International Patent Classification: A01H

International Application Number: PCT/US2004/022789

International Filing Date: 15 July 2004 (15.07.2004)

Filing Language: English

Publication Language: English

Priority Data:

Inventor(s): BENNING, Christoph [DE/US]; 674 Wayland, East Lansing, MI 48823 (US). RIEKHOFF, Wayne [DE/US]; 107 Melladee Lane, Morrice, MI 48857 (US).

Title: COMPOSITIONS AND METHODS FOR THE PRODUCTION OF BETAINES LIPIDS

Abstract: The present invention relates to compositions and methods for the production of Betaines lipids. The methods of the present invention comprise the expression of recombinant enzymes (e.g. from Rhodobacter sphaeroides) in host cells (e.g. bacteria, yeasts, and plants) to produce Betaines lipid compounds including, but not limited to, Diacylgllycerol-0-4’-(N,N,N-trimethyl) homoserine (DGTTS). The methods and compositions of the present invention may be utilized such that the amount of phosphate containing fertilizer required for the growth of a particular plant is decreased.
COMPOSITIONS AND METHODS FOR THE PRODUCTION OF BETAINE LIPIDS

This application is a Continuation-In-Part of co-pending U.S. Patent Appln. No. 10/118,495, filed April 8, 2002, which claims priority to U.S. Patent Appln. No. 60/283,812, filed April 13, 2001.

This invention was made in part with government support under grant MCB-0109912, from the National Science Foundation. As such, the United States Government has certain rights in the invention.

FIELD OF THE INVENTION

The present invention relates to compositions and methods for the production of betaine lipids. The methods of the present invention comprise the expression of recombinant enzymes (e.g. from *Rhodobacter sphaeroides*) in host cells (e.g. bacteria, yeast and plants) to produce betaine lipid compounds including, but not limited to, Diacylglycerol-O-4'-(N,N,N,-trimethyl) homoserine (DGTS).

BACKGROUND

The ability to sustain conventional agriculture is based upon a high input of agrochemicals, such as phosphate-containing fertilizers. Conventional inorganic phosphorous fertilizers may cause an inadvertent addition of heavy metals, which are contained as impurities.

For example, an analysis of phosphate fertilizers commonly used in Argentina was performed to determine the concentrations of heavy metals (such as chromium, cadmium, copper, zinc, nickel, and lead) found therein. L. Guiffre de Lopez Camel et al., "Heavy Metals Input with Phosphate Fertilizers used in Argentina," *Sci. Total Environ.*, 204(3): 245-250 (1997). The analysis revealed that: rock phosphate fertilizers contain the highest levels of cadmium and zinc; diammonium phosphate fertilizers contain enhanced levels of chromium; while superphosphate fertilizers contain the highest levels of copper and lead. *Id.* Thus, the continuous fertilization of soils could increase the heavy metal contents exceeding natural abundances in soils, and result in the transfer of these metals to the human food chain. *Id.*

Moreover, agricultural phosphate overfertilization creates environmental problems (e.g. contamination of water) and will lead to a depletion of naturally occurring phosphate fertilizer
resources in the near future. Therefore, it is highly desirable to develop new strategies to reduce the amount of phosphate fertilizer needed for the optimal growth of crop plants.

SUMMARY OF THE INVENTION

The present invention relates to compositions and methods for the production of betaine lipids. In one embodiment, the compositions of the present invention comprise the nucleic acids defined by SEQ ID NO: 1, SEQ ID NO: 2, or portions thereof. In one embodiment, the methods of the present invention comprise the expression of recombinant enzymes from *Rhodobacter sphaeroides* in host cells such as bacteria and plants to produce betaine lipid compounds including, but not limited to, Diacylglycerol-O-4'-(N,N,N',trimethyl) homoserine (DGTS).

In one embodiment, the present invention contemplates a composition comprising isolated and purified DNA having an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof. In another embodiment, a composition comprising isolated and purified DNA having an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 22 and SEQ ID NO: 23, and portions thereof, is contemplated.

It is not intended that the present invention be limited to deoxyribonucleic acids defined by SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof. In another embodiment, the present invention contemplates a composition comprising ribonucleic acid (RNA) transcribed from the DNA defined by SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof.

The present invention also contemplates a composition comprising protein translated from the ribonucleic acid (RNA) that was transcribed from the DNA defined by SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof. In an alternative embodiment, the present invention contemplates a composition comprising antibodies produced from the protein translated from the ribonucleic acid (RNA) that was transcribed from the DNA defined by SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof.

The present invention also contemplates vectors comprising SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof. In one embodiment, said vector is selected from the group consisting of pQE-31, pACYC-31, pBlueScript SK+, pPCR-Script Amp, and pYES2.

The present invention also contemplates host cells comprising vectors comprising the DNA defined by SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof. In one embodiment,
the present invention contemplates a variety of host cells selected from the group consisting of *E. coli*, *R. sphaeroides*, *M. loti* and *A. thaliana*. In another embodiment, the present invention comprises transgenic plants comprising vectors comprising the DNA defined by SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof.

The present invention also contemplates a composition comprising isolated and purified DNA encoding a protein having the amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, and portions thereof. It is not intended that the present invention be limited to isolated and purified deoxyribonucleic acids (DNA) encoding a protein having the amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, and portions thereof. In another embodiment, the present invention contemplates a composition comprising ribonucleic acid (RNA) transcribed from DNA encoding a protein having the amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, and portions thereof.

In an alternative embodiment, the present invention contemplates a composition comprising antibodies produced from the protein translated from the ribonucleic acid (RNA) that was transcribed from DNA encoding a protein having the amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, and portions thereof.

The present invention also contemplates vectors comprising the DNA encoding a protein having the amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, or portions thereof. In one embodiment, the present invention contemplates a composition comprising a vector selected from the group consisting of pQE-31, pACYC-31, pBlueScript II SK+, pPCR-Script Amp, and pYES2.

The present invention also contemplates a variety of host cells comprising vectors comprising the DNA encoding a protein having the amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, and portions thereof. In one embodiment, the present invention contemplates a host cell selected from the group consisting of *E. coli*, *R. sphaeroides*, *M. loti*, and *A. thaliana*. In another embodiment, the present invention comprises transgenic plants comprising vectors comprising DNA encoding a protein having the amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, and portions thereof.
The present invention also contemplates variants of the amino acid sequences selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, and portions thereof. In one embodiment, the present invention contemplates variants of the *R. sphaeroides* BtaA peptide defined by the amino acid sequence of SEQ ID NO: 3, wherein said variant comprises an amino acid substitution selected from the group consisting of:

- T2S; A5G; L6I; T7S; L9I; A11G; A15G; I18L; A20G; A21G; T25S; S26T; L27I;
- L28I; S29T; A30G; T181S; L182I; A183G; A185G; A186G; G187A; T188S;
- L190I; G192A; L194I; I199L; A201G; S204T; A208G; I210L; A385G; A388G;
- A389G; G390A; A392G; G393A; A395G; A396G; S399T; A400G; I401L;
- G403A; G404A; L407I; and A413G.

In a further embodiment, the present invention contemplates variants of the *R. sphaeroides* BtaA peptide defined by the amino acid sequence of SEQ ID NO: 3, wherein said variant comprises an amino acid substitution selected from the group consisting of:

- H8K; H8R; R16H; R16K; H23K; H23R; R24H; R24K; R184H; R184K; R191H;
- R191K; R203H; R203K; H209K; H209R; R384H; R384K; R387H; R387K;
- H394K; H394R; R398H; R398K; H406K; H406R; R409H; R409K; R410H;
- R410K; R411H; and R411K.

In another embodiment, the present invention contemplates variants of the *R. sphaeroides* BtaB peptide defined by the amino acid sequence of SEQ ID NO: 4, wherein said variant comprises an amino acid substitution selected from the group consisting of:

- T2S; A4G; T5S; A7G; A8G; L9I; A12G; T13S; I20L; A103G; L104I; L106I;
- G107A; T108S; I115L; L117I; S118T; A120G; L121I; S122T; G191A; A193G;
- S197T; L198I; G199A; G200A; G201A; A203G; I204L; L205I; G206A; T207S;
- L208I; and T209S.

In a further embodiment, the present invention contemplates variants of the *R. sphaeroides* BtaB peptide defined by the amino acid sequence of SEQ ID NO: 4, wherein said variant comprises an amino acid substitution selected from the group consisting of:

- H6K; H6R; R15H; R15K; H16K; H16R; R18H; R18K; R19H; R19K; R111H;
- R111K; R114H; R114K; R196H; R196K; R210H; and R210K.

In one embodiment, the present invention contemplates a method for producing betaine lipids comprising: a) providing: i) a vector comprising DNA having an oligonucleotide
sequence selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof; ii) a host cell; and b) transfecting said host cell with said vector. In a preferred embodiment, said host cell is a plant cell and said transfecting is performed under conditions such that the amount of phosphate fertilizer needed for the growth of crop plants is reduced.

It is not intended that the methods of the present invention be limited to any specific host cell capable of expressing the gene products encoded by isolated and purified DNA having an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof. In one embodiment, said host cell is prokaryotic (*e.g.* *E. coli*). In another embodiment, said host cell is a eukaryotic (*e.g.* yeast). In another embodiment, said host cell is a plant cell (*e.g.* Arabidopsis, Maize, Soybean, Sorghum, Brassica, Medicago, Capsicum, Nicotiana, Zea, Triticum, and Datura).

It is not intended that the methods of the present invention be limited to any specific vector. In one embodiment, said vector is selected from the group comprising pQE-31, pACYC-31, pBlueScript II SK+, pPCR-Script Amp, and pYES2.

In one embodiment, the present invention contemplates a method for producing betaine lipids *in vitro* comprising: a) providing: i) a first vector comprising DNA having the oligonucleotide sequence of SEQ ID NO: 1, and portions thereof; ii) a second vector comprising DNA having the oligonucleotide sequence of SEQ ID NO: 2; iii) host cells; iv) *S*-adenosylmethionine; and v) diacylglycerol; b) transfecting said host cells with said first and second vectors such that the gene products of said vectors are produced; and c) combining said gene products with said *S*-adenosylmethionine and said diacylglycerol *in vitro* under conditions such that betaine lipids are produced. In one embodiment, said host cells are selected from the group consisting of *E. coli*, *R. sphaeroides*, *M. loti*, and yeast. In a preferred embodiment, said host cells are plant cells.

It is not intended that the present invention be limited by the use of any specific method to express or produce betaine lipids including, but not limited to, DGTS. In one embodiment, the present invention contemplates the cloning of the *blaA* gene (SEQ ID NO: 1) into a protein expression vector selected from the group comprising pQE-9, pQE-16, pQE-30, pQE-31, pQE-32, pQE-40, pQE-60, pQE-70, pQE-80, pQE-81, pQE-82, pQE-100, pACYC-31, pBlueScript II SK+, pPCR-Script Amp, and pYES2. In another embodiment, the present invention contemplates the cloning of the *blaB* gene (SEQ ID NO: 2) into said protein expression vectors.
In an alternative embodiment, the invention contemplates the transformation of plant cells or tissues such that the gene product encoded by the oligonucleotide sequence selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof, is expressed. In one embodiment, the present invention contemplates the cloning of the \textit{btaA} gene (SEQ ID NO: 1) into a binary vector for introduction into \textit{Agrobacterium tumefaciens}, and the subsequent generation of transgenic plant cells via Agrobacterial transformation. In another embodiment, the present invention contemplates the cloning of the \textit{btaB} gene (SEQ ID NO: 2) into a binary vector for introduction into \textit{Agrobacterium tumefaciens}, and the subsequent generation of transgenic plant cells via Agrobacterial transformation.

It is not intended that the invention be limited to the independent expression of the gene product encoded by the oligonucleotide sequence of SEQ ID NO:1, and portions thereof, in a single host cell, organism, or plant. Moreover, it is also not intended that the invention be limited to the independent expression of the gene product encoded by the oligonucleotide sequence of SEQ ID NO:2, and portions thereof, in a single host cell, organism, or plant. In one embodiment, the invention contemplates the co-expression of both of said gene products in a single host organism. In an alternative embodiment, the invention contemplates the transformation of plant cells or tissues such that both of said gene products are co-expressed.

It is not intended that the present invention be limited by the use of any specific method for the detection of betaine lipid production. The present invention contemplates a variety of assay formats. In one embodiment, a quantitative lipid assay utilizing thin layer chromatography (TLC) to detect the production of betaine lipids is contemplated. In another embodiment, an assay utilizing fast atom bombardment mass spectroscopy (FAB-MS) and proton-nuclear magnetic resonance (1H-NMR) spectroscopy to measure the production of betaine lipids is contemplated.

In one embodiment, the production of the betaine lipid, DGTS, is visualized with iodine vapor and identified by co-chromatography with an \textit{Arabidopsis thaliana} leaf lipid extract known to contain DGTS. In another embodiment, the production of DGTS is verified by quantitative analysis wherein reaction products are isolated from the TLC plates and used to prepare fatty acid methyl esters. The methyl esters are quantified by gas chromatography using myristic acid as the internal standard.
The methods of the present invention are conveniently carried out in a reaction vessel or container. It is not intended that the present invention be limited to any particular reaction vessel. A variety of containers can be used, including but not limited to, culture dishes, microwells, tubes, flasks and other glassware.

In addition, the present invention provides compositions comprising purified DNA having an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 44, and SEQ ID NO: 49. In some embodiments, RNA transcribed from the DNA is provided, while in other embodiments, protein translated from the RNA is provided. In further embodiments, antibodies produced from the protein are provided.

The present invention also provides vectors comprising DNA having an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 44, and SEQ ID NO: 49. In some embodiments, a host cell comprising the vector is provided. In some preferred embodiments, the host cell is selected from the group including but not limited to E. coli, R. sphaeroides, and A. thaliana. In further embodiments, transgenic plants comprising the vector are provided.

Moreover, the present invention provides compositions comprising isolated and purified DNA encoding a protein having an amino acid sequence selected from the group consisting of SEQ ID NO: 45, and SEQ ID NO: 50. In some embodiments, RNA transcribed from the DNA is provided, while in other embodiments, protein translated from the RNA is provided. In further embodiments, antibodies produced from the protein are provided.

The present invention also provides vectors comprising DNA encoding a protein having an amino acid sequence selected from the group consisting of SEQ ID NO: 45, and SEQ ID NO: 50. In some embodiments, a host cell comprising the vector is provided. In some preferred embodiments, the host cell is selected from the group including but not limited to E. coli, R. sphaeroides, and A. thaliana. In further embodiments, transgenic plants comprising the vector are provided.

Also provided by the present invention are purified nucleic acids that specifically hybridize to the complement of a sequence selected from the group consisting of SEQ ID NO: 44, and SEQ ID NO: 49, under highly stringent conditions in 5X SSPE, 1% SDS, 5X Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA at 68°C overnight, followed by washing in a solution comprising 0.1X SSPE and 0.1% SDS at 68°C, wherein the nucleic acid encodes a protein with DGTS synthetic activity. In some embodiments, vectors comprising the nucleic
acid, host cells comprising the vector or transgenic plants comprising the vector are provided. In some preferred embodiments, protein encoded by the nucleic acid is provided.

Additionally, the present invention provides purified nucleic acids comprising a sequence that is at least 95% identical to SEQ ID NO:44, or a sequence that is at least 95% identical to SEQ ID NO:49, wherein the sequence encodes a protein with DGTS synthetic activity. In some embodiments, vectors comprising the nucleic acid, host cells comprising the vector or transgenic plants comprising the vector are provided. In some preferred embodiments, protein encoded by the nucleic acid is provided.

Moreover, the present invention provides peptides comprising the SAM binding domain of C. reinhardtii Bta1, defined herein from residue 75 to 179 of SEQ ID NO:45. In further embodiments, the present invention provides peptides comprising the Bta domain, defined herein from residue 250 to 642 of SEQ ID NO:45. For instance, some embodiments comprise heterologous peptides attached to either the C. reinhardtii SAM binding domain or to the Bta domain (e.g., fusion proteins). Suitable heterologous peptides include but are not limited to reporter sequences such as β-galactosidase, firefly luciferase and green fluorescent protein, and affinity tags such as polyhistidine, maltose binding protein and c-myc epitope.

Also provided are variant peptides, wherein the variant comprises an amino acid substitution including but not limited to: L77V; V85I; D86E; Y91F; I92V; D93N; L94V; A95S; K96E or S99T. In particularly preferred embodiments, the peptides are suitable for induction of DGTS synthesis upon expression in E. coli.

The present invention further provides peptides comprising the SAM binding domain of N. crassa Bta1, defined herein from residue 184 to 254 of SEQ ID NO:50. In further embodiments, the present invention provides peptides comprising the Bta domain, defined herein from residue 495 to 812 of SEQ ID NO:50. For instance, some embodiments comprise heterologous peptides attached to either the N. crassa SAM binding domain or to the Bta domain (e.g., fusion proteins). Suitable heterologous peptides include but are not limited to reporter sequences such as β-galactosidase, firefly luciferase and green fluorescent protein, and affinity tags such as polyhistidine, maltose binding protein and c-myc epitope.

Also provided are variant peptides, wherein the variant comprises an amino acid substitution including but not limited to: Y497F; I498L; A500T; T502S; L512V; L513M;
N514E; L515I; A523T or I524L. In particularly preferred embodiments, the peptides are suitable for induction of DGTS synthesis upon expression in *E. coli*.

DESCRIPTION OF THE DRAWINGS

Figure 1 schematically shows the vector maps, including restriction endonuclease recognition sites, of the protein expression vectors pQE-30 (SEQ ID NO: 38), pQE-31 (SEQ ID NO: 39), and pQE-32 (SEQ ID NO: 40).

Figure 2 schematically shows the vector map, including restriction endonuclease recognition sites, of the phagemid vector pBlueScript II-SK(+).

Figure 3 schematically shows the proposed function of *btaA* and *btaB* in the biochemical pathway of DGTS biosynthesis in *R. sphaeroides*. DAG, diacylglycerol; DGHS, diacylglycerylhomoserine; DGTS, diacylglyceryl-**N,N,N**-trimethylhomoserine; 5'-MTA, 5'-methylthioadenosine; SAM, S-adenosylmethionine; S-AHC, S-adenosyl homocysteine.

Figure 4 schematically shows the vector map, including restriction endonuclease recognition sites, of the protein expression vector pACYC184. This plasmid is a small, low copy-number *E. coli* cloning vector that is 4,244 base pairs in length and carries tetracycline (base numbers 1580-2770) and chloramphenicol-resistance (base numbers 219-3804) genes. The map shows the location of sites for restriction enzymes that cleave the molecule once or twice; unique sites are shown in bold type. The coordinates refer to the position 5' base in each recognition sequence. Nucleotide number 1 of the vector is the first "G" of the unique *EcoRI* site, "GAATTC." The map also shows the relative positions of the antibiotic resistance genes and the origin of DNA replication (ORI) at base numbers 845-847. In order to generate the vector pACYC-31, a 459-bp *Xho I-Pvu II* fragment including the expression cassette from pQE-31 was isolated (See Figure 1) and ligated into the *Sal I* and *Eco RV* sites of pACYC184.

Figure 5 depicts a comparison of lipid extracts from different strains of *R. sphaeroides*. All cells were grown under phosphate-limited conditions at an initial P₃-concentration of 0.1 mM. A one-dimensional thin-layer chromatogram stained by iodine vapor is shown. The indicated strains and plasmids are described in Table 1. DGHS, diacylglycerylhomoserine; DGMS, diacylglyceryl-**N,N,N**-monomethyl homoserine; DGTS, diacylglyceryl-**N,N,N**-trimethylhomoserine.
Figure 6 depicts a two-dimensional thin layer chromatogram indicating the lipid phenotype of RK3 containing pbaA (A) and a mutant disrupted in btaB (B). The cells were grown under phosphate-limited conditions at an initial P\textsubscript{T}-concentration of 0.1 mM. Abbreviations are as defined in the legend to Table 2.

Figure 7 shows the nucleic acid sequence of the *Rhodobacter sphaeroides* btaA gene (SEQ ID NO: 1) (submitted to GenBank data base and assigned accession number AF329857, nucleotide numbers 544-1790). The start and stop codons are highlighted and underlined, respectively, for emphasis.

Figure 8 shows the nucleic acid sequence of the *Rhodobacter sphaeroides* btaB gene (SEQ ID NO: 2) (submitted to GenBank data base and assigned accession number AF329857, nucleotide numbers 1791-2423). The start and stop codons are highlighted and underlined, respectively, for emphasis.

Figure 9 shows the amino acid sequence of the *Rhodobacter sphaeroides* btaA gene product (SEQ ID NO: 3) (submitted to GenBank data base and assigned accession number AF329857).

Figure 10 shows the amino acid sequence of the *Rhodobacter sphaeroides* btaB gene product (SEQ ID NO: 4) (submitted to GenBank data base and assigned accession number AF329857).

Figure 11 shows the structures of phosphatidylcholine (PC) and diacylglycerol-N,N,N-trimethylhomoserine (DGTS). R1 and R2 represent the hydrocarbon chains' respective acyl groups.

Figure 12 schematically shows the vector map, including restriction endonuclease recognition sites, of the phagemid vector pPCR-Script Amp.

Figure 13 schematically shows the vector map, including restriction endonuclease recognition sites, of the yeast expression vector pYES2.

Figure 14 shows the nucleotide sequence of the mutagenesis oligonucleotide btaA-L91 (SEQ ID NO: 5). Said oligonucleotide correlates with base numbers 12-37 of SEQ ID NO: 1. The portion of the oligonucleotide wherein the mutation is encoded is indicated by a double-underline.

Figure 15 shows the nucleotide sequence of the mutagenesis oligonucleotide btaA-A201G (SEQ ID NO: 6). Said oligonucleotide correlates with base numbers 589-618 of SEQ ID
NO: 1. The portion of the oligonucleotide wherein the mutation is encoded is indicated by a double-underline.

Figure 16 shows the nucleotide sequence of the mutagenesis oligonucleotide btaA-S399T (SEQ ID NO: 7). Said oligonucleotide correlates with base numbers 1192-1217 of SEQ ID NO: 1. The portion of the oligonucleotide wherein the mutation is encoded is indicated by a double-underline.

Figure 17 shows the nucleotide sequence of the mutagenesis oligonucleotide btaB-T13S (SEQ ID NO: 8). Said oligonucleotide correlates with base numbers 24-51 of SEQ ID NO: 2. The portion of the oligonucleotide wherein the mutation is encoded is indicated by a double-underline.

Figure 18 shows the nucleotide sequence of the mutagenesis oligonucleotide btaB-I115L (SEQ ID NO: 9). Said oligonucleotide correlates with base numbers 331-359 of SEQ ID NO: 2. The portion of the oligonucleotide wherein the mutation is encoded is indicated by a double-underline.

Figure 19 shows the nucleotide sequence of the mutagenesis oligonucleotide btaB-G206A (SEQ ID NO: 10). Said oligonucleotide correlates with base numbers 601-629 of SEQ ID NO: 2. The portion of the oligonucleotide wherein the mutation is encoded is indicated by a double-underline.

Figure 20 shows the results of an amino acid alignment and comparison of the \textit{R. sphaeroides} btaA gene (SEQ ID NO: 3) and its \textit{Mesorhizobium loti} gene homolog, MI-btaA (SEQ ID NO: 41). Amino acid residues conserved between the two organisms are indicated by a black background. Amino acid residues which differ between the two organisms, but reflect a conservative amino acid change (\textit{e.g.} leucine v. isoleucine) are indicated by a gray background.

Figure 21 shows the results of an amino acid alignment and comparison of the \textit{R. sphaeroides} btaB gene (SEQ ID NO: 4) and its \textit{Mesorhizobium loti} gene homolog, MI-btaB (SEQ ID NO: 42). Amino acid residues conserved between the two organisms are indicated by a black background. Amino acid residues which differ between the two organisms, but reflect a conservative amino acid change (\textit{e.g.} leucine v. isoleucine) are indicated by a gray background.

Figure 22 shows the nucleic acid sequence of the \textit{R. sphaeroides} btaA gene homolog from \textit{Mesorhizobium loti}, MI-btaA (SEQ ID NO: 22) (GenBank accession number AP002997,
nucleotide numbers 269,421 to 270,667) as identified by BLAST search. The start and stop codons are highlighted and underlined, respectively, for emphasis.

Figure 23 shows the nucleic acid sequence of the *R. sphaeroides* *btaB* gene homolog from *Mesorhizobium loti*, MI-*btaB* (SEQ ID NO: 23) (submitted to GenBank data base and assigned accession number AP002997, nucleotide numbers 270,670 to 271,347) as identified by BLAST search. The start and stop codons are highlighted and underlined, respectively, for emphasis.

Figure 24 shows the nucleic acid sequence of the *R. sphaeroides* *btaA* gene homolog from *Agrobacterium tumefaciens*, *btaA* (SEQ ID NO: 28).

Figure 25 shows the amino acid sequence of the *R. sphaeroides* *btaA* gene homolog from *Agrobacterium tumefaciens*, *btaA* (SEQ ID NO: 29).

Figure 26 shows the nucleic acid sequence of the *R. sphaeroides* *btaB* gene homolog from *Agrobacterium tumefaciens*, *btaB* (SEQ ID NO: 30).

Figure 27 shows the amino acid sequence of the *R. sphaeroides* *btaB* gene homolog from *Agrobacterium tumefaciens*, *btaB* (SEQ ID NO: 31).

Figure 28 shows the nucleic acid sequence of the *R. sphaeroides* *btaA* gene homolog from *Sinorhizobium meliloti*, *btaA* (SEQ ID NO: 32).

Figure 29 shows the amino acid sequence of the *R. sphaeroides* *btaA* gene homolog from *Sinorhizobium meliloti*, *btaA* (SEQ ID NO: 33).

Figure 30 shows the nucleic acid sequence of the *R. sphaeroides* *btaB* gene homolog from *Sinorhizobium meliloti*, *btaB* (SEQ ID NO: 34).

Figure 31 shows the amino acid sequence of the *R. sphaeroides* *btaB* gene homolog from *Sinorhizobium meliloti*, *btaB* (SEQ ID NO: 35).

Figure 32 provides a thin layer chromatogram of lipids extracted from *Chlamydomonas*, and *E. coli* transformed with an empty vector or a *Crbta1* expression vector.

Figure 33 provides an image of a nuclear magnetic resonance (NMR) analysis of DGTS purified from recombinant *E. coli* expressing *Crbta1*. The arrow is indicative of the quaternary ammonium function of DGTS.

Figure 34 provides two-dimensional thin layer chromatograms of lipids extracted from *N. crassa* under (A) high phosphate, and (B) phosphate-limited conditions, respectively.

Abbreviations are as follows: DGTS, diacylglycerol-\(N,N,N\)-trimethylhomoserine; PA,
phosphatidic acid; PC, phosphatidyl choline; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; and PS, phosphatidyl serine.

Table 1. Description of Strains and Plasmids

<table>
<thead>
<tr>
<th>Strain or Plasmid</th>
<th>Description or Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. sp. 2.4.1.</td>
<td>wild type (ATCC #17023)</td>
</tr>
<tr>
<td>R. sp. RKL3</td>
<td>DGTS-deficient btaA MNNG induced mutant</td>
</tr>
<tr>
<td>R. sp. btaB-dis</td>
<td>DGTS-deficient btaB disruption mutant</td>
</tr>
<tr>
<td>E. coli HB101</td>
<td>F' Δ(mcrC-mrr) leu supE44 ara14 galK2 lacY proA2 rpsL20 (Str') xyl-5 mit-l recA13</td>
</tr>
<tr>
<td>E. coli XL-10 Gold</td>
<td>Tet'Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr) 173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte[F proAB lacIq ZDM15 Tn10 (Tet') Amy Cam'] (Stratagene)</td>
</tr>
<tr>
<td>E. coli DH10B</td>
<td>F' mcrA Δ(mrr-hsdRMS-mcrBC) φ80dlacZDM15 ΔlacX74 deoR recA1 endA1 araD139 Δ(ara, leu)7697 galU galK1- rpsL nupG (Gibco BRL)</td>
</tr>
<tr>
<td>E. coli MM294</td>
<td>F' endA1 hsdR17 (rKm') supE44 thi-1 relA1</td>
</tr>
<tr>
<td>pBluescript II SK(+)</td>
<td>Amp' (Stratagene)</td>
</tr>
<tr>
<td>pRK2013</td>
<td>Kan' Tra' RK2-ColE1_rep</td>
</tr>
<tr>
<td>pCHB500</td>
<td>Tc'; expression vector for R. sphaeroides</td>
</tr>
<tr>
<td>pUC4K</td>
<td>Kan' Nm'; contains neomycin phosphotransferase gene of Tn903 (Pharmacia)</td>
</tr>
<tr>
<td>pSUP202</td>
<td>Amp' Cm' Tc' pBR325_rep</td>
</tr>
<tr>
<td>pRKL301</td>
<td>cosmid clone complementing RKL3</td>
</tr>
<tr>
<td>pRKL323</td>
<td>smallest subclone of pRKL301 complementing RKL3</td>
</tr>
<tr>
<td>pbtαA</td>
<td>nucleotides 436-1834 of pRKL323 in pCHB500</td>
</tr>
<tr>
<td>pbtαNT</td>
<td>nucleotides 633-1834 of pRKL323 in pCHB500</td>
</tr>
<tr>
<td>pbtαB</td>
<td>nucleotides 1814-2625 of pRKL323 in pBS II SK(+)</td>
</tr>
<tr>
<td>pbtαB-dis</td>
<td>btaB inactivation casset in pSUP202</td>
</tr>
</tbody>
</table>
DEFINITIONS

To facilitate understanding of the invention, a number of terms are defined below.

"Analog" or "Analogs," as used herein, refers to polypeptides which are comprised of a segment of at least 25 amino acids that has partial identity (i.e. comprises an amino acid sequence of greater than 50%, and more preferably 70%, homology) to a portion of the deduced amino acid sequence of SEQ ID NO: 3 or SEQ ID NO: 4, and which has (ideally) one or more properties of a transferase. The present invention contemplates utilizing the polypeptide transferases S-adenosyl methionine:diacylglycerol-3-amino-3-carboxyl transferase and S-adenosylmethionine: diacylglycerol homoserine-N-methyltransferase, to catalyze the formation of a detectable betaine lipid. The present invention also contemplates utilizing amino acid analogs (e.g. from Mesorhizobium loti, Agrobacterium tumefaciens, Sinorhizobium meliloti) of the polypeptides encoded by SEQ ID NO: 1 and SEQ ID NO: 2.

"Associated peptide" as used herein refers to peptides that are bound directly or indirectly to other peptides. Associated peptides that are bound indirectly may have one or more peptides, or other molecules, bound between the two associated peptides. Peptides may be bound via peptide bonds, covalent bonds and non-covalent bonds. Peptides which co-precipitate are considered to be "associated peptides." For example, the present invention contemplates the co-precipitation of a polypeptide encoded by an amino acid sequence selected form the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, and peptides associated thereto.

"Expression construct," "expression vector" and "plasmid" as used herein, refer to one or more recombinant DNA or RNA sequences containing a desired coding sequence operably linked to sequences necessary for the expression of the coding sequence in a cell or host organism (e.g., mammal or plant). The sequence may be single or double stranded. The term "operably linked" refers to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a given gene and/or the synthesis of a desired protein molecule is produced. The term also refers to the linkage of amino acid sequences in such a manner so that a functional protein is produced. The present invention contemplates expression vectors comprising an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 22, and SEQ ID NO: 23 (as well as homolog sequences described above).
"Reporter construct," "reporter gene" and "reporter protein" as used herein, refer to DNA or amino acid sequences, as appropriate, that, when expressed in a host cell or organism, may be detected, measured or quantitated. The present invention contemplates vectors further comprising reporter genes for easier detection of expression.

As used herein, the term "purified" or "to purify" refers to the removal of one or more (undesired) components from a sample. For example, where recombinant polypeptides are expressed in bacterial host cells, the polypeptides are purified by the removal of one or more host cell proteins, thereby increasing the percent of recombinant polypeptides in the sample. The present invention contemplates the purification of the polypeptides defined by SEQ ID NO: 3 and SEQ ID NO: 4 (and analogs thereof) by Ni-NTA/6xHis affinity column purification. The term purified encompasses a large range of purities such as "partially purified," "substantially purified," and to near homogeneity.

As used herein, the term "partially purified" refers to the removal of contaminants of a sample to the extent that the substance of interest is recognizable by techniques known to those skilled in the art (e.g., by staining, blotting, etc.) as accounting for a measurable amount (e.g., picograms, nanograms, micrograms, etc.) in the mixture. The present invention is not limited to compositions that are completely purified; in some embodiments, partially purified peptides are sufficient.

As used herein, the term "substantially purified" refers to molecules, (e.g., nucleic or amino acid sequences) that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free and more preferably 90% free from other components with which they are naturally associated. The present invention is not limited to compositions that are substantially purified.

As used herein, when a solution passes through the solid support matrix, it comprises the "flow through." Material that does not bind, if present, passes with the solution through the matrix into the flow through. To eliminate all non-specific binding, the matrix is "washed" with one or more wash solutions which, after passing through the matrix, comprise one or more "effluents." "Eluent" is a chemical solution capable of dissociating material bound to the matrix (if any); this dissociated material passes through the matrix and comprises an "eluate." The present invention contemplates the purification of antibodies by immobilizing peptides having
the amino acid sequence of SEQ ID NO: 3 and SEQ ID NO: 4 (and/or analogs thereof) on a
support matrix.

"Antibody" as used herein, refers to a glycoprotein produced by B cells and plasma cells
that binds with high specificity to an antigen (usually, but not always, a peptide) or a structurally
similar antigen, that generated its production. Antibodies may be produced by any of the known
methodologies and may be either polyclonal or monoclonal. An antibody demonstrates
specificity to the immunogen, or, more specifically, to one or more epitopes contained in the
immunogen.

"Staining," as used herein, refers to any number of processes known to those in the field
(typically utilizing dyes) that are used to visualize a specific component(s) and/or feature(s) of a
cell or cells. For example, the present invention contemplates quantitative lipid analysis
wherein lipids are stained and visualized by exposure to iodine vapor and charring.

"Nucleic acid sequence," "nucleotide sequence," and "polynucleotide sequence" as used
herein refer to an oligonucleotide or polynucleotide, and fragments or portions thereof, and to
DNA or RNA of genomic or synthetic origin which may be single-, or double-stranded, and
represent the sense or antisense strand.

As used herein, the terms "oligonucleotides" and "oligomers" refer to a nucleic acid
sequence of at least about 10 nucleotides and as many as about 200 nucleotides, preferably about
15 to 30 nucleotides, and more preferably about 20-25 nucleotides, which can be used as a
primer, probe, or amplimer.

The term "nucleotide sequence of interest" refers to any nucleotide sequence, the
manipulation of which may be deemed desirable for any reason, by one of ordinary skill in the
art. Such nucleotide sequences include, but are not limited to, coding sequences of structural
genes (e.g., enzyme-encoding genes, transferase-encoding genes, reporter genes, selection
marker genes, oncogenes, drug resistance genes, growth factors, etc.), and of non-coding
regulatory sequences that do not encode an mRNA or protein product (e.g., promoter sequence,
enhancer sequence, polyadenylation sequence, termination sequence, etc.).

"Amino acid sequence," "polypeptide sequence," "peptide sequence," and "peptide" are
used interchangeably herein to refer to a sequence of amino acids.

The term "portion" when used in reference to a nucleotide sequence refers to fragments
of that nucleotide sequence. The fragments may range in size from 5 nucleotide residues to the
entire nucleotide sequence minus one nucleic acid residue. The term "portion" when used in reference to an amino acid sequence refers to fragments of the amino acid sequence. The fragments may range in size from 3 amino acids to the entire amino acid sequence minus one amino acid residue. The present invention contemplates compositions comprising portions of the oligonucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 2 (or homologs thereof). In some embodiments, the portions comprise at least 50%, preferably at least 75%, more preferably at least 90%, and most preferably at least 95% of a DNA sequence selected from the group including but not limited to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO 32, SEQ ID NO: 34, SEQ ID NO: 44, and SEQ ID NO: 50. In other embodiments, the portions comprise at least 50%, preferably at least 75%, more preferably at least 90%, and most preferably at least 95% of an amino acid sequence selected from the group including but not limited to SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO 33, SEQ ID NO: 35, SEQ ID NO: 45, and SEQ ID NO: 50. Particularly preferred embodiments, comprise portions of a BtaA, BtaB or Bta1 amino acid sequence (or DNA encoding said amino acid sequence) which are "biologically active."

As used herein the term "SAM binding domain" refers to an amino acid sequence which comprises a SAM binding motif (sequences shared by proteins which bind S-adenosyl-L-methionine).

The term "Bta domain" as used herein, refers to an amino acid sequence which comprises a Bta (e.g., BtaA, BtaB, Bta1, etc.) motif (sequences shared by proteins which function as S-adenosylmethionine:diacetyl glycerol 3-amino-3-carboxypropyl transferases.

An oligonucleotide sequence which is a "homolog" or a "variant" of a first nucleotide sequence is defined herein as an oligonucleotide sequence which exhibits greater than or equal to 50% identity, and more preferably greater than or equal to 70% identity, to the first nucleotide sequence when sequences having a length of 100 bp or larger are compared. The present invention contemplates compositions comprising homologs of the oligonucleotide sequence of SEQ ID NO:1 and SEQ ID NO: 2, and portions thereof. In some embodiments, the variants comprise at least 50%, preferably at least 75%, more preferably at least 90%, and most preferably at least 95% identity to a DNA sequence selected from the group including but not limited to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 28,
SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 44, and SEQ ID NO: 49. In other embodiments, the variants comprise at least 50%, preferably at least 75%, more preferably at least 90%, and most preferably at least 95% identity to an amino acid sequence selected from the group including but not limited to SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 45, and SEQ ID NO: 50. Particularly preferred embodiments, comprise variants of a BtaA, BtaB or Bta1 amino acid sequence (or DNA encoding said amino acid sequence) which are "biologically active."

As used herein, the term "biologically active" refers to a molecule having structural, regulatory and or biochemical functions of a wild type BtaA, BtaB or Bta1 molecule. In some instances, the biologically active molecule is a variant of a BtaA, BtaB or Bta1 molecule, while in other instance the biologically active molecule is a portion of a BtaA, BtaB or Bta1 molecule. Other biologically active molecules which find use in the compositions and methods of the present invention include but are not limited to mutant (e.g., variants with at least one deletion, insertion or substitution) BtaA, BtaB or Bta1 molecules. Biological activity is determined for example, by restoration or introduction of Bta (e.g., BtaA, BtaB or Bta1) activity in cells which lack Bta activity, through transfection of the cells with a bta expression vector containing a bta gene, derivative thereof, or portion thereof. Methods useful for assessing bta activity include but are not limited to reconstitution of the betaine lipid biosynthetic pathway as described in detail below in Example 2 (e.g., restoration of DGTS synthesis).

The term "DGTS synthetic activity" as used herein, refers to the enzymatic activity or activities required for the production of DGTS (diacylglycerol-N,N,N-trimethylhomoserine) from SAM (S-adenosylmethionine) and DAG (diacylglycerol). The term DGTS synthetic activity includes either or both of 1) the production of DGHS from SAM and DAG, and 2) the production of DGTS from SAM and DGHS. In some embodiments, DGTS synthetic activity is assessed by transfection of a BtaA, BtaB or Bta1 expression vector into a host cell of interest, which is cultured under phosphate limited conditions. The transfected host cells are then harvested, and lipids are extracted and resolved by thin layer chromatography.

DNA molecules are said to have "5' ends" and "3' ends" because mononucleotides are reacted to make oligonucleotides in a manner such that the 5' phosphate of one mononucleotide pentose ring is attached to the 3' oxygen of its neighbor in one direction via a phosphodiester
linkage. Therefore, an end of an oligonucleotide is referred to as the "5' end" if its 5' phosphate is not linked to the 3' oxygen of a mononucleotide pentose ring. An end of an oligonucleotide is referred to as the "3' end" if its 3' oxygen is not linked to a 5' phosphate of another mononucleotide pentose ring. As used herein, a nucleic acid sequence, even if internal to a larger oligonucleotide, also may be said to have 5' and 3' ends. In either a linear or circular DNA molecule, discrete elements are referred to as being "upstream" or 5' of the "downstream" or 3' elements. This terminology reflects that transcription proceeds in a 5' to 3' direction along the DNA strand. The promoter and enhancer elements which direct transcription of a linked gene are generally located 5' or upstream of the coding region. However, enhancer elements can exert their effect even when located 3' of the promoter element and the coding region. Transcription termination and polyadenylation signals are located 3' or downstream of the coding region.

The term "cloning" as used herein, refers to the process of isolating a nucleotide sequence from a nucleotide library, cell or organism for replication by recombinant techniques.

The term "recombinant DNA molecule" as used herein refers to a DNA molecule which is comprised of segments of DNA joined together by means of molecular biological techniques.

The term "recombinant protein" or "recombinant polypeptide" as used herein refers to a protein molecule which is expressed using a recombinant DNA molecule.

As used herein, the terms "vector" and "vehicle" are used interchangeably in reference to nucleic acid molecules that transfer DNA segment(s) from one cell to another.

As used herein, the terms "complementary" or "complementarity" are used in reference to "polynucleotides" and "oligonucleotides" (which are interchangeable terms that refer to a sequence of nucleotides) related by the base-pairing rules. For example, the sequence "5'-CAGT-3'," is complementary to the sequence "5'-ACTG-3'." Complementarity can be "partial" or "total." "Partial" complementarity is where one or more nucleic acid bases is not matched according to the base pairing rules. "Total" or "complete" complementarity between nucleic acids is where each and every nucleic acid base is matched with another base under the base pairing rules. The degree of complementarity between nucleic acid strands may have significant effects on the efficiency and strength of hybridization between nucleic acid strands. This may be of particular importance in amplification reactions, as well as detection methods which depend upon binding between nucleic acids. The present invention contemplates the
hybridization of nucleic acids to the oligonucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2, under high stringency conditions.

The terms "homology" and "homologous" as used herein in reference to nucleotide sequences refer to a degree of complementarity with other nucleotide sequences. There may be partial homology or complete homology (i.e., identity). A nucleotide sequence which is partially complementary (i.e., "substantially homologous") to a nucleic acid sequence is one that at least partially inhibits a completely complementary sequence from hybridizing to a target nucleic acid sequence. The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous sequence to a target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target. The present invention contemplates the hybridization of nucleic acids homologous to the oligonucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2, to said sequences, under high stringency conditions.

As used herein the term "stringency" is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. "Stringency" typically occurs in a range from about T_m °C to about 20°C to 25°C below T_m. As will be understood by those of skill in the art, a stringent hybridization can be used to identify or detect identical polynucleotide sequences or to identify or detect similar or related polynucleotide sequences. Under "stringent conditions" the nucleotide sequence of SEQ ID NO:1 and SEQ ID NO:2, or portions thereof, will hybridize to its exact complement and closely related sequences.

Low stringency conditions comprise conditions equivalent to binding or hybridization at 68°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄*H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5X Denhardt's reagent (50X Denhardt's
contains per 500 ml: 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)) and 100
µg/ml denatured salmon sperm DNA followed by washing in a solution comprising 2.0X SSPE,
0.1% SDS at room temperature when a probe of about 100 to about 1000 nucleotides in length is
employed.

It is well known in the art that numerous equivalent conditions may be employed to
comprise low stringency conditions; factors such as the length and nature (DNA, RNA, base
composition) of the probe and nature of the target (DNA, RNA, base composition, present in
solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the
presence or absence of formamide, dextran sulfate, polyethylene glycol), as well as components
of the hybridization solution may be varied to generate conditions of low stringency
hybridization different from, but equivalent to, the above listed conditions. In addition,
conditions which promote hybridization under conditions of high stringency (e.g., increasing the
temperature of the hybridization and/or wash steps, the use of formamide in the hybridization
solution, etc.) are well known in the art. High stringency conditions, when used in reference to
nucleic acid hybridization, comprise conditions equivalent to binding or hybridization at 68°C
overnight, in a solution consisting of 5X SSPE, 1% SDS, 5X Denhardt’s reagent and 100 µg/ml
denatured salmon sperm DNA followed by washing in a solution comprising 0.1X SSPE and
0.1% SDS at 68°C, when a probe of about 100 to about 1000 nucleotides in length is employed.
Other suitable highly stringent conditions include but are not limited to hybridization in 0.5 M
NaHPO₄, pH 7.2, containing 1% BSA, 5% SDS at 65°C overnight, followed by washing twice
with 40 mM NaHPO₄, pH 7.2, containing 1% SDS, at 65°C.

When used in reference to a double-stranded nucleic acid sequence such as a cDNA or
genomic clone, the term "substantially homologous" refers to any probe which can hybridize
either partially or completely to either or both strands of the double-stranded nucleic acid
sequence under conditions of low stringency as described above.

When used in reference to a single-stranded nucleic acid sequence, the term
"substantially homologous" refers to any probe which can hybridize to the single-stranded
nucleic acid sequence under conditions of low stringency as described above.

As used herein, the term "variant" or "variants" refers to analogs of the naturally
occurring *R. sphaeroides* proteins S-adenosylmethionine:diacylglycerol 3-amino-3-carboxyl
transferase and S-adenosylmethionine:diacylglycerolhomoserine-N-methyltransferase that differ
in amino acid sequence or in ways that do not involve sequence, or both. Non-sequence modifications include *in vivo* or *in vitro* chemical derivatization of S-adenosyl methionine: diacylglycerol 3-amino-3-carboxyl transferase and S-adenosylmethionine: diacylglycerol homoserine-N-methyltransferase. Non-sequence modifications also include changes in acetylation, methylation, phosphorylation, carboxylation, or glycosylation. Preferred variants include S-adenosyl methionine: diacylglycerol 3-amino-3-carboxyl transferase and S-adenosylmethionine: diacylglycerol homoserine-N-methyltransferase (or biologically active fragments thereof) whose sequences differ from the wild-type sequence by one or more conservative amino acid substitutions, or by one or more non-conservative amino acid substitutions, deletions, or insertions which do not abolish the biological activity of S-adenosylmethionine: diacylglycerol 3-amino-3-carboxyl transferase and S-adenosylmethionine: diacylglycerol homoserine-N-methyltransferase.

Conservative substitutions typically include the substitution of one amino acid for another with similar characteristics, e.g., substitutions within the following groups: (Group I) acidic ((D) aspartate, (E) glutamate); (Group II) basic ((K) lysine, (R) arginine, (H) histidine); (Group III) nonpolar ((A) alanine, (V) valine, (L) leucine, (I) isoleucine, (P) proline, (F) phenylalanine, (M) methionine, (W) tryptophan); and (Group IV) uncharged polar ((G) glycine, (N) asparagine, (Q) glutamine, (C) cysteine, (S) serine, (T) threonine, (Y) tyrosine). Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. Conservative amino acid substitutions as contemplated by the present invention are presented in the following formula well-known in the field of art: "X₁ZX₂," wherein X₁ is the single-letter code for the amino acid residue present in the wild-type amino acid sequence (as indicated in SEQ ID NOS: 3 & 4), Z is the number of the amino acid residue being changed as a reflection of the amino acid sequence of SEQ ID NO: 3 or SEQ ID NO: 4, and X₂ is the single-letter code of the amino acid residue to which X₁ is being changed (e.g. 1141L would indicate the changing of the isoleucine residue, at amino acid position 141, to a leucine residue). The present invention contemplates variants of the peptides encoded by SEQ ID NO: 3 and SEQ ID NO: 4 comprising a conservative amino acid substitution.

As used herein, the term "hybridization" is used in reference to the pairing of complementary nucleic acids using any process by which a strand of nucleic acid joins with a complementary strand through base pairing to form a hybridization complex. Hybridization and
the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementarity between the nucleic acids, stringency of the conditions involved, the T_m of the formed hybrid, and the G:C ratio within the nucleic acids. The present invention contemplates the hybridization of nucleic acids and proteins to the oligonucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof.

As used herein the term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions. The two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration. A hybridization complex may be formed in solution (e.g., C_D or R_D analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized to a solid support (e.g., a nylon membrane or a nitrocellulose filter as employed in Southern and Northern blotting, dot blotting or a glass slide as employed in in situ hybridization, including FISH (fluorescent in situ hybridization)).

As used herein, the term "T_m" is used in reference to the "melting temperature." The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the T_m of nucleic acids is well known in the art. As indicated by standard references, a simple estimate of the T_m value may be calculated by the equation: T_m = 81.5 + 0.41(% G + C), when a nucleic acid is in aqueous solution at 1 M NaCl (see e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization [1985]). Other references include more sophisticated computations which take structural as well as sequence characteristics into account for the calculation of T_m. The present invention contemplates the hybridization of nucleic acids comprising the oligonucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof, at the T_m and above.

"Amplification" is defined herein as the production of additional copies of a nucleic acid sequence and is generally carried out using polymerase chain reaction technologies well known in the art (see, e.g., Dieffenbach and Dveksler, PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview NY [1995]). As used herein, the term "polymerase chain reaction" ("PCR") refers to the methods of U.S. Patent Nos. 4,683,195, 4,683,202, and 4,965,188, all of
which are hereby incorporated by reference, which describe a method for increasing the
corcentration of a segment of a target sequence (e.g. in a mixture of genomic DNA) without
cloning or purification. The length of the amplified segment of the desired target sequence is
determined by the relative positions of two oligonucleotide primers with respect to each other,
and therefore, this length is a controllable parameter. By virtue of the repeating aspect of the
process, the method is referred to as the "polymerase chain reaction" (hereinafter "PCR").
Because the desired amplified segments of the target sequence become the predominant
sequences (in terms of concentration) in the mixture, they are said to be "PCR amplified."

With PCR, it is possible to amplify a single copy of a specific target sequence in genomic
DNA to a level detectable by several different methodologies (e.g., hybridization with a labeled
probe; incorporation of biotinylated primers followed by avidin-enzyme conjugate detection;
incorporation of \(^{32}\)P-labeled deoxynucleotide triphosphates, such as dCTP or dATP, into the
amplified segment). In addition to genomic DNA, any oligonucleotide sequence can be
amplified with the appropriate set of primer molecules. In particular, the amplified segments
created by the PCR process itself are, themselves, efficient templates for subsequent PCR
amplifications. The present invention contemplates the amplification of nucleic acid comprising
SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof. The present invention contemplates
the amplification of nucleic acids which are homologous to SEQ ID NO: 1 and SEQ ID NO: 2,
and portions thereof.

The terms "reverse transcription polymerase chain reaction" and "RT-PCR" refer to a
method for reverse transcription of a RNA sequence to generate a mixture of cDNA sequences,
followed by increasing the concentration of a desired segment of the transcribed cDNA
sequences in the mixture without cloning or purification. Typically, RNA is reverse transcribed
using a single primer (e.g., an oligo-dT primer) prior to PCR amplification of the desired
segment of the transcribed DNA using two primers.

As used herein, the term "primer" refers to an oligonucleotide, whether occurring
naturally as in a purified restriction digest or produced synthetically, which is capable of acting
as a point of initiation of synthesis when placed under conditions in which synthesis of a primer
extension product which is complementary to a nucleic acid strand is induced, (i.e., in the
presence of nucleotides and of an inducing agent such as DNA polymerase and at a suitable
temperature and pH). The primer is preferably single stranded for maximum efficiency in
amplification, but may alternatively be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. Preferably, the primer is an oligodeoxyribonucleotide. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent. The exact lengths of the primers will depend on many factors, including temperature, source of primer and the use of the method. The present invention contemplates portions of the oligonucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2 as useful for primers in DNA sequencing and PCR.

As used herein, the term "probe" refers to an oligonucleotide (i.e., a sequence of nucleotides), whether occurring naturally as in a purified restriction digest or produced synthetically, recombinantly or by PCR amplification, which is capable of hybridizing to another oligonucleotide of interest. A probe may be single-stranded or double-stranded. Probes are useful in the detection, identification and isolation of particular gene sequences. It is contemplated that any probe used in the present invention will be labeled with any "reporter molecule," so that it is detectable in any detection system, including, but not limited to enzyme (e.g., ELISA, as well as enzyme-based histochemical assays), fluorescent, radioactive, and luminescent systems. It is not intended that the present invention be limited to any particular detection system or label. The present invention contemplates portions of the oligonucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2 as useful for probes in hybridization analysis (e.g. colony hybridization screening, Northern Blot, etc.) and PCR.

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double- or single-stranded DNA at or near a specific nucleotide sequence. Restriction maps for the various vectors contemplated by the present invention are found in Figures 1, 2, 4, 12, and 13.

As used herein, the term "an oligonucleotide having a nucleotide sequence encoding a gene" means a nucleic acid sequence comprising the coding region of a gene, i.e. the nucleic acid sequence which encodes a gene product. The coding region may be present in either a cDNA, genomic DNA or RNA form. When present in a DNA form, the oligonucleotide may be single-stranded (i.e., the sense strand) or double-stranded. Suitable control elements such as enhancers, promoters, splice junctions, polyadenylation signals, etc. may be placed in close proximity (i.e. operably linked) to the coding region of the gene if needed to permit proper initiation of transcription and/or correct processing of the primary RNA transcript.
Alternatively, the coding region utilized in the expression vectors of the present invention may contain endogenous enhancers, splice junctions, intervening sequences, polyadenylation signals, etc. or a combination of both endogenous and exogenous control elements.

The term "promoter," "promoter element," or "promoter sequence" as used herein, refers to a DNA sequence which when placed at the 5' end of (i.e., precedes) an oligonucleotide sequence is capable of controlling the transcription of the oligonucleotide sequence into mRNA. A promoter is typically located 5' (i.e., upstream) of an oligonucleotide sequence whose transcription into mRNA it controls, and provides a site for specific binding by RNA polymerase and for initiation of transcription.

As used herein, the terms "nucleic acid molecule encoding," "nucleotide encoding," "DNA sequence encoding," and "DNA encoding" refer to the order or sequence of deoxyribonucleotides along a strand of deoxyribonucleic acid. The order of these deoxyribonucleotides determines the order of amino acids along the polypeptide (protein) chain. The DNA sequence thus codes for the amino acid sequence.

The term "host cell" or "cell," as used herein, refers to any cell which is used to express a "gene of interest," e.g. btaA and btaB. "Host cell" or "cell" also refers to any cell which is used in any of the screening assays for detection of the production of betaine lipids. The present invention contemplates host cells (e.g. bacteria, yeast, and plants) comprising the oligonucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof.

The term "isolated" when used in relation to a nucleic acid, as in "an isolated oligonucleotide" refers to a nucleic acid sequence that is separated from at least one contaminant nucleic acid with which it is ordinarily associated in its natural source. Isolated nucleic acid is nucleic acid present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated nucleic acids are nucleic acids such as DNA and RNA which are found in the state they exist in nature. For example, a given DNA sequence (e.g., a gene) is found on the host cell chromosome in proximity to neighboring genes; RNA sequences, such as a specific mRNA sequence encoding a specific protein, are found in the cell as a mixture with numerous other mRNAs which encode a multitude of proteins. The isolated nucleic acid or oligonucleotide may be present in single-stranded or double-stranded form. Isolated nucleic acid can be readily identified (if desired) by a variety of techniques (e.g., hybridization, dot blotting, etc.). When an isolated nucleic acid or oligonucleotide is to be utilized to express a
protein, the oligonucleotide will contain at a minimum the sense or coding strand (i.e., the oligonucleotide may be single-stranded). Alternatively, it may contain both the sense and anti-sense strands (i.e., the oligonucleotide may be double-stranded).

As used herein the term "coding region" when used in reference to a structural gene refers to the nucleotide sequences which encode the amino acids found in the nascent polypeptide as a result of translation of a mRNA molecule. The coding region is bounded, in eukaryotes, on the 5' side by the nucleotide triplet "ATG" (or "GTG" in some organisms) which encodes the initiator methionine and on the 3' side by one of the three triplets which specify stop codons (i.e., TAA, TAG, TGA).

As used herein, the term "gene" means the deoxyribonucleotide sequences comprising the coding region of a structural gene. A "gene" may also include non-translated sequences located adjacent to the coding region on both the 5' and 3' ends such that the gene corresponds to the length of the full-length mRNA. The sequences which are located 5' of the coding region and which are present on the mRNA are referred to as 5' non-translated sequences. The sequences which are located 3' or downstream of the coding region and which are present on the mRNA are referred to as 3' non-translated sequences. The term "gene" encompasses both cDNA and genomic forms of a gene. A genomic form or clone of a gene contains the coding region interrupted with non-coding sequences termed "introns" or "intervening regions" or "intervening sequences." Introns are segments of a gene which are transcribed into heterogenous nuclear RNA (hnRNA); introns may contain regulatory elements such as enhancers. Introns are removed or "spliced out" from the nuclear or primary transcript; introns therefore are absent in the messenger RNA (mRNA) transcript. The mRNA functions during translation to specify the sequence or order of amino acids in a nascent polypeptide.

In addition to containing introns, genomic forms of a gene may also include sequences located on both the 5' and 3' end of the sequences which are present on the RNA transcript. These sequences are referred to as "flanking" sequences or regions (these flanking sequences are located 5' or 3' to the non-translated sequences present on the mRNA transcript). The 5' flanking region may contain regulatory sequences such as promoters and enhancers which control or influence the transcription of the gene. The 3' flanking region may contain sequences which direct the termination of transcription, post-transcriptional cleavage and polyadenylation.
The term "transgenic" when used in reference to a cell refers to a cell which contains a transgene, or whose genome has been altered by the introduction of a transgene. The term "transgenic" when used in reference to a tissue or to a plant refers to a tissue or plant, respectively, which comprises one or more cells that contain a transgene, or whose genome has been altered by the introduction of a transgene. Transgenic cells, tissues and plants may be produced by several methods including the introduction of a "transgene" comprising nucleic acid (usually DNA) into a target cell or integration of the transgene into a chromosome of a target cell by way of human intervention, such as by the methods described herein. The present invention contemplates transgenic cells comprising the oligonucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof.

The term "transgene" as used herein refers to any nucleic acid sequence which is introduced into the genome of a cell by experimental manipulations. A transgene may be an "endogenous DNA sequence," or a "heterologous DNA sequence" (i.e., "foreign DNA"). The term "endogenous DNA sequence" refers to a nucleotide sequence which is naturally found in the cell into which it is introduced so long as it does not contain some modification (e.g., a point mutation, the presence of a selectable marker gene, etc.) relative to the naturally-occurring sequence. Heterologous DNA is not endogenous to the cell into which it is introduced, but has been obtained from another cell. Heterologous DNA also includes an endogenous DNA sequence which contains some modification (e.g., a conservative amino acid substitution).

Generally, although not necessarily, heterologous DNA encodes RNA and proteins that are not normally produced by the cell into which it is expressed. Examples of heterologous DNA include reporter genes, transcriptional and translational regulatory sequences, selectable marker proteins (e.g., proteins which confer drug resistance), etc.

The term "foreign gene" refers to any nucleic acid (e.g., gene sequence) which is introduced into the genome of a cell by experimental manipulations and may include gene sequences found in that cell so long as the introduced gene contains some modification (e.g., a point mutation, the presence of a selectable marker gene, etc.) relative to the naturally-occurring gene. For example, the introduction of a gene having an oligonucleotide sequence selected from the group of SEQ ID NO: 1 and SEQ ID NO: 2 into a plant is the introduction of a foreign gene into a plant.
The term "transformation" as used herein refers to the introduction of a transgene into a cell. Transformation of a cell may be stable or transient. The term "transient transformation" or "transiently transformed" refers to the introduction of one or more transgenes into a cell in the absence of integration of the transgene into the host cell's genome. Transient transformation may be detected by, for example, enzyme-linked immunosorbent assay (ELISA) which detects the presence of a polypeptide encoded by one or more of the transgenes. Alternatively, transient transformation may be detected by detecting the activity of the protein (e.g., S-adenosylmethionine:diacylglycerol 3-amino-3-carboxyl transferase and S-adenosylmethionine:diacylglycerolhomoserine-N-methyltransferase) encoded by the transgene (e.g., the btaA and btaB genes, respectively) as demonstrated herein [e.g., quantitative analysis of lipid extracts to detect the production of DGTS]. The term "transient transformant" refers to a cell which has transiently incorporated one or more transgenes. In contrast, the term "stable transformation" or "stably transformed" refers to the introduction and integration of one or more transgenes into the genome of a cell. Stable transformation of a cell may be detected by Southern blot hybridization of genomic DNA of the cell with nucleic acid sequences which are capable of binding to one or more of the transgenes. Alternatively, stable transformation of a cell may also be detected by the polymerase chain reaction of genomic DNA of the cell to amplify transgene sequences. The term "stable transformant" refers to a cell which has stably integrated one or more transgenes into the genomic DNA. "Functionally stable transformants" refers to stable transformants that continue to express their incorporated transgenes. The present invention contemplates both stable and transient transformants comprising the oligonucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof.

A "transformed cell" is a cell or cell line that has acquired the ability to grow in cell culture for many multiple generations, the ability to grow in soft agar and the ability to not have cell growth inhibited by cell-to-cell contact. In this regard, "transformation" refers to the introduction of foreign genetic material into a cell or organism. Transformation may be accomplished by any method known which permits the successful introduction of nucleic acids into cells and which results in the expression of the introduced nucleic acid. "Transformation" methods include, but are not limited to, such methods as microinjection, electroporation, and DNA particle "bombardment." Transformation may be accomplished through use of any expression vector. For example, the use of Agrobacterium tumefaciens to introduce foreign
nucleic acid (e.g. having the oligonucleotide sequence of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof) into plant cells is contemplated. Additionally, transformation refers to cells that have been transformed naturally, usually through genetic mutation.

The term "Agrobacterium" refers to a soil-borne, Gram-negative, rod-shaped phytopathogenic bacterium which causes crown gall. The term "Agrobacterium" includes, but is not limited to, the strains Agrobacterium tumefaciens, (which typically causes crown gall in infected plants), and Agrobacterium rhizogens (which causes hairy root disease in infected host plants).

The terms "bombarding," "bombardment," and "biolistic bombardment" refer to the process of accelerating particles towards a target biological sample (e.g., cell, tissue, etc.) to effect wounding of the cell membrane of a cell in the target biological sample and/or entry of the particles into the target biological sample. Methods for biolistic bombardment are known in the art (e.g., U.S. Patent No. 5,584,807, the contents of which are herein incorporated by reference), and are commercially available (e.g., the helium gas-driven microprojectile accelerator (PDS-1000/He) (BioRad).

The term "microwounding" when made in reference to plant tissue refers to the introduction of microscopic wounds in that tissue. Microwounding may be achieved by, for example, particle bombardment as described herein.

The term "plant" as used herein refers to a plurality of plant cells which are largely differentiated into a structure that is present at any stage of a plant's development. Such structures include, but are not limited to, a fruit, shoot, stem, leaf, flower petal, etc. The term "plant tissue" includes differentiated and undifferentiated tissues of plants including, but not limited to, roots, shoots, leaves, pollen, seeds, tumor tissue and various types of cells in culture (e.g., single cells, protoplasts, embryos, callus, protocorm-like bodies, etc.). Plant tissue may be in planta, in organ culture, tissue culture, or cell culture.

The term "embryonic cell" as used herein in reference to a plant cell refers to one or more plant cells (whether differentiated or un-differentiated) which are capable of differentiation into a plant tissue or plant. Embryonic cells include, without limitation, protoplasts such as those derived from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana,
Cithorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hereroallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura. Also included are embryos (such as those from sorghum, maize, banana), embryonic meristems (such as those from soybean), embryogenic callus (such as from sugarcane), protocorm-like bodies (such as from pineapple), and embryogenic cells as exemplified by those from garlic. The ability of an embryonic cell to differentiate into a plant is determined using methods known in the art. For example, differentiation of pineapple protocorm-like bodies into shoots may be accomplished by culturing the protocorm-like body on agar-solidified hormone-free modified Murashige & Skoog (MS) medium or on agar-solidified PM2 medium (U.S. Patent No. 6,091,003 hereby incorporated by reference). Differentiation into pineapple roots may be accomplished by culture of protocorm-like bodies in liquid modified MS medium containing 1 mg/L NAA.

The term "conjugation" as used herein refers to the process in which genetic material is transferred from one microorganism to another involving a physical connection or union between the two cells. This process is commonly known to occur in bacteria, protozoa, and certain algae and fungi.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to compositions and methods for the production of betaine lipids. The compositions of the present invention comprise isolated and purified DNA having an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, and portions thereof (as well as the homologs described above, and portions thereof). The methods of the present invention comprise the expression of recombinant enzymes (e.g. from *Rhodobacter sphaeroides*) in host cells (e.g. in bacteria and plants) to produce betaine lipid compounds including, but not limited to, Diacylglycerol-\(O-4'-(N,N,N,\text{-trimethyl})\) homoserine (DGTS). The compositions and methods of the present invention allow a reduction in the amount of plant cell membrane-associated phosphorus by replacing phosphorous lipids with non-phosphorous lipids. Thus, the overall amount of phosphate-containing fertilizer required for the growth of the plant is reduced.

Polar lipids are essential components of all biological membranes. Most common are glycerolipids containing a diacylglycerol moiety to which a polar head group is attached. A
head group can be a carbohydrate moiety as in the very abundant plant galactolipids or a phosphorylester as in the glycerophospholipids, the most common lipid class in animals. Betaine lipids represent a third class of glycerolipids in which a quaternary amine alcohol is bound in an ether linkage to the diacylglycerol moiety. Betaine lipids are structural components of membranes in ferns, mosses, algae, and bacteria. The overall structure of betaine lipids resembles to some extent that of the glycerophospholipid phosphatidylcholine (PC). Although the phase transition temperature for betaine lipid is slightly higher compared to PC with identical fatty acid composition, the physical phase behavior of betaine lipid in mixtures with water is similar to that of PC.

The betaine lipid diacylglycerol-N-trimethylhomoserine (DGTS) is similar in structure to the common phosphoglycerolipid, phosphatidylglycerol (PC) (See Figure 11), but lacks phosphorous. PC plays an important and central role in lipid metabolism in seed plants. However, many organisms alter their lipid composition in response to chemical or physical changes of the environment, permitting the organism to survive unfavorable conditions. For example, DGTS replaces PC to the extent that PC is actually absent in some algae. Thus, DGTS could take over these functions in organisms lacking PC.

Plants depend much less on phospholipids than animals. Recent discoveries indicate that plants are able to replace phospholipids with non-phosphorous glycolipids to conserve phosphate under phosphate-limiting growth conditions. Agricultural phosphate overfertilization creates environmental problems and will lead to a depletion of naturally occurring phosphate fertilizer resources in the near future. Therefore, it is highly desirable to develop new strategies to reduce the amount of phosphate fertilizer needed for the optimal growth of crop plants. The invention illustrates such a strategy by providing compositions and methods that reduce the amount of plant cell membrane-associated phosphorus (which represents approximately 30% of all organic phosphorus in a plant cell) by replacing the phosphorous lipids with non-phosphorous lipids.

The present invention is not limited by any specific reaction mechanism, and indeed it is not necessary to understand any particular underlying mechanism in order to practice the invention. It is believed that the production of the betaine lipid, DGTS, is driven by the activity of the \textit{R. sphaeroides btaA} gene product, S-adenosyl methionine:diacylglycerol 3-amino-3-
carboxyl transferase, coupled with the activity of the *R. sphaeroides* btaA gene product, S-adenosylmethionine:diacylglycerol homoserine-N-methyltransferase.

I. Cloning and Expression of the *R. sphaeroides* btaA and btaB genes in *E. coli*

The present invention provides methods for the production of betaine lipids, including but not limited to DGTS, wherein the btaA (SEQ ID NO: 1) and btaB (SEQ ID NO: 2) genes of *R. sphaeroides* are cloned into, and expressed in, *Escherichia coli* cells. Although the present invention is not limited to a specific method whereby said genes are cloned and expressed in *E. coli*, in one embodiment, said genes are cloned and expressed as follows.

A. Cloning

1. Growth of *R. sphaeroides* Cell Cultures

Although the present invention is not limited to a specific method of growing cell cultures of *R. sphaeroides*, in one embodiment, said cell cultures are grown, and genomic DNA is isolated and purified therefrom, as follows.

Cell cultures were grown in the malate-basal-salt medium as described by Ormerod *et al.*, "Light-dependent utilization of organic compounds and photoreduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism," *Arch. Biochem. Biophys.*, 94: 449-463 (1961), or Sistrom's succinate-basal-salt medium. (See Sistrom W.R., "A requirement of sodium in the growth of *R. sphaeroides*," *J. Gen. Microbiol.*, 22:778-785 (1960); Sistrom W.R., "The kinetics of the synthesis of photopigments in *R. sphaeroides*," *J. Gen. Microbiol.* 28: 607-616 (1962). Agar plates (1.5% agar) were either incubated in the dark at 30°C in air or in the light (100 µE m² s⁻¹) at 30-35°C in an atmosphere containing 5% CO₂ and 95% N₂. When required, 0.8 µg/ml tetracycline was added to agar plates containing Sistrom's medium. Aerobic chemoheterotrophic, liquid cultures inoculated with a single colony were incubated at 30°C with shaking in Erlenmeyer flasks. Anaerobic photoheterotrophic, liquid cultures were grown in tightly-closed, filled, 200 ml bottles, in the light (100 µE m² s⁻¹) at 30-35°C. The bottles are mixed for aeration once or twice a day by manual shaking.
2. Preparation of genomic DNA from *R. sphaeroides*

Although the present invention is not limited to a specific method of purifying nucleic acids from *R. sphaeroides*, in one embodiment, genomic DNA is isolated and purified from *R. sphaeroides* as follows. The DNA prepared by this method is suitable for endonuclease restriction, Southern Blotting, and PCR applications.

R. sphaeroides cells are grown as noted above and 3 ml of the bacterial culture is centrifuged at 10,000 x g in a 1.5 mL polypropylene tube. The bacterial cell pellet is resuspended in 1 ml TE buffer (Tris-Cl, 50 mM; EDTA, 1mM; pH 8.0). The cells are re-centrifuged, followed by resuspension of the pellet in 1 mL TE buffer containing 1% SDS, 0.5 mg/mL Proteinase K. The cells are incubated for 1 hour at 37°C. To shear the genomic DNA, the sample is extruded from a syringe through a G20-1.5 needle. The DNA preparation is sequentially extracted with an equal volume of phenol, phenol/chloroform (1:1, v/v), and chloroform/isoamylalcohol (24:1, v/v), a technique that is well known in the field of art. The DNA is precipitated by adding 0.3 volumes of 3 M sodium acetate (pH 5.2) and 2 volumes of 200 proof ethanol to the extracted DNA. The DNA is pelleted by centrifugation at 15,000 x g in a microcentrifuge for 2 minutes. The DNA pellet is air-dried and resuspended in 0.1 mL TE-buffer.

3. PCR of BtaA and BtaB from genomic DNA and cloning of the PCR product into a Bacterial Expression Vector

In one embodiment, in order to clone the *btaA* and *btaB* genes of *R. sphaeroides* into *Escherichia coli*, *R. sphaeroides* genomic DNA (isolated and purified as indicated above) is subjected to Polymerase Chain Reaction (PCR) such that the genomic sequences for *btaA* and *btaB* are respectively generated.

In order to amplify the *btaA* gene, a forward primer having the nucleotide sequence 5'-ACA TGC ATG CAG TGA CGC AGT TCG CCC TC-3' (SEQ ID NO: 36), and a reverse primer having the nucleotide sequence 5'-CGG GGT ACC AGG ACG ATC CGC TCG AAC CG-3' (SEQ ID NO: 37), were used such that *Bam* H1 and *Hind* III sites were provided for cloning into the bacterial expression vector pPCR-Script Amp (Stratagene Cat. No. 211188), a derivative of pBlueScript SK+. The forward primer amplifies the beginning of the gene, including the *Val* start site (GTG) (See Figure 7: SEQ ID NO: 1). The reverse primer includes
the stop codon of the btaA gene in the resulting PCR product. PCR products are run on 1% Tris-Acetate-EDTA (TAE) agarose gel in the presence of ethidium bromide and excised for purification by QIAEX II gel extraction kit (Qiagen Cat. No. 20021), followed by cloning into the Srf I site of pPCR-Script Amp (as described in the manufacturer's instructions). The resulting plasmid construct allows the expression of the recombinant btaA gene product in E. coli.

In order to amplify the btaB gene, a forward primer having the nucleotide sequence 5'-ACA TGC ATG CAG TGA CGC AGT TCG CCC TC-3' (SEQ ID NO: 36), and a reverse primer having the nucleotide sequence 5'-CGG GGT ACC AGG ACG ATC CGC TCG AAC CG-3' (SEQ ID NO: 37), were used such that Sph I and Kpn I sites were provided for cloning into pPCR-Script Amp. The forward primer amplifies the beginning of the gene, including the Met start site (ATG) (See Figure 8: SEQ ID NO: 2). The reverse primer includes the stop codon of the btaB gene in the resulting PCR product. PCR products are run on 1% TAE agarose gel in the presence of ethidium bromide and excised for purification by QIAEX II gel extraction kit followed by cloning into the Srf I site of pPCR-Script Amp (as described in the manufacturer's instructions). The resulting plasmid construct allows the expression of the recombinant btaB gene product in E. coli.

In an alternative embodiment, the btaA and btaB genes are amplified as indicated above, but are cloned into a pBluescript II SK+ phagemid vector (Stratagene Cat. No. 212205). Both the vector and the PCR products are digested with the appropriate restriction endonucleases (i.e. digested with Bam H1 and Hind III for btaA, or digested with Sph I and Kpn I for btaB) prior to ligation to allow direct cloning of the products into the vector.

B. Expression of the btaA and btaB Gene Products

The present invention is not limited to a specific method of expressing the btaA and btaB gene products from R. sphaeroides (i.e. the proteins encoded by the amino acid sequences found in SEQ ID NO: 3 and SEQ ID NO: 4, respectively). However, in one embodiment, the invention contemplates the expression of the R. sphaeroides btaA and btaB gene in E. coli.
1. Cloning of btaA and btaB PCR inserts into E. coli expression vectors pQE-31 and pACYC-31

In one embodiment, btaA and btaB genes generated from PCR (as described above) are cloned into either the pQE-31 (Figure 1)(QIAGEN Cat.# 32915) or pACYC-31 vectors. The vector pACYC-31 is described in the publication Dormann et al., "Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1," Science, 284: 2181-2184. (See Figure 4). Said vectors are digested with Sph I and Kpn I (for btaA) or Bam HI and Hind III (for btaB), and gel purified using the QIAEX II gel extraction kit (Qiagen Cat. No. 20021). The btaA PCR insert is excised from pBlueScript SK+ by Sph I/Kpn I digest and gel purified as above. The btaB PCR insert is released from the pBlueScript SK+ vector by Bam HI/ Hind III digestion and is then gel purified. The inserts and vectors are ligated together with T4 DNA ligase, a technique well-known in the field of art. Ligation reactions are then transformed into electroporation-competent E. coli XL1-Blue (Strategene Cat. No. 200228) and plated onto LB Ampicillin plates (i.e. for pQE-31) or LB Chloramphenicol plates (i.e. for pACYC-31).

Each construct is analyzed individually for protein expression (as detailed in the Qiagen QIAexpress System literature) using E. coli M15[pREP4] (QIAGEN Cat. No. 34210) as an expression host for the pQE-31 based plasmids and XL1-Blue as the host for pACYC-31 based constructs. Since the pACYC-31 and pQE-31 vectors carry compatible origins of replication, reconstitution of the DGTS biosynthetic pathway is achieved by concurrent expression of pACYC-31:BtaA and pQE-31:BtaB, or pACYC-31:BtaA and pQE-31: BtaA in XL1-Blue. Transformed E. coli cells are grown and subsequently analyzed by TLC (as described below) for DGTS production after induction with 1-5 mM isopropyl-β-D-thiogalactoside (IPTG) (Amersham Pharmacia Biotech, Piscataway, NJ: Cat. No. 27-3054-03).

The present invention is not limited to the use of any specific protein expression vector or system. In one embodiment, the protein expression vector is selected from the group comprising pQE-9, pQE-16, pQE-30, pQE-31, pQE-32, pQE-40, pQE-60, pQE-70, pQE-80, pQE-81, pQE-82, pQE-100 (all available from QIAGEN, Inc., Valencia, CA). In another embodiment, the protein expression vector is selected from the group comprising pACYC-31 and pACYC184 (New England Biolabs, Beverly, MA: Cat. No. E4152S).

The present invention is not limited to any specific means of purifying recombinant R. sphaeroides btaA and btaB gene products. In one embodiment, the resulting plasmid constructs,
pQE-31: BtaA and pQE-31:BtaB, allowed the expression of their respective recombinant R. sphaeroides bta gene products in E. coli. Moreover, said plasmid constructs allow the purification of said gene products due to the selective binding of the six N-terminal histidine residues (i.e. 6xHis tag) of the plasmid construct to nickel nitriloacetic acid (Ni-NTA) agarose resin, following the manufacturer’s instructions. (QIAGEN, Inc., Valencia, CA: Cat. No. 30210). The recombinant R. sphaeroides bta gene products are eluted with 200 mM imidazole (which was subsequently removed by use of a Millipore Ultrafree 4 concentrator (Millipore, Inc., Bedford, MA)) and stored in a buffer comprising glycerol, NaCl, and NaH₂PO₄ (pH 7.5) at -20°C.

2. Expression of BtaA and BtaB in Yeast using the pYES2 system

It is not intended that the present invention be limited solely to the expression of the btaA and btaB gene products from R. sphaeroides in E. coli. In one alternative embodiment, the present invention contemplates the expression of said gene products, resulting in the production of betaine lipids (including but not limited to DGTS) in yeast as follows.

In order to amplify the btaB gene from R. sphaeroides genomic DNA (isolation as described above), a forward primer having the nucleotide sequence 5’-GCA AAG CTT AGC ATG GCC GAC GCC ACC CAT-3’ (SEQ ID NO: 8), and a reverse primer having the nucleotide sequence 5’-GCA GGA TCC CTC TCA CCG CGT GAG CGT G-3’ (SEQ ID NO: 9), were used such that BamH1 and Hind III sites were provided for cloning into the yeast expression vector pYES2 (Invitrogen Cat. No. V825-20).

In order to amplify the btaA gene from R. sphaeroides genomic DNA (isolation as described above), a forward primer having the nucleotide sequence 5’-CGG GGT ACC ATG GCG CAG TTC GCC CTC-3’ (SEQ ID NO: 9), and a reverse primer having the nucleotide sequence 5’-ACA TGC ATG CAG GAC GAT CCG CTC GAA CCG-3’ (SEQ ID NO: 10), were used such that Sph I and Kpn I sites were provided for cloning into pYES2.

The reaction mixtures and thermal cycling conditions are the same as those noted below in the Examples. PCR products are run on a 1% TAE agarose gel in the presence of ethidium bromide and excised for purification by QIAEX II gel extraction kit, followed by ligation into the appropriate restriction sites of pYES2 (i.e. Sph I and Kpn I sites or Bam H1 and Hind III sites). Ligation reactions are transformed into XL-1 Blue cells, and the resultant constructs
purified and transformed into INVSc1 *ura3* yeast cells (Invitrogen Cat. No. V825-20) as
described in the pYES2 product literature. The resulting plasmid constructs allow the expression
of the recombinant *btaA* and *btaB* gene products in yeast.

Yeast cells transformed by this method are grown and subsequently analysed by TLC (as
described below) for DGTS production after induction with 2% galactose-containing medium.

3. Co-Expression of *R. sphaeroides btaA* and *btaB* Gene Products

It is not intended that the invention be limited to the independent expression of a peptide
having the amino acid sequence selected from the group of SEQ ID NO: 3 and SEQ ID NO: 4,
or portions thereof, in a single host organism or plant. In one embodiment, the invention
contemplates the co-expression of both of the peptides described above in a single host organism
or plant. In one embodiment, co-expression of the peptides encoded by an amino acid sequence
selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4 (for example, in
separate protein expression vectors) in *E. coli*, such that a betaine lipid biosynthetic pathway
(*e.g.* produces DGTS) is reconstituted, is contemplated as follows.

In order to express two proteins in *E. coli*, two compatible plasmids with the ability to
express proteins, one for *btaA* and one for *btaB*, are utilized. Each plasmid must have a different
antibiotic resistance marker in order to select for transformants with the correct combination of
plasmids. The plasmid pQE-31 provides ampicillin resistance, whereas the plasmid, pACYC-31,
provides chloramphenicol resistance. The *btaA* and *btaB* genes from *R. sphaeroides* are
cloned into pQE-31 and pACYC-31 as described above. The M15 cell line (QIAGEN, Inc.,
Valencia, CA) is transformed with a pQE-31/*btaA* protein expression construct (as described
above). The pACYC-31/*btaB* expression construct is transformed into the M15 cell line
containing the pQE-31/*btaA* expression vector. Upon induction of expression with 1-5 mM
27-3054-03), both proteins are expressed.

C. Detection of Betaine Lipid Production

It is not intended that the present invention be limited by any specific means of detecting
the production of betaine lipids, including but not limited to DGTS, by the compositions and
methods contemplated herein. In one embodiment, detection of the production of betaine lipids
comprises thin layer chromatography and visualization with iodine vapor. In another
embodiment, detection of the production of betaine lipids comprises quantitative lipid analysis
wherein reaction products are isolated from the TLC plates and used to prepare fatty acid methyl
esters. The methyl esters are quantified by gas chromatography using myristic acid as the
internal standard. In an alternative embodiment, detection of the production of betaine lipids
comprises lipid extraction followed by fast atom bombardment-mass spectroscopy (FAB-MS).

1. Detection of DGTS Production by Thin Layer Chromatography (TLC)

Randomly chosen colonies from a population of \textit{R. sphaeroides} cells known to produce
the lipid, DGTS, are streaked as small patches (0.5 by 0.5 cm) on fresh Z-broth plates. Lipids
are isolated from these patches by collecting cells onto the wide end of a flat toothpick and
swirling the material in 75 \(\mu\)l of chloroform-methanol (1:1, vol/vol) contained in polypropylene
microcentrifuge tubes. Following the addition of 25 \(\mu\)l of 1 N KCl-0.2 M H\(_3\)PO\(_4\), the tubes are
vortexed and centrifuged to separate the organic and aqueous phases. A 10 \(\mu\)l aliquot is
withdrawn from the lipid-containing lower phase and directly spotted onto an activated
ammonium sulfate-impregnated silica gel thin layer chromatography (TLC) plate for one-
dimensional lipid separation. For this purpose, Baker Si250 silica plates with a pre-adsorbent
layer are prepared by soaking in 0.15 M ammonium sulfate for 30 seconds, followed by air
drying to complete dryness. Immediately prior to use, the plates are activated for 2.5 h at 120\(^\circ\)C.

Activation of ammonium sulfate-treated plates at 120\(^\circ\)C produces sulfuric acid, which protonates
phosphatidylglycerol, making it less polar. An acetone-benzene-water mixture (91:30:8, vol/vol/
vol) is employed as the solvent system. Lipids were visualized by spraying the plates with 50%
sulfuric acid followed by heating at 160\(^\circ\)C for 10 to 15 minutes to char the lipids. (See Figure
5).

2. Quantitative Lipid Analysis to Verify the Production of DGTS

It is not intended that the present invention be limited to any specific method of verifying
the production of betaine lipids including, but not limited to, DGTS. In one embodiment, a
method for quantitative lipid analysis of lipids produced by the present invention is
contemplated as described in Benning C. & Somerville C.R., "Isolation and Genetic

For each strain, three 50-ml cultures were grown aerobically in Sistrom's medium (as described above) with shaking at 32°C in the dark. The cells were grown under phosphate-limited conditions at an initial Pi concentration of 0.1 mM. The cells were centrifuged, suspended in 0.5 ml of water, and extracted by vortexing with 4 ml of chloroform-methanol (1:1, vol/vol). Addition of 1.3 ml of 1 M KCl-0.2 M H₃PO₄, vortexing, and centrifugation resulted in phase partitioning of the lipids into the lower chloroform phase. The chloroform phase was removed and concentrated to 0.2 ml by evaporation under a stream of N₂. The sample was split, and the material was spotted onto activated (30 min at 110°C) silica TLC plates (Si250; Baker). The plates were developed in two dimensions, first with chloroform-methanol-water (65:25:4, vol/vol/vol), and then with chloroform-acetone-methanol-acetic acid-water (50:20:10:10:5, by volume).

Lipids were visualized with iodine vapor (See Figure 6), and after desorption of iodine, the spots were individually scraped into 8-ml screw-cap tubes. To the samples, 5 μg of myristic acid methyl ester in 0.1 ml of hexane was added as an internal standard, since only negligible amounts of endogenous myristic acid are found in the bacterial lipids. Fatty acid methyl esters were prepared by addition of 1 ml of anhydrous 1 N methanolic HCl (Supelco) followed by incubation at 80°C for 1 h. Following the addition of 1 ml of 0.95% (wt/vol) KCl, the fatty acid methyl esters were extracted into 1 ml of hexane and then dried to a volume of 0.1 ml.

Samples (2 μl each) were injected onto a gas chromatograph (Varian 2000) which was equipped with a 2.4-m column (2-mm inner diameter) packed with 3% SP-2310 and 2% SP-2300 on 100/120 Chromosorb WAW (Supelco). The carrier gas (N₂) flow rate was adjusted to 20 ml/min, and the column temperature was set for 2 min at 180°C, increasing to 200°C over 10 min, and 4 min at 200°C.

The fatty acid methyl esters were detected by a flame ionization detector, and the data were integrated by a Spectra Physics integrator. To calculate the relative amounts of the polar lipids included in the analysis, the amount of fatty acids contained in each lipid of a particular sample was calculated from the resulting gas chromatogram based on the following formula:

\[
\text{[(total area under all peaks - standard peak area)/standard peak area] X 5 μg.}
\]

The relative amount for each lipid in the sample was expressed as a percent of all lipids analyzed (See, Table
2. The validity of calculation was based on the assumption that each of the lipids, including the unidentified lipids, contain two fatty acids per molecule, and that the different lipids have a similar fatty acid composition.

5

<table>
<thead>
<tr>
<th>Lipid</th>
<th>WT (mol%)</th>
<th>RKL3 (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHDG</td>
<td>1.3 ± 0.2</td>
<td>12.7 ± 1.6</td>
</tr>
<tr>
<td>DGTS</td>
<td>15.9 ± 1.7</td>
<td>ND</td>
</tr>
<tr>
<td>MPE</td>
<td>ND</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>GGDG</td>
<td>32.6 ± 2.4</td>
<td>36.7 ± 2.8</td>
</tr>
<tr>
<td>PE</td>
<td>1.5 ± 0.1</td>
<td>7.5 ± 0.4</td>
</tr>
<tr>
<td>OL</td>
<td>21.2 ± 3.6</td>
<td>15.2 ± 0.1</td>
</tr>
<tr>
<td>PG</td>
<td>4.7 ± 0.6</td>
<td>7.5 ± 0.4</td>
</tr>
<tr>
<td>SQDG</td>
<td>17.5 ± 0.9</td>
<td>14.5 ± 0.7</td>
</tr>
<tr>
<td>PC</td>
<td>0.1 ± 0.1</td>
<td>1.1 ± 0.6</td>
</tr>
<tr>
<td>PL</td>
<td>5.3 ± 0.5</td>
<td>3.7 ± 0.2</td>
</tr>
</tbody>
</table>

Mean values from three independent cultures (0.1 mM P) and standard errors are shown.

Abbreviations: DGTS, diacylglycerol-N,N,N-trimethylhomoserine; GGDG, glucosylgalactosyldiacylglycerol; MHDG, monohexosyldiacylglycerol; MPE, N-monomethylphosphatidylethanolamine; ND, not detected; OL, ornithine lipid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PL, undefined phospholipid; SQDG, sulfoquinovosyldiacylglycerol.

3. Confirmation of Betaine Lipid Production by FAB-MS and 1H-Nuclear Magnetic Resonance

It is not intended that the present invention be limited any specific method of confirming betaine lipid production. In one embodiment, a method for confirming the production of the betaine lipid, DGTS, is contemplated comprising fast atom bombardment mass
spectroscopy (FAB-MS) and 1H-NMR-spectroscopy as described in Benning et al., "Accumulation of a Novel Glycolipid and a Betaine Lipid in Cells of Rhodobacter sphaeroides Grown Under Phosphate-Limitation," Arch. Biochem. Biophys., 317: 103-111 (1995). Lipids produced by the present invention (e.g. DGTS) may be analyzed by FAB-MS and 1H-NMR-spectroscopy and compared to the predicted values for a range of lipids, and more specifically, betaine lipids, in order to confirm production of the desired lipid.

FAB-MS measurements were done at the MSU-NIH Mass Spectrometry Facility using a JEOL HX-110 double focusing mass spectrometer (JEOL USA, Peabody, MA) operating in the negative ion mode (for glycolipids) or in the positive ion mode (for betaine lipids).

Approximately 1 μg of lipid was mixed with 1 μl of matrix; either triethanolamine for glycolipids, or glycerol/15-crown-5 (2:1, v/v) for the betaine lipid. Ions were produced by bombardment with a beam of Xe atoms (6 keV). The accelerating voltage was 10 kV and the resolution was set at 1000. Exact mass measurements were obtained by peak matching at a resolution of ca. 10,000 to either a matrix ion or an ion of a reference compound added to the sample.

Briefly, the fatty acid composition of the Dragendorff-positive lipid (i.e. DGTS) accumulating in phosphate-starved cells of R. sphaeroides was determined. With cis-Δ^{11}-octadecenoyl (vaccenoyl) at 87.5 mol% as the predominant fatty acid, simple patterns for mass- and 1H-NMR-spectroscopy of purified DGTS samples containing a mixture of molecular species were expected. Positive mode FAB-MS indicated DGTS had molecular ion, [M+H]$^+$, at m/z 764. By high resolution FAB-MS peak matching to a reference ion ([M+H]$^+$ at m/z 734.4691 for C$_{37}$H$_{67}$NO$_{13}$) of erythromycin mixed in the sample, a mass of 764.6370 was measured for the molecular ion of DGTS. This value is in agreement with the formula C$_{46}$H$_{86}$NO$_{17}$ (4.5 ppm error from the calculated mass of 764.6404 for the [M+H]$^+$ ion of a N-trimethyl homoserine betaine lipid containing two acyl functions corresponding to a total fatty acid composition of 36:2, e.g. two vaccenoyl residues. Vaccenic acid was the predominant fatty acid in DGTS as determined by GC-analysis. The mass spectrum revealed a fragment at m/z 500 resulting from the loss of water and one 18:1 acyl group. An abundant fragment at m/z 236 of the MS/MS spectrum was interpreted as the result of a loss of two water molecules and two 18:1 acyl chains. A third fragment at m/z 162 representing the betaine head group, most likely resulted from elimination of glycerol minus water (propenediol) from the fragment m/z
236. Negative ion mode FAB-MS of DGTS was unsuccessful, as would be expected from a molecule carrying a net positive charge.

H-NMR analyses were performed in a Varian VXR500 spectrometer (500 MHz for protons) at 25°C in CD3OD for the glycolipid and in CD3OD/CDCl3 (1:1 vol/vol) for the betaine lipid. The concentrations for the lipids were approximately 1 mg/ml. One-dimensional 1H-spectra were measured using a 30-90° tipping angle for the pulse and 0.2 seconds as a recycle delay between each of the 64 acquisitions. The chemical shifts are expressed in ppm downfield from an external standard of Me4Si and actually measured by reference to internal CH3OH (3.59 ppm) or CHCl3 (7.24 ppm). Two-dimensional COSY- (1H-1H correlated spectroscopy) and HMQC- (heteronuclear multiple quantum correlation spectroscopy) spectra were recorded using standard procedures.

Briefly, in order to confirm the structure of the betaine lipid accumulating in R. sphaeroides, a 1H-NMR was recorded for the purified compound. This spectrum was found to be nearly identical to published 1H-NMR spectra for N-trimethylhomoserine betaine lipid purified from the fern Adiantum capillus-veneris L. or the unicellular algae Dunaliella parva with the exception of the complexity for the fatty acid specific resonances due to different acyl groups in the different samples. The 1H-NMR spectra for DGTS showed resonance values for the fatty acyl chains (0.6-2.5 ppm) and the glycerol protons (H-2 5.12 ppm, H-1a, 4.35 ppm, H-1b 4.13 ppm, H-3a 3.59 ppm, and H-3b 3.55 ppm), thereby suggesting a diacylglycerol structure for the lipid. The protons of the N,N,N-trimethyl group gave rise to a strong resonance at 3.18 ppm typical for all betaine lipids (See Sato, N., and Furuya, M., Plant Cell Physiol., 21: 1113-1120 (1983); Evans et al., Chem. Phys. Lipids, 31: 331-338 (1982); and Vogel et al., Chem. Phys. Lipids, 52: 99-109 (1990)).

II. Expression of the R. sphaeroides btaA and btaB genes in Plants

The present invention also contemplates the expression of the R. sphaeroides btaA and btaB genes in plants. Although the present invention is not limited to the expression of said genes in any specific plant, in one embodiment, the expression of the R. sphaeroides btaA and btaB genes in Arabidopsis is provided as follows.
A. Cloning and Expression of the *R. sphaeroides* btaA and btaB genes in Transgenic Plants

Transfer and expression of transgenes in plant cells is now routine practice to those skilled in the art. It has become a major tool to carry out gene expression studies and to attempt to obtain improved plant varieties of agricultural or commercial interest. The present invention is not limited to the expression of the recombinant *R. sphaeroides* peptides encoded by SEQ ID NO: 1 and SEQ ID NO: 2 in bacteria and yeast. The invention also contemplates the expression of recombinant *R. sphaeroides* btaA (SEQ ID NO: 1) and btaB (SEQ ID NO: 2) genes in transgenic plants through agrobacterial transformation as described by S. Clough and A. Bent, "Floral dip: a simplified method for Agrobacterium-mediated transformation of *Arabidopsis thaliana,*" *Plant J.,* 16: 735-43 (1998).

In one embodiment, the general process for manipulating genes to be transferred into the genome of plant cells to result in the expression of a recombinant peptide is carried out in two phases. First, all the cloning and DNA modification steps are done in *E. coli,* and the plasmid containing the gene construct of interest is transferred by conjugation into Agrobacterium. Second, the resulting Agrobacterium strain is used to transform plant cells. Thus, for the generalized plant expression vector, the plasmid contains an origin of replication that allows it to replicate in Agrobacterium and a high copy number origin of replication functional in *E. coli.* This permits facile production and testing of transgenes in *E. coli* prior to transfer to Agrobacterium for subsequent introduction into plants. Resistance genes can be carried on the vector, one for selection in bacteria (*e.g.*, streptomycin), and the other for selection in plants (*e.g.*, a gene encoding for kanamycin resistance or a gene encoding for resistance to an herbicide such as hygromycin). Also present are restriction endonuclease sites for the addition of one or more transgenes operably linked to appropriate regulatory sequences and directional T-DNA border sequences which, when recognized by the transfer functions of Agrobacterium, delimit the region that will be transferred to the plant.

In another embodiment, plant cells may be transformed by shooting into the cell, tungsten microprojectiles on which cloned DNA is precipitated. (*See, e.g.,* Gordon-Kamm *et al.,* *Plant Cell,* 2: 603 (1990)). In one embodiment, the Biolistic Apparatus (Bio-Rad, Hercules, Calif.) is used for the shooting with a gunpowder charge (22 caliber Power Piston Tool Charge) or an air-driven blast driving a plastic macroprojectile through a gun barrel. An aliquot of a
suspension of tungsten particles on which DNA has been precipitated is placed on the front of the plastic macroprojectile. The latter is fired at an acrylic stopping plate that has a hole through it that is too small for the macroprojectile to go through. As a result, the plastic macroprojectile smashes against the stopping plate and the tungsten microprojectiles continue toward their target through the hole in the plate. For the present invention the target can be any plant cell, tissue, seed, or embryo. The DNA introduced into the cell on the microprojectiles becomes integrated into either the nucleus or the chloroplast.

It is not intended that the present invention be limited to the particular manner by which the expression of any specific recombinant *R. sphaeroides* peptide in plants is achieved. In one embodiment, a peptide encoded by the nucleic acid sequences as set forth in SEQ ID NO: 1 is expressed in plants. In another embodiment, a peptide encoded by the nucleic acid sequence as set forth in SEQ ID NO: 2 is expressed in plants. In a further embodiment, two recombinant *R. sphaeroides* peptides encoded by the group of nucleic acid sequences comprising SEQ ID NO: 1 and SEQ ID NO: 2 are co-expressed in plants.

It is not intended that the present invention be limited by any particular plant cell type in which to generate the expression of recombinant *R. sphaeroides* gene products. In one embodiment, the plant cell is derived from a monocotyledonous plant. In an alternative embodiment, the plant cell is derived from a dicotyledonous plant. In another embodiment, the plant cell is derived from a group comprising the genera Anacardium, Arachis, Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannesetum, Persea, Phaseolus, Pistacia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solanum, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vigna, and Zea. In a preferred embodiment, the plant cell is derived from *Arabidopsis thaliana*.

B. Detection of Betaine Lipid Production in Plants

It is not intended that the present invention be limited to any specific method of detecting the production of betaine lipids (including but not limited to DGTS) in plants. In one embodiment, the production of betaine lipids in plants is monitored by TLC as described above.
In another embodiment, said detection comprises the isolation of plant nucleic acids and Northern Blot Hybridization Analysis as described below.

1. Isolation of Total RNA from *Arabidopsis thaliana* Tissues

It is not intended that the invention be limited by any specific method to isolate total RNA from *A. thaliana* tissues. In one embodiment, total RNA is isolated from said tissues by guanidine hydrochloride extraction as follows. Said tissues are frozen in liquid nitrogen and homogenized to a fine powder using a Waring blender. For small amounts of tissue (less than 0.5 g), a rotating pin in a 1.5-ml Eppendorf tube is used to homogenize the tissue. The extract is homogenized further at room temperature by the addition of 2 volumes of a guanidine buffer comprising 8 M guanidine hydrochloride, 20 mM MIES (4-morpholineethansulfonic acid), 20 mM EDTA, and 50 mM 2-mercaptoethanol at pH 7.0.

The guanidine hydrochloride extract is centrifuged in a precooled (4°C) centrifuge for 10 minutes at 10,000 rpm. Subsequently the RNA-containing supernatant is filtered through one layer of cheesecloth to get rid of floating particles. At least 0.2-1.0 vol of phenol/chloroform/IAA is added to extract proteins. After extraction the mixture is centrifuged for 45 minutes at 10,000 rpm at room temperature to separate the phases. The RNA-containing aqueous phase is collected and mixed with pre-cooled 0.7 volumes of ethanol and 0.2 volumes of 1 M acetic acid for precipitating the RNA and leaving DNA and residual proteins in the supernatant. An overnight incubation at -20°C, or a 1 hour incubation at -70°C, is recommended.

The precipitated RNA is pelleted at 10,000 rpm for 10 min and washed twice with sterile 3 M sodium acetate at pH 5.2 at room temperature. Low-molecular-weight RNAs and contaminating polysaccharides dissolve, whereas intact RNA stays as a pellet after centrifugation for 5 minutes at 10,000 rpm. The salt is removed by a final wash with 70% ethanol and the RNA pellet is subsequently dissolved in sterile water and stored at 20°C until needed. In the event that the total RNA isolated as described above requires further enrichment and purification prior to Northern Blot Hybridization Analysis, said RNA may be subjected to Poly A+ mRNA isolation as described below.
2. Poly A+ mRNA Isolation from *Arabidopsis thaliana* Total RNA

The present invention is not limited to any specific means of isolating Poly A+ mRNA from the total RNA of *Arabidopsis thaliana* leaves. In one embodiment, Poly A+ mRNA was isolated from *A. thaliana* leaf total RNA with the Oligotex mRNA Mini Kit (QIAGEN Cat. No. 700222) following the manufacturer's instructions as follows.

The Oligotex Suspension is heated to 37°C in a heating block, mixed by vortexing, and placed at room temperature. A sample containing 0.25 mg of *A. thaliana* leaf total RNA is pipetted into an RNase-free 1.5-ml microcentrifuge tube, and the volume of the reaction is adjusted to 0.25 ml with RNase-free water. A volume of 0.25 ml of Buffer OBB and 0.015 ml of Oligotex Suspension are added to the reaction. The contents are mixed thoroughly by pipetting. The sample incubated for 3 minutes at 70°C in a water bath or heating block in order to disrupt secondary structure of the RNA. The sample is removed from the heating block, and placed at room temperature (20 to 30°C) for 10 minutes to allow hybridization between the oligo dT30 of the Oligotex particle and the poly-A tail of the mRNA. The Oligotex:mRNA complex is pelleted by centrifugation for 2 minutes at maximum speed (14,000–18,000 x g), and the supernatant is removed by pipetting.

The Oligotex:mRNA pellet is resuspended in 400 µl Buffer OW2 by vortexing, and pipetted onto a small spin column supplied with the kit. The spin column is centrifuged for 1 minute at maximum speed (14,000–18,000 x g). The spin column is transferred to a new RNase-free 1.5-ml microcentrifuge tube, and 400 µl of Buffer OW2 is applied to the column. The spin column is centrifuged for 1 minute at maximum speed and the flow-through fraction is discarded.

The spin column is transferred to another 1.5-ml microcentrifuge tube. A volume of 20–100 µl hot (70°C) Buffer OEB is pipetted onto the column. The resin is resuspended by pipetting up and down three or four times to allow elution of the mRNA, and centrifuged for 1 minute at maximum speed to pellet the suspension. The flow-through fraction, which contains the Poly A+ mRNA is isolated and stored at -20°C until it is used.
3. Northern Blot Hybridization Analysis

Although the present invention is not limited to any specific method of performing Northern Blot analysis for detecting the production of betaine lipids (including but not limited to DGTS) in plants, in one embodiment, said analysis is performed as follows.

Prior to preparation of an agarose gel for Northern Blot Analysis, the electrophoresis chamber, gel tray, and gel comb are soaked in 1:10 diluted bleach for 30 min to 1 h. An agarose gel comprising 2.25 g of Agarose, 110 ml of H₂O, 15 ml of 10X MEND buffer (10X MEND: 41.9 g MOPS-NaOH, 4.1 g NaOAc, 3.72 g EDTA, pH 7.0, H₂O to 1000 ml, DEPC, autoclaved), 25 ml of 37% formaldehyde (Merck Cat.No. 3999) is prepared. The gel is poured into a 14 cm x 14 cm gel tray, and a 10-14 sample comb is inserted into the agarose gel.

Total RNA samples from plant tissue, isolated as described above, is prepared for electrophoresis as follows. For each sample, approximately 10 to 20 mg of RNA (in a volume of 20 μl) is mixed with 4 μl 10x MEND, 6 μl 37% formaldehyde, 20 μl fresh formamide, 0.5 μl 10 mg/ml ethidium bromide, 0.5 μl 1 mg/ml bromophenol blue (in DEPC-treated water) to a total sample volume of 51.1 μl. The samples are incubated for 10 min at 56°C, and then placed on ice until loaded into the agarose gel. The samples are loaded into the gel sample wells prior to adding 1000 ml of electrophoresis buffer (1X MEND). The gel is electrophoresed at 100 Volts (constant voltage). After 15 min, when the samples have entered the gel (ca. 1 cm), the gel is submerged in the 1X MEND buffer. The gel is run at 100 Volt, for 3 to 5 h, until the blue dye has migrated up to 2/3 of the gel. The gel is removed from the electrophoresis chamber and photographed.

The Northern Blot of the gel assembly is prepared by placing one 14 cm x 14 cm sheet of hybridization membrane (Hybond N+ from Amersham), two 14 cm x 14 cm sheets of filter paper (Whatman 3MM), and two 15 cm x 25 cm sheets of filter paper, on top of the gel. The sequence of placement of the filter papers and membrane are as follows. Prior to placement on the gel, the filter papers are moistened with 10X SSC, and the hybridization membrane is soaked in distilled water. The gel chamber is filled with 500 ml 10X SSC. The two 15 cm x 25 cm sheets of filter paper are placed in the gel chamber, and the agarose gel is placed upside-down on top of the sheets. The hybridization membrane is placed on top of the gel. The two 14 cm x 14 cm sheets of filter paper are placed on top of the membrane. Finally, paper towels are placed on top of the 14 cm x 14 cm sheets of filter paper, and a piece of plastic (e.g. gel tray) is placed
on top of the assembly with a glass bottle (100 to 500 g) to act as a weight. The assembly is left
to blot the RNA from the gel overnight. Note that 10X SSC buffer may be prepared by making
a 1:2 dilution of 20X SSC (175.3 g NaCl, 88.2 g Na citrate, pH 7.0, distilled water to 1000 ml,
DEPC-treated and autoclaved) in DEPC-treated water.

The next day, the membrane is removed from the gel and marked in the upper right
corner with the date. The membrane is air-dried for 15 min. The membrane is fixed incubating
in 50 mM NaOH for 5 min. Alternatively, the membrane may be baked for 2 h at 80°C in a
vacuum oven. Prior to pre-hybridization, the membrane is washed in 2X SSC for 2 min.

The membrane is placed in a 30 cm hybridization tube (Biometra) with pre-hybridization
buffer comprising 250 mM Na₂PO₄, pH 7.4, 7% Sodium dodecyl sulfate (SDS), 1 mM EDTA,
1% Bovine Serum Albumin (BSA), 150 µl of a 10 mg/ml herring sperm DNA solution
(denatured at 95°C for 3 min), and distilled water. The membrane is allowed to pre-hybridize
for at least 4 hours prior to hybridization at 68°C.

Prior to hybridization, a radio-labeled hybridization probe is prepared as follows. A
DNA fragment comprising a nucleotide sequence selected from the group consisting of SEQ ID
NO: 1 (btA) and SEQ ID NO: 2 (btB), and portions thereof, is labeled by random-priming
with fresh ³²P-dCTP (58 µCi, 3000 Ci/mol) using the Megaprime DNA labeling kit (Amersham
Cat. No. RPN 1606-5-6-7) as per the manufacturer's instructions. The radio-labeled probe is
added directly to the hybridization tube containing the pre-hybridization solution and membrane.

The membrane is allowed to hybridize overnight at 68°C.

Upon completion of hybridization, the membrane is washed 2X SSC, 0.1% SDS at 68°C
in the hybridization tube for 5 min. The membrane is then removed from the tube and washed,
in a glass or plastic container, 2-3 additional times for approximately 15 min each until the wash
buffer is no longer radioactive. Once washing is completed, the membrane is placed in a plastic
bag and exposed to X-ray film in a film cassette with an intensifying screen for 12-72 hours at
-70°C. RNA samples which contained sequences homologous to the radio-labeled probe are
visualized upon development of the X-ray film. A positive signal indicates that the plant from
which the RNA sample was isolated produces RNA transcripts homologous to a nucleotide
sequence selected from the group consisting of SEQ ID NO: 1 (btA) and SEQ ID NO: 2 (btB),
and thus, indicates that the plant produces betaine lipids including, but not limited to, DGTS.
III. Method for the Production of DGTS in vitro

The methods of the present invention comprise the utilization of compositions comprising isolated and purified DNA having an oligonucleotide sequence selected from the group consisting of the *R. sphaeroides btaA* (SEQ ID NO: 1) and *btaB* (SEQ ID NO: 2) genes, and portions thereof, such that DGTS is produced. In one embodiment, the production of the betaine lipid DGTS from a reaction mixture comprising isolated and purified protein having an amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, and portions thereof, is contemplated.

In one embodiment, the *R. sphaeroides btaA* and *btaB* genes are cloned into pQE-31 and pACYC-31, respectively, and expressed in *E. coli* as described above. Next, the *btaA* gene product (i.e. a first peptide), and the *btaB* gene product (i.e. a second peptide), are substantially purified using the QIAexpress Ni-NTA/6xHis-tag system as described above. Following purification of said peptides, DGHS (a betaine lipid precursor) is produced in a reaction containing means by reacting 50 mM Bicine (N,N-bis(2-hydroxyethyl) glycine), pH 8.1, 10 mM MgCl₂, 1 mM cysteine, 100 μM S-adenosylmethionine (SAM), 100 μM diacylglycerol, and 10 μg of a substantially purified first peptide encoded by the amino acid sequence set forth in SEQ ID NO: 3, in a 100 μl reaction volume at 37°C for 40 minutes. Next, 10 μg of a substantially purified second peptide encoded by the amino acid sequence set forth in SEQ ID NO: 4 and 100 μM SAM are added to the above reaction mixture such that DGTS is produced. (See, e.g., Arondel *et al.*, "Isolation and Functional Expression in *Escherichia coli* of a Gene Encoding Phosphatidylethanolamine Methytransferase (EC 2.1.1.17) from *Rhodobacter sphaeroides*," *J. Biol. Chem.*, 268(21): 16002-16008 (1993). In another embodiment, said first peptide is a gene product encoded by the nucleic acid sequence set forth in SEQ ID NO: 22 (MI-∗btaA*). In another embodiment, said second peptide is a gene product encoded by the nucleic acid sequence set forth in SEQ ID NO: 23 (MI-∗btaB*).

The present invention is not limited by a specific means for verifying the production of DGTS by the method described above. The production of DGTS as a reflection of S-adenosylmethionine: diacylglycerol-3-amino-3-carboxyl transferase and S-adenosylmethionine: diacylglycerol homoserine-N-methyltransferase activity is detected by Quantitative Lipid Analysis as described above. In another embodiment, the production of DGTS is verified by the following means. Aliquots of the above reaction are analyzed by thin
layer chromatography (TLC) on activated ammonium sulfate impregnated silica gel TLC plates
with a solvent system containing acetone-toluene-water (91:30:8, vol/vol/vol). Products of the
above reaction are then visualized with iodine vapor and identified by co-chromatography with
an R. sphaeroides lipid extract known to contain DGTS.

IV. Variants of the Peptides Encoded by the R. sphaeroides btaA and btaB Genes

The present invention also contemplates variants of the peptides defined by an amino
acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4. It is
believed that the R. sphaeroides btaA (SEQ ID NO: 3) and btaB (SEQ ID NO: 4) genes can be
"altered" at one or more selected codons to produce variants of the peptides encoded by said
genes without significantly disrupting the wild-type functions of the peptides. An alteration is
defined as a substitution, deletion, or insertion of one or more codons in the gene encoding the
peptide of interest that results in a change in the amino acid sequence of the peptide as compared
with the unaltered or wild-type sequence of the peptide. Preferably, the alterations are by
conservative substitution of at least one amino acid with another amino acid in one or more
regions of the molecule.

For example, it is contemplated that an isolated replacement of a leucine with an
isoleucine or valine, an alanine with a glycine, a threonine with a serine, or a similar
replacement of an amino acid with a structurally related amino acid (i.e., conservative
mutations) will not have a major effect on the biological activity of the resulting molecule.
Conservative substitutions are those that take place within a family of amino acids that are
related in their side chains. Amino acids can be divided into four families: (1) acidic (aspartate,
glutamate); (2) basic (lysine, arginine, histidine); (3) nonpolar (alanine, valine, leucine,
isoleucine, proline, phenylalanine, methionine, tryptophan); and (4) uncharged polar (glycine,
asparagine, glutamine, cysteine, serine, threonine, tyrosine). Phenylalanine, tryptophan, and
tyrosine are sometimes classified jointly as aromatic amino acids. In an alternative, yet similar
fashion, the amino acid repertoire can be grouped as: (1) acidic (aspartate, glutamate); (2) basic
(lysine, arginine histidine), (3) aliphatic (glycine, alanine, valine, leucine, isoleucine, serine,
threonine), with serine and threonine optionally be grouped separately as aliphatic-hydroxyl; (4)
aromatic (phenylalanine, tyrosine, tryptophan); (5) amide (asparagine, glutamine); and (6) sulfur
-containing (cysteine and methionine) (See e.g., Stryer ed., Biochemistry, 2nd ed., WH Freeman and Co.(1981)).

Thus, in certain embodiments, modifications of the peptides encoded by an amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4 are contemplated by the present invention. Guidance in determining which and how many amino acid residues may be substituted, inserted or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, DNASTar software or GCG (Univ. of Wisconsin).

Whether a change in the amino acid sequence of a peptide defined by an amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4 results in a peptide useful for the production of betaine lipids can be readily determined by monitoring the level of production of said lipids by TLC as described above (i.e. if the function of either the R. sphaeroides btaA or btaB peptide is significantly disrupted by the amino acid substitution, then the production of betaine lipids (e.g. DGTS) is reduced or completely abolished, and the TLC assay should reflect the difference in betaine lipid production when compared to such lipids produced by the wild-type R. sphaeroides peptides).

Oligonucleotide-mediated, or site-directed, mutagenesis is the preferred method for preparing substitution, deletion, or insertion variants of the peptides defined by the amino acid sequence of SEQ ID NO: 3 and SEQ ID NO: 4. The technique is well known in the art as described by Zoller et al., Nucl. Acids Res., 10: 6487 (1987). (See also Carter et al., Nucl. Acids Res., 13: 4331 (1986)).

Generally, oligonucleotides of at least 25 nucleotides in length are used. Although smaller oligonucleotides can be employed, an optimal oligonucleotide has 12 to 15 nucleotides that are complementary to the template on either side of the nucleotide(s) coding for the mutation. This ensures that the oligonucleotide hybridizes properly to the single-stranded DNA template molecule. The oligonucleotides are readily synthesized using techniques known in the art such as that described by Crea et al., Proc. Natl. Acad. Sci. USA, 75: 5765 (1978).

The DNA template can only be generated by those vectors that are either derived from bacteriophage M13 vectors (the commercially available M13mp18 and M13mp19 vectors are suitable), or those vectors that contain a single-stranded phage origin of replication as described by Vieira and Messing, Meth. Enzymol., 153: 3-11 (1987). A preferred vector is pBluescript II
SK+ (Stratagene) which contains the filamentous phage f1 origin of replication, thereby allowing the rescue of single-stranded DNA upon co-infection with a helper phage. Thus, the DNA that is to be mutated must be inserted into one of these vectors in order to generate single-stranded template. Production of the single-stranded template is described in sections 4.21-4.41 of Sambrook et al., "Molecular Biology: A Laboratory Manual," Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989).

Briefly, in one embodiment, the *R. sphaeroides* wild-type *btaA* and *btaB* genes are altered by hybridizing an oligonucleotide encoding the desired mutation to a DNA template under suitable hybridization conditions, wherein the template is the single-stranded form of the plasmid containing the unaltered or wild-type DNA sequence for *btaA* (SEQ ID NO: 1) or *btaB* (SEQ ID NO: 2). After hybridization, a DNA polymerizing enzyme (e.g. the Klenow fragment of DNA polymerase I) is then added to synthesize the complementary strand of the template using the oligonucleotide as a primer for synthesis, and thus incorporates the oligonucleotide primer and codes for the selected alteration in the *btaA* and *btaB* genes. A heteroduplex molecule is thus formed such that one strand of DNA encodes the mutated form of the *btaA* or *btaB* gene, and the other strand (the original template) encodes the wild-type, unaltered sequence of the *btaA* or *btaB* gene. This heteroduplex molecule is then transformed into a suitable host cell, usually a prokaryote such as *E. coli* JM101. After the cells are grown, they are plated onto agarose plates and screened by colony hybridization using the oligonucleotide primer radio-labeled with 32-Phosphate to identify the bacterial colonies that contain the mutated DNA. (See Short et al., Nucleic Acids Res., 16: 7583-7599 (1988)).

The method described immediately above can be modified such that a homoduplex molecule is created wherein both strands of the plasmid contain the mutation(s). The modifications are as follows: The single-stranded oligonucleotide is annealed to the single-stranded template as described above. A mixture of three deoxyribonucleotides, deoxyriboadenosine (dATP), deoxyriboguanosine (dGTP), and deoxyribothymidine (dTTP), is combined with a modified thio-deoxyribocytosine called dCTP-(AS) (which can be obtained from Amersham). This mixture is added to the template-oligonucleotide complex. Upon addition of DNA polymerase to this mixture, a strand of DNA identical to the template except for the mutated bases is generated. In addition, this new strand of DNA contains dCTP-(AS) instead of dCTP, which serves to protect it from restriction endonuclease digestion. After the
template strand of the double-stranded heteroduplex is nicked with an appropriate restriction
enzyme, the template strand can be digested with ExoIII nuclease or another appropriate
nuclease past the region that contains the site(s) to be mutagenized. The reaction is then stopped
to leave a molecule that is only partially single-stranded. A complete double-stranded DNA
homoduplex is then formed using DNA polymerase in the presence of all four
deoxyribonucleotide triphosphates, ATP, and DNA ligase. This homoduplex molecule can then
be transformed into a suitable host cell such as *E. coli* JM101, as described above.

It is not intended that the present invention be limited to variants of the peptides defined
by an amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID
NO: 4 wherein only a single amino acid substitution has been made. The present invention also
contemplates variants that comprise greater than one amino acid substitution. Variants with
more than one amino acid to be substituted can be generated in one of several ways. In one
embodiment, if the amino acids are located close together in the polypeptide chain, they can be
mutated simultaneously using one oligonucleotide that codes for all of the desired amino acid
substitutions. However, if the amino acids are located some distance from each other (separated
by more than about ten amino acids), it is more difficult to generate a single oligonucleotide that
encodes all of the desired changes. Instead, one of two alternative methods can be employed.

In another embodiment, a separate oligonucleotide is generated for each amino acid to be
substituted. The oligonucleotides are then annealed to the single-stranded template DNA
simultaneously, and the second strand of DNA that is synthesized form the template encodes all
of the desired amino acid substitutions. An alternative embodiment involves two or more
rounds of mutagenesis to produce the desired mutant. The first round is as described for the
single mutants: wild-type DNA is used for the template, an oligonucleotide encoding the first
desired amino acid substitution(s) is annealed to this template, and the heteroduplex DNA
molecule is then generated. The second round of mutagenesis utilizes the mutated DNA
produced in the first round of mutagenesis as the template. Thus, this template already contains
one or more mutations. The oligonucleotide encoding the additional desired amino acid
substitution(s) is then annealed to this template, and the resulting strand of DNA now encodes
mutations from both the first and second rounds of mutagenesis. This resultant DNA can be
used as a template in a third round of mutagenesis, and so on.
Transformation of prokaryotic cells is readily accomplished using the calcium chloride method as described in section 1.82 of Sambrook et al., supra. Alternatively, electroporation (Neumann et al., EMBO J., 1: 841 (1982)) can be used to transform these cells. The transformed cells are selected by growth on an antibiotic, commonly tetracycline, kanamycin, or ampicillin, to which they are rendered resistant due to the presence of tet, kan, and/or amp resistance genes on the vector.

Suitable prokaryotic host cells include E. coli strain JM101, E. coli K12 strain 294 (ATCC number 31,446), E. coli strain W3110 (ATCC number 27,325), E. coli X1776 (ATCC number 31,537), E. coli XL-1Blue MRF' (Stratagene), and E. coli B; however, many other strains of E. coli, such as HB101, NM522, NM538, and NM539, and many other species and genera of prokaryotes can be used as well. In addition to the E. coli strains listed above, bacilli such as Bacillus subtilis, other enterobacteriaceae such as Salmonella typhimuuri or Serratia marcescens, and various Pseudomonas species can all be used as hosts.

After selection of the transformed cells, these cells are grown in culture and the plasmid DNA (or other vector with the foreign gene inserted) is then isolated. Plasmid DNA can be isolated using methods known in the art. Two suitable methods are the small-scale preparation of DNA and the large-scale preparation of DNA as described in sections 1.25-1.33 of Sambrook et al., supra. The isolated DNA can be purified by methods known in the art such as that described in section 1.40 of Sambrook et al., supra. This purified plasmid DNA is then analyzed by restriction mapping and/or DNA sequencing to confirm the presence of the desired btaA or btaB mutation in the selected transformant. DNA sequencing is generally performed by either the method of Messing et al., "A system for shotgun DNA sequencing," Nucleic Acids Res., 9: 309 (1981), the method of Maxam A.M. & Gilbert W., "Sequencing end-labelled DNA with base-specific chemical cleavages," Meth. Enzymol., 65: 499-560 (1980), or the method of Sanger et al., "DNA sequencing with chain-terminating inhibitors," Proc. Natl. Acad. Sci. USA, 74: 5463-5467 (1977).

V. **R. sphaeroides btaA and btaB Gene Homologs**

It is not intended that the present invention be limited to the utilization of peptides encoded by the oligonucleotide sequence of the btaA (SEQ ID NO: 1) and btaB (SEQ ID NO: 2) genes from R. sphaeroides. The present invention also relates to methods for discovering
homologs of the *R. sphaeroides* btaA and btaB genes in other organisms, and compositions comprised thereof. In one embodiment, the present invention contemplates utilizing compositions comprising peptides encoded by an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 22 and SEQ ID NO: 23. In one embodiment, a method for the isolation and purification of the *R. sphaeroides* btaA and btaB gene homologs from *Mesorhizobium loti*, MI-btaA (SEQ ID NO: 22)(Figure 22) and MI-btaB (SEQ ID NO: 23)(Figure 23), is conducted as follows.

In order to identify *R. sphaeroides* btaA and btaB gene homologs in *M. loti*, the GenBank database of nucleic and amino acid sequences for *M. loti* (GenBank Accession Nos. AP002997, BA000012) is searched with the oligonucleotide and amino acid sequences of the *R. sphaeroides* btaA and btaB genes using TBLASTN. Two such homologs were identified in the organism *Mesorhizobium loti* (i.e. MI-btaA and MI-btaB), and an amino acid consensus alignment was performed. (See Figures 20 and 21). The identified homologs are then cloned into pPCR-Script Amp for expression in *E. coli* using a PCR-based strategy.

Briefly, genomic DNA from *M. loti* is isolated as described above for the isolation of *R. sphaeroides* genomic DNA. *M. loti* genomic DNA is then subjected to PCR in order to clone the MI-btaA and MI-btaB genes into *E. coli*. For example, for the MI-btaA gene, a forward primer having the oligonucleotide sequence 5'-ACA TGC ATG CAA TGA CGG ACG TCT CCT CGG A-3' (SEQ ID NO: 24), and a reverse primer having the oligonucleotide sequence 5'-CGG GGT ACC TCA TGC CGT GCG CTT CAC AT-3' (SEQ ID NO: 25), are used such that Sph I and Kpn I sites, respectively, were generated. For the MI-btaB gene, a forward primer having the oligonucleotide sequence 5'-GCG GAT CGG ATG ACC GAT CGT CCG G-3' (SEQ ID NO: 26), and a reverse primer having the oligonucleotide sequence 5'-GCA AGC TTT TAG CTG GCG ATC TTG ATC A-3' (SEQ ID NO: 27), are used such that Bam HI and *HinD III* sites, respectively, were generated.

Specifically, the MI-btaA and MI-btaB genes are generated by PCR in reaction mixtures (50 µl) comprising: 1X PCR buffer (Gibco-BRL); 2.5 mM MgCl₂ (Gibco-BRL); 350 mM forward primer; 350 mM reverse primer; 10% (v/v) DMSO; 200 µM dATP, dGTP, dCTP, dTTP; 1 ng *M. loti* genomic DNA; and 2.5 U Taq DNA polymerase (Roche Molecular). PCR reaction mixtures are subjected to thermal cycling in a GeneAmp PCR System 9600 thermal cycler (Applied Biosystems, Foster City, CA: Cat. No. N801-0001) under the following conditions: 1
denaturation cycle at 95°C for 3 minutes; 30 cycles comprised of 95°C for 30 seconds, 57°C for 30 seconds, and 72°C for 60 seconds; and 1 extension cycle at 72°C for 5 minutes. PCR products are run on 1% TAE agarose gel in the presence of ethidium bromide, and excised for purification by QIAEX II gel extraction kit (Qiagen Cat. No. 20021), followed by cloning into the SrfI site of pPCR-Script Amp (as per manufacturer’s instructions). The resulting plasmid constructs allow the independent expression of the recombinant *R. sphaeroides* btaA and btaB genes in *E. coli*.

Next, in order to isolate and purify the Ml-btaA and Ml-btaB gene products, the Ml-btaA and Ml-btaB genes are cloned into the protein expression vectors pQE-31 and pACYC-31. Briefly, for the Ml-btaA gene, pQE-31 and pACYC-31 vectors are digested with *Sph* I and *Kpn* I and gel purified using the QIAEX II kit. The PCR insert is excised from pPCR-Script Amp by *Sph* I/*Kpn* I digest and gel purified, followed by ligation of the insert and vectors. Ligation reactions are then transformed into electrocompetent XL1-Blue *E. coli* and plated onto LB Ampicillin plates (pQE-31) or LB Chloramphenicol plates (pACYC-31). For the Ml-btaB gene, pQE-31 and pACYC-31 are digested with *Bam* HI and *Hind* III and gel purified as described above. The insert is released from the vector by *Bam* HI/*Hind* III digest and gel purified, followed by ligation of insert and vectors. Ligation reactions are then transformed into electrocompetent XL1-Blue *E. coli* and plated onto LB Ampicillin plates (pQE-31) or LB Chloramphenicol plates (pACYC-31).

Each construct is analyzed individually for protein expression as detailed in the QIAexpress literature using M15[pREP4] as an expression host for the pQE-31 based plasmids and XL1-Blue as the host for pACYC-31 based constructs. Since the pACYC-31 and pQE-31 vectors carry compatible origins of replication, reconstitution of the DGTS biosynthetic pathway is achieved by the concurrent expression of pACYC-31:Ml-btaA and pQE-31:Ml-btaB, or pACYC-31:Ml-btaB and pQE-31:Ml-btaA, in XL1-Blue cells. Cells expressing both of said genes are analysed by TLC for DGTS production after induction with IPTG as described above.
EXPERIMENTAL

EXAMPLE 1

In this example, a means for the amplification of the *R. sphaeroides* btaA and btaB genes, and their subsequent cloning into *E. coli*, is described. In one embodiment, the btaA gene was amplified from *R. sphaeroides* genomic DNA by PCR using a forward primer having the nucleotide sequence 5'-ACA TGC ATG CAG TGA CGC AGT TCG CCC TC-3' (SEQ ID NO: 5), and a reverse primer having the nucleotide sequence 5'-CGG GGT ACC AGG ACG ATC CGC TCG AAC CG-3' (SEQ ID NO: 6). The primers were used such that *BamHI* and *HindIII* sites were provided for cloning into pPCR-Script Amp (Stratagene Cat. No. 211188).

In another embodiment, the btaB gene was amplified using a forward primer having the nucleotide sequence 5'-ACA TGC ATG CAG TGA CGC AGT TCG CCC TC-3' (SEQ ID NO: 7), and a reverse primer having the nucleotide sequence 5'-CGG GGT ACC AGG ACG ATC CGC TCG AAC CG-3' (SEQ ID NO: 8). The primers were used such that *Sph I* and *Kpn I* sites were provided for cloning into pPCR-Script Amp.

All 50 µL PCR reaction mixtures contained the following: 1X PCR buffer (Gibco-BRL Cat. No. 18067-017), 2.5 mM MgCl₂, 350 nM forward primer, 350 nM reverse primer, 10% (v/v) dimethylsulfoxide (DMSO), 200 µM dATP, dGTP, dCTP, dTTP, 1 ng *R. sphaeroides* genomic DNA (isolated and purified as described above), and 2.5 U Taq DNA polymerase (Roche Molecular Cat. No. 1146173). PCR reaction mixtures were subjected to thermal cycling in a GeneAmp PCR System 9600 thermal cycler (Applied Biosystems, Foster City, CA: Cat. No. N801-0001) under the following conditions: 1 denaturation cycle at 95°C for 3 minutes; 30 cycles comprised of 95°C for 30 seconds, 57°C for 30 seconds, and 72°C for 60 seconds; and 1 extension cycle at 72°C for 5 minutes. PCR products were run on a 1% TAE agarose gel in the presence of ethidium bromide, and excised for purification by QIAEX II gel extraction kit (Qiagen Cat. No. 20021), followed by cloning into the *Srf I* site of pPCR-Script Amp (as per manufacturer's instructions). The resulting plasmid constructs allow the independent expression of the recombinant *R. sphaeroides* btaA and btaB genes in *E. coli*.

EXAMPLE 2

In this example, a method for the reconstitution of the betaine lipid biosynthetic pathway in plants is performed. The compositions and methods described herein provide for the
expression of the *R. sphaeroides* bta*A* and bta*B* genes targeted to the cytosol, or targeted to the plastid. Moreover, the compositions and methods described herein also provide for the selective expression of said genes only in seeds produced by the transformed plant, or alternatively, the constitutive expression of said genes in a transformed plant. All PCR reaction mixtures, thermal cycling program parameters, and component sources are as described above in Example 1.

a. Binary vectors for the constitutive expression of the *R. sphaeroides* bta*A* and bta*B* genes in the plant cytosol are prepared using a PCR-based strategy as follows. For this purpose, the bta*A* gene sequence was amplified by PCR using a forward primer having the nucleotide sequence 5'-GCT CTA GAA TGG CGC AGT TCG CCC TC-3' (SEQ ID NO: 11), and a reverse primer having the nucleotide sequence 5'-ACA TGC ATG CAG GAC GAT CCG CTC GAA CCG-3' (SEQ ID NO: 12). The bta*B* gene sequence was amplified by PCR using a forward primer having the nucleotide sequence 5'-GCT CTA GAA TGG CCG ACG CCA CCC AT-3' (SEQ ID NO: 13), and a reverse primer having the nucleotide sequence 5'-ACA TGC ATG CAG GAC GAT CCG CTC GAA CCG-3' (SEQ ID NO: 14). The primers were constructed such that Sph I and Xba I sites are provided for subsequent cloning of the bta*A* and bta*B* gene PCR products into the corresponding restriction sites on the binary vector, pBinAR-Hyg. This vector is derived from pBIB-Hyg (Becker, D., *Nucleic Acids Res.* 18: 203 (1990)) by insertion of the Hind III-Eco RI fragment from the central portion of pA7 (von Schaeven, A., Ph.D. thesis, Freie Universität Berlin (1989)). This construct is introduced into *Agrobacterium tumefaciens* strain C58C1 and used to transform *Arabidopsis thaliana* Col-2 plants as described below.

b. Binary vectors for the constitutive expression of the *R. sphaeroides* bta*A* and bta*B* genes targeted to the plastid are prepared using a two-stage Splicing by Overlap (SOE)-PCR-based strategy as follows. In the first stage, the bta*A* gene sequence was amplified by SOE-PCR using a forward primer having the nucleotide sequence 5'-ATG CAG GTG TGG CCT CCA GTG ACG CAG TTC GCC CTC-3' (SEQ ID NO: 15), and a rbcS-specific reverse primer having the nucleotide sequence 5'-GAG GGC GAA CTG CGT CAC TGG AGG CCA CAC CTG CAT-3' (SEQ ID NO: 16). The bta*B* gene sequence was amplified by SOE-PCR using a forward primer having the nucleotide sequence 5'-ATG CAG GTG TGG CCT CCA
ATG ACC GAC GCC ACC CAT-3' (SEQ ID NO: 17), and rbcS-specific reverse primer having the nucleotide sequence 5'-ATG GGT GGC GTC GGT CAT TGG AGG CCA CAC CTG CAT-3' (SEQ ID NO: 18). The rbcS-specific primers are used to fuse the rbcS transit peptide from the Pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) (GenBank Accession No. X04333), as described by Fluhr et al., "Expression and dynamics of the pea rbcS multigene family and organ distribution of the transcripts," EMBO J., 5: 2063-2071 (1986), to the btaA and btaB gene sequences individually. After amplification, the rbcS, btaA, and btaB PCR products are gel purified using QIAEX II (QIAGEN).

In the second stage, the purified rbcS, btaA, and btaB PCR products are then subjected to a second round of PCR. For the btaA gene, a rbcS-specific forward primer having the nucleotide sequence 5'-GCT CTA GAA ACC ACA AGA ACT AAG AA-3' (SEQ ID NO: 19), and a reverse primer having the nucleotide sequence 5'-ACA TGC ATG CAG GAC GAT CCG CTC GAA CCG-3' (SEQ ID NO: 20), are used. For the btaB gene, a reverse primer having the nucleotide sequence 5'-ACA TGC ATG CCT CTC ACC GCG TGA GCG TG-3' (SEQ ID NO: 21), and the same rbcS-specific forward primer (SEQ ID NO: 19), are used.

The second-stage PCR primers were constructed such that Sph I and Xba I sites are provided for subsequent cloning of the rbcS transit peptide-fused btaA and btaB gene PCR products into the corresponding restriction sites on the binary vector, pBinAR-Hyg. However, prior to cloning into pBinAR-Hyg, said PCR products are cloned into pPCR-Script Amp and cut with Sph I and Xba I. The plasmids containing the desired PCR products are transformed into E. coli and grown in LB medium with 50 mg/ml ampicillin. The plasmid DNA is isolated and digested with Sph I and Xba I, followed by gel purification of the desired plasmid inserts as described above. Finally, the inserts are sub-cloned into the corresponding sites of pBinAR-Hyg. The resulting plasmid constructs are introduced into Agrobacterium tumefaciens strain C58C1 and used to transform Arabidopsis thaliana Col-2 plants as described below.

c. Binary vectors for the seed-specific expression of the R. sphaeroides btaA and btaB genes in the plant cytosol and plastid are prepared using a PCR-based strategy as described above with the following substitutions. In order to obtain seed-specific expression of the R. sphaeroides btaA and btaB genes in plants, the binary vector pBinUSP-Hyg is used in place of the pBinAR-Hyg vector described above. The pBinUSP-Hyg vector contains the USP promoter.

d. A means for the simplified transformation of Arabidopsis is described herein and follows the methods of S. Clough and A. Bent, "Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana," Plant J., 16:735-43 (1998). Arabidopsis plants are grown under long days in pots in soil covered with bridal veil, window screen or cheesecloth, until they are flowering. First bolts are clipped to encourage proliferation of many secondary bolts, causing the plants to be ready roughly 4-6 days after clipping. Optimal plants have many immature flower clusters and not many fertilized siliques, although a range of plant stages can be successfully transformed.

The Agrobacterium tumefaciens strain carrying the gene of interest on a binary vector is grown in a large liquid culture at 28°C in LB (10 g tryptone, 5 g yeast extract, and 5 g NaCl per liter of water) with 25 μg/ml hygromycin B (Calbiochem) to select for the binary plasmid. The Agrobacterium culture is pelleted by centrifugation at 5500 X g for 20 minutes, and resuspended to OD₆₀₀ = 0.8 in a sterile 5% Sucrose solution.

Before the above-ground parts of an Arabidopsis plant are dipped in the resuspended Agrobacterium/Sucrose solution, Silwet L-77 (OSi Specialties, Inc., Danbury, CT) is added to a concentration of 0.05% (500 μl/L) and mixed well. The above-ground parts of an Arabidopsis plant are dipped in the Agrobacterium solution for 2 to 3 seconds, with gentle agitation. The dipped plants are placed under a dome or cover for 16 to 24 hours to maintain high humidity. The dipped plants are not exposed to excessive sunlight as the air under the dome can get hot.

The plants are grown for a further 3-5 weeks and watered normally, tying up loose bolts with wax paper, tape, stakes, twist-ties, or other means. Watering is halted as the seeds of the plant become mature. Once mature, the dry seeds are harvested by the gentle pulling of grouped
inflorescences (i.e. flower clusters) through fingers over a clean piece of paper. The majority of
the stem and pod material is removed from the paper and the seeds are stored under dessication
at 4°C.

Successful transformants capable of expressing a recombinant *A. thaliana* peptide are
selected by using an antibiotic or herbicide selectable marker. In this example, 2000 harvested
seeds (resuspended in 4 ml 0.1% agarose) are vapor-phase sterilized and plated on selection
plates with 50 μg/ml hygromycin B, cold treated for 2 days, and then grown under continuous
light (50-100 μEinsteins) for 7-10 days. The selection plates of the example further comprise
0.5X Murashige-Skoog medium (Sigma Chem. Cat. No. M-5519) and 0.8% tissue culture Agar
(Sigma Chem. Cat. No. A-1296). Successful transformants are identified as hygromycin-
resistant seedlings that produce green leaves and well-established roots, within the selective
medium.

A sample of successful transformants are grown to maturity by transplantation into
heavily moistened potting soil. Leaves from the transformants are removed and subjected to
DNA extraction to isolate the genomic DNA of the plant. The extracted genomic DNA is
subsequently subjected to restriction endonuclease digestion and Southern Blotting to confirm
the incorporation of the gene of interest into the plant’s genome.

e. A method for the crossing of a transformed plant containing the *R. sphaeroides*
btaA gene with a transformed plant containing the *R. sphaeroides btaB* gene, such that the
betaine lipid biosynthetic pathway is reconstituted in a single plant, is provided as follows.

A transformed female parent plant (4-6 weeks-old) containing the *R. sphaeroides btaA* is
used as a pistil donor. Several young flower buds that are located at the top of the inflorescence
on the main flowering stalk are chosen. The newly emerging white petals should be barely
visible in the most mature flower bud chosen. The use of any flower bud that has opened and
potentially exposed its pistil to parental pollen or another pollen source is avoided. For
example, a bud at the correct stage will contain short immature stamens with anthers that are
greenish-yellow in color. All other flower buds and flowers from the inflorescence are removed.

Prior to dissection of the chosen flower buds, forceps are sterilized in 95% ethanol and
air-dried to remove contaminating pollen. Next, the sepals, petals, and stamens are removed
from the flower buds beginning with the tissue near the base of the flower bud. Great care
should be taken not to injure the pistil or flower stalk while dissecting the flower bud. When finished, the pistil is free of sepals, petals, and stamens.

A transformed male parent plant (4-6 weeks-old) containing R. sphaeroides btaB is used as a pollen donor. First, a suitable pollen-donor flower is selected. For example, for wild-type Arabidopsis, a flower that has opened and has petals that are perpendicular to the main flower body is chosen. To confirm that the chosen flowers are in the process of releasing pollen, visual examination of the anthers from several flowers to identify the flowering stage associated with pollen release is performed. Next, the flower is removed from the flowering stalk, followed by removal of the petals and sepals from the flower. This process yields 6 stamens (2 short and 4 tall) for each flower. Several stamens are removed and their anthers checked for pollen. The pollen grains should be clearly visible when viewed under a dissecting microscope. When anthers brimming with pollen are identified, they are used to pollinate the stigmas of the previously prepared pistils. To maximize the probability of pollination, each pistil is pollinated with several anthers.

When pollination is complete, the pistil is covered with a small piece of plastic wrap (1 cm x 1 cm) to protect it from other pollen sources. The plastic wrap is folded in half around the pistil. Next, the pollinated pistil is marked by applying a small piece of tape describing the cross on the corresponding flowering stalk. The plastic wrap is removed in 1 to 2 days. Following a successful pollination, the pistil elongates as the seeds develop. When the siliques is fully elongated and has dried to a golden-brown color, it is removed from the plant, taking care not to shatter the siliques and lose the seeds. The seeds are allowed to dry for at least one week before planting. The seeds can also be chilled at 4°C for several days following imbibition to increase the frequency of germination. Germinated seeds are planted to produce plants which comprise both the R. sphaeroides btaA and btaB genes, thereby reconstituting the betaine lipid biosynthetic pathway in a single plant. Lipid extracts may be made from transformed plant leaves and seeds, and subjected to quantitative lipid analysis by TLC (as described above) to confirm the production of betaine lipids including, but not limited to, DGTs.

EXAMPLE 3

In this example, one method of generating variants of the peptides defined by an amino acid sequence selected from the group consisting of SEQ ID NO: 3 and SEQ ID NO: 4, by
conservative amino acid substitution is provided. Briefly, this method comprises the cloning of the *R. sphaeroides* btaA and btaB genes into the phagemid vector pBluescript II SK+, growth and recovery of single stranded DNA templates for each of said genes, oligonucleotide-directed mutagenesis, transformation of suitable host cells for production of double-stranded DNAs containing the directed mutation, and confirmation of the transformants as having incorporated the desired mutation. This method is performed as described in the manufacturer's instruction manual for the "pBlueScript II Exo/Mung DNA Sequencing System." (Stratagene Cat. No. 212301).

a. Cloning of btaA and btaB into pBluescript II SK+

The independent cloning of the *R. sphaeroides* btaA and btaB genes into the phagemid vector pBluescript II SK+ is accomplished as described above in Part I.A.

b. Recovery of Single-Stranded DNA Template from Cells Containing pBlueScript II SK+ Phagemids

pBluescript II SK+ is a phagemid which can be secreted as single-stranded DNA in the presence of M13 helper phage. These phagemids contain the intergenic (IG) region of a filamentous f1 phage. This region encodes all of the cis-acting functions of the phage required for packaging and replication. In *E. coli* with the F + phenotype (containing an F' episome), pBluescript II SK+ phagemids will be secreted as single-stranded f1 "packaged" phage when the bacteria has been infected by a helper phage. Since these filamentous helper phages (VCSM13, f1) will not infect *E. coli* without an F' episome coding for pili, it is essential to use XL1-Blue MRF' (Stratagene Cat. No. 212301) or a similar strain containing the F' episome.

Typically, 30–50 pBluescript II SK+ molecules are packaged/helper phage DNA molecule. pBluescript II SK phagemids are offered with the IG region in either of two orientations: pBluescript II SK (+) is replicated so the coding strand of the β-galactosidase gene (the top strand in the enclosed map, the same strand as in the mp vectors) is secreted within the phage particles; pBluescript II SK (–) is replicated so the non-coding strand of the β-galactosidase gene is secreted in the phage particles.

Yields of single-stranded (ss)DNA depend on the specific insert sequence. For most inserts, over 1 μg of ssDNA can be obtained from a 1.5-ml miniprep if grown in XL1-Blue
A faint single-strand helper phage band may appear on a gel at ~4 kb for R408 or 6 kb for VCSM13. This DNA mixture can be sequenced with primers that are specific for pBluescript II SK+ (e.g. the SK primer and M13(-20) primer (Stratagene Cat. Nos. 300305 & 300303, respectively)) and do not hybridize to the helper phage genome.

VCSM13 and R408 helper phage produce the largest amount of single-strand pBluescript II SK+. R408 (single-strand size ~4 kb) is more stable and can be grown more easily. VCSM13 (single-strand size ~6 kb), being more efficient, yields more single-stranded phagemid; however it is more unstable and reverts to wild-type more frequently. This difficulty can be addressed by periodically propagating VCSM13 in the presence of kanamycin. VCSM13 (a derivative of M13KO7) has a kanamycin gene inserted into the intergenic region (IG), while R408 has a deletion in that region.

The advantages of using pBluescript II phagemids for site-specific mutagenesis using standard techniques are as follows: (1) pBluescript II SK phagemids do not replicate via the M13 cycle, lessening the tendency to delete DNA inserts, therefore it is unlikely that even 10-kb inserts will be deleted; (2) "packaging" of pBluescript II SK phagemids containing inserts is efficient since the pBluescript II SK vector is 3.5 kb (smaller than wild-type M13); and (3) oligonucleotide mutagenesis in pBluescript II SK vectors is advantageous because the mutagenized insert is located between the T3 and T7 promoters. The resultant mutant transcripts can be synthesized in vitro without further subcloning.

c. Single-Stranded Template DNA Rescue Protocol

In one embodiment, single-stranded DNA template for oligonucleotide-mediated mutagenesis is prepared from pBlueScript II SK+ phagemids comprising an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, as follows.

A single colony containing pBlueScript II SK+ comprising an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 1 and SEQ ID NO: 2, is inoculated into 5 ml of 2X YT containing 50 μg/ml ampicillin and VCM13 or R408 helper phage at 10^7–10^8 pfu/ml (multiplicity of infection ~10). The culture is grown at 37°C with vigorous aeration for 1–2 hours. If VCSM13 is used as the helper phage, kanamycin is added to the media at a concentration of 70 μg/ml to select for infected cells. The cells are allowed to continue to grow at 37°C for 16–24 hours, or until growth has reached saturation. The cells are transferred to 1.5
ml microcentrifuge tubes and centrifuged for 5 minutes. Approximately 1 ml of supernatant is removed, 150 µl of a 20% PEG (polyethylene glycol)/2.5 M NaCl solution is added, and the phage particles are allowed to precipitate on ice for 15 minutes. The phage particles are centrifuged for 5 minutes in a microcentrifuge, followed by the removal of the supernatant. The PEG/phage pellets are centrifuged for a few seconds more to collect residual liquid, which is subsequently removed. The pellets are resuspended in 400 µl of 0.3 M NaOAc (pH 6.0) and 1 mM EDTA by vortexing vigorously.

The resuspended pellets are extracted with 1 volume phenol:chloroform and centrifuged for 1–2 minutes to separate the aqueous and organic phases. The aqueous phase is transferred to a fresh tube, 1 ml of 100% ethanol is added, and the tube is centrifuged for 5 minutes. The ethanol is removed, the DNA pellet is air-dried and dissolved in 25 µl of TE buffer. For analysis, 1–2 µl of the dissolved ssDNA template may be run on an agarose gel.

d. Oligonucleotide-Mediated/Site-Directed Mutagenesis

Single-stranded DNA templates from cells containing pBluescript II SK+ Phagemids are isolated (as described above) and used for oligonucleotide-mediated mutagenesis according to the following protocol as described in the instruction manual for the "pBluescript II Exo/Mung DNA Sequencing System" (Stratagene Cat. No. 212301). Briefly, oligonucleotides having an oligonucleotide sequence selected from the group consisting of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 10 are hybridized to their corresponding ssDNA templates in order to induce mutagenesis as follows. Said oligonucleotides are designed to generate the following corresponding mutations in either the R. sphaeroides btaA or btaB gene sequence as indicated in the table below.
Table 3. Details of *R. sphaeroides* btaA and btaB Mutagenesis

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Corresponding SEQ ID NO:</th>
<th>R. sphaeroides gene mutated</th>
<th>Amino Acid change generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>btaA-L9I</td>
<td>5</td>
<td>btaA</td>
<td>L9I</td>
</tr>
<tr>
<td>btaA-A201G</td>
<td>6</td>
<td>btaA</td>
<td>A201G</td>
</tr>
<tr>
<td>btaA-S399T</td>
<td>7</td>
<td>btaA</td>
<td>S399T</td>
</tr>
<tr>
<td>btaB-T13S</td>
<td>8</td>
<td>btaB</td>
<td>T13S</td>
</tr>
<tr>
<td>btaB-I115L</td>
<td>9</td>
<td>btaB</td>
<td>I115L</td>
</tr>
<tr>
<td>btaB-G206A</td>
<td>10</td>
<td>btaB</td>
<td>G206A</td>
</tr>
</tbody>
</table>

An oligonucleotide having a oligonucleotide sequence selected from the group consisting of SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, and SEQ ID NO: 10 is kinased in a reaction comprising: 100 ng of mutagenesis oligonucleotide; 4 μl of 10X ligase buffer (500 mM Tris-HCl, pH 7.5; 70 mM MgCl₂; and 10 mM dithiothreitol (DTT)); 4 μl of 10 mM rATP; 2 μl of T4 polynucleotide kinase (10 U) (Promega Cat. No. M4101); and water to 40 μl final volume. The reaction is incubated at 37°C for 30 minutes.

In order to synthesize a *btaA* or *btaB* variant DNA strand comprising the desired amino acid substitution (i.e. mutation), the kinased mutagenesis oligonucleotide is annealed to 1 μg of ssDNA template in a reaction comprising 20 μl of oligonucleotide from the kinase reaction above (50 ng) and 5 μl of salmon sperm DNA. The reaction is incubated at 65°C for 10 minutes, then at room temperature for 5 minutes. Once the mutagenesis oligonucleotide has been annealed to the ssDNA template, the second strand of the DNA template (incorporating the amino acid substitution) is generated by primer extension as follows. To the annealing reaction, the following is added: 4.0 μl of 10X ligase buffer (same as above); 2.0 μl of 2.5 mM dNTPs (N = A, C, G and T in equal concentration); 4.0 μl of 10 mM rATP; 1.0 μg of single-stranded DNA binding protein (Promega Cat. No. M3011); 1.5 U of DNA Polymerase I, Klenow Fragment (Promega Cat. No. M2201); 0.5 μl of T4 DNA ligase (2 U) (Promega Cat. No. M1801), and water to 40 μl final volume. The reaction is incubated at room temperature for 3–4 hours.

After incubation is complete, *E. coli* XL1-Blue MRF' cells are transformed with 10 μl of synthesis reaction and plated on LB medium (10 g NaCl, 10 g tryptone, 5 g yeast extract,
deionized water to 1000 ml, and adjusted to pH 7.0) plates containing 50 μg/ml ampicillin, 12.5 μg/ml tetracycline, 80 μg/ml freshly prepared X-Gal (Promega Cat. No. V3941), and 20 mM IPTG to allow antibiotic and blue-white color selection of transformed bacterial colonies containing phagemids comprising the desired amino acid change. Said colonies may be screened for incorporation of the desired amino acid substitution by colony hybridization analysis as described below. If said colonies are to be screened by colony hybridization, then transformed XL1-Blue MRF’ cells should be plated onto nitrocellulose filters placed on top of three LB plates lacking IPTG. After 8-10 hours of incubation, the nitrocellulose filters are transferred to LB plates containing 5 mM IPTG for several hours.

e. Screening Transformant Colonies for Confirmation of Amino Acid Substitution

Colonies containing pBluescript II SK+ phagemids may be screened for recombinants by many techniques widely known in the art such as double-stranded DNA, RNA, or oligonucleotide hybridization (e.g. colony hybridization). (See Instruction Manual for the "pBluescript II Exo/Mung DNA Sequencing System" (Stratagene Cat. No. 212301)). Colonies may also be screened by restriction endonuclease mapping or by sequencing plasmid DNA (e.g. Sanger dyeoxy chain terminator DNA sequencing, Maxam & Gilbert sequencing) to confirm the presence of an amino acid substitution at the desired amino acid residue.

EXAMPLE 4

In this example, one method of cloning and expressing Bta1 from Chlamydomonas reinhardtii is provided.

Briefly, the protein sequence of BtaA from Rhodobacter sphaeroides (RsBtaA) was used as a query in a TBLASTN search against a draft of the C. reinhardtii genome found at the Joint Genome Institute website of the Department of Energy. In this way, a protein with strong similarity to RsBtaA was identified. The predicted protein is encoded by a gene on scaffold 250 from about position 17000-23500. The protein predicted by the “green genie” prediction program is 648 amino acids long and contains an N-terminal region with significant identity to the bacterial BtaB protein, and a C-terminal region similar to the bacterial BtaA protein. Thus, it is contemplated that a single C. reinhardtii protein is responsible for all reactions of DGTS
synthesis, and thus the newly-identified gene was given the name "Bta1" to reflect this. The genomic DNA sequence of \textit{C. reinhardtii} Bta1 is set forth herein as SEQ ID NO: 43, while the cDNA sequence is set forth as SEQ ID NO: 44, and the protein sequence (CrBta1) is set forth as SEQ ID NO: 45. Primers were designed to amplify the coding sequence by RT-PCR and to facilitate expression of the protein as an N-terminal His-tag fusion in the pQE-31 expression vector \textit{(See, Figure 1)}. The forward primer contained a \textit{Bam} HI site upstream of the start codon 5'-CAG GAT CCA ATG GGG TCG GGT CGT-3' (SEQ ID NO:46); while the reverse primer contained a \textit{Kpn} I site upstream of the stop codon: 5'-CAG GTA CCG CCG CCA GCT GCT TA-3' (SEQ ID NO:47).

A \textit{C. reinhardtii} cell-wall deficient mutant, CC-400, was grown to mid log phase in TAP medium, and harvested. A 50 ml culture aliquot was used for RNA isolation by TRIzol reagent (Invitrogen), and 2 \mu g total RNA was used in a reverse transcriptase reaction (SuperScript II RNase H-Reverse Transcriptase) according to the manufacturer's instructions. Subsequently, a 2 \mu l aliquot of the RT reaction was used as a template in a 50 \mu l PCR reaction with the above primers, using Pfu Turbo polymerase and Pfu Native Plus reaction buffer (Stratagene). Due to the high G+C content of \textit{Chlamydomonas} DNA, DMSO was added to 10\% (v/v). Primers were used at a concentration of 350 nm, and dNTPs were used at a concentration of 250 \mu M each. Cycling was as follows: 5 min at 95\textdegree C, then 35 cycles at 95\textdegree C for 30 sec; 54\textdegree C for 30 sec; and 72\textdegree C for 2 min; with a final extension step at 72\textdegree C for 10 min.

A product of approximately 1950 bp was produced and cloned into the \textit{Eco} RV site of pBlueScript II KS+ to facilitate sequencing, then excised by \textit{Bam} HI and \textit{Kpn} I digestion in order to directionally clone the fragment into the corresponding sites of pQE-31, giving rise to plasmid pBta1. As shown in Figure 32, lipid extracts of cells harboring the pBta1 plasmid produced the lipid DGTS to a significant level, estimated at 10-15 mol \% based on TLC iodine staining intensity. DGTS was purified from \textit{E. coli} expressing CrBta1 and analyzed by NMR. As shown in Figure 33, a strong resonance at \textasciitilde3.2 ppm was detected, characteristic of the quaternary ammonium function of DGTS, thus confirming the identity of this product. In addition, the inventors contemplate subcloning CrBta1 into pBinAR-Hyg for expression in plants, as described above for \textit{R. sphaeroides} BtaA and BtaB genes in Part II of the Description.
EXAMPLE 5

In this example, one method of cloning and expressing Bta1 from Neurospora crassa is provided.

Briefly, a protein with domains sharing significant sequence similarity with the BtaA and BtaB proteins of bacteria was identified in Neurospora crassa genome contig 3.153, by using three sequence analysis programs (combination of FGENESH, FGENESH+, and GENEWISE). The contig is part of the N. crassa 3 database found at the web site of the Whitehead Institute's Center for Genome Research. The protein encoded by the minus strand of the N. crassa contig (at about position 218593-221450 as set forth in SEQ ID NO: 48) has a N-terminal portion similar to BtaB, and a C-terminal portion similar to BtaA. Thus, the inventors contemplate that the protein functions similarly to the Bta1 protein from Chlamydomonas reinhardtii, and hence the gene has been termed N. crassa Bta1. The coding region of the gene is provided herein as SEQ ID NO: 49, while the amino acid sequence of the predicted protein (NcBta1) is provided as SEQ ID NO: 50.

Cloning of the open reading frame by RT-PCR is accomplished using the following primer pair: forward, 5'-CAG GTA CCG GAT CCA ATA GCA ATG GGA GAC AAC-3' (SEQ ID NO: 51); and reverse, 5'-CAA AGC TTT CTA GAC TAC TTA AGC TGA GTC AAC C-3' (SEQ ID NO: 52). The Kpn I and Bam HI sites in the forward primer and the Hind III and Xba I sites in the reverse primer were introduced to facilitate cloning into pQE-31 for expression in E. coli and pBinAR-Hyg for expression in plants, as described above for R. sphaeroides BtaA and BtaB genes in Parts I and II of the Description.

During development of the present invention, the DGTS lipid was found to be produced by N. crassa only during low phosphate conditions. Specifically, as shown in Figure 34, DGTS was produced by N. crassa when grown in a modified Vogel's medium containing MES and 0.01 mM Pi, but not when grown in Vogel's medium containing 20 mM Pi. A similar expression pattern was observed for NcBta1 RNA. A complete description of Vogel's medium can be found in Vogel, Microbiol. Genetics Bull., 13:42-43 (1956), herein incorporated by reference.
All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.
CLAIMS

We claim:

1. A composition comprising a purified DNA having an oligonucleotide sequence selected from the group consisting of SEQ ID NO:44, and SEQ ID NO:49.

2. RNA transcribed from the DNA of Claim 1.

3. Protein translated from the RNA of Claim 2.

4. Antibodies produced from the protein of Claim 3.

5. A vector comprising the DNA of Claim 1.

6. A host cell comprising the vector of Claim 5.

7. The host cell of Claim 6, wherein said host cell is E. coli.

8. The host cell of Claim 6, wherein said host cell is R. sphaeroides.

9. The host cell of Claim 6, wherein said host cell is A. thaliana.

10. Transgenic plants comprising the vector of Claim 5.

11. A composition comprising a purified DNA encoding a protein having an amino acid sequence selected from the group consisting of SEQ ID NO:45 and SEQ ID NO:50.

12. RNA transcribed from the DNA of Claim 11.

13. Protein translated from the RNA of Claim 12.

15. A vector comprising the DNA of Claim 11.

16. A host cell comprising the vector of Claim 5.

17. The host cell of Claim 16, wherein said host cell is *E. coli*.

18. The host cell of Claim 16, wherein said host cell is *R. sphaeroides*.

19. The host cell of Claim 16, wherein said host cell is *A. thaliana*.

20. Transgenic plants comprising the vector of Claim 15.

21. A purified nucleic acid that specifically hybridizes to the complement of a sequence selected from the group consisting of SEQ ID NO:44, and SEQ ID NO:49, under highly stringent conditions in 5X SSPE, 1% SDS, 5X Denhardt's reagent and 100 µg/ml denatured salmon sperm DNA at 68°C overnight, followed by washing in a solution comprising 0.1X SSPE and 0.1% SDS at 68°C, wherein said nucleic acid encodes a protein with DGTS synthetic activity.

22. A vector comprising the nucleic acid of Claim 21.

23. A host cell comprising the vector of Claim 22.

26. A purified nucleic acid comprising a sequence that is at least 95% identical to SEQ ID NO:44, or a sequence that is at least 95% identical to SEQ ID NO:49, wherein said sequence encodes a protein with DGTS synthetic activity.

27. A vector comprising the nucleic acid of Claim 26.

28. A host cell comprising the vector of Claim 27.

29. A transgenic plant comprising the vector of Claim 27.

pQE-30, pQE-31, and pQE-32 Vectors

Positions of elements in bases

<table>
<thead>
<tr>
<th></th>
<th>pQE-30</th>
<th>pQE-31</th>
<th>pQE-32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector size (bp)</td>
<td>3461</td>
<td>3463</td>
<td>3462</td>
</tr>
<tr>
<td>Start of numbering at XhoI (CTCGAG)</td>
<td>1–6</td>
<td>1–6</td>
<td>1–6</td>
</tr>
<tr>
<td>T5 promoter/lac operator element</td>
<td>7–87</td>
<td>7–87</td>
<td>7–87</td>
</tr>
<tr>
<td>T5 transcription start</td>
<td>61</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>6xHis-tag coding sequence</td>
<td>127–144</td>
<td>127–144</td>
<td>127–144</td>
</tr>
<tr>
<td>Multiple cloning site</td>
<td>145–192</td>
<td>147–194</td>
<td>146–193</td>
</tr>
<tr>
<td>Lambda t2 transcriptional termination region</td>
<td>208–302</td>
<td>210–304</td>
<td>209–303</td>
</tr>
<tr>
<td>rmb T1 transcriptional termination region</td>
<td>1064–1162</td>
<td>1066–1164</td>
<td>1065–1163</td>
</tr>
<tr>
<td>CoIE1 origin of replication</td>
<td>1638</td>
<td>1640</td>
<td>1639</td>
</tr>
<tr>
<td>β-lactamase coding sequence</td>
<td>3256–2396</td>
<td>3258–2398</td>
<td>3257–2397</td>
</tr>
</tbody>
</table>

Figure 1
FIGURE 7

btaA gene cDNA Sequence

1-57
58-117
118-177
178-237
238-297
298-357
358-417
418-477
478-537
538-597
598-657
658-717
718-777
778-837
838-897
898-957
958-1017
1018-1077
1078-1137
1138-1197
1198-1252

7/34
FIGURE 8

btaB gene cDNA Sequence

1-60 agacgacgc acaccaactgc ggcgtgttag gacgacaga cccgcaacca gcgcgggtatc
61-120 tgcgcgctca cgccgcggca cttcgtgtgc ggcgcggacgc ggctgtagct acgcgctcgc
121-180 cgcgcggcgg aggccccggct gccgcggagc gcgcggcggc gccgcggcggc gccgcggcggc
181-240 atgaggggct gcctgctgct gcgggctgct gcggcggatgc gcacgtgctgc gcacgtgctgc
240-300 gccgtccgcgc ggcgcgtgcct gccgcggcgc gcgcggcggc gcgcggcggc gcgcggcggc
301-360 tgcaggggct gccgctgctgc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
361-420 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
421-480 ggcgggggcgc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
481-540 gcgcggcgcgg gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
541-600 gccgtccggc cccgcgtgcct gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
601-660 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
661-720 ggcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
721-780 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
781-840 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
841-900 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
901-960 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
961-1020 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
1021-1080 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
1081-1140 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
1141-1200 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc
1201-1255 gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc gcgcggcggc

8/34
FIGURE 9

btaA gene Amino Acid Sequence

1-50 MTQFALTHLAPPVARQIGA AVHRTSSLASI EGRERMFSIR LFHGLVYPQI
51-100 WEDPAVDMAA LAIRPGDRLV ALASGGCNVL SYLTQGPQSLAVDLSPAHVAL
101-150 GRLKLAAART LPDHAAFFDL FGRADLPGNA ALYDRHIAPALDGRSSRRYWE
151-200 ARSPFGRRIQ LFERGFRYRHG ALGRFIGAAH TLARAAATDL RGFLDCCPDIE
201-250 AQRSFFYAI GPLFEAPVVQ ALARRPAALF GLGIPPAQYALLAGDGDGDV
251-300 LPVLRQRLHR LLCDFPLREN YFAFAQAIARR YPRPGEAGLPPYLEPTAFET
301-350 LRENAGRVQI ENRLSTEALAA EPEESIHGFT LLDAQDWMTDAQLTALWRQV
351-400 TRTAAPGARV IFRTGGAADL LGVRVPEEIL GHWRADRAAG QAGHAADRSA
401-413 IYGPHLYRR RDA
FIGURE 10

btaB gene Amino Acid Sequence

1-50 MTDATHAALM DATYRHQRRI YDVTRRHFLL GRDLIAELD PPGARVLEI
51-100 ACGRGRNLDL IGRWPGCRL SGLDISQEML ASARARLGRR ATLALGDATR
101-150 FERALPLFGTD RFERIVLSYA LSMIPDWEA LREAALHLVP GGLRHVVDFG
151-200 DQAGLPGWAR AGLRGWIGRF HTPRDDLGTT ALGETALGIG GYAEYRSLLG
201-210 GYAILGTLLTR
FIGURE 12
Comments for pYES2:
- sRNA termini
- GAL1 promoter: bases 1-652
- T7 promoter/joining sites: bases 470-495
- Multiple cloning site: bases 602-601
- CYC1 transcription terminus: bases 600-667
- pMB1 (pAC-derived) origin: bases 1090-1112
- Ampicillin resistance gene: bases 1657-2717
- URA3 gene: bases 2735-3445
- 2 micron origin: bases 3648-5017
- T7 origin: bases 3885-4340

FIGURE 13

![Diagram of pYES2 vector with restriction sites and annotations](image-url)
Mutagenesis Oligonucleotide bta-A-L9I

5'-CGC CCT CAC CCA CAT TCC CGC CCC GC-3’

and its reverse complement:

5’-GCG GGG CGG GAA TGT GGG TGA GGG CG-3’
FIGURE 15

Mutagenesis Oligonucleotide bta-A201G

5'-GAC TGT CCC GAG ATC GAG GGC CAG CGC CAG C-3'

and its reverse complement:

5'-GCT GGC GCT GGC CCT CGA TCT CGG GAC AGT C-3'
FIGURE 16

Mutagenesis Oligonucleotide bta-S399T

5'-GCC GCC GAC CGT ACG GCG ATC TAC GG-3'

and its reverse complement:

5'-CCG TAG ATC GCC GTA CGG TCG GCG GC-3'
FIGURE 17

Mutagenesis Oligonucleotide btaB-T13S

5'-GCT GAT GGA CGC GTC CTA CCG CCA CCA G-3'

and its reverse complement:

5'-CTG GTG GCG GTA GGA CGC GTC CAT CAG C-3'
Figure 18

Mutagenesis Oligonucleotide btaB-I115L

5'-CGG TTC GAG CGG CTC GTC CTC TCC TAC GC-3'

and its reverse complement:

5'-GCG TAG GAG AGG ACG AGC CGC TCG AAC CG-3'
FIGURE 19

Mutagenesis Oligonucleotide btaB-G206A

5'-GGA TAT GCG ATT CTC GCC ACG CTC ACG CG-3'

and its reverse complement:

5'-CGC GTG AGC GTG GCC AGA ATC GCA TAT CC-3'
<table>
<thead>
<tr>
<th>RsBtaA</th>
<th>M1BtaA</th>
<th>consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1 mt It ar iG AV LS Gl ERmF LP GVYFQ1MEDP VDM A</td>
</tr>
<tr>
<td>61</td>
<td>59</td>
<td>61 l i G RIV I ASSGCVNL YLT Pg I AVEL AHAL RKL A R LF a F</td>
</tr>
<tr>
<td>121</td>
<td>119</td>
<td>121 FG AD N YDR IAP LD AATYME R G RRI LPeR FY G LG Fig</td>
</tr>
<tr>
<td>180</td>
<td>179</td>
<td>181 aH Ar G Ld i QA PP lge1Fe v v R a LFGLGIPPA</td>
</tr>
<tr>
<td>240</td>
<td>239</td>
<td>241 QY L CDD v VLR RL RL CDFPL NYFAQFA ARKP PGBaLP YLE</td>
</tr>
<tr>
<td>300</td>
<td>299</td>
<td>301 FETIR N RV I LE LAA si F LLDAQDMRTD QL ALW vERTA</td>
</tr>
<tr>
<td>360</td>
<td>359</td>
<td>361 GARVIFR1tg LLPSGV 1L W A A DSA1YOGFDY rR A</td>
</tr>
</tbody>
</table>

FIGURE 20
FIGURE 21
MI-btaA gene sequence

269421 atgacgagacgttcctcgagatctgtttttgccgcggca
269461 ggaagtggaaagccgcctcaccagaacccgcccgtctttccaaagccgcatctcgcagcg
269521 gctgttgcttcctgttttccggcctcgcttatcgcagatctggaagaccccgctatg
269581 cgacatgaggacatgacgtctggtgcagggccatgccatctcgacacagctccggcgg
269641 ctggcaacactctgtgctcaccgtcccgacccggtacagtcggaggctggcgatctcaca
269701 ccgccgccacacatccgcttgaacccgccatagagtctggagccgctgccgctctgcctcpga
269761 ggccgacagtctggtctccctttttccggcgcggccgacacaccagccactcttcagagctatga
269821 ccgcctttattgcgccgcatctcgactccggttcagccgcccaactattggagcccgccgaactg
269881 gcctggtgtcgcgccgctagcgtcctgacccgcaaatcttacctcagacccgccgctctgcctg
269941 cctgcattcgccaattggcccagctccgcaacgggaatatttcctgggctcaacccggccacat
270001 gatgggaagccagaaatatggccgagacgcagcgcgcgctctttccacgcagagctggcgcgctgt
270061 cttcgcaacaagagtttttaatgggcgccagctcggcgaagcggcgtctcgcctggcctgg
270121 cattcgcgccccgcgtcagatcattctctagctacctcagccgacagccaccatgccagcagct
270181 tcggagccgccgcttgaaagcctgctcgatattccccctggaaaacatattgctgcc
270241 cttggccagctttccggccgctacattccacagctggagtggccgcctgcgccccgctatct
270301 ggaaacgacaacatcagaaacccatcgcgcgccatagctgacccgctgcctccacacctgc
270361 ccaatctgatagattctccgcccaggaagccgccagctgccctcgagctcctgcttctgct
270421 cgggtggccgctattgacagctggcctacccgagcgcgctgtggfcgaacaccgcagcgg
270481 cccggcttcgccaggccgctcattcgcaggcaccgcgcgcgctctccagccgcttcgctgcc
270541 aggccggtgtctcgcacccagtggcgcgtaccatccagcggagccgctgctgccgca
270601 atcccgccgagccacctggccttcattgtgagggccttcacaacttatgtggaagccac
270661 ggccatgga

FIGURE 22
Mi-btaB gene sequence

270670 atgaccgagctgccggccagccccggaatcacaaggccaatcatgcggaactg
270721 atggacggcgtctaccacctgaggcaacatcttatgactctcgagctgcgaaatctatctg
270781 ctcggccgacgctgtatctgattggctgagttgctcagcagggcagccgctgctgggaa
270841 ctcggctgcggacccggcgaacatcactctgaggccgccccgcccggccgccggtaccctgtggcccgc
270901 ttcctggcctggatatctccggccgagatgctggagaacggcggcagacgacgacgcccacgatgcagccgc
270961 gaagggctggtgctggcctgatcagcgacacgcagggacgagcagcagttcgagacgcccgc
271021 gcacatttaacgctcaagggatctgcgagccgctgcttcctgtccctattcgctggtcgatgc
271081 ccaggctggagaaaaacgggtggtgcggccagctgcccagctatcccccaacggactgctgcg
271141 ccaatctcgcatttcggccagcaggaagggcttacocggctggtttcggtaccttgctgcgc
271201 gggttgctgtaaaaaattccagftaagccccgctgatcgtgccccaggttagtctaggaatcg
271261 gaaattcgcggcagacgcccagctccrtctgctgccgacgcgtfttgacgcgtttactgcggttagcgcctggg
271321 ctggccgatgatcaagatggccagctgaa
Agrobacterium tumefaciens BtaA protein

MTSAAPKTGFKNTKLKSALLQHKALSKSGLSERFFGVLFSGLVYPQIWEDPEIDMEA MELGEGHRIVTIGSGCNMLAYLSRNRAIIVDLNPHIHALNLKLAARFRHLPAHQD VVRHFRAGTRSSVGYDRFIAEHLDAATTWYWKRLSRRRISVFDNNRYRTGLLG RFIGAGHIMARLHGVKTLTENAKTRTLDEQRQFFDSKVAFLDQPVVRWLTKRKSLLFG LGIPPRQYDELASLSSDGVLSVLKERLEKLACNFPLSDNYFAWQAFARRYPEPHEGALPAYLKEYYEKIRNNTARVAVVHAYTTELSRKPAANGDYIRILLDAQWMDTVqlNE LWSQISRRTAASGARVFRTAAEKSVIEGRLSPDIRNQWVYLEERSNELNAMDRSAINYG GFHIYQRAMA
Agrobacterium tumefaciens Btab DNA

```
1  atgaaaacca tcggcgagaa tgcgccccct gcagacacgc gcgcattgct gcctgatggac
ggcaccaacggc gcaaatattt atcgttccgg gcgttctgtgct gcgtttc
241  ggcctcgata tatcagccca aatacgctgc accggctccg gagaatttgcc ggccaaacccg
301  gagggaccaca tgtttcgtgt tcgcaagcct gccctttcgc gagggcttccg attccggcag
361  cccgatggtt tcgaccccgct cgtcatccct tgcgtgctct gcgtagatcgc gcgtttggggg
421  aacagcgatcg aacagcgcttg ccgcggcgtgg aaccccggcggt gctccgtgca tgttgtggc
481  ttggttccagc agggacagtt ggcgcaagtttg ttccccacgcct tctttcagcct gttggtccaccc
541  ccgcttctcccg ttacgcagcg ccgaatatcc cgttatactgc tcgcaaatatat ggccgcgtgt
601  ttggttcgca gctctgccgct ccgaggggct gccgacggat acagcggtgg ggcgcttattc
661  aagtccgagc tcggcgggag cccgcagcgcc aagatcaccgc gattttggct gcggcttgct
```
Agrobacterium tumefaciens Btab protein

MTDATHAALMDATYRHQRIYDVTRRHFLLRDRDLIAELDPGP
ARVLEIACGTGRNLILGRRWPGCRLSGLDISQEMLASARALG
RRATLALGDAATRFALSPLFGTDRFERIVLSYALSMIHDPWREALR
EAALHLVPGGRLHVVDGDQAGLPGWARAGLRGWIGRHVTGQD
DLGTALGETALGIGGYAERLSLGYYAILGTLTR
FIGURE 28

Sinorhizobium meliloti BtaA DNA

```
1  atg  acc  gag  ttc  gcc  ccg  gat  gcc  ggc  ttc  ggc  aag  aag  aat  ccg  aaa  ctg  aaa  agc  gca
61  ctc  ctc  cag  cac  aaa  gct  ttc  tcc  ccc  gcc  ggt  ctc  tcc  gaa  cgc  ctg  tcc  ggg  ctc  ctc
121  ttt  tcc  gga  ctc  gtc  tac  ccc  cag  atc  tgg  gag  gac  ccc  att  gtc  gac  atg  gaa  ggc  gtc
181  cag  atc  cgt  ccc  gga  cat  cgg  acc  gtt  acg  atc  gtt  gcc  ggc  tgc  aac  atg  ctg  acc
241  tat  ctc  tcc  gcc  gag  cct  gcc  cgg  ata  gac  gta  gtc  gat  ctc  aac  ccc  cat  cac  atc  ggc
301  ctc  aac  cgg  ctt  aag  ctc  tct  gcc  ttt  cgc  cac  ctc  cgg  agc  cac  aag  gac  gtt  gtt  cgg
361  ttc  ctc  ggc  gtc  gaa  ggt  acg  cgc  acg  aat  ggc  cag  gcc  tac  gac  gtt  ttc  ttc  ggc  ccc
421  aag  ctc  gat  ccc  gca  acc  cgc  gcc  tat  tgg  aac  ggc  cga  gat  ctc  acc  ggc  cgc  cgg  cgc
481  atc  ggc  gtc  ttc  ggg  cgc  aac  gtt  tat  cgt  acc  ggc  ggt  ctt  ggc  ggt  ctg  att  tcc  gcc
541  agc  cat  gct  ctc  gca  cgg  ctt  cag  gcc  cat  ggc  acc  aat  ccc  gaa  gat  ttc  gtc  aag  ggc  cgg  gcc
601  atg  cgc  gag  cag  cgg  cag  ttc  gcc  gac  gaa  gtt  gtc  gcc  ctc  gcc  gtc  gac  gcc  cgg  cgg  gcc
661  atc  cgt  tgg  atc  acc  aac  cgc  aag  agc  tcc  ctt  gcc  gcc  gcc  gtc  gcc  acct  gcc  cgg  cag  cag
721  ttc  gac  gaa  ctc  ggc  acc  tgg  cag  aac  tcc  gcc  gct  gcc  gcc  gcc  gcc  gcc  gcc  gcc  gag  cag  cag
781  ctc  cgg  gaa  aag  aag  acc  cgg  gcc  gcc  gcc  gcc  tca  gtc  gcc  ggc  tac  gtc  ctc  gcc  gac  cga  cag
841  gca  cgg  cgc  tac  ccc  cgg  gac  gag  ggc  gag  tgg  cca  cct  tat  ctc  cag  gcc  tgg  cga  cgg  caa
901  tac  gaa  ggc  att  cgc  gac  aat  gtc  gac  cgc  gtc  gag  gtc  cac  cat  ggc  agc  tcc  tgg  gag  cgg  ggg
961  ctt  tcc  gcc  gcc
1021  tgg  atg  acc  gag  cag  cag  cgg  tgg  ggc  gcc  gac  ctc  ggg  gag  gac  acc  gcc  gcc  gag  cgc  ggc
1081  ggc  ggc  gtc  gtc  acc  cgc  ggc  gag  ggc  cgg  aac  gtc  ggc  gtc  ggc  gtc  ctc  gcc  ggc  gcc  gcc
1141  acc  acc  ctc  ctc  gat  cag  tgg  tct  tgg  cac  tac  tat  gtc  gcc  gag  acct  tgc  atg  aag  gcc  gcc  gcc
1201  gac  cgg  tgg  ggc  acc  cag  ggc  ggc  ggc  gcc  gcc  ctc  cac  atc  cgg  aag  aag  gcc  tga
```
FIGURE 29

Sinorhizobium meliloti BtaA protein

MTDFAPDAGFGKKNPLLASKALLQQHKALSPAGLSERLFGGLLFSGLVYPQIWEDPIVDME
AMQIRPGHRIVTIGSGCMLTYLSAEFAPARIDVVDLNPNHIALNRLKLSAFRHLPSHK
DVVRFLAVEGRTNGQAYDVLAPKLDPATRAYWNGRDLTGRRRIGVGRNRYRTGLL
GRFISASHALARLHGRENDFVKARSMEQRFQFFDDKLAPLFERPVIRWITSKSSLF
GLGIPPPQQFDELSRKEKSVAAVLNRLEKLTCHFLRDNYFAWQAFARRYPDPDEG
ELPPYLQASRYEAIRDNAERVEVHHASFTELLAGKPAASVDYVLLDAQDWMTIDQLN
DLWTEITRTADAGAVVIFRTAAEASILPGRLSTTLDQWYYDAETSMLGAEDRSAIY
GGFHIYRKKA
Sinorhizobium meliloti BtaB DNA

1 atgagccgccg tgcaagccgc gaatgaagagc cacgtctacg tgaattggacc catgtatgacg
61 taccagcggcg acaatctatga ttctacttcg aataaactatc ttcttcggcgc tgacacacgctg
121 atccctgagac tgaaccccggc gccgggctgg ctcgggtgcgg aagttgtccgtg cggcagcgccgc
181 cgcaattcctcg ccgcgtatcgcc gggatcatct acctgctgctcg gccttcggggt ctctcggtacgc
241 tcggcgggaa tcctcgccgc gcgcaccagc cggccggcggc gggcgggacgc ggcaccgaaacgc
301 tgcctggtgctg tcggcgctgg gcgaagatttcc agcgggagctgc tattcggataa gggggcgcttcgc
361 gacccggatcgc tccattctctc cgccctctctcg aatgttggcgca catggtgggaaa ggcgggtcgatcgc
421 ggcggctcggc cgcctggcctcg tgccgctgcag tcgggctgctag ccggcgcctgctg cgggcgcggcgc
481 gaagggcttgggc gcggggcggcct cggcggtgctcg ttggccagagc ggcggctagct gcgggctgctgc
541 aagctgctcggc aaaccctttt ctgatgtatgc cggggagaggg cggagagggc cggacgccgcgcgc
cggaggggagg
601 tcggcattcg atcggggctag acgggtttat gcctgccgcttc gcctgctatcg ccggcggtgctgc
661 ccgcagtg
FIGURE 31

Sinorhizobium meliloti 8taB protein

MSAVQTANESHAHLMDRMYRYQRYTYDFTRYYLFGDTRLREL
NPMPGASVLEVGCAGTRNLAVIGDLYPGARLFGDLISAIILAPA
KAKLRRQNRPDALVRVADATNFTAASFDQEGFDTRIVISYALSMV
PEWekaDAAAIAALKPGGSLHIADFQQEGWPAGFRRRFLQAWLR
RFHTPRTLEDFVRKRAERNGAALEVRSLRRGAYWLVYRRRAA

P
Figure 32

1 Chlamydomonas extract
2 E. coli-pQE-31
3 E. coli-pBta1

←DGTS
Figure 34

A. Vogels (20 mM P₄)

B. Vogels -P +MES (0.01 mM P₄)
SEQUENCE LISTING

<110> Benning, Christoph
Riekhof, Wayne
Klug, Rouven

<120> Compositions and Methods for the Production of Betaine Lipids

<130> MSU-07769

<150> 10/118,495
<151> 2002-04-08

<160> 52

<170> PatentIn version 3.2

<210> 1
<211> 1252
<212> DNA
<213> Rhodobacter sphaeroides

<400> 1
gtgacgcaagt tcgcccctcac ccacctgccc gccgccggcg gttcccgcca gatggtgcgc 60
gccgtgcacc gcacgtgctt tctcagccgc gaaggactgta tggagcggatt gttctcgcgc 120
ccttctcagc gcctgctgct tcgcccagtc gcggaggtgaa caatgggcgc 180
tcggccatcc gcgccggggg cggctggttg gcacattgct cgggcgggttg caagctgtct 240
tcctatctca gcgcaggggct ggcgctgctt atcctctggc gcgccatgtg 300
gcgctggggc ggtgaaagct cgcccggcgcc cgagctctgc gcggccatgc ggcttctctct 360
gatctcttcg tgcggcggaga ctggccgggc aatgcggggc tctacgaccgc ccacattgcg 420
ccgcgcgctgc cgccgagggag cgcgcgctgcg tggaggcgcgc gcacccccttc ggccgggggc 480
atccagctgt gcgagccggct tttctacgg ccacggtgccc tcggccgcttc cggtggtgcc 540
gcccatagct gcggccggggc cgccgagggc gcctggtggg gctttttcgcg cttgcccgcag 600
atcgaggccgc aggcagcgttc tttctacggc ccaccccgtca gcgttttgag gcggcggggtg 660
gtcagggccgc tcggccgagg gcggcggcgct tcgtttgctgc gttggactgc gcgcgcgaag 720
tatcgcccttc gcggctgggca gcggccgccgc gcgtgtgtgc gcgtggtcgc gcagcgcctc 780
ccgcgcgctgc cctgtgcctgc ccacccggtgc gcagaactctgc gcggcttcca gcggcgctgcc 840
cgccgtatc gcggccggcg gcgggcgcgc gcgtggtgccct atctcgagacc cagccgccttc 900
gcagcgctgc gcgggagccgc gcggggggtgc cagatgagac gcggccagct gcaggagggc 960
tcggccgctgc aacgcggagag gacgctccac gcggcttcac gcgctgtgcgc gcaggctgtg 1020
atgacggcag cgcagcgtgac gcgcctgtgc gcgggcgtgca gcggccagct gcggcggggc 1080
WO 2005/009115

PCT/US2004/022789

gcgccgggtga tcttcgcac agcgccggtcc ggcgacccctc tggcccctgag aagcgcggag
1140
gagatccttg agccacgggg agccagcgcc gggcggggttc agccgactggag cagcgcgggtcg
1200
cggccggcag gtcgctgtgg gtcgctggtc ggcgacgctg acgtggttcgg ctgtgcgtgc
1252

<210> 2
<211> 1155
<212> DNA
<213> Rhodobacter sphaeroides

<400> 2
atgcagcagcg caacccatgc ggcgctgtagc gacgacgaccc acgcgacacca gcgccggtc
60
tacgacgtca ccggcgccgt cttctctcttc ggccgggctg gcgtgtctgc cggccggtgc
120
cggccgggct gcggccgggt ctggcgtgagtc gcggcggacct cgggtcctgc gggccgctg
180
atcgccggtcc gtcggtccctg cggggggtctc acacggtgtg cggggtgacgc gcggggtctc
240
gcggggtgcc gcggccgggtcc ggcgagcggt gcgggggtctg cggggtggtcgc gcggggtctc
300
ttcgagggccc tctccctctct cggccgctgtgc ctggcgtgagtc gcggggtctc gggccgctg
360
tctgtgtgtca tgggggttcgc gccccgtgtgc gcgtggtgtgc gcggggtctc gggccgagc
420
gggggggtcgc gcggccggtg gccggtcgtgc gcggcgggtca ggtcggcgtgc gcggggtctc
480
gcggccggtcc gcggccggtgc gcggcgggtac gcggcgggtgc gcggcgggtcgc gcggggtctc
540
gcagctgtggc ccagggtgggt gcggccggcgg gcggccggggt ccggccgggtgc gcggcgggtc
600
gatgtgtgtc tggcgtgagtc gcgggggtctc gggccgctgtgc gtcggtgtgc gcggggtctc
660
ttcgagggccc gcggccggtc gcggccggtgc gcggccggggt gcggcgggtag gcgtggtgtgc
720
gcggccggtc gcggccggtgc gcggccggggt gcggcgggtcgc gcgtggtgtgc gcggggtctc
780
gcggccggtc gcggccggtgc gcggccggggt gcggcgggtcgc gcgtggtgtgc gcggggtctc
840
ttcgagggccc gcggccggtc gcggccggtgc gcggccggggt gcggcgggtcgc gcgtggtgtgc
900
ttcgagggccc gcggccggtc gcggccggtgc gcggccggggt gcggcgggtcgc gcgtggtgtgc
960
gcggccggtc gcggccggtgc gcggccggggt gcggcgggtcgc gcgtggtgtgc gcggggtctc
1020
gcggccggtc gcggccggtgc gcggccggggt gcggcgggtcgc gcgtggtgtgc gcggggtctc
1080
gcggccggtc gcggccggtgc gcggccggggt gcggcgggtcgc gcgtggtgtgc gcggggtctc
1140
gcggccggtc gcggccggtgc gcggccggggt gcggcgggtcgc gcgtggtgtgc gcggggtctc
1200
gcggccggtc gcggccggtgc gcggccggggt gcggcgggtcgc gcgtggtgtgc gcggggtctc
1255

2/38
Met Thr Glu Ala Val His Leu Pro Ala Pro Pro Val Ala Arg
1 5 10 15
Gln Ile Gly Ala Val His Arg Thr Ser Leu Leu Ser Ala Glu Gly
20 25 30
Leu Met Glu Arg Met Phe Ser Arg Leu Phe His Gly Leu Val Tyr Pro
35 40 45
Gln Ile Trp Glu Asp Pro Ala Val Asp Met Ala Ala Leu Ala Ile Arg
50 55 60
Pro Gly Asp Arg Leu Val Ala Ile Ala Ser Gly Gly Cys Asn Val Leu
65 70 75 80
Ser Tyr Leu Thr Gln Gly Pro Gly Ser Ile Leu Ala Val Asp Leu Ser
85 90 95
Pro Ala His Val Ala Leu Gly Arg Leu Lys Leu Ala Ala Ala Arg Thr
100 105 110
Leu Pro Asp His Ala Ala Phe Phe Asp Leu Phe Gly Arg Ala Asp Leu
115 120 125
Pro Gly Asn Ala Ala Leu Tyr Asp Arg His Ile Ala Pro Ala Leu Asp
130 135 140
Gly Arg Ser Arg Tyr Trp Glu Ala Arg Ser Pro Phe Gly Arg Arg
145 150 155 160
Ile Gln Leu Phe Glu Arg Gly Phe Tyr Arg His Gly Ala Leu Gly Arg
165 170 175
Phe Ile Gly Ala His Thr Leu Ala Arg Ala Ala Gly Thr Asp Leu
180 185 190
Arg Gly Phe Leu Asp Cys Pro Asp Ile Glu Ala Gln Arg Ser Phe Phe
195 200 205
Tyr Ala His Ile Gly Pro Leu Phe Glu Ala Pro Val Val Gln Ala Leu
210 215 220
Ala Arg Arg Pro Ala Ala Leu Phe Gly Leu Gly Leu Gly Ile Pro Pro Ala Gln
225 230 235 240

Tyr Ala Leu Leu Ala Gly Asp Gly Asp Gly Asp Val Leu Pro Val Leu
245 250

Arg Gln Arg Leu His Arg Leu Leu Cys Asp Phe Pro Leu Arg Glu Asn
260 265 270

Tyr Phe Ala Phe Gln Ala Ile Ala Arg Arg Tyr Pro Arg Pro Gly Glu
275 280 285

Gly Ala Leu Pro Pro Tyr Leu Glu Pro Thr Ala Phe Glu Thr Leu Arg
290 295 300

Glu Ala Ala Gly Arg Val Gln Ile Glu Asn Arg Ser Leu Thr Glu Ala
305 310 315 320

Leu Ala Ala Glu Pro Glu Glu Ser Ile His Gly Phe Thr Leu Leu Asp
325 330 335

Ala Gln Asp Trp Met Thr Asp Ala Gln Leu Thr Ala Leu Trp Arg Gln
340 345 350

Val Thr Arg Thr Ala Ala Pro Gly Ala Arg Val Ile Phe Arg Thr Gly
355 360 365

Gly Ala Ala Asp Leu Leu Pro Gly Arg Val Pro Glu Glu Ile Leu Gly
370 375 380

His Trp Arg Ala Asp Arg Ala Ala Gly Gln Ala Ala Gly His Ala Ala Asp
385 390 395 400

Arg Ser Ala Ile Tyr Gly Gly Phe His Leu Tyr Arg Arg Arg Asp Ala
405 410 415

<210> 4

<211> 210

<212> PET

<213> Rhodobacter sphaeroides

<400> 4

Met Thr Asp Ala Thr His Ala Ala Leu Met Asp Ala Thr Tyr Arg His
1 5 10 15

Gln Arg Arg Ile Tyr Asp Val Thr Arg Arg His Phe Leu Leu Gly Arg
20 25 30

4/38
Asp Arg Leu Ile Ala Glu Leu Asp Pro Pro Pro Gly Ala Arg Val Leu
35 40
Glu Ile Ala Cys Gly Thr Gly Arg Asn Leu Asp Leu Ile Gly Arg Arg
50 55 60
Trp Pro Gly Cys Arg Leu Ser Gly Leu Asp Ile Ser Gln Glu Met Leu
65 70 75 80
Ala Ser Ala Arg Ala Arg Leu Gly Arg Arg Ala Thr Leu Ala Leu Gly
85 90 95
Asp Ala Thr Arg Phe Glu Ala Leu Pro Leu Phe Gly Thr Asp Arg Phe
100 105 110
Glu Arg Ile Val Leu Ser Tyr Ala Leu Ser Met Ile Pro Asp Trp Arg
115 120 125
Glu Ala Leu Arg Glu Ala Leu His Leu Val Pro Gly Gly Arg Leu
130 135 140
His Val Val Asp Phe Gly Asp Gln Ala Gly Leu Pro Gly Trp Ala Arg
145 150 155 160
Ala Gly Leu Arg Gly Trp Ile Gly Arg Phe His Val Thr Pro Arg Asp
165 170 175
Asp Leu Gly Thr Ala Leu Gly Glu Thr Ala Leu Gly Ile Gly Gly Tyr
180 185 190
Ala Glu Tyr Arg Ser Leu Gly Gly Gly Tyr Ala Ile Leu Gly Thr Leu
195 200 205
Thr Arg
210

<210> 5
<211> 26
<212> DNA
<213> Rhodobacter sphaeroides

<400> 5
cggctctac cacattcgcc cccgcg 26
<210> 6
<211> 31
<212> DNA
<213> Rhodobacter sphaeroides

<400> 6
GACGTCCCG AGATCGAGGG CCAGCGCCAG C

<210> 7
<211> 26
<212> DNA
<213> Rhodobacter sphaeroides

<400> 7
GCGCGCCGACG GTACGCGATCTACG

<210> 8
<211> 28
<212> DNA
<213> Rhodobacter sphaeroides

<400> 8
GCTGATGGAC CGCTCCTACC GCCACCAG

<210> 9
<211> 29
<212> DNA
<213> Rhodobacter sphaeroides

<400> 9
CGGTTCCGAC GGCTCGTCTC TCTCTACGC

<210> 10
<211> 29
<212> DNA
<213> Rhodobacter sphaeroides

<400> 10
GGAATATCGA TCTCGCCAC GCTCAOGG

<210> 11
<211> 26
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic

<400> 11
GCTCTAGAAT GGCGCAGTTC GCCTC
<210> 12
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 12
acatgcagtc aggacgatcc gctgaaccg 30

<210> 13
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 13
gctctagact ggcgcacgcc acccat 26

<210> 14
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 14
acatgcagtc aggacgatcc gctgaaccg 30

<210> 15
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 15
atgcaggtgt ggcctccagt gacgcatgct gccttc 36

<210> 16
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 16
gagggcgaac tgcgctactg gaggccacac ctgcat 36
Artificial Sequence

Synthetic

DNA

atgcaggtgt ggctccaat gaccgacgc acccat

17

36

Artificial Sequence

Synthetic

DNA

atgggtggcg tcggctattg gagggccaac ctgcac

18

36

Artificial Sequence

Synthetic

DNA

gctctagaaa ccacaagac taagaa

19

26

Artificial Sequence

Synthetic

DNA

acatgcagtc acgggatcc gcctgaacgg

20

30

Artificial Sequence

Synthetic

DNA

acatgcagtc ctctcaccgc tgtagcttg

21

29
<210> 22
<211> 1248
<212> DNA
<213> Mesorhizobium loti

<400> 22
atgacggacg ttcctccgga tctgggttttt cgcgogccga aggaagttgg aaagccggtc 60
taccagaacc gcgcgcttttc caaacgggct aatcccgagc gcgtcgttggc cttctctgttt 120
tcgcgcctcg tctatcgcga gactctgggaa gaccccgtgcag tcgacatggc ggcctcagag 180
tctggctcag gcctcagcgcct actcacaatcc ctcctccggc gcgtcgaacct ccctcactac 240
tctacccgct gcgcggccacg gatcagcgcc gcctcagctct acccagccca aagccagctg 300
aacgcctcga agacgtgaggg ggtgcogcgt ctcgctcctc gcagcctcagc ggcctcagct 360
cttcgccgccc cggccggccc cggggtcgcgg cggcctcagc ggcctcagctg 420
tctgcacgtct gcgcgcgccc gatcggcctc gtgcggcagct cggcgcctc 480
gcgctcctct gcgcggccc cggggtcgcgg cggcctcagc ggcctcagctg 540
<210> 23
<211> 678
<212> DNA
<213> Mesorhizobium loti

<400> 23
atgacggacgc ttcctccgga ggtgctcgtc ggagcctcct gcgtcctcct gcagcctcctc 60
gtcctcact gcgcgtgcctc gcgtcctcct gcagcctcctc gcgtcctcctc gcagcctcctc 120
gcacgctgcag gcgtcctcct gcagcctcctc gcgtcctcctc gcagcctcctc gcgtcctcctc 180
ggcacggtgc gcaaccaacct ctcctccgga tctgcggcct tgcgctcctc gcagcctcctc 240
<210> 27
gcaagctttttaagctggtgacctgatctgatca

<211> 28
dna
da
<213> artificial sequence

<220>
synthetic

<400> 27
gcaagctttt aagctggtg acctgatca

<210> 28
<211> 1251
<212> dna
<213> agrobacterium tumefaciens

<400> 28
atgagcgagctg cggcacccaa gacgccgcttc agcaaaaaac cgaactgaa gccggtcattg
cttgagcaca aagcactcttc caaagcgggc cttgctgaaac ggtttttctgg cgctcctcttt
tgctggcctcg tctatcgcga gatctgggaa gaccccgaga tacgatgtga agcgatggag
tacgatggag ccgacaccgc ttcgaacctc ggtccggcgg cgtgcaacat gttgccttat
ctcctgagca caccggtgac cattgatgtg acctgacttca aacggccacca cttgagcttg
aacaaagctga agctcggctgc cttgagccta cttgcccggc acbatcagatgt ggctgcggcc
attcggaccc cttgagccta cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg

ttcggccgcc gcggcacccgc cagccagatc gttgccttattg accgttttctc ggcgcagcct
tctgagcctga cggacccagc atactggcct aggcgacccct tttcgccggc cggctgacatt
ctcgccctgct caccgagaccc cttgagcctg
Agrobacterium tumefaciens

<table>
<thead>
<tr>
<th>Position</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Met Thr Ser Ala Ala Pro Lys Thr Gly Phe Ser Lys Asn Thr Lys Leu</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lys Ser Ala Leu Leu Gln His Lys Ala Leu Ser Lys Ser Gly Leu Ser</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Glu Arg Phe Phe Gly Val Leu Phe Ser Gly Leu Val Tyr Pro Gln Ile</td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Trp Glu Asp Pro Glu Ile Asp Met Glu Ala Met Glu Leu Gly Glu Gly</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>His Arg Ile Val Thr Ile Gly Ser Gly Gly Cys Asn Met Leu Ala Tyr</td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Leu Ser Arg Asn Pro Ala Ser Ile Asp Val Val Asp Leu Asn Pro His</td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>His Ile Ala Leu Asn Lys Leu Lys Leu Ala Ala Phe Arg His Leu Pro</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Ala His Gln Val Val Arg His Phe Gly Arg Ala Gly Thr Arg Ser</td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Asn Ser Val Gly Tyr Asp Arg Phe Ile Ala Glu His Leu Asp Ala Thr</td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Thr Lys Ala Tyr Trp Ser Lys Arg Thr Leu Ser Gly Arg Arg Arg Ile</td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Ser Val Phe Asp Arg Asn Ile Tyr Arg Thr Gly Leu Leu Gly Arg Phe</td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Ile Gly Ala Gly His Ile Met Ala Arg Leu His Gly Val Lys Leu Thr</td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Glu Met Ala Lys Thr Arg Thr Leu Asp Glu Gln Arg Gln Phe Phe Asp</td>
</tr>
<tr>
<td>195</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Ser Lys Val Ala Pro Leu Phe Asp Lys Pro Val Val Arg Trp Leu Thr</td>
</tr>
<tr>
<td>210</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>
Lys Arg Lys Ser Ser Leu Phe Gly Leu Gly Ile Pro Pro Arg Gln Tyr 225 230 235 240
Asp Glu Leu Ala Ser Leu Ser Ser Asp Gly Thr Val Ala Ser Val Leu 245 250 255
Lys Glu Arg Leu Glu Lys Leu Ala Cys Asn Phe Pro Leu Ser Asp Asn 260 265 270
Tyr Phe Ala Trp Gln Ala Phe Ala Arg Arg Tyr Pro Glu Pro His Glu 275 280 285
Gly Ala Leu Pro Ala Tyr Leu Lys Pro Glu Tyr Tyr Glu Lys Ile Arg 290 295 300
Asn Asn Thr Ala Arg Val Ala Val His Ala Thr Tyr Thr Glu Leu 305 310 315 320
Leu Ser Arg Lys Pro Ala Asn Gly Val Asp Arg Tyr Ile Leu Leu Asp 325 330 335
Ala Gln Asp Trp Met Thr Asp Val Gln Leu Asn Glu Leu Trp Ser Gln 340 345 350
Ile Ser Arg Thr Ala Ala Ser Gly Ala Arg Val Ile Phe Arg Thr Ala 355 360 365
Ala Glu Lys Ser Val Ile Glu Gly Arg Leu Ser Pro Asp Ile Arg Asn 370 375 380
Gln Trp Val Tyr Leu Glu Glu Arg Ser Asn Glu Leu Asn Ala Met Asp 385 390 395 400
Arg Ser Ala Ile Tyr Gly Gly Phe His Ile Tyr Gln Arg Ala Met Ala 405 410 415

<210> 30
<211> 720
<212> DNA
<213> Agrobacterium tumefaciens

<400> 30
atgaaacca tcggcggaa tgtcggcctt gcagacgcgg cgcatgcggg cttgtagggc 60
cgcattgtac gcaccagcg ccatactctac gatatcacc gcbaatatta ttctctgggc 120
cgtgaccgg ccatttcgg gcctgacgct gcogaagggcg gcagctgctg ggaatcggcc 180
tgccgcacgc gcgcgaacct gctgctggcc agccggccgt ttccgcagcc caaactcttc 240
<table>
<thead>
<tr>
<th>Met</th>
<th>Thr</th>
<th>Asp</th>
<th>Ala</th>
<th>Thr</th>
<th>His</th>
<th>Ala</th>
<th>Ala</th>
<th>Leu</th>
<th>Met</th>
<th>Asp</th>
<th>Ala</th>
<th>Thr</th>
<th>Tyr</th>
<th>Arg</th>
<th>His</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Arg</td>
<td>Arg</td>
<td>Ile</td>
<td>Tyr</td>
<td>Asp</td>
<td>Val</td>
<td>Thr</td>
<td>Arg</td>
<td>Arg</td>
<td>His</td>
<td>Phe</td>
<td>Leu</td>
<td>Leu</td>
<td>Gly</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Arg</td>
<td>Leu</td>
<td>Ile</td>
<td>Ala</td>
<td>Glu</td>
<td>Leu</td>
<td>Asp</td>
<td>Pro</td>
<td>Pro</td>
<td>Pro</td>
<td>Gly</td>
<td>Ala</td>
<td>Arg</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ile</td>
<td>Ala</td>
<td>Cys</td>
<td>Gly</td>
<td>Thr</td>
<td>Gly</td>
<td>Arg</td>
<td>Asn</td>
<td>Leu</td>
<td>Asp</td>
<td>Leu</td>
<td>Ile</td>
<td>Gly</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Pro</td>
<td>Gly</td>
<td>Cys</td>
<td>Arg</td>
<td>Leu</td>
<td>Ser</td>
<td>Gly</td>
<td>Leu</td>
<td>Asp</td>
<td>Ile</td>
<td>Ser</td>
<td>Gln</td>
<td>Glu</td>
<td>Met</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Ala</td>
<td>Arg</td>
<td>Ala</td>
<td>Arg</td>
<td>Leu</td>
<td>Gly</td>
<td>Arg</td>
<td>Arg</td>
<td>Arg</td>
<td>Ala</td>
<td>Thr</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Ala</td>
<td>Thr</td>
<td>Arg</td>
<td>Phe</td>
<td>Glu</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
<td>Leu</td>
<td>Phe</td>
<td>Gly</td>
<td>Thr</td>
<td>Arg</td>
<td>Arg</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Arg</td>
<td>Ile</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Tyr</td>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
<td>Met</td>
<td>Ile</td>
<td>Pro</td>
<td>Asp</td>
<td>Trp</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ala</td>
<td>Leu</td>
<td>Arg</td>
<td>Glu</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>His</td>
<td>Leu</td>
<td>Val</td>
<td>Pro</td>
<td>Gly</td>
<td>Gly</td>
<td>Arg</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Val</td>
<td>Val</td>
<td>Asp</td>
<td>Phe</td>
<td>Gly</td>
<td>Asp</td>
<td>Gln</td>
<td>Ala</td>
<td>Gly</td>
<td>Leu</td>
<td>Pro</td>
<td>Gly</td>
<td>Trp</td>
<td>Ala</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

14/38
Ala Gly Leu Arg Gly Trp Ile Gly Arg Phe His Val Thr Pro Arg Asp
165 170 175
Asp Leu Gly Thr Ala Leu Gly Glu Thr Ala Leu Gly Ile Gly Gly Tyr
180 185 190
Ala Glu Tyr Arg Ser Leu Gly Gly Gly Tyr Ala Ile Leu Gly Thr Leu
195 200 205
Thr Arg
210

<210> 32
<211> 1251
<212> DNA
<213> Sinorhizobium meliloti

<400> 32
atgaccgact tcgcccgagga tgcggttccc ggcagaagagatacgggcat cacaccgca 60
ctctgcaagc acaagcttct tccccccccc gcgggacagcctt cgggtggtgtc 120
tttccggac tcgcttaccc gcagatctgg gaggacccgga tgtgcagatg gagaagcgatg 180
cagatccggtc cgggacatcg gatcgcagct atcggttccc gcggggtcaca accgctgacc 240
tatcttcccg cggagccctgc cggatagac gttcctgcgct tcaacccccca tacatcgcg 300
tccacccggtc tgagcgtgtc tgcttttgggc cacctgcggc gcacacaagga cgtggtgcgg 360
ttcctcgcggc tgcaggttac ggcacaggaat gcgcaggtgt ctcgcggtcgcc 420
aacgctgactc cggcaccgcc cgcctatggg aacggccgag atctccacgg ccggcgccg 480
atcggctgttc tgcggcgcaga gttttatcgt accggcgtgct ttgcccgttt catttcgcgc 540
agccatggctc tgcgcaggtc gcagggcata aatcggcagc atttggtgtaca gcgcgccttc 600
atgcggcgac gcggggcgatgt ctcgcaacgac aagctgctgc gccgggtggtct gcggcgcc 660
atcggtttgga tccacacggc cagaggtcctt cttgcggcgc gcggcgccg 720
ttcggagaca ttcgaggtct gcgccggagg aatcggcgtc gcgggggtgtc gcggcagcgc 780
tgggaaaaacgtgacgctgac ttcccctggt ggccctgata acttgcgcgtc ggccgccttt 840
gcccgccggt accggccgag gcagagggag cagtggcaca cttatcctca gcgcacgcgg 900
tccgagcagaa ttcgagcttc ggcggaggcc gtcggaggtc accatgcggc atctccaggg 960
tccggcgag gcagggcgcc gccggcagct gcgcgctgct gcgcgcacgac gcgcacggcc 1020
tggatgaccgc accggagcgc tgcgcggaga tcaccgccac gcggcgccgc 1080
```
<table>
<thead>
<tr>
<th>Met</th>
<th>Thr</th>
<th>Asp</th>
<th>Phe</th>
<th>Ala</th>
<th>Pro</th>
<th>Asp</th>
<th>Ala</th>
<th>Gly</th>
<th>Phe</th>
<th>Gly</th>
<th>Lys</th>
<th>Lys</th>
<th>Asn</th>
<th>Pro</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Lys</td>
<td>Ser</td>
<td>Ala</td>
<td>Leu</td>
<td>Leu</td>
<td>Gln</td>
<td>His</td>
<td>Lys</td>
<td>Ala</td>
<td>Leu</td>
<td>Ser</td>
<td>Pro</td>
<td>Ala</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Glu</td>
<td>Arg</td>
<td>Leu</td>
<td>Phe</td>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
<td>Phe</td>
<td>Ser</td>
<td>Gly</td>
<td>Leu</td>
<td>Val</td>
<td>Tyr</td>
<td>Pro</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Trp</td>
<td>Glu</td>
<td>Asp</td>
<td>Pro</td>
<td>Ile</td>
<td>Val</td>
<td>Asp</td>
<td>Met</td>
<td>Glu</td>
<td>Ala</td>
<td>Met</td>
<td>Gln</td>
<td>Ile</td>
<td>Arg</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>His</td>
<td>Arg</td>
<td>Ile</td>
<td>Val</td>
<td>Thr</td>
<td>Ile</td>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Gly</td>
<td>Cys</td>
<td>Asn</td>
<td>Met</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Leu</td>
<td>Ser</td>
<td>Ala</td>
<td>Glu</td>
<td>Pro</td>
<td>Ala</td>
<td>Arg</td>
<td>Ile</td>
<td>Asp</td>
<td>Val</td>
<td>Val</td>
<td>Asp</td>
<td>Leu</td>
<td>Asn</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>His</td>
<td>His</td>
<td>Ile</td>
<td>Ala</td>
<td>Leu</td>
<td>Asn</td>
<td>Arg</td>
<td>Leu</td>
<td>Lys</td>
<td>Leu</td>
<td>Ser</td>
<td>Ala</td>
<td>Phe</td>
<td>Arg</td>
<td>His</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>His</td>
<td>Lys</td>
<td>Asp</td>
<td>Val</td>
<td>Val</td>
<td>Arg</td>
<td>Phe</td>
<td>Leu</td>
<td>Ala</td>
<td>Val</td>
<td>Gly</td>
<td>Thr</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Asn</td>
<td>Gly</td>
<td>Gln</td>
<td>Ala</td>
<td>Tyr</td>
<td>Asp</td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
<td>Ala</td>
<td>Pro</td>
<td>Lys</td>
<td>Leu</td>
<td>Asp</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Arg</td>
<td>Ala</td>
<td>Tyr</td>
<td>Trp</td>
<td>Asn</td>
<td>Gly</td>
<td>Arg</td>
<td>Asp</td>
<td>Leu</td>
<td>Thr</td>
<td>Gly</td>
<td>Arg</td>
<td>Arg</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Gly</td>
<td>Val</td>
<td>Phe</td>
<td>Gly</td>
<td>Arg</td>
<td>Asn</td>
<td>Val</td>
<td>Tyr</td>
<td>Arg</td>
<td>Thr</td>
<td>Gly</td>
<td>Leu</td>
<td>Leu</td>
<td>Gly</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ile</td>
<td>Ser</td>
<td>Ala</td>
<td>Ser</td>
<td>His</td>
<td>Ala</td>
<td>Leu</td>
<td>Ala</td>
<td>Arg</td>
<td>Leu</td>
<td>His</td>
<td>Gly</td>
<td>Ile</td>
<td>Asn</td>
<td>Pro</td>
</tr>
</tbody>
</table>
```
Glu Asp Phe Val Lys Ala Arg Ser Met Arg Glu Gln Arg Gln Phe Phe 195
 200
Asp Lys Leu Ala Pro Leu Phe Glu Arg Pro Val Ile Arg Trp Ile 210
 215
 220
Thr Ser Arg Lys Ser Ser Leu Phe Gly Leu Gly Ile Pro Pro Gln Gln 225
 230
 235
 240
Phe Asp Glu Leu Ala Ser Leu Ser Arg Glu Lys Ser Val Ala Ala Val 245
 250
 255
Leu Arg Asn Arg Leu Glu Lys Leu Thr Cys His Phe Pro Leu Arg Asp 260
 265
 270
Asn Tyr Phe Ala Trp Gln Ala Phe Ala Arg Arg Tyr Pro Arg Pro Asp 275
 280
 285
Glu Gly Glu Leu Pro Pro Tyr Leu Gln Ala Ser Arg Tyr Glu Ala Ile 290
 295
 300
Arg Asp Asn Ala Glu Arg Val Glu Val His His Ala Ser Phe Thr Glu 305
 310
 315
Leu Leu Ala Gly Lys Pro Ala Ala Ser Val Asp Arg Tyr Val Leu Leu 320
 325
 330
 335
Asp Ala Gln Asp Trp Met Thr Asp Gln Gln Leu Asn Asp Leu Trp Thr 340
 345
 350
Glu Ile Thr Arg Thr Ala Asp Ala Gly Ala Val Val Ile Phe Arg Thr 355
 360
 365
Ala Ala Glu Ala Ser Ile Leu Pro Gly Arg Leu Ser Thr Thr Leu Leu 370
 375
 380
Asp Gln Trp Tyr Tyr Asp Ala Glu Thr Ser Met Arg Leu Gly Ala Glu 385
 390
 395
 400
Asp Arg Ser Ala Ile Tyr Gly Gly Phe His Ile Tyr Arg Lys Lys Ala 405
 410
 415
<210> 34
<211> 666
<212> DNA
<213> Sinorhizobium meliloti

<400> 34
atgagcccg cgacagccgc gataaagac cagctcacat tgtgagcgc catgtatagc 60
taccagcggt atatctatga tttcaatgac aatatacatc tcctgagccg tgacagtctg 120
atcctgtgaac tgaaccgccc gccagcggca tcgggtgtgg agatcgggtgc cggcagggc 180
cgaatctcgg cgggtatgag ggattcttac ccgggtgcgc gcgtctttcgg cctcgatatc 240
tcgccggaag tcgtgggagac cggcaaatgc aagtcgaggc gcgtggagcgc 300
gttgtgaggg cgcgcaagcc gcagcaatgc cagtatcttc gcgtgctgcc gcgaaggttc 360
gacccggtctg tcatcctctca gccccttttc atgttttccg aattgggaaga ggcgtcggat 420
gccgcgattg cggctccgata cggcggcgggc tcgggtcata tcgggcgactt cggcgcgcag 480
gaggttggcc cggcggcgctt cggcggtcttc ctcggggctc ggcgtcagcgc cttccaggtc 540
acgcgcggcg aagcgctttt ctgattgtgag gcgaagagag cgcagagaa cggagcgagc 600
cgggagtctc gctgcgtcag acgaggttat gcgtggcgtg tcgtttcttc gcgcgcggcgc 660
cgcgtg

<210> 35
<211> 221
<212> PRT
<213> Sinorhizobium meliloti

<400> 35
Met Ser Ala Val Gln Thr Ala Asn Glu Ser His Ala His Leu Met Asp
1 5 10 15
Arg Met Tyr Arg Tyr Gln Arg Tyr Ile Tyr Asp Phe Thr Arg Lys Tyr
20 25 30
Tyr Leu Phe Gly Arg Asp Thr Leu Ile Arg Glu Leu Asn Pro Pro Pro
35 40 45
Gly Ala Ser Val Leu Glu Val Gly Cys Gly Thr Gly Arg Asn Leu Ala
50 55 60
Val Ile Gly Asp Leu Tyr Pro Gly Ala Arg Leu Phe Gly Leu Asp Ile
65 70 75 80
Ser Ala Glu Met Leu Ala Thr Ala Lys Ala Lys Leu Arg Arg Glu Asn
85 90 95

18/38
Arg Pro Asp Ala Val Leu Arg Val Ala Asp Ala Thr Asn Phe Thr Ala
100 105 110

Ala Ser Phe Asp Gln Glu Gly Phe Asp Arg Ile Val Ile Ser Tyr Ala
115 120 125

Leu Ser Met Val Pro Glu Trp Glu Lys Ala Val Asp Ala Ala Ile Ala
130 135 140

Ala Leu Lys Pro Gly Gly Ser Leu His Ile Ala Asp Phe Gly Gln Gln
145 150 155 160

Glu Gly Trp Pro Ala Gly Phe Arg Arg Phe Leu Gln Ala Trp Leu Arg
165 170 175

Arg Phe His Val Thr Pro Arg Glu Thr Leu Phe Asp Val Met Arg Lys
180 185 190

Arg Ala Glu Arg Asn Gly Ala Ala Leu Glu Val Arg Ser Leu Arg Arg
195 200 205

Gly Tyr Ala Trp Leu Val Val Tyr Arg Arg Ala Ala Pro
210 215 220

<210> 36
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 36
acatgcacgc agtgcagcag ttgccccgc

<210> 37
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 37
cgggtacca ggacgatcgc tcgaacccg
<210> 38
<211> 89
<212> DNA
<213> Artificial Sequence

<220>
<223> 39

<400> 38
atgagaggat cgcctacca tcaccatcac ggatccgcat gcggcgcggg taccggggt 60
cgacccgag ccagcgttaat tagctcag 89

<210> 39
<211> 91
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 39
atgagaggat cgcctacca tcaccatcac acgggactgc atgcggactc ggtacctcgg 60
gtgcacccgca agccagccttaat tagctcag 91

<210> 40
<211> 90
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 40
atgagaggat cgcctacca tcaccatcac gggtctcgcgtgatccctcgtggtacctcgg 60
tgcacccgca agccagcctaat tagctcag 90

<210> 41
<211> 415
<212> PRT
<213> Mesorhizobium loti

<400> 41
Met Thr Asp Val Ser Ser Asp Leu Val Phe Arg Arg Gly Lys Glu Val 1 5 10 15
Gly Lys Ala Val Tyr Gln Asn Arg Ala Leu Ser Lys Ala Gly Ile Ser 20 25 30
Glu Arg Leu Phe Ala Phe Leu Phe Ser Gly Leu Val Tyr Pro Gln Ile 35 40 45
Trp Glu Asp Pro Asp Val Asp Met Glu Ala Met Gin Leu Gly Gln Gly
50
55
60

His Arg Ile Val Thr Ile Ala Ser Gly Gly Cys Asn Ile Leu Ala Tyr
65
70
75
80

Leu Thr Arg Ser Pro Ala Arg Ile Asp Ala Val Asp Leu Asn Ala
85
90
95

His Ile Ala Leu Asn Arg Met Lys Leu Glu Ala Val Arg Arg Leu Pro
100
105
110

Ser Gln Gly Asp Leu Phe Arg Phe Phe Gly Ala Ala Asp Thr Ser His
115
120
125

Asn Ser Gln Ala Tyr Asp Arg Phe Ile Ala Pro His Leu Asp Pro Val
130
135
140

Ser Arg His Tyr Trp Glu Arg Arg Asn Trp Arg Gly Arg Arg Ile
145
150
155
160

Ala Val Phe Asp Arg Asn Phe Tyr Gln Thr Gly Leu Leu Gly Leu Phe
165
170
175

Ile Ala Met Gly His Arg Thr Ala Lys Phe Phe Gly Val Asn Pro Ala
180
185
190

His Met Met Glu Ala Arg Asn Ile Gly Glu Gin Arg Arg Phe Phe Asn
195
200
205

Glu Glu Leu Ala Pro Val Phe Asp Lys Lys Leu Leu Lys Trp Ala Thr
210
215
220

Ser Arg Lys Ala Ser Leu Phe Gly Leu Gly Ile Pro Pro Ala Glu Tyr
225
230
235
240

Asp Ser Leu Ile Thr Ser Gly Asp Gly Thr Met Ala Ser Val Leu Lys
245
250
255

Ala Arg Leu Glu Lys Leu Ala Cys Asp Phe Pro Leu Glu Asn Asn Tyr
260
265
270

Phe Ala Trp Gln Ala Phe Ala Arg Arg Tyr Pro Asn Pro Gly Glu Ala
275
280
285

Ala Leu Pro Ala Tyr Leu Glu Lys Gln Asn Tyr Glu Thr Ile Arg Gly
290
295
300

21/38
Asn Ile Asp Arg Val Ala Ile His His Ala Asn Leu Ile Glu Phe Leu
305 310 315 320

Ala Gly Lys Asp Ala Gly Thr Val Asp Arg Phe Ile Leu Leu Asp Ala
325 330 335

Gln Asp Trp Met Thr Asp Asp Gln Leu Asn Ala Leu Trp Ser Glu Ile
340 345 350

Ser Arg Thr Ala Ser Ala Gly Ala Arg Val Ile Phe Arg Thr Ala Ala
355 360 365

Glu Pro Ser Leu Leu Pro Gly Arg Val Ser Thr Ser Leu Leu Asp Gln
370 375 380

Trp Asp Tyr Gln Asp Glu Ala Ser Arg Glu Phe Ser Ala Arg Asp Arg
385 390 395 400

Ser Ala Ile Tyr Gly Gly Phe His Leu Tyr Val Lys Arg Thr Ala Ala
405 410 415

<210> 42
<211> 225
<212> PRT
<213> Mesorhizobium loti

<400> 42

Met Thr Glu Leu Pro Ala Ser Pro Glu Phe Lys Ala Asn His Ala Glu
1 5 10 15

Leu Met Asp Gly Val Tyr His Trp Gln Arg His Ile Tyr Asp Leu Thr
20 25 30

Arg Lys Tyr Tyr Leu Leu Gly Arg Arg Leu Ile Asp Gly Leu Glu
35 40 45

Val Pro Gln Gly Gly Thr Val Leu Glu Leu Gly Cys Gly Thr Gly Arg
50 55 60

Asn Ile Ile Leu Ala Ala Arg Arg Tyr Pro Asp Ala Arg Phe Phe Gly
65 70 75 80

Leu Asp Ile Ser Ala Glu Met Leu Glu Thr Ala Gly Lys Ala Ile Asp
85 90 95

Arg Glu Gly Leu Ser Gly His Val Thr Leu Thr Arg Gly Asp Ala Thr
100 105 110
Asp Phe Asp Ala Ala Ala Leu Tyr Gly Ile Glu Arg Phe Asp Arg Val 115
Phe Val Ser Tyr Ser Leu Ser Leu Met Ile Pro Gly Trp Glu Lys Thr Val 130
Ser Ala Ala Leu Ala Ala Leu Ser Pro Asn Gly Ser Leu His Ile Val 145
Asp Phe Gly Gln Gln Glu Gly Leu Pro Gly Trp Phe Arg Thr Leu Leu 165
Arg Gly Trp Leu Lys Lys Phe His Val Thr Pro Arg Glu Ser Leu Arg 180
Glu Val Leu Glu Ser Glu Ser Arg Arg Thr Gly Ala Thr Phe Arg Phe 195
Arg Thr Leu Tyr Arg Gly Tyr Ala Trp Leu Ala Met Ile Lys Ile Ala 210

Ser 225

<210> 43
<211> 5242
<212> DNA
<213> Chlamydomonas reinhardtii

<400> 43
tgtttatggc cgagcggtgc gcggcggtgc gcgcgtgggg ccccagggcc ggccactgcc 60
tgctacggag gctggtgccc tgccgsgaca ccaactgca actccggaac actcgccgg 120
ggtgaccccg cgaattgagg tctatatgaa agtataattg ctccggttgga cgacaccc 180
tgccccgact gatggagtcga tggcgcctaa ttgacgcattt atctcgcgat agttgcaatg 240
gccgactcttc cagcgccata tgtggacatg ctgtattaat tggccacctt tagctacgtt 300
gcgccgcccc gcattctgggt caactctagt gccgtctgct ccacctgcctt cgtgtcctgcag 360
gagccccgca cgtgctcata atagttgttt ttcccccgccat gctctttgctg gcggccttg 420
gcgtcagact ctacacataa gtgaactcctg cacaacgcctg ttaaacaaaa gcccccttaag 480
tgctgtgctgtac ggtgggatgg cacttgacgg cggccctgcag acgtacacca 540
agagagatct cctccctgag aatcagctcga tcgcagccgag gaagatgcat gctgccctg 600
tgcgtctggtg actgtaattgg aagcgacggt cacgtcatctt ccctgccagtt catttttctcagag 660
tctacgccc cccagcggcg cctgtgaatt gcgcgtattaa tattatggtta tttatgggtaag 720
tgcagtggct taacagccgtcct tggccgagggc agatgatgct tttcggagcgc ggcttctcttg 780
gggctgcagg ccacatgctcg ctgcaagttgc tgcggcgccctg gccgagcgctg cgaacctcat 840
cttgggttgac ctgggttggtg gcactggggt gatgcggcgtg ttgatagggg aggtgagggga 900
tagccctgcc cgttttgctgc cgttctggcgt ccagattttg ccagactctgtg ctttgctctt 960
gtgcggcgcag gagaatgtgc atataggtgc tataacatct gcactgggga agtctcaagt 1020
cactcatcgct gcggcactgct gccaactgcgt ggcggaggtg gccaaagaaga agggcgaaggg 1080
caggcgctgg agaagatggct aggcttggga ggccagatcgg tggcaggattg ccagtcctggtaa 1140
ggcagcagcg acgcattcatca cttcctctcta tgcggctcaag agtcagttgc aacggcggctcg 1200
acttagcattc ggaggattca tccaacacaca acatctcaccct cctcctccaccc cggcttctttt 1260
gctgtctcag tggctccacac gcacatcgcac gcactgcagg acggcttgctc gcacatctgc 1320
caggcagggc gtagggggtc ctcggcaagccc ccttcagcct cccccgagtt gcaatgggtac 1380
cgcagatgc gcctgctgcct gcctgcaccc cttcgcgcgc ggcctccttg gaattctggc 1440
atctctcata acacagctgg ctagcgggag cagcagcggc cttagcgcgc ggggtggctc 1500
tctggtgact gcagagggta tggcaggggc cctctcagct caagcctgatt cccgcttgctcg 1560
tgctcagtgc aatcctcaca cccgcttcct gcggcagctgc gcgttctctgc gcagtgcctgcg 1620
ggccttccgg gccacacagcg ctagctgcct gcagctgttcg ccggagcttg ctgtgcattca 1680
agaggccacgt gctctgcgcgt gcctcagctgc ggcctgcctcc gcggcagctgc gcgttctctgc 1740
atlctcgcgc gcagggagtgc gttggcattgc ggttggcattgc gttgggctccg cccggggtgtc 1800
ggccttacac gcaggtgctgc gctccttattc ccaccagctc gcggcagctgc gcgttctctgc 1860
ggccttacac gcaggtgctgc gctccttattc ccaccagctc gcggcagctgc gcgttctctgc 1920
agggcagccag cggagtgtctt ggcctgcctcc gcggcagctgc gcgttctctgc gcggcagctgc 1980
tcgggagtgc gctctgcgcgt ggttggcattgc ggttggcattgc gttgggctccg cccggggtgtc 2040
tttcgtagtt gcagcctctata ccaccagctc gcggcagctgc gcgttctctgc gcggcagctgc 2100
ctgggggtgc cgtggctgcgt gcggcagctgc gcgttctctgc gcggcagctgc gcgttctctgc 2160
tggtctctgc gcagcgctcact ctagcaggtgc ggttggcattgc ggttggcattgc gttgggctccg 2220
aacggcagccag cggagtgtctt ggcctgcctcc gcggcagctgc gcgttctctgc gcggcagctgc 2280
ggccttacac gcaggtgctgc gctccttattc ccaccagctc gcggcagctgc gcgttctctgc 2340
tgctgcttcgc gacacaggcc gcctgcttcgc gcctgcttcgc gcctgcttcgc gcctgcttcgc 2400
tggcgggtgc gcttcctggg acctacgcagc gataggggag cctgcttcgc gcctgcttcgc 2460
gccacacgca caattcgggaga ctggccttcgca ccggcagctgc gcgttctctgc gcggcagctgc 2520
actacagcacc aacggatcagt tcggcagctgc gcgttctctgc gcggcagctgc gcgttctctgc 2580
atggagggcag gttgacggtat ttagtgcgcga tggggaccttg gaagagtcttg gtaatgcgtgc 4500
cggtatgtgc caaggaaggg cgggtgcggcg ttggggcggcgc gacagaaactc gaaagtgtgtg 4560
ttagataagtt caaagatagtt tgggagcaac gcggccgacg ctgagggtggct 4620
cggggtccgg gcgccaaactc gcgggtggct ccgattgtgta cctggtgatc taatc 4680
ctctctcaat ggcgagctcc tttctacatgg cccgccgagg ggggcgcaag aagagaaact 4740
aagcagcgtg ccggagaggc acggggccac agtgggcggtc tagcaacacgc caatggcgct 4800
gacatgagag gagcaggtgct ttgtgtgcgtc gcccgcggcc ggtggtgctag ggcagtcgct 4860
tgtgtcaag ccggcgggac ccgggtggtgc aagggagcgc ctacggagcgc ccggcgttgcg 4920
gccggtccc ccggcgccgt cgcagctcgc cttgcagatc tctctgctgg gcgtcggcgtc 4980
tgtccacgcag gcgcgggtcc ggtccagctt ctgcaaggtt aagcgcgtgcgc actccatagct 5040
agtgtggcgc gatggagttca ggcagcaagc aatcagagcc gcgtgagag tggcgctttc 5100
cggagctgcc gcgtcagctgc cttttcgttg gcgtgtggtgc attcacgcgg gcagagcgct 5160
tagggagcag ccggcgccgt cgcagccttc cgggtcgtctgc ctctttgtgg gcgtggtgggt 5220
cgagcgcgagc cgcgcgagca cc gcagttcc
gaggaccccg agccgatat ggaagtgatg gagatcaacc ccaaggacac ggtgtctgacc
ctgactcagc gcggctgcaa tgcctctgaa ctgtcgtcgtc aaggggcccc ccaggtggtg
tcggttgact gcaaccccgc gcagtcggcgc cttctggagc tgaagaaggt ggcctattcag
cagcttgagtt ttaagacgct ctggcagcgt ctcgctggagc gcagcaccgc gcagctgtgag
lgagctgtacg agaagaagct gcgcgccttctct cttgtggcaaa ccagcccaaca cttctgtgcc
aagcgctctct ggcagcttca gcacggcctg tactaccagg gcgcagctggg caagctgtgc
lgggtgtgtgc agtgcctggtgc gcgtgtgctg gcagattgagc agacccagta ggcgcctgcc
aacgcgccca caatggagga gcaagcgcgcc ctggtggagc gcagcactgc gatccacctc
gtgaagaacg gcgcaccaacgc gcgcaggtcg gcgtggctcag ggtgctctgag cctggtgtcgc
tcaccacaagg ccgctgctggt ctgcggcgcgc gcggctggccgc gcagcagctg cggcggtgtgc
aagccggagcg gccatcccat tgtgaactac acctccggca ccaatggcagc cgttgccgag
aactcgcaagc tcgcagcagaga cactacttgc acctacaact gcctcaacgc gcagttctcg
ccgaccaact gcacccacca cctgcgagcg gcggctttcg ccaacctcaca gccctgcggtg
gtggaccaac tcgacgtcct caccaacactg cttatggagc agatcacaagcg gcgcacactc
accaaggtga tcctgatgga ccaagtcggac tgccttgata tgcctgtgcgc caagcagctg
gcgagttgcc tgcagcagcag gcggctggtg ggcgcagctcg tcacgcttgcgc ctcgctgccc
cctacggcgc gcgcagttcg gctgcacagc aagccggtgct cgcagacgct gcgcagctgagc
cgcgccaactgc aggagctcat gcagcgcgctgc aacacgtcaac gcctctttctca catgccccgc
cggaagggcgc ccaagaagga cactaa

<210> 45
<211> 648
<212> PPT
<213> Chlamydomonas reinhardtii

<400> 45

Met Gly Ser Gly Arg Asp Gly Arg Pro Ala Ser Tyr Thr Lys Lys Asn
1 5 10 15

Phe Ser Leu Glu Lys Leu Lys Leu Ser Ser Ser Met Lys Asp Asp Leu Thr
20 25 30

Val Leu Arg His Met Trp Phe Gly Ser Lys Lys Gly Asp Asp His Ala
35 40 45

Ala Arg Leu Glu Ser Phe Tyr Gly Pro Glu Ala Ala Ala Phe Ala Ala
50 55 60
Arg Leu Ala Glu Arg Ser Asn Leu Ile Trp Val Asp Leu Gly Gly Gly Gly
65 70 75 80

Thr Gly Glu Asn Val Asp Met Met Ala Asp Tyr Ile Asp Leu Ala Lys
85 90

Phe Lys Ser Ile Tyr Val Val Asp Leu Cys His Ser Leu Cys Glu Val
100 105 110

Ala Lys Lys Lys Ala Lys Ala Lys Gly Trp Lys Asn Val Gln Val Val
115 120 125

Glu Ala Asp Ala Cys Gln Phe Ala Pro Pro Glu Gly Thr Ala Thr Leu
130 135 140

Ile Thr Phe Ser Tyr Ser Leu Thr Met Ile Pro Pro Phe His Asn Val
145 150 155 160

Ile Asp Glu Ala Cys Ser Tyr Leu Ser Gln Asp Gly Leu Val Gly Val
165 170 175

Ala Asp Phe Tyr Val Ser Gly Lys Tyr Asp Leu Pro Leu Arg Gln Met
180 185 190

Pro Trp Ser Arg Arg Phe Phe Trp Arg Ser Ile Phe Asp Ile Asp Asn
195 200 205

Ile Asp Ile Gly Pro Glu Arg Arg Ala Tyr Leu Glu Gln Lys Leu Glu
210 215 220

Arg Val Trp Glu Gln Asn Thr Gln Gly Ser Ile Pro Tyr Val Pro Trp
225 230 235 240

Leu Arg Ala Pro Tyr Tyr Val Trp Ile Gly Arg Leu Pro Ser Val Gly
245 250 255

His Ala Leu His Glu Glu Arg Val Glu Arg Pro Pro Met Phe Pro Pro
260 265 270

Thr Phe Leu Tyr Thr Gln Ser Trp Glu Asp Pro Glu Pro Asp Met Glu
275 280 285

Val Met Glu Ile Asn Pro Lys Thr Val Leu Thr Leu Thr Ser Gly
290 295 300

Gly Cys Asn Ala Leu Asn Leu Leu Val Gln Gly Ala Gly Gln Val Val
305 310 315 320
Ser Val Asp Cys Asn Pro Ala Gln Ser Ala Leu Leu Glu Leu Lys Lys 325
Val Ala Ile Gln Gln Leu Glu Phe Glu Asp Val Trp Gln Leu Phe Gly 340
Glu Gly Val His Pro Arg Ile Gln Glu Leu Tyr Glu Lys Lys Leu Ala 355
Pro Phe Leu Ser Gln Thr Ser His Asn Phe Trp Ser Lys Arg Leu Trp 370
Tyr Phe Gln His Gly Leu Tyr Tyr Gln Gly Gly Met Gly Lys Leu Cys 385
Trp Val Leu Gln Cys Leu Ala Val Val Leu Leu Gly Gly Lys Thr Val 405
Lys Arg Leu Ala Asn Ala Pro Thr Met Glu Glu Gln Arg Arg Leu Trp 420
Asp Ser Asn Met Leu Ile His Phe Val Lys Asn Gly Pro Lys Pro Leu 435
Val Trp Leu Phe Val Lys Phe Val Ser Leu Val Leu Phe Asn Lys Ala 450
Val Leu Trp Phe Gly Gly Gly Val Pro Gly Lys Gln Tyr Ala Leu Ile 465
Lys Ala Asp Gly Ile Pro Ile Glu Asn Tyr Ile Ala Arg Thr Met Asp 485
Gly Val Ala Glu Asn Ser His Val Arg Lys Gln Asn Tyr Phe Tyr Tyr 500
Asn Cys Leu Thr Gly Lys Phe Leu Arg Asp Asn Cys Pro Thr Tyr Leu 515
Arg Glu Ala Ala Phe Ala Thr Leu Lys Ser Gly Val Val Asp Asn Leu 530
Thr Val Ser Thr Asn Phe Phe Met Glu Glu Leu Lys Ala Arg Thr Tyr 545

Thr Lys Val Ile Leu Met Asp His Val Asp Trp Leu Asp Met Pro Val
565 570

Ala Asn Glu Leu Ala Glu Cys Leu Ala Lys Gln Val Ala Pro Gly Gly
580 585 590

Ile Val Ile Trp Arg Ser Ala Ser Leu Ser Pro Pro Tyr Ala Glu Leu
595 600 605

Ile Gln Lys Ala Gly Phe Asp Val Arg Cys Ile Arg Arg Ala Thr Gln
610 615 620

Gly Tyr Met Asp Arg Val Asn Met Tyr Ser Ser Phe Tyr Met Ala Arg
625 630 635 640

Arg Lys Gly Ala Lys Lys Asp Asn
645

210> 46
211> 24
212> DNA
213> Artificial Sequence

220>
223> Synthetic

400> 46
caggatatccag tgggtcgggtg tctg 24

210> 47
211> 23
212> DNA
213> Artificial Sequence

220>
223> Synthetic

400> 47
caggatatcgc cgcagctgc tta 23

210> 48
211> 3427
212> DNA
213> Neurospora crassa

400> 48
crasagacc acgcagcaga atgacgaaca gagaaccaga catgtggtac acagaacct 60
gtctcctat gttactgggg ggcgcgcgcct ggcaccccat tctgcttggga tctcaagcga 120
aagcggagtg tggagttggg gaacttcttt tacaagcgtc gctattgaag tttctggaaga 180
tgtacatacg gtttatatag agagagaaaa gatataacta tcggctttaaa aggctaacct 240
caatcacaact tcttttcttc ttcttctcgt tcttggaacag acgcctcgat tccttcctctcct 300
tttactttgac accaaacttcattatacaag ggagacaaca gttgcacctgc ttctctatgtt 360
ggtcacatggt gtaacaccttc gctacatcatg cttctcagtaa cccgaacact acgcagccttc 420
aacatcaaca ccacacacatc caaatccttcat tctttctcggg gttgttcgctg ctgtttatattt 480
cgccgcac ccagcagcagc accaaccaaa aacggcagga caatgaggtt 540
gagggcacc acgaattcctt ccaatttcctc ctctctctctc gcctacactcgtg cctctacaa 600
cctcagcgcga cgcgcgcgtcg cacagacacca ccggactgacgcgtgctcg acgcctcccaca 660
agtccagcag ccacaccaatt tgcgagaacg ggtgaccgctt gtaaggaggg gaggagattt 720
ttggtctcttg cagctctcgcga gttgcacttc gatttgaggg ttgcaagtgg gggactctgga 780
ggcgccttgag atggctcttgga aaaaacacaa agaagagaggg ggcacacggtgcgtcgcggc 840
ggcgacaggc cggcagacag gagaacacgc atatgggttag atgtgaacgg gctctacagca 900
acccctgcca atggtggaat cgcaccacgc gcgcatcacgc gcattacaaa acgcctgctgag 960
ggcgagcagc ggaaatccag gcacagccgc cagttgctcctt acatcatcaca 1020
gactcttttacctgtggtact ttcgccccgtc actctggtgaa gttgctctagaa acgcgttggc 1080
caggctgggg tgggagaagtg tgaaggtttat ctgcaacgag gcctgcagagt ttaggtctttga 1140
ggattaatagc gatgtggtacg aaggagagtc ttgctctcggg gtctctctctcgc ctctctctgc 1200
ggtttgtgg ggggagacgc agccggagac agcagccgaggt gctgaggtgga tcaacagtctt 1260
ntatagcctt gctgatgtgg tattttttctt gattaaggac gccttggtggt ggtttggtct 1320
gacatatcat gacgagttgtcg cgcagatttt tttctctttctgtt gattgctgcgtctgctctgt 1380
tagccacctca cgcttgtgatt gcgtgtctgg accttaacgc ccaactgcaaa gctgacatcga 1440
cattcgcacaa ctacacgcgtt gcctttattaga acgccagcggt tcgcttttcttc gcgcgagact 1500
tctgctgcgtct gcgtgctgttgc gctgtcagcgcgtc gtcggtctctccttgagattttac 1560
tcgactagcag gtgcggctacct gccacccctgc tcaacgcacgc ccaacacact ctcggagacaa 1620
tttcattacta catctggtttt ggtacggtca agaagccctc tttacgtcag atgtctacacc 1680
dggagactgtgt gcgtagcattgc acgcagagtc ccaagactaca taccgccggtc tttcttccc 1740
tagtgcccaaa acatctctgcc tcaagcacaag atcgctagcgt ctttcgagtc gcgccagacag 1800
cgccggagat gcggcatcag gccttccacta cgccactgca gaacactctc gcacacactac 1860
tcttccttcattaa ccacaccaac acggctagtc acgcgcagctg cttacacacgctctcact 1920
cgaagcagac ccagttcaatt gacagagtata ttcacgtcctt tacctgggaa gctgcgctcg 1980
tgacagacaact cttcccttaacctg ctcgggcggg acaacgtgctt ctttagctctc accagcgccg 2040
gxagxagxxat ttttttctccg gttgtggcag cttggtcgcgg cctggcacgcc atgtggtcctgaa 2100
acccagccca aaaccaacctg cttgaaactca aagtcgcttc tttaacgact ttggattacc 2160
cgagctctg gaagatcttc ggtgagggca aaccacccga ctctcgcctca ctgctcatct 2220
ccaacaccttc cctcctacct ctcggcgcgc gcctttcataa ctggcctatcc aatgacgcaca 2280
ttattaccga ccccgggggg ggggttctct atgatacagg gggctccccga tacgctatcc 2340
gttctctccg cttggatttcc aacacttttt ctgcgcgctcc cggggttctct gcacctccctt 2400
cctactctcc cctcggaggg caaggttctca ctctaccacac caagattcgt cctgctctgc 2460
tcaccgcctt cgtcacaagcc ctggttcctca gtcctgacgc ctctcctcttg cgggcttttg 2520
ggctgcacaa gaatacagtt gcgtatgtcg aagcgcagct caacgcgctg ttcatctctcct 2580
cctocaccac cccgcagcac aaagaaaac caagcgcgct cgaagcaatc ccctcaacctca 2640
cacccctccac cctgatatcc cttctctctca ccccgcacct tgcctgacgc aaccctctct 2700
acctcgtctg ttgactgagga caatacacaac ggcgagtgcga ttgggtttcttg cttttcccctg 2760
cgccgctccc tataactcagc gcgtctggag cctttgaggg ctaaacgccct ccaacgcagt 2820
aatacagga gggtgtggtct aggtttcgac gcgggtacttt gcacagtagg gtgtgtgtggttgg 2880
atagatagga ttgggtctgct cgcgcttgcc ctgaggaggaa aaaggaaggg aggccagaaag 2940
cggagggagca agatgaggagg tggaatcoggg cgttggaatgg ggggggaaaggt gtggtttttga 3000
gagcagccgg gggtgagccg ttgggttgagc gggttttttg gtgaggggaa gttgggcttgg 3060
gagagggggttt ttgggtgaaat ccgggaaggg gggaccagga ggtgtattga agggtgataa 3120
ttgatagctag ttggcgcactc ctggaaaaaga cgggagagtct gcggaggggttg gttgactcag 3180
ccttaagattga ttgagctggtc ctaaggtgata aggttgataa cccctattag gcaagacta 3240
cctctactgg ccagaaacag gcacagctata ttttttatct gccaactcaac oattcaacag 3300
gctttttgtct ctaagctaggt taacagcagg acggtgaggag aaatcgcaac ctctttacttg 3360
gctgacagt acaaggccgg tctgataagtt attttgtatata agagcttcca cagcaaaaag 3420
atgtccc 3427

<210> 49
<211> 2727
<212> DNA
<213> Neurospora crassa

<400> 49
atgggagaca acagtgcccat ggctttctctg ggtggctcaca tggaatacat ttgctacca 60
tcaacctccag taacccggac actacgagac ctaaccttcga acaccaccac taccaaatcc 120
actctctctc cccggtgtgcc gtcgtgtctga tttcttgctc cccacagcag catcttgccgg 180
agagacaacc aaaaacgagg cgaacatgag gatgaaagca acccaagtcg cctcaaatcc 240
tctctctctc ttgctactc tctgcttcac caaaccccaac gcacggccgg caacacacagga 300
acacagcaag atgccttgga gtgtttttac cgaagtccag cagacattta tgcagccgaca 360
aggggtacgc tactgaaaggg gaggggaggt atgtggtgct tcggagcttc gcaagtggag 420
tacaaggttg aggctgacct tggcggactt ggaggagctg gatgtgggtct tgaaaaaga 480
ccaaggtatg ggaagacagt gtaacgcggct gccggcagc agacgggagc aagagggaa 540
cggatatggg tagatgctgg tgggggcaca ggcgtggaata tcaagaagcat ggcacaagttt 600
gtcaacgctt ctagaatctt caagaacttt tacaatagttg acntttcgcgc gtcacctttgt 660
agaatgctta ggaagcgggtt tcggacagct ggtgggagaa atgtgagagt tctctggcag 720
gatgctgcca aagtttaggct tggaggtatt gaggagtgtg acaagagaga gtcgctggctt 780
ggagattttc cgccctttctt tgcgggttg gggtgggaga cgaacggcggg aagacatggc 840
ggagctgagt tgcgacacat cttctatagt gccgctgatga tggcaggtttt ctctctgtatt 900
atcgattagcc ttagctccttt ttagctacct caacggttgaa ttgctgctgt ggcacctcttc 960
gcccaagtcga aagtctgactt cacatcgcggc aacactgacgg gtggtctttatt gacaagcac 1020
gttggtcttt tcggcgggaa ctcttgcggcg tcgtgcctgtg agtcgctgag ggtgctttctt 1080
agcccaagtcg tgcggagatt cctctgtgacttct ctgctggcctaa gctcaacgcc 1140
cgcaacaca cttcggggac aatctcctctt tcagatcctt tggtgatcctt caagaagcccc 1200
tttctacgt cgagttctacc gacagaaatt gtggaacacca tcgatgctatt tcgacagag 1260
tcccaagat ctcaccccg ctctagtgcc ccaaatcctt ccctcagcacc aaatgggctta 1320
gctctttgcac tcgccccgcac agcggcggag atgcgcttcaaa agcgtcttcata tgggctcttc 1380
gaaacactct cggccaacct ccctttctcttcg cttcttt.ACTA aacaaatca cccactggagg 1440
atctactacg acaacacact cccgaagcag accacatgta ctcagctgac catctcaagcc 1500
tttacttggg aagactogcgc cttcggagac gaactctttta aacctggggcc cgaacgactc 1560
gtctcagcca tcacccgcgc cggccagaca acattctttcct gttctgtgatg gcgtccgctt 1620
cgcgtgcaeg ccacagactt aacacggcag ccaactccac ccctgggact ctgactgccg 1680
tcttttaoga cttctggatga cccgcaagctg tgggagtcatct tcgggtgagg ccaacccc 1740
gacttctgtt cactgctcat ctcacatcct tccccctacc cttccggcgc cgggttttca 1800	taactgacct ccaatgcgcac atatattacc gacccctggg gcgggctgctt ctatgatacc 1860
gccgctcccc gatacggat cttctggtttg cctcttggcc gacactcctt ctctgccccg 1920
tcgcggtgct gcggcttttc ctctctcttc acctcctgaa ggcacgcttc ctcattccac 1980
accaagacttc gctcctgcttc gctcaacggc ttcgctcaacgg gcgggctgctt cagctcggac 2040
gctcgctcct ggtcgcccttt ggccccgctcc aagaactcag tggctatgat cgaagcgcac 2100
taccaacggc cccttccttc ccctccaccc ccccccagca gcacagaaaa accaagccgc 2160
<table>
<thead>
<tr>
<th>1</th>
<th>Met</th>
<th>Gly</th>
<th>Asp</th>
<th>Asn</th>
<th>Ser</th>
<th>Ala</th>
<th>Met</th>
<th>Ala</th>
<th>Ser</th>
<th>His</th>
<th>Gly</th>
<th>His</th>
<th>Met</th>
<th>Gly</th>
<th>Asn</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>Ile</th>
<th>Ser</th>
<th>Leu</th>
<th>Pro</th>
<th>Ser</th>
<th>Leu</th>
<th>Ser</th>
<th>Val</th>
<th>Thr</th>
<th>Arg</th>
<th>Thr</th>
<th>Leu</th>
<th>Ala</th>
<th>Asp</th>
<th>Leu</th>
<th>Asn</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

| 30 | | | | | | | | | | | | | | | | |

| 35 | Phe | Asn | Thr | Thr | Thr | Lys | Ser | Ile | Phe | Phe | Thr | Gly | Val | Ala | Val | |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 40 | | | | | | | | | | | | | | | | |

| 45 | | | | | | | | | | | | | | | | |

| 50 | Leu | Val | Phe | Leu | Val | Thr | Ser | Asn | Tyr | Ser | Arg | Lys | Thr | Thr | Lys | |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 55 | | | | | | | | | | | | | | | | |

| 60 | | | | | | | | | | | | | | | | |

<table>
<thead>
<tr>
<th>65</th>
<th>Asn</th>
<th>Glu</th>
<th>Asp</th>
<th>Asp</th>
<th>Asn</th>
<th>Glu</th>
<th>Asp</th>
<th>Glu</th>
<th>Gly</th>
<th>Asn</th>
<th>Pro</th>
<th>Ser</th>
<th>Leu</th>
<th>Lys</th>
<th>Ser</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

| 75 | | | | | | | | | | | | | | | | | |

| 80 | | | | | | | | | | | | | | | | | |

<table>
<thead>
<tr>
<th>85</th>
<th>Leu</th>
<th>Leu</th>
<th>Phe</th>
<th>Cys</th>
<th>Tyr</th>
<th>Ser</th>
<th>Cys</th>
<th>Phe</th>
<th>Ile</th>
<th>Lys</th>
<th>Pro</th>
<th>His</th>
<th>Ala</th>
<th>Thr</th>
<th>Ala</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

| 95 | | | | | | | | | | | | | | | | | |

<table>
<thead>
<tr>
<th>100</th>
<th>Gly</th>
<th>Thr</th>
<th>Thr</th>
<th>Gly</th>
<th>Thr</th>
<th>Gln</th>
<th>Gln</th>
<th>Asp</th>
<th>Ala</th>
<th>Leu</th>
<th>Glu</th>
<th>Ser</th>
<th>Phe</th>
<th>Tyr</th>
<th>Arg</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>

| 110| | | | | | | | | | | | | | | | | |

<table>
<thead>
<tr>
<th>115</th>
<th>Gln</th>
<th>Ala</th>
<th>Asp</th>
<th>Ile</th>
<th>Tyr</th>
<th>Asp</th>
<th>Ala</th>
<th>Thr</th>
<th>Arg</th>
<th>Gly</th>
<th>Thr</th>
<th>Leu</th>
<th>Leu</th>
<th>Lys</th>
<th>Gly</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

| 125| | | | | | | | | | | | | | | | | |

<table>
<thead>
<tr>
<th>130</th>
<th>Glu</th>
<th>Asp</th>
<th>Met</th>
<th>Leu</th>
<th>Ala</th>
<th>Leu</th>
<th>Ala</th>
<th>Ala</th>
<th>Ser</th>
<th>Gln</th>
<th>Leu</th>
<th>Arg</th>
<th>Tyr</th>
<th>Lys</th>
<th>Val</th>
<th>Glu</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>

| 140| | | | | | | | | | | | | | | | | |
Ala Gly Leu Gly Gly Leu Gly Gly Ala Gly Asp Gly Leu Glu Lys Arg
145
150
155
160

Gln Arg Asn Gly Lys Thr Cys Val Thr Val Ala Gly Thr Gly Thr Gly
165
170
175

Thr Arg Arg Lys Pro Ile Trp Val Asp Val Gly Gly Gly Thr Gly Trp
180
185
190

Asn Ile Glu Ala Met Ala Lys Phe Val Asn Val Ser Glu Phe Phe Lys
195
200
205

Thr Val Tyr Leu Val Asp Phe Ser Pro Ser Leu Cys Glu Val Ala Arg
210
215
220

Lys Arg Phe Ala Arg Leu Gly Trp Glu Asn Val Arg Val Ile Cys Thr
225
230
235
240

Asp Ala Arg Lys Phe Arg Leu Glu Asp Tyr Glu Asp Val Asp Glu Gly
245
250
255

Glu Ser Gly Ser Gly Asp Ser Ser Pro Ser Leu Ser Gly Trp Trp Gly
260
265
270

Glu Thr Lys Pro Gly Arg His Ala Gly Ala Glu Leu Ile Thr Met Ser
275
280
285

Tyr Ser Leu Ser Met Met Pro Asp Tyr Phe Ser Ile Ile Asp Ser Leu
290
295
300

Glu Ser Leu Leu Ala Pro His Gly Leu Ile Ala Val Val Asp Phe Tyr
305
310
315
320

Ala Gln Ser Lys Val Asp Phe Thr Phe Arg Asn Tyr Thr Gly Gly Leu
325
330
335

Met Asn Arg His Val Gly Tyr Phe Ala Arg Asn Phe Trp Arg Ser Trp
340
345
350

Phe Asp Ala Asp Arg Val Ser Leu Glu Pro Ala Arg Arg Asp Tyr Leu
355
360
365

Glu Tyr Arg Phe Gly Thr Val Leu Thr Val Asn Ala Arg Asn Asn Thr
370
375
380
Leu Gly Ala Ile Pro Tyr Tyr Ile Trp Leu Gly Cys Leu Lys Lys Pro 385 390 395 400
Phe Ser Thr Ser Ser Leu Pro His Glu Ile Val Glu His Ile Asp Ala 405 410 415
Ile Ala Thr Glu Ser Pro Arg Ser Ser Pro Arg Leu Val Gly Lys His 420 425 430
Ser Ser Ser Ala Thr Asn Ala Leu Ala Phe Ala Val Gly Arg Thr Ala 435 440 445
Pro Glu Met Arg Ser Lys Ala Phe Asn Thr Ala Ile Glu Asn Ile Ser 450 455 460
Ala Asn Leu Pro Leu Pro Ser Phe Phe Tyr Gln Asn His His Trp Arg 465 470 475 480
Ile Tyr Tyr Asp Asp Gln Leu Pro Lys His Thr Gln Phe Asn Asp Glu 485 490 495
Tyr Ile Tyr Ala Phe Thr Trp Glu Asp Ser Arg Val Asp Arg Glu Leu 500 505 510
Leu Asn Leu Gly Pro Asp Asp Val Val Leu Ala' Ile Thr Ser Ala Gly 515 520 525
Asp Asn Ile Leu Ser Tyr Leu Met Gln Ser Pro Ala Arg Val His Ala 530 535 540
Ile Asp Leu Asn Pro Ala Gln Asn His Leu Leu Glu Leu Lys Val Ala 545 . 550 555 560
Ser Phe Thr Thr Leu Asp Tyr Pro Asp Val Trp Lys Ile Phe Gly Glu 565 570 575
Gly Lys His Pro Asp Phe Arg Ser Leu Leu Ile Ser Lys Leu Ser Pro 580 585 590
His Leu Ser Gly Arg Ala Phe Gln Tyr Trp Leu Ser Asn Ala His Ile 595 . 600 605
Phe Thr Asp Pro Ala Gly Arg Gly Leu Tyr Asp Thr Gly Gly Ser Arg 610 615 620
Tyr Ala Ile Arg Phe Phe Arg Trp Ile Ser Thr Leu Phe Phe Cys Arg 625 630 635 640

36/38
Ser Ala Val Arg Arg Leu Leu Ser Thr Pro Thr Leu Glu Gly Gln Arg
 645 650 655
Ser Ile Tyr His Thr Lys Ile Arg Pro Cys Leu Leu Asn Arg Phe Val
 660 665 670
Asn Gly Leu Val Leu Ser Ser Asp Ala Phe Leu Trp Ser Ala Leu Gly
 675 680 685
Val Pro Lys Asn Gln Val Ala Met Ile Glu Ala Asp Tyr His Arg Arg
 690 695 700
Ser Ile Ser Ser Ser Thr Thr Pro Ser Ser Lys Glu Lys Pro Ser Arg
 705 710 715 720
Ala Glu Ala Ile Leu His Tyr Thr Thr Thr Leu Asp Pro Val Leu
 725 730 735
Ser Thr Ser His Leu Ala Ser Asp Pro Tyr Tyr Leu Val Cys Val
 740 745 750
Leu Gly Gln Tyr Thr Arg Gln Cys His Pro Asp Tyr Leu Ser Pro Ala
 755 760 765
Ala His Ser Ile Leu Ser Ala Pro Gly Ala Phe Asp Gly Leu Arg Ile
 770 775 780
His Thr Asp Glu Ile Glu Gln Glu Val Leu Ala Arg Phe Gln Pro Gly Thr
 785 790 795 800
Leu Thr Val Ala Val Val Met Asp Ser Met Asp Trp Phe Asp Pro Pro
 805 810 815
Ser Pro Glu Glu Lys Glu Gly Arg Gly Lys Ala Arg Gln Glu Gln Val
 820 825 830
Arg Arg Leu Asn Arg Ala Leu Lys Val Gly Gly Lys Val Leu Leu Arg
 835 840 845
Ser Ala Gly Val Glu Pro Trp Tyr Val Arg Val Phe Val Glu Glu Gly
 850 855 860
Phe Gly Ala Arg Arg Val Gly Cys Arg Glu Ser Gly Arg Gly Asp Gln
865 870 875 880

Glu Cys Ile Asp Arg Val Asn Met Tyr Ala Ser Cys Trp Ile Leu Glu
885 890 895

Lys Met Glu Asp Leu Glu Glu Leu Val Asp Ser Ala
900 905

<210> 51
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 51
caggtacctgg atccaatagc aatggtggagac aac 33

<210> 52
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 52
caaaagcttttc tagactactt aagctgtgtc aacc 34