm{v}$, about $0.1 \% \mathrm{w} / \mathrm{v}$, about $0.2 \% \mathrm{w} / \mathrm{v}$, about $0.3 \% \mathrm{w} / \mathrm{v}$, about $0.4 \% \mathrm{w} / \mathrm{v}$, about $0.5 \% \mathrm{w} / \mathrm{v}$, about $0.6 \% \mathrm{w} / \mathrm{v}$, about $0.7 \% \mathrm{w} / \mathrm{v}$, about $0.8 \% \mathrm{w} / \mathrm{v}$, about $0.9 \% \mathrm{w} / \mathrm{v}$, about $1 \% \mathrm{w} / \mathrm{v}$, about $2 \% \mathrm{w} / \mathrm{v}$, about $3 \% \mathrm{w} / \mathrm{v}$, about $4 \% \mathrm{w} / \mathrm{v}$, or about $5 \% \mathrm{w} / \mathrm{v}$. In one embodiment, the therapeutically effective amount of the compound of formula (I) is about $0.2 \% \mathrm{w} / \mathrm{v}$. In another embodiment, the therapeutically effective amount is about $0.5 \% \mathrm{w} / \mathrm{v}$.
[0059] The therapeutically effect amount of the compound of formula (I) may, therefore, be about 1 mg to about 1000 mg per dose based on a 70 kg mammalian, for example human, subject. In another embodiment, the therapeutically effective amount is about 2 mg to about 250 mg per dose. In a further embodiment, the therapeutically effective amount is about 5 mg to about 100 mg . In yet a further embodiment, the therapeutically effective amount is about 25 mg to 50 mg , about 20 mg , about 15 mg , about 10 mg , about 5 mg , about 1 mg , about 0.1 mg , about 0.01 mg , about 0.001 mg .
[0060] The therapeutically effective amounts may be provided on regular schedule, i.e., on a daily, weekly, monthly, or yearly basis or on an irregular schedule with varying administration days, weeks, months, etc. Alternatively, the therapeutically effective amount to be administered may vary. In one embodiment, the therapeutically effective amount for the first dose is higher than the therapeutically effective amount for one or more of the subsequent doses. In another embodiment, the therapeutically effective amount for the first dose is lower than the therapeutically effective amount for one or more of the subsequent doses. Equivalent dosages may be administered over various time periods including, but not limited to, about every 2 hours, about every 6 hours, about every 8 hours, about every 12 hours, about every 24 hours, about every 36 hours, about every 48 hours, about every 72 hours, about every week, about every 2 weeks, about every 3 weeks, about every month, about every 2 months, about every 3 months and about every 6 months. The number and
frequency of dosages corresponding to a completed course of therapy will be determined according to the judgment of a health-care practitioner. The therapeutically effective amounts described herein refer to total amounts administered for a given time period; that is, if more than one compound of formula (I) is administered, the therapeutically effective amounts correspond to the total amount administered.
[0061] The compound of formula (I) may be administered by any route, taking into consideration the specific condition for which it has been selected. The compounds of formula (I) may be delivered orally, by injection, inhalation (including orally, intranasally and intratracheally), ocularly, transdermally (via simple passive diffusion formulations or via facilitated delivery using, for example, iontophoresis, microporation with microneedles, radio-frequency ablation or the like), intravascularly, cutaneously, subcutaneously, intramuscularly, sublingually, intracranially, epidurally, rectally, intravesically, and vaginally, among others.
[0062] In one embodiment, the compound of formula (I) may be administered by injection, including microinjection, transdermally or topically. In one embodiment, the amount of the compound of formula (I) is about $0.05 \% \mathrm{w} / \mathrm{w}$ to about $10 \% \mathrm{w} / \mathrm{w}$ of the preparation depending on the route of administration. In one embodiment, the compound of formula (I) is present in a concentration of about $0.1 \% \mathrm{w} / \mathrm{w}$ to about $3 \% \mathrm{w} / \mathrm{w}$. These compositions may also contain stabilizing agents, antibacterial agents, buffers and may be manufactured in different dosage unit ampoules or bottles. When for ocular use, the amount of the compound of formula (I) can be about $0.05 \% \mathrm{w} / \mathrm{w}$ to about $2.5 \% \mathrm{w} / \mathrm{w}$. Compositions for injection or infusion may be prepared as an aqueous suspension or solution.
[0063] When used for dermal anesthesia, the amount of the compound of formula (I) can be about $0.1 \% \mathrm{w} / \mathrm{w}$ to about $10 \% \mathrm{w} / \mathrm{w}$. When used for non-ocular, topical (e.g., oral, nasal, rectal, urethral, vaginal) administration the amount of the compound of formula (I) can be about $0.5 \% \mathrm{w} / \mathrm{w}$ to about $5 \% \mathrm{w} / \mathrm{w}$. When used as in an injection, the amount of the compound of formula (I) can be about $0.25 \% \mathrm{w} / \mathrm{w}$ to about $3 \% \mathrm{w} / \mathrm{w}$ for injections. When used for infusions (e.g., for epidural, spinal or regional anesthesia), the amount of the compound of formula (I) can be about $0.1 \% \mathrm{w} / \mathrm{w}$ to about $3 \% \mathrm{w} / \mathrm{w}$.
[0064] In one embodiment, the compound of formula (I) may be administered topically to the eye, e.g., as solutions, suspensions or ointments. Examples of ophthalmically compatible carriers which may be used include, without limitation, an aqueous solution, such as saline
solution, oil solution or ointments containing ophthalmically compatible preservatives, surfactants, buffers, and viscosity regulators. These compositions may also contain stabilizing agents, antibacterial agents, and may be manufactured in different dosage units, suitable for ocular administration. Drug inserts, either soluble or insoluble, may also be used.
[0065] In another embodiment, the compound of formula (I) may be administered by injection. Solutions for injection or infusion may be prepared as aqueous solutions. In one embodiment, the compound of formula (I) is present in a concentration of about $0.1 \% \mathrm{w} / \mathrm{w}$ to about $3 \% \mathrm{w} / \mathrm{w}$. These solutions may also contain stabilizing agents, antibacterial agents, buffers and may be manufactured in different dosage unit ampoules or bottles.
[0066] In a further embodiment, the compound of formula (I) may be administered rectally. Dosage units for rectal administration may be prepared in the form of ointments or suppositories, which contain the compound of formula (I) in a mixture with a neutral fat base, or they may be prepared in the form of gelatin-rectal capsules that contain the compound of formula (I) in a mixture with, e.g., a vegetable oil or paraffin oil. Ointments, suppositories or creams containing at least one compound of formula (I) are useful for the treatment of hemorrhoids.
[0067] In still another embodiment, the compound of formula (I) may be administered transdermally. A variety of transdermal delivery systems are known. For use in these systems, a compound of formula (I) may be admixed with a variety of excipients which may include, e.g., pH adjusters, preservatives, and/or penetration enhancers in order to form a solution, ointment, cream, lotion, or gel. Such a composition may form a constituent of a transdermal delivery system ("patch" etc.).
[0068] A transdermal delivery system may be selected which permits or assists a compound of the invention in passing through the dermal layer and to the targeted area, such as muscular tissues or a perineural space. Such systems may include formulation with skin penetration enhancers. Examples of skin penetration enhancers include physical enhancers (ultrasound, iontophoresis, electroporation, magnetophoresis, microneedle), vesicles, particulate systems (liposome, niosome, transfersome, microemulsion, solid lipid nanoparticle), and chemical enhancers (sulfoxides, azones, glycols, alkanols, terpenes, etc.). Further examples of chemical enhancers include, e.g., propylene glycol, polyethylene glycol, isopropanol, ethanol, oleic acid, N-methylpyrrolidone, which increase the permeability of the skin to the compounds, and permit the compounds to penetrate through the skin to deeper
tissues. See, Sagie \& Kohane, "Prolonged Sensory-Selective Nerve Blockade", PNAS, 2010(8): 3740-3745, 2010, which is herein incorporated by reference, for additional examples of chemical enhancers.
[0069] As a further embodiment, the compound of formula (I) may be instilled via direct instillation into the bladder and/or urothelium. In one example, a pharmaceutical composition containing a compound of formula (I) and one or more carriers or excipients is formulated for instillation. For example, the compound of formula (I) may be instilled as a solution. In a further example, the compound instilled may be placed into said bladder or urothelium as an extended-release formulation. A variety of extended-release formulations may be utilized for this purpose and include, without limitation, solution, suspension, gel or other solid dosage form containing reservoirs, a drug coated material, a drug impregnated material, a liposomal-drug formulation, among others.
[0070] The pharmaceutical compositions containing a compound of formula (I) may be formulated neat or with one or more pharmaceutical carriers and/or excipients for administration. The amount of the pharmaceutical carrier(s) is determined by the solubility and chemical nature of the compound of formula (I), chosen route of administration and standard pharmacological practice. The pharmaceutical carrier(s) may be solid or liquid and may incorporate both solid and liquid carriers/matrices. A variety of suitable liquid carriers is known and may be readily selected by one of skill in the art. Such carriers may include, e.g., dimethylsulfoxide (DMSO), saline, buffered saline, cyclodextrin, hydroxypropylcyclodextrin (HPßCD), n-dodecyl- β-D-maltoside (DDM) and mixtures thereof. Similarly, a variety of solid (rigid or flexible) carriers and excipients are known to those of skill in the art. Such carriers may also be designed so as to undergo a state transition when injected into the bladder (e.g., liquid to gel, liquid to solid, gel to solid); such materials are known to those skilled in the art. Such carriers may also comprise a membrane, for example comprising a thermoelastic polymer, which defines a reservoir containing a solid or liquid composition. Such carriers may also comprise a thermoelastic polymer matrix, in which a composition which contains a compound of formula (I) is embedded.
[0071] The compounds of formula (I) can also be administered together with other-membrane stabilizers (local anesthetics), for example to form eutectic mixtures.
[0072] Although the compound of formula (I) may be administered alone, it may also be administered in the presence of one or more pharmaceutical carriers that are physiologically
compatible. The carriers may be in dry or liquid form and must be pharmaceutically acceptable. Liquid pharmaceutical compositions may be sterile solutions or suspensions. When liquid carriers are utilized, they may be sterile liquids. Liquid carriers may be utilized in preparing solutions, suspensions, emulsions, syrups and elixirs. In one embodiment, the compound of formula (I) is dissolved a liquid carrier. In another embodiment, the compound of formula (I) is suspended in a liquid carrier. One of skill in the art of formulations would be able to select a suitable liquid carrier, depending on the route of administration. The compound of formula (I) may alternatively be formulated in a solid carrier. In one embodiment, the composition may be compacted into a unit dose form, i.e., tablet or caplet. In another embodiment, the composition may be added to unit dose form, i.e., a capsule. In a further embodiment, the composition may be formulated for administration as a powder. The solid carrier may perform a variety of functions, i.e., may perform the functions of two or more of the excipients described below. For example, a solid carrier may also act as a flavoring agent, lubricant, solubilizer, suspending agent, filler, glidant, compression aid, binder, disintegrant, or encapsulating material. In one embodiment, a solid carrier acts as a lubricant, solubilizer, suspending agent, binder, disintegrant, or encapsulating material. In another embodiment, the carrier comprises a thermoelastic polymer defining a reservoir containing at a minimum, at least one compound of formula (I) as a solid or liquid composition. In a further embodiment, such carriers comprise a thermoelastic polymer matrix, in which a composition described herein is embedded.
[0073] The composition may also be sub-divided to contain appropriate quantities of the compound of formula (I). For example, the unit dosage can be packaged compositions, e.g., packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids.
[0074] In one embodiment, compositions described herein optionally contain one or more carriers and one or more excipients, and one or more compounds of formula (I). Examples of suitable excipients include without limitation, surfactants, adjuvants, antioxidants, binders, buffers, coatings, coloring agents, compression aids, diluents, disintegrants, emulsifiers (e g., polyoxyethylene fatty acid esters), emollients, encapsulating materials, fillers, flavoring agents, glidants, granulating agents, lubricants, metal chelators, osmo-regulators, pH adjustors (e.g., sodium hydroxide), preservatives, solubilizers, sorbents, stabilizing agents, sweeteners (such as saccharin), surfactants, suspending agents, syrups, thickening agents (e.g., carboxypolymethylene or hydroxypropylmethylcellulose), penetration enhancers (e.g.,
hydroxypolyethoxydodecane, DMSO, DMAC, DDM, etc.) or viscosity regulators (such as polymers to increase viscosity). See, for example, the excipients described in the "Handbook of Pharmaceutical Excipients", $5^{\text {th }}$ Edition, Eds.: Rowe, Sheskey, and Owen, APhA Publications (Washington, DC), December 14, 2005, which is incorporated herein by reference.
[0075] In one embodiment, the compositions may be utilized as inhalants. For this route of administration, compositions may be prepared as fluid unit doses using a compound of formula (I) and a vehicle for delivery by an atomizing spray pump or by dry powder for insufflation.
[0076] In another embodiment, the compositions may be utilized as aerosols, i.e., oral or intranasal. For this route of administration, the compositions are formulated for use in a pressurized aerosol container together with a gaseous or liquefied propellant, e.g., dichlorodifluoromethane, carbon dioxide, nitrogen, propane, and the like. Also provided is the delivery of a metered dose in one or more actuations.
[0077] In another embodiment, the compositions may be administered by a modified-release delivery device. "Modified-release" as used herein refers to delivery of a compound of formula (I) which is controlled, for example over a period of at least about 8 hours (e.g., extended delivery) to at least about 12 hours (e.g., sustained delivery). Such devices may also permit immediate release (e.g., therapeutic levels achieved in under about 1 hour, or in less than about 2 hours). Those of skill in the art know suitable modified-release delivery devices. For use in such modified-release delivery devices, the compound of formula (I) is formulated as described herein.
[0078] Suitable modified release delivery devices include drug-eluting implants. Such implants can comprise a thermoelastic polymer matrix, such as a silicon or ethylene vinyl acetate matrix, wherein one or more compounds of formula (I), optionally with one or more excipients, is embedded. See, e.g., US Patent No. 7,736,665 and US Patent Publication No. US-2011/0280922, the disclosures of which are herein incorporated by reference. Other drug-eluting implants can comprise an "osmotic pump" or other mechanism by which a solution comprising one or more compounds of formula (I) (optionally with one or more excipients) contained within the device is forced out, for example through the implant walls or through one or more apertures, by osmotic pressure which builds within the device once it is implanted into a subject. See, e.g., US Patent Nos. 5,035,891 and 6,464,688, the
disclosures of which are herein incorporated by reference. Still other drug-eluting implants can comprise a hydrogel such as a polymethacrylate-based polymer (e.g., US Patent Nos. $5,292,515$ and $5,266,325$, the disclosures of which are herein incorporated by reference), or a thermoelastic polymer, such as a polyurethane (e.g., US Patent Nos. 7,858,110 and $7,842,303$, the disclosures of which are herein incorporated by reference), which define a reservoir containing a solid or liquid composition comprising one or more compounds of formula (I) optionally with one or more excipients. Still other drug-eluting implants can comprise a bio-degradable or bio-erodable polymer and at least one or more compounds of formula (I), optionally with one or more excipients. See, e.g., US Patent Nos. 4,906,474 and $5,633,002$, the disclosures of which are herein incorporated by reference.
[0079] Modified release of the compounds of formula (I) may also be achieved by injecting a composition comprising one or more of these compounds into the bladder tissue (e.g., into the urothelium or muscularis propria) with a device that can be employed via an endoscope inserted into the bladder or percutaneously. For example, one or more compounds of formula (I) can be injected into the bladder tissue via a needle, or a needleless device as described in US Patent Publication No. US-2011/0046600, the disclosure of which is incorporated by reference. A suitable needleless injection device includes the JetTouch ${ }^{\text {TM }}$ platform (American Medical Systems; Minnetonka, Minnesota). The injected compounds can form a depot, and in certain embodiments, the one or more compounds of formula (I) can be encapsulated in a bio-degradable or bio-erodable polymer, for example as described in US Patent Nos. 5,480,656 and $6,036,976$, the disclosures of which are incorporated by reference.
[0080] Modified release of the compounds of formula (I) may also be achieved by instilling a composition comprising one or more compounds of formula (I) and a material which solidifies or gels, for example once instilled into the bladder or upon contact with the bladder urothelium, to coat at least a portion of the bladder wall. The one or more compounds of formula (I) can then elute from the solidified or gelled material. See, e.g., US Patent Nos. $6,894,071 ; 5,575,815$ and $6,039,967$, the disclosures of which are incorporated by reference.
[0081] In still a further embodiment, the compositions may be administered transdermally, i.e., via the use of a drug-eluting patch. In one embodiment, the patch is an "iontophoretic" transdermal patch in which one or more medication(s) is delivered using a simple or more sophisticated, e.g., microprocessor-controlled, electrical current using, for
example, an on-board battery. In still a further embodiment, the patch is a "microneedle" transdermal patch which contains microneedles coated with or containing (in dissolvable or non-dissolvable form) a pharmaceutical composition of the invention. See, e.g., US Patent Nos. $7,798,987$ and $7,537,795$, the disclosures of which are herein incorporated by reference. The microneedles can themselves be dissolvable or non-dissolvable; see, for example, the "microneedle" technology described in Sullivan, "Dissolving Polymer Microneedle Patches for Influenza Vaccination", Nature Medicine, 16:915-920 (July 18, 2010 online publication) and Lee, "Dissolving Microneedle Patch for Transdermal Delivery of Human Growth Hormone", Small, 7(4):531-539 (January 4, 2011 online publication), which are herein incorporated by reference. Other suitable transdermal delivery systems include the radio-frequency ablations systems described in Sintov, "Radiofrequency-Driven Skin Microchanneling as a New Way for Electrically Assisted Transdermal Delivery of Hydrophilic Drugs", Controlled Release 89: 311-320 (2003), and US Patent No. 7,558,625, the disclosures of which are herein incorporated by reference.
[0082] Further examples of transdermal patches useful for administration of the compounds of formula (I) include those described in US Patent Nos. 5,411,738 and 5,827,528 and Prausnitz and Langer, "Transdermal drug delivery", Nature Biotechnology, 26(11):1261-1268, November 2006, which are herein incorporated by reference. In one embodiment, a patch is applied via a suitable adhesive on the skin, where it remains in place for at least one hour. In a further embodiment, the patch remains in place for about 1 hour and is replaced weekly, for a total of about 2 or about 3 hours wear time. In another embodiment, the patch remains in place for about 2 hours. In a further embodiment, the patch remains in place for about 3 hours. In still another embodiment, the patch remains in place for about 4 hours. In yet another embodiment, the patch remains in place for longer or shorter periods of time.
[0083] Also contemplated is the administration of the compounds of formula (I) with other medication(s) or therapeutic agent(s). In one embodiment, the compounds of formula (I) are combined with other medications or therapeutic agents in a single composition. In other embodiments, the compounds of formula (I) may be administered in one or more separate formulations from other compounds of formula (I), or other medications or therapeutic agents as described below.
[0084] In one embodiment, the compounds of the invention may be utilized for regulating $\mathrm{P} 2 \mathrm{X}_{3}$ or $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ (such as treating pain) when combined with a TRPV1 receptor activator. The term "TRPV1 receptor activator" as used herein refers to any agent or stimulus that activates TRPV1 receptors on nociceptors or puriceptors and allows for entry of at least one inhibitor of voltage-gated ion (e.g., sodium or calcium) channels. In one embodiment, the TRPVI receptor activator includes, but is not limited to, capsaicin, dihydrocapsaicin and nordihydrocapsaicin, lidocaine, articaine, procaine, tetracaine, mepivicaine, bupivicaine, eugenol, camphor, clotrimazole, arvanil (N -arachidonoylvanillamine), anandamide, 2-aminoethoxydiphenyl borate (2APB), AM404, resiniferatoxin, phorbol 12-phenylacetate 13-acetate 20-homovanillate (PPAHV), olvanil (NE 19550), OLDA (N-oleoyldopamine), N -arachidonyldopamine (NADA), 6 '-iodoresiniferatoxin \quad (6'-IRTX), \quad Cl 8 N -acylethanolamines, lipoxygenase derivatives (such as 12-hydroperoxyeicosatetraenoic acid), inhibitor cysteine knot (ICK) peptides (vanillotoxins), MSKl 95 (N-[2-(3,4-dimethylbenzyl)-3-(pivaloyloxy)propyl]-2-[4-(2-aminoethoxy)-3-methoxyphenyl]acetamide), JYL79 (N-[2-(3,4-dimethylbenzyl)-3-(pivaloyloxy)propyl]-N'-(4-hydroxy-3methoxybenzyl)thiourea), hydroxy- α-sanshool, 2-aminoethoxydiphenyl borate, 10-shogaol, oleylgingerol, oleylshogaol, SU200 (N-(4-tert-butylbenzyl)-N'-(4-hydroxy-3methoxybenzyl)thiourea) nonivamide, and fatty acyl amides of tetrahydroisoquinolines. In another embodiment, the TRPVl receptor activator is lidocaine, aprindine, benzocaine, butacaine, cocaine, dibucaine, encainide, mexiletine, oxetacaine (oxethazaine), prilocaine, proparacaine, procainamide, n -acetylprocainamide, chloroprocaine (nesacaine, nescaine), dyclonine, etidocaine, levobupivacaine, ropivacaine, cyclomethycaine, dimethocaine (larocaine), propoxycaine, trimecaine, and sympocaine. In a further embodiment, the TRPV1 receptor activator is lidocaine. In another embodiment, the TRPV1 activator may be a detergent or a surfactant, examples of which may be found in commonly-used hygiene products such as soaps and shampoos (e.g., sodium lauryl sulfate). See, Lilja, "Surfactant-Induced TRPV1 activity - A Novel Mechanism for Eye Irritation?" Technological Sciences, 99(1):174-180, 2007, which is incorporated herein by reference. In another embodiment, the TRPV1 receptor activator is heat or inflammation (which is known to activate TRPV1 receptors).
[0085] In one embodiment, the therapeutically effective amount of the TRPV1 receptor activator is about 0.0001% to about $10 \% \mathrm{w} / \mathrm{v}$. One of skill in the art would readily understand
that the recited therapeutically effective amount is based on the free base of the TRPV1 receptor activator. By using this information and skill in the art, one would be able to determine the amount of the corresponding TRPV1 receptor activator salt for use in the compositions and methods described herein. In another embodiment, the therapeutically effective amount is less than about $10 \% \mathrm{w} / \mathrm{v}$, about $9 \% \mathrm{w} / \mathrm{v}$, about $8 \% \mathrm{w} / \mathrm{v}$, about $7 \% \mathrm{w} / \mathrm{v}$, about $6 \% \mathrm{w} / \mathrm{v}$, about $5 \% \mathrm{w} / \mathrm{v}$, about $4 \% \mathrm{w} / \mathrm{v}$, about $3 \% \mathrm{w} / \mathrm{v}$, about $2 \% \mathrm{w} / \mathrm{v}$, or about $1 \% \mathrm{w} / \mathrm{v}$. In another embodiment, the therapeutically effective amount is about 0.1% to about $5 \% \mathrm{w} / \mathrm{v}$. In a further embodiment, the therapeutically effective amount is about 0.5 to about $3 \% \mathrm{w} / \mathrm{v}$. In yet another embodiment, the therapeutically effective amount is about 0.5 to about 2% w / v. In another embodiment, the therapeutically effective amount of a TRPV1 receptor activator is about $2 \% \mathrm{w} / \mathrm{v}$. In another embodiment, the therapeutically effective amount is about $1 \% \mathrm{w} / \mathrm{v}$. In a further embodiment, the therapeutically effective amount is about 0.5% w/v.
[0086] The therapeutically effect amount of the TRPV1 receptor activator may, therefore, be about 0.001 mg to about 100 mg per dose based on a 70 kg mammalian subject. In another embodiment, the therapeutically effective amount is about 0.1 mg to about 25 mg per dose. In a further embodiment, the therapeutically effective amount is about 1 mg to about 5 mg . In yet a further embodiment, the therapeutically effective amount is about 0.1 mg , about 0.5 mg , about 1 mg , about 2 mg , about 3 mg , about 4 mg , about 5 mg , about 6 mg , about 7 mg , or about 8 mg .
[0087] Provided herein also is a composition containing a compound of formula (I) and lidocaine. In one embodiment, the composition contains about 0.01% to about $1 \% \mathrm{w} / \mathrm{v}$ of a compound of formula (I) and about 0.1% to about $5 \% \mathrm{w} / \mathrm{v}$ of lidocaine. In another embodiment, the composition contains about 0.1% to about $0.7 \% \mathrm{w} / \mathrm{v}$ of a compound of formula (I) and about 1% to about $3 \% \mathrm{w} / \mathrm{v}$ of lidocaine. In a further embodiment, the composition contains about 0.2% to about $0.5 \% \mathrm{w} / \mathrm{v}$ of a compound of formula (I) and about 1% to about $3 \% \mathrm{w} / \mathrm{v}$ of lidocaine. In yet another embodiment, the composition contains about 0.2% to about $0.5 \% \mathrm{w} / \mathrm{v}$ of a compound of formula (I) and about $2 \% \mathrm{w} / \mathrm{v}$ of lidocaine. In still another embodiment, the composition contains about $0.2 \% \mathrm{w} / \mathrm{v}$ of a compound of formula (I) and about $2 \% \mathrm{w} / \mathrm{v}$ of lidocaine. In another embodiment, the composition contains about 0.5% w / v of a compound of formula (I) and about $2 \% \mathrm{w} / \mathrm{v}$ of lidocaine. As discussed above, these
compositions may be further diluted. In one embodiment, these compositions may be diluted 2 -fold. In another embodiment, these compositions may be diluted 4 -fold.
[0088] Also contemplated for use in the pharmaceutical combinations and methods described below are inhibitors of voltage-gated ion channels. In one embodiment, the voltage-gated ion channels are sodium or calcium ion channels. In a further embodiment, the voltage-gated sodium channel inhibitor includes, without limitation, QX-314, N-methylprocaine (QX-222), N-octyl-guanidine, 9-aminoacridine, and pancuronium. In another embodiment, the inhibitor of voltage-gated calcium channels includes, but is not limited to, D-890 (quaternary methoxyverapamil) and CERM 11888 (quaternary bepridil). In a further embodiment, voltage-gated ion channel inhibitors such as riluzole, mexilitine, phenytoin, carbamazepine, procaine, tocainide, prilocaine, diisopyramide, bencyclane, quinidine, bretylium, lifarizine, lamotrigine, flunarizine, articaine, bupivicaine, mepivicaine, fluspirilene, orphenadrine, phenbenzamine, bepridil, pimozide, penfluridol, fluspirilene, propiverine, disopyramide, methadone, tolterodine, tridihexethyl salts, tripelennamine, mepyramine, brompheniramine, chlorpheniramine, dexchlorpheniramine, carbinoxamine, levomethadyl acetate, gallopamil, verapamil, devapamil, tiapamil, emopamil, dyclonine, pramoxine, lamotrigine, mibefradil, gabapentin, amiloride, diltiazem, nifedipine, nimodipine, nitrendipine, cocaine, mexiletine, propafenone, quinidine, oxethazaine, articaine, riluzole, bencyclane, lifarizine, and strychnine may be combined with the compound of formula (I).
[0089] Membrane permeable inhibitors of voltage-gated ion channels may also be utilized in combination with the compound of formula (I) in the compositions, combinations, or methods described herein. In one embodiment, the membrane permeable inhibitor of voltage-gated ion channels includes, but is not limited to, cocaine, carbamazepine, disopyramide, lamotrigine, procainamide, phenytoin, oxcarbazepine, topiramate, zonisamide, tetracaine, ethyl aminobenzoate, prilocaine, disopyramide phosphate, flecainide acetate, mexiletine, propafenone, quinidine gluconate, quinidine polygalacturonate, chloroprocaine, dibucaine, dyclonine, mepivacaine, pramoxine, procaine, tetracaine, oxethazaine, propitocaine, levobupivacaine, bupivacaine, lidocaine, moricizine, tocainide, proparacaine, ropivacaine, quinidine sulfate, encainide, ropivacaine, etidocaine, moricizine, quinidine, encainide, flecainide, tocainide, fosphenytoin, chloroprocaine, dyclonine, L-(-)-l-butyl-2',6'pipecoloxylidide, and pramoxine.
[0090] Additionally, one or more agents may be used to treat pain, i.e., analgesics, may be used in conjunction with a combination of the invention in the methods, compositions, and kits described herein. Such agents include, but are not limited to, non-steroidal anti-inflammatory drugs (NSAIDs), opioids, tricyclic antidepressants, amine transporter inhibitors, and anticonvulsants (such as gabapentinoids).
[0091] The compound of formula (I) may be administered together with a vasoconstrictor, e.g., epinephrine or vasopressin, when utilized in injectable solutions.
[0092] The compound of formula (I) may be combined with glucose or dextrose when utilized for infusion or as a regional analgesic or anti-pruritic.
[0093] Further, the compound of formula (I) may be combined with thickening agents to form a jelly, or may also contain penetration enhancers, for use in topical or dermal applications such as for urogenital topical procedures.
[0094] Sprays for topical anesthesia of the mouth and oropharynx may contain the compound of formula (I), saccharin and/or alcohol.
[0095] The compound of formula (I) may also be formulated as an ointment for administration to accessible mucous membranes.
[0096] Also provided herein are regimens, kits or packages of pharmaceutical formulations comprising the compounds of formula (I) or compositions described herein. The kits may be organized to indicate a single formulation or combination of formulations to be taken at a designated time or times.
[0097] The kit may further comprise packaging or a container with the compound of formula (I) formulated for the delivery route. Suitably, the kit contains instructions on dosing and an insert regarding the compound of formula (I). Optionally, the kit may further contain instructions for monitoring local or circulating levels of product and materials for performing such assays including, e.g., reagents, well plates, containers, markers or labels, and the like. Such kits are readily packaged in a manner suitable for treatment of an indication. For example, the kit may also contain instructions for use of a patch, spray pump or other delivery device. Other suitable components to include in such kits will be readily apparent to one of skill in the art, taking into consideration the indication and the delivery route and may contain lubricants, antiseptic solutions and local anesthetic agents to facilitate the placement of the delivery device.
[0098] The compounds of formula (I) or compositions described herein can be a single dose or for continuous or periodic discontinuous administration. For continuous administration, a package or kit can include the compound of formula (I) in each dosage unit, e.g., solution, lotion, tablet, pill, drug-eluting unit/patch or other unit described above or utilized in drug delivery, and optionally instructions for administering the doses less-thandaily, daily, weekly, or monthly, for a predetermined length of time or as prescribed. When the compound of formula (I) is to be delivered periodically in a discontinuous fashion, a package or kit can include placebos during periods when the compound of formula (I) is not delivered. When varying concentrations of a composition, of the components of the composition, or the relative ratios of the compounds of formula (I) or agents within a composition over time, a package or kit may contain a sequence of dosage units which provide the variability.
[0099] A number of packages or kits are known in the art for dispensing pharmaceutical agents for periodic oral use. In one embodiment, the package has indicators for each period. In another embodiment, the package is a foil or blister package, labeled ampoule, vial or bottle.
[0100] The packaging means of a kit may itself be geared for administration, such as an inhaler, syringe, pipette, eye dropper, catheter, cytoscope, trocar, cannula, pressure ejection device, or other such apparatus, from which the formulation may be applied to an affected area of the body, such as the lungs, injected into a subject, delivered to bladder tissue or even applied to and mixed with the other components of the kit.
[0101] One or more components of these kits also may be provided in dried or lyophilized forms. When reagents or components are provided as a dried form, reconstitution generally is by the addition of a suitable solvent. It is envisioned that the solvent also may be provided in another package.
[0102] The kits may include a means for containing the vials or other suitable packaging means in close confinement for commercial sale such as, e.g., injection or blow-molded plastic containers into which the vials are retained. Irrespective of the number or type of packages and as discussed above, the kits also may include, or be packaged with a separate instrument for assisting with the injection/administration or placement of the composition within the body of an animal. Such an instrument may be an inhaler, syringe, pipette, forceps,
measuring spoon, eye dropper, catheter, cytoscope, trocar, cannula, pressure-delivery device or any such medically approved delivery means.
[0103] In one embodiment, a kit is provided and comprises a compound of formula (I). The compound of formula (I) may be in the presence or absence of one or more of the carriers or excipients described above. The kit may optionally contain instructions for administering the compound of formula (I) to a subject having pain.
[0104] In a further embodiment, a kit is provided and comprises a compound of formula (I) in a second dosage unit, and one or more of the carriers or excipients described above in a third dosage unit. The kit may optionally contain instructions for administering the compound of formula (I) to a subject having pain.
[0105] The compound of formula (I) may also be administered prior to, concurrently with, or subsequent to administration of additional therapeutic agents or non-medication related therapies. In one embodiment, the compounds of formula (I) may be administered in conjunction with nerve stimulation, e.g., transcutaneous electrical nerve stimulation (TENS) or sacral nerve stimulation.
[0106] The compounds described herein are useful in regulating or modulating conditions which are associated with the $\mathrm{P}_{2} \mathrm{X}_{3}$ and/or $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ pathway. The term "regulation," "modulation" or variations thereof as used herein are used interchangeably and refer to the ability of a compound of formula (I) to inhibit or reduce the activity of one or more components of a biological pathway. In one embodiment, "regulation" refers to inhibition of $\mathrm{P}_{2} \mathrm{X}_{3}$ activity. In another embodiment, "regulation" refers to inhibition of $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ activity. In a further embodiment, regulation refers to dual inhibition of $\mathrm{P} 2 \mathrm{X}_{3}$ and $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ activity.
[0107] Accordingly, the methods, compositions, and kits of the invention can be used to treat pain resulting from a number of conditions. The term "pain" as used herein includes all types of pain. In one embodiment, the pain may be acute or chronic. In another embodiment, the pain may be nociceptive, dysfunctional, idiopathic, neuropathic, somatic, central, visceral, inflammatory, and/or procedural. For example, the pain may be from a migraine, back pain, neck pain, gynecological pain, pre-labor or labor pain, orthopedic pain, post-stroke pain, post-surgical or procedural pain, post herpetic neuralgia, sickle cell crises, interstitial cystitis, urological pain (such as urethritis), dental pain, headache, pain from a wound or from a medical procedure such as surgery (such as bunionectomy or hip, knee or other joint replacement), suturing, setting a fracture, biopsy, and the like. Pain may also occur in patients
with cancer, which may be due to multiple causes, such as inflammation, nerve compression, and mechanical forces resulting from tissue distension as a consequence of invasion by a tumor and tumor metastasis into bone or other tissues. In one embodiment, the cancer is bone cancer.
[0108] In one embodiment, the pain is neuropathic pain, such as post-herpetic neuralgia. In another embodiment, the pain is inflammatory pain. In a further embodiment, the pain is nociceptive pain. In still another embodiment, the pain is procedural pain. In yet a further embodiment, the pain is caused by esophageal cancer, colitis, cystitis, irritable bowel syndrome, colitis or idiopathic neuropathy. In still another embodiment, the pain is caused by airway, bladder or visceral organ dysfunction.
[0109] "Somatic pain" includes pain from bone, joint, muscle, skin, or connective tissue.
[0110] "Central pain" includes pain arising as a consequence of brain trauma, stroke, or spinal cord injury.
[0111] "Visceral pain" includes pain from visceral organs, such as the respiratory or gastrointestinal tract and pancreas, the urinary tract and reproductive organs. In one embodiment, visceral pain results from tumor involvement of the organ capsule. In another embodiment, visceral pain results from obstruction of hollow viscus. In a further embodiment, visceral pain results from inflammation as in cystitis or reflux esophagitis.
[0112] "Idiopathic pain" refers to pain which has no underlying cause or refers to pain caused by condition which remains undiagnosed.
[0113] "Dysfunctional pain" refers to pain which occurs in the absence of a noxious stimulus, tissue damage or a lesion to the nervous system. In one embodiment, dysfunctional pain results from rheumatologic conditions such as arthritis and fibromyalgia, tension type headache, irritable bowel disorders and erythermalgia.
[0114] "Nociceptive pain" includes pain caused by noxious stimuli that threaten to or actually injure body tissues. In one embodiment, nociceptive pain results from a cut, bruise, bone fracture, crush injury, burn, trauma, surgery, labor, sprain, bump, injection, dental procedure, skin biopsy, or obstruction. In another embodiment, nociceptive pain is located in the skin, musculoskeletal system, or internal organs.
[0115] "Neuropathic pain" is pain due to abnormal processing of sensory input by the peripheral or central nervous system consequent on a lesion to these systems. In one embodiment, neuropathic pain is chronic and non-malignant. In one embodiment,
neuropathic pain is due to trauma, surgery, herniation of an intervertebral disk, spinal cord injury, diabetes, infection with herpes zoster (shingles), HIV/AIDS, late-stage cancer, amputation (such as mastectomy), carpal tunnel syndrome, chronic alcohol use, exposure to radiation, and as an unintended side-effect of neurotoxic treatment agents, such as certain anti-HIV and chemotherapeutic drugs. In another embodiment, neuropathic pain is may be described as "burning," "electric," "tingling," or "shooting".
[0116] The phrase "inflammatory pain" includes pain resulting from inflammation caused by any number of factors. In one embodiment, inflammatory pain occurs due to tissue damage or inflammation. In another embodiment, inflammatory pain is due to injury (including joints, muscle, and tendons injuries), surgical procedures, infection, and/or arthritis.
[0117] "Procedural pain" includes refers to pain arising from a medical procedure. The medical procedure may include any type of medical, dental or surgical procedure. In one embodiment, the procedural pain is postoperative. In another embodiment, the pain is associated with an injection, draining an abscess, surgery, dermatological, dental procedure, ophthalmic procedure, arthroscopy and use of other medical instrumentation, and/or cosmetic surgery.
[0118] A "migraine" is a headache due to activation of sensory fibers innervating the meninges of the brain.
[0119] The term "treat", "treating", or any variation thereof is meant to include therapy utilized to remedy a health problem or condition in a patient or subject. In one embodiment, the health problem or condition may be eliminated permanently or for a short period of time. In another embodiment, the severity of the health problem or condition, or of one or more symptoms characteristic of the health problem or condition, may be lessened permanently, or for a short period of time. The effectiveness of a treatment of pain can be determined using any standard pain index, such as those described herein, or can be determined based on the patient's subjective pain. A patient is considered "treated" if there is a reported reduction in pain or a reduced reaction to stimuli that should cause pain.
[0120] In order to measure the efficacy of any of the methods, compositions, or kits described herein, a measurement index may be used. Indices that are useful for the measurement of pain associated with musculoskeletal, immunoinflammatory and neuropathic disorders include a visual analog scale (VAS), a Likert scale, categorical pain scales,
descriptors, the Lequesne index, the WOMAC index, and the AUSCAN index, each of which is well known in the art. Such indices may be used to measure pain, function, stiffness, or other variables.
[0121] Indices that are useful of the measurement of pain associated with interstitial cystitis include the interstitial cystitis symptom index (ICSI), the interstitial cystitis problem index (ICPI), the pain-urgency-frequency score (PUF), the Wisconsin Symptom Instrument (UWI) and a visual analog scale (VAS) such as the Likert scale and other categorical pain scales.
[0122] A visual analog scale (VAS) provides a measure of a one-dimensional quantity. A VAS generally utilizes a representation of distance, such as a picture of a line with hash marks drawn at regular distance intervals, e.g., ten $1-\mathrm{cm}$ intervals. For example, a patient can be asked to rank a sensation of pain by choosing the spot on the line that best corresponds to the sensation of pain, where one end of the line corresponds to "no pain" (score of 0 cm) and the other end of the line corresponds to "unbearable pain". This procedure provides a simple and rapid approach to obtaining quantitative information about how the patient is experiencing pain. VAS scales and their use are described, e.g., in US Patent Nos. 6,709,406 and $6,432,937$, the relevant disclosures of which are herein incorporated by reference.
[0123] A Likert scale similarly provides a measure of a one-dimensional quantity. Generally, a Likert scale has discrete integer values ranging from a low value, e.g., 0 , meaning no pain, to a high value, e.g., 7 , meaning extreme pain. A patient experiencing pain is asked to choose a number between the low value and the high value to represent the degree of pain experienced. Likert scales and their use are described, e.g., in US Patent Nos. $6,623,040$ and $6,766,319$, the relevant disclosures of which are herein incorporated by reference.
[0124] The Lequesne index and the Western Ontario and McMaster Universities (WOMAC) osteoarthritis (OA) index assess pain, function, and stiffness in the knee and hip of OA patients using self-administered questionnaires. Both knee and hip are encompassed by the WOMAC, whereas there is one Lequesne questionnaire for the knee and a separate one for the hip. These questionnaires are useful because they contain more information content in comparison with VAS or Likert scale. Both the WOMAC index and the Lequesne index questionnaires have been extensively validated in OA, including in surgical settings, e.g., knee and hip arthroplasty. Their metric characteristics do not differ significantly.
[0125] The AUSCAN (Australian-Canadian hand arthritis) index employs a valid, reliable, and responsive patient self-reported questionnaire. In one instance, this questionnaire contains 15 questions within three dimensions (Pain, 5 questions; Stiffness, 1 question; and Physical function, 9 questions). An AUSCAN index may utilize, e.g., a Likert or a VAS scale.
[0126] The O'Leary-Sant score and IC Problem Index are self-administered indices for measuring lower urinary tract symptoms.
[0127] The Pain-Urgency-Frequency symptom scale is balanced assessment of urinary dysfunction, pelvic pain and symptoms associated with sexual intercourse and frequently used in conjunction with intravesical potassium chloride administration.
[0128] The UWI utilizes seven IC-related questions about frequency, urgency, noctuira and pain.
[0129] Other suitable indices that are useful for the measurement of pain include the Pain Descriptor Scale (PDS), the Verbal Descriptor Scales (VDS), the Numeric Pain Intensity Scale (NPIS), the Neuropathic Pain Scale (NPS), the Neuropathic Pain Symptom Inventory (NPSI), the Present Pain Inventory (PPI), the Geriatric Pain Measure (GPM), the McGill Pain Questionnaire (MPQ), mean pain intensity (Descriptor Differential Scale), numeric pain scale (NPS) global evaluation score (GES) the Short-Form McGill Pain Questionnaire, the Minnesota Multiphasic Personality Inventory, the Pain Profile and Multidimensional Pain Inventory, the Child Heath Questionnaire, and the Child Assessment Questionnaire.
[0130] In one embodiment, the treatment methods described herein include administering a compound of formula (I) to a patient. Additional, optional agents, such as those described above for use in the combination, may be administered to the patient prior to, concurrently with, or subsequent to the compound of formula (I).
[0131] A variety of in vivo assays and animal models are useful for assessing the ability of compounds to inhibit pain via internal sodium channel inhibition. These models may or may not involve opening (activation) of TRPV1 channels via inducing pain through physical, mechanical, or chemical, e.g., capsaicin, means. Examples of suitable models include, e.g., those described in Binshtok, Anesthesiology, July 2009, 111(1):127-137; Reis, Anesthesiology, July 2009, 111(1):122-126; Gerner, Anesthesiology, November 2008, 109(5):872-878; and Binshtok, Nature, October 2007, 449:607-610, the use of isolated bladder detrusor muscle preparations (Witte, Naunyn-Schmeideberg's Arch. Pharmacol.

2011, 384:555-563), measurement of voiding frequency and volume in freely moving animals (Clouse, 2012, Urology 79:1410e1-1410e6), measurement of bladder urodynamics using cystometry in anesthetized animals (Shimizu, 2000, British Journal of Pharmacology 131:610-616), which are incorporated by reference herein. However, for a variety of reasons which will be readily apparent to those of ordinary skill in the art, one may provide in vitro assays which allow for the identification of compounds with the properties. Described herein are several such in vitro assays.
[0132] In one embodiment, a modified FLIPR® (Fluorometric Imaging Plate Reader) based assay system was developed which is capable of discriminating between non-specific versus hTRPV1-mediated entry of test compounds. Advantageously, the assay system utilizes heat activated opening of hTRPV1 channels followed by an assessment of internal sodium channel block. The assay allows a permanently charged compound to selectively enter through opened hTRPV1 channels and that compound's potency in inhibiting sodium channels from the cytoplasm side of the same cell can be assessed and quantified.
[0133] The modified FLIPR® assay utilizes cells which functionally express hTRPV1. As used herein, the term "functionally express" includes those cells which express the human TRPV1 protein and which respond to stimuli which naturally open this channel, including, e.g., thermal (heat) or chemical (capsaicin, lidocaine, among others) means described herein. Suitable assays may include the calcium or membrane potential assays described herein, e.g., Example 49. However, other functional assays are known in the art, e.g., voltage-clamp electrophysiology such as used by Binshtok, Nature 449(4) 607-610, 2007.
[0134] A suitable cell may be selected for expression of TRPV1 in cis or in trans and constructed using known techniques. In one embodiment, a neuroblastoma cell line such as N1E115 [CRL-2263] or ND7/23 [ECACC catalog code: 92090903] is selected for expression of the hTRPV1. However, another neuroblastoma cell line may be selected, e.g., such as IMR-32 [CRL-127]; Neuro-2a [CRL-131]; NB41A3 [CRL-147]; B104-1-1 [CRL-1887]; SK-N-AS [CRL-2137]; SK-N-F1 [CRL-2142]; SK-N-DZ [CRL-2149]; SH-SY5Y [CRL-2266]; BE(2)-M17 [CRL-2267]; BE(2)-C [CRL-2268]; MC-IXC [CRL-2270]; SK-NBE(2) (CRL-2271); CHP-212 (CRL-2273]; B35 [CRL-2754], which are available from the American Type Culture Collection, Manassas, Virginia (US). Still other cell lines may be selected.
[0135] For a generation description of how the cells are produced, see generally, e.g., Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, NY (US) 2001. In one embodiment, a stable cell line may be prepared using the techniques in Sambrook, using wild-type (wt) or recombinant hTRPV1 coding sequences. For example, preparation of one such cell line is described in detail herein (see Example 32). Preparation of another cell line is described in International Patent Publication N. WO 2007/0066068; the Lipofectamine ${ }^{\circledR}$ method may be employed for transfection of TRPV1 and hTRPV1 into Human Embryonic Kidney cells (HEK293) according to the manufacturers protocol (Gibco). To create a permanently expressing cell line, wt-TRPV1 transfected HEK cells can be subcloned in geneticin ($0.6 \mathrm{mg} / \mathrm{mL}$) containing medium (DMEM containing 10% FCS, $100 \mathrm{U} / \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and $250 \mathrm{ng} / \mathrm{mL}$ amphotericin B) and propagated for two weeks to allow selection. To obtain a TRPV1 permanently expressing single cell line, transfected cells can be plated in 96 well plates (1 cell per well) and colonies grown from single cells were subsequently tested for capsaicin responsiveness by measuring increases in intracellular calcium. The final clones selected, are taken through three further rounds of single cell cloning to ensure the cell lines are derived from a single cell. Variations on this methodology will be readily apparent to one of skill in the art. In another embodiment, cells may be selected from a stable cell line to express the hTRPV1, in trans, e.g., from a viral vector or another suitable genetic element.
[0136] The following examples are illustrative only and are not intended to limit the present invention.

[0137] EXAMPLES

[0138] Unless otherwise stated, all the raw materials are purchased from commercially available common suppliers. ${ }^{1} \mathrm{H}$-NMR spectra were recorded using trimethylsilane (TMS) as the internal reference for CDCl_{3} dissolved compounds. For DMSO- d_{6} and $\mathrm{CD}_{3} \mathrm{OD}$ dissolved compounds the instrument was calibrated at $\delta 2.5$ and 3.3 ppm respectively. The chemical shift values are quoted in δ (parts per million).
[0139] For LCMS analysis LCMS/MS API 2000 (Applied Biosystem) instrument was used. The columns included:

Column U: YMC, $4.6 \times 50 \mathrm{~mm}, 5 \mu$
Column V: Zorbax ${ }^{\circledR}$ C 18 column, $4.6 \times 50 \mathrm{~mm}, 5 \mu$
Column W: Zorbax ${ }^{\circledR}$ Extend C18 column, $4.6 \times 50 \mathrm{~mm}, 5 \mu$

Column X: Gemini® NX C18 column, $4.6 \times 50 \mathrm{~mm}, 5 \mu$
Column Y: \quad Xbridge ${ }^{\circledR}$ C18 column, $4.6 \times 50 \mathrm{~mm}, 5 \mu$
Column Z: \quad Reprosil® column, $4.6 \times 50 \mathrm{~mm}, 5 \mu$

The eluent (solvent) typically included (acidic or basic buffer as aqueous phase):
A channel: (i) 0.05\% formic acid in water;
(ii) 10 mM ammonium acetate in water; or
(iii) $0.05 \% \mathrm{TFA}$ in water.

B channel: acetonitrile (organic phase).
The detector was UV measured at dual wavelengths: 220 and 260 nm .
[0140] The LCMS gradients were one of the following:
[0141] 1. LCMS reaction monitoring and final compound analysis method (for general polarity compounds)

Gradient condition: 5 min run time

Time Programs: $\quad \mathrm{P} 1: 10 \mathrm{mM}$ ammonium acetate in water/acetonitrile
Q1: $0.05 \% \mathrm{TFA}$ in water/acetonitrile,
R1: 0.05% formic acid in water/acetonitrile.

The gradient varied acetonitrile from 10% to 90% to 10%.
Flow rate: $\quad 1.2 \mathrm{~mL} / \mathrm{min}$.
[0142] 2. LCMS reaction monitoring and final compound analysis method in 12 min run (for close eluting compounds):

Gradient condition: 12 min run time

Time Programs: $\quad \mathrm{P} 2: 10 \mathrm{mM}$ ammonium acetate in water/acetonitrile
Q2: $0.05 \% \mathrm{TFA}$ in water/acetonitrile

R2: 0.05% formic acid in water/acetonitrile

The gradient varied acetonitrile from 5% to 90% to 5%
Flow rate: $\quad 1.0 \mathrm{~mL} / \mathrm{min}$.
[0143] 3. LCMS after method development in HPLC - gradient conditions are as per HPLC.

Mass spectral data was obtained using the following:
Ionization technique: ESI (Electron Spray Ionization) using API
(Atmospheric pressure Ionization) source
Declustering Potential: 10-70 V depending on the ionization of compound
Mass range: $\quad 100-800 \mathrm{amu}$
Scan type: Q1
Polarity: +/-ve
Ion Source: Turbo spray
Ion spray voltage: $\quad+5500$ for + ve mode and -4500 for $-v e$ mode
Mass Source temperature: $\quad 200^{\circ} \mathrm{C}$
[0144] Preparation of Intermediates -- few of the intermediates were used for the synthesis of the compounds which were synthesized by following sixteen (16) routes which are listed as examples below.
[0145] Preparation 1: 1-Pyrazin-2-yl-ethylamine

Scheme 1
[0146] To a stirred solution of compound I ($2 \mathrm{~g} ; 16.4 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (20 mL) were added ammonium acetate ($12.6 \mathrm{~g} ; 164 \mathrm{mmol} ; 10 \mathrm{eq}$) and sodium cyanoborohydride (1 $\mathrm{g} ; 16.4 \mathrm{mmol} ; 1 \mathrm{eq}$) and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 17 h . The mixture was quenched with water $(50 \mathrm{~mL})$ and the organic components were extracted with ethyl acetate ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with water and brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to afford crude compound, which was purified by silica gel (230-400 mesh) column chromatography, eluting
with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, to afford the title compound $(0.8 \mathrm{~g}, 40 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.60$ ($\mathrm{s}, 1 \mathrm{H}$), 8.49 (m, 1H), 8.43 (d, 1H, $J=2 \mathrm{~Hz}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$.
[0147] Preparation 2: 4-Aminomethyl-1-methyl-1H-pyridin-2-one

Scheme 2
[0148] Step 1: 4-Cyano-1-methyl-1H-pyridin-2-one
[0149] To a stirred solution of compound I ($0.25 \mathrm{~g} ; 2.08 \mathrm{mmol} ; 1 \mathrm{eq}$) in DMF (5 mL) was added sodium hydride ($0.12 \mathrm{~g} ; 3.12 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. To the mixture was then added methyl iodide ($0.4 \mathrm{~mL} ; 6.25 \mathrm{mmol} ; 3 \mathrm{eq}$) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was diluted with water (50 mL) and the organic components were extracted with ethyl acetate ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with water and brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to obtain the title compound $(0.18 \mathrm{~g}$, 67%). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 7.93(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{dd}, 1 \mathrm{H}, J=2,7 \mathrm{~Hz})$, 3.45 ($\mathrm{s}, 3 \mathrm{H}$).
[0150] Step 2: 4-Aminomethyl-1-methyl-1H-pyridin-2-one
[0151] To a stirred solution of compound II ($1.67 \mathrm{~g} ; 11.9 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (80 mL) was added concentrated $\mathrm{HCl}(1 \mathrm{~mL})$ followed by $10 \% \mathrm{Pd} / \mathrm{C}(1.6 \mathrm{~g})$ and the resulting mixture was stirred under hydrogen atmosphere at a pressure of 50 psi for 4 h in a Parr autoclave. The mixture was filtered through a Celite ${ }^{\circledR}$ bed, washed with methanol and solvent of the filtrate was removed in vacuo to obtain the title compound ($2 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.55(b r s, 1 H), 7.72(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{dd}, 1 \mathrm{H}, J=2,7$ Hz,), 3.86 (m, 2H), 3.40 (s, 3H).
[0152] Preparation 3: 6-Methyl-1-oxypyridin-3-yl)methylamine hydrochloride

[0153] Step 1: 6-Methyl-nicotinic acid methyl ester
[0154] To a stirred solution of compound I (40 g; $290 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (0.75 L) was added sulfuric acid $(40 \mathrm{~mL})$ and the resulting mixture was heated at reflux for 17 h . The mixture was then evaporated to dryness and the pH was adjusted to 7 using saturated ice-cold aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous layer with ethyl acetate ($3 \times 500 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to afford the title compound ($33 \mathrm{~g}, 75 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{dd}, 1 \mathrm{H}, J=2,8 \mathrm{~Hz}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.58$ $(\mathrm{s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=152.4[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.36$ minutes, $($ Program P1, Column W).
[0155] Step 2: (6-Methyl-pyridin-3-yl)methanol
[0156] To a stirred solution of compound II ($21 \mathrm{~g} ; 140 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (150 mL) was added $1 \mathrm{M} \mathrm{LiAlH}_{4}$ solution in THF ($210 \mathrm{~mL} ; 210 \mathrm{mmol} ; 1.5 \mathrm{eq}$) dropwise at $-5^{\circ} \mathrm{C}$ and after completion of the addition it was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to -10 ${ }^{\circ} \mathrm{C}$ and quenched with sodium sulfate decahydrate and ethyl acetate until effervescence ceased. The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was evaporated to dryness to afford the title compound ($17 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.37$ ($\mathrm{s}, 1 \mathrm{H}$), 7.59 $(\mathrm{dd}, 1 \mathrm{H}, J=2,8 \mathrm{~Hz}), 7.19(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 5.22(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 4.47(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz})$, 2.45 ($\mathrm{s}, 3 \mathrm{H}$).
[0157] Step 3: Methanesulfonic acid (6-methyl-pyridin-3-yl)methyl ester
[0158] To a stirred solution of compound III ($25 \mathrm{~g} ; 200 \mathrm{mmol} ; 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~L})$ were added TEA ($42.5 \mathrm{~mL} ; 300 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and methane sulfonyl chloride ($23.5 \mathrm{~mL} ; 300$ $\mathrm{mmol} ; 1.5 \mathrm{eq})$ dropwise and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was diluted with water $(100 \mathrm{~mL})$ and the organic components were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$
x 200 mL). The combined organic layers were washed with water and brine, dried over anhydrous sodium sulfate, filtered, and the solvents were removed in vacuo to afford the title compound ($41 \mathrm{~g}, 100 \%$).
[0159] Step 4: 3-Azidomethyl-6-methylpyridine
[0160] To a stirred solution of compound IV ($43 \mathrm{~g} ; 0.21 \mathrm{~mol} ; 1 \mathrm{eq}$) in dry DMF (150 mL) was added sodium azide ($139 \mathrm{~g} ; 2.13 \mathrm{~mol} ; 10 \mathrm{eq}$) and the resulting mixture was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 17 h . The mixture was quenched with water (500 mL) and the organic components were extracted with ethyl acetate ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with water and brine, dried over anhydrous sodium sulfate, filtered, and then concentrated in vacuo to obtain compound ($31.6 \mathrm{~g}, 100 \%$) as crude material.
[0161] Step 5: (6-Methyl-pyridin-3-yl)methylamine
[0162] To a stirred solution of compound $V(8 \mathrm{~g} ; 50 \mathrm{mmol} ; 1 \mathrm{eq})$ in THF (250 mL) and water (5.7 mL) was added triphenyl phosphine ($28 \mathrm{~g} ; 100 \mathrm{mmol} ; 2 \mathrm{eq}$), and the resulting mixture was heated at reflux for 4 h . The mixture was evaporated to dryness to obtain a crude material. The crude product was purified by column chromatography, eluting with 10% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, to afford the title compound ($3 \mathrm{~g}, 46 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H})$, $7.61(\mathrm{dd}, 1 \mathrm{H}, J=2,8 \mathrm{~Hz}), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=$ $123.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=0.45$ minutes, (Program R1, Column X).
[0163] Step 6: N-(6-Methyl-pyridin-3-yl)methyl)carbamic acid tert-butyl ester
[0164] To a stirred solution of compound VI ($0.75 \mathrm{~g} ; 6 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) were added TEA ($2.59 \mathrm{~mL} ; 18 \mathrm{mmol} ; 3 \mathrm{eq}$), boc anhydride ($1.55 \mathrm{~mL} ; 6 \mathrm{mmol} ; 1.1 \mathrm{eq}$) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was diluted with water $(50 \mathrm{~mL})$ and the organic components were extracted with dichloromethane ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with water and brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to obtain the title compound ($1.36 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ (brs, 1 H), $4.27(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;$ LCMS: $\mathrm{m} / \mathrm{z}=222.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.69$ minutes, (Program P1, Column W).
[0165] Step 7: N-(6-Methyl-1-oxy-pyridin-3-ylmethyl)carbamic acid tert-butyl ester
[0166] To a stirred solution of compound VII ($1.36 \mathrm{~g} ; 6 \mathrm{mmol} ; 1 \mathrm{eq}$) in chloroform (30 mL) were added meta chloroperbenzoic acid ($1.32 \mathrm{~g} ; 7 \mathrm{mmol} ; 1.25 \mathrm{eq}$) and 2,6-ditertiary butyl-4-methyl phenol ($6 \mathrm{mg} ; 0.3 \mathrm{mmol} ; 0.05 \mathrm{eq}$) and the resulting mixture was heated at
reflux for 2 days. The mixture was diluted with water $(50 \mathrm{~mL})$ and the organic components were extracted with dichloromethane (2 x 100 mL). The combined organic layers were washed with water and brine, dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to obtain the title compound $(1.1 \mathrm{~g}, 76 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 5.00(\mathrm{brs}, 1 \mathrm{H}), 4.24(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, $1.47(\mathrm{~s}, 9 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=239.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.06$ minutes, (Program P1, Column W).
[0167] Step 8: (6-Methyl-1-oxy-pyridin-3-yl)methylamine hydrochloride
[0168] To a stirred solution of compound VIII (1.1 g; $4 \mathrm{mmol} ; 1 \mathrm{eq}$) in 1,4-dioxane (5 mL) was added 4 M HCl in 1,4-dioxane (20 mL) and the resulting mixture was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 4 h . The solvents were removed in vacuo to afford the title compound $(0.71 \mathrm{~g}, 89 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 8.50(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}$), 4.02 (q, $2 \mathrm{H}, J=11 \mathrm{~Hz}), 2.38(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=139.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=0.45$ minutes, (Program P1, Column W).
[0169] The following amines were also prepared using the above mentioned procedure:

A

B

C
[0170] Preparation 4: (2-Methoxypyrimidin-5-yl)methylamine hydrochloride

Scheme 4

[0171] Step 1: 5-Cyano-2-methoxypyrimidine

[0172] To a stirred DMF (80 mL) solution of compound I ($5 \mathrm{~g} ; 26 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added zinc cyanide ($5 \mathrm{~g} ; 53 \mathrm{mmol} ; 2 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was then added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~g} ; 5.20 \mathrm{mmol}$; 0.2 eq), and the resulting mixture was degassed with argon for another 5 min . The reaction tube was sealed and heated at $115{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The
organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with 50% EtOAc/hexanes to obtain the title compound (3.5 g , 100%). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.11$ ($\mathrm{s}, 2 \mathrm{H}$), 4.00 ($\mathrm{s}, 3 \mathrm{H}$). LCMS: $\mathrm{m} / \mathrm{z}=136.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=$ 1.74 minutes, (Program P1, Column V).
[0173] Step 2: N-((2-Methoxy-pyrimidin-5-yl)methyl)carbamic acid tert-butyl ester
[0174] To a stirred solution of compound II ($4.5 \mathrm{~g} ; 33.3 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (230 mL) were added nickel chloride hexahydrate ($3.15 \mathrm{~g} ; 13.3 \mathrm{mmol} ; 0.4 \mathrm{eq}$) and boc anhydride $(14.4 \mathrm{~g} ; 66.66 \mathrm{mmol} ; 2 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$. To the mixture was then added powdered $\mathrm{NaBH}_{4}(8.7 \mathrm{~g}$; $233 \mathrm{mmol} ; 7 \mathrm{eq}$) in portions and stirred at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was evaporated to dryness, diluted with water and the organic components were extracted with ethyl acetate (2 x 100 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered, and the solvents were removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 2-5\% methanol/dichloromethane as the eluent to afford the title compound ($3.8 \mathrm{~g}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.46(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=$ $240.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.67$ minutes, (Program P1, Column W).
[0175] Step 3: 2-Methoxypyrimidin-5-yl)methylamine hydrochloride
[0176] To a stirred solution of compound III ($4 \mathrm{~g} ; 28.98 \mathrm{mmol} ; 1 \mathrm{eq}$) in 1,4-dioxane (20 mL) was added 4 M HCl in 1,4-dioxane (30 mL) and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 4 h . The solvent was removed in vacuo to afford the title compound ($2.8 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.73(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=140.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=$ 0.59 minutes, (Program P1, Column V).
[0177] Preparation 5: (2-Cyclopropylpyridin-5-yl)methylamine hydrochloride

Scheme 5
[0178] Step 1: 2-Cyclopropyl-5-cyanopyridine
[0179] To a stirred solution of compound I ($0.5 \mathrm{~g} ; 3.62 \mathrm{mmol} ; 1 \mathrm{eq}$) in toluene (20 mL) and water (1 mL) in a reaction tube, was added cyclopropyl boronic acid ($0.46 \mathrm{~g} ; 5.43 \mathrm{mmol}$;
$1.5 \mathrm{eq})$ and the resulting mixture was degassed with argon for 5 min . To the mixture was then added $\mathrm{K}_{3} \mathrm{PO}_{4}(2.7 \mathrm{~g} ; 12.7 \mathrm{mmol} ; 3.5 \mathrm{eq}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.04 \mathrm{~g} ; 0.18 \mathrm{mmol} ; 0.05 \mathrm{eq})$, tricyclohexyl phosphine ($0.10 \mathrm{~g} ; 0.36 \mathrm{mmol} ; 0.1 \mathrm{eq}$), and the resulting mixture was degassed with argon for another 5 min , then the reaction tube was sealed and heated at $110^{\circ} \mathrm{C}$ for 3 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to obtain the crude material product. The crude material was purified by silica gel (100-200 mesh) column chromatography, eluting with $5-30 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound $(0.28 \mathrm{~g}, 56 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.67$ (s, 1H), $7.75(\mathrm{dd}, 1 \mathrm{H}, J=2,8 \mathrm{~Hz}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~m}, 4 \mathrm{H})$.
[0180] Step 2: (2-Cyclopropylpyridin-5-yl)methylamine hydrochloride
[0181] To a stirred solution of compound II ($1.5 \mathrm{~g} ; 11.11 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (80 $\mathrm{mL})$ was added concentrated $\mathrm{HCl}(1 \mathrm{~mL})$ followed by $10 \% \mathrm{Pd} / \mathrm{C}(1.6 \mathrm{~g})$ and stirred under a hydrogen atmosphere at a pressure of 50 psi for 4 h in a Parr autoclave. The mixture was filtered through a Celite ${ }^{\circledR}$ pad, washed with methanol, and solvent from the filtrate was removed in vacuo to afford the title compound ($1.2 \mathrm{~g}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.33$ (s, $1 \mathrm{H}), 7.64(\mathrm{dd}, 1 \mathrm{H}, J=2,8 \mathrm{~Hz}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~m}, 4 \mathrm{H})$.
[0182] Preparation 6: 1-(2-Methyl-pyrimidin-5-yl)-ethylamine

Scheme 6
[0183] Step 1: 3,3-Dimethoxy-2-methoxycarbonyl-1-propen-1-ol sodium salt
[0184] To a stirred solution of compound I ($50 \mathrm{~g} ; 337 \mathrm{mmol} ; 1 \mathrm{eq}$) in 1,2-dimethoxy ethane (0.2 L) was added methyl formate ($50 \mathrm{~mL} ; 809 \mathrm{mmol} ; 2.4 \mathrm{eq}$) and the mixture was cooled to $-5^{\circ} \mathrm{C}$. To the mixture was added sodium hydride (60% in mineral oil, $17.5 \mathrm{~g} ; 438$ mmol; 1.3 eq) in portions and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ until effervescence had ceased. The mixture was then allowed to stir at $23^{\circ} \mathrm{C}$ for 17 h . The mixture was filtered and the solid residue was collected, washed with ether and dried under reduced pressure to
afford the title compound ($63 \mathrm{~g}, 100 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.88$ (s, $1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 6 \mathrm{H})$.
[0185] Step 2: 2-Methylpyrimidine-5-carboxylic acid methyl ester
[0186] To a stirred solution of compound II ($60 \mathrm{~g} ; 340 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry DMF (1L) was added acetamidine hydrochloride ($38.6 \mathrm{~g} ; 409 \mathrm{mmol} ; 1.2 \mathrm{eq}$) and the resulting mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was quenched with water (500 mL) and the organic components were extracted with ethyl acetate ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with water and brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to obtain the title compound ($27 \mathrm{~g}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.13$ (s, 2 H), 3.93 ($\mathrm{s}, 3 \mathrm{H}$), 2.77 ($\mathrm{s}, 3 \mathrm{H}$).
[0187] The following amine was synthesized from compound III following the procedure of preparation 3, steps 2-5.

D
[0188] Preparation 7: (S)-1-(4H-[1,2,4]-Triazol-3-yl)ethylamine hydrochloride

Scheme 7
[0189] Step 1: (S)-(E)-Benzyl (1-(((dimethylamino)methylene)amino)-1-oxopropan-2yl)carbamate
[0190] To (S)-benzyl (1-amino-1-oxopropan-2-yl)carbamate I ($20 \mathrm{~g}, 90 \mathrm{mmol}$) was added DMF-DMA (100 mL) and the resulting mixture was heated at $40^{\circ} \mathrm{C}$ for 40 min . The mixture was diluted with ethyl acetate and washed with water and brine. The organic layer was dried over sodium sulphate, filtered and concentrated under reduced pressure to provide compound II (crude).
[0191] Step 2: [(S)-1-(4H-[1,2,4]-Triazol-3-yl)ethyl]carbamic acid benzyl ester
[0192] To a stirred solution of compound II (crude) in dry DMF (109 mL) was added hydrazine (1 M solution in THF) ($135 \mathrm{~mL}, 135 \mathrm{mmol}$) and the resulting mixture was heated at
$100{ }^{\circ} \mathrm{C}$ for 1.5 h . The mixture was diluted with ethyl acetate and washed with water and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to obtain the crude product. The crude product was purified by silica gel chromatography, eluting with $15-20 \%$ acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to obtain compound III as a white solid ($5 \mathrm{~g}, 41 \%, 2$ steps). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 13.7(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H})$, 7.35-7.30 (m, 5H), 5.01-4.98 (m, 2H), $4.80(\mathrm{brs}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=246.8$ $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.51 \mathrm{~min}($ Program P1, Column V). Chiral SFC: 99.07\% (210 nm), RT 12.54 min (Mobile phase: A: ACN, B: MeOH)
[0193] Step 3: (S)-1-(4H-[1,2,4]-Triazol-3-yl)ethylamine hydrochloride
[0194] To a stirred solution of compound III ($1 \mathrm{~g} ; 4.06 \mathrm{mmol} ; 1 \mathrm{eq})$ in $\mathrm{HCl}(4 \mathrm{M}$ in 1,4-dioxane, 20 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(1 \mathrm{~g})$ and the resulting mixture was stirred under a hydrogen atmosphere at a pressure of 60 psi for 16 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was evaporated to dryness to obtain compound IV ($0.6 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.71(\mathrm{brs}, 3 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}$). LCMS: $\mathrm{m} / \mathrm{z}=113.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=0.47$ minutes, $($ Program P1, Column W). Chiral SFC: 99.07% (210 nm), RT 12.54 min (Mobile phase: A: ACN, B: MeOH).
[0195] Preparation 8: (S)-2-Methyl-1-(4H-[1,2,4]triazol-3-yl)-propylamine

Scheme 8
[0196] Step 1: ((S)-1-Carbamoyl-2-methyl-propyl)-carbamic acid benzyl ester
[0197] To a stirred solution of compound I (10 g, $39.84 \mathrm{mmol}, 1 \mathrm{eq})$ in DMF (100 mL) was added DIPEA ($19.7 \mathrm{~mL}, 119.5 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU ($18.17 \mathrm{~g}, 47.8 \mathrm{mmol}, 1.2 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min . To the mixture was added ammonium chloride ($10.7 \mathrm{~g}, 199.2 \mathrm{mmol}, 5 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for
another 16 h . The mixture was poured into ice cold water (500 mL), the organic components were extracted with EtOAc ($3 \times 500 \mathrm{~mL}$) and the combined organic layers were washed with aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was recrystallized from ethanol to obtain the title compound ($9.8 \mathrm{~g}, 98 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.35(\mathrm{~m}, 6 \mathrm{H}), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{t}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=251.2[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{RT}=2.81$ minutes, (Program P1, Column Y).
[0198] Step 2: ((S)-2-Methyl-1-thiocarbamoyl-propyl)-carbamic acid benzyl ester
[0199] To a stirred solution of compound II ($5.5 \mathrm{~g}, 22 \mathrm{mmol}, 1 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ $\mathrm{mL})$ at $23^{\circ} \mathrm{C}$ was added Lawesson's reagent $(5.5 \mathrm{~g}, 13.2 \mathrm{mmol}, 0.7 \mathrm{eq})$ and the mixture was heated at reflux for 2-3 h. The mixture was cooled to room temperature and concentrated in vacuo to obtain a crude material which was purified by gravity column chromatography using silica gel ($100-200 \mathrm{mesh}$), eluting with $1.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound (1.8 $\mathrm{g}, 31 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H})$, $7.32(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 5.03(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~m}, 6 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=267.2\left[\mathrm{M}+\mathrm{H}^{+}, \mathrm{RT}=3.10\right.$ minutes, (Program P1, Column Y).
[0200] Step 3: [(S)-2-Methyl-1-(4H-[1,2,4]triazol-3-yl)-propyl]-carbamic acid benzyl ester
[0201] To a stirred solution of compound III ($1.8 \mathrm{~g} ; 6.7 \mathrm{mmol} ; 1 \mathrm{eq}$) in ethanol (80 mL) was added formic acid hydrazide ($2 \mathrm{~g} ; 33 \mathrm{mmol} ; 5$ eq), mercury (II) chloride ($2.38 \mathrm{~g} ; 8.7$ mmol; 1.3 eq) and the mixture was degassed with argon for 15 min , then stirred at $23^{\circ} \mathrm{C}$ for 17 h . The mixture was then filtered through the Celite ${ }^{\circledR}$ reagent and the filtrate was evaporated to dryness. The residue was diluted with EtOAc (200 mL) and washed with 20% aq. sodium carbonate solution. The organic layer was then dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to provide a crude compound. The crude material was dissolved in ethanol (100 mL) and heated at reflux for 17 h . The mixture was concentrated in vacuo to provide a crude compound which was purified by silica gel (100-200 mesh) gravity column chromatography eluting with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($1.4 \mathrm{~g}, 74 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.76$ (brs, 1H), $8.44(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H})$, 0.90 (m, 3H), 0.79 (m, 3H).
[0202] Step 4: (S)-2-Methyl-1-(4H-[1,2,4]triazol-3-yl)-propylamine
[0203] To a stirred solution of compound IV ($0.5 \mathrm{~g} ; 1.84 \mathrm{mmol} ; 1 \mathrm{eq}$) in EtOH, degassed with argon, was added $10 \% \mathrm{Pd} / \mathrm{C}(1.5 \mathrm{~g})$ and HCl in dioxane $(4.0 \mathrm{M}$ solution, 10 mL$)$ and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ under a hydrogen atmosphere of 50 psi pressure in a Parr shaker for 10 h . The mixture was filtered through the Celite ${ }^{\circledR}$ reagent and the filtrate was evaporated to dryness to afford the title compound $(0.23 \mathrm{~g}, 90 \%)$ as an off white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.10$ (brs, 3 H), 7.86 ($\mathrm{s}, 1 \mathrm{H}$), 7.56 ($\mathrm{s}, 1 \mathrm{H}$), 3.52 (m, 1H), 2.10 $(\mathrm{m}, 1 \mathrm{H}), 0.94(\mathrm{~m}, 6 \mathrm{H})$.
[0204] Preparation 9: (R)-1-(3-Methyl-[1,2,4]oxadiazol-5-yl)-ethylamine hydrochloride salt

Scheme 9
[0205] Step 1: [(R)-1-(3-Methyl-[1,2,4]oxadiazol-5-yl)-ethyl]-carbamic acid tert-butyl ester
[0206] To a stirred solution of compound I ($3 \mathrm{~g}, 15.9 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (15 mL) were added TEA ($6.7 \mathrm{~mL}, 47.6 \mathrm{mmol}, 3 \mathrm{eq}$), N-hydroxy acetamidine hydrochloride ($1.5 \mathrm{~g}, 20.6$ $\mathrm{mmol}, 1.3 \mathrm{eq}$) and T3P (50% in ethyl acetate, $7 \mathrm{~mL}, 23.8 \mathrm{mmol}, 1.5 \mathrm{eq}$) at $23^{\circ} \mathrm{C}$ and the resulting mixture was heated at $110^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature and quenched with water. The organic components were extracted with ethyl acetate (2×200 mL) and the combined extracts were washed with brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to dryness. The crude product was purified by silica gel ($100-200$ mesh) gravity column chromatography eluting with $10-50 \% \mathrm{EtOAc} / \mathrm{hexane}$ to obtain the title compound ($3 \mathrm{~g}, 83 \%$) as sticky liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.06(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$.
[0207] Step 2: (R)-1-(3-Methyl-[1,2,4]oxadiazol-5-yl)-ethylamine hydrochloride salt
[0208] To a stirred solution of compound II ($3 \mathrm{~g} ; 13.2 \mathrm{mmol} ; 1 \mathrm{eq}$) in 1,4-dioxane (15 mL) at $0^{\circ} \mathrm{C}$ was added 4 M HCl in 1,4-dioxane (53 mL) dropwise over a period of 30 min and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 24 h . The mixture was concentrated in vacuo to obtain the title compound ($2.1 \mathrm{~g}, 100 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,

DMSO- d_{6}) $\delta 9.02$ (brs, 3 H), $4.86(\mathrm{q}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. The analytical chiral HPLC chromatogram showed that the compound was not chirally pure.
[0209] Preparation 10: (R)-1-(5-Methyl-[1,3,4]oxadiazol-2-yl)-ethylamine trifluoro acetic acid salt

[0210] Step 1: (R)-2-Amino-propionic acid methyl ester
[0211] To a stirred solution of compound I ($10 \mathrm{~g}, 112.24 \mathrm{mmol}, 1 \mathrm{eq}$) in methanol (160 mL) was added thionyl chloride ($16.3 \mathrm{~mL}, 224.5 \mathrm{mmol}, 2$ eq) at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 10 h . The mixture was concentrated under reduced pressure and diluted with ice cold sodium bicarbonate solution (300 mL). The organic components were extracted with EtOAc ($3 \times 300 \mathrm{~mL}$) and the combined extracts were washed with brine. The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to obtain the crude title compound ($17.9 \mathrm{~g}, 15.6 \mathrm{~g}, 100 \%$) as a semi solid material. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.56$ (brs, 3 H), 4.05 (m, 1H), 3.73 (s, 3 H), 1.41 (d, $3 \mathrm{H}, J=7$ Hz).
[0212] Step 2: (R)-2-tert-Butoxycarbonylamino-propionic acid methyl ester
[0213] To a stirred solution of compound II ($16.0 \mathrm{~g}, 114.7 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (60 mL) was added TEA ($48.1 \mathrm{~mL}, 344.1 \mathrm{mmol}, 3 \mathrm{eq}$) and BOC-anhydride (30 g 137.6 mmol , $1.2 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 16 h . The mixture was poured into ice cold water (500 mL), extracted with EtOAc ($2 \times 300 \mathrm{~mL}$) and the combined extracts were washed with brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness to obtain crude title compound ($20.0 \mathrm{~g} \mathrm{72} \mathrm{\%}$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.25(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}$), $3.99(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$, 1.37 (m, 9H), 1.22 (d, 3H, $J=7 \mathrm{~Hz}$).
[0214] Step 3: ((R)-1-Hydrazinocarbonyl-ethyl)-carbamic acid tert-butyl ester
[0215] To a stirred solution of compound III ($10 \mathrm{~g} ; 41.84 \mathrm{mmol} ; 1 \mathrm{eq}$) in THF (30 mL) in a reaction tube was added hydrazine hydrate ($6.08 \mathrm{~mL} ; 125.52 \mathrm{mmol} ; 3 \mathrm{eq}$). The reaction tube was sealed and heated at $110{ }^{\circ} \mathrm{C}$ for 10 h . The mixture was concentrated in vacuo to obtain crude title compound ($11 \mathrm{~g}, 100 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.98$ (brs, 1 H), 7.10 (brs, 1 H), $6.82(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}$), 6.48 (brs, 1 H), 4.11 (m, $1 \mathrm{H}), 1.30(\mathrm{~m}, 9 \mathrm{H}), 1.10(\mathrm{~m}, 3 \mathrm{H})$.
[0216] Step 4: $\{(\mathrm{R})$-1-[1-Ethoxy-eth-(E)-ylidene-hydrazinocarbonyl]-ethyl $\}$-carbamic acid tert-butyl ester
[0217] A solution of compound IV ($2.5 \mathrm{~g} ; 9.16 \mathrm{mmol} ; 1 \mathrm{eq}$) in triethyl orthoacetate (10.4 $\mathrm{mL} ; 55 \mathrm{mmol} ; 6 \mathrm{eq})$ was heated at reflux for $2-3 \mathrm{~h}$. The mixture was poured into ice cold water (100 mL) and the organic components were extracted with EtOAc ($2 \times 100 \mathrm{~mL}$) and the combined extracts were washed with brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to obtain the crude title compound (3.6 g , 100%) as a brown solid.
[0218] Step 5: [(R)-1-(5-Methyl-[1,3,4]oxadiazol-2-yl)-ethyl]-carbamic acid tert-butyl ester
[0219] A solution of compound $\mathrm{V}(3.5 \mathrm{~g}, 12.8 \mathrm{mmol}, 1 \mathrm{eq})$ in acetic acid ($7.3 \mathrm{~mL}, 128$ $\mathrm{mmol}, 10 \mathrm{eq}$) was heated at $60^{\circ} \mathrm{C}$ under stirring for 5 h . The mixture was concentrated in vacuo to remove the acetic acid and the residue was neutralized with ice cold sodium bicarbonate solution. The organic components were extracted with EtOAc ($2 \times 200 \mathrm{~mL}$) and the combined extracts were washed with brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo, to obtain the title compound ($0.65 \mathrm{~g}, 23 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.56(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.82(\mathrm{~m}, 1 \mathrm{H}), 2.46$ $(\mathrm{s}, 3 \mathrm{H}), 4.40(\mathrm{~m}, 12 \mathrm{H})$.
[0220] Step 6: (R)-1-(5-Methyl-[1,3,4]oxadiazol-2-yl)-ethylamine trifluoro acetic acid salt
[0221] To a solution of compound VI ($0.5 \mathrm{~g}, 2.2 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added trifluoroacetic acid ($0.4 \mathrm{~mL}, 4.4 \mathrm{mmol}, 2 \mathrm{eq}$) and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 18 h . The mixture was concentrated under reduced pressure to remove the trifluoroacetic acid and the residue was washed with hexane to obtain the title compound $(0.28 \mathrm{~g}, 100 \%)$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.72$ (brs, 3 H), 4.18 (m , $1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$.
[0222] Preparation 11: 2-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyrazol-1-yl]-acetamide

Scheme 11
[0223] To a solution of compound I ($5 \mathrm{~g}, 25.7 \mathrm{mmol}$; 1 eq) in acetonitrile in a reaction tube (150 mL) was added bromo acetamide ($5.68 \mathrm{~g}, 41.2 \mathrm{mmol} ; 1.6 \mathrm{eq}$) and cesium carbonate ($33.5 \mathrm{~g}, 102 \mathrm{mmol} ; 4 \mathrm{eq}$), and the reaction tube was sealed and heated at $90^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room temperature and filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo to obtain the title compound ($4.2 \mathrm{~g}, 65 \%$), as a crude product which was directly used in next step without further purification. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.67(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 7.57(\mathrm{~m}, 1 \mathrm{H}), 7.48$ (brs, 1H), $7.42(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H})$, 0.89 ($\mathrm{s}, \mathbf{1 2 H}$)
[0224] Preparation 12: 5,5,5-Trifluoro-3-oxo-pentanoic acid methyl ester synthesis

Scheme 12
[0225] To a stirred solution of Meldrum's acid ($5 \mathrm{~g}, 34.7 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added pyridine ($3.07 \mathrm{~mL} ; 38.2 \mathrm{mmol} ; 1.1 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ followed by 3,3,3-trifluoropropionyl chloride I ($5.5 \mathrm{~g} ; 38.2 \mathrm{mmol} ; 1.1 \mathrm{eq}$) and the resulting mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 1 h . The temperature of the reaction was then increased to $23{ }^{\circ} \mathrm{C}$ and stirring was continued for another 2 h . The mixture was concentrated under reduced pressure to remove volatiles and the resulting paste-like material was dissolved in methanol and heated at $80^{\circ} \mathrm{C}$ for 5 h . The mixture was cooled to room temperature, concentrated under
reduced pressure and diluted with aqueous ammonium chloride solution. The organic components were extracted with EtOAc, washed with 1 N HCl solution, and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness to obtain the title compound ($3.1 \mathrm{~g}, 50 \%$), as a crude product which was directly used in next step without purification. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$.
[0226] Preparation 13: 4,4-Difluoro-3-oxo-pentanoic acid methyl ester

Scheme 13
[0227] To a stirred solution of diisopropyl amine in dry THF (150 mL) was added n-butyllithium (2.3 M in hexane, $161 \mathrm{~mL} ; 370.9 \mathrm{mmol} ; 2 \mathrm{eq}$) at $-78^{\circ} \mathrm{C}$ and the resulting mixture was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 40 min . The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, ethyl acetate in dry THF was added drop wise and stirring was continued at $-78^{\circ} \mathrm{C}$ for 1 h . To the mixture, compound I ($23 \mathrm{~g} ; 185.4 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF was added slowly and the resulting mixture was stirred for another 1 h at $-78^{\circ} \mathrm{C}$. The mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for 16 h . The mixture was quenched with aqueous ammonium chloride solution (200 mL) and the organic components were extracted with EtOAc ($2 \times 700 \mathrm{~mL}$). The combined organic layers were washed with 1 N HCl solution, brine and dried over anhydrous sodium sulfate, then filtered. The filtrate was then concentrated under reduced pressure to obtain the title compound ($23 \mathrm{~g}, 75 \%$) as a crude material which was directly used for the next step without any purification. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 4.21(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{~s}, 4 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H})$, 1.77 (t, 3H), 1.187 (m, 6H).
[0228] Preparation 14: Tributyl-(5-methyl-thiophen-2-yl)stannane

Scheme 14
[0229] To a stirred solution of 2-bromo-5-methyl thiophene I ($6 \mathrm{~g}, 33.9 \mathrm{mmol}$, 1eq) in dry THF (60 mL) cooled to $-78^{\circ} \mathrm{C}$, was added $n-\operatorname{BuLi}(14.7 \mathrm{~mL}, 2.3 \mathrm{M}$ in THF, 1 eq$)$ and the resulting mixture was stirred for 45 min at $-78^{\circ} \mathrm{C}$. To the mixture was added tributyltin chloride ($11 \mathrm{~g}, 33.9 \mathrm{mmol}, 1 \mathrm{eq}$) and the resulting mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for another 1 h . The mixture was then diluted with saturated aqueous ammonium chloride solution, and the organic components were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water and brine, dried over anhydrous sodium sulfate, filtered and concentrated to dryness to obtain crude tributyl-(5-methyl-thiophen-2yl)stannane (13.1 g) which was directly used in subsequent reactions without any purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 2.53(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 1.06(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~m}, 9 \mathrm{H})$.
[0230] Following the same protocol, the below compounds were also prepared.

[0231] Preparation 15: Tributyl-(5-methyl-furan-2-yl)-stannane

Scheme 15
[0232] To a stirred solution of 2-methylfuran I (3 g, $36.5 \mathrm{mmol}, 1 \mathrm{eq})$ in dry THF (20 mL) cooled to $-78{ }^{\circ} \mathrm{C}$ was added n -butyllithium ($15.9 \mathrm{~mL}, 2.3 \mathrm{M}$ in THF, 1 eq) and the resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The mixture was then cooled to $-78^{\circ} \mathrm{C}$ and tributyltin chloride was added ($11.9 \mathrm{~g}, 36.5 \mathrm{mmol}, 1 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for 18 h . The mixture was then diluted with saturated aqueous ammonium chloride solution, and the organic components were extracted with ethyl acetate
(2 x 50 mL). The combined organic layers were washed with water, brine, dried over anhydrous sodium sulfate, filtered and concentrated to dryness to obtain the title compound as a crude product $(4.5 \mathrm{~g})$ which was directly used for the next reaction without any purification ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.43(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 5.97(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.40-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{~m}, 12 \mathrm{H}), 0.91(\mathrm{~m}, 9 \mathrm{H})$.
[0233] Preparation 16: 8-(Cyclopropyl-propionyl-amino)-imidazo[1,2-a]pyridine-6carboxylic acid ethyl ester

Scheme 16
[0234] Following the experimental procedure described for Example 8, compound IV was prepared. Compound VIa was converted to Example 188 using the general procedure described in Example 20.
[0235] Step 3a: 8-Cyclopropylamino-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0236] To a stirred toluene solution of compound IV ($1.5 \mathrm{~g} ; 5.57 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added cyclopropyl amine ($0.47 \mathrm{~g} ; 8.36 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min , followed by addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.72 \mathrm{~g} ; 8.36$ $\mathrm{mmol} ; 1.5 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.25 \mathrm{~g} ; 0.28 \mathrm{mmol} ; 0.05 \mathrm{eq})$ and xantphos $(0.32 \mathrm{~g} ; 0.56 \mathrm{mmol} ; 0.1$ eq). The mixture was then degassed again with argon for 5 min and then the reaction tube was sealed and heated to $110^{\circ} \mathrm{C}$ for 2 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $20 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound (0.31 g , 23%) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}$, $1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$,
$0.83(\mathrm{~m}, 2 \mathrm{H}), 0.64(\mathrm{~m}, 2 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=246.2[\mathrm{M}+]$, RT $=3.13$ minutes, (Program P1, Column V).
[0237] Step 4a: 8-(Cyclopropyl-propionyl-amino)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0238] To a solution of compound $\mathrm{Va}(1 \mathrm{~g}, 4.08 \mathrm{mmol}, 1 \mathrm{eq})$ in dry THF (50 mL) were added pyridine ($0.67 \mathrm{~mL}, 8.16 \mathrm{mmol}, 2 \mathrm{eq}$) and propionyl chloride $(0.73 \mathrm{~mL}, 8.16 \mathrm{mmol}, 2$ eq) and the resulting mixture was heated at reflux with stirring under an argon atmosphere for 17 h . The mixture was cooled to room temperature and quenched with saturated aqueous sodium bicarbonate solution (100 mL) and the organic components were extracted with ethyl acetate ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and the filtrate was concentrated under reduced pressure to provide a crude compound. The crude product was purified by Combiflash ${ }^{\mathrm{TM}}$ chromatography eluting with 5% methanol/dichloromethane to obtain the title compound $(0.83 \mathrm{~g}, 68 \%)$ as a grey solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 2 \mathrm{H}), 7.47$ $(\mathrm{s}, 1 \mathrm{H}), 4.40(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 1.12(\mathrm{t}, 3 \mathrm{H}$, $J=7 \mathrm{~Hz}), 0.81(\mathrm{~m}, 2 \mathrm{H}), 0.63(\mathrm{~m}, 2 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=302.2[\mathrm{M}+], \mathrm{RT}=2.75$ minutes, (Program P1, Column W).
[0239] EXAMPLE 1: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(5-ethyl-1,3,4-oxadiazol-2-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 17
[0240] Step 1: 2-Aminonicotinic acid ethyl ester
[0241] To a stirred solution of compound I ($10 \mathrm{~g} ; 72 \mathrm{mmol} ; 1 \mathrm{eq}$) in ethanol (150 mL) was added thionyl chloride ($15.7 \mathrm{~mL} ; 217 \mathrm{mmol} ; 3 \mathrm{eq}$) dropwise at $60^{\circ} \mathrm{C}$ and the resulting mixture was heated at reflux for 17 h . The mixture was evaporated to dryness and pH was adjusted to 7 by adding ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous layer with ethyl acetate ($3 \times 500 \mathrm{~mL}$), and the combined organic layers were washed with brine solution, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to afford the title compound (8 $\mathrm{g}, 66 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.20(\mathrm{~m}, 1 \mathrm{H}), 8.05(\mathrm{~m}, 1 \mathrm{H}), 7.13$ (s, $2 \mathrm{H}), 6.62(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$.
[0242] Step 2: 2-Amino-5-bromonicotinic acid ethyl ester
[0243] To a stirred solution of compound II ($15 \mathrm{~g} ; 90.36 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (150 mL) was added NBS ($16 \mathrm{~g} ; 90.36 \mathrm{mmol} ; 1 \mathrm{eq}$) in portions at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture
was stirred at $23{ }^{\circ} \mathrm{C}$ for 18 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3×200 mL). The combined organic layers were then washed with brine solution, dried over anhydrous sodium sulfate, filtered and evaporated to dryness to afford the title compound (22 $\mathrm{g}, 100 \%)$ as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.29(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 8.12(\mathrm{~d}, 1 \mathrm{H}, J$ $=2 \mathrm{~Hz}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=245.0$ $[\mathrm{M}+\mathrm{]}, 247.0[\mathrm{M}+2], \mathrm{RT}=3.34$ minutes, (Program P1, Column W).
[0244] Step 3: 6-Bromo-imidazo[1,2-a]pyridine-8-carboxylic acid ethyl ester
[0245] To a stirred solution of compound III ($22 \mathrm{~g} ; 90 \mathrm{mmol} ; 1 \mathrm{eq}$) in ethanol (500 mL) was added sodium bicarbonate ($13 \mathrm{~g} ; 179 \mathrm{mmol} ; 2 \mathrm{eq}$) and chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $60 \mathrm{~mL} ; 449 \mathrm{mmol} ; 5 \mathrm{eq}$) drop wise and the mixture was heated at reflux for 8 h . The mixture was then evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous layer with ethyl acetate ($3 \times 700 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 10-50\% ethyl acetate/hexanes to afford the title compound ($14.5 \mathrm{~g}, 60 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.16$ (s, $1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=268.8[\mathrm{M}+], 270.8[\mathrm{M}+2], \mathrm{RT}=2.77$ minutes, $($ Program P1, Column Y$)$.
[0246] Step 4: 6-Bromo-imidazo[1,2-a]pyridine-8-carboxylic acid hydrazide
[0247] To a stirred solution of compound IV ($5 \mathrm{~g} ; 18.6 \mathrm{mmol} ; 1 \mathrm{eq}$) in ethanol (50 mL) was added hydrazine hydrate ($9.3 \mathrm{~g} ; 186 \mathrm{mmol} ; 10 \mathrm{eq}$) and the resulting mixture was heated at reflux for 5 h . The mixture was cooled, filtered and the solid residue was washed with hexane and dried under reduced pressure to obtain the title compound ($4.5 \mathrm{~g}, 95 \%$) as white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 10.91(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}$), $8.07(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, 1 \mathrm{H}$, $J=2 \mathrm{~Hz}), 7.74$ (s, 1H) 4.86 (s, 2H).
[0248] Step 5: 6-Bromo-imidazo [1,2-a]pyridine-8-carboxylic acid N'-propionylhydrazide
[0249] To a stirred solution of compound $\mathrm{V}(4.5 \mathrm{~g} ; 17.6 \mathrm{mmol} ; 1 \mathrm{eq})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) at $0{ }^{\circ} \mathrm{C}$ were added TEA ($7.6 \mathrm{~mL} ; 52.9 \mathrm{mmol} ; 3 \mathrm{eq}$) and propionyl chloride dropwise and the resulting mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was poured into
saturated ice-cold aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 250 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 0-5\% methanol/dichloromethane as eluent to afford the title compound ($1.2 \mathrm{~g}, 23 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta 11.97$ (d, $1 \mathrm{H}, J=4 \mathrm{~Hz}$), 10.73 (d, $1 \mathrm{H}, J=4 \mathrm{~Hz}$), 9.19 (d, $1 \mathrm{H}, J$ $=2 \mathrm{~Hz}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.07(\mathrm{t}, 3 \mathrm{H}$, $J=8 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=311.0[\mathrm{M}+], 313.0[\mathrm{M}+2], \mathrm{RT}=2.29$ minutes, $($ Program P1, Column W).
[0250] Step 6: 6-Bromo-8-(5-ethyl-[1,3,4]oxadiazol-2-yl)-imidazo[1,2-a]pyridine
[0251] A stirred solution of compound VI ($1.2 \mathrm{~g} ; 3.8 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry $\mathrm{POCl}_{3}(20 \mathrm{~mL})$ was heated at reflux for 2 h . The mixture was evaporated to dryness and diluted with saturated aqueous NaHCO_{3} solution. The organic components were extracted with ethyl acetate (3 x 100 mL) and the combined extracts were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to obtain a dry residue. The crude material was purified by silica gel (230-400 mesh) column chromatography using 0-5\% methanol/dichloromethane as the eluent to obtain the title compound ($0.6 \mathrm{~g}, 53 \%$) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H})$, $3.32(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{q}, 2 \mathrm{H}), 1.36(\mathrm{t}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=293.0[\mathrm{M}+], 295.0[\mathrm{M}+2], \mathrm{RT}=2.46$ minutes, (Program P1, Column W).
[0252] Step 7: 8-(5-Ethyl-[1,3,4]oxadiazol-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0253] To a solution of compound VII ($0.6 \mathrm{~g} ; 2.1 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (20 mL) was added diisopropylethyl amine ($1.05 \mathrm{~mL} ; 6.0 \mathrm{mmol} ; 3 \mathrm{eq}$), and the resulting solution was degassed with argon for 5 min , followed by an addition of $\mathrm{PdCl}_{2}(\mathrm{dppf})(0.16 \mathrm{~g} ; 0.21 \mathrm{mmol}$; 0.1 eq). The mixture was then degassed again with argon for 5 min , and heated to $90^{\circ} \mathrm{C}$ for 16 h in an autoclave at a pressure of 50 psi under carbon monoxide atmosphere. The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and finally evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with 0-10\%
methanol/dichloromethane as the eluent to obtain the title compound ($0.3 \mathrm{~g}, 55 \%$) as a light brown solid. LCMS: $\mathrm{m} / \mathrm{z}=272.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.46$ minutes, (Program P1, Column Y).
[0254] Step 8: 3-Bromo-8-(5-ethyl-[1,3,4]oxadiazol-2-yl)-imidazo[1,2-a]pyridine-6carboxylic acid methyl ester
[0255] To a stirred solution of compound VIII ($0.32 \mathrm{~g} ; 1.17 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (15 mL) was added NBS ($0.12 \mathrm{~g} ; 0.71 \mathrm{mmol} ; 0.6 \mathrm{eq})$ in portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The organic layer was then washed with brine, dried over anhydrous sodium sulfate, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $0-5 \%$ methanol/dichloromethane to obtain the title compound ($0.21 \mathrm{~g}, 51 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) 8.94 ($\mathrm{s}, 1 \mathrm{H}$), 8.36 (s, $1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.36(\mathrm{t}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=350.8$ $[\mathrm{M}+\mathrm{]}, 352.8[\mathrm{M}+2], \mathrm{RT}=2.70$ minutes, $($ Program P1, Column Y$)$.
[0256] Step 9: 8-(5-Ethyl-[1,3,4]oxadiazol-2-yl)-3-(5-methyl-thiophen-2-yl)imidazo[1,2 -a]pyridine-6-carboxylic acid methyl ester
[0257] To a stirred solution of compound IX ($0.21 \mathrm{~g} ; 0.6 \mathrm{mmol} ; 1 \mathrm{eq})$ in dry toluene in a reaction tube was added compound VIa ($0.27 \mathrm{~g} ; 0.72 \mathrm{mmol} ; 1.2 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was then added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.06 \mathrm{~g} ; 0.06$ $\mathrm{mmol} ; 0.1 \mathrm{eq})$ and the mixture was degassed further with argon for 5 min . The reaction tube was sealed and heated at $115{ }^{\circ} \mathrm{C}$ with stirring for 4 h . The mixture was filtered through a Celite ${ }^{\circledR}$ ad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol/dichloromethane to obtain the title compound ($0.22 \mathrm{~g}, 100 \%$) which was used for the next step without further purification. LCMS: $\mathrm{m} / \mathrm{z}=368.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.07$ minutes, (Program P1, Column Y).
[0258] Step 10: 8-(5-Ethyl-[1,3,4]oxadiazol-2-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0259] To a solution of compound $\mathrm{X}(0.26 \mathrm{~g}, 0.7 \mathrm{mmol}, 1 \mathrm{eq})$ in THF:methanol: $\mathrm{H}_{2} \mathrm{O}(12$ $\mathrm{mL}, 3: 2: 1)$ was added an aqueous solution $(1 \mathrm{~mL})$ of lithium hydroxide monohydrate $(0.09 \mathrm{~g}$, $2.12 \mathrm{mmol}, 3 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvent of
the mixture was removed under reduced pressure, the residue was diluted with water, and acidified with 1 N HCl to adjust the pH to 3 . The precipitated solid was filtered and the residue was dried under vacuum to afford the title compound ($0.12 \mathrm{~g}, 48 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{DMSO}-d_{6}\right) \delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.03(\mathrm{~m}, 1 \mathrm{H})$, $3.03(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=355.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}$ $=2.06$ minutes, $($ Program P1, Column V).
[0260] Step 11: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(5-ethyl-1,3,4-oxadiazol-2-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0261] To a stirred solution of compound XI ($80 \mathrm{mg}, 0.22 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (5 mL) was added DIPEA ($0.12 \mathrm{~mL}, 0.7 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU ($0.10 \mathrm{~g}, 0.3 \mathrm{mmol}, 1.2 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was allowed to stir for 15 min . To the mixture was added (S)-1-(4H-[1,2,4]triazol-3-yl)-ethylamine hydrochloride $(0.101 \mathrm{~g}, 0.7 \mathrm{mmol}, 3 \mathrm{eq})$ and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo and the residue was diluted with EtOAc and washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was finally purified by silica gel (230-400 mesh) column chromatography eluting with 0-5\% methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($4 \mathrm{mg}, 4 \%$) as off white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 13.86(\mathrm{~s}, 1 \mathrm{H}), 9.39(\mathrm{~s}, 1 \mathrm{H}), 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~m}$, $1 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 5.36(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 2.55$ $(\mathrm{s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 1.38(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=449.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=$ 2.76 minutes, (Program P1, Column V).
[0262] EXAMPLE 2: 8-(2,5-Dimethyl-1H-imidazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 18
[0263] Step 1: 6-Bromoimidazo-[1,2-a]pyridin-8-ylamine
[0264] To a stirred solution of compound I ($50 \mathrm{~g} ; 0.26 \mathrm{~mol} ; 1 \mathrm{eq}$) in ethanol (2 L) was added sodium bicarbonate ($46 \mathrm{~g} ; 0.53 \mathrm{~mol} ; 2 \mathrm{eq}$) and chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $86 \mathrm{~mL} ; 0.66 \mathrm{~mol} ; 2.5 \mathrm{eq}$) drop wise and the resulting mixture was heated at reflux for 17 h . The mixture was then evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous layer with ethyl acetate ($3 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 10-50\% ethyl acetate/hexanes as the eluent to afford the title compound ($40 \mathrm{~g}, 71 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.04$ ($\mathrm{s}, 1 \mathrm{H}$), 7.77 ($\mathrm{s}, 1 \mathrm{H}$), $7.44(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H})$. LCMS: m/z = $212.0[\mathrm{M}+], 214.0$ $[\mathrm{M}+2], \mathrm{RT}=2.55$ minutes, (Program P1, Column V).
[0265] Step 2: 8-Amino-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0266] To a solution of compound II ($10 \mathrm{~g} ; 47 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (200 mL) was added diisopropylethyl amine ($41 \mathrm{~mL} ; 236 \mathrm{mmol} ; 5 \mathrm{eq}$) and the resulting mixture was
degassed with argon for 5 min . To the mixture was added $\mathrm{PdCl}_{2}(\mathrm{dppf})(4 \mathrm{~g} ; 4.72 \mathrm{mmol} ; 0.1$ eq) and the resulting solution was degassed with argon for another 5 min and then heated in an autoclave at $90{ }^{\circ} \mathrm{C}$ at 50 psi carbon monoxide pressure for 16 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $0-10 \%$ methanol/dichloromethane as the eluent to obtain the title compound ($5 \mathrm{~g}, 55 \%$) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.57$ $(\mathrm{s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.5135(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=$ $191.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.03$ minutes, (Program P1, Column V).
[0267] Step 3: 8-[bis-(tert-Butoxycarbonyl)amino]-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0268] To a stirred solution of compound III ($3 \mathrm{~g} ; 15.6 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (200 mL) at $0{ }^{\circ} \mathrm{C}$ were added TEA ($6.52 \mathrm{~mL} ; 46 \mathrm{mmol} ; 3 \mathrm{eq}$), boc anhydride ($4.32 \mathrm{~mL}, 18.8 \mathrm{mmol} ; 1.2$ eq) dropwise and a catalytic amount of DMAP, and the resulting mixture was heated at reflux for 17 h . The mixture was diluted with water (300 mL) and the organic components were extracted with ethyl acetate ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to obtain dry residue which was purified by silica gel (230-400 mesh) column chromatography using $10-50 \%$ ethyl acetate/hexanes as the eluent to afford the title compound ($2.9 \mathrm{~g}, 49 \%$) as a solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (s, $1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=391.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.18$ minutes, (Program P1, Column Y).
[0269] Step 4: 3-Bromo-8-[bis-(tert-Butoxycarbonyl)amino]-imidazo[1,2-a]pyridine-6carboxylic acid methyl ester
[0270] To a stirred solution of compound IV ($2.88 \mathrm{~g} ; 7.3 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (80 mL) was added NBS ($1.31 \mathrm{~g} ; 7.3 \mathrm{mmol} ; 1 \mathrm{eq}$) in portions at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. The temperature of the mixture was then slowly raised to 23 ${ }^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3 x 50 mL). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to obtain a dry residue which was purified
by silica gel (230-400 mesh) column chromatography using 10-50\% ethyl acetate/hexanes as the eluent to afford the title compound $(3.46 \mathrm{~g}, 100 \%)$ as a solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.79$ ($\mathrm{s}, 1 \mathrm{H}$), $7.88(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=469.8[\mathrm{M}+]$, $471.8[\mathrm{M}+2], \mathrm{RT}=3.54$ minutes, (Program P1, Column Y).
[0271] Step 5: 8-Amino-3-bromo-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester [0272] To a stirring solution of compound $\mathrm{V}(3.5 \mathrm{~g} ; 7.4 \mathrm{mmol} ; 1 \mathrm{eq})$ in methanol (50 mL) at $0{ }^{\circ} \mathrm{C}$ was added 4 M methanolic $\mathrm{HCl}(100 \mathrm{~mL})$ dropwise over a period of 30 min and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 500 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to obtain the title compound (2 g, 100%) as solid. LCMS: $\mathrm{m} / \mathrm{z}=269.8[\mathrm{M}+], 271.8[\mathrm{M}+2], \mathrm{RT}=2.91$ minutes, (Program P1, Column Y).
[0273] Step 6: 3-Bromo-8-[1-dimethylamino-ethylideneamino]-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0274] A stirring solution of compound VI ($0.42 \mathrm{~g} ; 2.19 \mathrm{mmol} ; 1 \mathrm{eq}$) in dimethyl acetamide dimethyl acetal (1.5 mL) was heated at reflux for 1 h . The mixture was evaporated to dryness to afford the title compound $(0.74 \mathrm{~g}, 100 \%)$. LCMS: $\mathrm{m} / \mathrm{z}=339.0[\mathrm{M}+], 341.0$ $[\mathrm{M}+2], \mathrm{RT}=2.69$ minutes, (Program P1, Column W).
[0275] Step 7: 3-Bromo-8-(2, 5-dimethyl-imidazol-1-yl)-imidazo-[1,2-a]pyridine-6carboxylic acid methyl ester
[0276] To compound VII ($0.73 \mathrm{~g} ; 2.15 \mathrm{mmol} ; 1 \mathrm{eq}$) was added aqueous HCl dropwise at $0{ }^{\circ} \mathrm{C}$, followed by propargyl amine ($1.18 \mathrm{~g} ; 21.53 \mathrm{mmol} ; 10 \mathrm{eq}$) and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The temperature was then raised to $100^{\circ} \mathrm{C}$ and stirred for another 3 h. The mixture was cooled to room temperature and diluted with ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.38 \mathrm{~g}, 51 \%)$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.99(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 2 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$. LCMS: m/z $=349.0[\mathrm{M}+], 351.0[\mathrm{M}+2]$, RT $=2.79$ minutes, (Program P1, Column Y).
[0277] Step 8: 8-(2,5-Dimethyl-imidazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0278] To a stirred dry toluene solution of compound ($0.38 \mathrm{~g} ; 1.08 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added compound VIa ($0.63 \mathrm{~g} ; 1.63 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.12 \mathrm{~g} ; 0.1 \mathrm{mmol}$; $0.1 \mathrm{eq})$ and degassing with argon was repeated for an additional 5 min . The reaction tube was sealed and heated at $115^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered through a Celite \circledR^{\circledR} pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents were removed in vacuo to obtain a crude material. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol/ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.18 \mathrm{~g}, 46 \%)$ as a light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.74$ (s, 1H), 7.43 (d, 1H, J = 3 Hz), 7.04 (d, 1H, $J=3 \mathrm{~Hz}$), 6.71 (s, 1H), 3.91 ($\mathrm{s}, 3 \mathrm{H}), 2.56$ (s, $3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=366.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.04$ minutes, (Program P1, Column W).
[0279] Step 9: 8-(2,5-Dimethyl-imidazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0280] To a solution of compound IX ($0.18 \mathrm{~g}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$) in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ (15 $\mathrm{mL}, 3: 2: 1$) at $0{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(0.062 \mathrm{~g}, 1.5$ mmol, 3 eq) in water (1 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure and the residue was diluted with water and acidified with 1 N HCl to adjust the pH to 3 . The precipitated solid was collected by filtration and dried under vacuum to afford the title compound $(0.15 \mathrm{~g}, 88 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ 9.83 ($\mathrm{s}, 1 \mathrm{H}$), 9.09 ($\mathrm{s}, 1 \mathrm{H}$), 7.89 ($\mathrm{s}, 1 \mathrm{H}$), 7.74 ($\mathrm{s}, 1 \mathrm{H}$), 7.43 (d, 1H, $J=3 \mathrm{~Hz}$), 7.04 (d, 1H, $J=3$ $\mathrm{Hz}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$. LCMS: m/z $=353.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=$ 2.03 minutes, (Program P1, Column Y).
[0281] Step 10: 8-(2,5-Dimethyl-1H-imidazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0282] To a stirred solution of compound $\mathrm{X}(0.07 \mathrm{~g}, 0.2 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added DIPEA ($0.1 \mathrm{~mL}, 0.6 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU ($0.092 \mathrm{~g}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min . To the mixture was added C-(6-methyl-pyridin-3-yl)-methylamine ($0.048 \mathrm{~g}, 0.30 \mathrm{mmol}, 1.5 \mathrm{eq}$) and the resulting mixture was
allowed to stir at $23{ }^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo and the residue was diluted with EtOAc, washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with 0-5\% methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.01 \mathrm{~g}, 11 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 9.30(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}$), $9.11(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.64$ (dd, $1 \mathrm{H}, J=2,8 \mathrm{~Hz}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}),, 7.21(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz})$, $6.71(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=457.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.96$ minutes, (Program P1, Column Y).
[0283] EXAMPLE 3: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(3,5-dimethyl-4H-1,2,4-triazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 19
[0284] Following the experimental procedure described for Example 2, compound VI was prepared.
[0285] Step 6: 3-Bromo-8-(3,5-dimethyl-[1,2,4]triazol-4-yl)-imidazo[1,2-a]pyridine-6carboxylic acid methyl ester
[0286] A solution of compound VI ($0.6 \mathrm{~g} ; 2.22 \mathrm{mmol} ; 1 \mathrm{eq}$) in dimethyl acetamide dimethyl acetal (6 mL) was heated at reflux under stirring for 1 h . The mixture was evaporated to dryness and after cooling the residue to $0{ }^{\circ} \mathrm{C}, \mathrm{HCl}(1 \mathrm{~mL})$ was added drop wise, followed by acetic acid hydrazide ($0.98 \mathrm{~g} ; 13.33 \mathrm{mmol} ; 6 \mathrm{eq}$) and the resulting mixture was
stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The temperature was then raised to $130^{\circ} \mathrm{C}$ and stirring was continued for another 2 h . The mixture was cooled to room temperature and diluted with ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate and concentrated to dryness. The crude product was purified by silica gel (230-400 mesh) column chromatography, eluting with $0-5 \%$ methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to obtain the title compound $(0.34 \mathrm{~g}, 44 \%)$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.90$ (s, $1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=350.0[\mathrm{M}+], 352.0$ $[\mathrm{M}+2], \mathrm{RT}=2.42$ minutes, $($ Program P1, Column Y).
[0287] Step 7: 8-(3,5-Dimethyl-[1,2,4]triazol-4-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0288] To a stirred dry DMF solution of compound VII ($0.34 \mathrm{~g} ; 0.97 \mathrm{mmol} ; 1 \mathrm{eq})$ in a reaction tube was added compound VIa ($0.57 \mathrm{~g} ; 1.46 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was degassed with Argon for 5 min . To the mixture was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.12 \mathrm{~g} ; 0.09 \mathrm{mmol}$; $0.1 \mathrm{eq})$ and degassing with Argon was repeated for about 5 min , then the reaction tube was sealed and heated at $130^{\circ} \mathrm{C}$ for 4 h . The mixture was quenched with ice cold water and the organic components were extracted with EtOAc. The organic layer was washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $0-5 \%$ Methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, to obtain the title compound $(0.29 \mathrm{~g}$, 80%) as an off white solid. LCMS: $\mathrm{m} / \mathrm{z}=368.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.97$ minutes, (Program P1, Column Y).
[0289] Step 8: 8-(3,5-Dimethyl-[1,2,4]triazol-4-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0290] To a solution of compound VIII ($0.29 \mathrm{~g}, 0.79 \mathrm{mmol}, 1 \mathrm{eq}$) in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ $(15 \mathrm{~mL}, 3: 2: 1)$ at $0^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(0.1 \mathrm{~g}, 2.37$ mmol, 3 eq) in water (1 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min . The solvent was removed under reduced pressure and the residue was diluted with water and acidified with 1 N HCl to adjust the pH to 3 and organic components were extracted with EtOAc. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated to dryness to afford the title compound ($0.28 \mathrm{~g}, 99 \%$) as an off white solid. ${ }^{1} \mathrm{H}$

NMR (DMSO- d_{6}) $\delta 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.03(\mathrm{~m}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=354.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.08$ minutes, (Program P1, Column Y).
[0291] Step 9: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(3,5-dimethyl-4H-1,2,4-triazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0292] To a stirred solution of compound IX ($0.3 \mathrm{~g}, 0.85 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (50 mL) were added TEA ($0.8 \mathrm{~mL}, 4.25 \mathrm{mmol}, 5 \mathrm{eq}$), T3P ($0.4 \mathrm{~mL}, 1.30 \mathrm{mmol}, 1.5 \mathrm{eq}$) and (S)-1($4 \mathrm{H}-[1,2,4]$ triazol-3-yl)-ethylamine hydrochloride ($0.15 \mathrm{~g}, 1.30 \mathrm{mmol}, 1.5 \mathrm{eq}$) at $23^{\circ} \mathrm{C}$, then the resulting mixture was heated at $130^{\circ} \mathrm{C}$ for 4 h . The mixture was quenched with ice cold water and the organic components were extracted with EtOAc. The organic layer was washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated to dryness. The crude product was initially purified by silica gel (100-200 mesh) column chromatography eluting with $0-10 \%$ methanol/ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by preparative TLC to obtain the title compound ($0.015 \mathrm{~g}, 4 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ $13.86(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 9.16(\mathrm{~m}, 2 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H})$, $7.04(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=448.2$ $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.45$ minutes, (Program P1, Column Y).
[0293] EXAMPLE 4: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 20

[0294] Step 1: 6-Bromo-imidazo[1,2-a]pyridin-8-ylamine

[0295] To a stirred solution of compound I ($50 \mathrm{~g} ; 0.26 \mathrm{~mol} ; 1 \mathrm{eq}$) in ethanol (2 L) was added sodium bicarbonate ($46 \mathrm{~g} ; 0.53 \mathrm{~mol} ; 2 \mathrm{eq}$) and chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $86 \mathrm{~mL} ; 0.66 \mathrm{~mol} ; 2.5 \mathrm{eq}$) dropwise and the resulting mixture was heated at reflux for 17 h . The mixture was evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous layer with ethyl acetate ($3 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 10-50\% ethyl acetate/hexanes as the eluent to afford the title compound ($40 \mathrm{~g}, 71 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H})$, 7.77 ($\mathrm{s}, 1 \mathrm{H}$), $7.44(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H})$. LCMS: m/z = $212.0[\mathrm{M}+], 214.0[\mathrm{M}+2]$, RT $=2.55$ minutes, (Program P1, Column V).
[0296] Step 2: 8-Amino-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0297] To a solution of compound II ($10 \mathrm{~g} ; 47.2 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (200 mL) was added diisopropylethyl amine ($41 \mathrm{~mL} ; 236 \mathrm{mmol} ; 5 \mathrm{eq}$) and the resulting solution was
degassed with argon for 5 min . To the mixture was added $\mathrm{PdCl}_{2}(\mathrm{dppf})(4 \mathrm{~g} ; 4.72 \mathrm{mmol} ; 0.1$ eq) and the resulting solution was degassed with argon for another 5 min . The solution was then heated in an autoclave at $90{ }^{\circ} \mathrm{C}$ at 50 psi carbon monoxide pressure for 16 h . The mixture was filtered through a Celite® pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $0-10 \%$ methanol/dichloromethane as the eluent to obtain the title compound ($5 \mathrm{~g}, 55 \%$) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=191.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.03$ minutes, (Program P1, Column V).
[0298] Step 3: 8-Azido-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester [0299] To a stirred solution of compound III ($10 \mathrm{~g} ; 52.36 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (600 mL) were added tertiarybutylnitrite ($32 \mathrm{~mL} ; 230 \mathrm{mmol} ; 4.4 \mathrm{eq}$) dropwise and trimethylsilylazide ($16 \mathrm{~mL}, 115 \mathrm{mmol}, 2.2 \mathrm{eq}$) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was evaporated to dryness to obtain a crude material which was purified by silica gel (100-200 mesh) column chromatography, eluting with $0-50 \%$ ethylacetate/hexanes as the eluent to obtain the title compound ($9 \mathrm{~g}, 80 \%$) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\boldsymbol{\delta} 9.17$ ($\mathrm{s}, 1 \mathrm{H}$), 8.19 ($\mathrm{s}, 1 \mathrm{H}$), 7.71 ($\mathrm{s}, 1 \mathrm{H}$), 7.11 ($\mathrm{s}, 1 \mathrm{H}$), 3.87 (s , $3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=218.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.69$ minutes, $($ Program P1, Column V).
[0300] Step 4: 8-(5-Difluoromethyl-4-ethoxycarbonyl-[1,2,3]triazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0301] To a stirred solution of DBU ($25 \mathrm{~mL} ; 166 \mathrm{mmol} ; 1.2$ eq) in dry DMF:THF (1 L ; 1:1) was added 4,4-difluoro-3-oxo-butyric acid ethyl ester (22 mL ; $207 \mathrm{mmol} ; 1.5 \mathrm{eq}$) slowly and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min . The mixture was then cooled to 0 ${ }^{\circ} \mathrm{C}$ and compound IV ($30 \mathrm{~g} ; 138.2 \mathrm{mmol} ; 1 \mathrm{eq}$) in DMF:THF solution was added dropwise and the mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was diluted with water (1 L) and the organic components were extracted with ethyl acetate ($3 \times 700 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to obtain a dry residue which was chromatographically purified by silica gel (230-400 mesh) column chromatography using $10-50 \%$ ethyl acetate/hexanes as the eluent to afford the title compound ($32 \mathrm{~g}, 65 \%$) as solid.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H})$, 4.43 (q, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$. LCMS: m/z $=365.8[\mathrm{M}+\mathrm{H}]^{+}$, RT $=2.97$ minutes, (Program P1, Column Y).
[0302] Step 5: 3-Bromo-8-(5-difluoromethyl-4-ethoxycarbonyl-[1,2,3]triazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0303] To a stirred solution of compound V (10 g; $27.4 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (150 mL) at $0^{\circ} \mathrm{C}$ was added NBS ($7.4 \mathrm{~g} ; 41.1 \mathrm{mmol} ; 1.5 \mathrm{eq}$) in portions and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3×500 mL). The organic layer was then washed with brine, dried over anhydrous sodium sulfate and the solvents were removed in vacuo to obtain a dry residue which was chromatographically purified by silica gel (230-400 mesh) gravity column using 10-50\% ethyl acetate/hexanes as the eluent to afford the title compound ($10 \mathrm{~g}, 82 \%$) as a solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.00$ (s, $1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{q}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, 3 \mathrm{H}$, $J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=443.8[\mathrm{M}+], 445.8[\mathrm{M}+2], \mathrm{RT}=3.20$ minutes, (Program P1, Column Y).
[0304] Step 6: 3-Bromo-8-(4-carboxy-5-difluoromethyl-[1,2,3]triazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0305] To a solution of compound VI ($7 \mathrm{~g}, 15.8 \mathrm{mmol}, 1 \mathrm{eq}$) in THF:methanol: $\mathrm{H}_{2} \mathrm{O}(115$ $\mathrm{mL}, 3: 2: 1$) at $0{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(2 \mathrm{~g}, 47.3 \mathrm{mmol}$, $3 \mathrm{eq})$ in water (5 mL) and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure and the residue was diluted with water and acidified with 1 N HCl to adjust the pH to 3 . The precipitated solid was collected by filtration and dried under vacuum to afford the title compound ($5 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 14.01(\mathrm{~s}, 2 \mathrm{H}), 8.97$ (s, 1H), 8.19 (s, 1H), 7.93 (s, 1H), 7.46 (m, 1H). LCMS: m/z $=402.0[\mathrm{M}+], 403.8$ [M+2], RT $=0.84$ minutes, (Program P1, Column Y).
[0306] Step 7: 3-Bromo-8-(5-difluoromethyl-[1,2,3]triazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0307] Compound VII ($5 \mathrm{~g} ; 12.4 \mathrm{mmol} ; 1 \mathrm{eq}$) was heated at $200^{\circ} \mathrm{C}$ for 1 h to obtain the title compound ($3.5 \mathrm{~g} ; 80 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 14.01(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H})$, $8.15(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=357.8[\mathrm{M}+], 359.8[\mathrm{M}+2], \mathrm{RT}=1.71$ minutes, (Program P1, Column Y).
[0308] Step 8: 3-Bromo-8-(5-difluoromethyl-[1,2,3]triazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid [(S)-1-(4H-[1,2,4]triazol-3-yl)-ethyl]-amide
[0309] To a stirred solution of compound VIII ($2 \mathrm{~g}, 5.6 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (20 mL) were added DIPEA ($3 \mathrm{~mL}, 16.8 \mathrm{mmol}, 3 \mathrm{eq}$) and $\operatorname{HATU}(3.2 \mathrm{~g}, 8.40 \mathrm{mmol}, 1.5 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min . To the mixture was added (S) $-1-(4 \mathrm{H}-$ [1,2,4]triazol-3-yl)-ethylamine hydrochloride ($0.94 \mathrm{~g}, 8.40 \mathrm{mmol}, 1.2 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo and the residue was diluted with EtOAc. The organic layer was washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($1 \mathrm{~g}, 49 \%$) as brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 13.94(\mathrm{~d}, 1 \mathrm{H}), 9.48(\mathrm{dd}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 9.36(\mathrm{~d}, 1 \mathrm{H})$, $8.45(\mathrm{~d}, 2 \mathrm{H}), 8.29(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 7.93(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 5.35(\mathrm{q}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 1.55$ (d, 3H, $J=7 \mathrm{~Hz}$). LCMS: $\mathrm{m} / \mathrm{z}=452.2[\mathrm{M}+], 454.2[\mathrm{M}+2], \mathrm{RT}=2.40$ minutes, (Program P1, Column Y).
[0310] Step 9: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0311] To a stirred, dry DMF solution of compound IX ($0.7 \mathrm{~g} ; 1.55 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added compound VIa ($0.9 \mathrm{~g} ; 2.32 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.2 \mathrm{~g} ; 0.15 \mathrm{mmol}$; $0.1 \mathrm{eq})$ and degassing with argon was repeated for about 5 min . The reaction tube was sealed and heated at $115{ }^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent was removed in vacuo to obtain a crude material. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound (0.29 g , 40%) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 13.56(\mathrm{~s}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, 1 \mathrm{H})$, $8.32(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{q}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H})$, 1.60 (s, 3H). LCMS: m/z = $470.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.87$ minutes, (Program P1, Column Y).
[0312] EXAMPLE 5: 8-(5-(Difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methyl-1,3,4-thiadiazol-2-yl)-N-((6-methylpyridin-3-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 21
[0313] Following the experimental procedure described for Example 4_ compound VIII was prepared.
[0314] Step 8: 3-Bromo-8-(5-difluoromethyl-[1,2,3]triazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid (6-methyl-pyridin-3-ylmethyl)-amide
[0315] To a stirred solution of compound VIII ($1 \mathrm{~g}, 2.8 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (10 mL) were added DIPEA ($5 \mathrm{~mL}, 26 \mathrm{mmol}, 8 \mathrm{eq}$) and HATU ($1.6 \mathrm{~g}, 4.20 \mathrm{mmol}, 1.5 \mathrm{eq}$) at $23^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min . To the mixture was added C-(6-methyl-pyridin3 -yl)-methylamine ($520 \mathrm{mg}, 4.20 \mathrm{mmol}, 1.5 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for another 16 h . The mixture was quenched with ice cold water $(100 \mathrm{~mL})$ and the organic components were extracted with EtOAc ($2 \times 400 \mathrm{~mL}$). The organic layer was washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude residue was purified by silica gel (100-200 mesh) column chromatography eluting with $0-4 \%$ methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.73 \mathrm{~g}$, 57%) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 9.51(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 9.11(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~m}$, $2 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, 1 \mathrm{H}, J=8,2 \mathrm{~Hz}), 7.39(\mathrm{t}, 1 \mathrm{H}, J=54 \mathrm{~Hz}), 7.23(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.52(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 2.44(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=462.0[\mathrm{M}+], 464.2$ [M+2], RT $=2.80$ minutes, (Program P1, Column Y).
[0316] Step 9: 8-(5-(Difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methyl-1,3,4-thiadiazol-2-yl)-N-((6-methylpyridin-3-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide
[0317] To a stirred, dry DMF solution of compound IX ($50 \mathrm{mg} ; 0.11 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube were added 2-bromo-5-methyl-[1,3,4]thiadiazole ($20 \mathrm{mg} ; 0.11 \mathrm{mmol} ; 1 \mathrm{eq}$), hexamethylditin ($50 \mathrm{mg} ; 0.16 \mathrm{mmol} ; 1.5 \mathrm{eq}$), and the resulting mixture was degassed with argon for 5 min . To the mixture was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg} ; 0.01 \mathrm{mmol} ; 0.1 \mathrm{eq})$ and degassing with argon was repeated for about 5 min , and the reaction tube was sealed then heated at $130^{\circ} \mathrm{C}$ for 2 h . The mixture was quenched with ice cold water (50 mL) and the
organic components were extracted with EtOAc ($2 \times 150 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was initially purified by silica gel (100-200 mesh) column chromatography eluting with $0-2 \%$ methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and further purified using preparative TLC to obtain the title compound ($20 \mathrm{mg}, 13 \%$) as off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 10.27(\mathrm{~s}, 1 \mathrm{H}), 9.47(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.66(\mathrm{dd}, 1 \mathrm{H}, J=8,2 \mathrm{~Hz}), 7.41(\mathrm{t}, 1 \mathrm{H}, J=53 \mathrm{~Hz}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.53(\mathrm{~d}$, $2 \mathrm{H}, J=6 \mathrm{~Hz}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=482.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.94$ minutes, (Program P1, Column Y).
[0318] EXAMPLE 6: 8-(5-Ethyl-1H-pyrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Step 1: 6-Bromo-imidazo[1,2-a]pyridin-8-ylamine
[0320] To a stirred solution of compound I ($50 \mathrm{~g} ; 0.26 \mathrm{~mol} ; 1 \mathrm{eq}$) in ethanol (2 L) were added sodium bicarbonate ($46 \mathrm{~g} ; 0.53 \mathrm{~mol} ; 2 \mathrm{eq}$) and chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $86 \mathrm{~mL} ; 0.66 \mathrm{~mol} ; 2.5 \mathrm{eq}$) drop wise and the resulting mixture was heated at reflux for 17 h . The mixture was then evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous layer with ethyl acetate ($3 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate and the solvents were removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 10-50\% ethyl acetate/hexanes as the eluent to afford the title compound ($40 \mathrm{~g}, 71 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H})$, $7.77(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H})$. LCMS: m/z = $212.0[\mathrm{M}+], 214.0[\mathrm{M}+2]$, RT $=2.55$ minutes, (Program P1, Column V).
[0321] Step 2: 8-Amino-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0322] To a solution of compound II ($10 \mathrm{~g} ; 47.2 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (200 mL) was added diisopropylethyl amine ($41 \mathrm{~mL} ; 236 \mathrm{mmol} ; 5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was added PdCl_{2} (dppf) $(4 \mathrm{~g} ; 4.7 \mathrm{mmol} ; 0.1 \mathrm{eq})$ and the resulting mixture was degassed with argon for another 5 minutes and then heated in an autoclave at $90^{\circ} \mathrm{C}$ at 50 psi carbon monoxide pressure for 16 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $0-10 \%$ methanol/dichloromethane as the eluent to obtain the title compound ($5 \mathrm{~g}, 55 \%$) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.5135(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=191.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.03$ minutes, (Program P1, Column V).
[0323] Step 3: 8-[bis-(tert-Butoxycarbonyl)amino]-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0324] To a stirred solution of compound III ($3 \mathrm{~g} ; 15.6 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (200 mL) at $0{ }^{\circ} \mathrm{C}$ were added TEA ($6.52 \mathrm{~mL} ; 46 \mathrm{mmol} ; 3 \mathrm{eq}$), boc anhydride ($4.32 \mathrm{~mL}, 18.8 \mathrm{mmol} ; 1.2$ eq) dropwise and a catalytic amount of DMAP, and the resulting mixture was heated at reflux for 17 h . The mixture was diluted with water (300 mL) and the organic components were extracted with ethyl acetate ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with
brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using $10-50 \%$ ethyl acetate/hexanes as the eluent to afford the title compound ($2.9 \mathrm{~g}, 49 \%$) as solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (s , $1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=391.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.18$ minutes, (Program P1, Column Y).
[0325] Step 4: 3-Bromo-8-[bis-(tert-Butoxycarbonyl)amino]-imidazo[1,2-a]pyridine-6carboxylic acid methyl ester
[0326] To a stirred solution of compound IV ($2.88 \mathrm{~g} ; 7.3 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (80 mL) was added NBS ($1.31 \mathrm{~g} ; 7.3 \mathrm{mmol} ; 1 \mathrm{eq}$) in portions at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. The temperature of the mixture was then slowly raised to 23 ${ }^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3 x 50 mL). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 10-50\% ethyl acetate/hexanes as the eluent to afford the title compound $(3.46 \mathrm{~g}, 100 \%)$ as a solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 8.79$ (s, $1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=469.8[\mathrm{M}+], 471.8$ $[\mathrm{M}+2], \mathrm{RT}=3.54$ minutes, (Program P1, Column Y).
[0327] Step 5: 8-Amino-3-bromo-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester [0328] To a stirring solution of compound V ($3.5 \mathrm{~g} ; 7.4 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (50 mL) at $0{ }^{\circ} \mathrm{C}$ was added 4 M methanolic $\mathrm{HCl}(100 \mathrm{~mL})$ dropwise over a period of 30 min and the resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3 x 500 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo to obtain the title compound ($2 \mathrm{~g}, 100 \%$) as a solid. LCMS: $\mathrm{m} / \mathrm{z}=269.8[\mathrm{M}+], 271.8[\mathrm{M}+2]$, RT $=2.91$ minutes, (Program P1, Column Y).
[0329] Step 6: 3-Bromo-8-hydrazino-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0330] To a stirred, cooled $\left(-10^{\circ} \mathrm{C}\right)$ solution of compound VI ($\left.0.7 \mathrm{~g} ; 2.5 \mathrm{mmol} ; 1 \mathrm{eq}\right)$ in concentrated $\mathrm{HCl}(7 \mathrm{~mL})$ was added an aqueous solution of sodium nitrite $(0.35 \mathrm{~g} ; 5.1 \mathrm{mmol}$;
$2 \mathrm{eq})$ and the resulting mixture was stirred at $-10^{\circ} \mathrm{C}$ for 1 h . Tin chloride dehydrate (1.69 g ; $7.51 \mathrm{mmol} ; 3 \mathrm{eq}$) was then added and the resulting mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for 1 h. The mixture was treated with ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3} to adjust the pH to 7 . The aqueous phase was extracted with ethyl acetate (3×500 mL) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 10-50\% ethyl acetate/hexanes as the eluent to afford the title compound ($0.3 \mathrm{~g}, 43 \%$) as an off white solid. LCMS: $\mathrm{m} / \mathrm{z}=285.0$ $[\mathrm{M}+\mathrm{]}, 286.8[\mathrm{M}+2], \mathrm{RT}=2.69$ minutes, (Program P1, Column Y).
[0331] Step 7: 3-Bromo-8-(3-ethoxycarbonyl-5-ethyl-pyrazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0332] To a stirred solution of compound VII ($0.3 \mathrm{~g} ; 1 \mathrm{mmol} ; 1 \mathrm{eq}$) in ethanol was added 2-[1-dimethylamino-methylidene]-3-oxo-pentanoic acid ethyl ester ($0.41 \mathrm{~g} ; 2.1 \mathrm{mmol} ; 2 \mathrm{eq}$) and the resulting mixture was heated at reflux for 4 h . The mixture was cooled to room temperature, ice-cold saturated aqueous NaHCO_{3} solution was added and the organic components were extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate and concentrated to dryness. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.32 \mathrm{~g}$, 73%). LCMS: $\mathrm{m} / \mathrm{z}=421.0[\mathrm{M}+], 423.0[\mathrm{M}+2], \mathrm{RT}=3.30$ minutes, (Program P1, Column Y).
[0333] Step 8: 8-(3-Ethoxycarbonyl-5-ethyl-pyrazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-]pyridine-6-carboxylic acid methyl ester
[0334] To a stirred dry DMF solution of compound VIII ($0.4 \mathrm{~g} ; 0.91 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added compound VIa ($0.53 \mathrm{~g} ; 1.3 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.1 \mathrm{~g} ; 0.09 \mathrm{mmol}$; $0.1 \mathrm{eq})$ and degassing with argon was repeated for about 5 min . The reaction tube was sealed and heated at $115^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvents were removed in vacuo to obtain a crude material. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-50 \%$ ethyl acetate/hexane to obtain the title compound (0.25 g, 61\%). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}$,
$1 \mathrm{H}, J=3 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}), 4.37(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 4.28(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 2.82(\mathrm{q}, 2 \mathrm{H}, J=1$ $\mathrm{Hz}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=439.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=$ 3.56 minutes, (Program P1, Column Y).
[0335] Step 9: 8-(3-Carboxy-5-ethyl-pyrazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0336] To a solution of compound IX ($0.25 \mathrm{~g}, 0.5 \mathrm{mmol}, 1 \mathrm{eq}$) in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ (15 $\mathrm{mL}, 3: 2: 1$) at $0{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate ($46 \mathrm{mg}, 1.1$ $\mathrm{mmol}, 3 \mathrm{eq})$ in water (1 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvents were removed under reduced pressure and the residue was diluted with water and acidified with 1 N HCl to adjust the pH to 3 . The precipitated solid was collected by filtration and dried under vacuum to afford the title compound $(0.2 \mathrm{~g}, 87 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ $9.11(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=3$ $\mathrm{Hz}), 2.87(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=397.0[\mathrm{M}+\mathrm{H}]^{+}$, RT $=1.57$ minutes, (Program P1, Column Y).
[0337] Step 10: 8-(5-Ethyl-pyrazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0338] Compound $\mathrm{X}(0.17 \mathrm{~g} ; 0.42 \mathrm{mmol} ; 1 \mathrm{eq})$ was heated at $200^{\circ} \mathrm{C}$ for 1 h to obtain the title compound ($0.13 \mathrm{~g} ; 86 \%$).
[0339] Step 11: 8-(5-Ethyl-1H-pyrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0340] To a stirred solution of compound XI ($0.15 \mathrm{~g}, 0.42 \mathrm{mmol}, 1 \mathrm{leq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: DMF ($1: 5,20 \mathrm{~mL}$) were added DIPEA ($0.22 \mathrm{~mL}, 1.2 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU ($0.2 \mathrm{~g}, 0.54 \mathrm{mmol}$, $1.3 \mathrm{eq})$ and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min . To the mixture was added C-(6-methyl-pyridin-3-yl)-methylamine ($0.13 \mathrm{~g}, 0.85 \mathrm{mmol}, 2 \mathrm{eq}$) and the resulting mixture allowed to stir at $23{ }^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo, the residue was diluted with EtOAc and washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel ($230-400 \mathrm{mesh}$) column chromatography eluting with $0-10 \%$ methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($30 \mathrm{mg}, 16 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.37(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 9.10(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 8.42(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 7.90(\mathrm{~d}$, $1 \mathrm{H}, J=1 \mathrm{~Hz}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 7.63(\mathrm{dd}, 1 \mathrm{H}, J=2,8 \mathrm{~Hz}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J$
$=4 \mathrm{~Hz}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz})$, $2.62(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=457.0$ $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.21$ minutes, $($ Program P1, Column Y).
[0341] EXAMPLE 7: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 23
[0342] Step 1: 6-Amino-nicotinic acid ethyl ester
[0343] To a stirred solution of compound I (150 g; $108.5 \mathrm{mmol} ; 1 \mathrm{eq}$) in ethanol (1.5 L) was added thionyl chloride ($236 \mathrm{~mL} ; 325 \mathrm{mmol} ; 3 \mathrm{eq}$) dropwise at $60^{\circ} \mathrm{C}$ and the resulting mixture was heated at reflux for 17 h . The mixture was evaporated to dryness and the pH was adjusted to 7 , using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 500 \mathrm{~mL}$), and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate and the solvent was removed in vacuo to afford the title compound ($152 \mathrm{~g}, 84 \%$) as an off-white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=8$ $\mathrm{Hz}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}) ; 1.35(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=167.3[\mathrm{M}+\mathrm{H}]^{+}$, RT $=2.32$ minutes, (Program P1, Column Y).
[0344] Step 2: 6-Amino-5-iodo-nicotinic acid ethyl ester
[0345] To a stirred solution of iodine ($55 \mathrm{~g}, 219 \mathrm{mmol}, 1.4 \mathrm{eq}$) in ethanol (1 L) was added silver sulfate ($48.7 \mathrm{~g}, 312 \mathrm{mmol}, 2 \mathrm{eq}$) and after 5 min , compound II ($26 \mathrm{~g} ; 156.4 \mathrm{mmol} ; 1 \mathrm{eq}$) was added and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . The mixture was evaporated to dryness and diluted with 20% aqueous sodium thiosulfate solution. The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate and the solvents were removed in vacuo to afford the title compound ($45 \mathrm{~g}, 100 \%$) as a brown solid.
[0346] Step 3: 8-Iodo-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0347] To a stirred solution of compound III ($45 \mathrm{~g} ; 154 \mathrm{mmol} ; 1 \mathrm{eq}$) in ethanol (2 L) were added sodium bicarbonate ($25.9 \mathrm{~g} ; 308 \mathrm{mmol} ; 2 \mathrm{eq}$) and chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $121 \mathrm{~mL} ; 770 \mathrm{mmol} ; 5 \mathrm{eq}$) dropwise and the resulting mixture was heated at reflux for 18 h . The mixture was then evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 500 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate and the solvents were removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 10-50\% ethyl acetate /hexanes as the eluent to afford the title compound ($40 \mathrm{~g}, 83 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.34(\mathrm{~s}, 1 \mathrm{H})$, $8.27(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 1.34(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=317.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.96$ minutes, (Program P1, Column Y).
[0348] Step 4: 3-Bromo-8-iodo-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0349] To a stirred solution of compound IV ($30 \mathrm{~g} ; 95 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (200 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS ($16.8 \mathrm{~g} ; 94.9 \mathrm{mmol} ; 1 \mathrm{eq}$) in portions and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was poured into ice-cold saturated NaHCO_{3} aqueous solution and the organic components were extracted with ethyl acetate ($3 \times 500 \mathrm{~mL}$). The combined organic layers then washed with brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to obtain a dry residue. The crude material was purified by silica gel ($230-400$ mesh) column chromatography using 10-50\% ethyl acetate/hexanes as the eluent to afford the compound ($38 \mathrm{~g}, 100 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 1.36(\mathrm{t}, 3 \mathrm{H}, J=$

7 Hz). LCMS: $\mathrm{m} / \mathrm{z}=395.0[\mathrm{M}+], 397.0[\mathrm{M}+2]$, RT $=3.35$ minutes, (Program P1, Column Y).
[0350] Step 5: 3-Bromo-8-phenylamino-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0351] To a stirred 1,4-dioxane solution of compound $\mathrm{V}(1 \mathrm{~g} ; 2.55 \mathrm{mmol} ; 1 \mathrm{eq})$ in a reaction tube were added aniline ($280 \mathrm{mg} ; 3.03 \mathrm{mmol} ; 1.2 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min , followed by an addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.05 \mathrm{~g} ; 7.59 \mathrm{mmol} ; 3 \mathrm{eq})$, $\operatorname{Pd}(\mathrm{OAc})_{2}(57 \mathrm{mg} ; 0.25 \mathrm{mmol} ; 0.1 \mathrm{eq})$, xantphos $(0.46 \mathrm{~g} ; 0.51 \mathrm{mmol} ; 0.2 \mathrm{eq})$. The mixture was then degassed again with argon for 5 min , the reaction tube was sealed and heated at $110^{\circ} \mathrm{C}$ for 5 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $5-30 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound ($1.5 \mathrm{~g}, 82 \%$). LCMS: $\mathrm{m} / \mathrm{z}=360.2[\mathrm{M}+]$, $362.0[\mathrm{M}+2], \mathrm{RT}=3.84$ minutes, (Program P1, Column W).
[0352] Step 6: 3-(5-Methyl-thiophen-2-yl)-8-phenylamino-imidazo[1,2-a]pyridine-6carboxylic acid ethyl ester
[0353] To a stirred dry toluene solution of compound VI ($0.75 \mathrm{~g} ; 2.1 \mathrm{mmol} ; 1 \mathrm{eq})$ in a reaction tube was added compound VIa ($0.96 \mathrm{~g} ; 2.5 \mathrm{mmol} ; 1.2 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.24 \mathrm{~g} ; 0.21 \mathrm{mmol}$; $0.1 \mathrm{eq})$ and the resulting mixture was degassed with argon for an additional 5 min . The reaction tube was sealed and heated at $115{ }^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine, and the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $50 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound ($0.48 \mathrm{~g}, 61 \%$) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.63$ (s, $1 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 1 \mathrm{H})$, $6.68(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 4.38(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 2.57(\mathrm{~s}, 3 \mathrm{H}) 1.37(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: m/z $=378.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=4.20$ minutes, (Program P1, Column W).
[0354] Step 7: 3-(5-Methyl-thiophen-2-yl)-8-phenylamino-imidazo[1,2-a]pyridine-6carboxylic acid
[0355] To a solution of compound VII ($0.48 \mathrm{~g}, 1.27 \mathrm{mmol}, 1 \mathrm{eq})$ in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ $(12 \mathrm{~mL}, 3: 2: 1)$ at $0^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(0.161 \mathrm{~g}, 3.81$ $\mathrm{mmol}, 3 \mathrm{eq})$ in water (1 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure and the residue was diluted with water, acidified with 1 N HCl to adjust the pH to 3 . The precipitated solid was collected by filtration and dried under vacuum to afford the title compound ($0.38 \mathrm{~g}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.44$ (s, $1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 6.98(\mathrm{~m}$, 2 H), $2.54(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=350.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.71$ minutes, (Program P1, Column W).
[0356] Step 8: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6-carboxamide
[0357] To a stirred solution of compound VIII ($0.38 \mathrm{~g}, 1.1 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (10 mL) were added DIPEA ($0.6 \mathrm{~mL}, 3.3 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU ($0.49 \mathrm{~g}, 1.3 \mathrm{mmol}, 1.2$ eq) at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was allowed to stir for 15 min . To the mixture was added (S)-1($4 \mathrm{H}-[1,2,4]$ triazol-3-yl)-ethylamine hydrochloride ($0.48 \mathrm{~g}, 3.3 \mathrm{mmol}, 3 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo and the residue was diluted with EtOAc and then washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel ($230-400$ mesh) column chromatography eluting with $0-5 \%$ methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($0.18 \mathrm{~g}, 38 \%$) as brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 13.78(\mathrm{~m}, 1 \mathrm{H}), 9.14-9.00(\mathrm{~m}, 1 \mathrm{H}), 8.50(\mathrm{~m}, 3 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H}, J=$ $6 \mathrm{~Hz}), 7.35(\mathrm{~m}, 6 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=$ $444.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.00$ minutes, (Program P1, Column Y).
[0358] EXAMPLE 8: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(1-methyl-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 24
[0359] Step 1: 6-Amino-nicotinic acid ethyl ester
[0360] To a stirred solution of compound ($150 \mathrm{~g} ; 108.5 \mathrm{mmol} ; 1 \mathrm{eq}$) in ethanol (1.5 L) at $60{ }^{\circ} \mathrm{C}$, was added thionyl chloride ($236 \mathrm{~mL} ; 325 \mathrm{mmol} ; 3 \mathrm{eq}$) dropwise and the resulting mixture was heated at reflux for 17 h . The mixture was evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($5 \times 1000 \mathrm{~mL}$) and the organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to afford the title compound ($152 \mathrm{~g}, 84 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=8$ $\mathrm{Hz}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.35(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=167.3[\mathrm{M}+\mathrm{H}]$ ${ }^{+}, \mathrm{RT}=2.32$ minutes, (Program P1, Column Y).
[0361] Step 2: 6-Amino-5-bromo-nicotinic acid ethyl ester
[0362] To a stirred solution of compound II ($50 \mathrm{~g} ; 30.1 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (500 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS ($53.6 \mathrm{~g} ; 30.1 \mathrm{mmol} ; 1 \mathrm{eq}$) in portions and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 1000 \mathrm{~mL}$). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate
and evaporated to dryness to afford the title compound ($71 \mathrm{~g}, 96 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.30(\mathrm{t}$, $3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=245[\mathrm{M}+], 247[\mathrm{M}+2], \mathrm{RT}=2.97$ minutes, (Program P1, Column W).
[0363] Step 3: 8-Bromo-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0364] To a stirred solution of compound III ($80 \mathrm{~g} ; 32.6 \mathrm{mmol} ; 1 \mathrm{eq}$) in ethanol (1 L) were added sodium bicarbonate ($54.83 \mathrm{~g} ; 65.2 \mathrm{mmol} ; 2 \mathrm{eq}$) and chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $212 \mathrm{~mL} ; 163.2 \mathrm{mmol} ; 5 \mathrm{eq}$) dropwise and the resulting mixture was heated at reflux for 17 h . The mixture was then evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 500 \mathrm{~mL}$) and the organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using $10-50 \%$ ethyl acetate/hexanes as the eluent to afford the title compound ($55 \mathrm{~g}, 63 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H})$, $8.24(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.34(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \operatorname{LCMS}:$ $\mathrm{m} / \mathrm{z}=268.8[\mathrm{M}+], 270.8[\mathrm{M}+2], \mathrm{RT}=2.90$ minutes, $($ Program P 1, Column W$)$.
[0365] Step 4: 8-(1-Methyl-1H-pyrazol-4-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0366] To a stirred solution of compound IV ($1 \mathrm{~g} ; 3.73 \mathrm{mmol} ; 1 \mathrm{eq}$) in toluene:ethanol $(20 \mathrm{~mL} ; 7: 3)$ in a reaction tube was added 1-methyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1H-pyrazole ($0.93 \mathrm{~g} ; 4.47 \mathrm{mmol} ; 1.2 \mathrm{eq}$) and the resulting solution was degassed with argon for 5 min , followed by addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.03 \mathrm{~g} ; 9.32 \mathrm{mmol} ; 2.5$ eq), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.43 \mathrm{~g} ; 0.37 \mathrm{mmol} ; 0.1 \mathrm{eq})$. The mixture was then degassed again with argon for 5 min , the reaction tube was then sealed and heated at $115^{\circ} \mathrm{C}$ for 3 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to obtain compound the title compound ($1.2 \mathrm{~g}, 60 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}$, $1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 3.98(\mathrm{~s}, 3 \mathrm{H})$,
$1.40(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=271.0[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{RT}=2.83$ minutes, (Program P1, Column W).
[0367] Step 5: 3-Bromo-8-(1-methyl-1H-pyrazol-4-yl)-imidazo[1,2-a]pyridine-6carboxylic acid ethyl ester
[0368] To a stirred solution of compound $\mathrm{V}(0.8 \mathrm{~g} ; 2.90 \mathrm{mmol} ; 1 \mathrm{eq})$ in dry THF (20 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS ($520 \mathrm{mg} ; 2.9 \mathrm{mmol} ; 1 \mathrm{eq}$) in portions and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate and evaporated to dryness to afford the title compound $(0.5 \mathrm{~g}, 50 \%)$ as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 4.40$ $(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=349.0[\mathrm{M}+], 351.0$ $[\mathrm{M}+2], \mathrm{RT}=3.28$ minutes, (Program P1, Column Y).
[0369] Step 6: 8-(1-Methyl-1H-pyrazol-4-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0370] To a stirred solution of compound VI ($0.5 \mathrm{~g} ; 1.49 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry toluene in a reaction tube was added compound VIa ($0.63 \mathrm{~g} ; 1.64 \mathrm{mmol} ; 1.1 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.17 \mathrm{~g} ; 0.14 \mathrm{mmol}$; $0.1 \mathrm{eq})$ and the resulting mixture was degassed with argon again for about 5 min . The reaction tube was then sealed and heated at $115^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered through a Celite® pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvents were removed in vacuo to obtain a crude material. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $50 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound ($0.32 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.94$ (s, 1H), $7.90(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 4.38(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=367.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.58$ minutes, (Program P1, Column Y).
[0371] Step 7: 8-(1-Methyl-1H-pyrazol-4-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0372] To a solution of compound VII ($0.25 \mathrm{~g}, 0.68 \mathrm{mmol}, 1 \mathrm{eq})$ in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ ($12 \mathrm{~mL}, 3: 2: 1$) at $0{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate ($57 \mathrm{mg}, 1.30$
$\mathrm{mmol}, 2 \mathrm{eq})$ in water (1 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure and the residue was diluted with water and acidified with 1 N HCl to adjust the pH to 3 . The precipitated solid was collected by filtration and dried in vacuo to afford the title compound ($0.2 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.87$ $(\mathrm{s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.01(\mathrm{~d}$, $1 \mathrm{H}, J=3 \mathrm{~Hz}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=339.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.43$ minutes, (Program P1, Column W).
[0373] Step 8: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(1-methyl-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0374] To a stirred solution of compound VIII ($0.2 \mathrm{~g}, 0.59 \mathrm{mmol}, 1 \mathrm{eq})$ in DMF (10 mL) were added DIPEA ($0.3 \mathrm{~mL}, 1.70 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU $(0.26 \mathrm{~g}, 0.71 \mathrm{mmol}, 1.2 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was allowed to stir for 15 min at $23^{\circ} \mathrm{C}$. To the mixture was added (S)-1-(4H-[1,2,4]triazol-3-yl)-ethylamine hydrochloride ($0.10 \mathrm{~g}, 0.71 \mathrm{mmol}, 1.2 \mathrm{eq}$) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo, the residue was diluted with EtOAc and washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel ($230-400$ mesh) column chromatography eluting with $0-5 \%$ methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.07 \mathrm{~g}, 30 \%)$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 13.85(\mathrm{~m}, 1 \mathrm{H}), 9.20(\mathrm{~m}, 1 \mathrm{H}), 8.87(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}$, $1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.86(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~m}$, $1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=433.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.78$ minutes, (Program P1, Column V).
[0375] EXAMPLE 9:
(S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-3-butyl-8-(4-methylpiperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 25
[0376] Step 1: 6-Amino-nicotinic acid ethyl ester
[0377] To a stirred solution of compound I ($150 \mathrm{~g} ; 1.08 \mathrm{~mol} ; 1 \mathrm{eq}$) in ethanol (1.5 L) was added thionyl chloride ($236 \mathrm{~mL} ; 3.25 \mathrm{~mol} ; 3 \mathrm{eq}$) dropwise at $60^{\circ} \mathrm{C}$ and the resulting mixture was heated at reflux for 17 h . The mixture was evaporated to dryness and the pH of the residue was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($5 \times 1000 \mathrm{~mL}$), and the combined organic layers were washed with brine solution, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to afford the title compound ($152 \mathrm{~g}, 84 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.71$ (s, 1 H), $7.99(\mathrm{~d}, 1 \mathrm{H}, J$ $=8 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}) ; 1.35(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=167.3[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.32$ minutes, (Program P1, Column Y).
[0378] Step 2: 6-Amino-5-bromo-nicotinic acid ethyl ester
[0379] To a stirred solution of compound II ($50 \mathrm{~g} ; 301 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (500 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS ($53.6 \mathrm{~g} ; 301 \mathrm{mmol} ; 1 \mathrm{eq}$) in portions and the mixture was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 17 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted from the aqueous phase with ethyl acetate (3×1000 $\mathrm{mL})$. The organic layer was then washed with brine, dried over anhydrous sodium sulfate,
filtered and evaporated to dryness to afford the title compound ($71 \mathrm{~g}, 96 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}$), $1.30(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=245[\mathrm{M}+], 247[\mathrm{M}+2], \mathrm{RT}=2.97$ minutes, (Program P1, Column W).
[0380] Step 3: 8-Bromo-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0381] To a stirred solution of compound III ($80 \mathrm{~g} ; 326 \mathrm{mmol}$; 1 eq) in ethanol (1 L) was added sodium bicarbonate ($54.8 \mathrm{~g} ; 652 \mathrm{mmol} ; 2 \mathrm{eq}$) and chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $212 \mathrm{~mL} ; 1.63 \mathrm{~mol} ; 5 \mathrm{eq}$) dropwise and the mixture was heated at reflux for 17 h . The mixture was then evaporated to dryness and the pH was adjusted to 7 using saturated ice-cold aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to obtain a dry residue which was purified by silica gel (230400 mesh) column chromatography using 10-50\% ethyl acetate/hexanes to afford the title compound ($55 \mathrm{~g}, 63 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H})$, $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.34(\mathrm{t}, 3 \mathrm{H}, J=12 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=268.8$ $[\mathrm{M}+], 270.8[\mathrm{M}+2], \mathrm{RT}=2.90$ minutes, $($ Program P 1 , Column W).
[0382] Step 4: 8-(4-Methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0383] To a stirred 1,4-dioxane solution of compound IV (1 $\mathrm{g} ; 3.71 \mathrm{mmol} ; 1 \mathrm{eq})$ in a reaction tube was added 4 -methyl piperidine ($0.73 \mathrm{~g} ; 7.43 \mathrm{mmol} ; 2 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min , followed by an addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.81 \mathrm{~g} ; 5.56$ $\mathrm{mmol} ; 1.5 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.16 \mathrm{~g} ; 0.018 \mathrm{mmol} ; 0.05 \mathrm{eq})$, and xantphos $(0.21 \mathrm{~g} ; 0.37 \mathrm{mmol}$; $0.1 \mathrm{eq})$. The mixture was then degassed again with argon for 5 min , then the reaction tube was sealed and heated at $115^{\circ} \mathrm{C}$ for 5 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $50 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound (0.25 g , 23%) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$, $6.75(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.73(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.3$
$(\mathrm{m}, 5 \mathrm{H}), 0.9(\mathrm{t}, 3 \mathrm{H}, J=4 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=288[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.56$ minutes, (Program P1, Column W).
[0384] Step 5: 3-((E)-But-1-enyl)-8-(4-methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid ethyl ester
[0385] To a stirred solution of compound $\mathrm{V}(0.15 \mathrm{~g} ; 0.52 \mathrm{mmol} ; 1 \mathrm{eq})$ in acetic acid (2 mL) were added sodium acetate ($0.17 \mathrm{~g} ; 2 \mathrm{mmol} ; 4 \mathrm{eq}$) and butaraldehyde ($0.46 \mathrm{~mL} ; 5.22$ mmol; 10 eq) in a sealed tube and the mixture was heated at $150^{\circ} \mathrm{C}$ for 4 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3 x 50 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel ($230-400$ mesh) column chromatography eluting with $50 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound $(0.12 \mathrm{~g}$, 70%). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 6.90-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.45-6.20(\mathrm{~m}$, $1 \mathrm{H}), 4.40-4.38(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{t}, 2 \mathrm{H}, J=10 \mathrm{~Hz}), 2.31-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.48$ $(\mathrm{m}, 3 \mathrm{H}), 1.12(\mathrm{t}, 3 \mathrm{H}, J=4 \mathrm{~Hz}), 0.97-0.95(\mathrm{~m}, 3 \mathrm{H}), 0.81-0.79(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=343.2$ $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.44$ minutes, $($ Program P1, Column Y) .
[0386] Step 6: 3-Butyl-8-(4-methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0387] To a stirred solution of compound VI ($0.12 \mathrm{~g} ; 0.36 \mathrm{mmol} ; 1 \mathrm{eq})$ in dry methanol was added $10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg})$ and the resulting mixture was stirred under hydrogen atmosphere for 2 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was evaporated to dryness to obtain the title compound $(0.115 \mathrm{~g}, 92 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ $8.36(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.40-4.25(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 2.75(\mathrm{t}, 2 \mathrm{H}$, $J=10 \mathrm{~Hz}), 1.75-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{t}, 3 \mathrm{H}, J=4 \mathrm{~Hz})$, 0.97-0.95 (m, 3H), 0.81-0.79 (m, 3H). LCMS: m/z $=344.6[\mathrm{M}+\mathrm{H}]^{+}$, RT $=2.55$ minutes, (Program P1, Column Y).
[0388] Step 7: 3-Butyl-8-(4-methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0389] To a solution of compound VII ($0.11 \mathrm{~g}, 0.32 \mathrm{mmol}, 1 \mathrm{eq})$ in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ $(9 \mathrm{~mL}, 3: 2: 1)$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(45 \mathrm{mg}, 0.96$ mmol, 3 eq) in water (0.5 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure and the residue was diluted with water and
acidified with 1 N HCl to adjust the pH to 3 . The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and evaporated to dryness to obtain the title compound $(0.07 \mathrm{~g}, 70 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}$, $1 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{t}, 2 \mathrm{H}, J=15 \mathrm{~Hz}), 2.75(\mathrm{t}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.80-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.97-0.90(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=316.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.60$ minutes, (Program P1, Column Y).
[0390] Step 8: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-3-butyl-8-(4-methylpiperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0391] To a stirred solution of compound VIII ($40 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) were added DIPEA ($0.06 \mathrm{~mL}, 0.38 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU ($58 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.2 \mathrm{eq}$) at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was allowed to stir for 15 min . To the mixture was added (S)-1-(4H-[1,2,4]triazol-3-yl)-ethylamine hydrochloride ($0.022 \mathrm{~g}, 0.15 \mathrm{mmol}, 1.2 \mathrm{eq}$) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo, the residue was diluted with EtOAc and washed with aqueous saturated sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic phase was separated, dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.015 \mathrm{~g}$, 30%) as off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 13.83(\mathrm{~m}, 1 \mathrm{H}), 8.86(\mathrm{~m}, 1 \mathrm{H}), 8.44(\mathrm{~m}, 2 \mathrm{H})$, $7.87(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{t}, 2 \mathrm{H}, J=7 \mathrm{~Hz})$, $2.71(\mathrm{t}, 2 \mathrm{H}, J=11 \mathrm{~Hz}), 1.73(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.97-0.90(\mathrm{~m}, 6 \mathrm{H})$. LCMS: m/z $=409.6[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.60$ minutes, (Program R1, Column Y).
[0392] EXAMPLE 10: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(propylthio)imidazo[1,2-a]pyridine-6-carboxamide

1
v

Scheme 26
[0393] Step 1: 6-Amino-nicotinic acid ethyl ester
[0394] To a stirred solution of compound $\mathrm{I}(150 \mathrm{~g}, 1.08 \mathrm{~mol} ; 1 \mathrm{eq})$ in ethanol (1.5 L) was added thionyl chloride ($236 \mathrm{~mL} ; 3.25 \mathrm{~mol} ; 3 \mathrm{eq}$) dropwise at $60^{\circ} \mathrm{C}$ and the resulting mixture was heated at reflux for 17 h . The mixture was then evaporated to dryness and the pH of the residue was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($5 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine solution, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to afford the title compound ($152 \mathrm{~g}, 84 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, 1 \mathrm{H}, J$ $=12 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.35(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=167.3[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.32$ minutes, (Program P1, Column Y).
[0395] Step 2: 6-Amino-5-bromo-nicotinic acid ethyl ester
[0396] To a stirred solution of compound II ($50 \mathrm{~g} ; 301 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (500 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS ($\left.53.6 \mathrm{~g} ; 301 \mathrm{mmol} ; 1 \mathrm{eq}\right)$ in portions, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and extracted with ethyl acetate ($3 \times 1000 \mathrm{~mL}$). The combined organics were then washed with brine solution, dried over anhydrous sodium sulfate, filtered and evaporated to dryness
to afford the title compound ($71 \mathrm{~g}, 96 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.49$ (s, $1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz})$ LCMS: m/z = $245[\mathrm{M}+], 247$ [M+2], RT $=2.97$ minutes, (Program P1, Column W).
[0397] Step 3: 8-Bromo-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0398] To a stirred solution of compound III ($80 \mathrm{~g} ; 326 \mathrm{mmol} ; 1 \mathrm{eq}$) and sodium bicarbonate ($54.83 \mathrm{~g} ; 652 \mathrm{mmol} ; 2 \mathrm{eq}$) in ethanol (1 L) was added chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $212 \mathrm{~mL} ; 1.6 \mathrm{~mol} ; 5 \mathrm{eq}$) dropwise and the resulting mixture was heated at reflux for 17 h . The mixture was then evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvents were removed in vacuo to obtain a dry residue which was purified by silica gel ($230-400$ mesh) column chromatography using $10-50 \%$ ethyl acetate/hexanes as the eluent to afford the title compound ($55 \mathrm{~g}, 63 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, 2 \mathrm{H}, J=8$ $\mathrm{Hz}), 1.34(\mathrm{t}, 3 \mathrm{H}, J=12 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=268.8[\mathrm{M}+], 270.8[\mathrm{M}+2], \mathrm{RT}=2.90$ minutes, (Program P1, Column W).
[0399] Step 4: 8-(4-Methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0400] To a stirred 1,4-dioxane solution of compound IV ($1 \mathrm{~g} ; 3.71 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added 4 -methyl piperidine ($0.73 \mathrm{~g} ; 7.43 \mathrm{mmol} ; 2 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture were then added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.81 \mathrm{~g}$; $5.56 \mathrm{mmol} ; 1.5 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.16 \mathrm{~g} ; 0.018 \mathrm{mmol} ; 0.05 \mathrm{eq})$, xantphos $(0.21 \mathrm{~g} ; 0.37 \mathrm{mmol} ; 0.1$ eq) and the resulting mixture was degassed with argon for another 5 min and the reaction tube was sealed. The mixture was then heated to $115{ }^{\circ} \mathrm{C}$ and stirred for 5 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with 50% EtOAc/hexanes to obtain the title compound ($0.25 \mathrm{~g}, 23 \%$) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.03$ (s, $1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.73(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz})$,
$1.56(\mathrm{~m}, 1 \mathrm{H}), 1.3(\mathrm{~m}, 5 \mathrm{H}), 0.9(\mathrm{t}, 3 \mathrm{H}, J=4 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=288[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.56$ minutes, (Program P1, Column W).
[0401] Step 5: 3-Bromo-8-(4-methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid ethyl ester
[0402] To a stirred solution of compound V (1.6 g; $5.5 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (30 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS $(0.99 \mathrm{~g} ; 5.5 \mathrm{mmol} ; 1 \mathrm{eq})$ in portions and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3 x 500 mL). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate, filtered and evaporated to dryness to afford the title compound ($1.7 \mathrm{~g}, 83 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{q}$, $2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.73(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.3(\mathrm{~m}, 5 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=4 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=366.2[\mathrm{M}+], 368.2[\mathrm{M}+2], \mathrm{RT}=2.51$ minutes, $($ Program P 1 , Column W).
[0403] Step 6: 8-(4-Methyl-piperidin-1-yl)-3-propylsulfanyl-imidazo[1,2-a]pyridine-6carboxylic acid ethyl ester
[0404] To a stirred 1,4-dioxane solution of compound VI ($0.15 \mathrm{~g} ; 0.40 \mathrm{mmol} ; 1 \mathrm{eq})$ in a reaction tube was added propanethiol ($73 \mathrm{mg} ; 0.81 \mathrm{mmol} ; 2 \mathrm{eq}$) and the mixture was degassed with argon for 5 min . To the mixture were then added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(195 \mathrm{mg} ; 0.6 \mathrm{mmol}$; $1.5 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(18 \mathrm{mg} ; 0.02 \mathrm{mmol} ; 0.05 \mathrm{eq})$, xantphos ($\left.23 \mathrm{mg} ; 0.04 \mathrm{mmol} ; 0.1 \mathrm{eq}\right)$, the resulting mixture was degassed with argon for another 5 min and the reaction tube was sealed. The mixture was then heated to $115{ }^{\circ} \mathrm{C}$ and stirred for 5 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to obtain the title compound ($0.14 \mathrm{~g}, 91 \%$) . ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 4.37$ $(\mathrm{q}, 2 \mathrm{H}, J=4 \mathrm{~Hz}), 4.33(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 2.69(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.42-1.39(\mathrm{~m}, 7 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}),, 0.83(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=375.8$ $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.97$ minutes, $($ Program P1, Column W).
[0405] Step 7: 8-(4-Methyl-piperidin-1-yl)-3-propylsulfanyl-imidazo[1,2-a]pyridine-6carboxylic acid
[0406] To a solution of compound VII ($150 \mathrm{mg}, 0.41 \mathrm{mmol}, 1 \mathrm{eq}$) in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ ($12 \mathrm{~mL}, 3: 2: 1$) at $0{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate ($34 \mathrm{mg}, 0.83$ $\mathrm{mmol}, 2$ eq) in water $(0.5 \mathrm{~mL})$ and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure and the residue was diluted with water and acidified with 1 NHCl to adjust the pH to 3 . The solid precipitate was collected by filtration and dried under vacuum to afford the title compound $(0.11 \mathrm{~g}, 79 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ $13.30(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}), 2.77(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $8 \mathrm{~Hz}), 2.66(\mathrm{t}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.73(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.35-$ $1.27(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.91(\mathrm{~m}, 6 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=334[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.64$ minutes, $($ Program P1, Column W).
[0407] Step 8: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(propylthio)imidazo[1,2-a]pyridine-6-carboxamide
[0408] To a stirred solution of compound VIII ($0.05 \mathrm{~g}, 0.14 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added DIPEA ($0.075 \mathrm{~mL}, 0.42 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU ($0.069 \mathrm{~g}, 0.18 \mathrm{mmol}, 1.3 \mathrm{eq}$) at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was allowed to stir for 15 min . To the mixture was added (S)-1-(4H-[1,2,4]triazol-3-yl)-ethylamine hydrochloride ($0.025 \mathrm{~g}, 0.17 \mathrm{mmol}, 1.2 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo, diluted with EtOAc and washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness to obtain a crude product. The crude material was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.015 \mathrm{~g}$, $23 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.79(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H})$, $6.70(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{q}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.19(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 2.79(\mathrm{t}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 2.56(\mathrm{t}$, $2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.78(\mathrm{~d}, 4 \mathrm{H}, J=4 \mathrm{~Hz}), 1.53-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.0-0.93(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=$ $428.4[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.15$ minutes, (Program P1, Column W).
[0409] EXAMPLE 11: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 27
[0410] Step 1: 6-Amino-nicotinic acid ethyl ester
[0411] To a stirred solution of compound I (150 g; 1.09 mol ; 1 eq) in ethanol (1.5 L) was added thionyl chloride ($236 \mathrm{~mL} ; 3.26 \mathrm{~mol} ; 3 \mathrm{eq}$) dropwise at $60^{\circ} \mathrm{C}$ and the resulting mixture was heated at reflux for 17 h . The mixture was evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($5 \times 1000 \mathrm{~mL}$) and the organic layer was washed with brine, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to afford the title compound ($152 \mathrm{~g}, 84 \%$) as an offwhite solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz})$, $4.95(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.35(\mathrm{t}, 3 \mathrm{H}, J=12 \mathrm{~Hz}) . \mathrm{LCMS}:, \mathrm{m} / \mathrm{z}=167.3[\mathrm{M}+\mathrm{H}]^{+}$, RT $=2.32$ minutes, (Program P1, Column Y).
[0412] Step 2: 6-Amino-5-bromo-nicotinic acid ethyl ester
[0413] To a stirred solution of compound II ($50 \mathrm{~g} ; 301 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (500 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS ($53.6 \mathrm{~g} ; 301 \mathrm{mmol} ; 1 \mathrm{eq}$) in portions and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 1000 \mathrm{~mL}$). The combined organic layers were then washed with brine solution, dried over anhydrous sodium
sulfate, concentrated and evaporated to dryness to afford the title compound ($71 \mathrm{~g}, 96 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 4.22$ (q, $2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.30(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=245[\mathrm{M}+], 247[\mathrm{M}+2], \mathrm{RT}=2.97$ minutes, (Program P1, Column W).
[0414] Step 3: 8-Bromo-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0415] To a stirred solution of compound III (80 g ; 326 mmol ; 1 eq) in ethanol (1 L) were added sodium bicarbonate ($54.8 \mathrm{~g} ; 652 \mathrm{mmol} ; 2 \mathrm{eq}$) and aqueous chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $212 \mathrm{~mL} ; 1.63 \mathrm{~mol} ; 5 \mathrm{eq}$) dropwise and the mixture was heated at refluxed for 17 h . The mixture was then evaporated to dryness and the pH of the residue was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using $10-50 \%$ ethyl acetate/hexanes as the eluent to afford the title compound ($55 \mathrm{~g}, 63 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, 2 \mathrm{H}, J=8$ $\mathrm{Hz}), 1.34(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=268.8[\mathrm{M}+], 270.8[\mathrm{M}+2], \mathrm{RT}=2.90$ minutes, (Program P1, Column W).
[0416] Step 4: 8-(4-Methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0417] To a stirred 1,4-dioxane solution of compound IV ($1 \mathrm{~g} ; 3.71 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added 4 -methyl piperidine ($0.73 \mathrm{~g} ; 7.43 \mathrm{mmol} ; 2 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min , followed by addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.81 \mathrm{~g} ; 5.56$ $\mathrm{mmol} ; 1.5 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.16 \mathrm{~g} ; 0.018 \mathrm{mmol} ; 0.05 \mathrm{eq})$ and xantphos $(0.21 \mathrm{~g} ; 0.37 \mathrm{mmol} ; 0.1$ eq). The mixture was then degassed again with argon for 5 min , the reaction tube was sealed and heated at $115{ }^{\circ} \mathrm{C}$ for 5 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $50 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound $(0.25 \mathrm{~g}$, 23%) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$, $6.75(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.73(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.3$
$(\mathrm{m}, 5 \mathrm{H}), 0.9(\mathrm{t}, 3 \mathrm{H}, J=4 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=288[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.56$ minutes, (Program P1, Column W).
[0418] Step 5: 3-Bromo-8-(4-methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid ethyl ester
[0419] To a stirred solution of compound ($1.6 \mathrm{~g} ; 5.5 \mathrm{mmol} ; 1 \mathrm{eq})$ in dry THF (30 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS $(0.99 \mathrm{~g} ; 5.5 \mathrm{mmol} ; 1 \mathrm{eq})$ in portions, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3 x 500 mL). The combined organic layers were then washed with brine solution, dried over anhydrous sodium sulfate, filtered and evaporated to dryness to afford the title compound ($1.7 \mathrm{~g}, 83 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 4 \mathrm{H})$, $2.79(\mathrm{q}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.73(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.3(\mathrm{~m}, 5 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=4$ $\mathrm{Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=366.2[\mathrm{M}+], 368.2[\mathrm{M}+2], \mathrm{RT}=2.51$ minutes, (Program P1, Column W).
[0420] Step 6: 8-(4-Methyl-piperidin-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0421] To a stirred solution of compound VI ($1 \mathrm{~g} ; 2.7 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry toluene in a reaction tube was added compound VIa ($1.58 \mathrm{~g} ; 4 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for $5 \mathrm{~min} . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.31 \mathrm{~g} ; 0.27 \mathrm{mmol} ; 0.1 \mathrm{eq})$ was added to the mixture and the resulting mixture was degassed again with argon for 5 min . The reaction tube was sealed and the mixture was heated at $115^{\circ} \mathrm{C}$ with stirring for 4 h . The mixture was then filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $50 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to obtain the title compound ($0.8 \mathrm{~g}, 80 \%$) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.57$ (s, $1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 4.3(\mathrm{~m}, 4 \mathrm{H})$, $2.79(\mathrm{q}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 5 \mathrm{H}), 0.96$ $(\mathrm{d}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=384[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=4.50$ minutes, $($ Program P1, Column Y).
[0422] Step 7: 8-(4-Methyl-piperidin-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0423] To a solution of compound VII ($0.8 \mathrm{~g}, 2.08 \mathrm{mmol}, 1 \mathrm{eq}$) in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ $(12 \mathrm{~mL}, 3: 2: 1)$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(0.175 \mathrm{~g}, 4.1$
$\mathrm{mmol}, 2 \mathrm{eq})$ in water (1 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvents were removed under reduced pressure and the residue was diluted with water and acidified with 1 N HCl to adjust the pH to 3 . The precipitated solid was collected by filtration and dried under vacuum to afford the title compound $(0.74 \mathrm{~g}, 100 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ $8.55(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}$, $2 \mathrm{H}, J=12 \mathrm{~Hz}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~m}$, $2 \mathrm{H}) ; 0.96(\mathrm{~m}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=356.3[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.69$ minutes, (Program P1, Column Y).
[0424] Step 8: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0425] To a stirred solution of compound VIII ($0.2 \mathrm{~g}, 0.56 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (10 mL) were added DIPEA ($0.3 \mathrm{~mL}, 1.6 \mathrm{mmol}, 3 \mathrm{eq}$) and $\operatorname{HATU}(0.27 \mathrm{~g}, 0.72 \mathrm{mmol}, 1.3 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was allowed to stir for 15 min . To the mixture was added (S) -1 ($4 \mathrm{H}-[1,2,4]$ triazol-3-yl)-ethylamine hydrochloride ($0.1 \mathrm{~g}, 0.67 \mathrm{mmol}, 1.2 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo, the residue was diluted with EtOAc and washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel ($230-400$ mesh) column chromatography eluting with $0-5 \%$ methanol/ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($0.12 \mathrm{~g}, 48 \%$) as brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 6.82(\mathrm{~m}, 2 \mathrm{H}), 6.61$ $(\mathrm{s}, 1 \mathrm{H}), 5.42(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 5 \mathrm{H}), 1.52$ $(\mathrm{m}, 3 \mathrm{H}), 0.99(\mathrm{~d}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=450.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.20$ minutes, (Program P1, Column W).
[0426] EXAMPLE 12: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(4-carbamoyl-4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 28
[0427] Following the experimental procedure described for Example 11, compound IV was prepared.
[0428] Step 4: 8-(4-Benzyloxycarbonyl-4-methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0429] To a stirred 1,4-dioxane (40 mL) solution of compound IV ($1 \mathrm{~g} ; 3.71 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added 4-methyl-piperidine-4-carboxylic acid benzyl ester ($1.5 \mathrm{~g} ; 5.6$ mmol; 1.5 eq) and the resulting mixture was degassed with argon for 5 min , followed by an addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.63 \mathrm{~g} ; 11.15 \mathrm{mmol} ; 3 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.17 \mathrm{~g} ; 0.019 \mathrm{mmol} ; 0.05 \mathrm{eq})$ and xantphos ($0.21 \mathrm{~g} ; 0.37 \mathrm{mmol} ; 0.1 \mathrm{eq}$). The mixture was then degassed again with argon for 5 min , the tube was sealed and heated at $130{ }^{\circ} \mathrm{C}$ for 5 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad, the filtrate was diluted with water (200 mL), and the organic components were extracted with ethyl acetate (200 mL). The organic layer was washed with saturated aqueous NaHCO_{3} solution, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then filtered. The filtrate was then concentrated under reduced pressure to obtain a crude material which was purified by Combiflash ${ }^{\mathrm{TM}}$ chromatography, eluting with 50% EtOAc/hexanes to obtain the title compound ($0.33 \mathrm{~g}, 23 \%$) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.59$ (s, $1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 3.92(\mathrm{~m}$,
$2 \mathrm{H}), 3.06(\mathrm{t}, 2 \mathrm{H}, J=10 \mathrm{~Hz}), 2.34(\mathrm{~d}, 2 \mathrm{H}, J=14 \mathrm{~Hz}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$, $1.29(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=422.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.77$ minutes, (Program P1, Column W).
[0430] Step 5: 8-(4-Benzyloxycarbonyl-4-methyl-piperidin-1-yl)-3-bromo-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0431] To a stirred solution of compound $\mathrm{V}(1 \mathrm{~g} ; 2.37 \mathrm{mmol} ; 1 \mathrm{eq})$ in dry THF (20 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS $(0.29 \mathrm{~g} ; 1.66 \mathrm{mmol} ; 0.7 \mathrm{eq})$ in portions, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic layers were then washed with brine solution, dried over anhydrous sodium sulfate, filtered and evaporated to dryness to afford the title compound ($0.67 \mathrm{~g}, 56 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H})$, $5.16(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{t}, 2 \mathrm{H}, J=11 \mathrm{~Hz}), 2.34(\mathrm{~d}, 2 \mathrm{H}, J=13$ $\mathrm{Hz}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 1.29(\mathrm{~s}, 3 \mathrm{H})$. LCMS: m/z $=500.2[\mathrm{M}+\mathrm{l}, 502.4$ $[\mathrm{M}+2], \mathrm{RT}=4.06$ minutes, (Program P1, Column V).
[0432] Step 6: 8-(4-Benzyloxycarbonyl-4-methyl-piperidin-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0433] To a stirred solution of compound VI ($0.67 \mathrm{~g} ; 1.34 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry DMF (5 mL) in a reaction tube was added compound VIa ($0.66 \mathrm{~g} ; 1.60 \mathrm{mmol} ; 1.2 \mathrm{eq}$) and the resulting mixture was degassed with argon for $5 \mathrm{~min} . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.15 \mathrm{~g} ; 0.13 \mathrm{mmol} ; 0.1 \mathrm{eq})$ was then added to the mixture and degassed again with argon for 5 min . The reaction tube was sealed and the mixture was heated at $140^{\circ} \mathrm{C}$ with stirring for 4 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was diluted with ethyl acetate (200 mL) and water (200 mL). The organic layer was washed with water (200 mL) and brine, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was evaporated under vacuum to obtain a crude material which was purified by Combiflash \circledR ® chromatography, eluting with 50% EtOAc/hexanes to obtain the title compound ($0.65 \mathrm{~g}, 94 \%$) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.84$ (d, 1H, $J=4 \mathrm{~Hz}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{t}, 2 \mathrm{H}, J=10 \mathrm{~Hz})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~d}, 2 \mathrm{H}, J=14 \mathrm{~Hz}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 1.30(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=518.4[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=4.31$ minutes, (Program P1, Column V).
[0434] Step 7: 8-(4-Carboxy-4-methyl-piperidin-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0435] To a stirred solution of compound VII ($0.65 \mathrm{~g} ; 1.25 \mathrm{mmol} ; 1 \mathrm{eq})$ in dry methanol was added $10 \% \mathrm{Pd} / \mathrm{C}(650 \mathrm{mg})$ and the resulting mixture was stirred under hydrogen atmosphere at a pressure for 15 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated to dryness to obtain the title compound ($0.45 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, $4.32(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{t}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.33$ $(\mathrm{m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=428.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.96$ minutes, (Program P1, Column W).
[0436] Step 8: 8-(4-Carbamoyl-4-methyl-piperidin-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0437] To a stirred solution of compound VIII ($0.45 \mathrm{~g}, 1.05 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (5 mL) were added DIPEA ($0.54 \mathrm{~mL}, 3.16 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU ($0.48 \mathrm{~g}, 1.26 \mathrm{mmol}, 1.2 \mathrm{eq}$) at 0 ${ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min . To the mixture was added ammonium chloride ($0.17 \mathrm{~g}, 3.16 \mathrm{mmol}, 3 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for another 18 h . The mixture was quenched with water and the organic components were extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$) and washed with brine. The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to dryness to obtain a crude material which was purified by Combiflash ${ }^{\mathrm{TM}}$ chromatography, eluting with 0 5% methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to obtain the title compound $(0.28 \mathrm{~g}, 63 \%)$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H})$, 6.91 (brs, 1H), $6.85(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=11 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=10 \mathrm{~Hz}, 2 \mathrm{H})$, $2.54(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~m}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=427.2$ $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.27$ minutes, (Program P1, Column V).
[0438] Step 9: 8-(4-Carbamoyl-4-methyl-piperidin-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0439] To a solution of compound IX ($0.28 \mathrm{~g}, 0.9 \mathrm{mmol}, 1 \mathrm{eq}$) in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ (14 $\mathrm{mL}, 5: 1: 1$) at $0{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(0.108 \mathrm{~g}, 2.6$ mmol, 3 eq) in water (1 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . The organic solvent was removed under reduced pressure and the residue was diluted with water and acidified with 6 N HCl to adjust the pH to 3 . The precipitated solid was collected by filtration and the solid was dried under vacuum to afford the title compound ($0.20 \mathrm{~g}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~m}, 3 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H})$,
$3.18(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=399.0$ $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.08$ minutes, (Program P1, Column W).
[0440] Step 10: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(4-carbamoyl-4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0441] To a stirred solution of compound $X(0.1 \mathrm{~g}, 0.25 \mathrm{mmol}, 1 \mathrm{eq})$ in DMF (5 mL) were added TEA ($2 \mathrm{~mL}, 0.4 \mathrm{mmol}, 3 \mathrm{eq}$) , a DMF (2 mL) solution of (S)-1-($4 \mathrm{H}-[1,2,4]$ triazol3 -yl)-ethylamine hydrochloride ($0.06 \mathrm{~g}, 0.4 \mathrm{mmol}, 1.5 \mathrm{eq}$) and T3P ($0.2 \mathrm{~mL}, 0.4 \mathrm{mmol}, 1.5$ eq) at $23{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 16 h . The mixture was quenched with water and the organic components were extracted with 10% methanol/dichloromethane (2 x 200 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude residue was purified by silica gel (100-200 mesh) column chromatography eluting with $0-10 \%$ methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (at 8% compound started) to obtain the title compound $(0.012 \mathrm{~g}, 10 \%)$ as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}-80^{\circ} \mathrm{C}$) $\delta 13.61$ (brs, 1 H), 8.77 ($\mathrm{s}, 1 \mathrm{H}$), 8.54 (s, 1H), 8.14 (brs, 1H), 7.64 $(\mathrm{s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{brs}, 2 \mathrm{H}), 5.34(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H})$, $2.54(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=493.4$ $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.60$ minutes, (Program P1, Column V).
[0442] EXAMPLE 13: 8-(4-Carbamoylpiperazin-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 29
[0443] Compound IXb was synthesized in a similar way as compound IX was prepared in scheme 28 , replacing 4 -methyl piperidine with N -BOC piperazine in step-4 and the triazole amine analog with the pyridine amine analog in step 8 . Step-A and Step-B were subsequently carried out to synthesize compound XIb.
[0444] Step A: 3-(5-Methyl-thiophen-2-yl)-8-piperazin-1-yl-imidazo[1,2-a]pyridine-6carboxylic acid [(S)-1-(1H-[1,2,4]triazol-3-yl)-ethyl]-amide
[0445] To the solution of $\operatorname{IXb}(240 \mathrm{mg}, 0.44 \mathrm{mmol}, 1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added TFA $(0.33 \mathrm{~mL}, 4.4 \mathrm{mmol}, 10 \mathrm{eq})$ and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 16 h . The mixture was concentrated in vacuo to remove TFA and diluted with water. Aqueous NaHCO_{3} was added and the organic components were extracted with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to obtain the title compound ($140 \mathrm{mg}, 72 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.24$ $(\mathrm{t}, 1 \mathrm{H}, J=5 \mathrm{~Hz}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=$ $3 \mathrm{~Hz}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 3.57(\mathrm{~s}, 4 \mathrm{H}), 3.02(\mathrm{~s}$, $4 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=447.3[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.54$ minutes, (Program P1, Column V).
[0446] Step B: 8-(4-Carbamoylpiperazin-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0447] To the solution of $\mathrm{Xb}(80 \mathrm{mg}, 0.18 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (5 mL) was added TMSisocyanate ($0.05 \mathrm{ml}, 0.36 \mathrm{mmol}, 2 \mathrm{eq}$) at $23^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 4 h . The mixture was then diluted with aqueous NaHCO_{3} and the organic components were extracted with $15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude residue was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using $100-200$ mesh silica gel eluting with $17 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($14 \mathrm{mg}, 16 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.20(\mathrm{t}, 1 \mathrm{H}, J=6$ $\mathrm{Hz}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 7.22-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6 \mathrm{~Hz}), 3.51(\mathrm{~s}, 8 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=490.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.65$ minutes, (Program P1, Column W).
[0448] EXAMPLE 14: (S)-N-(1-(1,3,4-Oxadiazol-2-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 30

[0449] Step 1: 6-Bromo-imidazo[1,2-a]pyridin-8-ylamine

[0450] To a stirred solution of compound I ($50 \mathrm{~g} ; 0.26 \mathrm{~mol} ; 1 \mathrm{eq}$) in ethanol (2 L) were added sodium bicarbonate ($46 \mathrm{~g} ; 0.53 \mathrm{~mol} ; 2 \mathrm{eq}$) and chloroacetaldehyde solution ($\sim 50 \%$ aqueous solution, $86 \mathrm{~mL} ; 0.66 \mathrm{~mol} ; 2.5 \mathrm{eq}$) dropwise and the resulting mixture was heated at reflux for 17 h . The mixture was evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate and the solvents were removed in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 10-50\% ethyl acetate/hexanes as the eluent to afford the title compound ($40 \mathrm{~g}, 71 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.77$ (s, $1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H})$. LCMS: m/z $=212.0[\mathrm{M}+], 214.0[\mathrm{M}+2], \mathrm{RT}=$ 2.55 minutes, (Program P1, Column V).
[0451] Step 2: 8-Amino-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0452] To a solution of compound II ($10 \mathrm{~g} ; 47.20 \mathrm{mmol} ; 1 \mathrm{eq}$) in methanol (200 mL) was added diisopropylethyl amine ($41 \mathrm{~mL} ; 236 \mathrm{mmol} ; 5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was added PdCl_{2} (dppf) $(4 \mathrm{~g} ; 4.72 \mathrm{mmol} ; 0.1$ eq) and the resulting mixture was degassed with argon for another 5 min and then heated in an autoclave at $90^{\circ} \mathrm{C}$ at 50 psi carbon monoxide pressure for 16 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $0-10 \%$ methanol/dichloromethane as the eluent to obtain the title compound ($5 \mathrm{~g}, 55 \%$) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$. LCMS: m/z $=191.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.03$ minutes, $($ Program P 1 , Column V) .
[0453] Step 3: 8-Azido-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0454] To a stirred solution of compound III ($10 \mathrm{~g} ; 52.36 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (600 mL) were added tertiarybutylnitrite (32 mL ; $230 \mathrm{mmol} ; 4.4 \mathrm{eq}$) dropwise and trimethylsilylazide ($16 \mathrm{~mL}, 115 \mathrm{mmol}, 2.20 \mathrm{eq}$) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was evaporated to dryness to obtain a crude material which was purified by silica gel (100-200 mesh) column chromatography, eluting with $0-50 \%$ ethylacetate/hexanes as eluent to obtain the title compound ($9 \mathrm{~g}, 80 \%$) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=218.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.69$ minutes, $($ Program P1, Column V).
[0455] Step 4: 8-(5-Difluoromethyl-4-ethoxycarbonyl-[1,2,3]triazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0456] To a stirred solution of DBU ($25 \mathrm{~mL} ; 166 \mathrm{mmol} ; 1.2 \mathrm{eq}$) in dry DMF:THF (1000 $\mathrm{mL} ; 1: 1$) was added 4,4-difluoro-3-oxo-butyric acid ethyl ester ($22 \mathrm{~mL} ; 207.3 \mathrm{mmol} ; 1.5 \mathrm{eq}$) slowly at $23^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min . The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and a DMF:THF ($200 \mathrm{ml}, 1: 1$) solution of compound IV ($30 \mathrm{~g} ; 138.2 \mathrm{mmol} ; 1 \mathrm{eq}$) was added dropwise and the resulting mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was diluted with water $(1000 \mathrm{~mL})$ and the organic components were extracted with ethyl acetate ($3 \times 500 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to obtain a dry residue which
was purified by silica gel ($230-400$ mesh) column chromatography using 10-50\% ethyl acetate/hexanes as the eluent to afford the title compound ($32 \mathrm{~g}, 65 \%$) as a solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{q}, 2 \mathrm{H}$, $J=7 \mathrm{~Hz}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=365.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.97$ minutes, (Program P1, Column Y).
[0457] Step 5: 3-Bromo-8-(5-difluoromethyl-4-ethoxycarbonyl-[1,2,3]triazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0458] To a stirred solution of compound V ($10 \mathrm{~g} ; 27.4 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (150 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$ was added NBS ($7.4 \mathrm{~g} ; 41.1 \mathrm{mmol} ; 1.5 \mathrm{eq}$) in portions and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3×500 mL). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate and the solvents were removed in vacuo to obtain a dry residue which was chromatographically purified by silica gel (230-400 mesh) gravity column using 10-50\% ethyl acetate/hexane as the eluent to afford the title compound ($10 \mathrm{~g}, 82 \%$) as a solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{q}, 2 \mathrm{H}, J=7$ $\mathrm{Hz}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=443.8[\mathrm{M}+], 445.8[\mathrm{M}+2], \mathrm{RT}=3.20$ minutes, (Program P1, Column Y).
[0459] Step 6: 8-(5-Difluoromethyl-4-ethoxycarbonyl-[1,2,3]triazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0460] To a stirred dry DMF solution of compound VI ($0.5 \mathrm{~g} ; 1.13 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added compound VIa ($0.7 \mathrm{~g} ; 1.70 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.13 \mathrm{~g} ; 0.11 \mathrm{mmol}$; $0.1 \mathrm{eq})$ and degassing with argon was repeated for about 5 min . The reaction tube was sealed and heated at $115^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvents were removed in vacuo to obtain a crude material. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.25 \mathrm{~g}$, 50%) as a light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H})$, 7.47 (m, 2H), $7.05(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, 3 \mathrm{H}, J=$ $7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=461.8[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.56$ minutes, (Program P1, Column Y).
[0461] Step 7: 8-(4-Carboxy-5-difluoromethyl-[1,2,3]triazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0462] To a solution of compound VII ($0.5 \mathrm{~g}, 1.10 \mathrm{mmol}, 1 \mathrm{eq}$) in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ $(55 \mathrm{~mL}, 3: 2: 1)$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(0.14 \mathrm{~g}, 3.25$ $\mathrm{mmol}, 3 \mathrm{eq})$ in water (5 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvents were removed under reduced pressure and the residue was diluted with water and acidified with 1 N HCl to adjust the pH to 3 . The precipitated solid was collected by filtration and dried under vacuum to afford the title compound $(0.35 \mathrm{~g}, 70 \%)$).
[0463] Step 8: 8-(5-Difluoromethyl-[1,2,3]triazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0464] Compound VIII ($0.35 \mathrm{~g} ; 0.83 \mathrm{mmol} ; 1 \mathrm{eq}$) was heated at $200^{\circ} \mathrm{C}$ for 1 h to obtain the title compound $(0.31 \mathrm{~g}, 95 \%)$.
[0465] Step 9: $\quad \mathrm{N}^{\prime}$-((S)-2-\{[8-(5-Difluoromethyl-[1,2,3]triazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carbonyl]-amino\}-propionyl)-hydrazine carboxylic acid tert-butyl ester
[0466] To a stirred solution of compound IX ($0.31 \mathrm{~g}, 0.83 \mathrm{mmol}, 1 \mathrm{leq}$) in DMF (30 mL) were added DIPEA ($0.5 \mathrm{~mL}, 2.50 \mathrm{mmol}, 3 \mathrm{eq}$) and HATU $(0.47 \mathrm{~g}, 1.24 \mathrm{mmol}, 1.5 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min . To the mixture was added (S)-1-($4 \mathrm{H}-$ [1,2,4]triazol-3-yl)-ethylamine hydrochloride ($0.25 \mathrm{~g}, 1.24 \mathrm{mmol}, 1.5 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo and the residue was diluted with EtOAc. The organic layer was washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound (0.3 g , 65%) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~d}, 1 \mathrm{H}, J=7$ $\mathrm{Hz}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~m}$, $1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~m}, 12 \mathrm{H})$. LCMS: m/z $=561.2[\mathrm{M}+\mathrm{H}]^{+}$, RT $=3.20$ minutes, (Program P1, Column Y).
[0467] Step 10: 8-(5-Difluoromethyl-[1,2,3]triazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ((S)-1-hydrazinocarbonyl-ethyl)-amide
[0468] To a stirring solution of compound $\mathrm{X}(0.3 \mathrm{~g} ; 0.53 \mathrm{mmol} ; 1 \mathrm{eq})$ in 1,4-dioxane (20 mL) at $0{ }^{\circ} \mathrm{C}$ was added 4 M HCl in 1,4-dioxane (10 mL) dropwise over a period of 30 min and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h . The volatiles were evaporated in vacuo to obtain the title compound ($0.2 \mathrm{~g}, 80 \%$) as a solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 11.26$ (s, $1 \mathrm{H}), 10.40(\mathrm{brs}, 3 \mathrm{H}), 9.26(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}$, $1 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=461.4[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.80$ minutes, (Program P1, Column Y).
[0469] Step 11: (S)-N-(1-(1,3,4-Oxadiazol-2-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0470] To a stirring solution of compound XI ($0.18 \mathrm{~g} ; 0.40 \mathrm{mmol} ; 1 \mathrm{eq}$) in acetic acid (16 mL) at $0{ }^{\circ} \mathrm{C}$ was added triethyl orthoformate ($0.5 \mathrm{~mL}, 2.40 \mathrm{mmol}, 6 \mathrm{eq}$) dropwise and the resulting mixture was heated at reflux for 2 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate (3 x 50 mL). The combined organic layers were then washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo to obtain a dry residue which was purified by silica gel (230-400 mesh) column chromatography using 0-5\% methanol/dichloromethane as the eluent to afford the title compound $(0.11 \mathrm{~g}, 60 \%)$ as a solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.50$ (d, $1 \mathrm{H}, J=7 \mathrm{~Hz}), 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}$, $J=1 \mathrm{~Hz}), 5.48(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=471.0[\mathrm{M}+\mathrm{H}]^{+}$, RT $=3.08$ minutes, (Program P1, Column Y).
[0471] EXAMPLE 15: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(o-tolyl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 31
[0472] Step 1: 6-Amino-nicotinic acid ethyl ester
[0473] To a stirred solution of compound I (150 g; 1.09 mol ; 1 eq) in ethanol (1.5 L) was added thionyl chloride ($236 \mathrm{~mL} ; 3.26 \mathrm{~mol} ; 3 \mathrm{eq}$) dropwise at $60^{\circ} \mathrm{C}$ and the resulting mixture was heated at reflux for 17 h . The mixture was evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($5 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and the solvent was removed in vacuo to afford the title compound (152 g, $84 \%)$ as an off-white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 6.45$ (d, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}) ; 1.35(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=$ $167.3[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.32$ minutes, (Program P1, Column Y).
[0474] Step 2: 6-Amino-5-bromo-nicotinic acid ethyl ester
[0475] To a stirred solution of compound II ($50 \mathrm{~g} ; 301 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry THF (500 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS ($53.6 \mathrm{~g} ; 301 \mathrm{mmol} ; 1 \mathrm{eq}$) in portions and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 1000 \mathrm{~mL}$). The combined organic layers were then washed with brine solution, dried over anhydrous sodium sulfate and evaporated to dryness to afford compound ($71 \mathrm{~g}, 96 \%$) as an off white solid. ${ }^{1} \mathrm{H}$

NMR (DMSO- d_{6}) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.30(\mathrm{t}$, $3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=245[\mathrm{M}+], 247[\mathrm{M}+2], \mathrm{RT}=2.97$ minutes, (Program P1, Column W).
[0476] Step 3: 8-Bromo-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0477] To a stirred solution of compound III (80 g ; 326 mmol ; 1 eq) in ethanol (1 L) were added sodium bicarbonate ($54.8 \mathrm{~g} ; 652 \mathrm{mmol} ; 2 \mathrm{eq}$) and aqueous chloroacetaldehyde solution $(\sim 50 \%$ aqueous solution, $212 \mathrm{~mL} ; 1.63 \mathrm{~mol} ; 5 \mathrm{eq})$ dropwise and the mixture was heated at reflux for 17 h . The mixture was then evaporated to dryness and the pH was adjusted to 7 using ice-cold saturated aqueous NaHCO_{3} solution and solid NaHCO_{3}. The organic components were extracted from the aqueous phase with ethyl acetate ($3 \times 1000 \mathrm{~mL}$) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate. The solvent from the organic layer was removed in vacuo to obtain a dry residue which was purified by silica gel ($230-400$ mesh) column chromatography using $10-50 \%$ ethyl acetate/hexanes as the eluent to afford the title compound ($55 \mathrm{~g}, 63 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{q}, 2 \mathrm{H}, J=8$ $\mathrm{Hz}), 1.34(\mathrm{t}, 3 \mathrm{H}, J=8 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=268.8[\mathrm{M}+], 270.8[\mathrm{M}+2], \mathrm{RT}=2.90$ minutes, (Program P1, Column W).
[0478] Step 4: 8-(4-Methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid ethyl ester
[0479] To a stirred 1,4-dioxane solution of compound IV (1 g; 3.71 mmol; 1 eq) in a reaction tube was added 4 -methyl piperidine ($0.73 \mathrm{~g} ; 7.43 \mathrm{mmol} ; 2 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min , followed by an addition of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.81 \mathrm{~g} ; 5.56$ $\mathrm{mmol} ; 1.5 \mathrm{eq}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.16 \mathrm{~g} ; 0.018 \mathrm{mmol} ; 0.05 \mathrm{eq})$ and xantphos $(0.21 \mathrm{~g} ; 0.37 \mathrm{mmol} ; 0.1$ eq). The mixture was then degassed again with argon for 5 min , and the reaction tube was sealed and heated at $115{ }^{\circ} \mathrm{C}$ for 5 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then collected and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (100-200 mesh) column chromatography, eluting with $50 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound $(0.25 \mathrm{~g}, 23 \%)$ as a light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.55$ $(\mathrm{s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{q}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 1.73(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.56(\mathrm{~m}$,
$1 \mathrm{H}), 1.3(\mathrm{~m}, 5 \mathrm{H}), 0.9(\mathrm{t}, 3 \mathrm{H}, J=4 \mathrm{~Hz}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=288[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.56$ minutes, (Program P1, Column W).
[0480] Step 5: 3-Bromo-8-(4-methyl-piperidin-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid ethyl ester
[0481] To a stirred solution of compound $\mathrm{V}(1.6 \mathrm{~g} ; 5.5 \mathrm{mmol} ; 1 \mathrm{eq})$ in dry THF (30 mL) at $0{ }^{\circ} \mathrm{C}$ was added NBS $(0.99 \mathrm{~g} ; 5.5 \mathrm{mmol} ; 1 \mathrm{eq})$ in portions, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into ice-cold saturated aqueous NaHCO_{3} solution and the organic components were extracted with ethyl acetate ($3 \times 500 \mathrm{~mL}$). The combined organic layers were then washed with brine solution, dried over anhydrous sodium sulfate and evaporated to dryness to afford the title compound ($1.7 \mathrm{~g}, 83 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{q}$, $2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.73(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.3(\mathrm{~m}, 5 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=4 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=366.2[\mathrm{M}+], 368.2[\mathrm{M}+2], \mathrm{RT}=2.51$ minutes, (Program P1, Column W).
[0482] Step 6: 8-(4-Methyl-piperidin-1-yl)-3-o-tolyl-imidazo[1,2-a]pyridine-6carboxylic acid ethyl ester
[0483] To a stirred solution of compound VI (0.6 g ; 1.63 mmol ; 1 eq) in dry toluene:ethanol ($7: 3,20 \mathrm{~mL}$) was added compound VIa ($0.33 \mathrm{~g} ; 2.45 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was then added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.18 \mathrm{~g} ; 0.16 \mathrm{mmol} ; 0.1 \mathrm{eq})$, the resulting mixture was degassed with argon for another 5 min , then heated at $115^{\circ} \mathrm{C}$ with stirring for 4 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with saturated aqueous NaHCO_{3} solution, followed by brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to obtain a crude material. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $50 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound ($0.3 \mathrm{~g}, 55 \%$) as light brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 7.93$ ($\mathrm{s}, 1 \mathrm{H}$), 7.65 (s, $1 \mathrm{H}), 7.47$ (d, 2H, $J=3 \mathrm{~Hz}), 7.40(\mathrm{~d}, 2 \mathrm{H}, J=3 \mathrm{~Hz}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 4.28$ $(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}), 2.81(\mathrm{t}, 2 \mathrm{H}, J=11 \mathrm{~Hz}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.60(\mathrm{~m}, 1 \mathrm{H})$, $1.36(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=378.4[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}$ $=4.11$ minutes, (Program P1, Column Y).
[0484] Step 7: 8-(4-Methyl-piperidin-1-yl)-3-o-tolyl-imidazo[1,2-a]pyridine-6carboxylic acid
[0485] To a solution of compound VII ($0.34 \mathrm{~g}, 0.90 \mathrm{mmol}, 1 \mathrm{eq}$) in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ ($12 \mathrm{~mL}, 3: 2: 1$) at $0^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(0.75 \mathrm{~g}, 1.80$ $\mathrm{mmol}, 2 \mathrm{eq})$ in water (1 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The solvent was removed under reduced pressure and the residue was diluted with water and then acidified with 1 N HCl to adjust the pH to 3 . The precipitated solid was collected by filtration and dried in vacuo to obtain the title compound ($0.28 \mathrm{~g}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.15$ $(\mathrm{s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, 2 \mathrm{H}, J=11 \mathrm{~Hz}), 2.86(\mathrm{t}, 2 \mathrm{H}, J=$ $11 \mathrm{~Hz}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6$ $\mathrm{Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=350.0[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.80$ minutes, $($ Program P1, Column Y$)$.
[0486] Step 8: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(o-tolyl)imidazo[1,2-a]pyridine-6-carboxamide
[0487] To a stirred solution of compound VIII ($0.05 \mathrm{~g}, 0.14 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) were added DIPEA ($0.07 \mathrm{~mL}, 0.42 \mathrm{mmol}, 3 \mathrm{eq}$) and $\operatorname{HATU}(0.06 \mathrm{~g}, 0.18 \mathrm{mmol}, 1.3 \mathrm{eq})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was allowed to stir for 15 min . To the mixture was added (S)-1-(4H-[1,2,4]triazol-3-yl)-ethylamine hydrochloride ($0.02 \mathrm{~g}, 0.17 \mathrm{mmol}, 1.2 \mathrm{eq}$) and the resulting mixture was allowed to stir at $23{ }^{\circ} \mathrm{C}$ for another 16 h . From the mixture, solvent was removed in vacuo, the residue was diluted with EtOAc and washed with saturated aqueous sodium bicarbonate solution, aqueous ammonium chloride solution and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness. The crude product was purified by silica gel (230-400 mesh) column chromatography eluting with $0-5 \%$ methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.02 \mathrm{~g}, 40 \%)$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) ($100{ }^{\circ} \mathrm{C}$) $\delta 13.78$ (brs, 1H), $8.54(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.37(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}$, $4 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 2.88(\mathrm{t}, 2 \mathrm{H}, J=11 \mathrm{~Hz}), 1.81(\mathrm{~s}, 3 \mathrm{H})$, $1.79(\mathrm{~d}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, 3 \mathrm{H}, J=12 \mathrm{~Hz}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=$ $5 \mathrm{~Hz})$. LCMS: m/z $=444.4[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=3.03$ minutes, (Program P1, Column V).
[0488] EXAMPLE 16: 8-(5-Cyclopropyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme
32
[0489] Step 1: tert-Butyl-(3-nitro-pyridin-2-yl)-amine
[0490] To a solution of compound I ($20 \mathrm{~g}, 127 \mathrm{mmol}, 1 \mathrm{eq}$) in N -methyl-2-pyrrolidine ($100 \mathrm{~mL}, 1.04 \mathrm{~mol}, 8.2 \mathrm{eq}$) was added tert-butyl amine ($100 \mathrm{~mL}, 950 \mathrm{mmol}, 7.5 \mathrm{eq}$) and the resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 5 h . The mixture was poured into ice-cold 1 N aqueous HCl solution (500 mL) and the organic components were extracted with ethyl acetate ($3 \times 300 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous sodium bicarbonate solution (400 mL) and brine ($2 \times 300 \mathrm{~mL}$), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to provide crude compound. The crude product was purified by silica gel (100-200 mesh) column chromatography using 2% ethyl acetate/hexanes to obtain the title compound ($18 \mathrm{~g}, 73 \%$) as yellow viscous liquid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.48(\mathrm{dd}, 1 \mathrm{H}, J=1,4 \mathrm{~Hz}$), $8.41(\mathrm{dd}, 1 \mathrm{H}, J=2,8 \mathrm{~Hz}$), 8.20 (brs, 1H), 6.76 (dd, 1H, J=4, 8 Hz), 1.51 (s, 9H).
[0491] Step 2: 2-tert-Butylamino-3-aminopyridine
[0492] To a solution of compound II ($18 \mathrm{~g}, 92.3 \mathrm{mmol}, 1 \mathrm{eq}$) in ethanol (300 mL), degassed with argon, was added $10 \% \mathrm{Pd} / \mathrm{C}(12 \mathrm{~g})$ and the resulting mixture was degassed with argon for another 15 min . The reaction vessel was attached to Parr shaker and stirred at 50 psi under hydrogen atmosphere for 16 h . The mixture was filtered through a Celite ${ }^{\circledR} \mathrm{pad}$ and the filtrate was concentrated in vacuo to obtain the title compound ($13 \mathrm{~g}, 85 \%$) as deep brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.36(\mathrm{dd}, 1 \mathrm{H}, J=1,5 \mathrm{~Hz}), 6.65(\mathrm{dd}, 1 \mathrm{H}, J=$ 2, 7 Hz), $6.29(\mathrm{dd}, 1 \mathrm{H}, J=5,7 \mathrm{~Hz}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=$ $166.4[\mathrm{M}+\mathrm{H}], \mathrm{RT}=0.79$ minutes; (Program R1, Column Y).
[0493] Step 3: Cyclopropanecarboxylic acid (2-tert-butylamino-pyridin-3-yl)-amide [0494] To a solution of compound III ($7 \mathrm{~g}, 42.4 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (300 mL) at $0{ }^{\circ} \mathrm{C}$ was added DIPEA ($22.2 \mathrm{~mL}, 127.2 \mathrm{mmol}, 3 \mathrm{eq}$) dropwise and the resulting mixture was stirred for 10 min . Cyclopropane carbonyl chloride ($3.9 \mathrm{~mL}, 42.4 \mathrm{mmol}, 1 \mathrm{eq}$) was then added dropwise and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . The mixture was diluted with ice-water (200 mL) and the organic components were extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine $(150 \mathrm{~mL})$, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to provide crude compound. The crude material was purified by silica gel (100-200 mesh) column chromatography using 20% ethyl acetate/hexanes to obtain the title compound ($8 \mathrm{~g}, 81 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.46(\mathrm{~d}$, $1 \mathrm{H}, J=7 \mathrm{~Hz}), 6.50(\mathrm{dd}, 1 \mathrm{H}, J=5,8 \mathrm{~Hz}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 0.85-$ $0.75(\mathrm{~m}, 4 \mathrm{H})$. LCMS: m/z = $234.2[\mathrm{M}+\mathrm{H}], \mathrm{RT}=3.09$ minutes; $($ Program P1, Column Y$)$.
[0495] Step 4: tert-Butyl-[3-(5-cyclopropyl-tetrazol-1-yl)-pyridin-2-yl]-amine
[0496] To a stirred solution of compound IV ($8.0 \mathrm{~g}, 34.3 \mathrm{mmol}, 1 \mathrm{eq}$) in acetonitrile (240 mL) was added sodium azide ($44 \mathrm{~g}, 686 \mathrm{mmol}, 20 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$. Silicon tetrachloride (12 mL , $103 \mathrm{mmol}, 3 \mathrm{eq}$) was added to the mixture at $0^{\circ} \mathrm{C}$. After the completion of the addition, the mixture was stirred at $90^{\circ} \mathrm{C}$ for 9 h . The mixture was poured into ice cold water and solid NaHCO_{3} was added in portions to adjust the pH to 8 . The resulting mixture was then filtered through a Celite ${ }^{\circledR}$ plug and the filtrate was collected. The organic components were extracted with ethyl acetate (500 mL) and washed with brine (300 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo to provide crude compound. The crude material was purified by silica gel (100-200 mesh) column chromatography using 10%
ethyl acetate/hexanes to obtain crude title compound (8 g) as brown sticky solid. LCMS: m/z $=259.2[\mathrm{M}+\mathrm{H}], \mathrm{RT}=3.52$ minutes; $($ Program P 1 , Column Y$)$.
[0497] Step 5: [5-Bromo-3-(5-cyclopropyl-tetrazol-1-yl)-pyridin-2-yl]-tert-butyl-amine
[0498] To a stirred solution of compound V (8 g, 31 mmol, 1 eq) in THF (300 mL) was added N -bromosuccinimide ($5 \mathrm{~g}, 27.9 \mathrm{mmol}, 0.9 \mathrm{eq}$) in small portions at $0{ }^{\circ} \mathrm{C}$. After completion of the addition, the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was then concentrated in vacuo and the residue was diluted with aqueous sodium bicarbonate solution $(200 \mathrm{~mL})$ to adjust the pH to 8 . The organic components were extracted with ethyl acetate (2 x 200 mL), washed with brine (150 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain crude compound. The crude material was purified by silica gel (100-200 mesh) column chromatography using 10% ethyl acetate/hexanes to obtain compound ($5.8 \mathrm{~g}, 50 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- $\left.d_{6}\right) \delta 8.36(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.37(\mathrm{~s}, 9 \mathrm{H}), 1.14-1.06(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=337.5[\mathrm{M}+], \mathrm{RT}=3.72$ minutes; (Program P1, Column V).
[0499] Step 6: 5-Bromo-3-(5-cyclopropyl-tetrazol-1-yl)-pyridin-2-yl-amine
[0500] To a solution of compound VI ($5.8 \mathrm{~g}, 17.2 \mathrm{mmol}, 1 \mathrm{eq}$) in methanol (150 mL) was added 6 N HCl dropwise (150 mL), with stirring at $0^{\circ} \mathrm{C}$. After the addition, the mixture was heated at reflux for 2 h . The mixture was concentrated in vacuo and the residue was diluted with saturated aqueous sodium bicarbonate solution to adjust the pH to 8 . The organic components were extracted with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine (200 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain the title compound ($4.6 \mathrm{~g}, 95 \%$) as an offwhite solid. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 8.28(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 7.98(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz})$, $6.58(\mathrm{~s}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=281.0[\mathrm{M}+], 283.2[\mathrm{M}+2]$, RT $=2.69$ minutes; (Program P1, Column V).
[0501] Step 7: 6-Amino-5-(5-cyclopropyl-tetrazol-1-yl)-nicotinic acid methyl ester
[0502] To a solution of compound VII ($4.6 \mathrm{~g}, 16.4 \mathrm{mmol}, 1 \mathrm{eq}$) in methanol (140 mL) was added DIPEA ($18.6 \mathrm{~mL}, 106.4 \mathrm{mmol}, 6.5 \mathrm{eq}$) and the resulting mixture was degassed under argon in a Parr autoclave vessel. After $10 \mathrm{~min}, \mathrm{PdCl}_{2}(\mathrm{dppf}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~g}, 2 \mathrm{mmol}$, $0.12 \mathrm{eq})$ was added to the mixture and degassing with argon was continued for another 10 min. The mixture was stirred at $90^{\circ} \mathrm{C}$ under 50 psi pressure of CO gas in a Parr autoclave for

16 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo to obtain crude product. The crude material was purified by silica gel (100-200 mesh) column chromatography using $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($3.8 \mathrm{~g}, 89 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.72(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 8.08(\mathrm{~d}, 1 \mathrm{H}, J$ $=2 \mathrm{~Hz}), 7.24(\mathrm{brs}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.06(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=$ $261.4[\mathrm{M}+\mathrm{H}]$, RT = 2.44 minutes; (Program R1, Column Y).
[0503] Step 8: 8-(5-Cyclopropyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0504] To a stirred solution of compound VIII ($3.8 \mathrm{~g}, 14.6 \mathrm{mmol}, 1 \mathrm{eq}$) in ethanol (140 mL) were added sodium bicarbonate ($12.4 \mathrm{~g}, 146 \mathrm{mmol}, 10 \mathrm{eq}$), a 55% aqueous solution of chloroacetaldehyde ($38 \mathrm{~mL}, 584 \mathrm{mmol}, 40 \mathrm{eq}$) and the resulting mixture was heated at reflux for 16 h . The mixture was filtered through a Celite ${ }^{\circledR} \mathrm{pad}$ and the filtrate was concentrated under reduced pressure. The residue was diluted with ice-cold water (100 mL) and the organic components were extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$) and $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$. The combined organic layers were washed with brine $(150 \mathrm{~mL})$, dried over anhydrous sodium sulfate and concentrated in vacuo. The crude material was purified by silica gel (100-200 mesh) column chromatography using $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound as brown sticky solid (7 g, impure), which was carried forward for the next step. LCMS: $\mathrm{m} / \mathrm{z}=285.2[\mathrm{M}+\mathrm{H}], \mathrm{RT}=2.42$ minutes; $($ Program P 1 , Column W$)$
[0505] Step 9: 3-Bromo-8-(5-cyclopropyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid methyl ester
[0506] To a stirred solution of compound IX (7 g impure) in THF (300 mL) was added N -bromosuccinimide ($3.1 \mathrm{~g}, 17.3 \mathrm{mmol}, 0.7 \mathrm{eq}$) portionwise at $0^{\circ} \mathrm{C}$. After completion of the addition, the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1.5 h . The mixture was concentrated under reduced pressure and diluted with aqueous sodium bicarbonate adjusting the pH to 8 . The organic components were extracted with ethyl acetate ($2 \times 150 \mathrm{~mL}$) and the combined organic layers were washed with brine $(150 \mathrm{~mL})$, dried over anhydrous sodium sulfate and concentrated in vacuo to obtain crude compound. The crude material was purified by silica gel (100-200 mesh) column chromatography using $20 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to obtain the title compound ($4 \mathrm{~g}, 75 \%$) as brownish sticky solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.98$ (d, $1 \mathrm{H}, J=1 \mathrm{~Hz}), 8.24(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.04$
$(\mathrm{m}, 4 \mathrm{H}) . \operatorname{LCMS}: \mathrm{m} / \mathrm{z}=363.1[\mathrm{M}+], 365.0[\mathrm{M}+2], \mathrm{RT}=3.33$ minutes; (Program R1, Column Y).
[0507] Step 10: 3-Bromo-8-(5-cyclopropyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid
[0508] To a solution of compound $\mathrm{X}(4 \mathrm{~g}, 11 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (200 mL) was added an aqueous solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{~g}, 33 \mathrm{mmol}, 3 \mathrm{eq})$ dropwise, followed by an addition of methanol (6 mL) and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 h . The solvents were removed in vacuo and the solid residue was diluted with water $(100 \mathrm{~mL})$. The aqueous layer was washed with EtOAc $(50 \mathrm{~mL})$ and a saturated aqueous solution of citric acid was added to the aqueous phase adjusting the pH tol. The organic component was then extracted from the aqueous layer with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to obtain the title compound ($3.5 \mathrm{~g}, 91 \%$) as a deep brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 13.87$ (brs, 1 H), $8.96(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}$), 8.18 $(\mathrm{d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 1.99-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.04(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=349.0$ $[\mathrm{M}+], 351.0[\mathrm{M}+2], \mathrm{RT}=2.77$ minutes; $($ Program R1, Column Y$)$.
[0509] Step 11: 3-Bromo-8-(5-cyclopropyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid (6-methyl-pyridin-3-ylmethyl)-amide
[0510] To a solution of compound XI ($1 \mathrm{~g}, 2.86 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (100 mL) were added HATU ($1.41 \mathrm{~g}, 3.72 \mathrm{mmol}, 1.3 \mathrm{eq}$) and DIPEA (4 mL) at $0{ }^{\circ} \mathrm{C}$ under argon. After 10 min, a DMF solution of C-(6-methyl-pyridin-3-yl)-methylamine ($524 \mathrm{mg}, 4.3 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added to the mixture and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with ice cold water (50 mL) and the organic components were extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$) and $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to obtain crude compound. The crude product was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using 100-200 mesh silica gel eluting with $9 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($660 \mathrm{mg}, 52 \%$) as an orange solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.48(\mathrm{t}, 1 \mathrm{H}, J=5 \mathrm{~Hz}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.94$ $(\mathrm{s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.53(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, 2.02-1.93 (m, 1H), 1.11-1.01 (m, 4H). LCMS: $\mathrm{m} / \mathrm{z}=453.2[\mathrm{M}+], 455.0[\mathrm{M}+2], \mathrm{RT}=2.13$ minutes; (Program R1, Column Y)
[0511] Step 12: 8-(5-Cyclopropyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0512] To a DMF (30 mL) solution of compound XII ($650 \mathrm{mg}, 1.44 \mathrm{mmol}, 1 \mathrm{eq}$) degassed with argon in a reaction tube was added compound VIa ($832 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 10 min , before the addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(162 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.1 \mathrm{eq})$. Degassing with argon was done for another 15 min , the reaction tube was sealed, then heated at $120^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated under reduced pressure to provide a solid residue. The organic components were then extracted with EtOAc ($2 \times 100 \mathrm{~mL}$) and 10% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and the combined organic layers were washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and concentrated to provide crude compound. The crude product was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using $100-200$ mesh silica gel eluting with $4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound (400 $\mathrm{mg}, 59 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 9.39(\mathrm{~m}, 1 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H})$, 8.44 (s, 1H), 8.21 (s, 1H), 7.91 (s, 1H), 7.64 (d, 1H, $J=8 \mathrm{~Hz}$), 7.46 (d, 1H, $J=3 \mathrm{~Hz}$), 7.21 (d, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 4.50(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.06-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 4 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=471.0[\mathrm{M}+\mathrm{H}]^{+}$, RT $=6.07$ minutes; (Program R1, Column Y).
[0513] EXAMPLE 17: 8-(5-(Hydroxymethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 33
[0514] Compound III was prepared as discussed in scheme 32.
[0515] Step 1: Acetic acid (2-tert-butylamino-pyridin-3-ylcarbamoyl)-methyl ester
[0516] To a solution of compound III ($3 \mathrm{~g}, 18.2 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added DIPEA ($9.52 \mathrm{~mL}, 54.5 \mathrm{mmol}, 3 \mathrm{eq}$) dropwise at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 10 min . To the mixture was then added a solution of acetoxy acetylchloride (1.95 $\mathrm{mL}, 18.2 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ dropwise and continued stirring at $0{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was diluted with ice-cold water (50 mL) and the organic components were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 70 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over anhydrous sodium sulfate and concentrated under reduced pressure to get crude compound. The crude material was purified by silica gel (100-200 mesh) column chromatography with 30% ethyl acetate/hexanes to obtain the title compound ($3 \mathrm{~g}, 60 \%$) as brownish solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=5 \mathrm{~Hz}), 7.36$
(d, $1 \mathrm{H}, J=7 \mathrm{~Hz}), 6.52(\mathrm{dd}, 1 \mathrm{H}, J=5,7 \mathrm{~Hz}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}$, 9H). LCMS: $\mathrm{m} / \mathrm{z}=266.0[\mathrm{M}+\mathrm{H}], \mathrm{RT}=1.20$ minutes; (Program R1, Column Y).
[0517] Step 2: Acetic acid 1-(2-tert-butylamino-pyridin-3-yl)-1H-tetrazol-5-ylmethyl ester
[0518] To a stirred solution of compound IV ($3 \mathrm{~g}, 11.3 \mathrm{mmol}, 1 \mathrm{eq}$) in acetonitrile (100 mL) were added sodium azide ($7.35 \mathrm{~g}, 113 \mathrm{mmol}, 10 \mathrm{eq}$) and silicon tetrachloride (3.9 mL , $33.9 \mathrm{mmol}, 3 \mathrm{eq}$) at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 16 h . The mixture was poured into ice cold water and solid NaHCO_{3} was added in portions to adjust the pH to 8. The resulting mixture was the filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was collected. The organic components were extracted with ethyl acetate $(200 \mathrm{~mL})$ and washed with brine (100 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to provide crude title compound (4 g) as an off-white sticky solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.27(\mathrm{dd}, 1 \mathrm{H}, J=2,5 \mathrm{~Hz}$), $7.54(\mathrm{dd}, 1 \mathrm{H}, J=2,8 \mathrm{~Hz}), 6.71$ $(\mathrm{dd}, 1 \mathrm{H}, J=5,8 \mathrm{~Hz}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=$ $291.1[\mathrm{M}+\mathrm{H}], \mathrm{RT}=3.82$ minutes; (Program R1, Column Y).
[0519] Step 3: Acetic acid 1-(5-bromo-2-tert-butylamino-pyridin-3-yl)-1H-tetrazol-5ylmethyl ester
[0520] To a solution of compound $\mathrm{V}(4 \mathrm{~g}, 13.8 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (100 mL) was added N -bromosuccinimide ($2.2 \mathrm{~g}, 12.4 \mathrm{mmol}, 0.9 \mathrm{eq}$) in small portions with stirring at $0^{\circ} \mathrm{C}$. After completion of the addition, the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was concentrated in vacuo and the residue was diluted with aqueous sodium bicarbonate to adjust the pH to 8 . The organic components were extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$), the combined extracts were washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to obtain crude compound. The crude material was purified by silica gel (100-200 mesh) column chromatography using 20% ethyl acetate/hexanes to obtain the title compound ($3.0 \mathrm{~g}, 72 \%$, two steps) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.37(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}$), $7.89(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 5.88(\mathrm{~s}, 1 \mathrm{H})$, $5.30(\mathrm{~s}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=371.0[\mathrm{M}+2], \mathrm{RT}=4.11$ minutes; (Program R1, Column Y).
[0521] Step 4: Acetic acid 1-(2-amino-5-bromo-pyridin-3-yl)-1H-tetrazol-5-ylmethyl ester
[0522] To a stirred solution of compound VI ($3 \mathrm{~g}, 8.13 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added trifluoroacetic acid (100 mL) dropwise at $23^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 16 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and diluted with saturated aqueous sodium bicarbonate solution to adjust the pH to 8 . The organic components were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 70 \mathrm{~mL})$ and the combined extracts were washed with brine (75 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to obtain the title compound $(1.7 \mathrm{~g}, 68 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta 8.29(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 7.94(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 6.60(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{~s}$, 2 H), $1.93(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=313.0[\mathrm{M}+\mathrm{]}, 315.2[\mathrm{M}+2]$, RT $=3.09$ minutes; (Program R1, Column Y).
[0523] Step 5: Acetic acid 1-(6-bromo-imidazo[1,2-a]pyridin-8-yl)-1H-tetrazol-5ylmethyl ester
[0524] To a stirred solution of compound VII ($1.7 \mathrm{~g}, 5.4 \mathrm{mmol}, 1 \mathrm{eq}$) in ethanol (100 mL) were added sodium bicarbonate ($4.6 \mathrm{~g}, 54 \mathrm{mmol}, 10 \mathrm{eq}$) and a 55% aqueous solution of chloroacetaldehyde ($26 \mathrm{~mL}, 216 \mathrm{mmol}, 40 \mathrm{eq}$), and the resulting mixture was heated at reflux for 16 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated under reduced pressure. The filtrate was diluted with ice-cold water $(100 \mathrm{~mL})$ and the organic components were extracted with ethyl acetate ($2 \times 70 \mathrm{~mL}$) and $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over anhydrous sodium sulfate and concentrated in vacuo. The crude material was purified by silica gel ($100-$ 200 mesh) column chromatography using $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound as a brown sticky solid ($1.4 \mathrm{~g}, 75 \%$), which was carried forward for the next step. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.24(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}$), $8.16(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 7.70(\mathrm{~s}$, $1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=337.0[\mathrm{M}+], 339.0[\mathrm{M}+2], \mathrm{RT}=2.94$ minutes; (Program R1, Column Y)
[0525] Step 6: 8-(5-Hydroxymethyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0526] To a solution of compound VIII ($1.4 \mathrm{~g}, 4.15 \mathrm{mmol}, 1 \mathrm{eq}$) in MeOH (100 mL) was added DIPEA ($5 \mathrm{~mL}, 27 \mathrm{mmol}, 6.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 10 min . To the mixture was then added $\mathrm{PdCl}_{2}(\mathrm{dppf})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($408 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.12 \mathrm{eq}$) and the resulting mixture was degassed with argon for another 10 min . The mixture was then stirred at $90^{\circ} \mathrm{C}$ under CO atmosphere with a pressure of 50 psi in a Parr autoclave for 16 h .

The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo to obtain crude product. The crude material was purified by silica gel (100-200 mesh) column chromatography using $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($0.8 \mathrm{~g}, 71 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H})$, 7.94-7.85 (m, 1H), $7.77(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}), 3.93(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=275.4[\mathrm{M}$ $+\mathrm{H}], \mathrm{RT}=2.44$ minutes; (Program R1, Column Y).
[0527] Step 7: 8-(5-Acetoxymethyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0528] To a stirred solution of compound IX ($0.8 \mathrm{~g}, 2.92 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added TEA ($0.82 \mathrm{~mL}, 5.84 \mathrm{mmol}, 2 \mathrm{eq})$ dropwise at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 15 min . Acetyl chloride $(0.42 \mathrm{~mL}, 5.84 \mathrm{mmol}, 2 \mathrm{eq})$ was added to the mixture and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was concentrated under reduced pressure and diluted with water $(30 \mathrm{~mL})$. The organic components were extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$) and the combined extracts were washed with brine (30 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to obtain the title compound (1.2 g) crude as an off-white solid. LCMS: m/z $=317.2[\mathrm{M}+\mathrm{H}], \mathrm{RT}=2.76$ minutes; $($ Program R1, Column Y)
[0529] Step 8: 8-(5-Acetoxymethyl-tetrazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0530] To a stirred solution of compound X (1.2 g, $3.8 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (100 mL) was added N -bromosuccinimide ($0.61 \mathrm{~g}, 3.4 \mathrm{mmol}, 0.9 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ in portions and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1.5 h . The mixture was concentrated under reduced pressure and diluted with aqueous sodium bicarbonate adjusting the pH to 8 . The organic components were extracted with ethyl acetate (2 x 50 mL) and the combined extracts were washed with brine (70 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to obtain crude compound. The crude material was purified by silica gel (100-200 mesh) column chromatography using $20 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound $(0.8 \mathrm{~g}, 69 \%$) as greenish yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}$, $1 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=395.1[\mathrm{M}+], 397.0[\mathrm{M}+2], \mathrm{RT}=$ 3.31 minutes; (Program R1, Column Y).
[0531] Step 9: 8-(5-Acetoxymethyl-tetrazol-1-yl)-3-bromo-imidazo[1,2-a]pyridine-6carboxylic acid methyl ester
[0532] To a DMF (50 mL) solution of compound XI ($0.8 \mathrm{~g}, 2.02 \mathrm{mmol}, 1 \mathrm{eq}$), degassed with argon, in a reaction tube was added compound VIa ($1.17 \mathrm{~g}, 3.03 \mathrm{mmol}, 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 10 min . To the mixture was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($0.23 \mathrm{~g}, 0.2 \mathrm{mmol}, 0.1 \mathrm{eq}$) and the resulting mixture was degassed with argon for another 15 min . The reaction tube was then sealed and heated at $120^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated under reduced pressure to provide a solid residue. The organic components were then extracted with EtOAc ($2 \times 50 \mathrm{~mL}$) and 10% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and the combined extracts were washed with brine $(100 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to provide crude compound. The crude product was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using 100-200 mesh silica gel eluting with $4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($0.64 \mathrm{~g}, 75 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.17$ (d, $1 \mathrm{H}, J=1 \mathrm{~Hz}$), $8.20(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}$, 3 H), 2.57 ($\mathrm{s}, 3 \mathrm{H}$), $1.89(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=413.0[\mathrm{M}+\mathrm{H}], \mathrm{RT}=3.73$ minutes; (Program R1, Column Y).
[0533] Step 10: 8-(5-Hydroxymethyl-tetrazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0534] To a solution of compound XII ($0.64 \mathrm{~g}, 1.55 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (50 mL) was added an aqueous solution of $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~g}, 4.66 \mathrm{mmol}, 3 \mathrm{eq})$ dropwise followed by addition of methanol (3 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . The solvent of the mixture was removed in vacuo and the solid residue was diluted with water (40 mL). The aqueous layer was washed with the $\operatorname{EtOAc}(30 \mathrm{~mL})$ and a saturated aqueous solution of citric acid was added to the aqueous part adjusting the pH to 1 . The organic component was then extracted from the aqueous layer with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to obtain the title compound ($0.35 \mathrm{~g}, 63 \%$) as brownish solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 12.30 (brs, 1H), 9.15 (s, 1H), 8.08 (s, 1H), 7.95 ($\mathrm{s}, 1 \mathrm{H}$), 7.44 (d, 1H, $J=3 \mathrm{~Hz}$), 7.05 ($\mathrm{s}, 1 \mathrm{H}$), 5.79-5.69 (m, 1H), $4.85(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 2.57(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=357.2[\mathrm{M}+\mathrm{H}], \mathrm{RT}=$ 3.04 minutes; (Program R1, Column W)
[0535] Step 11: 8-(5-(Hydroxymethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0536] To a solution of compound XIII ($0.35 \mathrm{~g}, 0.98 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (30 mL) were added HATU ($0.48 \mathrm{~g}, 1.27 \mathrm{mmol}, 1.3 \mathrm{eq}$) and DIPEA (2 mL) at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere. After 10 minutes, a DMF solution of C-(6-methyl-pyridin-3-yl)-methylamine ($0.18 \mathrm{~g}, 1.47 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with ice cold water (30 mL) and the organic components were extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$) and $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic layers were washed with brine (80 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to obtain crude compound. The crude product was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using 100-200 mesh silica gel eluting with $9 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.25 \mathrm{~g}, 55 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.46-9.38(\mathrm{~m}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}$, $1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz})$, $5.80-5.70(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 4.50(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=461.2[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.30$ minutes; (Program R1, Column W).
[0537] EXAMPLE 18: 8-(5-(Difluoromethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 34
[0538]
Step 1: 6-Bromo-imidazo[1,2-a]pyridin-8-ylamine
[0539] To a solution of compound I ($10 \mathrm{~g}, 53 \mathrm{mmol}, 1 \mathrm{eq}$) in ethanol (200 mL) were added sodium bicarbonate ($8.92 \mathrm{~g}, 106 \mathrm{mmol}, 2 \mathrm{eq}$) and chloroacetaldehyde ($8.6 \mathrm{~mL}, 133$ $\mathrm{mmol}, 2.5 \mathrm{eq})$ and the resulting mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was filtered and the filtrate was concentrated in vacuo to obtain a solid residue. The residue was then washed with water $(200 \mathrm{~mL})$ and organic components were extracted with ethyl acetate $(800 \mathrm{~mL})$, dried over anhydrous sodium sulfate, filtered and the solvent was removed under reduced pressure to provide crude compound. The crude product was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using 100-200 mesh silica gel eluting with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound ($6 \mathrm{~g}, 53 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $8.05(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz})$, 5.98 ($\mathrm{s}, 2 \mathrm{H}$). LCMS: $\mathrm{m} / \mathrm{z}=213.6[\mathrm{M}+2], \mathrm{RT}=0.79$ minutes; (Program R1, Column Y).
[0540] Step 2: 8-Amino-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0541] To a solution of compound II ($6 \mathrm{~g}, 28 \mathrm{mmol}, 1 \mathrm{eq}$) in $\mathrm{MeOH}(100 \mathrm{~mL})$ was added DIPEA ($26 \mathrm{~mL}, 140 \mathrm{mmol}, 5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 10 min, then $\mathrm{PdCl}_{2}(\mathrm{dppf}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~g}, 2.8 \mathrm{~mol}, 0.1 \mathrm{eq})$ was added. Degassing with argon was repeated for 10 min and the reaction vessel was attached to Parr autoclave stirring at $90^{\circ} \mathrm{C}$ at 50 psi under CO atmosphere for 16 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated in vacuo to obtain a solid residue. The residue was then washed with water (100 mL) and the organic components were extracted with ethyl acetate (800 mL), dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure to provide crude compound. The crude product was purified by flash Combiflash ${ }^{\text {TM }}$ chromatography using 100-200 mesh silica gel eluting with 40% EtOAc/hexanes to obtain the title compound $(3.5 \mathrm{~g}, 65 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.57$ (d, $1 \mathrm{H}, J=1 \mathrm{~Hz}$), 7.97 ($\mathrm{s}, 1 \mathrm{H}$), $7.51(\mathrm{~s}, 1 \mathrm{H}), 6.67$ (d, 1H), 5.87 ($\mathrm{s}, 2 \mathrm{H}$), 3.84 ($\mathrm{s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=191.8[\mathrm{M}+\mathrm{H}], \mathrm{RT}=0.78$ minutes; (Program R1, Column Y).
[0542] Step 3: 8-(2,2-Difluoro-acetylamino)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0543] To a solution of compound III ($4 \mathrm{~g}, 20 \mathrm{mmol}, 1 \mathrm{eq}$), difluoroacetic acid (17.16 $\mathrm{mL}, 272 \mathrm{mmol}, 13 \mathrm{eq})$ and TEA ($8.82 \mathrm{~mL}, 62.8 \mathrm{mmol}, 3 \mathrm{eq}$) in DMF (100 mL) was added T3P ($16 \mathrm{~mL}, 26.8 \mathrm{mmol}, 1.3 \mathrm{eq}$) dropwise under nitrogen atmosphere and the mixture was stirred at reflux for 5 h . The mixture was then diluted with water (100 mL) and the organic components were extracted with ethyl acetate (800 mL). The organic layer was washed with
brine (300 mL), dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure to provide crude compound. The crude product was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using $100-200$ mesh silica gel eluting with 35% EtOAc/hexanes to obtain the title compound ($3 \mathrm{~g}, 53 \%$) as a grey solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 9.19(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 8.40(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 8.18(\mathrm{~d}, 1 \mathrm{H}, J=1$ $\mathrm{Hz}), 7.72(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 6.79-6.16(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$. LCMS: m/z $=269.7[\mathrm{M}+\mathrm{H}], \mathrm{RT}$ $=2.40$ minutes; (Program R1, Column W).
[0544] Step 4: 8-(5-Difluoromethyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0545] Route 1
[0546] To a solution of compound IV ($3 \mathrm{~g}, 11.15 \mathrm{mmol}, 1 \mathrm{eq}$) in acetonitrile (100 mL) was added sodium azide ($29 \mathrm{~g}, 446.1 \mathrm{mmol}, 40 \mathrm{eq}$) and the resulting mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$. Silicon tetrachloride ($13 \mathrm{~mL}, 111.5 \mathrm{mmol}, 10 \mathrm{eq}$) was added and the resulting mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 9 h . The mixture was poured into ice cold water and solid NaHCO_{3} was added in portions to adjust the pH to 8 . The resulting mixture was then filtered through a Celite ${ }^{\circledR}$ pad and filtrate was collected. The organic components were then extracted with ethyl acetate $(400 \mathrm{~mL})$ after washing with water $(100 \mathrm{~mL})$. The organic layer was then dried over anhydrous sodium sulfate, filtered and the solvent was removed under reduced pressure to provide crude compound. The crude product was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using 100-200 mesh silica gel eluting with $40 \% \mathrm{EtOAc} /$ hexanes to obtain the title compound ($1 \mathrm{~g}, 30 \%$) as a brownish sticky solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $9.66(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 7.60(\mathrm{t}$, $1 \mathrm{H}, J=51 \mathrm{~Hz}$), $3.94(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=295.1[\mathrm{M}+\mathrm{H}], \mathrm{RT}=3.11$ minutes; (Program R1, Column Y).
[0547] Route 2

Scheme 34A
[0549] To a solution of compound IV ($26.5 \mathrm{~g}, 98.5 \mathrm{mmol}, 1 \mathrm{eq}$) in 1,4-dioxane (1.4 L) were added hexamethyldisiloxane ($84.19 \mathrm{~mL}, 394 \mathrm{mmol}, 4 \mathrm{eq}$) and phosphorus pentasulfide ($21.89 \mathrm{~g}, 98.5 \mathrm{mmol}, 1 \mathrm{eq}$) and the mixture refluxed under stirring for $6-8 \mathrm{~h}$. The mixture was cooled to room temperature, quenched with saturated aqueous sodium bicarbonate solution to adjust the pH to 8 . The organic components were then extracted with ethyl acetate (2 L), after washing with water (1 L). The organic layer was then dried over anhydrous sodium sulfate and solvent was removed under reduced pressure to get crude compound. The crude was washed with ethanol to afford compound $\mathrm{V}(21 \mathrm{~g}, 75 \%)$ as brown solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=95 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~m}, 1 \mathrm{H})$, $5.87(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$; LCMS: m/z = $286.0[\mathrm{M}+\mathrm{H}], \mathrm{RT}=2.58$ minutes; (Program P1, Column Y).
[0550] 8-(5-Difluoromethyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester VI
[0551] To a solution of compound $\mathrm{V}(21 \mathrm{~g}, 73.6 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (300 mL) at $0^{\circ} \mathrm{C}$, were added mercury (II) acetate ($46.96 \mathrm{~g}, 147 \mathrm{mmol}, 2 \mathrm{eq}$) and trimethylsilylazide (24.3 mL , $184 \mathrm{mmol}, 2.5 \mathrm{eq}$) and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was quenched with saturated aqueous ammonium chloride solution, filtered and the filtrate was collected. The organic components of the filtrate were then extracted with ethyl acetate (1 L) after washing with water (1 L). The organic layer was then dried over anhydrous sodium sulfate and solvent was removed under reduced pressure to get crude compound. The crude compound was washed with ethanol to afford compound $\mathrm{V}(21 \mathrm{~g}, 97 \%)$ as off white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.66$ (s, 1 H), 8.35 ($\mathrm{s}, 1 \mathrm{H}$), 8.26 ($\mathrm{s}, 1 \mathrm{H}$), 7.77 ($\left.\mathrm{s}, 1 \mathrm{H}\right), 7.60$ (t, $J=52 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (s, 3 H); LCMS: m/z = $295.1[\mathrm{M}+\mathrm{H}]$, RT = 2.77 minutes; (Program P1, Column V).
[0552] Step 5: 3-Bromo-8-(5-difluoromethyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid methyl ester
[0553] To a solution of compound $\mathrm{V}(1 \mathrm{~g}, 3.4 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (100 mL) was added N -bromosuccinamide ($0.6 \mathrm{~g}, 3.4 \mathrm{mmol}, 1 \mathrm{eq}$) and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 3 h . The volatiles of the mixture were removed under reduced pressure and the residue was diluted with aqueous sodium bicarbonate to adjust the pH to 8 . The organic components
were extracted with ethyl acetate $(150 \mathrm{~mL})$ after washing with water $(50 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulfate, filtered and the solvent was removed under reduced pressure to provide the crude compound. The crude product was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using $100-200$ mesh silica gel eluting with 30% EtOAc/hexanes to obtain the title compound $(0.8 \mathrm{~g}, 63 \%)$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.01(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 8.40(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, 1 \mathrm{H}, J$ $=51 \mathrm{~Hz}), 3.97(\mathrm{~s}, 3 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=372.9[\mathrm{M}+\mathrm{]}, 375.0[\mathrm{M}+2], \mathrm{RT}=3.52$ minutes; (Program R1, Column Y).
[0554] Step 6: 3-Bromo-8-(5-difluoromethyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid methyl ester
[0555] To a solution of compound VI ($0.8 \mathrm{~g}, 2.14 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (50 mL) and $\mathrm{MeOH}(4 \mathrm{~mL})$ was added an aqueous solution of $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}(0.27 \mathrm{~g}, 6.42 \mathrm{mmol}, 3 \mathrm{eq})$ and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h . The solvent of the mixture was removed in vacuo and the solid residue was diluted with water $(50 \mathrm{~mL})$. The residue was washed with EtOAc (30 mL) and the aqueous layer was acidified with citric acid adjusting the pH to 1 . The organic components were then extracted with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to provide the title compound ($0.5 \mathrm{~g}, 66 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.95(\mathrm{~s}, 1 \mathrm{H})$, $8.98(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}$), $8.35(\mathrm{~d}, 1 \mathrm{H}, J=1 \mathrm{~Hz}$), $7.97(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, 1 \mathrm{H}, J=47 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=359.0[\mathrm{M}+], 361.1[\mathrm{M}+2], \mathrm{RT}=3.03$ minutes; (Program R1, Column Y$)$.
[0556] Step 7: 3-Bromo-8-(5-difluoromethyl-tetrazol-1-yl)-imidazo[1,2-a]pyridine-6carboxylic acid (6-methyl-pyridin-3-ylmethyl)-amide
[0557] To a solution of compound VII ($0.5 \mathrm{~g}, 1.39 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (50 mL) were added HATU ($0.7 \mathrm{~g}, 1.8 \mathrm{mmol}, 1.3 \mathrm{eq}$) and DIPEA ($0.74 \mathrm{~mL}, 4.17 \mathrm{mmol}, 3 \mathrm{eq}$) under argon atmosphere at $0{ }^{\circ} \mathrm{C}$. A DMF solution of C-(6-methyl-pyridin-3-yl)-methylamine ($0.25 \mathrm{~g}, 2.09$ mmol, 1.5 eq) was added and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with ice water (40 mL) and the organic components were extracted with EtOAc ($2 \times 50 \mathrm{~mL}$) and $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and the combined extracts were washed with brine (50 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to provide the crude compound. The crude product was purified by flash Combiflash chromatography using 100-200 mesh silica gel eluting with 5\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain compound ($0.4 \mathrm{~g}, 62 \%$) as an orange solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,

DMSO- d_{6}) $\delta 9.53(\mathrm{t}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 9.18(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$, $7.70-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.53(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 2.45(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=$ $463.0[\mathrm{M}+], 465.0[\mathrm{M}+2], \mathrm{RT}=1.94$ minutes; (Program R1, Column W).
[0558] Step 8: 8-(5-(Difluoromethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0559] To a DMF (20 mL) solution of compound VIII ($0.4 \mathrm{~g}, 0.86 \mathrm{mmol}, 1 \mathrm{eq}$), degassed with argon, in a reaction tube was added compound VIa ($0.50 \mathrm{~g}, 1.29 \mathrm{mmol}, 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 10 min , followed by the addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.1 \mathrm{~g}, 0.086 \mathrm{mmol}, 0.1 \mathrm{eq})$. Further degassing with argon was done for another 15 min and the reaction tube was sealed then heated at $120^{\circ} \mathrm{C}$ for 5 h . The mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was concentrated under reduced pressure to provide a solid residue. The organic components were then extracted with EtOAc ($2 \times 40 \mathrm{~mL}$) and 10% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the combined extracts were washed with brine $(50 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to provide crude compound. The crude product was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using 100-200 mesh silica gel eluting with $4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound $(0.18 \mathrm{~g}, 44 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.45-9.36(\mathrm{~m}, 1 \mathrm{H})$, $9.21(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8$ $\mathrm{Hz}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=481.0$ $[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{RT}=2.80$ minutes; (Program R1, Column W).
[0560] EXAMPLE 19: (R)-8-(5-(Difluoromethyl)-1H-tetrazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 35
[0561] Following the experimental procedure described for Example 18, compound VI was prepared.
[0562] Step 6: 8-(5-Difluoromethyl-tetrazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0563] To a toluene-DMF (10:1, 170 mL) solution of compound VI ($1.8 \mathrm{~g}, 4.82 \mathrm{mmol}, 1$ eq), degassed with argon, was added compound VIa ($2.80 \mathrm{~g}, 7.23 \mathrm{mmol}, 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 10 minutes before the addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.55 \mathrm{~g}, 0.48 \mathrm{mmol}, 0.1 \mathrm{eq})$. Further degassing with argon was done for another 15 min and the resulting mixture was at $120{ }^{\circ} \mathrm{C}$ and stirred for 30 min . As the TLC showed the presence of starting material, heating was continued with constant TLC monitoring at 15 minute intervals. After 1 h , as the starting material was found to be consumed completely, the mixture was allowed to cool to room temperature and filtered through a Celite ${ }^{\circledR}$ pad. The filtrate was concentrated under reduced pressure to provide a solid residue from which the organic components were extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over anhydrous sodium sulfate and concentrated to provide a crude solid compound. The crude solid material was washed with 20% EtOAc/hexane ($2 \times 50 \mathrm{~mL}$), followed by pentane ($2 \times 50 \mathrm{~mL}$) and the residue was dried in vacuo to obtain pure product. The combined organic washes were purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using $100-200$ mesh silica gel eluting with 20% EtOAc/hexanes to obtain pure product which was combined with the solid residue to provide the title compound ($1.4 \mathrm{~g}, 74 \%$) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.18$ (s, $1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{t}, 1 \mathrm{H}, J=51 \mathrm{~Hz}), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J$ $=3 \mathrm{~Hz}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$. LCMS: m/z = $391.1[\mathrm{M}+\mathrm{H}]$, RT $=3.46$ minutes; (Program P1, Column V)
[0564] Step 7: 8-(5-Difluoromethyl-tetrazol-1-yl)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0565] To a solution of compound VII ($0.6 \mathrm{~g}, 1.54 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (60 mL) was added saturated aqueous solution of $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}(0.19 \mathrm{~g}, 4.61 \mathrm{mmol}, 3 \mathrm{eq})$ and the resulting mixture was stirred at $10{ }^{\circ} \mathrm{C}$ for 10 min . To the mixture was then added $\mathrm{MeOH}(2 \mathrm{~mL})$ to make the mixture a homogeneous solution and stirring was continued at $23^{\circ} \mathrm{C}$ for another 2 h. The solvent of the mixture was removed in vacuo and the solid residue was diluted with water and washed with EtOAc. The aqueous layer was acidified with citric acid adjusting the pH to 1 and the organic components were extracted with $20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic layers were then washed with brine, dried over anhydrous sodium
sulfate, filtered and concentrated under reduced pressure to provide the title compound (0.45 $\mathrm{g}, 78 \%$) as a brownish solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.88(\mathrm{brs}, 1 \mathrm{H}), 9.18(\mathrm{~s}, 1 \mathrm{H})$, $8.30(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{t}, 1 \mathrm{H}, J=51 \mathrm{~Hz}$), $7.45(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=3$ $\mathrm{Hz}), 2.57$ (s, 3H). LCMS: m/z = $376.9[\mathrm{M}+\mathrm{H}], \mathrm{RT}=2.52$ minutes; (Program P1, Column V) [0566] Step 8: (R)-8-(5-(Difluoromethyl)-1H-tetrazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide [0567] To a stirred solution of compound VIII ($0.15 \mathrm{~g}, 0.4 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (10 mL) were added HATU ($0.2 \mathrm{~g}, 0.52 \mathrm{mmol}, 1.3 \mathrm{eq}$) and DIPEA (0.7 mL) under argon atmosphere at $0{ }^{\circ} \mathrm{C}$ and after 10 minutes 1-(3-methyl-[1,2,4]oxadiazol-5-yl)-ethylamine ($0.76 \mathrm{~g}, 0.6$ $\mathrm{mmol}, 1.5 \mathrm{eq}$) was added and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was diluted with ice water and the organic components were extracted with EtOAc and 10% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, then washed with brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to give crude compound which was purified by flash Combiflash ${ }^{\mathrm{TM}}$ chromatography using 100-200 mesh silica gel eluting with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound as an off white solid. The racemic compound was resolved by purification with chiral HPLC to obtain the pure (R)-enantiomer $(0.10 \mathrm{~g}, 5.2$ $\%$) as a yellowish solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.60(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}), 9.25$ (s, $1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{t}, 1 \mathrm{H}, J=51 \mathrm{~Hz}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 7.07(\mathrm{~m}, 1 \mathrm{H})$, $5.46-5.33(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=486.3[\mathrm{M}$ $+\mathrm{H}]+$, RT = 3.31 minutes; (Program P1, Column V).
[0568] EXAMPLE 20:
(S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(N-methylisobutyramido)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide

Scheme 36
[0569] Following the experimental procedure described for Example 2, compound III was prepared.
[0570] Step 3: 8-Isobutyrylamino-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0571] To a solution of compound III ($2 \mathrm{~g}, 10.47 \mathrm{mmol}, 1 \mathrm{eq}$) in dry THF (50 mL) was added pyridine ($1.6 \mathrm{~mL}, 20.94 \mathrm{mmol}, 2 \mathrm{eq}$) and isobutyryl chloride ($2.2 \mathrm{~mL}, 20.94 \mathrm{mmol}, 2$ eq) and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ under an argon atmosphere for 1 h . The mixture was quenched with water (100 mL) and the organic components were extracted with ethyl acetate ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and the filtrate was concentrated under reduced pressure to provide crude compound. The crude product was purified by Combiflash ${ }^{\text {TM }}$ chromatography eluting with 35% EtOAc/hexanes to obtain the title compound ($1 \mathrm{~g}, 37 \%$) as a grey solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.66$ $(\mathrm{s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, 6 \mathrm{H}, J=7 \mathrm{~Hz})$. LCMS: $\mathrm{m} / \mathrm{z}=261.9[\mathrm{M}+\mathrm{H}]^{+}$, RT $=2.90$ minutes, (Program P1, Column Y).
[0572] Step 4: 8-(Isobutyryl-methyl-amino)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0573] To a stirred solution of compound IV ($1 \mathrm{~g} ; 3.83 \mathrm{mmol} ; 1 \mathrm{eq}$) in dry DMF (10 mL) was added sodium hydride (60% in mineral oil, $0.13 \mathrm{~g} ; 5.74 \mathrm{mmol} ; 1.5 \mathrm{eq}$) in portions at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$. To the mixture was added methyl iodide ($0.47 \mathrm{~mL} ; 7.66 \mathrm{mmol} ; 2 \mathrm{eq}$) and stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 2 h . The temperature of the mixture was then slowly raised to $23{ }^{\circ} \mathrm{C}$ and the mixture was stirred for
another 2 h . The mixture was quenched with water (100 mL) and the organic components were extracted with ethyl acetate ($2 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and the solvent was removed under reduced pressure to provide crude compound ($0.8 \mathrm{~g}, 76 \%$) as a solid. The crude product was directly used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H})$, $2.30(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~m}, 6 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=276.2[\mathrm{M}+]$, RT $=2.40$ minutes, (Program P1, Column V).
[0574] Step 5: 3-Bromo-8-(isobutyryl-methyl-amino)-imidazo[1,2-a]pyridine-6carboxylic acid methyl ester
[0575] To a stirred solution of compound $\mathrm{V}(0.8 \mathrm{~g}, 2.9 \mathrm{mmol}, 1 \mathrm{eq})$ in THF (20 mL) was added N -bromosuccinamide ($0.51 \mathrm{~g}, 2.9 \mathrm{mmol}, 1 \mathrm{eq}$) at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 30 min . The mixture was quenched with water (100 mL) and the organic components were extracted with ethyl acetate (2 x 200 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and solvents were removed under reduced pressure to provide crude compound. The crude product was purified by flash chromatography using 100-200 mesh silica gel eluting with 30% EtOAc/hexanes to obtain the title compound ($1 \mathrm{~g}, 98 \%$) as a brown solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H})$, $090(\mathrm{~m}, 6 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=354.0[\mathrm{M}+], 356.0[\mathrm{M}+2], \mathrm{RT}=2.86$ minutes; (Program P1, Column V).
[0576] Step 6: 8-(Isobutyryl-methyl-amino)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid methyl ester
[0577] To a stirred, dry DMF solution of compound VI ($1 \mathrm{~g} ; 2.82 \mathrm{mmol} ; 1 \mathrm{eq}$) in a reaction tube was added compound VIa ($1.6 \mathrm{~g} ; 4.23 \mathrm{mmol} ; 1.5 \mathrm{eq}$) and the resulting mixture was degassed with argon for 5 min . To the mixture was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.32 \mathrm{~g} ; 0.28 \mathrm{mmol}$; $0.1 \mathrm{eq})$ and degassing with argon was repeated for about 5 min , then the reaction tube was sealed and heated at $140^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature, quenched with water $(100 \mathrm{~mL})$ and the organic components were extracted with ethyl acetate (2×200 mL). The combined organic layers were washed with water (200 mL), brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then filtered. The filtrate was evaporated under vacuum to obtain a crude material which was purified by silica gel (230-400 mesh) column chromatography eluting
with $10-50 \%$ ethyl acetate/hexane to obtain the title compound $(0.95 \mathrm{~g}, 91 \%)$ as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3 \mathrm{~Hz}$), $7.03(\mathrm{~d}, 1 \mathrm{H}, J=3 \mathrm{~Hz}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~m}, 6 \mathrm{H})$. LCMS: $\mathrm{m} / \mathrm{z}=372.4[\mathrm{M}+], \mathrm{RT}=3.24$ minutes, $($ Program P1, Column V).
[0578] Step 7: 8-(Isobutyryl-methyl-amino)-3-(5-methyl-thiophen-2-yl)-imidazo[1,2-a]pyridine-6-carboxylic acid
[0579] To a solution of compound VII $(0.95 \mathrm{~g}, 2.56 \mathrm{mmol}, 1 \mathrm{eq})$ in THF:methanol: $\mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{~mL}, 5: 1: 1)$ at $23{ }^{\circ} \mathrm{C}$ was added a solution of lithium hydroxide monohydrate $(0.16 \mathrm{~g}, 3.84$ mmol, 1.5 eq) in water (5 mL) and the resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h . The organic solvent was removed under reduced pressure and the residue was diluted with water and acidified with 6 N HCl to adjust the pH to about 5-6. The precipitated solid was collected by filtration and the solid was dried under vacuum to afford the title compound ($0.8 \mathrm{~g}, 82 \%$) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 13.5(\mathrm{brs}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.69$ $(\mathrm{s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~m}$, $6 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=358.0[\mathrm{M}+], \mathrm{RT}=2.35$ minutes, $($ Program P 1 , Column Y$)$.
[0580] Step 8: (S)-N-(1-(4H-1,2,4-Triazol-3-yl)ethyl)-8-(N-methylisobutyramido)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
[0581] To a stirred solution of compound VIII ($0.18 \mathrm{~g}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$) in DMF (2 mL) were added TEA ($0.21 \mathrm{~mL}, 1.51 \mathrm{mmol}, 3 \mathrm{eq}$), a DMF (2 mL) solution of (S)-1-(4H-[1,2,4]triazol-3-yl)-ethylamine hydrochloride $(0.09 \mathrm{~g}, 0.60 \mathrm{mmol} ; 1.2 \mathrm{eq})$ and T3P $(0.23 \mathrm{~mL}$, $0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$) at $23{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature and quenched with water. The organic components were extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$) and the combined extracts were washed with brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated to dryness to provide crude material which was purified by silica gel (100-200 mesh) column chromatography eluting with $0-5 \%$ methanol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain the title compound (0.12 g , 53%) as an off white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 13.85$ (brs, 1H), 9.13 (brs, 1H), 9.01 (s, $1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.54$ $(\mathrm{s}, 3 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{LCMS}: \mathrm{m} / \mathrm{z}=452.3[\mathrm{M}+], \mathrm{RT}=2.61$ minutes, (Program P1, Column V).

Table 1
Ex. No.

Ex. No.	Structure	LCMS	Prepared by method of Example No.
92		$451.2[\mathrm{M}+\mathrm{H}]+$	7
93		$477.2[\mathrm{M}+\mathrm{H}]+$	7
94		465.0 [M+H]+	7
95		462.2 [M+H]+	7
96		474.4 [M+H]+	7
97		454.0 [M+H]+	8
98		443.2 [M+H]+	8

Ex. No.

Ex. No.	Structure	LCMS	Prepared by method of Example No.
106		458.0 [M+H]+	8
107		468.0 [M+H] +	8
108		$462.2[\mathrm{M}+\mathrm{H}]+$	8
109		$449.2[\mathrm{M}+\mathrm{H}]+$	8
110		$447.2[\mathrm{M}+\mathrm{H}]+$	8
111		$458.2[\mathrm{M}+\mathrm{H}]+$	8
112		$476.4[\mathrm{M}+\mathrm{H}]+$	8

Ex. No.

| Ex. No. | Prepared by |
| :---: | :---: | :---: | :---: | :---: |
| method of | |
| Example No. | |

Ex. No.	Structure	LCMS	Prepared by method of Example No.
188	SN	$464.2[\mathrm{M}+\mathrm{H}]+$	20

[0582] EXAMPLE 189: In Vitro Studies

[0583] A. Cloning
[0584] The FLIPR® assay utilizes cells which express human or rat P2X3 or P2X2/3 receptors. Recombinant cells expressing hP2X3 (Cat\# 6188) and hP2X2/3 (Cat\# 6179) were procured from Chantest Corp. Rat P2X2 (NCBI Accession No: U14414) was amplified by PCR from PC12 cDNA (a rat adrenal medulla cell line).The PCR product obtained containing the protein coding sequence of rat P2X2 was cloned into EcoRV- digested and dephosphorylated vector pIRES-puro3 within the multiple cloning site (MCS). See, Figure 1A.
[0585] Rat P2X3 (NCBI Accession No: X91167) was amplified by PCR from rat brain cDNA. The PCR product obtained containing the protein coding sequence of rat P2X3 was cloned into EcoRV- digested and dephosphorylated vector pCDNA-Hygro within the multiple cloning site (MCS) (Figure 1B). Rat P2X3 cloned into pcDNA-Hygro was then subcloned into pcDNA-5/TO at HindIII (5') and XhoI (3') sites within the multiple cloning site (MCS) of the vector (Figure 1C).
[0586] All the constructs yielding the recombinant vector DNA were used for transfection and generation of the cell lines, after sequence verification.
[0587] B. Development of recombinant TRex293 cells expressing rP2X2/3 and CHOTRex cells expressing rP2X3
[0588] Transfection was carried out using super-coiled constructs (purified using QIAGEN kit) in antibiotic free, serum free DMEM using Lipofectamine ${ }^{\circledR} 2000$ (Invitrogen) transfection agent. The DNA constructs rat P2X2 in pIRES-Puro3 and rat P2X3 in pCDNA5/TO were co-transfected into TRex293 cells in order to generate the rP2X2/3 stable line. $50 \mu \mathrm{~g} / \mathrm{mL}$ hygromycin (Invitrogen) and $0.5 \mu \mathrm{~g} / \mathrm{mL}$ puromycin (Fermentek) were used
for selection of stable clones of $\mathrm{rP} 2 \mathrm{X} 2 / 3$. Rat P 2 X 3 in pCDNA5/TO DNA construct was transfected to CHO-TRex cells to generate the rP 2 X 3 stable line and $500 \mu \mathrm{~g} / \mathrm{mL}$ hygromycin (Invitrogen) was used as selection antibiotic. Transfected stable colonies were then functionally verified and robust clones suitable for assay were clonally purified through dilutions.
[0589] C. Assay Protocols
[0590] (i) Intracellular calcium assay protocol for screening compounds
[0591] Cryo-vial containing 6×10^{6} cells (human P2X3-HEK/human P2X2/3TRex293/rat P2X2/3-TRex293/rat P2X3 TRex-CHO) was thawed in a $37^{\circ} \mathrm{C}$ water bath. Cells were suspended in 20 mL of respective cell plating media (See annexure for composition) in a 50 mL centrifuge tube. The cell viability was checked with the help of Trypan Blue dye. Upon washing, cells were plated in a black 384 -well clear bottomed, sterile poly-D-lysine coated plate such that, each well contained 10,000 cells (15,000 /well for hP2X3) in $30 \mu \mathrm{~L}$ cell plating media. The plate was incubated in a $5 \% \mathrm{CO}_{2}$ incubator at $37^{\circ} \mathrm{C}$ for 24 h .
[0592] The next day, prior to the assay, the cell plating media was removed from each well by decanting and gentle tapping. Thirty $\mu \mathrm{L}$ of FLIPR Calcium 4 dye solution was added to each well. The plate was incubated at $37^{\circ} \mathrm{C}$ for $45 \mathrm{~min}(60 \mathrm{~min}$ for hP 2 X 3$)$. The plate was next equilibrated at room temperature for 15 minutes before placing it in a 384 well FLIPR for the assay.
[0593] Compounds were dissolved in DMSO and serially diluted following 11 point half $\log (3.16$ fold $)$ dilution with a starting concentration of 2 mM . Dilutions were mixed with assay buffer just before performing the assay.
[0594] Compounds were added to the respective wells of the assay-ready cell plate with the help of the FLIPR and fluorescence readings were captured for 5 min to observe any possible agonistic property of the compounds. The plate was then incubated at room temperature for 15 min . The cells were stimulated with respective agonist EC_{75} concentration and the fluorescence readings were captured for another 5 min by FLIPR. The difference in fluorescence readings in presence of the compounds were compared with that of the control wells (wells having no compound) to calculate the inhibitory potency of the compounds. The IC_{50} values of the compounds were determined using the Graph pad Prism software.
[0595]
(ii) Cell plating media for $\mathrm{hP}_{2} \mathrm{X}_{3}-\mathrm{HEK}$ and $\mathrm{hP}_{2} \mathrm{X}_{2 / 3}$-TRex 293 cells

- DMEM/F12(1:1) HAM media (Invitrogen; Cat\# 11039)
- 1 X NEAA (Invitrogen; Cat\#11140)
- $\quad 25$ mM HEPES (Invitrogen; Cat\#15630)
- $\quad 1 \mathrm{mM}$ sodium pyruvate (Invitrogen; Cat\# 11360)
- $\quad 10 \%$ tetracycline negative FBS (PAA; Cat\# A15-209)
- $\quad 1 \mu \mathrm{~g} / \mathrm{mL}$ doxycycline (Clontech; Cat\#63131) [for hP2X2/3TRex293 cells only]
[0596] (iii)Cell plating media for $\mathrm{rP}_{2} \mathrm{X}_{2 / 3}$-TRex293 cells
- DMEM media (Invitrogen; Cat\# 11965)
- $\quad 25 \mathrm{mM}$ HEPES (Invitrogen; Cat\#15630)
- 10% tetracycline negative FBS (PAA; Cat\# A15-209)
- $\quad 1 \mu \mathrm{~g} / \mathrm{mL}$ Doxycycline (Clontech; Cat\#63131)
[0597] (iv)Cell plating media for $\mathrm{rP}_{2} \mathrm{X}_{3}$-CHOTRex cells
- F-12 nutrient mixture (HAM) 1X (Invitrogen; Cat\# 11765)
- 1X Glutamax ${ }^{\text {TM }}$ (Invitrogen; Cat\#35050)
- 10% tetracycline negative FBS (PAA; Cat\# A15-209)
- $\quad 1 \mu \mathrm{~g} / \mathrm{mL}$ doxycycline (Clontech; Cat\#63131)
[0598] (v) Assay Buffer Composition
- HBSS (Invitrogen Cat\#14025)
- $\quad 20 \mathrm{mM}$ HEPES (Invitrogen Cat\# 15630)
- $\quad 0.01 \%$ F127 (Sigma Cat\# P2443)
- $\quad 1.8 \mathrm{mM} \mathrm{CaCl}_{2}$ (Sigma Cat\# C5080)
- $\quad \mathrm{pH}$ adjusted to 7.4
[0599] (vi)Dye Solution Composition
- 1X FLIPR Calcium 4 dye in assay buffer (Molecular devices Cat\# R8141)
- $\quad 1.8 \mathrm{mM}$ Probenecid (Sigma Cat\# P8761)
- $\quad \mathrm{pH}$ adjusted to 7.4
[0600] Data from the $\mathrm{P}_{2} \mathrm{X}_{3}$ and $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ FLIPR assays for Examples 1-188 are shown in
Table 2.
Gable 2

Example	$\mathrm{P} 2 \mathrm{X}_{3}$	$\mathrm{P} 2 \mathrm{X}_{2 / 3}$
1	B	C
2	D	B
3	C	B
4	A	A
5	B	B
6	D	B
7	A	B
8	A	B
9	C	C
10	B	C
11	A	B
12	A	A
13	D	B
14	A	B
15	B	C
16	D	B
17	B	B
18	A	A
19	A	A
20	A	B
21	A	B
22	A	A
23	A	B
24	A	A
25	A	A
26	A	A
27	A	A
28	A	A
29	A	B
30	A	A
31	A	A
32	A	A
33	A	A
34	A	A
35	A	A
36	A	A
37	A	A
38	A	A
39	A	A

Example	$\mathrm{P} 2 \mathrm{X}_{3}$	$\mathrm{P} 2 \mathrm{X}_{2 / 3}$
40	D	A
41	A	A
42	A	A
43	A	A
44	A	A
45	D	A
46	A	A
47	A	A
48	A	A
49	D	A
50	A	B
51	B	C
52	A	A
53	A	A
54	A	A
55	D	B
56	A	B
57	A	B
58	A	A
59	B	C
60	A	A
61	A	A
62	A	B
63	A	A
64	A	B
65	A	A
66	B	B
67	A	A
68	A	B
69	A	B
70	A	A
71	A	B
72	A	A
73	B	B
74	B	C
75	A	B
76	A	A
77	A	B
78	A	A
79	A	A
80	A	A
81	A	A
82	A	B
83	A	A
84	A	A

Example	$\mathrm{P} 2 \mathrm{X}_{3}$	$\mathrm{P} 2 \mathrm{X}_{2 / 3}$
85	A	A
86	B	B
87	B	B
88	D	A
89	A	B
90	A	C
91	B	C
92	B	C
93	B	C
94	A	C
95	A	D
96	B	B
97	A	B
98	C	B
99	A	C
100	A	B
101	A	A
102	A	A
103	A	B
104	A	B
105	A	B
106	D	A
107	A	A
108	A	A
109	A	B
110	A	A
111	D	A
112	B	C
113	A	B
114	A	V
115	C	B
116	C	B
117	A	A
118	B	B
119	A	B
120	A	A
121	B	B
122	A	A
123	D	A
124	B	B
125	B	B
126	D	A
127	D	A
128	A	B
129	A	B

Example	$\mathrm{P} 2 \mathrm{X}_{3}$	P2 $\mathrm{X}_{2 / 3}$
130	A	A
131	A	B
132	A	A
133	A	B
134	A	C
135	B	B
136	A	B
137	A	B
138	A	B
139	A	B
140	A	B
141	A	B
142	A	B
143	C	B
144	B	A
145	C	B
146	A	B
147	C	B
148	A	A
149	B	C
150	A	B
151	A	B
152	D	B
153	D	A
154	B	B
155	D	A
156	D	A
157	A	B
158	D	A
159	B	C
160	D	B
161	D	A
162	A	C
163	D	A
164	D	A
165	A	A
166	A	A
167	A	B
168	A	A
169	A	A
170	A	A
171	A	A
172	A	A
173	B	B
174	A	A

Example	${\mathrm{P} 2 X_{3}}$	${\mathrm{P} 2 X_{2 / 3}}$
175	B	C
176	B	B
177	A	A
178	A	B
179	A	A
180	A	A
181	A	A
182	A	A
183	B	B
184	A	A
185	B	C
186	D	A
187	A	B
188	A	B

A: $\mathrm{IC}_{50}=1-100 \mathrm{nM}$
B: $\mathrm{IC}_{50}=>100-1000 \mathrm{nM}$
C: $\mathrm{IC}_{50}=>1000-10,000 \mathrm{nM}$
D: $\mathrm{IC}_{50}>10,000 \mathrm{nM}$
[0601] EXAMPLE 190: In vivo Thermal hyperalgesia (Hargreaves test) Studies in the rat [0602] Male Sprague Dawley rats of young adult age group and body weight range of 180-200 g were included in the study. Animals were housed under a 12 h light/dark cycle with food and water ad libitum. The animals underwent acclimatization with the observation chambers of the Hargreaves' apparatus for two days, twice daily for $45-60 \mathrm{~min}$ each time prior to initiation of study. Animals were also habituated to the apparatus for $15-30 \mathrm{~min}$ before each testing. Thermal hyperalgesia was assessed using the rat plantar test (Ugo Basile, Italy) following a modified method of Hargreaves (1988, "A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia", Pain 32: 77-88).
[0603] For measurement of Paw withdrawal latency (PWL) values the rats were exposed to a mobile infrared heat source applied directly below the plantar surface of the rat hind paw. The paw withdrawal latency (PWL) was defined as the time in seconds taken by the rat to remove its hind paw from the heat source. Thirty three percent IR of the instrument was used to measure PWL. Animals showing basal response between $8-14 \mathrm{sec}$ on an untreated paw were included in the study. A cut off point of 20 sec was used to prevent tissue damage.
[0604] Following basal readout of PWL values to the thermal stimulus (PWL measurements described previously), $50 \mu \mathrm{~L}$ of complete Freund's Adjuvant (CFA $-1 \mathrm{mg} / \mathrm{mL}$
suspension - Sigma, USA, Cat \# F5881) was injected subcutaneously into the plantar surface of the right hind (ipsilateral) paw of animals under light isoflurane anesthesia. A one mL syringe and $26 \mathrm{~g}^{1 / 2}$-inch needle was used for the injection. CFA suspension was mixed thoroughly before each injection. Light pressure was applied to the injection site for 10 s immediately after the needle was removed from the paw to prevent any leaking out of adjuvant oil from the injection site. The rats were then returned to their housing to recover and kept in soft bedding.
[0605] Next day (day 1) after 20-22 h of CFA injection, PWL of animals were recorded. Mean of three readings are taken as PWL recording of ipsilateral paw of each animal for pre and post CFA basal readout. Animals with PWL values of $\leq 6 \mathrm{sec}$ on day 1 post CFA injection were considered hyperalgesic and selected for randomization into treatment groups and further test sessions following a single blind protocol.
[0606] In the test session, PWL was assessed at 1 h post oral dosing of CE test article, vehicle (20% polyethylene glycol, 1% Tween ${ }^{\mathrm{TM}} 80,79 \%$ water) and naproxen (positive control). See, e.g., Figure 2 (compound of Example 22), Figure 5 (compound of Example 38) and Figure 6 (compound of Example 52).
[0607] Statistical analysis was done with One way ANOVA followed by Dunnett's multiple comparison post test. Post treatment PWL values were compared with pre treatment PWL values and $\mathrm{p}<0.05$ was considered statistically significant. Each group comprised of 8 animals.
[0608] Example 191: Formalin induced pain (Automated nociception analyzer test) in the rat
[0609] Male Sprague Dawley rats of young adult age group and body weight range of $200-250 \mathrm{~g}$ were included in the study. Animals were housed under a 12 h light/dark cycle with food and water ad libitum. Animals were acclimatized in the observation chambers of Automated Nociception Analyzer (ANA) for $45-60 \mathrm{~min}$, twice daily for two days prior to the study day. On the day of the study, metal bands were glued to the plantar surface of the right hind paw of each animal enrolled in the study set and kept in plastic observation chambers for 10-15 min. Formalin injection was done in the animals after 0.5 or 1 h of oral treatment with test compound or vehicle (20% polyethylene glycol, 1% Tween $^{\mathrm{TM}} 80$ reagent, 79% water). Formalin injection of the animals was done with $50 \mu \mathrm{~L}$ of 2.5% formalin (freshly prepared from formaldehyde solution, Sigma, USA, Cat \# F8775) injected subcutaneously in to the
dorsum of right hind paw. Animals were placed back to their respective recording chambers of ANA immediately after injection. Flinch count data for each animal was recorded from 1 to 60 min post formalin injection, using ANA motion analysis software. The study was analyzed in 2 phases, the early phase extended from $0-10 \mathrm{~min}$ and second phase extended from 11-60 min post formalin injection. The data was collected in 5 min time bins and the counts of each bin were added up for total count of the phase. See, e.g., Figure 3 (test compound of Example 22).
[0100] Statistical analysis was done with unpaired t test. Comparison was done between total count of treatment groups and vehicle group and $\mathrm{p}<0.05$ was considered statistically significant. Eight animals were typically used in each of test article and vehicle treated groups.
[0101] Example 192: Acetic acid induced writhing test in mice
[0102] Swiss albino mice of $30-40 \mathrm{~g}$ were included in the study. The mice were given an intraperitoneal injection of $0.7 \% \mathrm{v} / \mathrm{v}$ acetic acid solution at an injection volume of $10 \mathrm{~mL} / \mathrm{kg}$, 30 min after oral administration of vehicle or test article control. Test articles were administered, typically, at doses between 20 and $60 \mathrm{mg} / \mathrm{kg}$. The mice were placed individually into glass chambers. The number of writhes produced in these animals was counted for 15 min following acetic acid administration. For scoring purposes writhing was indicated by stretching of the abdomen with simultaneous stretching of at least one hind limb. See, e.g., Figure 4.
[0103] Statistical analysis was done with One way ANOVA followed by Dunnett's multiple comparison tests. Comparison was done between treatment groups and vehicle with respect to total number of writhes and $\mathrm{p}<0.05$ was considered statistically significant. Each group comprised of 6 animals.
[0104] All publications cited in this specification are incorporated herein by reference. While the invention has been described with reference to particular embodiments, it will be appreciated that modifications can be made without departing from the spirit of the invention. Such modifications are intended to fall within the scope of the appended claims.
[0105] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present disclosure. It is not to be taken as an admission that any or all of these matters
form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each claim of this application.
[0106] Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

What is Claimed Is:

1. A compound of the structure of formula (I):

(I)
wherein:
R^{1} is optionally substituted 5-membered heteroaryl or $N R^{5} R^{6}$;
R^{2} is optionally substituted heteroaryl;
R^{3} is H or C_{1} to C_{6} alkyl;
R^{4} is optionally substituted heteroaryl;
R^{5} and R^{6} are, independently, selected from the group consisting of H, optionally substituted C_{1} to C_{6} alkyl, C_{3} to C_{6} cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and $\operatorname{CO}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl); or
R^{5} and R^{6} are joined to form a 5 or 6 -membered heterocyclic ring optionally substituted by one or more of halogen, C_{1} to C_{6} alkyl, C_{1} to C_{6} alkoxy, C_{1} to C_{6} hydroxyalkyl, C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkyl containing 1 to 3 fluorine atoms, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, or CONH_{2};
or a pharmaceutically acceptable salt or prodrug thereof, wherein
the optionally substituted heteroaryl is unsubstituted or substituted with one or more selected from the group consisting of halogen, $\mathrm{CN}, \mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{3} to C_{8} cycloalkyl, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} or C_{6} alkyl containing 1 to 3 fluorine atoms, C_{1} to C_{6} alkoxy containing 1 to 3 fluorine atoms, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, C_{1} to C_{6} hydroxyalkyl, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHC}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl $) \mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), NH_{2}, $\mathrm{NH}($ aryl $), \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl) and $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$;
the optionally substituted alkyl is unsubstituted or substituted with one or more selected from the group consisting of halogen, $\mathrm{CN}, \mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy,
C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkyl- C_{1} to C_{6} alkoxy, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (C_{2} to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHC}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NH}_{2}, \mathrm{NH}($ aryl $), \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), and $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$;
the optionally substituted aryl is unsubstituted or substituted with one or more selected from the group consisting of halogen, $\mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl $) \mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), NH_{2}, NH (aryl) or $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$; and
the optionally substituted heterocycle is unsubstituted or substituted with one or more selected from the group consisting of halogen, $\mathrm{CN}, \mathrm{NO}_{2}, \mathrm{C}_{1}$ to C_{6} alkyl, $\mathrm{OH}, \mathrm{C}_{1}$ to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy- C_{1} to C_{6} alkoxy, C_{1} to C_{6} hydroxyalkyl, C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkyl containing 1 to 3 fluorine atoms, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, heterocyclyloxy, C_{1} to C_{6} alkylthio, aryl, heterocycle, heteroaryl, $\mathrm{C}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O})$ (heterocycle), $\mathrm{C}(\mathrm{O}) \mathrm{O}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}, \mathrm{C}(\mathrm{O}) \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl)(C_{1} to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{SO}_{2}\left(\mathrm{C}_{2}\right.$ to C_{6} alkynyl), $\mathrm{SO}_{2} \mathrm{NH}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), SO_{2} (heterocycle), $\mathrm{NHC}(\mathrm{O})\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NHSO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\mathrm{SO}_{2}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl), $\mathrm{NH}_{2}, \mathrm{NH}($ aryl $), \mathrm{N}\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) $\left(\mathrm{C}_{1}\right.$ to C_{6} alkyl) and $\mathrm{NHC}(\mathrm{O}) \mathrm{NH}_{2}$.
2. A compound according to claim 1 which is of the structure of formula (II):

(II).
3. A compound according to claim 1 which is of the structure of formula (III):

(III).
4. A compound according to claim 1 which is of the structure of formula (IV):

(IV).
5. A compound according to any one of claims 1 to 3 , wherein R^{1} is optionally substituted 5-membered heteroaryl.
6. A compound according to any one of claims 1 to 3 , wherein R^{1} is 5 -membered heteroaryl substituted with one or more halogen, C_{1} to C_{6} alkyl, C_{3} to C_{6} cycloalkyl, C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, C_{1} to C_{6} hydroxyalkyl, C_{1} to C_{6} alkoxy, C_{1} or C_{6} alkyl containing 1 to 3 fluorine atoms, or $\mathrm{CH}_{2} \mathrm{CONH}_{2}$.
7. A compound according to any one of claims 1 to 3 , wherein:
R^{1} is oxadiazole, pyrazole, thiophene, or isoxazole;
R^{1} is oxadiazole substituted with one or more C_{1} to C_{6} alkyl, pyrazole substituted with one or more C_{1} to C_{6} alkyl, pyrazole substituted with one or more C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, pyrazole substituted with one or more C_{1} to C_{6} alkyl containing 1 to 3 fluorine atoms, pyrazole substituted with one or more $\mathrm{CH}_{2} \mathrm{CONH}_{2}$ groups, thiophene substituted with one or more C_{1} to C_{6} alkyl, or isoxazole substituted with one or more C_{1} to C_{6} alkyl;
R^{1} is oxadiazole substituted with one C_{1} to C_{6} alkyl, pyrazole substituted with one C_{1} to C_{6} alkyl, pyrazole substituted with one C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl, pyrazole substituted with one C_{1} to C_{6} alkyl containing 1 fluorine atom, pyrazole substituted with one
$\mathrm{CH}_{2} \mathrm{CONH}_{2}$ group, thiophene substituted with one C_{1} to C_{6} alkyl, or isoxazole substituted with one or two C_{1} to $\mathrm{C}_{6} \mathrm{alkyl}$;
R^{1} is oxadiazole substituted with one ethyl, pyrazole substituted with one CH_{3} or $\mathrm{CH}_{2} \mathrm{CH}_{3}$, pyrazole substituted with one $-\mathrm{CH}_{2}$-cyclopropyl, pyrazole substituted with one $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$, pyrazole substituted with one $\mathrm{CH}_{2} \mathrm{CONH}_{2}$ group, thiophene substituted with one CH_{3}, or isoxazole substituted with two CH_{3}; or
R^{1} is 2-ethyl-1,3,4-oxadiazole, 1-methyl-pyrazole, 1-ethyl-pyrazole, 1-cyclopropylmethane-pyrazole, 1-fluoroethane-pyrazole, 1-carboxamidomethyl-pyrazole, 2-methyl-thiophene, or 3,5-dimethyl-isoxazole.
8. A compound according to any one of claims 1 to 7 , wherein:
R^{2} is heteroaryl substituted with one or more halogen, cyano, C_{1} to C_{6} alkyl, or C_{1} to C_{6} alkyl containing 1-3 fluorine atoms;
R^{2} is thiazole, thiophene, or furan;
R^{2} is thiazole substituted with C_{1} to C_{6} alkyl;
R^{2} is thiophene substituted with one or more of halogen, cyano, C_{1} to C_{6} alkyl, or C_{1} to C_{6} alkyl containing 1-3 fluorine atoms;
R^{2} is furan substituted with C_{1} to C_{6} alkyl; or
R^{2} is 2-chloro-thiophene, 2-methyl-thiophene, 2-cyano-thiophene, 2-trifluoromethylthiophene, 5-methyl-thiazole, 2-methyl-thiazole, or 2-methyl-furan.
9. A compound according to any one of claims 1 to 8 , wherein:
R^{4} is optionally substituted triazole, optionally substituted pyridine, optionally substituted pyridone, optionally substituted oxadiazole, optionally substituted pyrazine, or optionally substituted pyrimidine;
R^{4} is heteroaryl optionally substituted with C_{1} to C_{6} alkyl, C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkoxy, or C_{1} to C_{6} trifluoroalkyl;
R^{4} is pyridine substituted with one or more C_{1} to C_{6} alkyl, C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkoxy, or C_{1} to C_{6} trifluoroalkyl;
R^{4} is pyridine and the nitrogen atom of said pyridine is bound to an O-atom;
R^{4} is pyrazine substituted with one or more C_{1} to C_{6} alkyl;
R^{4} is pyrimidine substituted with one or more C_{1} to C_{6} alkyl or C_{1} to C_{6} alkoxy;
R^{4} is pyridone substituted with one or more C_{1} to C_{6} alkyl; or R^{4} is 1,2,4-triazole, 2-methyl-pyridine, 2-methoxy-pyridine, 1-oxo-pyridine, 1-oxo-2-methyl-pyridine, 1-oxo-2-trifluoromethyl-pyridine, 2-trifluoromethyl-pyridine, 2-cyclopropyl-pyridine, 1,3,4-oxadiazole, 1,2,4-oxadiazole, 3-methyl-1,2,4-oxadiazole, 2-methyl-1,3,4-oxadiazole, 2-methyl-pyrazine, 2-methyl-pyrimidine, 2-methoxy-pyrimidine, or 1-methyl-pyridone.
10. A compound according to claim 1 or claim 4, wherein:
one or both of R^{5} and R^{6} are optionally substituted phenyl;
one or both of R^{5} and R^{6} are phenyl substituted with fluorine or C_{1} to C_{6} alkoxy; one or both of R^{5} and R^{6} are optionally substituted thiazole;
one or both of R^{5} and R^{6} are optionally substituted C_{1} to C_{6} alkyl or C_{3} to C_{6} cycloalkyl; or
one or both of R^{5} and R^{6} are 4-fluoro-phenyl or 2-methoxy-phenyl.
11. A compound according to claim 1 or claim 4, wherein:
R^{5} and R^{6} are joined to form an optionally substituted heteroaryl or an optionally substituted 5 or 6 -membered heterocyclic ring;
R^{5} and R^{6} are joined to form an optionally substituted pyrrolidine, piperazine or piperidine;
R^{5} and R^{6} are joined to form an optionally substituted imidazole, pyrazole, tetrazole, or triazole;
R^{5} and R^{6} are joined to form pyrrolidine optionally substituted with one or more C_{1} to C_{6} alkyl or C_{1} to C_{6} alkoxy;
R^{5} and R^{6} are joined to form imidazole substituted with one or more C_{1} to C_{6} alkyl;
R^{5} and R^{6} are joined to form a pyrazole substituted with one or more C_{1} to C_{6} alkyl;
R^{5} and R^{6} are joined to form tetrazole substituted with one or more C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkyl, C_{1} to C_{6} hydroxyalkyl, C_{1} to C_{6} alkyl containing 1-3 fluorine atoms, and C_{3} to C_{6} cycloalkyl- C_{1} to C_{6} alkyl;
R^{5} and R^{6} are joined to form triazole substituted with one or more C_{3} to C_{6} cycloalkyl, C_{1} to C_{6} alkyl containing 1-3 fluorine atoms, and C_{1} to C_{6} alkyl;
R^{5} and R^{6} are joined to form a piperidine substituted with one or more C_{1} to C_{6} alkoxy, halogen, C_{1} to C_{6} alkyl containing 1-3 fluorine atoms, C_{1} to C_{6} alkyl, or CONH_{2};
R^{5} and R^{6} are joined to form a piperazine substituted with one CONH_{2}; or R^{5} and R^{6} are joined to form 3-methoxy-pyrrolidine, 3-methyl-3-methoxy-pyrrolidine, 2,5-dimethjyl-imidazole, 5-ethyl-pyrazole, 5-propyl-tetrazole, 5-cyclopropyl-tetrazole, 5-propyl-tetrazole, $\quad 5$-isopropyl-tetrazole, $\quad 5$-ethyl-tetrazole, 5 -cyclobutyl-tetrazole, 5-cyclopropylmethyl-tetrazole, $\quad 5$-methyl-tetrazole, \quad 5-hydroxymethyl-tetrazole, 5-difluoromethyl-tetrazole, 5-(2,2,2-trifluoroethyl)-tetrazole, 5-(1,1-difluoroethyl)-tetrazole, 5-cyclopropyl-triazole, 5-difluoromethyl-triazole, 5-trifluoromethyl-triazole, 5-methyl-triazole, 5-isopropyl-triazole, 5-propyl-triazole, 5-ethyl-triazole, 5-tert-butyl-triazole, 5-cyclobutyltriazole, 5-(1,1-difluoroethyl)-triazole, 5-(2,2,2-trifluoroethyl)-triazole, 3,5-dimethyl-1,2,4triazole, 4-methyl-piperidine, 4,4-dimethyl-piperidine, 4,4-difluoro-piperidine, 4-methyl-4-carboxamido-piperidine, 4-fluoro-piperidine, 4-trifluoromethyl-piperidine, 4-fluoromethylpiperidine, 4-methyl-4-methoxy-piperidine, 4-methoxy-piperidine, or 3-methoxy-piperidine, or 4-carboxamido-piperazine.
12. A compound which is selected from the group consisting of
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-ethyl-1,3,4-oxadiazol-2-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(2,5-dimethyl-1H-imidazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3,5-dimethyl-4H-1,2,4-triazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methyl-1,3,4-thiadiazol-2-yl)-N-((6-methylpyridin-3-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-pyrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-methyl-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-butyl-8-(4-methylpiperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(propylthio)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-carbamoyl-4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(4-carbamoylpiperazin-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide
(S)-N-(1-(1,3,4-oxadiazol-2-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(o-tolyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclopropyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(hydroxymethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-
yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(N-methylisobutyramido)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1,3,4-oxadiazol-2-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclopropyl-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-methyl-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-methyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-cyclopropyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methoxypyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-isopropyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-isopropyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclopropyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclopropyl-1H-1,2,3-triazol-1-yl)-N-((2-methoxypyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-cyclobutyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methoxypyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-isopropyl-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(tert-butyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)-N-((6-methylpyridin-3-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(1,3,4-oxadiazol-2-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-cyanothiophen-2-yl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-(2-methyl-1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(tert-butyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-(trifluoromethyl)thiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-isopropyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-propyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-propyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)-N-((2-methylpyrimidin-5-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(2-methylthiazol-5-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-(tert-butyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-chlorothiophen-2-yl)-8-(5-isopropyl-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-(2-methyl-1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(2-methyl-1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-methyl-1H-1,2,3-triazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-3-(5-methylfuran-2-yl)-N-((5-methylpyrazin-2-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-(2,2,2-trifluoroethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-(2,2,2-trifluoroethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-(2,2,2-trifluoroethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-((6-methoxypyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-(1-(2-methylpyrimidin-5-yl)ethyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(difluoromethyl)-1H-1,2,3-triazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((2-methoxypyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)-8-(5-(trifluoromethyl)-1H-1,2,3-triazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(1,1-difluoroethyl)-1H-1,2,3-triazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-ethyl-1H-1,2,3-triazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6carboxamido)methyl)pyridine 1-oxide,

N -((1-methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6-carboxamide,

N -((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(phenylamino)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(thiazol-2-ylamino)imidazo[1,2-a]pyridine-6-carboxamide,

N-((1-methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(thiazol-2-ylamino)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-((5-methylthiazol-2-yl)amino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-((4-fluorophenyl)amino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-((2-methoxyphenyl)amino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((8-(1-methyl-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)pyridine 1-oxide,

8-(1-methyl-1H-pyrazol-4-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(1-methyl-1H-pyrazol-4-yl)-N-((1-methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-methyl-1H-pyrazol-5-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3,8-bis(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((S)-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3,5-dimethylisoxazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-ethyl-1H-pyrazol-5-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-(cyclopropylmethyl)-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-(2-fluoroethyl)-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(3,5-dimethylisoxazol-4-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
$\mathrm{N}-((\mathrm{S})-1-(4 \mathrm{H}-1,2,4-$ triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(3,5-dimethylisoxazol-4-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N-((S)-1-(4H-1,2,4-triazol-3-yl)propyl)-8-(3,5-dimethylisoxazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((S)-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3,5-dimethylisoxazol-4-yl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N-((S)-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3,5-dimethyl-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(3,5-dimethyl-1H-pyrazol-4-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-(2-amino-2-oxoethyl)-1H-pyrazol-4-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(1-ethyl-1H-pyrazol-5-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((8-(4-methylpiperidin-1-yl)-3-(propylthio)imidazo[1,2-a]pyridine-6carboxamido)methyl)pyridine 1-oxide,

8-(4-methylpiperidin-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(4-methylpiperidin-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)pyridine 1-oxide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(4-methylpiperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

5-((3-(5-chlorothiophen-2-yl)-8-(4-methylpiperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

5-((8-(cyclohexylamino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(cyclohexylamino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

5-((8-(4,4-dimethylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

5-((8-(4,4-difluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

5-((8-(cyclohexylamino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-(trifluoromethyl)pyridine 1-oxide,

2-methyl-5-((8-(4-methylpiperidin-1-yl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)pyridine 1-oxide,

5-((8-(cyclohexyl(methyl)amino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

5-((8-(4-fluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,

N-((1-methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4,4-dimethylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4,4-difluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((3-(5-methylthiophen-2-yl)-8-(4-(trifluoromethyl)piperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)pyridine 1-oxide,

5-((8-(4-(fluoromethyl)piperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamido)methyl)-2-methylpyridine 1-oxide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-(fluoromethyl)piperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(4-(trifluoromethyl)piperidin-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(cyclopentylamino)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4,4-difluoropiperidin-1-yl)-3-(4-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-fluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((S)-1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(3-methoxypyrrolidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methoxy-4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(4-methoxypiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
$\mathrm{N}-((\mathrm{S})-1-(4 \mathrm{H}-1,2,4-$ triazol-3-yl)ethyl)-8-(3-methox ypiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
$\mathrm{N}-((\mathrm{S})-1-(4 \mathrm{H}-1,2,4-$ triazol-3-yl)ethyl)-8-(3-methoxy-3-methylpyrrolidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(1H-pyrazol-3-yl)ethyl)-8-(4,4-difluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(4,4-difluoropiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-8-(4,4-difluoropiperidin-1-yl)-N-(2-methyl-1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

3-((8-(4-methylpiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6carboxamido)methyl)pyridine 1-oxide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(4-methoxypiperidin-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(4-carbamoyl-4-methylpiperidin-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(1H-1,2,4-triazol-5-yl)ethyl)-8-(4-methylpiperidin-1-yl)-3-(m-tolyl)imidazo[1,2-a]pyridine-6-carboxamide,

2-methyl-5-((8-(4-methylpiperidin-1-yl)-3-(o-tolyl)imidazo[1,2-a]pyridine-6carboxamido)methyl)pyridine 1-oxide,

8-(5-isopropyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-isopropyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)-N-((6-(trifluoromethyl)pyridin-3-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N -((6-cyclopropylpyridin-3-yl)methyl)-8-(5-ethyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(cyclopropylmethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-methyl-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)-8-(5-propyl-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-isopropyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)-N-(1-(pyrazin-2-yl)ethyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)-N-(1-(pyrazin-2-yl)ethyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-N-((1-methyl-2-oxo-1,2-dihydropyridin-4-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-ethyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)-N-(1-(pyrazin-2-yl)ethyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-N-((6-methox ypyridin-3-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-cyclobutyl-1H-tetrazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-cyclobutyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(cyclopropylmethyl)-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-cyclopropyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((2-methoxypyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-
(difluoromethyl)-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((6-methylpyridin-3-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)propyl)-3-(5-chlorothiophen-2-yl)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-cyclopropyl-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

3-(5-chlorothiophen-2-yl)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((2-methylpyrimidin-5-yl)methyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-ethyl-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-propyl-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-(1-(5-methyl-1,3,4-oxadiazol-2-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-methylthiophen-2-yl)-8-(5-(2,2,2-trifluoroethyl)-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(5-(1,1-difluoroethyl)-1H-tetrazol-1-yl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-3-(5-methylfuran-2-yl)-N-((2-methylpyrimidin-5-yl)methyl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-3-(5-chlorothiophen-2-yl)-8-(5-(1,1-difluoroethyl)-1H-tetrazol-1-yl)imidazo[1,2-a]pyridine-6-carboxamide,

8-(5-(difluoromethyl)-1H-tetrazol-1-yl)-N-((5-methylpyrazin-2-yl)methyl)-3-(5-methylthiazol-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(R)-8-(5-(1,1-difluoroethyl)-1H-tetrazol-1-yl)-N-(1-(3-methyl-1,2,4-oxadiazol-5-yl)ethyl)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(N-methylpropionamido)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide,
(S)-N-(1-(4H-1,2,4-triazol-3-yl)ethyl)-8-(N-cyclopropylpropionamido)-3-(5-methylthiophen-2-yl)imidazo[1,2-a]pyridine-6-carboxamide.
13. A pharmaceutical composition comprising an effective amount of a compound of any one of claims 1 to 12 and optionally a pharmaceutically acceptable carrier.
14. A kit comprising a compound of any one of claims 1 to 12 .
15. A method for regulating one or both of the $\mathrm{P} 2 \mathrm{X}_{3}$ or $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ receptors, said method comprising administering an effective amount of a compound of any one of claims 1 to 12 to a patient in need thereof.
16. A method according to claim 15 , wherein said regulating comprises inhibition.
17. A method for treating pain in a patient, said method comprising administering an effective amount of a compound of any one of claims 1 to 12 to said patient.
18. A method according to claim 17, wherein:
said pain is nociceptive, dysfunctional, idiopathic, neuropathic, somatic, central, visceral, inflammatory, or procedural;
said pain is caused by airway, bladder or visceral organ dysfunction;
said pain is a migraine, back pain, neck pain, gynecological pain, pre-labor pain, labor pain, orthopedic pain, post-stroke pain, post-surgical pain, post herpetic neuralgia, sickle cell
crises, interstitial cystitis, urological pain, dental pain, headache, wound pain, surgical pain, suturing, fracture setting pain, or biopsy;
said pain is due to inflammation, nerve compression, or a mechanical force resulting from tissue distension as a consequence of invasion by a tumor and tumor metastasis into bone or other tissues; or
said pain is caused by esophageal cancer, colitis, cystitis, irritable bowel syndrome, or idiopathic neuropathy.
19. A method according to claim 18, wherein:
said somatic pain comprises pain from bone, joint, muscle, skin, or connective tissue;
said central pain comprises pain from brain trauma, stroke, or spinal cord injury;
said visceral pain comprises pain from the respiratory tract, gastrointestinal tract, pancreas, urinary tract or reproductive organs;
said dysfunctional pain comprises pain from a rheumatologic condition, tension type headache, irritable bowel disorder or erythermalgia;
said nociceptive pain comprises pain from a cut, bruise, bone fracture, crush injury, burn, trauma, surgery, labor, sprain, bump, injection, dental procedure, skin biopsy, or obstruction;
said neuropathic pain comprises pain is due to trauma, surgery, herniation of an intervertebral disk, spinal cord injury, diabetes, infection with herpes zoster, HIV/AIDS, latestage cancer, amputation, carpal tunnel syndrome, chronic alcohol use, exposure to radiation, or an unintended side-effect of a neurotoxic treatment agent;
said inflammatory pain comprises pain is due to joint injury, muscle injury, tendon injury, surgical procedures, infection, or arthritis; or
said procedural pain comprises pain from medical, dental or surgical procedure.
20. A method according to claim 18 or claim 19, wherein said procedural pain is postoperative pain, associated with an injection, draining an abscess, surgery, dermatological, dental procedure, ophthalmic procedure, arthroscopy, or cosmetic surgery.
21. A method according to claim 17, wherein said pain is caused by cancer.
22. A method according to claim 21, wherein said cancer is bone cancer.
23. A method according to any one of claims 15 to 22 , wherein said administration is oral, intramuscular, rectal, cutaneous, subcutaneous, topical, transdermal, sublingual, nasal, vaginal, epidural, intrathecal, intravesical, or ocular.
24. A method for modulating one or both of the $\mathrm{P} 2 \mathrm{X}_{3}$ or $\mathrm{P} 2 \mathrm{X}_{2 / 3}$ pathways comprising administering an effective amount of a compound of any one of claims 1 to 12 to a patient in need thereof.
25. The use of the compound of any one of claims 1 to 12 for the manufacture of a medicament for the treatment of pain.

Figure 1A

Fgure 1B

Figure 1C

Figuxe 2

Values bs turs represenis corresponding \% reverss,

Figure 3

Figure

*** pan. 0 y vs. Vehicle

Figure 5

Figure 6

